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ABSTRACT

Abdoslam, Intesar N. Adjusted Variance Components for Unbalanced Clustered
Binary Data Models. Published Doctor of Philosophy dissertation,
University of Northern Colorado, 2013.

In practice, it is very common to have clustered binary responses, where

binary data are naturally grouped by sampling technique or some property of the

sampling units. Often these clusters are unbalanced. The preferred class of models

for clustered binary data is the Hierarchical Generalized Linear Model (HGLM),

where random effects are used to account for the overdispersion known to exist

for clustered binary data. There are many methods to estimate the parameters in

Hierarchical Generalized Linear Models, but none of the current methods allowed

the overdispersion to vary from cluster to cluster. As clustered binary data led to

overdispersion, it was reasonable to conclude that unbalanced clustered binary data

may have been different overdispersion for different cluster sizes. By ignoring possi-

ble changes in overdispersion across clusters, test statistics tended to show inflated

Type I error rates. In this research, two HGLM methods were adjusted to account

for different overdispersion across different cluster sizes. The first new method was

the Extended Restricted Pseudo Likelihood (EREPL), an adjustment of Restricted

Pseudo Likelihood. Extended Restricted Pseudo Likelihood allowed for different

dispersion adjustments for each cluster. The new second method was Adjusted

Scale Binomial Beta (ASBB), an extension of the classical Binomial Beta model.
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This method allowed the Beta distributed random effect to have different scale pa-

rameters for each cluster. Through simulation, these extensions were compared to

the original methods in terms of power, Type I error rate, and estimator standard

errors. Adjusted Scale Binomial Beta h-likelihood was comparable to existing meth-

ods, as it gave us a low standard error and acceptable Type I error. Moreover, Bi-

nomial Beta h-likelihood had inflated Type I error. The Restricted Pseudo Likeli-

hood could also be applied to unbalanced clustered binary data.
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CHAPTER I

INTRODUCTION

Models for clustered binary data are important in many areas such as med-

ical research, education, and finance. Binary data, where the outcome has taken

only two possible values, is often represented as success and failure; more gener-

ally, binary data represents the presence or absence of an attribute of interest. For

example, in health services research where patients are clustered within hospitals,

the binary outcome could be whether the patient dies or lives. Also, in educational

studies where students are nested within schools, the binary outcome could be whether

the student passes or fails.

Clustered data or nested design is an experimental design in which the vari-

ables have an implicit hierarchy. For example, a hospital has two wings (I and II).

Patients in wing I are randomly assigned to either consultant A or consultant B.

Patients in wing II are randomly assigned to either consultant C or consultant D.

Thus, consultants A and B are nested within wing I and consultants C and D are

nested within wing II. The clusters may be balanced or unbalanced, i.e., the num-

ber of observations in a cluster (the size of the cluster) is equal or unequal. Un-

balanced clusters may result from sub-sampling unequal numbers of observations

from each cluster. Unbalanced clusters may also occur when there are randomly
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missing vector elements for a clustered multivariate outcome or if subjects differ in

the number of relevant vector elements for the analysis. The different cluster size

could lead to different dispersions for each cluster. For a nested model with a bi-

nary response, there are two sources of variation. The first source of variation is

the between-cluster variation that represents the variation from cluster to cluster.

The second source of variation is the within-cluster variation that represents the

random variation among responses in each cluster. For binary data that are clus-

tered with variation in each stage, instead of using a linear model, which assumes

normality of the dependent variable, it is more appropriate to use the extension of

the linear model the generalized linear model. The generalized linear model (GLM)

is an extension of the general linear model, which includes response variables that

follow any probability distribution in the exponential family of distributions. The

exponential family includes useful distributions such as normal, binomial, poisson,

multinomial, gamma, negative binomial, and others. Hypothesis tests applied to

the GLM do not require normality of the response variable, nor do they require ho-

mogeneity of variances. Hence, GLMs could be used when response variables follow

distributions other than the normal distribution and when variances are not con-

stant.

The nested design with a binary outcome is popular in many research ar-

eas, especially in medical studies. The nested design with unequal cluster size could

lead to more variation between the clusters. To account for the extra variation

due to different cluster sizes, the hierarchical generalized linear model (HGLM)

method is used. The most common methods, such as quasi-likelihood, penalized
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quasi-likelihood, and extended quasi-likelihood, allow for overdispersion; however,

these methods deal with overdispersion as constant for all clusters. It is common

to not apply these methods for changing overdispersion. Unbalanced clustered bi-

nary data may have different dispersions for different clusters. It was reasonable

to think that unbalanced clustered binary data may have had different dispersion

for different clusters, but current methods ignored this possibility. By neglecting to

account for different dispersion in binary data with unbalanced clusters, Type I er-

ror rate may have been inflated, efficiency may have been lost and power may have

been low. To solve this problem, two modified methods were explained. The pur-

pose of this study was to evaluate whether the two presented methods, Extended

Restricted Pseudo Likelihood (EREPL) and Adjusted Scale Binomial Beta (ASBB),

accounted for overdispersion in unbalanced clustered binary data better then exist-

ing methods. These two new methods were compared to REPL and Binomial Beta

h-likelihood in terms of power, Type I error rate, and standard error through com-

puter simulation. These new methods were expected to have smaller Type I errors

and more power in the case of unbalanced binary clustered data. The goal of this

dissertation is to present two methods of estimation for hierarchical generalized lin-

ear models (HGLM) for unequal cluster size with binary response to account for

overdispersion: (a) The first adjusted method was the Extended Restricted Pseudo

Likelihood (EREPL) which allowed for different dispersion adjustments for each

cluster. The EREPL used different dispersions denoted by ϕi in estimating a mixed
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effect model for binary outcomes with unequal cluster size. The HGLM formula for

ERPL is

Yi|u ∼ D(µ, ϕiµ(1 − µ)),

u ∼ N (0, VR),

η = Xβ + Zu,

η = g(µ),

where Y is the dependent variable following a binomial distribution with parame-

ters n, and p, D is the binomial distribution from exponential family distribution,

i = 1, 2, ..., K denotes the cluster. The parameter u is the random effect following

the normal distribution with mean equal to zero and variance covariance matrix VR.

X, and Z are explanatory matrices for fixed and random effects respectively, and

g is the link function which is logit for binomial distribution, and µ is the mean.

(b) The second adjusted method was an Adjusted Scale Binomial Beta h-likelihood

that allowed for a different scale parameter for the Beta distribution for each clus-

ter to account for overdispersion. The HGLM formula for an Adjusted Scale Bino-

mial Beta h-likelihood is

Yij|ui ∼ Bin(n, pij),

ui ∼ Beta (γ, λi),

ηij = xijβ + v(ui),

ηij = logit (pij),
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where Y is dependent variable follow binomial distribution with parameters n, and

variance covariance ϕµ(1 − µ). The parameter ui is the random effect following

the beta distribution with mean equal to γ, and λi is the varying scale from cluster

to cluster. The systematic component is ηij, and v is the transformation of ui to

occur linearly with xijβ. β is the fixed parameter, xij is explanatory variable for

fixed effects jth observation in ith cluster, and g is the link function which is logit

for binomial distribution.

The intention of each method was to allow dispersion to differ in clusters of

different sizes. In Chapter II, the following methods of parameter estimation for

mixed logistic models are reviewed: the methods for the linear model (LM), which

are maximum likelihood (ML) for fixed linear models and restricted maximum like-

lihood (REML) for mixed linear models; and the methods for the generalized linear

model (GLM), which are maximum likelihood (ML), quasi-likelihood (QL), and

extended quasi-likelihood (EQL). Moreover, a random effect for the GLM is incor-

porated and then extended to the hierarchical generalized linear model (HGLM).

For hierarchical generalized linear models (HGLM), the restricted pseudo likeli-

hood (REPL) method, penalized quasi-likelihood (PQL) method, hierarchical like-

lihood (HL) method, and double extended quasi-likelihood (DEQL) methods were

reviewed. In Chapter III, two modified methods for estimating model parameters

are presented and developed, allowing the dispersion to vary to account for un-

equal cluster sizes in a nested design with binary outcomes. In Chapter IV, com-

puter simulations are presented to investigate the methodology, and comparisons
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the adjusted methods with methods are made. Chapter V contains the summary,

discussion, and directions for future research.

The Research Questions to be Studied

Q1 Does Extended Restricted Pseudo Likelihood account for different

dispersion for different clusters size?

Q2 Does Adjusted Scale Binomial Beta h-likelihood account for differ-

ent dispersions for different cluster size?

Q3 Is Extended Restricted Pseudo Likelihood more powerful than

Restricted Pseudo Likelihood in the case of unbalanced binary

clustered data?

Q4 Is Adjusted Scale Binomial Beta h-likelihood more powerful than

Binomial Beta h-likelihood in the case of unbalanced binary clus-

tered data?

Q5 Does Extended Restricted Pseudo Likelihood method improve

efficiency?

Q6 Does Adjusted Scale Binomial Beta h-likelihood method improve

efficiency?

The Limitations of This Study

1. All methods are likelihood based estimation methods.

2. The dependent variable is binary.

3. The number of cluster, and sample sizes are not small.



CHAPTER II

REVIEW OF LITERATURE

Estimation of Mixed Logistic
Model Parameters

In many applications, data have hierarchical or clustered structures, e.g,

medical and health services research where patients are clustered within hospitals,

or educational studies where students are nested within schools. These studies often

involve the analysis of data with complex patterns of variability. Mixed models are

often the most appropriate models to use in practice, as they contain fixed effects of

interest and random effects to account for the clustering. The random effects reflect

multiple error structures. As for data that are clustered, we have variation in each

cluster as well as variation between clusters.

For mixed models which contain both fixed and random effects, we have the

equation

E[Y |u] = Xβ + Zu,

where X is the fixed effect design matrix, Z is the random effect design matrix, β

is the vector of fixed effect parameters, and u is the vector of random effect param-

eters. We need to estimate the parameters β = [β1, β2, ..., βp]
T , and predict the

random effects u = [u1, u2, ...uq]
T .
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Instead of using linear models assuming normality of the dependent variable,

we used the extension of linear models to the more appropriate generalized lin-

ear models when the dependent variable in mixed model is a binary variable. The

mixed models equation was in the form

g(E[Y |u]) = Xβ + Zu.

For mixed effects models, a variance component procedure, estimates the contribu-

tion of each random effect to the variance of the dependent variable. This proce-

dure is particularly interesting for analysis of mixed models. The overriding prob-

lem with estimating variance components from clustered data is that many meth-

ods of estimation are available and choosing a method is dependent on one’s model

and what components the model includes. Here we briefly summarize some meth-

ods that were used for estimating the parameters in two models: the Linear Model

and the Generalized Linear Model. Then methods for clustered data are presented

and current methods for unbalanced cluster data are examined.

The Linear Model

The Linear Model (LM) is either a statistical model with fixed effects only,

called a fixed model, or with random effects only, called a random model.

The Fixed Effects Linear
Model

The linear model (LM) is a statistical model with fixed effects. In matrix

notation, a fixed Model could have been represented as

Y = Xβ + ϵ,
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where Y is a response variable (vector of observations), β is a parameter vector

of fixed effects β = [β1, β2, ..., βp]
T , and ϵ is a vector of IID random error terms

with mean E(ϵ) = 0 and variance var(ϵ) = σ2 I. Then Y follow

Y ∼ N (Xβ, σ2I).

For the linear model, there are a variety of methods to estimate the parame-

ter. Here, we explain the maximum likelihood estimation (ML) method to estimate

the parameters in the fixed Linear Model.

Maximum likelihood estimation: Estimation by maximum likelihood (ML) is a well-

established method of estimation, originating with Fisher (1925). Hartley and Rao

(1967) first applied it to the general linear mixed model. Assuming that the error

terms are normally distributed, the maximum likelihood (ML) method could have

been used to estimate both the variance components and the fixed parameters. The

pdf function of the fixed model is

f(Y ) =
1

(2πσ2)
N
2

exp

[−1

2
(Y − Xβ)

T
(σ2)−1 (Y − Xβ)

]
.

Then the method of maximum likelihood could have been applied to the complete

likelihood function, denoted by

L
(
β, σ2|Y

)
=

1

(2πσ2)
N
2

exp

[−1

2
(Y − Xβ)

T
(σ2)−1 (Y − Xβ)

]
, (1)

and so the ln likelihood is

l = lnL = −
N

2
ln(2π) −

N

2
lnσ2 −

1

2
(Y − Xβ)

T
(σ2)−1 (Y − Xβ). (2)
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Maximizing l with respect to elements of β and the variance σ2 leads to

equations that have to be solved to yield the ML estimators of β and for the vari-

ance σ2. The solution for estimating the fixed parameters β is

β̂ = (XT X)−1XT Y, (3)

and for the variance parameter σ2 is

σ̂2 =
(Y − Xβ̂)T (Y − Xβ̂)

N
. (4)

The Linear Mixed Effects Model

The linear mixed model (LMM) is a statistical model combining fixed ef-

fects and random effects. In matrix notation, a linear mixed model could have been

represented as

Y = Xβ + Zu + ϵ,

ϵ ∼ N (0, R), u ∼ N (0, G).

where Y is a response variable (vector of observations), β is a parameter vector

of fixed effects β = [β1, β2, ..., βp]
T , and u is a vector of independent and iden-

tically distributed (IID) predicted random effects u = [u1, u2, ...uq]
T with mean

E(u) = 0 and variance-covariance matrix var(u) = G, and ϵ is a vector of IID

random error terms with mean E(ϵ) = 0 and variance var(ϵ) = R. Then Y fol-

lowed the normal distribution, with mean E(Y ) = Xβ, and variance covariance

cov(Y ) = cov (Xβ + Zu + ϵ)

= ZGZT + R

= V.
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For the linear mixed model we used maximum likelihood estimation (ML)

in the same way as in the last section or restricted maximum likelihood estimators

(REML) to estimate the parameters in linear mixed model.

Maximum Likelihood Estimation

To estimate both the variance components and the fixed parameters in

Mixed Effects Model, the pdf function of the mixed model is

f(Y ) =
1

(2π|V |)
N
2

exp

[−1

2
(Y − Xβ)

T
V −1 (Y − Xβ)

]
,

The method of maximum likelihood could have been applied to the complete likeli-

hood function, denoted by

L = (2π)−
N
2 |V |−N

2 exp

[−1

2
(Y − Xβ)T V −1 (Y − Xβ)

]
, (5)

so the ln likelihood is

l = lnL = −
N

2
ln(2π) −

N

2
ln |V | −

1

2
(Y − Xβ)

T
V −1 (Y − Xβ), (6)

Maximizing l with respect to elements of β and the variance components

(τ = (σ2
1, σ

2
2, ..., σ

2
l )

T ‘s that occur in V ) leads to equations that have to be

solved to yield the ML estimators of β and of τ . The equation is

XT V̂ −1 X β̂ = XT V̂ −1 Y, (7)

and for the random parameters components V is

tr (V̂ −1 Zi Z
T
i ) = (Y − Xβ̂)T V̂ −1 Zi Z

T
i V̂ −1(Y − X β̂). (8)



12

For i = 1, 2, ..., r; equations (7) and (8) have to be solved for β̂ and τ̂ , the elements

of τ̂ being implicit in V̂ . So they have to be solved numerically, by iteration. For

convenience, write

P = V −1 − V −1 X(XT V −1 X)− XT V −1,

and with

I = V −1 V

and V = Zi Z
T
i τ , McCullagh and Searle (2001) used the trace operation inside on

the left-hand side of (8), so set of r equations could have been written as

tr (V̂ −1 Zi Z
T
i V̂ −1 Zi Z

T
i )τ̂ = Y T P̂Zi Z

T
i P̂ Y. (9)

for i = 1, 2, 3, ..., r, rth equation. These provide easier visualization of an itera-

tive process than do (7) and (8); in (9) we could use a starting value for τ̂ in V̂ and

P̂ to solve (9) and repeat the process. There are several problems associated with

solving either (7) and (8) or (9). Briefly, the choice of a starting value for τ̂ affects

the final result. In fact, the final result obtained for τ̂ is given a global maximum of

l or only a local maximum.

The maximum likelihood method of estimation is well-defined and the re-

sulting estimators have attractive, well-known large-sample properties: they are

normally distributed and their sampling variances are known, e.g, Searle (1987).
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Restricted Maximum Likelihood Estimation

In general, the ML for the variance components do not take into account

the loss in degrees of freedom resulting from the estimation of the fixed effects, and

hence they become biased (McCullagh & Searle, 2001). A variant of maximum like-

lihood estimation in the mixed model is restricted (residual) maximum likelihood

(REML). Restricted maximum likelihood estimators are obtained from maximizing

the part of the likelihood which is invariant to the location parameter, in terms of

the mixed model Y = Xβ + Zu + ε, invariant to Xβ. To estimate only the vari-

ance components, we allowed the fixed part equal to zero. Suppose KTY for vector

K, so that KTY which contains none of the fixed effects in β. This means having

kT such that kTX = 0. For optimality using the maximum number, N − rx, of

linearly independent vectors kT and write K = [k1 k2 . . .kv−rx]. This results in

doing maximum likelihood on KTY instead of Y , where kTX = 0 and KT has

full row rank N − rx. Then the vector

KTY ∼ N (0,KT V K).

ML equations for KT Y was therefore, derived from those for

Y ∼ N (Xβ, V ),

by replacing

Y with KTY ; X with KTX

Z with KT Z; and V with KTV K.

On using



14

P = K(KT V K)−1KT ,

the ML equations for KT Y reduce to

tr (P̂ Zi Z
T
i P̂ Zi Z

T
i )τ̂ = Y T P̂Zi Z

T
i P̂ Y. (10)

These are the REML equations, to be solved for τ̂ which occurs in P̂ . It is easily

seen that they are the same as the ML equations (9) except for V̂ on the left-hand

side being replaced by P̂ in (10). The basic idea behind both REML and ML es-

timation is to find the set of weights for the random effects in the model (McCul-

lagh & Searle, 2001). The relative advantage of ML is that it provides estimation

of fixed effects, while REML does not. The REML takes account of the degrees

of freedom involved in estimating the fixed effects, whereas ML estimators do not

(Searle, 1987).

The Generalized Linear Model

The generalized linear model (GLM) is an extension of the linear model to

include response variables that follow any probability distribution in the exponen-

tial family of distributions. The exponential family includes useful distributions,

e.g, the normal, binomial, poisson, multinomial, gamma, negative binomial, and

others. Hypothesis tests applied to the Generalized Linear Model do not require

normality of the response variable, nor do they require homogeneity of variances.

Hence, generalized linear models could have been used when response variables fol-

low distributions other than the normal distribution, and when variances are not
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constant. For example, binary data would be appropriately analyzed as a binomial

random variable within the context of the generalized linear model. The GLM was

specified in three pieces (GLM structure):

1. Response Distribution

Y ∼ D(µ, a(ϕ)V (µ)).

The vector y is assumed to consist of independent measurements from a distribu-

tion with density from the exponential family :

fYi
(yi) = e

yiθi − b(θi)

a(ϕ)
+c(yi,ϕ)


,

where, for convenience, we have written the distribution in what is called canon-

ical form. For example, for binary response data, the data would be independent

Bernoulli so that

fYi
(yi) =

(
n

yi

)
pyii (1− pi)

1−yi ,

where pi is the probability of a success and θi = ln[pi/(1−pi)], (McCullagh & Searle,

2001).

2. Linear Systematic Component η = Xβ

The linear component is the quantity which incorporates the information about the

independent variables into the model. The symbol η is typically used to denote

a linear predictor, and is expressed as linear combinations (thus, “linear”) of un-

known parameters β. The coefficients of the linear combination are represented as

the matrix of independent variables X.
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3. Link Function η = g(µ)

To relate the parameters of the distribution to various predictors, we model a trans-

formation of the mean, µi, which would be some function of θi, as a linear model in

the predictors:

g(µi) = xT
i β,

where g(.) is a known function, called the link function (since it links together the

mean of yi and the linear form of predictors), xT
i is the ith row of the model matrix,

and β is the parameter vector in the linear predictor. Some examples of g(.) are

given in Table 1.

Table 1

Canonical Link Functions

Distribution Link Name g(.)

Binomial Logit ln(p/1− p)

Poisson Log ln(µ)

Normal Identical µ

Gamma Inverse µ−1

This GLM structure is appropriate for any response distribution from the

Exponential Family. The pdf for the exponential family is

f(y; θ, ϕ) = e

yθ − b(θ)

a(ϕ)
+c(y;ϕ)


,
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θ is canonical parameter, and ϕ is the dispersion parameter. Where

E(y) = b′(θ),

where b′(θ) is the first derivative of b(θ) and

V ar(y) = a(ϕ)b′′(θ),

where b′′(θ) is the second derivative of b(θ).

For example; the exponential family for Binomial distribution: the binomial

distribution function,

f(y;n, p) =
(
n
y

)
py(1 − p)(n−y).

The Binomial distribution in the form of the exponential family of distributions is

f(y; p) =

(
n

y

)
py(1− p)n−y

= e[ln((
n
y)py(1−p)n−y)]

= e[ln (
n
y)+y ln p+(n−y) ln(1−p)]

= e[ln (
n
y)+y ln p+n ln(1−p)−y ln(1−p)]

= e[ln (
n
y)+y ln( p

1−p)−n ln( 1−p+p
1−p )]

= e[ln (
n
y)+y ln( p

1−p)−n ln(1+ p
1−p)]

= e[ln (
n
y)+y ln( p

1−p)−n ln(1+exp(ln( p
1−p)))].

For θ = ln
(

p
1−p

)
, a(ϕ) = 1, b = ln

(
1 + eθ

)n
, and c(y, ϕ) = ln

(
n
y

)
There are several methods for estimating the parameters of a generalized lin-

ear model, e.g, maximum likelihood, quasi-likelihood, and extended quasi-likelihood,

which are summarized here.
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Maximum Likelihood Estimation

The likelihood function of the exponential family is

li(θi; yi;ϕ) =
yiθi − b(θi)

a(ϕ)
+ c(yi;ϕ).

The maximum likelihood method is used to estimate the mean model parameters.

When li(θi; yi;ϕ) is differentiable, the goal is to maximize li with respect to the pa-

rameter βj, producing the likelihood estimating equation:

∂li
∂βj

= 0.

By applying the chain rule to get the estimation of mean model:

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi

∂τi

∂τi
∂βi

,

where the conical parameter is

∂li
∂θi

=
yi − b(θi)

a(ϕ)
,

because µi = E(yi) = b′(θi),

∂

∂µi

(µi = b′(θi)) ,

then by differentiating both sides with respect to the mean, we get

1 = b′′(θi)
∂θi
∂µi

.

Solving the equation we get

∂θi
∂µi

=
1

b′′(θi)
,

and var(Y ) = a(ϕ)b′′(θ), where a(ϕ) = 1, (Nelder & Lee, 1992). Thus, var(Y ) =

b′′(θ),
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and we could write

∂θi
∂µi

=
1

var(yi)
=

1

var(µi)
.

∂µi

∂τi

∂τi
∂βj

=
∂µi

∂βj

.

The maximum likelihood estimating equations for N independent responses are

N∑
i=1

(yi − µi)
1

var(µi)

∂µi

∂βj

= 0,

for each j=1,2,...,p. The equations above depend on first and second moments.

In matrix notation,

DT V −1 (Y − µ) = 0,

where Dij =
∂µi

∂βj

, and V −1 is the covariance structure of the response. Maxi-

mum likelihood estimations are asymptotically normal (Nelder & Lee, 1992). The

maximum likelihood estimates could have been found using an iteratively weighted

least squares (IWLS) using either a Newton Raphson method or a Fisher’s scoring

method, (Gu, 2008).

The maximum likelihood estimation requires a fully specified response dis-

tribution. When we could not specify the full response distribution but could deter-

mine the mean variance relationship from the data, we could apply quasi-likelihood.

If we recognize the relationship between the mean and the variance, then the quasi-

likelihood estimation is appropriate.
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Quasi Likelihood Estimation

The quasi-likelihood (QL) method specifies the first two moments only,

without completely specifying the distribution of the data. The main purpose of

many analyses is to show how the mean response is affected by several covariates.

Sometimes there is insufficient information about the data for us to specify a full

distribution for the data. However, we may be able to specify some of the features

of the data.

From McCullagh and Nelder (1989), we summarized the method of quasi-

likelihood (Q-L): suppose we have a vector of responses Y = [y1, y2, ..., yn]
T which

are independent with mean µ and covariance matrix a(ϕ)V (µ), where a(ϕ) may

have been unknown and V (µ) is a matrix of known functions. We assume that µ

is a function of covariates X, and some parameters β. We did not need to limit the

nature of this relationship. Quasi-likelihood assumes variance a(ϕ) is given, and

V (µ)is made up of known functions. As it is assumed that the components of Y

are independent, V (µ) has to be diagonal. Thus, they write

V (µ) = diag (V1(µ),V2(µ), ...,Vn(µ)) .

It is also necessary to assume that Vi(µ) only depends on the ith component of

µ. This seems to be a reasonable assumption, as it is difficult to see why the vari-

ance of an observation would depend on other mean components, even if the mean

does not. In most applications, the functions V1(.),V2(.), ...,Vn(.), may be the

same, although their arguments could have been different. To construct the quasi-
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likelihood, we start by looking at a single component yi of Y . Now suppose we

have independent responses y1, y2, ..., yn with means E(yi) = µi and variance

var(yi) = ϕV (µi).

Wedderburn (1974) defined the quasi-likelihood as a function Qi (µi; yi) sat-

isfying

Qi =

µi∫
yi

yi − t

ϕV (t)
dt,

and for the complete data is the sum of the individual contributions, the total quasi-

likelihood is

Q (µ;Y ) =
n∑

i=1

Qi (µi; yi) ,

To estimate the mean model parameters β̂, maximizing the Q with respect

to the parameter β and equal to zero

∂Qi

∂βj

= 0,

Similar to maximum likelihood to get estimation of mean model, the equations for

N independent responses are

N∑
i=1

(yi − µi)
1

ϕ V (µi)

∂ηi
∂βj

= 0,

for each j=1,2,...,p. The equations above depend on first and second moments.

The matrix notation

DT V −1 (Y − µ) = 0.
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Wedderburn (1974) derived some properties of QL, but his theory assumes ϕ

is known; in the following it is set to unity. With this assumption, the QL is a true

likelihood if and only if the response yi comes from a one parameter exponential

family model (GLM with ϕ = 1). The quasi-likelihood does not specify a distribu-

tion, only the mean-to-variance relationship. This is not a sufficient basis on which

to estimate the variance covariance structure.

Extended Quasi Likelihood Estimation

The quasi-likelihood method (QL) estimates the mean parameter, and it

does not estimate the dispersion part. The quasi-likelihood method assumes ϕ is

known. An extended quasi-likelihood method, Pregibon (1987) estimated the mean

and dispersion parameters for fixed effects in the generalized linear model. The

extended quasi-likelihood method supposed the relationship between µi and xi is

g(µi) = xiβ, and defines the function Q+ for a single observation y with mean µ

and variance ϕV (µ) by

Q+(y;µ) = −
1

2
ln

{
2π ϕV (y) −

1
2
D(y;µ)

ϕ

}
,

where Q+, like quasi-likelihood method, did not presuppose a full distributional

assumption, but just the first and second moments. This estimates the β and ϕ by

maximizing Q+ for the mean and for the dispersion parameters respectively. This

method estimated the parameters for the fixed effects model only; it did not deal

with random effects.

To incorporate random effects, a mixed generalized linear model was used.

The model included the random component and the fixed effect as well. The ex-
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tension of the generalized linear model (GLM) to include random effects was the

generalized linear mixed model (GLMM), also named the hierarchical generalized

linear model (HGLM).

The Hierarchical Generalized Linear
Model

In generalized linear models (GLM), when the model contains both fixed ef-

fects and random effects, it is named the generalized linear mixed models (GLMM)

or hierarchical generalized linear models (HGLM),(Lee & Nelder, 1996). Hierarchi-

cal generalized linear models allow extra error components in the linear predictors

of generalized linear models. The distribution of these components is not required

to be normal, allowing a broader class of models. In hierarchical generalized linear

models, the response and random effects are allowed to follow any distribution in

the exponential family. As such, the HGLM is more appropriate for clustered data

than the GLM. Specify a HGLM in three pieces:

1. Response Distribution:

Y |u ∼ D(µ, a(ϕ)V (µ)),

u ∼ DR(µR, VR(µR)).

2. Linear Systematic Component: η = Xβ + Zu.

3. Link Function: η = g(µ).

where X is the design matrix for the fixed effect, β is the vector of fixed pa-

rameter, Z is the design matrix for the random effect, and u is the vector of the
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random parameter. We need to estimate the fixed effect and predict the random

parameters β = [β1, β2, ..., βp]
T , and u = [u1, u2, ..., uq]

T .

There are several methods for estimating the parameters of a hierarchical

generalized linear model, e.g, Restricted Pseudo Likelihood estimation, Penalized

Quasi-Likelihood, and h−likelihood.

For generalized linear models, we used the maximum likelihood (ML) to es-

timate the mean component. An extension to ML in HGLM is Restricted Pseudo

Likelihood estimation (REPL). Geys, Molenberghs, & Ryan (1997) showed ML and

REPL have parameter estimates that agree fairly closely.

Restricted Pseudo Likelihood Estimation

In maximum likelihood estimation, we estimated the fixed effects of the

mean model. Estimating both the fixed and random effects in HGLM means that

we have to consider the dispersion components and correlated errors. To handle

this situation, Wolfinger and O’Connell (1993) use Restricted Pseudo Likelihood

estimation. The response and random components in the HGLM could have been

written

1. Y |u ∼ D(µ, a(ϕ)V (µ)),

u ∼ N (0, VR),

2. η = Xβ + Zu,

3. η = g(µ),

where E[y|u] = µ, VR is unknown.
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First, write the mean in terms of the link function

µ = g−1 (Xβ + Zu) .

Apply a Taylor approximation of g(µ) about the initial estimate µ0,

g(µ) = g(µ0) + D̂(µ − µ0) + k
(
(µ − µ0)

T (µ − µ0)
)
,

where k
(
(µ − µ0)

T (µ − µ0)
)
is the quadratic and higher- order terms for the

Taylor Polynomial, and

D̂ =
∂g(µ)

∂µ
|µ=µ0.

Dropping the higher-order terms

g(µ) ≈ g(µ0) + D̂(µ − µ0).

After we get the linearizion, we redefine the Pseudo response

P = g(µ0) + D̂(Y − µ0).

For the linearizion P, we have

E(P |u) = Xβ + Zu,

and

var (P |u) = D̂cov(Y )D̂T .

The redefined model is

P = Xβ + Zu + ϵ.
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Now we have a linear relationship between the pseudo response and the predictors.

The pseudo response variable is assumed to follow a normal distribution

P ∼ N (Xβ,ZVRZ
T + D̂cov(Y )D̂T ).

Let VP = ZVRZ
T + D̂cov(Y )D̂T . Assuming normality, the likelihood for the

linear mixed model for the new pseudo response P is

f (P ;β) =
1

√
2π |ϕVP |

1
2

e
1
2 (P−Xβ)T V

−1
P (P−Xβ),

and the ln likelihood is

l (β;P ) =
−1

2
ln |ϕVP | −

1

2
ϕ−1 (P − Xβ)

T
V −1

P (P − Xβ) .

To estimate the parameter β, we maximize l with respect to the parameter vector

β.

In the above discussion, Wolfinger and O’Connell (1993) assume ϕ = 1, but

to allow ϕ ̸= 1, we make use of the profile ln likelihood to estimate the additional

dispersion parameter. To estimate the additional dispersion parameter, using the

profile ln likelihood in Wolfinger and O’Connell (1993),

l(τ ;P ) = −
1

2
ln |VP | −

n

2
ln

(
rT V −1

P r
)
−

n

2

[
1 + ln

(
2π

n

)]
,

where r = P − X
(
XT V −1

P X
)−1

XT V −1
P P is the residual pseudo response

“r = P − P̂ ”, the vector parameters τ is the parameter that allows the

data to have more dispersion, and the restricted marginal ln likelihood is given by

lR(τ ;P ) = −
1

2
ln |VP | −

(
n − p

2

)
ln

(
r
T

V
−1
P r

) 1

2
ln | XT

V
−1
P X| −

n − p

2

[
1 + ln

(
2π

n − p

)]
.
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Numerical methods are generally required to maximize l and lR over the parameters

in τ . The resulting equations could by solved using the Newton Raphson proce-

dure.

The parameter estimates are:

β̂ =
(
XT V̂P

−1
X

)−1

XT V̂P

−1
P,

û = V̂RZ
T V̂P

−1
r̂,

ϕ̂ = r̂T V̂P

−1
r̂ /n∗,

where (n∗) equals (n) for PL and (n− p) for REPL.

Notice that the method of Wolfinger and O’Connell (1993) applied a lin-

earizion, and that their method assumed the normality of pseudo response to esti-

mate the parameters by using ML. Restricted Pseudo Likelihood Estimation was

shown to be a very useful alternative for Maximum likelihood Estimation in clus-

tered data with non-continuous response (Geys et al., 1997).

There is an another method which does not need to apply a linearizion,

called the Penalized Quasi-Likelihood. Penalized Quasi-Likelihood (PQL) adds a

random part to the quasi-likelihood method. In PQL, we need to determine the

first two moments.

Penalized Quasi-Likelihood Estimation

The penalized quasi-likelihood (PQL) approach is the estimation proce-

dure for the HGLM. PQL is used for inference on parameters in the hierarchical

models. To remedy biased estimates for variance-covariance dispersion, Green and
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Silverman (1994b) suggested adding a penalty function to the quasi-likelihood, re-

ferred to as the penalized quasi-likelihood (PQL). To estimate the parameters for a

(HGLM) model by using the penalized quasi-likelihood (PQL), add a random part

u to the quasi-likelihood of the form 1
2
uT V −1

R u, assuming that u has a normal

distribution with mean zero and variance covariance matrix VR. The PQL is

PQL =
∑

Qi −
1

2
uT V −1

R u,

where

Qi =

µi∫
yi

yi − t

ϕV (t)
dt.

Green (1987) presented PQL as

−
1

2

n∑
i=1

Qi−
1

2
uT V −1

R u

and differentiation with respect to fixed parameters β and predict random parame-

ter u leads to the score equations for the mean parameters

n∑
i=1

(yi − µi)xi

ϕV (µi)g‘(µi)
= 0, (11)

n∑
i=1

(yi − µi)zi
ϕV (µi)g‘(µi)

= V −1
R u. (12)

where observations on the ith of n units consist of a univariate response variable yi

together with vectors xi and zi of explanatory variables associated with the fixed

and random effects. Green (1987) developed the Fisher scoring algorithm for the

solution of equations (11) and (12) as an iterated weighted least squares (IWLS).
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The estimators for fixed parameters and random predictor parameters, respectively,

are

β̂ = (XT V̂ −1 X )−1XT V̂ −1 Y, (13)

and

û = VR ZTV −1
(
Y − Xβ̂

)
. (14)

Breslow and Lin (1995), and Green and Silverman (1994a) mentioned that

PQL has not been found to work well in practice, especially for binary data in small

clusters. McCullagh and Searle (2001) showed that PQL methods for binary data

in small clusters led to estimators which were asymptotically biased and hence in-

consistent. Of course, inconsistency by itself may not fave been worrisome if the

asymptotic bias was small. Unfortunately, for situations like paired binary data,

the PQL estimator could perform quite badly. McCullagh and Searle (2001) recom-

mend that unmodified penalized quasi-likelihood not be used in practice.

The penalized quasi-likelihood (PQL) approach is one of the most common

estimation procedure for the HGLM. Jang and Lim (2006) proved that the PQL

tended to underestimate the variance components and (in absolute value) fixed

effects when applied to clustered binary data. There is another method that may

have been used for HGLM with binary outcome, which is hierarchical likelihood es-

timation (HL). HL may well have been a more appropriate method for HGLM with

binary response then PQL.
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Hierarchical Likelihood Estimation

The normality assumption used in restricted pseudo likelihood (REPL) and

penalized quasi-likelihood (PQL) methods are not appropriate all the time (Gu,

2008). Moreover, REPL and PQL both ignore the estimation of the dispersion pa-

rameters, and usually estimate the mean parameters only. To estimate the mean

parameters and dispersion parameters, we use hierarchical likelihood estimation

(HL). In HL the distribution of random components does not need to be normal;

this allows for a broader class of models (Lee & Nelder, 1996).

Lee and Nelder (1996) defined the hierarchical likelihood for y

h = ln (f (y|v;β, ϕ))+ ln (f (v;α)) (15)

≡ l (β, ϕ; y|v)+ l (α; v), (16)

where f(y|v;β) and f(v;α) denote the condition density function of y given ran-

dom effect v, and the density function of v, respectively. One reason for developing

an algorithm for the v-scale rather than for the u-scale is that v could often assume

any real value whereas u usually has range restrictions, which may cause problems

in convergence (Lee & Nelder, 1996). The random component v is the scale on

which the random effect u occurs linearly in the linear predictor, v = v(u), where

β are fixed effects, ϕ are the dispersion parameters for the conditional distribution

of y|v, and α are the parameters for the random effects.
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Call estimates are derived from maximizing the h-likelihood and the maxi-

mum h-likelihood estimates (MHLEs); these are obtained by solving:

∂h

∂β
= 0,

∂h

∂v
= 0.

Unfortunately, the estimation of random parameters and dispersion parameters

are biased estimators when using h-likelihood. The dispersion components are esti-

mated by maximizing the adjusted profile h-likelihood, which is restricted likelihood

for the dispersion parameters.

An adjusted profile h-likelihood leads to reliable and useful estimators (Lee

& Nelder, 2001). To estimate the dispersion parameters, Lee and Nelder (1996)

proposed an adjusted h-likelihood,

hA =

(
h+

1

2
ln |2πϕH−1|

)
β=β̂,v=v̂,

where H is the Hessian matrix of the h-likelihood,

H =

 H1 H2

HT
2 H3

 ,

where

H1ij = − ∂2h

∂βi ∂βj

,

H2ik = − ∂2h

∂βi ∂vk
,
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and

H3kl = − ∂2h

∂vk ∂vl
.

The maximum adjusted profile h-likelihood estimators for random effect parameter

α and dispersion parameters ϕ are obtaining by solving

∂hA

∂α
= 0,

∂hA

∂ϕ
= 0.

As an example to explain the HGLM, we focus on the binary outcome in

this work. According to (Lee & Nelder, 1996), the appropriate distribution for the

dependent variable is binomial (since the outcome is binary) and the appropriate

distribution for the random effect is a beta distribution, example for binary data

outcome with beta distribution for random effects by (Lalonde, 2009) and (Lee &

Nelder, 1996). The HGLM pieces are as follows:

The response distribution is

Yij|ui ∼ Bin(µ, µ(1− µ)),

the random distribution is

ui ∼ Beta (γ, λ),

the linear component is

ηij = xijβ + v(ui),

the link function is

ηij = logit (p),



33

the h−likelihood for binomial-beta model (Lee & Nelder, 1996)

h = l (β, ϕ; y|v)+ l (α; v).

where the pdf of the binomial distribution

fY (yij|vi; p) =
(
ni

yij

)
pyij(1− p)(ni−yij),

The canonical and dispersion parameters are

θ = ln
(

p
1−p

)
, a(ϕ) = 1, b = ln

(
1 + eθ

)n
, and c(y, ϕ) = ln

(
n
y

)
,

and the ln-likelihood for p,

l (ϕ; yij|vi) = yijθ − ln
(
1 + eθ

)
.

The linear component is θ = xijβ + v(ui), and by summing over all observations,

the ln-likelihood

l(β, v; y|v) =
k∑

i=1

ni∑
j=1

[yij (xijβ + vi)− ln
(
1 + e(xijβ+vi)

)
].

The pdf for random component (beta distribution) is

fui
(ui; γ, λ) =

Γ(γ)Γ(λ)

Γ(γ + λ)
u
(γ−1)
i (1− ui)

(λ−1) .

and the beta function

B(γ, λ) =
Γ(γ)Γ(λ)

Γ(γ + λ)

and the relationship vi = v(ui) = ln (ui) , the ln likelihood for parameters γ and λ

from Lee and Nelder (2006) are

l(γ, λ; vi) = γ vi − (γ + λ) ln (1 + evi)− ni ln (B(γ + λ))
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Summing over all observation ui

l(γ, λ; v) =
k∑

i=1

[γ vi − (γ + λ)ln(1 + evi)]− ni ln (B(γ + λ)) .

As such, the h−likelihood estimation equation for the fixed part β and random

component v respectively are

∂h

∂βk

=
k∑

i=1

ni∑
j=1

[
xijkyij − nixijk

e(xijβ+vi)

1 + e(xijβ+vi)

]
= 0, (17)

Thus,

β̂k =
k∑

i=1

ni∑
j=1

[(yij − ni pi)xijk] = 0,

where

pi =
e(xijβ+vi)

1 + e(xijβ+vi)
,

and

v̂i =
∂h

∂vi
=

ni∑
j=1

[
yij −

e(xijβ+vi)

1 + e(xijβ+vi)

]
+ γ − (γ + λ)

e(vi)

1 + e(vi)
= 0. (18)

Thus, equating
∂h

∂vi
to zero gives an estimate of the random effect

ûi =
k∑

i=1

ni∑
j=1

yij − ni pi + λ

λ+ γ
.

Then we could solve equations (17) and (18) by using either a Newton Raph-

son method or a Fisher’s scoring method (Gu, 2008).

Double Extended Quasi Likelihood

In the last section, we saw that h-likelihood estimation required us to spec-

ify the full distribution of the response variable and any random effects. Extended
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quasi-likelihood is an extension to h-likelihood, which is more convenient to use.

A less restrictive estimation method is double extended quasi-likelihood (DEQL).

Double extended quasi-likelihood (DEQL) requires us to specify the first and sec-

ond moments for the response variable and random effects. DEQL pertains to hier-

archical generalized linear model. Lee and Nelder (2001) proposed using the double

extended quasi-likelihood for inference from quasi-likelihood models. From Lee et

al., (2006), we summarized the Q++ as

Q++ = Q(θ(µ), ϕ; y|u) + QR(u; vR),

where

2Q(θ(µ), ϕ; y|u) = −
N∑
i=1

[
di
ϕi

+ ln 2 π ϕi V(yi)

]
,

and

2QR(u; vR) = −
M∑
j=1

[
dRj

uj

+ ln 2 πujVR(vj)

]
.

The deviance components of y|u are

di = 2

µi∫
yi

(yi − s)

V(s)

ds,

and the deviance components of u similarly are

dRj = 2

uj∫
vj

(vRj − s)

V1j(s)
.

Estimate the fixed parameters β and random effects v by equating first derivatives

of Q++ to zero.
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The Hierarchical (Nested) Model

Agresti (2007) defined a hierarchical model as one which is appropriate for

observations that have a nested structure. In this type of data, units at one level

are contained within units of another level. Hierarchical data are common in cer-

tain application areas, e.g, in educational, agricultural, genetic, industrial, medical

and other types of research. For example, a study of factors that affect student per-

formance might measure, for each student and each exam in a battery of exams,

whether the student passed. Students are nested within schools, and the model

could study variability among students as well as variability among schools.

In the treatment structure, which consists of the various treatments or treat-

ment combinations that the experimenter wishes to study, nesting occurs when the

levels of one factor occur with only one level of a second factor. In that case, the

levels of the first factor are said to be nested within the level of the second factor.

For example, suppose an animal scientist wants to study the growth rate of lambs.

She has 4 males (sires, Factor (A)) and 12 females (dams, factor (B)). The breeding

structure is shown in Table 2 (an “X” denotes a mating). For this example, each

sire is mated to three dams, the three dams being different for each sire. Thus, dam

is called a nested effect, where dam is nested within sire, we write this as “B(A)”.

When nesting occurs in the treatment structure, the treatment structure consist of

at least two factors, according to McCullagh and Searle (2001).

For a nested model in which the dependent variable Y is a binary outcome,

each component Yi is assumed to follow a Binomial distribution,
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Table 2

Breeding structure showing dams nested within sires

DAMS

Sire 1 2 3 4 5 6 7 8 9 10 11 12

1 X X X

2 X X X

3 X X X

4 X X X

Yi ∼ Bin(n, P ).

Nested (or hierarchical) classifications are usually analyzed using mixed models.

Most of the time, the nested factor is random effect from the population under

study, and the nested factor is a fixed or a random effect. If there is another fixed

factor, then the mixed effects model is the most appropriate in the nested design

(Searle, 1987). The nested model (or hierarchical model) is a particular technique

for representing a nested design. For example, we could have factor A represent

hospitals as a “random effect”, and factor B represent the patient as a fixed effect.

We randomly chose the number of hospitals in a specific area and observe the pa-

tient in each hospital, i.e., patients had surgery and whether the patient lived or

died. Given this, B is a fixed effect nested within the random effect A. Here, factor

A has different dispersions that reflect the different hospitals chosen.
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Nested Design Models

Two stage nested design model, In the treatment structure, each level of

factor B occurs with only one level of factor A. For the mixed model structure, we

considered that factor A is fixed and factor B is random.

The Hierarchical Generalized Linear Model of two-stage nested designs is

given by:

yijk ∼ Bin(µ, µ (1− µ)),

ui ∼ D(µR, VR),

ηij = Xβ + Zui,

ηij = logit(pij).

Where YijK is the dependent variable following binomial distribution with param-

eters n and p. The parameter ui is the random effect that follows any distribution

from the exponential family distribution with mean equal to µR and VR is the vari-

ance covariance matrices. X and Z are the explanatory variables for the fixed and

random effects respectively, and g is the link function which is logit for binomial

distribution.

i = 1, 2, ..., K; j = 1, 2, ..., ni, and k the number of observations k =

1, 2, ..., nij. The parameters β is the vector parameter for the fixed effect, ui is the

parameter of the random effect.

Clustered Data Models

Experimental designs with hierarchical (nested) classifications are frequently

used in agricultural, genetic, industrial, medical, biological, and even in social sci-
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ence field experiments. Clustered data or nested design is an experimental design

in which the data have an implicit hierarchy. The clusters may be balanced or un-

balanced, i.e., the number of observations in a cluster (the size of the cluster) is

equal or unequal. The unbalanced clustered data bring up the problem of heteroge-

neous models which require different variance components, as had been addressed

in previous studies for continuous response (Abdoslam, 2004). In the case of un-

balanced clustered data with continuous outcomes in the linear model, Abdoslam

(2004) found that there was a different dispersions for different clusters sizes. Ac-

counting for the different dispersions led to the minimization of mean square error,

which was shown through two examples. In this study, the researcher focused on

the binary outcomes. When using mixed effects for clustered data with binary out-

comes, a preferred model is Hierarchical Generalized Linear Model (HGLM).

Clustered Binary Data Models

Models for clustered binary data are important in many areas, e.g, medical,

education, finance, and many other research areas where the outcome has only two

possible values.

For the nested model with binary response, there are two sources of varia-

tion. The first source of variation is the between-cluster variation, which represents

the variation from cluster to cluster. The second source of variation is the within-

cluster variation which represents the variation inside each cluster, and it is a con-

stant
π2

3
for the logistic distribution, (Bauer, 2009).

Dai (2006) explained the use of the GLIMMIX package in SAS as an exam-

ple of model fitting and testing hypotheses of clustered binary data. The authors
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considered two-level models, which were the patient-level and the hospital-level ef-

fects. The two level data structure is shown in the figure below.

Hospital H1 H2 .... HI

Patients 1 2 ... n1 1 2 ... n2 .... 1 2 ... ni

Here ni is the number of patients; i = 1, 2, ..., I the patient level indicator in the ith

hospital. The model is

logit(pij) = ln

(
pij

1− pij

)
= βxij + ui.

where β is the vector of fixed parameter, xij is the patient j in the hospital i, and

ui is the random variable here to represent the hospital effect. The authors use SAS

code to analyze this data and suggested that the SAS GLIMMIX procedure is a

highly useful tool for hierarchical modelling with binary responses. The GLIMMIX

procedure in SAS uses Restricted Pseudo Likelihood (REPL) to estimate the pa-

rameters, which assumes constant dispersion from cluster to cluster. Alternatively,

in HGLM, we could use penalized quasi-likelihood (PQL) or h-likelihood (HL) to

estimate the parameter, fit the models, and test hypotheses.

Balanced Clustered Binary
Data Models

The equal cluster size with binary outcomes means each cluster consists of

the same number of subjects with two possible outcomes. To estimate the parame-

ters in balanced clustered binary data models, it is possible to use generalized esti-

mating equations (GEE) or the hierarchical generalized linear model (HGLM); both

methods pertain to HGLM and many books mentioned that these methods may be

used to obtain good estimates for parameters and fitting the model. Wang (2010)
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used a GEE for analysis of clustered binary data with a large number of covariates,

and he found it worked well even when the number of covariates grew to infinity.

To estimate the parameters by using one of the methods in HGLM, suppose the

dispersion equals one, that the dispersions across clusters are not different, and that

the variance for the random effect is constant (Fitzmaurice & Ware, 2004).

Unbalanced Clustered Binary
Data Models

An unequal cluster size with a binary outcome is common in many areas

of application, especially in medical research. Sample size formulas for cluster ran-

domized trials were based on the assumption of equal cluster sizes, but in practice

this assumption would rarely be met. Many designs evaluating the effect of an in-

tervention are characterized by a nesting of subjects within clusters. Owing to vari-

ation in actual cluster sizes, but also due to non-response or drop-out, unequal clus-

ter sizes are rather common. There were many research studies for unequal cluster

size with continuous outcome, but few applied to binary outcomes. Here we dis-

cussed some authors who studied unequal cluster size with binary data and their

method to estimate parameters.

Unequal Cluster Size Using
Maximum Likelihood

For unequal cluster sizes with binary outcomes, suppose the random effect

follows a normal distribution, then the model is the Binomial-Normal HGLM (Lee

& Nelder, 1996).
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The Binomial-Normal distribution could have been written,

1. Y |u ∼ Bin(n, P ),

u ∼ N (0, σ2I),

2. η = Xβ + Zu,

3. η = logit(P ).

Since the random term follows a normal distribution, we could use the maximum

likelihood estimation (MLE). Heo and Leon (2005) and Neuhaus and Lesperance

(1996) studied performance of a mixed effects logistic regression model for binary

outcomes with unequal cluster size. Both authors consider the following probability

model for the clustered binary outcomes with an intervention indicator xij

logit(pij) = βxij + ui,

where Y is a binary outcomes variable (e.g, the patient survived or died after a

surgery), logit(p) = ln

(
p

(1− p)

)
, pij = E (yij|xij, ui), xij is a patient-level pre-

dictor. The random variable ui reflects a random effect specific to the ith cluster

and the variance of u reflects a degree of heterogeneity in “frailty” across the clus-

ters. Here, ui is assumed to be normally distributed with mean zero and unknown

variance σ2, u ∼ N(0, σ2I). Moreover, they assumed ui and yij are conditionally

independent over j. The first variation is the between cluster variation. The second

variation is the within cluster variation which represent the variation inside each

cluster, and the authors used the constant (
π2

3
) (Hedeker & Gibbons, 1994).

To compare the performance of the mixed effects logistic regression model

for binary outcomes with unequal cluster size, Heo and Leon (2005) used maximum
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likelihood estimation since they assumed normality of the random effect. Their sim-

ulation study compared the performance of maximum likelihood estimation in a

mixed effects logistic regression model for equal and unequal cluster size. These

simulation results applied where the cluster size n is as small as 5. Overall, the re-

sults were insensitive to variability in cluster size across the clusters. Neuhaus and

Lesperance (1996) investigated the efficiency of conditional likelihood, which elim-

inates the random intercept terms and likelihood generated from the marginal dis-

tribution of the data where the random intercepts are integrated out. By using sim-

ulation and example data, they showed the asymptotic relative efficiency of condi-

tional likelihood estimators relative to parametric estimators was a decreasing func-

tion of within-cluster covariate correlation. Also, their simulation results showed,

for fixed covariate correlation, the asymptotic relative efficiency of the parametric

versus the conditional increases as cluster sizes increase. The normality of the ran-

dom effects distribution was assumed, but it was not the best method because this

assumption did not always hold (Lee & Nelder, 1996).

Unequal Cluster Size Using
Penalized Quasi Likelihood

In unequal cluster sizes with binary outcomes, without knowing the dis-

tribution of the random component, we could use any distribution for the random
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component. Since the dependent variable follows a binomial distribution, then the

HGLM component is

1. Y |u ∼ Bin(n, P ),

u ∼ N (0, VR),

2. η = Xβ + Zu,

3. η = logit(P ).

Using the penalized quasi-likelihood method to estimate the generalized linear mixed

model’s parameter, Candel and Breukelen (2010) handled the unequal cluster size

with binary outcomes to estimate the efficiency loss due to unequal cluster size for

a mixed effects model. Their model was

ln

(
pij

1− pij

)
= βxij + ui

Their model and their assumption for normality of the random effect was

the same as Heo and Leon (2005), and they also used the same constant
π2

3
for

within cluster variation. Candel and Breukelen (2010) found 14 percent more ob-

servation within cluster is sufficient to repair the efficiency loss due to varying clus-

ter size. As mentioned, they used the PQL method with binary outcome, but there

are many authors who do not agree with using PQL when the outcome is binary

because PQL could underestimate parameters (Jang & Lim, 2006).

Comparing the Estimation of Models
for Unbalanced Clustered Binary
Data

Comparing estimation of parameters for Unbalanced Clustered Binary Data

is not easy, and the results are not the same as when the outcome is continuous.
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For continuous outcomes, we compared two estimation methods for models accord-

ing to the standard deviation or power. Here, when the response variables were bi-

nary, it was hard to make comparisons. Previous research had compared methods

of estimation for fitting models to binary data.

Bauer (2009) studied the use of linear models for binary outcomes. When

fitting models for binary outcomes, comparisons between such models were impeded

by the implicit rescaling of the model estimates that took place with the inclusion

of random effects. He presented an approach for putting the estimates on a com-

mon scale to facilitate relative comparisons between model fit to binary outcomes.

He compared two methods for binary outcomes: generalized estimating equations

(GEE) and hierarchical generalized linear model (HGLM). These models were re-

ferred to as marginal and conditional models, respectively. Bauer (2009) found that

the rescaled estimates are intended to be used primarily for making relative com-

parisons between models. Lee and Nelder (2009) did not agree with using general-

ized estimating equations (GEE) and generalized linear mixed model (GLMM) to

compare the models. They argued that the use of an estimation method without a

probabilistic term was problematic and the GEE method was not probabilistic.

Bauer and Sterba (2011) compared two generalized linear estimation meth-

ods to employ when instead fitting multilevel cumulative logit models to ordinal

data: maximum likelihood (ML) or penalized quasi-likelihood (PQL). ML and PQL

were compared across variations in sample size, magnitude of variance components,

number of outcome categories, and distribution shape. Fitting a multilevel linear

model to ordinal outcomes is shown to be inferior in virtually all circumstances.
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PQL performance improves markedly with the number of ordinal categories, re-

gardless of distribution shape. In contrast to binary data, PQL often performs as

well as ML when used with ordinal data. Further, the performance of PQL is typi-

cally superior to ML when the data include a small to moderate number of clusters.

Even Bauer and Sterba (2011)’s updated article, he still used the PQL method with

binary outcomes. There are many authors who do not agree with using PQL with

binary outcomes because it has been shown the underestimate parameter (Jang &

Lim, 2006).

None of the accepted methods reviewed in Chapter II allowed overdispersion

terms to be different from cluster to cluster. To handle the varying dispersion from

cluster to cluster, we needed to correct one of the hierarchical generalized linear

model (HGLM) estimation methods to estimate the mean and dispersion parame-

ters. In the next chapter, two methods were presented to handle this difference in

variation across clusters. The first method was an extension of REPL using ML to

estimate the parameter, and the second method was an adjustment the binomial

beta model using h-likelihood.



CHAPTER III

UNBALANCED CLUSTERED BINARY DATA MODELS

Many research studies in health, finance, education, and social sciences have

involved collecting binary data clustered into groups, such as the smoking status

of students sampled from different schools or disease status of animals from differ-

ent farms. Such data would be expected to be correlated within clusters, as stu-

dents from the same school would tend to be more similar than those from different

schools, and animals from the same farm would tend to be more similar than those

from different farms. When designing such studies, a choice need to be made re-

garding the number of groups to sample from. A larger number of groups or schools

resulted in less dependence in the data and more precision in estimating the effects

of explanatory variables. In some experiments, the clusters were unbalanced; that

is, the number of observations in a cluster (the size of the cluster), differs among

the clusters.

Unbalanced clusters resulted from sub-sampling unequal numbers of obser-

vations from each cluster. Unbalanced clusters also occurred when there were ran-

domly missing vector elements for a clustered multivariate outcome or if subjects

differed in the number of relevant vector elements for the analysis. The different

cluster size could lead to different dispersions for each cluster. This unbalanced
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data in each cluster brought up the problem of heterogeneous models which re-

quired different variance components, as had been addressed in previous studies for

continues response (Abdoslam, 2004). In this study, the researcher used a nested

design. The mixed model was used in this study because it was the most appropri-

ate model to use in practice, as it contained fixed and random factors.

In this chapter, the researcher aims to quantify the effect of varying clus-

ter sizes in parameter estimation for nested binary data with unbalanced clusters.

Some authors have studied the efficiency in a binary mixed effect model when ap-

plied to unbalanced clustered binary data. They found losses in efficiency because

of the unbalance.

Breukelen and Candel (2012) pointed out that there were many publications

that discussed losses of efficiency for treatment evaluation that were due to cluster

size variation in cluster randomized trials. These studies focused on how to increase

the efficiency by increasing sample size or by adjusting the number of cell by using

the hierarchical generalized linear model. There was no study that tried to adjust

the method or address efficiency directly to the problems that were created by hav-

ing different sizes for each cluster.

By adjusting two methods, and investigating the methods through computer

simulation, we answered the research questions:

Q1 Does Extended Restricted Pseudo Likelihood account for different

dispersion for different clusters size?

Q2 Does Adjusted Scale Binomial Beta h-likelihood account for differ-

ent dispersions for different cluster size?
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Q3 Is Extended Restricted Pseudo Likelihood more powerful than

Restricted Pseudo Likelihood in the case of unbalanced binary

clustered data?

Q4 Is Adjusted Scale Binomial Beta h-likelihood more powerful than

Binomial Beta h-likelihood in the case of unbalanced binary clust-

ered data?

Q5 Does Extended Restricted Pseudo Likelihood method improve

efficiency?

Q6 Does Adjusted Scale Binomial Beta h-likelihood method improve

efficiency?

In this chapter, the researcher presented two methods of accounting for dif-

ferent dispersions across clusters as a result of unequal cluster size. The researcher

expected to get more efficiency and low Type I error rate using the two adjusted

HGLM methods. The first method was an Extension of Restricted Pseudo Like-

lihood (EREPL) estimation that allowed the dispersion parameter ϕ to be differ-

ent from cluster to cluster ϕi. The second method was an Adjusted Scale Binomial

Beta model in which the dependent variable followed a binomial distribution and

the random effect followed beta distribution with the same mean and different scale

parameter from cluster to cluster.

Extended Restricted Pseudo Likelihood
for Unequal Cluster Size

In Chapter II under the heading Restricted Pseudo Likelihood Estima-

tion, a marginal pseudo model was described according to Wofinger and O’Connell

(1993).
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The marginal pseudo response variable is distributed as

P ∼ N (Xβ,ZVRZ
T + D̂cov(Y )D̂T ),

where

D̂ =
∂g(µ)

∂µ
|µ=µ0.

For the overdispersion parameter ϕ, Wolfinger and O’Connell (1993) suggested as-

suming an equal dispersion parameter and assuming it is equal to one, ϕ = 1. The

dispersion is equal from cluster to cluster. If the dispersion parameter ϕ is constant

across clusters, but it does not equal one, the estimator of parameter ϕ is

ϕ̂ = r̂T V̂ −1 r̂ /n.

In the Restricted Pseudo Likelihood method, the dispersion parameter ϕ is con-

stant, and it does not account for different variation across clusters.

The researcher proposed the Extended Restricted Pseudo Likelihood and the

Pseudo Likelihood with different dispersion ϕi, where i = 1, 2, ..., K with K clus-

ters. The vector of dispersion is ϕ = [ϕ1, ϕ2, ..., ϕK]T . Using Extended Restricted

Pseudo Likelihood (EREPL) ϕi to fit a mixed effect model for binary outcomes

with unequal cluster size, the HGLM was considered,

1. Y |u ∼ D(µ, ϕi µ(1 − µ))),

u ∼ N (0, VR),

2. η = Xβ + Zu,

3. η = g(µ).
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The estimate of the mean parameter vector remained unchanged,

β̂ =
(
XT V̂P

−1
X

)−1

XT V̂P

−1
P.

where P is the vector of pseudo response, and VP is the variance covariance matrix

for pseudo response. The estimate of the random effect parameter vector remained

unchanged as well,

û = V̂RZ
T V̂P

−1
r̂,

where VR is the variance covariance matrix for random effect u, and r is the resid-

ual r = P − P̂ . The estimation of dispersion constants,

ϕ̂i = r̂i
T V̂i

−1
r̂i /ni,

where ni is the number of observations in each cluster, i = 1, 2, ..., K the cluster

from 1 to Kth, and r̂ is the residual for each cluster, the residual being different in

each cluster. V̂i is the variance covariance matrix which has diagonal entries that

represent variances for each cluster and zeros in the off diagonal, assuming clusters

are independent.

In the Extended Restricted Pseudo Likelihood method, the random effect

is assumed to be normally distributed, and maximum likelihood is applied to the

pseudo response. For a more appropriate method, when normality for the random

effect does not hold, we suggested to adjust the scale parameter of the Binomial

Beta HGLM and use h-likelihood to get the estimated value of parameters.
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Adjusted Scale Binomial Beta
for Unequal Cluster Size

Our goal in this chapter is to estimate the parameters for unequal cluster

sizes in a nested model with binary outcomes. Since we focus on the binary out-

comes as the dependent variable, the appropriate distribution for the random ef-

fects is the beta distribution. Assuming a normal distribution is convenient, but

it is not always the best choice in a HGLM (Lee & Nelder, 1996). By assuming

the conditional dependent variable Y |u is binomial, and by assuming a beta dis-

tribution for the random effect, the distribution of conditional response and ran-

dom effect are fully specified. In this case the appropriate estimation method is

h−likelihood (Lee & Nelder, 1996). Assume the model

1. Yij|ui ∼ Bin(n, pij)),

ui ∼ Beta (γ, λi),

2. ηij = xijβ + v(ui),

3. ηij = logit (pij).

where λi is the scale parameter for the beta distribution. It varied from cluster to

cluster, where i is the number of clusters i = 1, 2, ..., K. The h−likelihood for the

Binomial- Beta model (Lee and Nelder, 1996)

h = l (β, ϕ; y|v) + l (α; v).

The binomial pdf for the dependent variable is

fY (yij|vi; p) =
(
ni

yij

)
pyij(1− p)(ni−yij),
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and the pdf for the random effect is

fui
(ui; γ, λi) =

Γ(γ)Γ(λi)

Γ(γ + λi)
u
(γ−1)
i (1− ui)

(λi−1) .

h (β, γ, λi; y|v) = l (β, v; y|v) + l (γ, λi; v).

where l (β, v; y|v) was unchanged from Chapter II,

l (β, v; y|v) = l (β, v; y|v) =
K∑
i=1

ni∑
j=1

[
yij (xijβ + vi)− ln

(
1 + e(xijβ+vi)

)]
,

and l (γ, λi; v) would be

l(γ, λi; vi) = γ vi − (γ + λi) ln (1 + evi)− ni ln(B(γ + λi))

Summing over all observations ui

l(γ, λi; vi) =
K∑
i=1

[γ vi − (γ + λi)ln(1 + evi)− ni ln(B(γ + λi)).

Then the h−likelihood estimating equation for fixed parameters β and random

components v are

∂h

∂βk

=
K∑
i=1

ni∑
j=1

[
xijkyij − nixijk

e(xijβ+vi)

1 + e(xijβ+vi)

]
= 0,

and

∂h

∂vi
=

ni∑
j=1

[
yij − nl

e(xijβ+vi)

1 + e(xijβ+vi)

]
+ γ +

(
e(vi(1−γ−λi))

)
− 1

1 + e(vi)
= 0.

Thus, equating
∂h

∂vi
to zero gives an estimate of the random effect

ûi =
k∑

i=1

ni∑
j=1

yij − ni pi + λ

λ+ γi
.
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The estimation of random parameters and dispersion parameters are biased

estimators when using h-likelihood. The dispersion components are estimated by

maximizing the adjusted profile h-likelihood, which is the Restricted likelihood for

the dispersion parameters.

An adjusted profile h-likelihood leads to reliable and useful estimators (Lee

& Nelder, 2001). Estimating the random parameters and the dispersion parameter

remained the same as In Chapter II under the heading Restricted Pseudo Likeli-

hood Estimation,

hA =

(
h+

1

2
log|2πϕH−1|

)
β=β̂,v=v̂

,

where H is the Hessian matrix of the h-likelihood.

The maximum adjusted profile h-likelihood estimators for the random effect

parameter γ, λi and dispersion parameters ϕ are obtaining by solving the equa-

tions (Lee & Nelder, 1996) deriving the equations for general random effect and

dispersion effect:

∂hA

∂γ
= 0,

∂hA

∂λi

= 0,

∂hA

∂ϕ
= 0.

Because of varying variation from cluster to cluster, adjusting the parameter scale

for Binomial Beta distribution allows the h-likelihood to have inter-cluster correla-

tion.
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The two methods presented in this chapter led to higher efficiency and lower

Type I error rate of the design. To investigate whether or not the presented two

methods were more appropriate for dealing with different variance components for

unbalanced cluster binary data models, a computer simulations was presented in

the next chapter to investigate the methodology by comparing the two presented

methods to REPL and h-likelihood in terms of power, Type I error, and standard

error. These new methods were expected to have more power and small Type I er-

rors in the case of unbalanced binary clustered data. In the next chapter, a simula-

tion for comparing the performance of the four methods was presented.



CHAPTER IV

SIMULATION

Unbalanced cluster size has lead to different dispersions for each cluster.

The unbalanced data in each cluster brought up the problem of heterogeneous mod-

els, which required different variance components. In this study, the researcher

studied the unbalanced cluster size for binary outcomes. In this chapter, the re-

searcher explained the generating data and simulation steps to find the performance

of the adjusted methods that dealt with unbalanced cluster size for binary out-

comes. The results for each simulation step were explained for each method and

comparisons made.

The simulation for comparing the performance of each of the four methods

presented were:

1. Restricted Pseudo Likelihood.

2. Extended Restricted Pseudo Likelihood.

3. Binomial Beta h-likelihood.

4. Adjusted Scale Binomial Beta h-likelihood.

These four models were evaluated in terms of their power, Type I error rate,

and standard error for parameter estimates through computer simulations of the
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number of clusters, number of observations in each cluster, and fixed values for pa-

rameters. In the next sections, the estimation methods and their results were dis-

cussed. The first section describes the data generation for each method and simu-

lation steps. The second section explains the Restricted Pseudo Likelihood method

and simulation results with figures. The third section explores the Extended Re-

stricted Pseudo Likelihood method and showed the process that allowed for this ad-

justed method. The fourth section explains the Binomial Beta h-likelihood method

and its results with figures. The next section explores the Adjusted Scale Binomial

Beta h-likelihood method and simulation results with figures. The last section com-

pares all estimation methods.

Steps of Simulation

For generating data, in which the researcher defined the values for parame-

ters and generated the X values, random effect variable, and calculated the proba-

bility p of the dependent variable y. First was generated an unequal number of sub-

jects ni per cluster from the Poisson distribution for unequal cluster size. The mean

from the Poisson distribution was the mean for the number of observations for each

cluster. By choosing three different varying mean cluster sizes (n̄ = 10, 25, 100), the

researcher showed the difference in statistical performance for various sample sizes.

The next step was to generate a normally distributed continuous variable

Xij with mean = 3 and a known variance = 20; x1ij ∼ N (3, 20). Thus, the re-

searcher generated a beta distributed random variable ui with a parameter γ =

2 and λ = 3 for each cluster i; ui ∼ Beta(2, 3). Finally, Yij was generated for
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each data unit randomly from a Bernoulli distribution with a success probability

pij,where

pij =
eβ0+β1 x1ij+ui

1 + eβ0+β1 x1ij+ui
,

and β0 = 1, β1 = 0.2. Parameter estimates were obtained using Restricted Pseudo

Likelihood, Extended Restricted Pseudo Likelihood, Binomial Beta h-likelihood,

and Adjusted Scale Binomial Beta h-likelihood (Heo & Leon, 2005).

The project defined K to be the number of clusters [K = 20, 50 ] and n̄ to

be the mean number of observations per cluster [n̄ = 10, 25, 100]. For each combi-

nation of K and n̄, 1, 000 data sets were generated to calculate the power, Type I

error, and standard errors. To calculate the power, Type I error rate, and standard

error, data were generated according to the model with the systematic component

ηij = β0+β1 x1ij + vi, with one affected treatment of β1. Thus, the model was fitted

with the systematic component ηij = β0 + β1 x1ij + β2 x2ij + vi, where β0 was the

intercept, β1 was the treatment effect, x1 was generated from normal distribution,

β2 was an extra parameter, and x2 was the second treatment effect generated from

the Poisson distribution with mean = 3, x2 ∼ P(λ = 3). Power was estimated as

proportion of correct detection of significance for β1, while Type I error rate was

estimated as proportion of incorrect detection of significance for β2.
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Restricted Pseudo Likelihood

The REPL HGLM in Chapter II under the heading Restricted Pseudo Like-

lihood Estimation was described

1. Yij|u ∼ D(µ, ϕ V (µ)),

ui ∼ N (0, VR),

2. η = Xβ + Zu,

3. η = ln(µ).

The systematic component applied for generating data was

ηij = 1 + 0.2× x1ij + vi,

and the systematic component for the fit model was

ηij = β0 + β1 x1ij + β2 x2ij + vi,

where vi ∼ Beta(2, 3). For Restricted Pseudo Likelihood, the researcher wrote code

in R to produce the iterative weighted least squares (IWLS) algorithm to estimate

the mean parameters β and v, and the dispersion parameter ϕ. R code was in Ap-

pendix B and Appendix E, section Restricted Pseudo Likelihood. Table 3 summa-

rized the averages of β1 and β2, power of the hypothesis test for β1, Type I error

rate of the hypothesis test for β2, and standard error for β1 for the REPL method.

Table 3 demonstrated that REPL was a good estimate method, since the

average of 1,000 replications gave estimates that were very close to actual value,

which was 0.2, and β̂2 was close to zero. The power of the hypothesis test for β1
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Table 3

Restricted Pseudo Likelihood

Clusters n̄i β̂1 β̂2 Power Type I error S.Eβ̂1

10 0.2075701 -0.005259478 0.972 0.049 0.05519608

K = 20 25 0.2036177 -0.003936949 1 0.055 0.03315632

100 0.2016445 0.0005931241 1 0.038 0.01646315

10 0.2041978 0.00357477 1 0.016 0.02605315

K = 50 25 0.2024797 0.006654026 1 0.045 0.01623582

100 0.2002964 0.001345378 1 0.034 0.008043962

was high since the sample size was large for each of the combinations, and the Type

I error rate for the hypothesis test for β2 was acceptable because it was close to

0.05. The standard error for β1 was small and fits in the range from 0.0080 to 0.055.

From Figures 1 (for power), 2 (for Type I error rate), and 3 (for the stan-

dard error), the REPL method was shown to work better for a large number of

clusters. Figures showed that, for K = 50, REPL had smaller values for Type

I error rate and standard error. As such, REPL method for K = 50 was better

than K = 20 for an unbalanced cluster size with binary outcomes. A comparison of

REPL method with others was made in the last section.
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Figure 3. Standard error for β̂1

Extended Restricted Pseudo Likelihood

The HGLM for EREPL in Chapter III under the heading extended restricted

pseudo likelihood was described

1. Yij|u ∼ D(µ, ϕi V (µ)),

ui ∼ N (0, VR),

2. η = Xβ + Zu,

3. η = ln(µ).

The systematic component applied for generating data was

ηij = 1 + 0.2× x1ij + vi,

and the systematic component for the fit model was

ηij = β0 + β1 x1ij + β2 x2ij + vi.
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where vi ∼ Beta(2, 3). The extended REPL method allowed for different disper-

sion multipliers ϕi for each cluster. Unfortunately, the program did not converge,

because the values of β̂1 oscillated.

Figures 4 to 7 showed the divergence of the β̂1 value. Figures 4 and 5 showed

the case of K = 20 clusters, with an average cluster size of n̄ = 100. Figure 4

showed the oscillating values of β̂1 before it reached the divergence point, and Fig-

ure 5 showed the oscillating values of β̂1 as it diverged. Figures 6 and 7 showed the

case of K = 50 clusters, with size of n̄ = 10. Figure 6 showed the oscillating values

of β̂1 before it reaches the divergence point, and Figure 7 showed β̂1 at divergence.
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Figure 4. β̂1 before reach divergent point for K = 20 and n̄ = 100
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Figure 5. β̂1 at divergence point for K = 20 and n̄ = 100
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Figure 6. β̂1 at divergence point for number in cluster = 50 and n̄ = 10

From the Figures, it was clear that β̂1 oscillates, dramatically increasing

then suddenly jumping to a very far single point, which was shown in the Figures

5, and 7. The process does not converge. R code was in Appendix C.
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Figure 7. β̂1 at divergence point for K = 50 and n̄ = 10

Binomial Beta h-likelihood

The HGLM for the Binomial Beta model in Chapter II under section Hier-

archical Likelihood Estimation, was described

1. Yij|u ∼ Bin(µ, µ(1 − µ)),

ui ∼ Beta(γ, λ),

2. η = Xβ + Zu,

3. η = ln(µ).

The systematic component applied for generating data was

ηij = 1 + 0.2× x1ij + vi,

and the systematic component for the fit model was

ηij = β0 + β1 x1ij + β2 x2ij + vi,
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where vi ∼ Beta(2, 3). For the Binomial Beta h-likelihood, the researcher used the

HGLM function in the HGLM package in R. Using the hglm function got the esti-

mation for parameters β and t-statistics with the p-values. Through simulation, the

average of 1,000 estimates was calculated for β1, β2, power of the hypothesis test

for β1, Type I error of the hypothesis test for β2, and standard error for β1. (See

R code was in Appendix E, section Binomial Beta h-Likelihood). Table 4 showed

that Binomial Beta h-likelihood was a good estimate method, with estimated val-

ues close to true parameters. The power of β1 was high, the Type I error rate for

β2 was somewhat high, with values ranging from 0.07 to 0.143. This may have been

due to ignoring overdispersion caused by different cluster sizes. The standard error

for β1 had small values for largest sample sizes, the standard error values ranging

from 0.009 to 0.047. A comparison of the Binomial Beta h-likelihood method with

others made in the last section.

Table 4

Binomial Beta h-likelihood

Clusters n̄i β̂1 β̂2 Power Type I error S.Eβ̂1

10 0.2113867 -0.009203517 1 0.143 0.04729659

K = 20 25 0.2020606 0.005317432 1 0.096 0.02872977

100 0.2010578 0.003415107 1 0.107 0.01431681

10 0.2084046 0.007679551 1 0.092 0.02909505

K = 50 25 0.2031552 0.004931511 1 0.07 0.01813028

100 0.1988225 0.002102863 1 0.091 0.009000959
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Figures 8 to 10 showed, respectively, the power of the hypothesis test for

β1, the Type I error rate of the hypothesis test for β2, and the standard error for

β1 for the Binomial Beta h-likelihood method for different cluster sizes. From the

Figures when K = 50, Binomial Beta had smaller values for the Type I error rate

and smaller values for standard error. A comparison of the Binomial Beta method

with others made in the last section.
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Figure 8. Power for β̂1
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Figure 10. Standard error for β̂1
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Adjusted Scale Binomial Beta
h-likelihood

The HGLM in Chapter III under section Adjusted Scale Binomial Beta, was de-

scribed

1. Yij|u ∼ Bin(µ, µ(1 − µ)),

ui ∼ Beta(γ, λi),

2. η = Xβ + Zu,

3. η = ln(µ).

The systematic component applied for generating data was

ηij = 1 + 0.2× x1ij + vi,

and the systematic component for the fit model was

ηij = β0 + β1 x1ij + β2 x2ij + vi,

where vi ∼ Beta(2, 3). The adjusted h-likelihood used to obtain estimates using

a random effect with beta distributions with different scale parameters to account

for overdispersion due to differing cluster sizes. For Adjusted Scale Binomial Beta

h-likelihood, the researcher wrote the adjusted h-likelihood function. The estimates

for the mean parameters β, along with the t-test statistics and p-values, were ob-

tained through maximum h-likelihood estimation using the maxLik function in

the maxLik package in R (Henningsen & Toomet, 2011). The code was in the Ap-

pendix D and Appendix E, section Adjusted Scale Binomial Beta h-Likelihood. Ta-

ble 5 demonstrated that Adjusted Scale Binomial Beta h-likelihood was a good es-

timate method, with estimated values close to true parameter values. The power of
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the hypothesis test for β1 was high with value equal to one, Type I error of the hy-

pothesis test for β2 was acceptable with value ranging from 0.054 to 0.085. In fact

Adjusted Scale Binomial Beta was better than Binomial Beta h-likelihood because

it accounted for overdispersion due to different cluster sizes. The standard error for

β1 showed that there was small variability of the parameter estimates, with values

from 0.01 to 0.05, which were small values for the large sample sizes.

Table 5

Adjusted Scale Binomial Beta h-likelihood

Clusters n̄i β̂1 β̂2 Power type I error S.E

10 0.2173841 0.004827131 0.992 0.058 0.05579434

K = 20 25 0.21352 0.001662735 1 0.054 0.03393393

100 0.2136255 0.003884209 1 0.071 0.0169782

10 0.217621 0.01406111 1 0.057 0.03438107

K = 50 25 0.2182764 0.006173511 1 0.063 0.02149756

100 0.2134524 0.002064118 1 0.085 0.01066414

Figures 11 to 13 showed the power, Type I error rate, and standard error for Ad-

justed Scale Binomial Beta for different cluster sizes.
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Figure 12. Type I error for β̂2

Figures showed that Type I error rate was small, and the standard error

was large when cluster size was equal to 20. The Adjusted Scale Binomial Beta

h-likelihood worked well, especially since Type I errors occurred at an acceptable

rate. This means that the Adjusted Scale Binomial Beta h-likelihood accounted for
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Figure 13. Standard error for β̂1

different dispersions across clusters. As such, it was a suitable method for unbal-

anced cluster sizes with binary outcomes.

Comparison of Methods

Unbalanced data could have been defined as an unequal number of data

units within K clusters. Cluster sizes were randomly generated from poisson distri-

butions with means of 10, 25, and 100. This meant that the number of observations

for each combination was large, with approximately 200 responses for each combi-

nation. The sample size may have effected the power for each method, since greater

sample sizes causes higher power.

All the simulations were conducted as specified previously. The Gaussian

quadrature approximation algorithm successfully converged in three methods: Re-

stricted Pseudo Likelihood, Binomial Beta h-likelihood, and Adjusted Scale Bino-
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mial Beta h-likelihood; however, the algorithm did not converge for Extended Re-

stricted Pseudo Likelihood.

For the three methods, statistical power, Type I error rate, and standard

error were displayed in Tables 6 to 8, respectively, and the results summarized.

Statistical Power

Statistical power was computed as the proportion of correct rejections of

the hypothesis H0 : β1 = 0. Through simulation, the test was conducted 1,000 times

to see how often the test was significant. The power was the proportion of those

1,000 tests rejected correctly. As shown in Table 6, it was hard to decide which

method performed better since the power was one and was high for all methods

because the sample size was large for each combination. There were no differences

among the three methods in power, so all methods worked well using power as a

criterion. Figures 14, and 15 compare the three methods with K = (20, 50), and

they showed the close results for the three methods. Figures demonstrate that the

power was high (very close to one) because of large sample sizes.
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Table 6

Statistical Power for β1

Clusters n̄i REPL Binomial-Beta Adjusted Scale Binomial-Beta

10 0.972 1 0.992

K = 20 25 1 1 1

100 1 1 1

10 1 1 1

K = 50 25 1 1 1

100 1 1 1
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Figure 14. Power for all methods with K = 20
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Figure 15. Power for all methods with K = 50

Type I Error Rate

Type I error rates were computed as the proportion of p values less than

0.05 under a null hypothesis H0 : β2 = 0. Ideally, Type I error rate should be close

to 0.05. As shown in Table 7, the Adjusted Scale Binomial Beta was better than

the Binomial Beta h-likelihood, in the sense that Type I error rate was closer to

0.05. Because Adjusted Scale Binomial Beta h-likelihood accounted for the overdis-

persion caused by unequal cluster sizes, it showed better results than h-likelihood

with regard to Type I error. For REPL, the method seemed to have acceptable

Type I error rate and fit in the range from 0.016 to 0.055.

Figures 16, and 17 display the difference between the three methods with K = 20,

K = 50 for Type I error.
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Table 7

Type I Error Rate

Clusters n̄i REPL Binomial-Beta Adjusted Scale Binomial-Beta

10 0.049 0.143 0.058

K = 20 25 0.055 0.096 0.054

100 0.038 0.107 0.071

10 0.016 0.092 0.057

K = 50 25 0.045 0.07 0.063

100 0.034 0.091 0.085
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Figure 16. Type I error rate for all methods with K = 20
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Figure 17. Type I error rate for all methods with K = 50

The REPL method had a smaller Type I error rate but that did not mean it

was the best method. A Type I error rate smaller than 0.05 typically means lower

power, since as the Type I error rate decreases power also decreases. In our study,

because the sample sizes were large, power was universally high.

Standard Error

The S̄E was computed as the average of 1,000 SE of the estimates of β1.

Smaller S̄E represented smaller estimated variability, or greater precision, of the

parameter estimates,(Heo & Leon, 2005). The standard error for β̂ indicated whether

or not the efficiency improved. From Table 8, the Binomial Beta h-likelihood showed

the smallest standard errors as compared to the other methods in all combinations.

However, Binomial Beta also showed the highest Type I error rate as a consequence

due to ignoring to account for different dispersions.
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Table 8

Standard Error for β1

Clusters n̄i REPL Binomial-Beta Adjusted scale Binomial-Beta

10 0.05519608 0.04729659 0.05579434

K = 20 25 0.03315632 0.02872977 0.03393393

100 0.01646315 0.01431681 0.0169782

10 0.02605315 0.02909505 0.03438107

K = 50 25 0.01623582 0.01813028 0.02149756

100 0.008043962 0.009000959 0.01066414

Figures 18, and 19 compare the standard errors for the three methods for different

cluster sizes.
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Figure 18. Standard Error for all methods with K = 20
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Figure 19. Standard Error for all methods with K = 50

From Figures the results were somewhat close, with acceptable standard error value

for all three methods.

Overall Comparison

From the previous sections, all three methods were good estimate meth-

ods for mean parameters with estimate values close to actual parameters, and all

showed improvement for large sample sizes. It was good to know that the Adjusted

Scale Binomial Beta h-likelihood was a suitable method for binary outcomes be-

cause it had a small Type I error rate. Also Adjusted Scale Binomial Beta appears

to be a good estimate method and showed power and standard error close to other

methods. The Type I error rate for Adjusted Scale Binomial Beta h-likelihood in-

creased as sample size increased because large sample size led to small standard

error, which caused an increase in Type I error rate. My suggestion would be to

try this study with small sample sizes to see if the power and Type I error rate
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changed. The Extended Restricted Pseudo Likelihood failed to converge since β̂1

oscillated. It was not able to get the estimation parameter values and other statis-

tics measured to compare it with other methods. The Binomial Beta h-likelihood

had a high Type I error rate since it did not account for different dispersions due

to different cluster sizes. The Type I error rate had inflated in the Binomial Beta

method. It may be that with data that had overdispersion or had variability, the

Adjusted Scale Binomial Beta would give a better estimate than other methods.



CHAPTER V

SUMMARY AND FURTHER RESEARCH

Summary

Unbalanced data with binary outcomes were quite common in practice. Un-

balanced data suggested the use of heterogeneous models, as demonstrated in pre-

vious studies with continuous outcomes. In this study, the researcher used a mixed

effects generalized linear model containing fixed and random factors with binary

outcomes, or a Hierarchical Generalized Linear Model (HGLM). The researcher

used the Adjusted Scale Binomial Beta h-likelihood to account for overdispersion

caused by different cluster sizes.

In this work, the researcher evaluated the performance of estimation meth-

ods using power, Type I error rate, and standard error. High power was required

in methods, at the same time with acceptable Type I error. Without accounting

for overdispersion, Type I error rate could be inflated. The standard error was a

measure efficiency. Smaller standard error represented smaller variability, or greater

precision (Heo & Leon, 2005). The conclusions from methods discussed in Chapter

IV follow.

Restricted Pseudo Likelihood was a good estimate method, since the av-

erage of 1,000 replications gave estimates that were very close to actual values.
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The power of the hypothesis test for regression parameters was close to one, and

the Type I error rate for the hypothesis test for regression parameters was accept-

able because it was close to 0.05. The standard error for regression parameters

was small and fits in the range from 0.0080 to 0.055. The REPL show a good es-

timation for binary data with unbalanced clusters, (Geys et al., 1997) showed the

Restricted Pseudo Likelihood estimation was a very useful estimation in clustered

data with non-continuous response.

For Extended Restricted Pseudo Likelihood, the process does not converge

when β̂1 oscillates, dramatically increasing then suddenly jumping to a very far sin-

gle point. By trying to understand the β̂1 behavior, it would be a good extension to

this method.

Binomial Beta h-likelihood was a good estimate method, with estimated val-

ues close to true parameters. The power of β1 was close to one, the Type I error

rate for β2 was somewhat high. This may be due to ignoring overdispersion caused

by different cluster sizes. The standard error for β1 had small values ranging from

0.009 to 0.047. Even Binomial Beta h-likelihood method had a small values of stan-

dard error, did not mean it was a correct values. It may not have been appropriate.

Adjusted Scale Binomial Beta h-likelihood was a good estimate method,

with estimated values close to true parameter values. The power of the hypothesis

test for β1 was equal to one, Type I error of the hypothesis test for β2 was accept-

able with value ranging from 0.054 to 0.085. In fact Adjusted Scale Binomial Beta

was better than Binomial Beta h-likelihood because it accounts for overdispersion
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due to different cluster sizes. The standard error for β1 shows that there was small

variability of the parameter estimates, with values from 0.01 to 0.05.

From the graphs in the figures the conclusions for comparing the converging meth-

ods follow.

1. For the statistical power graphs, all methods showed a high power

since the sample size was large for each simulation.

2. For the Type I error rates graphs, there was a strange trend be-

havior. The type I error rate was first decreasing with increasing

sample size, then was increasing with increasing sample size.

3. The Standard Error graphs showed decreasing average of standard

error with increasing sample size.

The results from the simulation demonstrated that the capability of the Ad-

justed Scale Binomial Beta h-likelihood was comparable to existing methods, as it

gave us a low standard error and acceptable Type I error. Moreover, Binomial Beta

h-likelihood had inflated Type I error. Therefore, the results suggested that the Ad-

justed Scale Binomial Beta h-likelihood method should be an option in computer

statistical programs to analyze unbalanced clustered data with binary outcomes.

The Restricted Pseudo Likelihood can also be applied to unbalanced clustered bi-

nary data
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Directions for Further Research

Below are some suggestions for future studies based on what was obtained

from this project.

1. Since the Extended Restricted Pseudo Likelihood did not con-

verge, it would be a good idea to adjust this method or apply this

method in another program.

2. It would be a good idea to repeat this study with small sample

sizes and compare the results with this study’s results.

3. According to previous studies, unbalanced clustered data may have

led to loss of efficiency. In this dissertation, the researcher focused

on unbalanced clustered data with binary outcomes, which followed

a binomial distribution. Instead of using binary outcomes, future

research should include another type of dependent variable with

unbalanced clustered data.

4. Since the Type I error rate graphs showed strange trend behavior,

it would be informative to try small numbers of clusters, K = 5

and K = 30, with the same average cluster size (n̄ = 10, 25, 100)

and evaluate the Type I error rate. It would be worth try a large

number of clusters to see the difference.

5. Finally, it may be worthwhile to apply the double extended quasi-

likelihood with binary outcomes.
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R-CODE FOR GENERATING DATA



90

mydata=function(seed){ 

set.seed(seed)  

   k               < -  20   

   beta0      <-  1 

   beta1      <-  0.2 

   beta2      <-  3.1 

sigma2      <-  sqrt(20) 

n                <- rpois(k,10) 

z=matrix(0,sum(n),k) 

y=matrix(0,sum(n),1)       

x=matrix(c(rep(1,sum(n)),rep(0,sum(n)),rep(0,sum(n))),sum(n),3)   

 

      u1=as.matrix(rep(rbeta(k,2,3),n),n,1) 

      u=as.matrix(rep(rbeta(k,2,3),1),n,1) 

index=1 

 for (i in 1:k) 

{ 

     z[(index:(index+n[i]-1)),i]= rep(1,n[i]) 

     index=index+n[i] 

} 

    id=as.matrix(rep(1:k,n), n,1) 

 

 ## GENERATE X-VALUES ## 

 

        x[,2] =rnorm(sum(n),3,sigma1) 

        x[,3]=rpois(sum(n),3) 

   

          linpred=beta0+beta1*x[,2]+z%*%u 

          expit=exp(linpred)/(1+exp(linpred)) 

        

    ## GENERATE RESPONSE VALUES ##     

         y[,1]= rbinom(sum(n),1,expit)     

      dat=list( x=x, y=y, z=z,id=id) 

 

} 
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APPENDIX B

RESTRICTED PSEUDO LIKELIHOOD FUNCTION
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Pseude=function (x,y,z, beta0.cell=0 , phi=1,conv_crit=1e-8,n_maxiter=1000) 

{ 

      N             <-   length(y)   

      A             <-   diag(ncol(z)) ##random variance 

      beta10   <-   rep(beta0.cell,ncol(x))  

      u10        <-   rep(beta0.cell,ncol(z)) 

      phi10    <-   phi   ## phi for all desin### 

 

    eta         <-   x%*%beta10+z%*%u10 

    mu         <-   exp(eta)/(1+exp(eta)) 

 

    D           <- diag(as.numeric(1/(mu*(1-mu))))  ## Partial derivative for eta ### 

    V           <- diag(as.numeric(mu*(1-mu)))  ### V(m)=m(1-m) 

    Vp        <- (z%*%A%*%t(z))+phi10 * D  ### Variance Psuedo 

    P           <-  t(D )%*%(y-mu)+  eta  ### Linearization "Psudeo" ### 

 

  betaHat      <-   ginv(t(x) %*% ginv(Vp) %*% x) %*% t(x)%*%ginv(Vp)%*%P 

  r                  <-   P-(x%*%betaHat)  ### residuale 

  uHat           <-   A%*%t(z)%*%ginv(Vp)%*%r 

  phiHat       <-  (1/N)*(t(r)%*%ginv(Vp)%*%r) 

 

    beta1       <- betaHat[1:ncol(x)] 

    u1            <- uHat[1:ncol(z)] 

    phi1         <- phiHat  

 

   d      <-  max(abs(beta1-beta10), abs(u1 - u10 ),abs( phi1 -  phi10 ) ) 

 

   if(d<conv_crit) {conv<-T} else{conv <- F} 

 

  n <- 1 

 

while(n<=n_maxiter & d>=conv_crit){ 

 

    beta10    <- as.numeric(beta1) 

    u10       <- as.numeric(u1) 

    phi10     <- as.numeric(phi1)  
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eta    <-   x%*%beta10+z%*%u10 

  mu     <-   exp(eta)/(1+exp(eta)) 

  D      <-   diag(as.numeric(1/(mu*(1-mu))))  ## Partial derivative for eta ### 

  V      <-   diag(as.numeric(mu*(1-mu)))  ### V(m)=m(1-m) 

  Vp     <-  (z%*%A%*%t(z))+ phi10 *D   ### Variance Psuedo 

  P      <-  t(D )%*%(y-mu)+  eta  ### Linearization "Psudeo" ### 

 

  betaHat <-ginv(t(x) %*% ginv(Vp) %*% x) %*% t(x)%*%ginv(Vp)%*%P 

  r       <-  P-(x%*%betaHat)  ### residuale 

  uHat    <-  A%*%t(z)%*%ginv(Vp)%*%r 

  phiHat  <- (1/N)*(t(r)%*%ginv(Vp)%*%r) 

 

  beta1  <- betaHat[1:ncol(x)] 

  u1     <- uHat[1:ncol(z)] 

  phi1   <-  phiHat 

 

  d      <-max(abs(beta1-beta10), abs(u1 -u10 ),abs( phi1 -  phi10 )) 

 

  n      <- n+1 

 

} 

 

if(d<conv_crit) {conv<-T} else{conv <- F} 

if(conv==T){ 

 

d2beta11 <-  (1/phiHat)* (t(x)%*%ginv(D)%*%x) 

d2beta22 <-  (1/phiHat)* (t(z)%*%ginv(D)%*%z)+ A 

d2beta12 <-  (1/phiHat)* (t(x)%*%ginv(D)%*%z) 

d2beta21 <-  (1/phiHat)* (t(z)%*%ginv(D)%*%x) 

H        <- rbind(cbind(d2beta11,d2beta12),cbind(d2beta21,d2beta22))  

H        <- as.matrix(H) 

Se       <- sqrt(diag(ginv(H))) 

num.iteration  <- paste("Iterations converged after", n, "times") 

list(betaHat=beta1, uHat=u1, phiHat = phi1 ,Iteration=num.iteration, Se=Se ) 

} 

else {print("Iterations did NOT converge!")} 

} 
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APPENDIX C

EXTENDED RESTRICTED PSEUDO

LIKELIHOOD FUNCTION
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Pseude=function (x,y,z, beta0.cell=0 , phi=1,conv_crit=1e-8,n_maxiter=1000) 

{ 

      N      <-   length(y)   

      A      <-   diag(ncol(z)) ##random variance 

      beta10 <-   as.matrix(rep(beta0.cell,ncol(x)),ncol(x),1)  

      u10    <-   as.matrix(rep(beta0.cell,ncol(z)),ncol(z),1)  

      

      phi100  <-   rep(phi,ncol(z)) 

      

      phi10  <-   diag(rep(phi100,n)) 

 

 

    eta    <-   x%*%beta10+z%*%u10 

    mu     <-   exp(eta)/(1+exp(eta)) 

 

    D      <- diag(as.numeric(1/(mu*(1-mu))))  ## Partial derivative for eta ### 

    V      <- diag(as.numeric(mu*(1-mu)))  ### V(m)=m(1-m) 

    Vp     <- (z%*%A%*%t(z))+ phi10%*%D%*%V%*%D  ### Variance Psuedo 

    P      <-  t(D )%*%(y-mu)+  eta  ### Linearization "Psudeo" ### 

 

   betaHat <-   ginv(t(x) %*% ginv(Vp) %*% x) %*% t(x)%*%ginv(Vp)%*%P 

   r       <-   P-(x%*%betaHat)  ### residuale 

   uHat    <-   A%*%t(z)%*%ginv(Vp)%*%r 

 

for (i in  1:k ) 

{ 

     

   VP <- Vp[(sum(n[1:(i-1)])+1):sum(n[1:i]),(sum(n[1:(i-1)])+1):sum(n[1:i])] 

 

   R  <- r[(sum(n[1:(i-1)]+1):sum(n[1:i]))] 

 

   phiHat  <- (1/n[i])*(t(R)%*%ginv(VP)%*%R) 

   

 

} 

    beta1  <- betaHat[1:ncol(x)] 

    u1     <- uHat[1:ncol(z)] 

    phi1   <- diag(rep(phiHat,n)) 
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d    <-  max(abs(beta1-beta10), abs(u1 - u10 ), abs(det(phi1)- det(phi10))) 

 

 

   if(d<conv_crit) {conv<-T} else{conv <- F} 

 

  n <- 1 

while(n<=n_maxiter & d>=conv_crit){ 

 

    beta10    <-  beta1 

    u10       <-  u1 

    phi10     <-  as.matrix(phi1) 

 

 

    eta    <-   x%*%beta10+z%*%u10 

    mu     <-   exp(eta)/(1+exp(eta)) 

 

    D      <- diag(as.numeric(1/(mu*(1-mu))))   

    V      <- diag(as.numeric(mu*(1-mu)))   

    Vp     <- (z%*%A%*%t(z))+ phi10%*%D%*%V%*%D   

    P      <-  t(D )%*%(y-mu)+  eta   

 

   betaHat <-  ginv(t(x) %*% ginv(Vp) %*% x) %*% t(x)%*%ginv(Vp)%*%P 

   r       <-   P-(x%*%betaHat)   

   uHat    <-   A%*%t(z)%*%ginv(Vp)%*%r 

 

for (i in  1:k ) 

{ 

     

   VP <- Vp[((sum(n[1:(i-1)])+1):sum(n[1:i])),(sum(n[1:(i-1)])+1):sum(n[1:i])] 

 

   R  <- r[((sum(n[1:(i-1)])+1):sum(n[1:i]))] 

 

   phiHat  <- (1/n[i])*(t(R)%*%ginv(VP)%*%R) 

    

} 
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 beta1  <- betaHat[1:ncol(x)] 

  u1     <- uHat[1:ncol(z)] 

  phi1   <- diag(rep(phiHat,n)) 

 

  

 

 d    <-  max(abs(beta1-beta10), abs(u1 - u10 ), abs(phi1- phi10)) 

  

 n      <- n+1 

 

} 

 

if(d<conv_crit) {conv<-T} else{conv <- F} 

if(conv==T){ 

 

d2beta11 <-  t(x)%*%ginv(phi10%*%D%*%V%*%t(D))%*%x 

d2beta22 <-  t(z)%*%ginv(phi10%*%D%*%V%*%t(D))%*%z+ginv(A) 

d2beta12 <-  t(x)%*%ginv(phi10%*%D%*%V%*%t(D))%*%z 

d2beta21 <-  t(z)%*%ginv(phi10%*%D%*%V%*%t(D))%*%x 

H        <-  rbind(cbind(d2beta11,d2beta12),cbind(d2beta21,d2beta22))  

H        <-  as.matrix(H) 

Se       <-  sqrt(diag(ginv(H))) 

  

 

num.iteration  <- paste("Iterations converged after", n, "times") 

 

list(betaHat=beta1, uHat=u1, phiHat=phi1 , Iteration=num.iteration, Se=Se) 

} 

else {print("Iterations did NOT converge!")} 

} 
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APPENDIX D

ADJUSTED SCALE BINOMIAL BETA

h-LIKELIHOOD FUNCTION
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k=20 

Term2   <- matrix(0,k,1)  

  

hA.lilihood=function(x,y,u,id) 

{ 

ha.likA=function(param) 

 

{ 

beta  <- param[1:3] 

 

Term1  <-  t(y)%*%(x%*%beta+v)-(t(id)%*%log(1+exp(x%*%beta+v))) 

 

for(i in  1:k) 

{ 

Term2  <- sum((a*v)-((a+b[i])*log(1+exp(v)))-log(gamma(a))- log(gamma(b[i])) 

           + log(gamma(a+b[i]))-log(exp(v)/(1+exp(v))^2))   

 

} 

   

Term3 = sum(Term2 ) 

 

fn1 <- sum(Term1 +Term3) 

 

return(fn1) 

 

} 

 

a=2 

b=rep(5,k) 

v=u/1-u 

 

hlA=maxLik(ha.likA, start =c(.1,.5,-.4),grad=NULL, hess= NULL) 

}  
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APPENDIX E

POWER, TYPE I ERROR RATE

AND STANDARD ERROR
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Restricted Pseudo Likelihood

source("G:/dissertation/R-program/Diss.R/data.100.1000.txt") 

 

 

simA= function (N1){ 

 

set.seed(1234) 

 

   k       =  100   

     

beta_1=matrix(c(beta0,beta1,beta2), 3,1) 

 

alpha       <-  0.05 

 

b11count    <-  0 

b12count    <-  0 

S.E1        <-  matrix(0,nrow=N1, ncol=1) 

 

 

seeds=rnorm(N1,0,50) 

set.seed(seeds) 

for(i  in 1:N1) 

{ 

 

 datta= mydata(seeds[i]) 

 x=datta$x 

 y=datta$y 

 z=datta$z 

 u=datta$u 

 id=datta$id 
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glmmres=lmer(y~x[,2]+x[,3]+ (1|id), family=binomial(link="logit")) 

Vcov <- vcov(glmmres, useScale = FALSE) 

betas <- fixef(glmmres) 

se <- sqrt(diag(Vcov)) 

zval <- betas / se 

pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) 

S.E1[i,] <- se[2] 

 

         p11 = pval[2] 

     if(p11 < alpha){b11count = b11count+1} 

 

                 

         p12 = pval[3] 

     if (p12 < alpha){b12count = b12count+1} 

     

} 

 

typeI1=b12count/N1 

power1=b11count/N1 

se1 <- sum(S.E1)/N1 

 

list(se1=se1,power1=power1,typeI1=typeI1) 

 } 
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Binomial Beta h-Likelihood

source("G:/h.Ah.power/data.h.txt") 

 

simA= function (N1){ 

 

   k       =  50  

 

 

alpha       <-  0.05 

 

b21count    <-  0 

b22count    <-  0 

S.E2        <-  matrix(0,nrow=N1, ncol=1) 

b.E21        <-  matrix(0,nrow=N1, ncol=1) 

b.E22        <-  matrix(0,nrow=N1, ncol=1) 

 

 

 

seeds=rnorm(N1,0,50) 

set.seed(seeds) 

for(i  in 1:N1) 

{ 

 

 datta= mydata(seeds[i]) 

 x=datta$x 

 y=datta$y 

 id=datta$id 

 z=datta$z 
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R <- hglm(X =x, y = y, Z = z,  

family = binomial(link = logit)) 

 

betas <- R$fixef 

se    <- R$SeFe 

zval  <- betas / se 

pval   <- 2 * pnorm(abs(zval), lower.tail = FALSE) 

 

S.E2[i,] <- se[2] 

b.E21[i,] <- betas[2] 

b.E22[i,] <- betas[3]   

 

         p21 = pval[2] 

     if(p21 < alpha){b21count = b21count+1} 

 

                 

         p22 = pval[3] 

     if (p22 < alpha){b22count = b22count+1} 

 

    

} 

 

typeI2=b22count/N1 

power2=b21count/N1 

se2 <- sum(S.E2)/N1 

be21 <- sum(b.E21)/N1 

be22 <- sum(b.E22)/N1 

 

list(se2=se2,power2=power2,typeI2=typeI2,be21=be21,be22=be22) 

} 
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Adjusted Scale Binomial Beta h-Likelihood

 source("E:/R.diss/Diss.R/20.10.txt") 

source("E:R.diss/hA.lik.max.txt") 

 

 

simA= function (N1){ 

 

set.seed(1234) 

 

   k       =  20   

    

 

alpha       <-  0.05 

 

b31count    <-  0 

b32count    <-  0 

S.E3        <-  matrix(0,nrow=N1, ncol=1) 

b.E31        <-  matrix(0,nrow=N1, ncol=1) 

b.E32        <-  matrix(0,nrow=N1, ncol=1) 

 

 

 

seeds=rnorm(N1,0,50) 

set.seed(seeds) 

for(i  in 1:N1) 

{ 

 

 datta= mydata(seeds[i]) 

 x=datta$x 

 y=datta$y 

 u=datta$u1 

 id=datta$id 
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tt=hA.lilihood(x,y,u,id) 

 

betas    <-  coef(tt)      # to find coeffecient 

se       <-  stdEr(tt)     # standred erroe 

zval     <-  betas / se 

pval     <- 2 * pnorm(abs(zval), lower.tail = FALSE) 

S.E3[i,] <- se[2] 

b.E31[i,] <- betas[2] 

b.E32[i,] <- betas[3]  

 

         p31 = pval[2] 

     if(p31 < alpha){b31count = b31count+1} 

 

                 

         p32 = pval[3] 

     if (p32 < alpha){b32count = b32count+1} 

    

} 

 

typeI3=b32count/N1 

power3=b31count/N1 

se3 <- sum(S.E3)/N1 

be31 <- sum(b.E31)/N1 

be32 <- sum(b.E32)/N1 

 

list(se3=se3,power3=power3,typeI3=typeI3,be31=be31,be32=be32) 

} 
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