
University of Northern Colorado University of Northern Colorado

Scholarship & Creative Works @ Digital UNC Scholarship & Creative Works @ Digital UNC

Undergraduate Honors Theses Student Work

5-2018

Weak Colorings of Computable Hypergraphs Weak Colorings of Computable Hypergraphs

Conner Hatton
University of Northern Colorado

Follow this and additional works at: https://digscholarship.unco.edu/honors

Recommended Citation Recommended Citation
Hatton, Conner, "Weak Colorings of Computable Hypergraphs" (2018). Undergraduate Honors Theses. 12.
https://digscholarship.unco.edu/honors/12

This Thesis is brought to you for free and open access by the Student Work at Scholarship & Creative Works @
Digital UNC. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of
Scholarship & Creative Works @ Digital UNC. For more information, please contact Nicole.Webber@unco.edu.

https://digscholarship.unco.edu/
https://digscholarship.unco.edu/honors
https://digscholarship.unco.edu/students
https://digscholarship.unco.edu/honors?utm_source=digscholarship.unco.edu%2Fhonors%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digscholarship.unco.edu/honors/12?utm_source=digscholarship.unco.edu%2Fhonors%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Nicole.Webber@unco.edu

University of Northern Colorado

Greeley, Colorado

Weak Colorings of Computable Hypergraphs

A Thesis Submitted in Partial Fulfillment for Graduation with Honors Distinction

and the Degree of Bachelor of Science

Conner Hatton

College of Natural and Health Sciences

May 2018

Weak Colorings of Computable Hypergraphs

PREPARED BY:

APPROVED BY:

HONORS ADVISOR:

HONORS DIRECTOR:

RECEIVED BY THE UNIVERSITY THESIS PROJECT COMMITTEE

ON:

05/05/2018

Weak Colorings of Computable Hypergraphs

May 7, 2018

Contents

Abstract 1

Acknowledgments 2

1 Introduction 2

2 Preliminaries 3

2.1 Hypergraphs . 3

2.2 Hypergraph Colorings . 5

2.3 Computability . 6

3 Computable Hypergraphs 8

4 Highly Computable Hypergraphs 15

5 Conclusion 19

2

Abstract

After introducing the reader to hypergraphs and their colorings, we generalize

computable and highly computable graphs to develop the notion of computable and

highly computable hypergraphs. If for a graph G we define χ(G) as the chromatic

number of G and χC(G)to be the computable chromatic number of G, then Bean

showed that for every connected computable and highly computable graph G where

χ(G) = 2, then χC(G) = 2. We show that there exists a 3-uniform, connected

hypergraph H such that χ(H) = 2 and χC(H) = ∞. Furthermore, we show that

there exists a connected highly computable hypergraph H such that χ(H) = 2 and

χC(H) = 3. Lastly, we show that for every highly computable hypergraph H where

χ(H) = k, it follows that χC(H) ≤ 2k.

Keywords: Hypergraphs, Colorings, Computability

2

Acknowledgments

Foremost, I would like to express my gratitude to my adviser, Dr. Oscar Levin, who

allowed me to complete this thesis under his guidance. He provided copious amounts

of feedback, support, and knowledge. I would also like to thank the Mathematics and

Honors departments at the University of Northern Colorado for providing endless

opportunities for my education. Lastly, I would like to thank my family and friends

for their constant support.

1 Introduction

Computability theory studies the nature of computation and its relationship with

various mathematical structures. We may call any structure, or property of a struc-

ture, computable if it is given by an algorithm. For instance, computable sets are sets

in which an algorithm exists that determines element membership for any particular

potential member. Since we only consider graphs that are countable, it is natural

to define a computable counterpart. Doing this allows us to compare the attributes

of graphs and their computable companions. In particular, we study computable

colorings on computable graphs. For graphs, we define a coloring to be a labeling

of the vertices with natural numbers such that no edge has two vertices which are

labeled the same. For any particular graph G, we can find the minimum number

of colors necessary to properly color the vertices of G. We call this the chromatic

number of G and denote it by χ(G). Similarly, we can determine the minimal coloring

given by all algorithms. We call this the computable chromatic number and denote

it by χC(G). For any finite graph G it is known that χ(G) = χC(G)[3]. However,

Bean, who studied computable graph theory, showed in his 1976 paper “Effective

Coloration”[1], that there exists computable graphs G such that χ(G) 6= χC(G). In

fact, Bean showed there exists a graph G such that χ(G) = 3 and χC(G) =∞. Given

3

that algorithms may be arbitrarily bad at coloring some computable graphs, Bean

considered a stronger notion of computability for graphs called highly computable

graphs. Bean showed that for any highly computable graph G that if χ(G) = k, then

χC(G) ≤ 2k [1] (It was later shown in [3] that χC(G) ≤ 2k − 1.)

In this paper, we provide generalizations of computable and highly computable

graphs to develop the notion of computable and highly computable hypergraphs. We

then show that there exists a connected 3-uniform computable hypergraph H where

χ(H) = 2, yet χC(H) = ∞. This result provides greater motivation for the study of

computable hypergraphs because of the graph theory result that for any connected

graph G where χ(G) = 2, then χC(G) = 2 [3]. We further this result by constructing

a connected, highly computable hypergraph H such that χ(H) = 2 and χC(H) = 3.

Finally, we provide a similar bound as Bean on the computable chromatic number of

highly computable hypergraphs H. That is, if χ(H) = k, then χC(H) ≤ 2k.

2 Preliminaries

2.1 Hypergraphs

Definition 2.1. Let V = {v1, v2, . . . , vn} be a finite set, and let E = {e1, e2, . . . em}

be a family of subsets of V . We call H = (V,E) a hypergraph whose vertex set is

V and whose edge set is E.

Hypergraphs are a generalization of standard graphs or graphs where all edges

connect only two vertices, in that, the edges of a hypergraph, called hyperedges, can

connect more than two vertices. In fact, we can see that for any set of vertices V the

edge set E can contain any element of the power set of V . We use the definitions and

notations used by Voloshin [6].

4

v1

v2

v3

v4

v5

e1

e2

e3e4

Figure 1: A hypergraph

Definition 2.2. We call |V | = n the order of a hypergraph.

Definition 2.3. We say that two vertices vi, vj are adjacent if there is an edge

ek ∈ E such that vi, vj ∈ ek.

Definition 2.4. Two edges ei, ej are adjacent provided ei∩ ej 6= ∅, i.e. if they share

a vertex.

Definition 2.5. The degree of a vertex is the number of edges which contain that

vertex and is denoted by |vi|.

Definition 2.6. The degree of an edge is the number of vertices contained within

that edge and is denoted by |ei|.

Definition 2.7. A simple hypergraph is a hypergraph in which no edges are subsets

of another edge. That is, there is no ei such that ei ⊆ ek for any i 6= k.

For this paper, all hypergraphs will be simple.

Definition 2.8. A k-uniform hypergraph is a hypergraph whose edges all have

degree equal to k.

Definition 2.9. A complete k-uniform hypergraph is the simple hypergraph Kk
n =

(X,D) such that |X| = n and D(Kr
n) coincides with all the k-subsets of X. The

complete k-uniform hypergraph and the family of its edges both are denoted by Kk
n.

5

Figure 2 illustrates all four complete hypergraphs on three vertices.

K0
3 K1

3 K2
3 K3

3

Figure 2: Complete hypergraphs on three vertices

2.2 Hypergraph Colorings

There are a few different notions for a coloring of a hypergraph, but we only consider

weak colorings (we could use strong or mixed colorings).

Definition 2.10. A weak k-coloring of a hypergraph H = (V,E) is a labeling of

its vertices V with the colors from the set {1, 2, . . . , k} in such a way that every edge

ei ∈ E such that if |ei| ≥ 2 has at least two vertices colored differently.

Therefore a weak coloring of a hypergraph H is a labeling of the vertices with

natural numbers such that no edge is monochromatic. Notice that this is a general-

ization of the colorings of graphs since, for any edge of degree two, weak colorings

always give a proper coloring.

Definition 2.11. We call the minimum k colors used in which a weak coloring is

successful the chromatic number. The chromatic number of a hypergraph H is

denoted by χ(H).

In Figure 3, we see two hypergraphs H1 and H2 with five vertices. Notice that

χ(H1) = 2 since the current coloring satisfies the coloring condition and uses only

two colors, which is the least number of colors possible for any hypergraph. However,

H2 uses three colors, which is a proper coloring, but observe that both edges will still

be non-monochromatic if we color the vertex that is currently colored with a 3 with

a 1. Therefore, despite the current coloring using three colors, χ(H2) = 2.

6

1

2

1

21

1

2

3

1
2

H1 H2

Figure 3: Possible colorings of two hypergraphs on 5 vertices

2.3 Computability

We take a rather informal approach to our notion of computability. While we could be

a bit more formal by introducing the concept of a Turing Machine, our purposes are

well served by assuming that by “computable”, we mean that it can be given by an

algorithm. In any case, the definition suffices, since the Church-Turing thesis states

that there are multiple computational models that are computationally equivalent to

Turing machines and that the notion captured by an algorithm is such a model[4].

Therefore, if we say that any object is computable, we mean that there exists an

algorithm that can compute it. Two canonical examples are computable sets and

computable functions. A computable set is, as stated in the introduction, a set

that can be computed by an algorithm, meaning, that for any input there exists an

algorithm that determines if that input is an element of that set. A computable

function, on the other hand, is a function in which there exists an algorithm that

takes an input from the domain and gives the corresponding output for the range. An

algorithm is a computational process that is deterministic and effective. A process is

deterministic if given the same input the algorithm will terminate on the same output

every time. A process is considered effective if it consists of exact instructions that,

if it halts on a given input, will consist of a finite number of steps. Notice that it is

not necessary that every input will yield a result, or halts, but that any input that

7

does give a result must do so at some time.

There exists an effective list of these algorithms which we call ϕ0, ϕ1,

To see why the list is infinite, consider each distinct algorithm that, given any input,

returns a natural number. There is such an algorithm for each n ∈ N. To see why

the list is countable, think of the possible number of C++ programs. C++ is a Turing

complete programming language [5]; therefore, it can, though perhaps not in practice,

implement any algorithm in our effective list. C++ implements these algorithms by

creating programs that are composed of a finite number of finite strings of characters

that are elements of a finite alphabet. Thus, all valid programs are a subset of all

possible finite strings. It is a well-known result [2] that the set of all possible finite

strings of a finite alphabet is a countable set. Therefore, the number of C++ programs

is infinite and a subset of a countable set, so it must also be a countable set. We

may then enumerate them into a list,ϕ0, ϕ1, . . . , as we do above. When an algorithm

halts on some input x we denote this by ϕ(x) ↓. In the proofs that follow, we achieve

our results by building infinite hypergraphs that can “defeat” every algorithm in the

effective list that we just gave. This process is called diagonalization.

While not every algorithm gives a coloring, those that do are called computable

colorings.

Definition 2.12. A computable coloring of a hypergraph is a computable function

f : N → {1, 2, 3, . . . , k}, for some k ∈ N which assigns numbers to vertices in which

each edge has at least two distinct colors.

Furthermore, we call the coloring by the algorithms which uses the least colors

the computable chromatic number.

Definition 2.13. The computable chromatic number, denoted by χC(H) is the

minimum k colors necessary to give a weak coloring of H given by some algorithm.

With the preliminaries discussed, we now develop the notion of computable hy-

8

pergraphs.

3 Computable Hypergraphs

We desire the definition of computable hypergraphs to be a generalization of com-

putable graphs. Bean [1] used the following standard definition for a computable

graph.

Definition 3.1. A graph is computable if the edge relation R is computable, i.e.

there is an algorithm that decides whether or not two vertices are adjacent.

We propose the following definition for computable hypergraphs.

Definition 3.2. A hypergraph is computable provided the edge set E is a com-

putable set.

Notice that the proposed definition is a generalization of computable graphs since

for graphs knowing whether or not two vertices are adjacent is computationally equiv-

alent to computing the edge set. Also, notice that we cannot use the same definition,

because a single hyperedge allows for more than two vertices to be adjacent. Thus, it

is possible that we can have multiple distinct hypergraphs with the same adjacency

relationship. We see this in Figure 4.

v1
v2

v3v4

v1
v2

v4 v3

H1 H2

Figure 4: Two distinct hypergraphs with the same adjacency relationship

9

Recall that Bean showed that there exists a computable graph G such that χ(G) =

3 and χC(G) = ∞. However, we also know that for any connected graph G if

χ(G) = 2, then χC(G) = 2 [3]. Since hypergraphs allow for adjacency relationships

between more than two vertices with a single edge, it may not be the case that for

any connected hypergraph H if χ(H) = 2 then χC(H) = 2. The following theorem

and corollary show that, even with the extra condition that every edge must contain

exactly three vertices (be 3-uniform), algorithms can be arbitrarily bad at coloring

computable hypergraphs.

Theorem 3.3. For every n ≥ 2 there exists a connected 3-uniform computable hy-

pergraph H such that χ(H) = 2 and χC(H) > n.

t1e

t2e

t3e

t4e

t5e

t6e

t7e

t8e

t9e

t10e

t11e

t12e
c1e c2e c3e

T 1
e T 2

e T 3
e T 4

e

C1
e C2

e C3
e

Figure 5: Gadget Ge for n = 4

Proof. Let n ≥ 2. We build the hypergraphH in stages and we diagonalize against all

ϕe by giving each ϕe a gadget Ge. To keep track of the vertices consider the following

construction of each Ge.

Ge consist of n copies of the hypergraph K3
3 which we call T 1

e , T
2
e , . . . , T

n
e where for

1 ≤ i ≤ n we have T i
e = {t1i,e, t2i,e, t3i,e}. These n copies of K3

3 are connected by n − 1

hyperedges C1
e , C

2
e , . . . C

n−1
e such that for any 1 ≤ k ≤ n − 1 Ck

e = {t3k,e, t3k+1,e, ck}

where ck is an additional vertex only belonging to the edge Ck.

10

We build H by the following construction. Whenever we add a vertex we take

this to be the least natural number not yet given in Hs.

Construction: At stage zero we add G0 and initially declare all ϕe as not de-

feated.

At stage s ≥ 1 we add Gs, a vertex cs and a hyperedge Cs such that Cs =

{t3n,s−1t31,s, cs}, so that H is connected.

For each e ≤ s where ϕe is still not defeated, run ϕe on the vertices of Ge for

s steps. If ϕe,s ↓ for all vertices in Ge, and the n-coloring given by ϕe satisfies our

coloring condition, then

1. By the Pigeon Hole Principle, there exists a pair of vertices that are colored the

same. Of the possible pairs, choose the pair such that the vertices and colorings

are given by the least natural numbers available. Call this pair of vertices p1e.

For the same reason, there must also exist another distinct pair of vertices p2e

that are colored the same, but is different than the color of the vertices of p1e.

We now have two pairs of vertices which are colored differently from each other

(there may be more such pairs but this is not guaranteed, so we always identify

the pairs by the first vertices that satisfy the condition in the enumeration of

the vertices of H).

We now begin a process in which we will add some vertices and edges to Ge

and then wait for ϕe to color these new vertices.

2. Let ke,s equal the number of uniquely colored pairs of vertices that are identified

at stage s for gadget Ge,s (the state of the gadget e at stage s).

While (n− ke,s) ≥ 2 and Ge,s has a good n-coloring do the following:

11

i.) Add n − ke,s copies of K3
3 to Ge,s such that there is no current edge re-

lation with the other vertices. Connect every pair p1e, p
2
e, . . . p

ke,s
e with each new

vertex in each new K3
3 copy.

ii.) Continue building H. For each e ≤ s where ϕe is still not defeated, run

ϕe on the vertices of Ge,s for s steps. If ϕe,s ↓ for all vertices in Ge,s, and the

coloring given by ϕe satisfies our coloring condition then it follows by the pigeon

hole principle that there will be two new unique pairs of vertices. Thus when we

repeat i we will add two less vertices and ϕe will have two less colors available to

use on the n− ke,s copies of K3
3 whose vertices are each have an edge of degree

three with the listed unique pairs.

3. Once (n − ke,s) < 2 add one copy of K3
3 to Ge,s such that there is no edge

relation with the other vertices. Notice that ke,s = (n− 1). Connect the three

new vertices with the n−1 pairs of uniquely identified pairs given by the process

above.

This completes the construction.

Now any coloring given by ϕe will fail as all vertices in the last K3
3 copy must all

be colored with the nth color that has yet to be given by the pairs p1, p2, . . . , pn−1

and therefore there will be a monochromatic edge.

Figure 6: Possible start of H for n = 4

12

1

3

3

1

4

4

2

4

4

2

4

2

3 1 1

4 4 3 3 3 4

p1e p2e

p2e

Figure 7: If ϕ1 halts (Note: vertices connected to the pairs p1e, p
2
e, p

3
e by an edge

represent a single hyperedge containing that vertex and the pair).

Verification: We show that H is 2-colorable by showing that there exists a 2-

coloring for each gadget. We do the following:

i.) For each gadget Ge identify all like-colored pairs p1e, p
2
e, For each pair

color the vertex with the least natural number associated with it 1 and the other 2.

All edges that perform the function of connecting the additional K3
3 copies will now

satisfy our coloring condition.

ii.) We now color the rest of the vertices in the K3
3 copies. Let Ei,e ∈ Ge such

that Ei,e 6= Ck
e for any i, k. If Ei,e contains no vertices that were in the listed pairs

p1e, p
2
e, . . . , then none of the vertices are currently colored so color the least two vertices

1 and the greatest vertex 2. All of these edges will now satisfy the coloring condition.

If Ei,e contains only one vertex that was in the listed pairs p1e, p
2
e, . . . , then color

the vertex that is in that edge whose natural number is closest the opposite color of

the given vertex from the pair. Color the remaining vertex 1. Now all of these edges

will satisfy our coloring condition.

13

If Ei,e contains two vertices from the listed pairs p1e, p
2
e, . . . , then we color the

remaining vertex the opposite color of the vertex of the pair with the least natural

number associated with it. All of these edges will now satisfy the coloring condition.

(Notice that if an edge contains three vertices of from p1e, p
2
e, . . . , then it will already

have a good coloring as we colored the vertices properly in i).

iii.) All that remains is to color the vertices that are only members of Ck
e and

the vertices in the edges that connect gadgets. If the two vertices are adjacent to the

given vertex are the same, then we color it the opposite color. If, on the other hand,

they are different, then we color the vertex 1. In either case, the coloring condition

is satisfied for the remaining edges.

Therefore every edge has now been appropriately colored using 2 colors and so

χ(H) = 2.

Also, since whenever we add an edge, it contains a vertex not yet mentioned,

so the hypergraph is computable. By construction H is connected and 3-uniform.

Furthermore, we have given each possible algorithm ϕe a gadget to color and shown

that for any specific n it cannot give a n-coloring.

Therefore there exists a connected, 3-uniform computable hypergraphH such that

for every n ≥ 2 we have χ(H) = 2 and χC(H) > n

Corollary 3.4. There exists a connected 3-uniform computable hypergraph H such

that χ(H) = 2 and χC(H) =∞

Proof. We use the previous result and its construction to build the hypergraph H.

Each algorithm ϕe will get a sequence of connected gadgets Ge,n for every n ∈ N. The

gadget Ge,n is the gadget from Theorem 3.3 used for n + 2. (We use n + 2 because

we start at n = 2 when building the hypergraph). Therefore Ge,3 is the gadget used

in Theorem 3.3 when n = 5. We use the same labeling of vertices as in Theorem

3.3 with the exception that we replace each suffix e with e, n. To make sure that the

14

sequence of gadgets are connected whenever we add a gadget Ge,n we add a vertex

v1e,n such that it is not an element of any other current edges, and draw the hyperedge

Ee,n,v1 = {t3e,n, t3e,0, ve,n}. Similarly, to make sure that H is connected whenever Ge,0

is added for a given e ≥ 1 we create the vertex v2e,0, with no edge adjacency, and

the hyperedge Ee,n,v2 = {t3e−1,0, t3e,0, v2e,0} (Again, notice that these hyperedges and

vertices won’t effect the coloring given by ϕe for any e since we may choose how these

vertices are colored since either the two adjacent vertices are colored the same or

differently. Therefore we can always color the vertex either 1 or 2).

As in the last construction, whenever we add a vertex, we take this to be the least

natural number not yet given in Hs. Consider the following construction of H.

t1e,1

t2e,1

t3e,1

t4e,1

t5e,1

t6e,1

t7e,1

t8e,1

t9e,1
c1e,1 c2e,1

T 1
e,1 T 2

e,1 T 3
e,1

C1
e,1 C2

e,1

Figure 8: Gadget Ge,1 added at stage e+ 1

Construction: At stage zero we add G0,0 and initially declare all ϕe as not

defeated.

At stage s ≥ 1 we build the gadgets Ge,s−e for each e and their respective vertices

ve,n and connecting edges Ee,n,v1 , and Ee,n,v2 if s− e = 0 .

15

For each pair 〈e, n〉 where e ≤ s and n ≥ s− e and where ϕe is still not defeated,

run ϕe on the vertices on every Ge,n for s steps. If ϕe,s ↓ for all vertices in Ge,n, and

the coloring given by ϕe satisfies our coloring condition, then

1. Proceed exactly as in Theorem 3.3. That is, identify vertices into pairs that

are colored the same and add the given edges and repeat until every ϕe fails on

each Ge,n.

This completes the construction.

Verification: Clearly the hypergraph is 3-uniform and connected by construction.

Also, it must be 2 colorable since for all n ≥ 2 in Theorem 3.3 H is 2 colorable.

Furthermore, χC(H) = ∞ because for every n ∈ N ϕe will fail to color each the

components associated with Ge,n.

Therefore there exists a connected 3-uniform computable hypergraph H such that

χ(H) = 2 and χC(H) =∞

This result tells us hypergraph colorings are, in some sense, more complex than

graph colorings. However, computable graphs can be arbitrarily difficult for algo-

rithms to color, too. In the same spirit as Bean, we now seek to develop a stronger

notion of computability for hypergraphs: that is, highly computable hypergraphs.

4 Highly Computable Hypergraphs

As with computable graphs, we seek to generalize the definition of highly computable

graphs Bean [1] used. The definition is as follows.

Definition 4.1. A graph is highly computable if there is a computable function f :

N→ {sequence of numbers} such that f(i) = 〈i1, i2, . . . , in〉means vertex i is adjacent

to exactly the vertices i1, i2, . . . , in.

16

We propose the following definition for highly computable hypergraphs.

Definition 4.2. A hypergraph is highly computable if there is a computable function

f : N→ {sequence of sets} such that f(i) = 〈e(i,1), e(i,2), . . . , e(i,n)〉 where e(i,1), e(i,2), . . . , e(i,n)

are exactly the edges in which i ∈ e(i,j), for each j ∈ {1, 2, n}.

Observe that 4.2 is a generalization of 4.1 since for graphs an adjacency rela-

tionship is computationally equivalent to describing an edge set. Also, notice that

this generalization is necessary for the same reason described in the previous section.

Since hypergraphs allow for adjacency relationships between more than two vertices

with a single edge, knowing the vertices that are adjacent to each other only describes

possible edges, not unique edges.(Which is necessary for the definition to align with

our informal definition of it being given by an algorithm, i.e., to be deterministic.)

All connected graphs G, in particular highly computable graphs, have the property

that χ(G) = 2 also have the property that χC(G) = 2 [3]. The following results shows

that this property is not true for connected hypergraphs H which are 2-colorable.

Theorem 4.3. There exists a connected highly computable hypergraph H such that

χ(H) = 2 and χC(H) = 3

t1e t2e t3e

Figure 9: Gadget for H

Proof. Consider the hypergraph K3
3 . We are going to buildH in stages using infinitely

many copies of K3
3 to diagonalize against all ϕe. Thus H =

⋃
s∈NHs. Each vertex of

K3
3 will be connected to additional vertices such that these vertices will form paths

emanating from the vertices in K3
3 . These paths will receive an additional edge and

vertex at each stage s.

To keep track of vertices and edges we use Ti for the ith copy of K3
3 and call its

vertices t1i , t
2
i , and t3i .

17

Construction: At stage zero we add T0 and declare all ϕe as undefeated.

At stage s ≥ 1, we add Ts and a hyperedge connecting Ts−1 and Ts using the vertices

t3s−1, t
1
s, and vs where vs is a vertex which belongs only to the connecting edge. We

also add the vertices tsi , t
2s
i , t

3s
i for all i < s which connects to the previous three

vertices added at each stage via a standard graph edge and such that they connect

to the vertex that shares the same multiple (1, 2, 3).

For each e ≤ s where ϕe is still not defeated, run ϕe on the vertices of Te for s steps.

If ϕe,s ↓ for all v ∈ Te, and ϕe satisfied our coloring condition using 2 colors, then

1. Since ϕe gave a 2-coloring to vertices t1e, t
2
e, t

3
e, by the pigeon hole principle two

vertices must be colored the same. Let these two vertices be denoted by v1e , v
2
e

and let the vertex of a different color be denoted by v∗e .

2. Since the coloring was allowed only two colors; it follows that once a vertex on

a path is colored the coloring of the entire path is determined. Therefore once

ϕe halts we can add 6 more vertices to Te such that each path gets two more

vertices (and their respective edges).

3. Consider the path emanating from the v1e . Using the vertex that is at the end

of the path draw an edge such that it connects with the last vertex on the path

emanating from v2e .

Figure 10: Possible start for H

Verification: Notice that any 2-coloring of the remaining vertices will give a bad

coloring, since the two vertices that we connected will be the same color and cannot

be the other color, so it must use a third color and is therefore not 2-colorable. Also,

notice that if we change the coloring by changing the parity of the path emanating

18

1
2

1

1

2

1

1

2

1

2

2

1

2

2

x

Figure 11: If ϕ1 halts

1
2

2

1

2

1

1

2

1

2

1

2

1

2

2

Figure 12: Observe that H is still 2-colorable

from v1e , then it will give a 2-coloring. Observe that the hypergraph is highly com-

putable as well since whenever a vertex is enumerated we say exactly which edges

and vertices are adjacent to it. To see that χC(H) = 3, the algorithm could proceed

as if it were giving a 2-coloring, but use the third color available to it when it comes

to the vertex is adjacent to the two paths and thus giving a 3-coloring.

Therefore there exists a highly computable hypergraph H such that χ(H) = 2

and χC(H) = 3.

We have shown that there exists a highly computable hypergraph H that is more

difficult to color than its highly computable graph counterpart. However, the fol-

lowing result shows that these computable colorings cannot be arbitrarily bad. We

establish the same bound given by Bean in[1], which says that for any highly com-

19

putable graph G where χ(G) = k, it follows that χC(G) ≤ 2k.

Theorem 4.4. Every k-colorable highly computable hypergraph H is computably 2k-

colorable.

The following proof is a modification of Bean’s proof which provides a bound on

the computable chromatic number for highly computable graphs.[1]

Proof. Let H0 be edge 0 and Hn+1 be the subgraph of H which includes all edges

that are adjacent to the vertices of Hn and those vertices that are elements of those

edges. Let Hn=Hn−Hn−1. Since H is highly computable we can find Hn effectively.

Furthermore, since H is k−colorable and Hn is finite we can effectively color Hn. Let

us now separate our colors in two evenly divided sets K1, K2 such that K1 ∩K2 = ∅

and |K1 ∪ K2| = 2k (thus each set has k unique colors). We now do the following:

Color H0 with colors from K1, H1 with colors from K2, H2 with colors from K1, and

so on, so that H2n is colored with colors from K1 and H2n+1 with colors from K2. We

see that this gives a computable 2k-coloring since, by definition, no vertex in Hn is

adjacent to a vertex in Hn+2.

5 Conclusion

We have generalized the notions of computable and highly computable graphs to hy-

pergraphs to show that there exists a connected 3-uniform computable hypergraph

that is 2-colorable, but computably uncolorable. We also proved that, while highly

computable graphs have bounded computable colorings, there exists a connected

highly computable hypergraph that is 2-colorable, yet any computable coloring re-

quires three colors. In either case, there is no computable or highly computable graph

counterpart. These results offer a modest start to developing computable hypergraph

theory, and there remain many fundamental open questions. Considering alternative

20

colorings like strong colorings, which requires every adjacent vertex to be colored dif-

ferently, or mixed colorings, which imposes coloring conditions on different families of

subsets of vertices, would be a natural direction to take. Also, exploring alternative

generalizations for computable and highly computable graphs could lead to interest-

ing, and entirely different, results. In general, any question that determines whether

a computable graph theory theorem holds for computable hypergraph theory seems

to be worthwhile.

21

References

[1] Dwight R Bean, Effective coloration, The Journal of Symbolic Logic 41 (1976),

no. 2, 469–480.

[2] H-D Ebbinghaus, Jörg Flum, and Wolfgang Thomas, Mathematical logic, Springer

Science & Business Media, 2013.

[3] William Gasarch, A survey of recursive combinatorics, Studies in Logic and the

Foundations of Mathematics, vol. 139, Elsevier, 1998, pp. 1041–1176.

[4] Oscar Levin and Taylor McMillan, Computing planarity in computable planar

graphs, Graphs and Combinatorics 32 (2016), no. 6, 2525–2539.

[5] Michael Sipser, Introduction to the theory of computation, vol. 2, Thomson Course

Technology Boston, 2006.

[6] Vitaly I Voloshin, Introduction to graph and hypergraph theory, Nova Science

Publ., 2009.

	Weak Colorings of Computable Hypergraphs
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Preliminaries
	Hypergraphs
	Hypergraph Colorings
	Computability

	Computable Hypergraphs
	Highly Computable Hypergraphs
	Conclusion

