The Effects of Cannabidiol and Tetrahydrocannabinol Concentration on Breast Cancer Cell Viability

Dorothy Achiaa Agymang
agye4642@bears.unco.edu

Follow this and additional works at: https://digscholarship.unco.edu/honors

Recommended Citation
https://digscholarship.unco.edu/honors/23

This Article is brought to you for free and open access by the Student Research at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact Jane.Monson@unco.edu.
University of Northern Colorado
Greeley, Colorado

THE EFFECTS OF CANNABIDIOL AND Δ⁹-ΤΕΤΡΑΗΔΡΟΚΑΝΝΑΒΙΝΟΛ
CONCENTRATION ON BREAST CANCER CELL VIABILITY

A Thesis Submitted in partial fulfillment for Graduation with Honors Distinction
and the Degree of Bachelor of Science

Dorothy Achiaa Agyemang

School of Biological Sciences
College of Natural and Health Sciences

May 2019
Acknowledgments

I will like to give special thanks to God, because through him all things are possible. I will like to thank Dr. Hylsop and Dr. Pullen for their kind heart and great mentorship. I give thanks to Jazmyn Mosqueda Banuelos, and Josh Folsom and Kevin Gittner for teaching me the methods needed for this research. Lastly, I will like to give special thanks to McNair staff and the Department of Chemistry and Biochemistry for making all this possible.
Table of Contents

ABSTRACT 4

INTRODUCTION 5
- **PURPOSE AND SIGNIFICANCE** 5

LITERATURE REVIEW 6
- **CANCER PATHOGENESIS** 6
- **CANNABINOIDS** 8
 - **FIGURE 1** 9
- **CANNABINOIDS AND CANCER** 10
 - **FIGURE 2** 11

METHOD 12
- **MEDIA** 12
- **CELL GROWTH AND PASSING** 13
- **ADDING CANNABINOIDS THE CANCER CELLS CULTURES** 13
- **MTT ASSAY** 14
- **WESTERN BLOT** 14
- **STATISTICAL ANALYSIS** 15

RESULTS 15
- **MTT ASSAY** 16
 - **FIGURE 3** 17
- **WESTERN BLOT** 17
 - **FIGURE 4** 18
- **STATISTICAL ANALYSIS** 18
 - **MTT ASSAY** 18
 - **FIGURE 5** 19
 - **TABLE 1** 20
 - **TABLE 2** 20
 - **WESTERN BLOT** 21
 - **TABLE 3** 21
 - **FIGURE 6** 22

DISCUSSION 22

CONCLUSION 25

REFERENCES 26
Abstract

Δ^9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are phytocannabinoids that have a potential impact in cancer treatments. Studies have shown that certain cannabinoids cause cancer cells to die, but only with selective concentrations, which have not been well documented. The first study of this thesis was to determine the exact concentration of CBD and THC needed to kill human MCF-7 breast cancer cells, rather than creating mass multiplication leading to more growth of the cancer. To conduct this experiment, cell culture was performed with a MCF-7 breast cancer cell line. The treatment groups were treated with CBD or THC at varying concentrations including 0.1, 1, 10 and 100 µM. Observations were made by using tetrazolium dye (MTT assay), which is a colorimetric assay for measuring cell proliferation. Additionally, as an alternative approach to assess cell death, Western blot was performed. MCF-7 cells were analyzed for apoptosis through Western blotting by detecting poly ADP ribose polymerase (PARP) cleavage. CBD inhibited MCF-7 breast cancer growth, whereas THC stimulated MCF-7 breast cancer cell proliferation. MTT assay and Western blot displayed the same pattern with CBD being the most effective treatment, but with different effective concentrations. The MTT assay method suggested that 1 µM cannabidiol was the most effective, whereas the Western blot indicated that 10 µM cannabidiol was the most effective. These results are inconstant and they have not been replicated. This research is a continuation in which experiments will narrow the effective concentration needed to cause cancer cells apoptosis. Favorable findings may provide an accessible and affordable cannabinoid-based treatment for patients.
The Effects of Cannabidiol and Tetrahydrocannabinol Concentration on Breast Cancer Cells

One in eight women (about 12.5%) will develop invasive breast cancer over the course of her lifetime (U.S Breast Cancer Statistics, 2018) in the United States. Not only is breast cancer deadly, but breast cancer can spread to other parts of the body such as lymph nodes, lungs, and other organs. Breast cancer cells in the lymph nodes suggest an increased risk of cancer metastasis and decreased rate of survival. Breast cancer is treated in various ways such as radiation and surgical removal of the breast, which leaves the survivors with physical and emotional trauma. Chemotherapy is another common treatment but has side effects such as hair lost, easy bruising, bleeding, and cognitive disorders which can affect concentration and focus (American Cancer Society, 2016). Due to these negative side effects, researchers have been looking for supportive alternate treatments that are equally effective but without the side effects. One possibility: Cannabis-derived cannabinoid drugs. Cannabinoids are being investigated (Qamri et al., 2009) as anticancer treatments with fewer side effects than conventional chemotherapy.

Purpose and Significance

Studies suggest that cannabinoids can kill cancer cells, and researchers have proposed that the concentration of cannabinoids makes a difference in determining cancer cell apoptosis (cell death), however optimization of the cannabinoids concentration is necessary (Sarfaraz, Adhami, Syned, Afaq, & Murkhtar, 2008). Sarfaraz et al. (2008) proposed that the overexpression of cannabinoid receptors (CB1 and CB2: G-protein couple receptors located throughout the body) may lead to cancer cell death, but little or no expression of these receptors could lead to cell proliferation and metastasis due to the suppression of the antitumor immune response. It is unknown how the concentrations of two common cannabinoids--cannabidiol
(CBD) and ∆⁹-tetrahydrocannabinol (THC) affect cancer cells. Therefore, studying the effect of varying concentrations of CBD and THC on breast cancer cells could offer a potential avenue for new treatments of this disease.

Because *Cannabis* is easily grown, the cost of cannabinoid-based cancer treatment could potentially be much lower than other forms of chemotherapy (Gringspoon, 1999). Furthermore, cannabinoid drugs are known to reduce many side effects associated with other treatments, such as pain, loss of appetite, nausea, and vomiting (Rocha, Stefano, Haiek, Oliveira & Da Silveria, 2008; Tramèr et al., 2001; Ware et al., 2010), which will benefit cancer patients by preventing them from taking additional medications for side effects. The use of cannabinoid drugs can also potentially void the need of traumatic surgeries. Lastly, when an effective concentration is known for treatment, cannabinoids should work more efficiently than most other cancer treatments because they inhibit the cancer growth without interfering with normal cells (Kogan, 2005). Not only are cannabinoid drugs affordable and have anti-proliferative properties, they can reduce side effects associated with other treatments making cannabinoid drugs a potential treatment to research and develop.

Review of Literature

Cancer Pathogenesis

During the cell cycle, there are checkpoints which are responsible for making sure the cell is capable to function and regulate when necessary. At the checkpoint, if a cell has any damage or cannot serve its purpose, the cell is marked for apoptosis. Apoptosis is a normal physiological process which removes unwanted cells by programming the cell’s death. Some damaged cells escape the checkpoint without being marked for apoptosis. These abnormal cells can grow out of proportion and can become cancer cells (Visconti et al., 2016).
Cancer cells are cells that have lost the ability to function normally or die but can still divide. Uncontrollable growth forms a mass of tissue called a tumor. Because cancer cells are similar to normal cells, it is difficult to selectively kill them without affecting normal cells (Yasukawa, 2014). When the cancer cells spread to different regions of the body, it is called metastasis. Cyclin E is a regulator of cell cycle and, with cyclin-dependent kinase (cdk) 2, is important for the G1/S transition during the cell cycle. In tumors, there is normally an overexpression of the cyclin E protein causing cell proliferation and bypassing the checkpoint leading to cancer.

There are five types of cancer classified by their tissue/cell types of origin, which are sarcomas, leukemia, lymphomas, melanoma, and carcinomas (Movva, 2015). Carcinomas, which was the focus of this study, develop in the epithelial cells, which start from the skin or epithelial tissue and spread to the internal organs and are caused by the damage of DNA resulting in a mutation (Rosenbreg, 1987). MCF-7, which is a human breast adenocarcinoma cell line, was the selected cell type utilized. Breast cancer is the most common cancer and the leading cause of cancer death in American women. American Cancer Society estimated 41,400 deaths occurred in 2018 among males and females due to breast cancer.

The method of cancer treatment is determined based on the cancer type, stage of cancer development, and the person’s health. The three common cancer treatments are radiation, surgery, and chemotherapy. Radiation therapy uses high energy waves to makes small breaks in the DNA inside cancer cells. During this process, abnormal cells are destroyed and new, normal cells replace the dead ones (Lawrence, Ten Haken & Giaccia, 2008). Surgery is used to remove a tumor prior to metastasis, whereas chemotherapy uses drugs to inhibit cancer cell function (Ho Im et al., 2016).
Cannabinoids

Cannabinoids are compounds originally discovered in the plant *Cannabis sativa*. They are potential chemotherapeutic agents being investigated to treat cancer. The discovery of cannabinoids occurred in the 1940s, and the receptors for these molecules were discovered in the mid-1980 (Pertwee, 2006). To date, approximately 113 cannabinoids have been isolated from *Cannabis* (Namdar et al., 2018).

There are three primary types of cannabinoids: endocannabinoids, synthetic cannabinoids, and phytocannabinoids (Qamri et al., 2009). Endocannabinoids are endogenous cannabinoids that the human body synthesizes and releases, which also interact with the CB1 and CB2 receptors. Anandamide is a type of endocannabinoid that binds to CB1 and activates the receptor (Pertwee, 2008). Synthetic cannabinoids are designed for research purposes, and they also interact with the CB1 and CB2 receptors (Seely, Lapoint, Moran, & Fattore, 2012). Synthetic cannabinoids are mildly psychoactive because of their cannabimimetic properties (Grigoryev et al., 2011).

Phytocannabinoids are cannabinoids that occur naturally in the *Cannabis* plant; the most thoroughly investigated phytocannabinoids are THC and CBD (Figure 1) (Borgelt et al., 2013). CBD has a significantly different action than THC (Gertsch, Pertwee & Di Marzo, 2010). THC directly activates the CB1 receptor, which causes a change in brain function due to its psychoactive properties. Unlike THC, CBD has a low affinity for the CB1/CB2 receptors. However, it causes cellular modulation that leads to an indirect interaction with the CB1 receptor (Pacher, Batkai, & Kunos, 2006). CBD induces endogenous neurotransmitter uptake, which is responsible for signal transmission in the brain (Moreira et al., 2011).
Cannabinoids serve a purpose in pharmaceutical science, even though Cannabis is just becoming accepted by society (Gupta, 2014). Due to powerful therapeutic properties used to treat several medical conditions, cannabinoids have been contributing to pharmaceutical benefits since 1850. Research has shown that cannabinoids can contribute to factors that help the body respond to injury, defend against viruses and bacteria, and repair damaged tissues in the body (Nagarkatti, Pandey, Rieder, Hegde, & Nagarkatti, 2009). Cannabinoids can also regulate energy in the body by activating the 5-hydroxytryptamine (serotonin) receptor, which contributes to the reduction of addiction, anxiety, depression, nausea, pain, and vomiting as well as improves appetite and sleep (Crippa et al., 2010).

CBD and THC inhibit cancer metastasis by activating the CB1 and CB2 receptors (Patsos, Hicks, Greenhough, Williams, & Paraskeva, 2005). CB1 receptors are in the basal ganglia, brain, cerebellum, limbic system, and reproductive system. CB2 receptors are correlated with anti-inflammatory processes and are, in addition to the locations mentioned, found in the spleen. CB2 is expressed “on demand”, the modulation of CB2 levels is a common feature to cells of macrophage lineage as they participate in the inflammatory response and undergo differential gene expression and acquisition of distinctive functional properties (Cabral, 2009).
Cannabinoids and Cancer

The mechanism by which cannabinoids directly kill breast cancer cells is currently unknown, but researchers have postulated a potential mechanism. Velasco et al. (2016) suggested a pathway in which cannabinoids might cause cancer cell apoptosis (Figure 2). THC stimulates the stress-regulated protein pathway, which enhances the inhibitory interaction of the pseudokinase homologue 3 with pro-survival kinases, Akt. This leads to inhibition of the mammalian target of rapamycin complex 1 and the subsequent stimulation of autophagy-mediated cell death (Velasco et al., 2016).

Velasco et al. (2016) proposed the mechanism for glioma cancer cells. Even though the mechanism of how apoptosis occurs in breast cancer cells is not known, most cancer apoptosis probably follow a similar mechanism. Researchers have frequently determined that THC and CBD can kill cancer cells. However, the specific concentration of CBD and THC is rarely addressed. Sarfaraz et al. (2008) speculated that the concentration makes a difference in whether there will be apoptosis or proliferation in cancer cells.
Sarfaraz et al. (2008) proposed that overexpressed CB1 and CB2 receptors may lead to tumor destruction, but low or no expression of these receptors could lead to cell proliferation and metastasis because of the suppression of the antitumor immune response. This suggests that cannabinoids as an anticancer treatment will not exhibit the side effects associated with current cancer treatments, making cannabinoids a promising contribution to current cancer therapies. Because the concentration of cannabinoids affects cancer cells, the precise concentration of THC and CBD needed to cause apoptosis of the breast cancer cells must be examined.
Methods

This study was conducted at the University of Northern Colorado in the Department of Chemistry and Biochemistry and the School of Biological Sciences. Cell culture was performed with a MCF-7 human breast cancer cell line obtained from Bio-Rad (Bio Rad Laboratories, Hercules, CA, USA). Cultures were kept in an incubator at 37 °C with 95% humidified air and 5% CO₂. Two controls for this experiment were used: cells in Roswell Park Memorial Institute (RPMI) culture medium without cannabinoids and cells in the same medium with ethanol. The ethanol was added to determine the effect ethanol had on cancer cells, due to the fact the drugs were dissolved in ethanol. Two treatment groups were also used to compare CBD and THC. These treatment groups were treated with CBD or THC at varying concentrations including 0.1, 1, 10 and 100 micromolar. These concentrations are arbitrarily chosen because there is not an established baseline of concentrations that might affect the cancer cells. To study whether CBD and THC cause apoptosis or proliferation in MCF-7 cells, an MTT assay was performed to determine cell proliferation through a colorimetric measurement of metabolic mitochondrial activity.

Media

Fresh media was made by adding either a mixture of fetal bovine and horse sera (FBE, cat. No. VWR) or to a RPMI base. Additionally, penicillin 100 unit/L/streptomycin (100 ug/L (ThermoFisher, 10378016), sodium pyruvate 1 mM (ThermoFisher, 11360070), bovine insulin 10 mg/mL (ThermoFisher, 12585014), L-glutamine 2 mM (ThermoFisher, 25030081), Hepes (buffer agent) 10 mM (ThermoFisher, 15630080) and 2-mercaptoethanol 0.142 M (ThermoFisher, 35602BID) were added to the RMPI to provide a complete media (cRPMI) with everything the MCF-7 cancer cells need to grow.
Cell Growth and Passing

After incubation for 24 hours (37 °C, 95% humidified air, 5% CO₂), old medium was discarded and cells were trypsinized by adding 3 mL of trypsin (1x) concentration (ThermoFisher, 25200-056) to the flask and incubating the flasks at 37 °C and 5% CO₂ for 1-2 min, until cells lifted from the culture flask surface. Six mL of fresh media were added to each flask to neutralize the trypsin reaction. The cells, now in fresh media, were centrifuged at 1200 rpm in conical tubes for 5 min. Supernatant was discarded, and the cell pellets were re-suspended in 1 mL of fresh media each. A 10 µL sample of MCF-7 cells was stained with trypan blue (1:1) and counted using a Countess II Automated Cell Counter. These results were used to determine the cell density to determine the volume containing the proper number of cells needed to be grown in each well. The calculated number of the cells were then re-suspended in fresh media (12 mL in the T-75 flask), then transferred constantly to 96 wells plates and incubated until they are 80% confluent (roughly 48-64 hr.).

Adding Cannabinoids to the Cancer Cell Cultures

The first control group was suspended in media without any cannabinoids or ethanol (the vehicle control); the second control group were suspended in media with ethanol equal to the amount of ethanol in which the cannabinoids were delivered. Each concentration treatment had three replicates. For the first treatment of breast cancer cells, 0.1 µM CBD was added to each of the three wells in the first column. The second column had 1 µM of CBD, while the third column had 10 µM CBD, and lastly the fourth column had 100 µM of CBD. A second set of breast cancer cells followed the same protocol with the concentrations of THC using a different plate.
MTT Assay

The plates were incubated (37 °C, 95% humidified air, 5% CO₂) for 24 hours. Tetrazolium dye- MTT assay (ThermoFisher, V13154) was added to the MCF-7 cancer cells which measures cell metabolic activity to determine the actual percent of the MCF-7 cancer cell apoptosis (Kowalczyewska et al., 2016).

Western Blot

The protocol by Pullen et al. (2012) was used in determining cell viability through Western blot. MCF-7 cells were analyzed for apoptosis though Western blotting by detecting PARP cleavage. This allowed comparison of control group apoptosis (baseline) to cells treated with cannabinoids and served as a preliminary measure of induction of apoptosis, which could be the basis for later studies examining the timing of apoptosis. MCF-7 cells were treated with lysis buffer (from Cell Signaling Technology, a detergent containing phosphatase and protease inhibitors to preserve protein structure) (ThermoFisher, 89900) to obtain intracellular proteins; immediately after lysis, samples were microcentrifuged for 5 min at 13,000xg. Proteins were denatured, and chemically reduced at 95-100 °C in 1X Laemmli buffer containing β-mercaptoethanol for 10 min then cooled on ice. The supernatant was subjected to SDS-PAGE with 4%-20% Tris-glycine polyacrylamide gels for resolution based on size (kDa), and then electro-transferred to a nitrocellulose membrane. Twenty-five milliliters of 1X Tris-buffered saline (TBS) were used to wash the nitrocellulose membrane for 5 min at room temperature. Then, to block unspecific binding, the membrane was incubated at room temperature for 1 h in a mixture of TBS with 5% (v/v) milk and 0.05% (v/v), (TBST). The membrane was then rinsed with TBST and incubated with a primary antibody specific for detecting human poly (ADP-ribosyl) polymerase 1 at 1:1000) diluted in 1X TBST containing 5% bovine serum albumin
(BSA), with gentle agitation overnight at 4 °C. The membrane was washed three times for 5 min each with TBST. The membrane was then incubated for 45 min with anti-rabbit IgG conjugated to horse radish peroxidase (HRP). TBST was used to wash the membrane and detection was made by using enhanced chemiluminescence substrate activated by HRP (PerkinElmer, Rodgau, Germany). Densitometric analysis was performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

Statistical Analysis

An ANOVA was performed to compare cannabinoid concentrations among each other and with control to determine if there is a significant difference in percent of the breast cancer cell death in both MTT assay and Western blot. Poc-host test was performed to determine which effects due to concentrations differ from one another. The treatment groups were compared with the control, since the control was set as the standard.

Results

The first study (Agyemang, D., & Hyslop, R., in press) determined the exact concentration of CBD and THC needed to kill MCF-7 breast cancer cells. CBD was more effective at stimulating apoptosis compared to THC. However, the most effective concentration of CBD varied between the MTT assay and the Western blot assay. Since the THC was not as effective as we predicted, we could test the THC in higher concentrations in the future to gauge effectiveness. Because these are preliminary results, the assays will need to be replicated. This study will be replicating to determine if the basic findings of the original work are accurate. Due to the therapeutic potential of CBD and THC, the findings of this study could contribute to the ever-growing body of knowledge regarding cancer treatments.
MTT Assay

The MTT assay detects the proliferation of MCF-7 breast cancer cells. As the proliferation increases, it indicates that the concentration causes stimulation of proliferation in the MCF-7 breast cancer cells. The lower proliferation indicated that the MCF-7 breast cancer cells were inhibited by the concentration of the CBD or THC. The media was the control, which showed typical/expected proliferation of breast cancer cells. As illustrated in Figure 3, CBD is the more effective inducer of apoptosis of the MCF-7 breast cancer cells compared to the THC and control. The CBD and THC concentrations at 100 µM were the most effective among the concentrations.

However, THC concentrations had mixed effects on the MCF-7 breast cancer cells. At 10 µM, THC stimulated the cancer cell growth compared to media alone and that is the opposite effect hypothesized. Nevertheless, the rest of the THC concentrations had no effect on the proliferation of the MCF-7 breast cancer cell.
Figure 3. MCF-7 proliferation as a function of CBD and THC. The first bar of each concentration is CBD (orange), whereas THC (blue) is the next bar of each concentration.

Western Blot

The Western blot assessment illustrates the ratio between cleaved and uncleaved PARP protein. The ratio is directly proportional to the apoptosis of the MCF-7 breast cancer cells. The higher ratio of the cleaved to uncleaved PARP protein indicates the apoptosis of the breast cancer cells with the influence by CBD or THC.

As illustrated in Figure 4, THC concentration caused more apoptosis in MCF-7 breast cancer cells compared to CBD. However, CBD and THC concentrations at 0.1 µM showed an increase in the ratio of the cleaved to uncleaved PARP protein indicating that there is an apoptosis of breast cancer. A decrease in ratio shows no changes in MCF-7 breast cancer cells or perhaps stimulation occurs, leading to proliferation of the MCF-7 breast cancer cells. As
illustrated in Figure 4, CBD concentrations of 1 µM and 100 µM showed a decrease in the ratio which indicates that no apoptosis occurred or perhaps a proliferation of the MCF-7 breast cancer cells.

![Graph](image.png)

Figure 4. Detection of Parp-protein cleavage. An increase in the bar graph, higher than the media, indicates MCF-7 breast cancer cell apoptosis. CBD (orange), THC (blue), and the Controls (green).

Statistical Analysis

ANOVA - MTT Assay

A t-test of CBD or THC to media show no significant different, however comparison of each concentration to the media differs. The two-way analysis of variance is an extension of the ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The use of two-way ANOVA is to understand if there is an relationship between the two independent variables which in this case, are CBD and THC, on the dependent variable which in this case is the apoptosis of the MCF-7 breast cancer cells shown in Figure 5 and 6. The P-values need to be equal to or less than 0.0500 to account for statistical significant differences between the variables.
As illustrated in Table 1, the comparison of CBD and THC to media has a P value = 0.0598 which indicates that there is not any statistical significance, however, there is a significant difference among each concentration. As illustrated in Table 2, each concentration including the control were compared with all the concentrations to find a significant difference. All the concentrations show no significant difference except for the relationship between 10 µM THC and 100 µM CBD, which stipulate that at 100 µM CBD concentration, the concentration has an opposite effect on the MCF-7 breast cancer cells compared to all the concentrations and the media.

Table 1: MTT Assay Comparison of CBD and THC Treatment to the Media.

Significant difference is P value of 0.05
Table 2: Multiple Comparison of t-Test of Each Group to Every other Group. The difference is significant at P-value ≤ 0.05.

<table>
<thead>
<tr>
<th>Dunn’s multiple comparisons test</th>
<th>Significant?</th>
<th>Adjusted P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control vs. 0.1 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 1 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 10 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 100 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 1 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 10 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>Control vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 1 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 10 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 100 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 1 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 10 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>0.1 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 10 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 100 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 1 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 10 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>1 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 0.1 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 µM THC</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 1 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 10 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 0.1 µM CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 CBD</td>
<td>No</td>
<td>>0.9999</td>
</tr>
<tr>
<td>10 µM THC vs. 100 CBD</td>
<td>Yes</td>
<td>0.0108</td>
</tr>
</tbody>
</table>
ANOVA - Western Blot

As illustrated in Table 3, the comparison of CBD and THC to media is P value = 0.7364 indicates that there is not any statistical significance. In addition, the P value for all the concentrations also indicated that there is not any statistically significant difference between all these concentrations.

Table 3: Western blot comparison of CBD and THC treatment to the media. Significant difference is when the P value is 0.05

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>Column2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P value</td>
<td>0.7364</td>
</tr>
<tr>
<td>Exact or approximate P value?</td>
<td>Approximate</td>
</tr>
<tr>
<td>P value summary</td>
<td>Ns</td>
</tr>
<tr>
<td>Do the medians vary signif. (P < 0.05)?</td>
<td>No</td>
</tr>
<tr>
<td>Number of groups</td>
<td>10</td>
</tr>
<tr>
<td>Kruskal-Wallis statistic</td>
<td>6.035</td>
</tr>
</tbody>
</table>

Data summary

| Number of treatments (columns) | 10 |
| Number of values (total) | 24 |
Discussion

In this study, the ascertainment of various concentrations of CBD and THC that influence MCF-7 breast cancer apoptosis was the focus. Studies have shown that certain cannabinoids cause the apoptosis of cancer cells, but only with a certain concentration, which has not been well documented. Therefore, this study was to determine the exact concentration of CBD and THC needed to kill MCF-7 breast cancer cells, rather than creating mass multiplication leading to more growth of the cancer. An MTT assay and Western blot were the methods used to conduct this experiment. The first study (Agyemang, D., & Hyslop, R., in press) stated that CBD was more effective at stimulating apoptosis compared to THC. However, the most effective concentration of CBD varied between the MTT assay and the Western blot assay. The first study (Agyemang, D., & Hyslop, R., in press) research results were preliminary; however, this research
is a replication with a larger sample sizes. This is a better representative of the population making the data more accurate and precise.

As illustrated in the MTT Assay, 100 μM is lower in proliferation in both CBD and THC which indicated inhibition of the MCF-7 breast cancer cells. The most salient finding is that 100 μM CBD was the most effective concentration when looking at the MTT assay assessment. However, THC concentration results vary. At concentration of 100 μM, the THC inhibit the cancer growth, but at 10 μM concentration of THC increase proliferation, meaning the drugs stimulates a growth in the MCF-7 breast cancer cell. Visually, the MTT assay illustrated that CBD was more effective overall drug compared to THC, however the t-Test results indicate that there is not any statistically significant difference. Blasco-Benito et al. (2018) suggested that the combination of cannabinoids with estrogen receptor- or HER2-targeted therapies (tamoxifen and lapatinih, respectively) or with cisplatin, produced additive anti-proliferative responses in cell cultures; THC and CBD did not show any significant different comparing to the control due to the lack of these combinations. Takeda et al. (2008) concluded that RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells therefore cannabinoids had no effect on the cells. However, with the presence of CB receptors cause Δ⁹-THC to inhibit the proliferation of MCF-7 cells.

As illustrated in the Western blot assessment, as the CBD concentrations increase, the apoptosis decreased in MCF-7 breast cancer cells. As illustrated in figure 4, 0.1 μM CBD concentration resulted in the most apoptosis comparing to all the CBD concentrations. Western blot results conflict with the MTT Assay; this may be due to fact that there was a larger sample size in the MTT assay then there was in the western blot. THC concentration had mixed effect on
the MCF-7 breast cancer cells. As illustrated in figure 4, 0.1 µM concentration was most effective for both CBD and THC.

However, the most effective concentrations of CBD and THC on the MCF-7 breast cancer cells as assessed by Western blot are different from MTT assay’s most effective concentration. Even though Western blot and MTT assay have different values of what concentration was effective, both methods show that there is indeed an apoptosis of MCF-7 breast cancer cells due to the influence of CBD or THC. However, this effective concentration was not statistically significant different. Petreocells et al. (1998) research indicated that anandamide works best on the MCF-7 breast cancer cell with concentrations of 5-10 µM which works by blocking human breast cancer cell proliferation through CBI-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor.

Focusing on the Western blot, THC has the opposite effect at concentrations of 1 µM and 100 µM indicating that there was no apoptosis among MCF-7 breast cancer cell or perhaps stimulated proliferation. Comparing the information to the MTT assay, 10 µM THC caused proliferation but for the Western blot it was 1 µM and 100 µM. The proliferation occurred in both methods proving that THC could perhaps stimulate proliferation instead of inhibitions of the MCF-7 breast cancer cells. Sarfaraz et al. (2008) stated that low doses of cannabinoids cause acceleration of proliferation of the cancer cells instead of inducing apoptosis. Sarfarz et al. results were supported by THC concentration at 10 µM from MTT assay and 1 µM, 100 µM from Western blot assay.

Statistically, there is no significant difference between CBD and THC from the Western blot. Furthermore, there is no significant difference among all the concentrations from the Western blot, but visually there is trend. Even though the statistical data show no significant
difference between the media and the concentration, multiple reports such as Blasco-Benito et al. (2018), Sarfaraz et al. (2008), Velasco et al. (2016) and more have shown that cannabinoid do in fact cause anti-proliferation of cancer cells. The lack of statistically significant difference in this research could be because the sample sizes were not quite large enough.

THC and CBD appeared to be effective on the MCF-7 cancer cells; 100 µM or 0.1 µM showed inhibition of MCF-7 cancer cells depending on either Western blot or the MTT assay was used. Moving forward, an alternative to the MTT assay could be used since MTT assay is not sensitive enough for the time points examined. Using Western blot to narrow down between these two concentrations in which the drug causes inhibition of the proliferation of breast cancer and testing enough to get a statistically significant difference between the concentration of CBD and THC to media will be the next focus. Favorable findings may provide an accessible and affordable cannabinoid-based treatment for patients.

Conclusions

CBD and THC appeared to be effective at stimulating apoptosis of the MCF-7 breast cancer cells, however, there was no statistically significant difference. Western blot illustrated that at 0.1 µM, CBD and THC are the most effective at stimulating inhibition of the MCF-7 human breast cancer cells, while MTT assay illustrated that at 100 µM, CBD and THC are most effective at stimulating apoptosis of the MCF-7 breast cancer cells. Since Western blot is the more reliable method, the concentration provided from the western blot should be the focus, however, the sample size for the western blot was small. Therefore, a larger sample sizes for the western blot will be the next focus.
Reference

Cannabinoids and Terpenoids (n.d). Retrieved from
https://www.cannabiscure.info/cannabinoids-terpenoids/

