University of Northern Colorado

Scholarship & Creative Works @ Digital UNC

2021 Undergraduate Presentations

Research Day 2021

2021

Classification of Activity Patterns in Small Neural Networks in terms of Network Architecture

Devon Olds

Follow this and additional works at: https://digscholarship.unco.edu/ug_pres_2021

Recommended Citation

Olds, Devon, "Classification of Activity Patterns in Small Neural Networks in terms of Network Architecture" (2021). 2021 Undergraduate Presentations. 65.

https://digscholarship.unco.edu/ug_pres_2021/65

This Presentation is brought to you for free and open access by the Research Day 2021 at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in 2021 Undergraduate Presentations by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact Nicole.Webber@unco.edu.

Classification of Activity Patterns in Small Neural Networks in terms of Network Architecture

Devon Olds¹, Katherine Morrison¹, Caitlyn Parmelee², Joshua Paik³, Carina Curto³

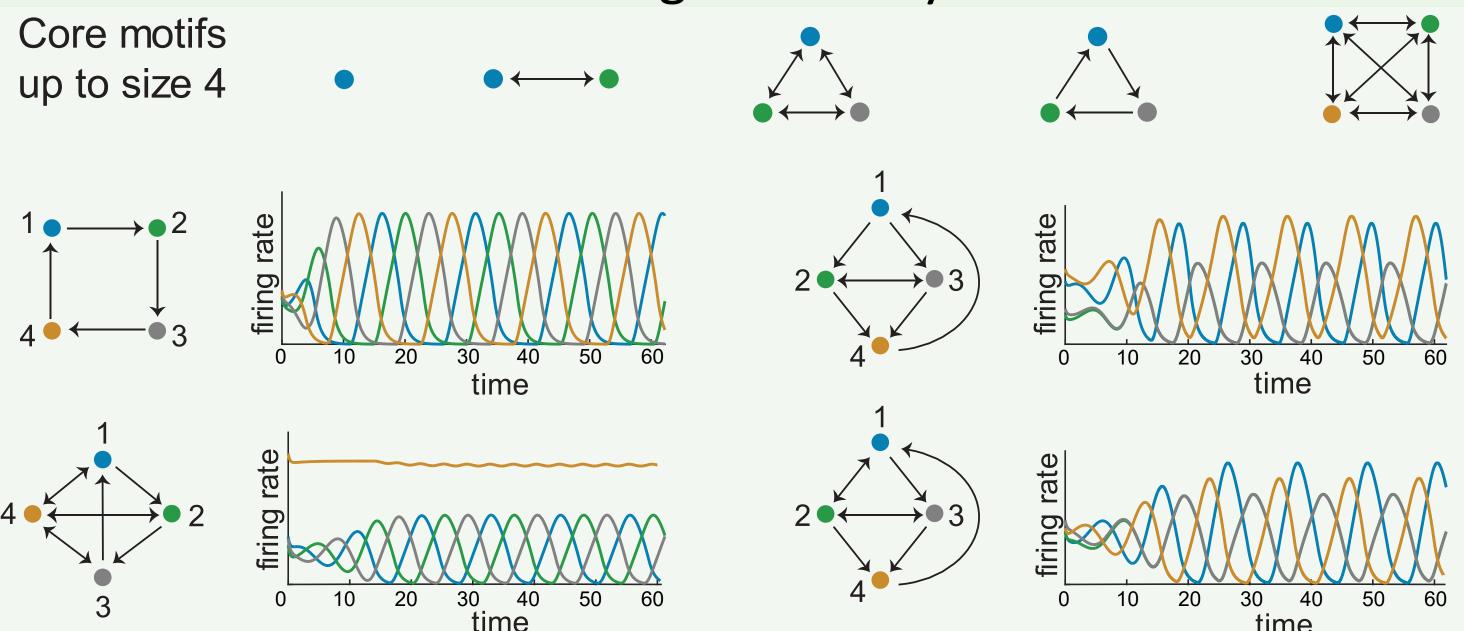
¹University of Northern Colorado, ²Keene State College, ³Pennsylvania State University

Combinatorial threshold-linear networks (CTLN) \longleftrightarrow A network graph B dynamics $\frac{dx}{dt} = -x + [Wx + \theta]_{+} \underbrace{ \begin{bmatrix} \cdot \end{bmatrix} + }_{+} \underbrace{ \begin{bmatrix} \cdot \\ \cdot \end{bmatrix} + }_{+} \underbrace{ \begin{bmatrix} \cdot \\$

Unless otherwise noted, ϵ =.51, δ =1.76, ϑ =1 in all simulations. Thus, differences in dynamics are due <u>only</u> to differences in the graph G.

→ Motivating Questions: ←

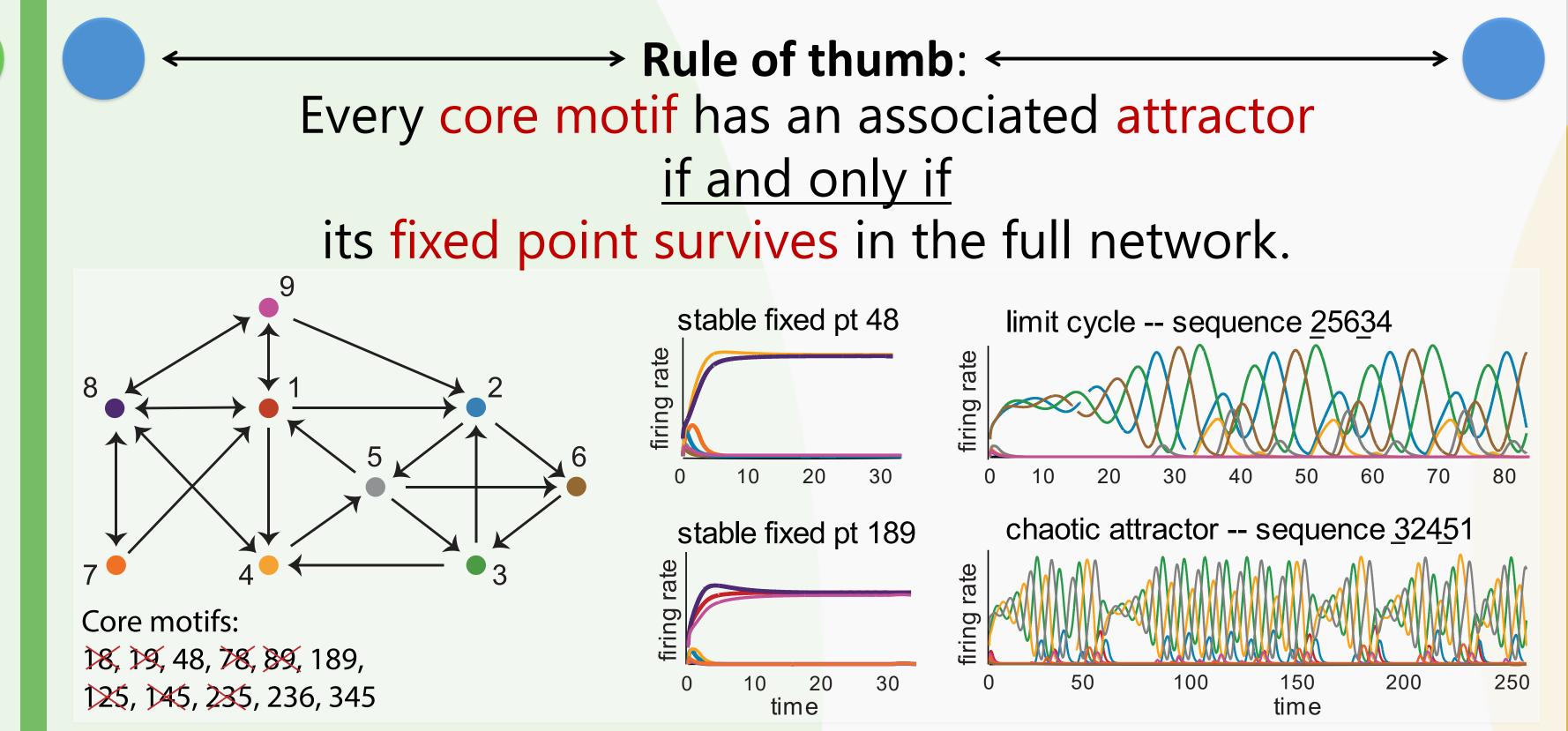
How does network connectivity shape emergent dynamics? Can we find motifs that generate dynamic attractors?



A core motif is a subgraph $G|_{\sigma}$ with a unique fixed point \mathbf{x}^* that has full support, i.e. $x_i^* > 0$ for all $i \in \sigma$.

Graphs	Survives addition of k	Does not survive addition of k
4-cycle	at most one edge to k	at least two edges to k
4-ufd	at most two edges to k	at least three edges to k
4-clique	at most three edges to k	all four edges to k
3-cycle	if $4 \rightarrow k$, then at most one edge from the 3-cycle 123 to k; if $4 \rightarrow k$, then all edges from 123 to k allowed	4 → k, and at least two edges from the 3-cycle 123 to k
4-cycu 1 2 4 3	at most one edge to k; or any pair of edges from $\{1,2,3\}$ to k; or $2,4 \rightarrow k$; or $3,4 \rightarrow k$	at least three edges to k; or 1,4 → k

A set of graph rules determines whether the fixed point of the core motif survives the addition of a node k. The fixed point survives in the full network if it survives the addition of each external node individually.

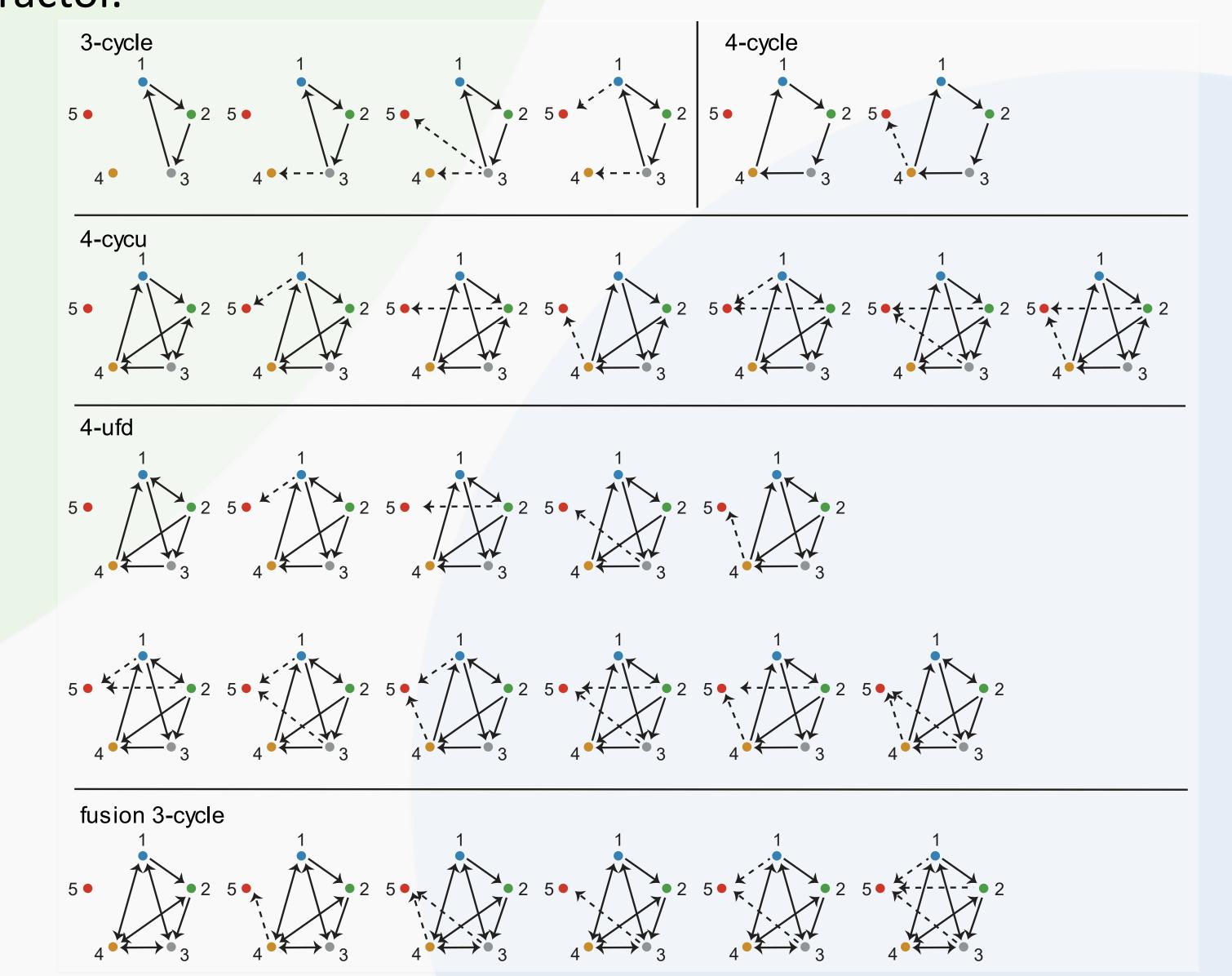


This n=9 graph contains 11 core motifs, but only 4 have a fixed point that survives in the entire network. Thus, 4 attractors are produced.

→ Testing the rule of thumb +

Of the total 9608 graphs of size 5, the Rule of Thumb holds for all but 19 graphs.

We focus on classifying the dynamic attractors of the 1014 graphs that contain a core motif of size up to 4 that produces a dynamic attractor.

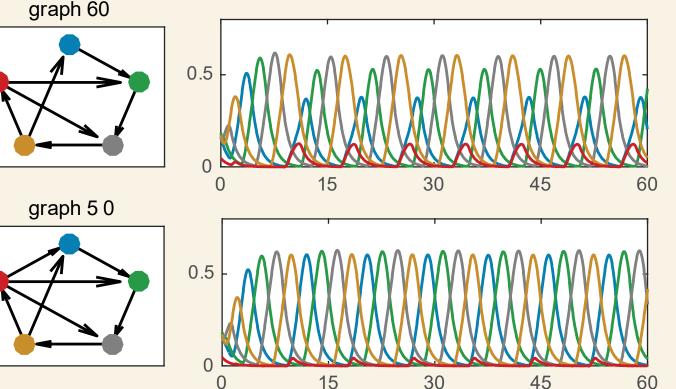


There are 5 core motifs up to size 4 that produce dynamic attractors. The table above shows all the core-periphery classes for graphs of size 5. Each class consists of a core motif and a set of outgoing edges to node 5 such that the fixed point of the core motif survives.

← Summary of n=5 classification of attractors ← →

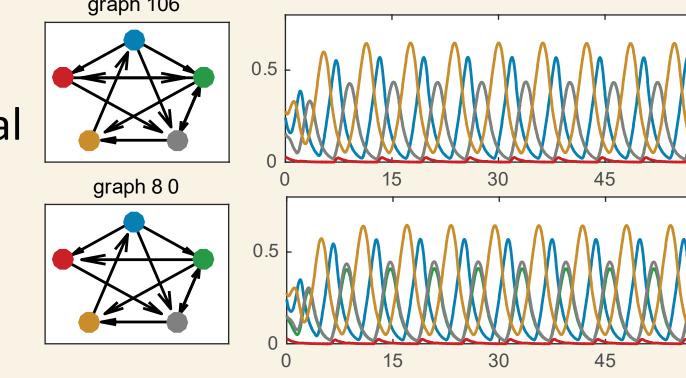
The core-periphery classes largely predict the structure of the dynamic attractors of the graphs of size 5, irrespective of the back edges from node 5 to the core motif.

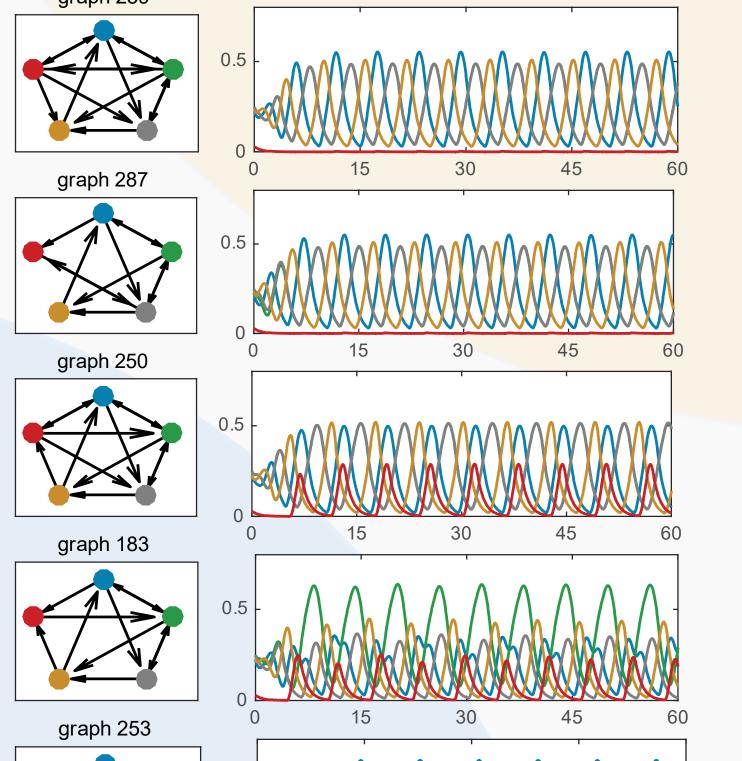
<u>3-cycle</u>: The core-periphery classes perfectly predict the structure of core attractors for embedded 3-cycles, except there is a split in the third class based on the interaction between nodes 4 and 5.



4-cycle: There is slight variation between the attractors in this class based on the height of the peripheral node depending on whether 5 sends an edge to 1.

4-cycu: There are some discrepancies between the attractors of the graphs when the peripheral node sends an edge to node 2 or 3 that breaks the symmetry. Additionally, whenever there is no edge from 1 to 5, the attractor is missing.





4-ufd: This class has significantly more variation between attractors depending on back edges from the peripheral node.

- There is no firing of node 5 when it receives 1 or no edges
- Low firing when node 5 receives from
- 1 & 2, 1 & 3, or 2 & 3
- Higher firing when 5 receives from 1 & 4
- A back edge from 5 to 2 or 3 can break the symmetry
- When there is no edge from 5 to 2, then the attractor is missing

Fusion 3-cycle: This class is perfectly predicted by the core-periphery classes.

→ Key Takeaways ←

- 1. Surviving core motifs give attractors.
- 2. Core-periphery classes predict general features of attractors, and back edges from peripheral nodes often have little effect.
- 3. Back edges from the periphery to the core *do* matter when they break symmetry between nodes in the core.

C. Parmelee, J. Paik, D. Olds, K. Morrison, C. Curto. Classification of dynamic attractors in small inhibition-dominated threshold-linear networks. In prep.

C. Curto, J. Geneson, K. Morrison. *Fixed points of competitive threshold-linear networks*. Neural Computation, 31, 1, 94-155, 2019. Available at https://arxiv.org/abs/1804.00794

K. Morrison and C. Curto. *Predicting neural network dynamics via graphical analysis.* Book chapter in *Algebraic and Combinatorial Computational Biology.* R. Robeva and M. Macaulay (Eds) 2018. Available at https://arxiv.org/abs/1804.01487 **Funding:** NIH R01EB022862, NSF DMS - 1951599