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ABSTRACT 
 
 

Troudt, Melissa. Mathematicians’ Evolving Personal Arguments: Ideas That Move Proof 
Constructions Forward. Published Doctor of Philosophy dissertation, University 
of Northern Colorado, 2015. 

 
This research is an investigation into the ideas professional mathematicians find 

useful in developing mathematical proofs.  Specifically, this research uses the construct 

personal argument to describe the ideas and thoughts the individual deems relevant to 

making progress in proving the statement.  The research looked to describe the ideas that 

mathematicians integrated into their personal arguments, the context surrounding the 

development of these ideas in terms of Dewey’s theories of inquiry and instrumentalism, 

and how the mathematicians used these ideas as their arguments evolved toward a 

completed proof.  

Three research mathematicians with multiple years of experience teaching real 

analysis completed tasks in real analysis while thinking aloud in interview and 

independent settings recorded with video and Livescribe technology.  Follow-up 

interviews were also conducted.  Data were analyzed for ideas that participants found 

useful. Toulmin argumentation diagrams were implemented to describe the evolving 

arguments, and Dewey’s inquiry framework helped to describe the context surrounding 

the development of the ideas. Descriptive stories were written for each participant’s work 

on each task documenting the argument evolution. Open, iterative coding of each idea, 

problem encountered, and tool was conducted. Patterns, categories, and themes across 

participants and tasks were identified.  
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The mathematicians developed ideas that moved their personal arguments 

forward that were grouped into three categories according to their functionality: ideas that 

focus and configure, ideas that connect and justify, and monitoring ideas. Within these 

three categories were ideas in fifteen sub-types. The ideas emerged through the 

mathematicians’ purposeful recognition of problems to be solved as well as reflective and 

evaluative actions to solve them.  This research implicates that using the full Toulmin 

model for investigating the process of creating mathematical proof since the modal 

qualifiers evolve to become absolute as the warrants shift to become based on deductive 

reasoning.  In the instruction of undergraduate students, this work supports teaching 

content in conjunction with proof techniques and heuristic strategies for problem solving 

and recommends engaging students in discourse situations that would motivate moving 

their informal arguments into deductive proofs. 
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CHAPTER I 
 

 
INTRODUCTION 

 
 

Background of the Problem 
 

In many undergraduate mathematics courses, having students prove statements 

and understand proofs of statements is a means of conveying information and analyzing 

student understanding.  Both the National Council of Teachers of Mathematics Standards 

(NCTM; 2000) and the Common Core Standards for Mathematical Practice (National 

Governors Association Center for Best Practices & Council of Chief State School 

Officers, 2010) documents highlight the importance of the development of reasoning and 

argumentation in students even prior to their enrollment at the university level.  The 

NCTM standards require students to develop and evaluate mathematical arguments and 

proofs and select and use various types of reasoning methods and proofs.  The Common 

Core Standards for Mathematical Practice require that mathematically proficient students 

“construct viable arguments and critique the reasoning of others” (p. 6).  The ability to 

construct and understand mathematical proof is instrumental to success in studying 

mathematics.  However, it is well documented that secondary students, undergraduate 

mathematics majors, and pre-service and in-service mathematics teachers struggle with 

understanding and constructing viable mathematical arguments (e.g., Balacheff, 1988; 

Harel & Sowder, 1998; Healy & Hoyles, 2000; Knuth, 2002; Weber & Alcock, 2004). 
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Undergraduate students learn mathematical proof construction within the context 

of a mathematics content course or in an Introduction to Proofs course.  In an 

introduction to proofs course, students’ struggles with mathematical proof can be 

complicated by their lack of content knowledge (Tall & Vinner, 1981; Weber, 2001).  A 

challenge for instructors in a content course is that students come into the course with 

different levels of experience with proofs (Brandell, Hemmi, & Thunberg, 2008), and 

instructors need to balance instruction in new mathematical content as well as instruction 

in what mathematical proof is, techniques for constructing mathematical proof, and 

developing students’ abilities to formulate mathematical arguments.  More and more, 

universities are offering an introduction to proofs course as a means of supporting 

students in learning to construct and analyze proofs.  Traditionally in these courses, the 

instructor lectures about proving techniques and assigns proof construction tasks for 

homework; the students take notes and try to recreate proofs based on the techniques 

taught.  These techniques may not be effective (Selden & Selden, 2008).  Harel and 

Sowder (2007) indicated that proof courses must also incorporate experiences that would 

constitute an intellectual need for attending to definitions and other ways of thinking 

associated with proof construction.  Instructors may facilitate more of an inquiry-based 

classroom, but they must be mindful of the types of scaffolding for their choices for 

instructional interventions (Blanton, Stylianou, & David, 2009; Selden & Selden, 2008; 

Smith, Nichols, Yoo, & Oehler, 2009).  Harel and Sowder called for a more 

comprehensive perspective on the learning of teaching of proofs that incorporates 

mathematical, historical-epistemological, cognitive, sociological, and instructional 

factors.  They stated more research is needed to characterize instructional practices 
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conducive to students formulating an understanding of proof that “is consistent with that 

shared and practiced by mathematicians of today” (p. 47), indicating the importance of 

understanding the practices of mathematicians--those who have great experience and 

abilities in constructing mathematical proof. 

Studying mathematicians to describe the practices of the mathematics community 

(Inglis, Mejia-Ramos, & Simpson, 2007; Weber, 2008; Weber & Mejia-Ramos, 2011), to 

understand the processes involved with certain mathematical activities, to describe the 

experience of understanding mathematics (Sfard, 1994), to inform and construct 

frameworks for use with analyzing student work (Engelke, 2007; Raman, 2003), and to 

guide the design of effective instruction are common practices in the mathematics 

education community.  Previous researchers have observed that mathematicians and 

graduate students in mathematics construct proof using both purely formal reasoning and 

also constructions that are accompanied by informal reasoning (Alcock & Inglis, 2008; 

Raman, 2003; Weber & Alcock, 2004).  This informal reasoning may include the 

exploration of examples, the rephrasing of the definition of a concept, or other 

instantiations of concepts.  Mathematicians have been shown to use examples for varying 

but specific purposes including developing understanding, testing conjectures, generating 

counterexamples and ideas for how to prove the statement (Alcock, 2004, 2008; Alcock 

& Inglis, 2008).  When mathematicians use informal reasoning, they are able to connect 

their informal reasoning to the formal definitions and concepts, linking their private 

arguments to a public articulation of an argument (Raman, 2003; Weber & Alcock, 

2004).  Tall et al. (2012) described that a proof for professional mathematicians as 

“involves thinking about new situations, focusing on significant aspects, using previous 
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knowledge to put new ideas together in new ways, consider relationships, make 

conjectures, formulate definitions as necessary and to build a valid argument” (p. 15).  

While the term “proof” can describe the written product that serves as the 

mathematician’s way to “display the mathematical machinery for solving problems and 

to justify that a proposed solution to a problem is indeed a solution” (Rav, 1999, p. 13, 

italics in original), the process of constructing a proof involves more than the writing of 

logically valid deductions (Aberdein, 2009).  The construction involves informal 

arguments to find methods to attack the problem as well as incomplete proof sketches 

(Aberdein, 2009).  The construction process may proceed in non-linear stages including 

the exploration of a problem, the estimation of the truth of the conjecture, and the 

justification of the statement estimated to be true (Mejia-Ramos & Inglis, 2009).  For 

mathematicians, there is reflection, reorganization of ideas and reasoning that “fill in the 

gaps” so a proof will emerge (Twomey Fosnot & Jacob, 2009).  

I chose to focus on these emergences of proof with the view of the proving 

process as an evolving argument.  A personal argument is an evolving, graded (Lakoff, 

1987) subset of one’s statement image (Selden & Selden, 1995) of the proof situation.  

The argument is graded in that various elements such as pictures, theorems, statements, 

algorithms, logical premises and deductions, and so forth may not exclusively be seen to 

be pertinent to the argument or exterior to the argument; there is a gradation that depends 

on the degree to which the individual anticipates the ideas do or can “do work” in moving 

the argument forward.  The idea may not be made explicit in the final write-up of the 

mathematician’s proof, but it serves to help the prover get a handle on the mathematics or 
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on how to communicate the mathematical ideas in a logical, mathematically acceptable 

manner.   

A prover determines if an idea moves an argument forward; he or she discerns if 

an idea is functional as a means of resolving a certain situation.  These ideas may include 

those that convince the prover of the statement’s validity, provide insight as to why the 

statement is true or cannot be true, give insight into ways to communicate a formal proof, 

and others.  While ideas may grant “aha” moments to the prover, they may also include 

developing a sense of what the statement means, a sense of the implications of the 

statements, an understanding of the structures, a sense that a line of inquiry will not be 

fruitful, or a feeling that the actions taken are appropriate and fitting with the other 

elements in the situation.  

Aspects of the statement image such as pictures created and observations and 

inferences drawn may prove to be more and less central to one’s personal argument as the 

argument evolves.  What was extraneous to the personal argument may become more 

central, and what was once central to one’s personal argument may move to the 

periphery.  For example, certain pictures and examples may have been critical to the 

prover’s self-conviction as to why the statement must be true, but it may be the case that 

the prover abandons these informal representations and the insights gleaned from them 

when moving to write a formal proof.  He or she may instead produce an argument using 

symbolic manipulations of a general, algebraic instantiation of the definition.  

Some ideas that have an impact on the proving process have been identified with 

varying degrees of specificity by mathematicians and mathematics education researchers.  

For example, Byers (2007) speaks of the mathematical idea in generality as the answer to 
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the question, “what’s really going on here?”  Raman, Sandefur, Birky, Campbell, and 

Somers (2009) observed critical moments in the proving process in which there were 

opportunities for a proof to move forward.  They identified three moments, the attainment 

of a key idea (an idea that gives the prover a sense of structural relationship that indicates 

why the statement is true), the discovery of some technical handles (ways of 

manipulating or making use of the structural relationship that can support the 

communication of the key idea), and the culmination of the argument into a correct proof 

(Raman et al., 2009; Sandefur, Mason, Stylianides, & Watson, 2012).  Raman et al. noted 

that in a single proving episode a prover may attain multiple key ideas and that it may not 

be possible to connect key ideas to a technical handle or to render a technical handle into 

a formal proof.  They maintained that mathematics faculty may prefer constructing proof 

that connects their informal key ideas to a formal proof via a technical handle.  Although 

a proof construction process may not involve the attainment of a key idea or technical 

handle, the work of Raman and colleagues provide empirical evidence that in the proving 

process there is an attainment of ideas that can push the argument forward.  

Statement of the Problem 

Mathematicians and mathematics education researchers appear to agree that the 

mathematician’s proving process includes an attainment of ideas that can motivate a 

mathematical argument, and the construction of a proof involves a non-linear process of 

understanding the statement, convincing oneself, convincing a friend, and convincing an 

enemy (Tall et al., 2012).  Students find difficulty differentiating arguments that convince 

themselves from mathematical proof (Harel & Sowder, 1998; Healy & Hoyles, 2000; 

Weber, 2010), and at times students do not seek to construct formal proofs that are 
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connected to their informal understandings (Raman et al., 2009).  Students have also been 

shown to struggle with generating and using ideas that can move their arguments toward 

a rigorous proof (Alcock, 2008; Alcock & Weber, 2010; Brandell et al., 2008).  

Little research has been performed that would describe the context around the 

formulation of the ideas that the prover finds useful and how these ideas influence the 

development of the mathematical argument.  A more thorough account of the state of the 

literature is given in Chapter II.  The phenomenon is not well-described for 

mathematicians but resonates in authors’ accounts of doing mathematics.  Looking at the 

moments where these ideas develop through the perspective of Dewey’s (1938) theory of 

inquiry may grant important information about the context of the generation of these 

ideas and the purposes that they serve as the argument evolves.  Understanding the 

context surrounding the generation of these ideas may inform the development and 

creation of experiences for students of mathematics (Harel & Sowder, 2007). 

Framing Research in the Context of Dewey’s  
Theory of Inquiry 

 
 This research sought to describe the context surrounding the generation of ideas 

that can move an argument forward.  I viewed ideas as tools for performing some sort of 

work on the proof situation.  Byers (2007) posited that ideas emerge from periods of 

ambiguity.  Dewey (1938) likewise described ideas as possible solutions to situations that 

the individual deems tense and unresolved:  

The possible solution presents itself, therefore, as an idea, just as the terms of the 
problem (which are facts are instituted by observation).  Ideas are anticipated 
consequences (forecasts) of what will happen when certain operations are 
executed under and with respect to observed conditions. (p. 109, emphasis in 
original). 
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The intentional process to resolve doubtful situations through the systematic invention, 

development, and deployment of tools is inquiry (Hickman, 2011).   

 The process of active productive inquiry involves the repeating, cyclical pattern of 

reflection, action, and evaluation.  In reflection, the inquirer inspects the situation, 

chooses a tool to apply to the situation, and thinks through a course of action.  After this 

initial reflection of what could happen, the inquirer performs an action (applies the tool).  

Either during or after the fulfilling experience, the inquirer evaluates the appropriateness 

of the selected application of the chosen tools (Hickman, 1990).  The process and pattern 

of inquiry will be described further in Chapter III, but I argue now that viewing the 

situation surrounding mathematicians’ developing personal arguments through the 

inquiry framework may be informative.  

 I chose to view personal arguments as progressing if the individual deemed that 

he or she had incorporated ideas that were useful to achieving the purpose that he or she 

defined.  Similarly, Dewey (1938) defined a proposal, theorem, or course of action as a 

“tool” if it does work in the inquirer’s eyes achieving some sort of purpose.  Using the 

framework, I was able to describe the actions performed by the participants noting if the 

prover perceived a problem and what they perceived the problem to be.  If the prover 

perceived a problem, I sought to describe process of selecting a tool to apply to the 

problem, the individual’s expected outcome of using the tool, and the individual’s 

perspective of how the action affected the situation.  These factors together provided an 

organization for the context of the situation from the participant’s point of view.  
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Purpose and Research Questions 

The purpose of this research was to describe the evolution of the personal 

argument in professional mathematicians’ proof constructions.  I defined the personal 

argument as progressing or moving forward when the prover generated ideas he or she 

saw as functional in resolving certain problems encountered and chosen to be solved 

throughout the proof construction process.  Additionally, this research sought to describe 

the situations surrounding the emergence of ideas through the lens of describing the 

problem the mathematician endeavored to solve, the tools that he or she applied, and the 

anticipated outcomes of enacting those tools.  The research also described the process of 

testing the ideas and how the emergence of the idea did or did not change the situation for 

the mathematician.  This research sought descriptive answers to the following questions: 

Q1 What ideas move the argument forward as a prover’s personal argument 
evolves? 

 
Q1a What problematic situation is the prover currently entered into 

solving when one articulates and attains an idea that moves the 
personal argument forward? 

 
Q1b What stage of the inquiry process do they appear to be in when one 

articulates and attains an idea that moves the personal argument 
forward? (Are they currently applying a tool, evaluating the 
outcomes after applying a tool, or reflecting upon a current 
problem?) 

 
Q1c What actions and tools influenced the attainment of the idea? 
 
Q1d What were their anticipated outcomes of enacting the tools that led 

to the attainment of the idea? 
 

Q2 How are the ideas that move the argument forward used subsequent to the 
shifts in the personal argument? 
 
Q2a In what ways does the prover test the idea to ensure it indeed “does 

work”?  
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Q2b As the argument evolves, how is the idea used? Specifically, how 
are the ideas used as the participant views the situation as moving 
from a problem to a more routine task? 

 
Definitions of Key Terms 

 The following definitions are provided to ensure uniformity and understanding of 

these terms.  I developed all definitions not accompanied by a citation.  

Argument.  “An act of communication meant to lend support to a claim” 

(Aberdein, 2009, p. 1). 

Idea that moves the argument forward.  An idea that the individual sees as 

functional in resolving certain problems encountered throughout the proof construction 

process. 

Personal argument.  The personal argument encompasses all thoughts that the 

individual deems relevant to making progress in proving the statement.  It is a subset of 

the entire statement image (Selden & Selden, 1995) of a proof situation that the 

individual views as central to his or her aims in developing the argument. 

Problem.  A situation that the individual recognizes as tense ore unresolved, 

specifically a task or situation in which it is not clear to an individual which mathematical 

actions should be applied that the individual has an interest and motivation to solve.  

Problematic situation.  A situation that the individual recognizes as tense or 

unresolved, specifically a task or situation in which it is not clear to an individual which 

mathematical actions should be applied. 

Professional mathematician.  A professional mathematician is defined to be an 

individual holding a doctorate in mathematics that is currently teaching and doing 

research in mathematics. 
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Proof.  A proof is a sub-type of argument that uses deductive-type warrants and 

the modal qualifier is absolute (Inglis et al., 2007).  It is the written end product of an 

argument meant to convince another of a claim using the language accepted by the 

mathematics community.  It is the individual prover who decides if the argument is a 

proof or not. 

Statement image.  The statement image is a construct proposed by Selden and 

Selden (1995) to describe the mental structure one attaches to certain statements.  For this 

study, I am interested in the statement image of the task statement to be proven.  The 

image includes “all of the alternative statements, examples, nonexamples, visualizations, 

properties, concepts, consequences, etc., that are associated with a statement” (Selden, 

1995, p. 133). 

Tool.  A theory, proposal, action, or knowledge chosen to be applied to a situation 

(Hickman, 1990).  

Procedures 

 In order to answer the research questions, three participant mathematicians 

worked on three or four mathematical proof tasks.  The participants were mathematicians 

who either did research in a field related to real analysis or who taught courses in real 

analysis at the upper undergraduate or lower graduate level.  The mathematicians chose 

tasks that they found to be problematic, meaning, tasks for which they did not recall a 

solution or for which they did not know a way to approach.  Each participant participated 

in task-based and follow-up interviews.  In the first interview, participants chose tasks 

and began work on the first task.  The second interview consisted of a follow-up 

interview regarding their work on the first task, and participants will began work on the 
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second and third task.  The third interview was a follow-up interview regarding the 

participant’s work on the second and third tasks.  

Participants began their work individually in an interview setting that was audio 

and video recorded using Livescribe technology to record their written work.  If they did 

not complete the tasks in the interview, they continued working on the task on their own, 

recording their work with the Livescribe technology.  I conducted preliminary analyses to 

formulate questions and identify important moments in the video of the participant’s 

work for use in the follow-up interviews.  The follow-up interviews posed the questions 

formulated in the analyses to clarify participant thinking while they were constructing the 

proofs.  

Data analysis occurred in two major phases: the preliminary analyses to prepare 

for the follow-up interviews and the primary analyses of the entire data set.  The 

preliminary analyses occurred between interviews for each task for each participant.  I 

identified moments when new ideas seemed to be articulated which acted as markers on 

the timeline of the argument evolution.  Toulmin’s (2003) argumentation framework 

(Toulmin, Rieke, & Janik 1979) informed analysis of the arguments before and after 

these ideas emerge.  This provided a structured description of the elements deemed useful 

(i.e., objects doing work in the personal argument).  I formed hypotheses about what the 

participant perceived as problematic, the phase of the inquiry process that he or she 

appeared to be in when articulating the idea, the tools used that influenced the generation 

of the ideas, and the anticipated outcomes of using these influencing tools.  These 

hypotheses also included how the participant appeared to test the idea that he or she 

viewed as moving the argument forward and how he or she used the idea throughout the 
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rest of the argument.  Finally, the hypotheses informed the formulation of questions and 

the identification of what video/audio/Livescribe to play back for the follow-up 

interviews. 

The primary analysis began with writing a description of each idea that moved the 

argument forward and the context surrounding the generation of that idea.  I described the 

argument’s evolving structure via Toulmin diagrams formulated in the preliminary 

analysis and informed by the follow-up interviews.  Descriptive stories of each 

participant’s work on each task documented the argument evolution; the development of 

new ideas that moved the argument forward acted as significant moments in the story.  I 

then conducted open iterative coding of each idea to organize, describe, and link the data.  

After coding each participant’s work on each task, I looked for patterns, categories, and 

themes across participants and tasks.   

Limitations and Delimitations 

 Any research design can have potential weaknesses outside the researcher’s 

control.  In addition, the researcher makes choices about what will and will not be 

included in the study.  This study was limited by sample size and sampling methods, the 

nature of interview studies and their ability to capture participant thinking, and the types 

of tasks that participants were able to complete.  This research was delimitated to the 

mathematical proof constructions of mathematicians on real analysis tasks. 

Generalizing the findings from this study is problematic as the sample of 

participants was not large and random.  Lincoln and Guba (1985) recommend sampling 

until the data becomes redundant.  In designing this study, I hypothesized that three 

mathematicians working on three tasks, resulting in nine total tasks could achieve that 
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goal and ended up with participant work on ten tasks.  At the conclusion of analysis, it 

was found that no new codes were needed and that saturation in the data was indeed 

achieved.  

Patton (2002) indicated that interview data has limitations that include “possibly 

distorted responses” (p. 306), which in this study would be potentially due to personal 

bias or the emotional state of the interviewee, recall error, or the reaction of the 

interviewee to the interviewer.  This research sought to make sense of the 

mathematicians’ thinking.  Internal thinking is not directly observable; I was limited to 

what participants said in conjunction with what they wrote.  To ameliorate this issue, the 

study used a variety of sources (Patton, 2002) including the follow-up interviews that 

drew not only upon the participant recollection but also the video, audio, and Livescribe 

data viewed and interpreted by the participants to test my hypotheses.  

The scope of the study was limited to mathematicians’ constructing proof on 

“school-type” tasks, or tasks from textbooks or homework that had been previously 

solved.  This does not completely capture the work of the research mathematician as 

mathematics research involves posing and investigating novel problems.  Simply put, 

there was not enough time to look at the practice of mathematicians while conducting 

research in the kind of depth needed to answer the research questions as it would take 

time for me (a non-expert in the field) to understand the specific field.  Additionally, the 

types of ideas that were the focus of this study may not have emerged in a short interview 

setting.  The ultimate design of this study was based on the assumption that 

mathematicians could still engage in genuine problem solving on school-type tasks 

provided they personally identified the task to be problematic.  
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Mathematicians were specifically chosen based on the assumptions that 

mathematicians are especially adept at constructing mathematical proof that learning 

from what mathematicians do can inform teaching.  Since mathematicians were the focus 

of this study, the ideas that they generated may not be the same ideas generated by 

members of other populations while constructing mathematical proofs.  I chose to focus 

on the subject of real analysis.  Ideas generated in this field of mathematics may or may 

not be indicative of the types of ideas generated in another field.  

This study seeks to describe the ideas generated and the emergence of those ideas.  

Characterizing the emergence involves describing the tools and ways of thinking that 

participants utilized.  However, it is beyond the scope of this study to fully describe all 

affordances, limitations, and ways of applying the tools observed.  The descriptions of the 

tools used are limited to how they were used on the tasks that the participants chose to 

complete in this study. 

Organization of the Dissertation 

 This introduction chapter provided a description of the research problem giving 

an overview of the literature that is expanded in the next chapter.  I presented the research 

purpose to describe how mathematicians’ personal arguments evolve in their 

constructions of mathematical proof.  I explained how the research was framed within 

Dewey’s (1938) theory of inquiry and presented the research questions.  In the following 

chapter, there is a presentation of literature related to the research purpose and theoretical 

framing of the study.  The third chapter provides a description of the theoretical 

perspective guiding this research and the methods for conducting the study.  The fourth 
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chapter presents the findings.  In the final, fifth chapter, I discuss how the findings of this 

study relate to the literature and conclusions from the findings. 

 



   
 

 
 
 
 
 

CHAPTER II 
 

 
REVIEW OF SELECTED LITERATURE 

 
 
 The purpose of this qualitative study was to describe the evolving personal 

arguments of professional mathematicians in the construction of mathematical proofs.  

This literature review along with the research purpose served to provide focus to the 

theoretical perspective and methods of data collection and analysis (Patton, 2002).  In this 

chapter, I provide an overview of previous research and theoretical conceptions related to 

mathematical proof constructions, mathematical argumentation, and problem solving, 

focusing specifically on the practices of professional mathematicians.  The first section 

includes the areas of research on the practices of mathematical professionals.  The 

sections that follow focus on proof construction literature that specifically relates to 

moving the argument forward including identified difficulties students have in 

constructing proof, the relationships between informal arguments and formal arguments, 

and practices that have been identified as useful in the construction of ideas that can 

move the personal argument forward.  Conceptions of relationships between 

argumentations and mathematical proof in the next section lead to an overview of how 

past research has used mathematical proof construction as a type of argumentation.  

Finally, as the formulation of new ideas to solve a mathematical proof task can be 

conceived as a special type of mathematical problem solving, I describe the identified 
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components in the problem solving process and empirical studies that have related 

mathematical proof construction to problem solving. 

Past Inquiries into Mathematical Professionals 

Inquiring into the mathematical practices of professional mathematicians is a 

long-standing endeavor in the mathematics education research community (e.g., Engelke, 

2007; Raman, 2003; Sfard, 1994; Weber, 2008).  By studying professionals, research 

may be better able to describe habits of thinking and reasoning that may be termed 

successful in order to perhaps characterize what is missing when students are 

unsuccessful.  

In order to describe the experience of understanding mathematics, Sfard (1994) 

chose to interview working mathematicians.  She felt professionals’ reflections would 

provide her with insights that could transcend professional understanding.  Researchers 

have analyzed the mathematics produced by mathematics professionals to inform and 

construct frameworks for use with analyzing student work or describing mathematical 

processes (Carlson & Bloom, 2005; Engelke, 2007; Raman, 2003).   

More specifically, researchers have sought to describe meanings and practices of 

proof for research mathematicians.  Weber and Alcock (2004) compared undergraduate 

student and graduate student attempts to prove or disprove two groups are isomorphic; 

they also compared undergraduates’ abilities to instantiate groups to the abilities of 

professional algebraists.  Inglis et al. (2007) analyzed mathematical arguments produced 

by mathematics postgraduate students using Toulmin’s use of arguments and found 

frequent use of non-deductive warrants to deduce non-absolute conclusions.  Savic 

(2012) studied mathematicians solving mathematical proof tasks outside an interview 
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setting and described their strategies when coming to impasses.  Some research has been 

also conducted into how research mathematicians read and validate mathematical proofs, 

and these studies have found that the standards for validating proof depend on the 

authority of the author (Inglis & Mejia-Ramos, 2009; Weber, 2008).  Weber (2008) also 

found that mathematicians’ validation standards and strategies can vary and depend on 

how familiar they are with the mathematical domain in question.  

Research has also been conducted in how mathematicians solve problems of other 

kinds (Carlson & Bloom, 1995; DeFranco, 1996; Stylianou, 2002); however, these 

problems were not proof tasks.  Selden and Selden (2013) point out, “It would be very 

informative to have research on how advanced university mathematics students or 

mathematicians actually construct proofs in real time, but such a study has not yet been 

conducted” (p. 314).  This study will contribute to addressing this gap by focusing on the 

ideas that mathematicians’ find useful in moving their arguments forward while 

constructing mathematical proof.  Describing the process of developing, testing, 

connecting, and utilizing ideas to construct mathematical proof for professionals may be 

useful for practitioners when finding ways to address student difficulties in developing 

and using ideas successfully.  As elaborated in the next section, two categories of ideas 

that can be useful in the development of a proof are those that support informal or 

intuitive arguments and those that support more formal deductive arguments.  The next 

section elaborates on research into the use of informal and formal reasoning in proof 

construction.  
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Informal and Formal Arguments 

Weber and Alcock (2004) noted that a necessary skill for students to develop is 

the ability to translate informal intuitions into formal arguments.  Selden and Selden 

(2008) further identified knowledge of and the ability to appropriately use various 

symbolic representations and an understanding of the logical structure of mathematics as 

necessary for students to produce proof.  Possessing the above attributes contributes to an 

individual’s ability to render informal ideas communicable (Raman & Weber, 2006).  

The relationships between informal and formal arguments, and the process of moving 

from the former to the latter have been discussed with varying areas of focus including 

comparing how professionals navigate between formal and informal reasoning to what 

novices do when constructing proofs (Raman, 2003; Weber & Alcock, 2004), the 

identification of reasoning practices that can help students connect these two ideas 

(Alcock, 2008; Boero, Garuti, Lemut, & Mariotti, 1996), and the identification of salient 

features of informal and formal arguments (Raman et al., 2009).  In this section, I outline 

how the dichotomy of informal and formal reasoning or arguments in proof construction 

and writing has been discussed in the literature, the reasoning techniques that have been 

identified as useful in connecting the formal and informal, and lead into the next section 

where I discuss how formal mathematical proof has been related to the process of 

argumentation.  Informal understandings, arguments, or reasoning as discussed in the 

next few paragraphs are understandings grounded in empirical data or represented by a 

picture.  These arguments may or may not directly lead to a formal proof, but may be 

connected to one. 
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In a series of investigations, Weber and colleagues (Weber, 2005, 2009; Weber & 

Alcock, 2004) worked to analyze how individuals with successful experience in 

mathematical proof and more novice students navigated between formal and informal 

ways of reasoning.  They termed syntactic reasoning as thinking based on formalism and 

logic; the reasoning process involves one starting with definitions and axioms and then 

using logical deductions to make inferences in a proof production.  Semantic reasoning is 

a way of thinking about justifying a statement that considers informal and intuitive 

representations such as graphs, examples, gestures, and diagrams (Weber, 2009).  Weber 

and Alcock (2004) presented both undergraduates and mathematics graduate students 

with the task of proving that two groups were not isomorphic.  Undergraduate students 

relied upon the definitions of isomorphism attempting to prove the statement 

syntactically.  The graduate students, on the other hand, applied their rich instantiations 

of group and isomorphism using reasoning outside the formal system and then were able 

to connect their informal reasoning back to the formal system.  While semantic proof 

productions often convey the prover has a richer understanding, successful proofs can be 

produced using purely syntactic reasoning (Weber, 2009).  Later research found that even 

when students attempt to use informal reasoning practices to develop ideas to inform the 

construction of proof, they are sometimes unable to translate their ideas into a formal 

proof (Alcock & Weber, 2010).  

Raman (2003) investigated the views of proof held by mathematicians, students, 

and teachers.  She identified two aspects of proof construction, the private and the public.  

The private argument is “an argument that engenders understanding” (p. 320), and a 

public argument is one “with sufficient rigor for a particular mathematical community” 
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(p. 320).  In earlier work, Raman (2001) found that university mathematicians and 

students thought about the public aspects and private aspects of proof in different ways.  

Mathematicians held the view that there is potential for their private arguments to be 

connected to a public argument although they could choose to develop a public argument 

that did not use the ideas from their private argument.  Students, in contrast, viewed the 

public and private aspects of mathematics as separate.  To further describe this difference 

between those experienced with mathematics and novices, Raman (2003) characterized 

three types of ideas involved in the production of a proof: heuristic ideas, procedural 

ideas, and key ideas.  A heuristic idea is an idea based on informal understandings and is 

linked to the private aspect of proof.  A procedural idea is “based on logic and formal 

manipulations” (p. 322); it gives a sense of conviction but not necessarily understanding.  

A proof based on a procedural idea would be an example of Weber and Alcock’s (2004) 

conception of a syntactic proof production.  Because it gives a formal proof, the 

procedural idea lies in the public domain.  Raman (2003) identified a third idea, a key 

idea, as a heuristic idea that can be mapped to a formal proof; it is thought to link 

together the private and public aspects of a proof.  A complete proof that utilizes a key 

idea would be reminiscent of a successful proof that utilizes semantic reasoning (Weber 

& Alcock, 2004).  Raman (2003) found that faculty members were more likely than 

students to construct proofs involving key ideas because students did not have the key 

idea and because they did not view proof as about key ideas. 

Connecting privately held intuitions to a formal proof may be desirable especially 

as students may at times view the two as disconnected or do not see the differences 

between them.  Harel and Sowder (1998), in characterizing what students view as 
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personally convincing arguments, described a transformational proof scheme as 

arguments based on a fully developed understanding of the concepts.  A transformational 

proof scheme includes “(a) consideration of the generality aspects of the conjecture, (b) 

application of mental operations that are goal oriented and anticipatory, and (c) 

transformations of images as part of a deduction process” (p. 261).  Harel and Sowder 

(2007) advocated for student understanding of proof in line with the transformational 

proof scheme.  Proofs constructed in this manner transform the personal argument into a 

public one.  How this transformation occurs or evolves has not fully been described.  

However, Raman and colleagues (2009) identified two key moments in the proof 

construction process, the formulations of key ideas (or critical insights) and technical 

handles, that may give insight to how this transformation could occur. 

Key Idea and Technical Handle 

In their observations of proofs that students construct, Raman et al. (2009) found 

that there were moments that were critical: the moment when students attained a key idea 

(later termed conceptual insight; Sandefur et al., 2012), the moment when students gained 

a technical handle for communicating a key idea, and the culmination of the argument 

into a standard form.  A conceptual insight is an idea that gives a sense of why the 

statement is true.  A technical handle is an idea or a proof procedure that can render the 

ideas behind the proof communicable.  The technical handle may or may not be directly 

tied to the original conceptual insight that gave an ‘aha’ feeling.  It may be tied to some 

sort of unformed thoughts or intuition.  

Students may be limited in their proof writing abilities because they lack a key 

idea or because they do not possess tools to link an idea to a formal proof which may be a 
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form of technical handle (Raman, 2003).  In their research practice, Raman et al. (2009) 

“tentatively” distinguished a technical handle in terms of its potential to lead to a correct 

proof rather than an actual student realization of “now I can prove it.”  They 

acknowledged that it may not always be possible to connect key ideas to a technical 

handle but found that mathematicians are conscious of the possibility of such a 

connection and may be more likely than students to search for the connection to a 

technical handle (Raman et al., 2009).  Technical handles seemed to be disconnected 

from key ideas in the minds of students.  If student reached a key idea, they appeared to 

start a discussion about how to do a more “formal” proof, often discussing in syntactic 

terms and apparently ignoring the key idea formerly reached.  Making connections 

between the ideas that engender understanding of the key concepts and the ideas that can 

help one to construct a formal proof is difficult for students.  Researchers have identified 

actions that may provide instructors with tools to aid in supporting students’ learning to 

construct proofs.  The next section describes some of these identified actions and 

behaviors, specifically those that can support the development and effective 

implementation of useful ideas for developing arguments. 

Actions That Support the Formulation of Useful Ideas 

The Modes of Thinking  

Alcock (2008) conducted interviews with four mathematician instructors of an 

introduction to proofs course.  The instructors identified characteristics, practices, and 

habits that they desired for their students to exhibit when engaging in proof construction.  

Alcock categorized these into four modes of thinking:  Instantiating, Creative Thinking, 

Structural Thinking, and Critical Thinking.  
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Alcock (2008) described instantiating as an attempt to meaningfully understand a 

mathematical object by thinking about the objects to which it applies.  This is similar to 

“exploring an example space” or drawing on a rich concept image.  Instantiating can 

involve thinking about known or developed examples of a mathematical idea or object.  

Instantiating can also mean drawing upon other conceptions of mathematical ideas.  For 

example, picturing a function as shooting the elements of one set to another set (Alcock, 

2008) is an act of instantiating.  Instantiating is a broad term that encompasses thinking 

about generic examples and specific objects as well.  The actual behaviors may be 

creating examples with desired properties or listing already known examples and then 

reasoning about and manipulating them.  The utility of example-use in building concept 

image and facilitating proof construction has been given considerable attention in the 

literature in the last decade; I elaborate on findings in the next section. 

Creative thinking entails examining instantiations to identify a property or set of 

manipulations that can form the key idea of a proof.  This is similar to using examples to 

look for an insight.  Creative thinking is a tool with the end-in-view of looking for 

properties that give insight into the proof.  Instantiation supports creative thinking in that 

it generates the objects.  The purpose of the creative thinking may be to gain a critical 

insight, to illustrate the structure of the mathematical objects, to show that the result is 

true in a specific case, or to search for a reason why one could not find a counterexample.   

Structural thinking uses the form of the mathematics to deduce a proof.  This is 

not directly related to using examples, but perhaps the exploration of examples can guide 

the prover to a place to begin thinking about appropriate and applicable theorems.  

Structural thinking employs syntactic reasoning (Weber & Alcock, 2004).  The tools used 
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in structural thinking will most likely be known properties and theorems and the logical 

structure of mathematics.  Additionally, Alcock (2004) notes how structural thinking may 

inform instantiating and creative and critical thinking.  One must know what to 

instantiate, what the consequences are of certain manipulations, and be able to articulate 

the results of creative thinking in precise language.  

Critical thinking has the goal of checking the correctness of assertions made in 

the proof.  This may occur either syntactically or semantically.  Alcock (2008) stated that 

it is possible to construct viable, rigorous proof without engaging in this mode of thought, 

but it is a habit that instructors would hope to foster in their students.  The instructors in 

the study described a way of checking one’s work- looking for preserved or implied 

properties.  Alcock hypothesized that this would require a more sophisticated knowledge 

base than just checking examples.  

Exploring Examples  

Watson and Mason (2005) defined an example as a particular case of any larger 

class about which students generalize and reason, and they defined exemplification as 

using something specific to represent a general class with which the learner is to become 

familiar.  Other characterizations of ‘examples’ include illustrations or specific cases of 

mathematical objects, not to be confused with a worked example of a procedure as 

desired by students (Alcock & Inglis, 2008).  Exploring examples has been shown to be a 

potential source for new ideas in problem solving and proof construction (Alcock & 

Inglis, 2008; Alcock & Weber, 2010; Sandefur et al, 2012). 

Past research has found that exploring example spaces may serve to create 

instantiations of concepts and develop concept image (Alcock, 2004; Dahlberg & 
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Housman, 1997; Mason & Watson, 2008; Watson & Shipman, 2008; Weber, Porter, & 

Housman, 2008).  Possessing or creating examples may not be enough (Iannone, Inglis, 

Meija-Ramos, Simpson, & Weber, 2011).  The purposes of examples, the ways examples 

are generated, and the assumptions and deductions behind them may contribute to how 

much example generation aids learner understanding and proof construction (Edwards & 

Alcock, 2010). 

Various purposes for using examples in doing mathematical work by both those 

experienced in mathematics and novices have been discussed in the literature.  Notably, 

Lockwood, Ellis, Dogan, Williams, and Knuth (2012) surveyed mathematicians to 

determine what kinds of examples they used, how they used them, and for what purposes.  

Exemplification has been shown to be useful in the construction and communication of 

mathematical proof in the following ways: 

• To understand a statement, definition, object, etc. (Alcock, 2004; Alcock & 

Weber, 2010; Lockwood et al., 2012; Sandefur et al., 2012) 

o Indicate what is included and what is excluded by a condition in a 

definition or theorem (Watson & Mason, 2005) 

o Build a sense of what’s going on (Lockwood et al., 2012; Michener, 

1978) 

• Explore behavior and illustrate structure (Sandefur et al., 2012; Watson & 

Mason, 2005) 

• Evaluate the truth of a statement or conjecture by checking inferences 

(Alcock & Inglis, 2008; Alcock & Weber, 2010; Lockwood et al., 2012) 
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• To generate arguments 

o “Directly” and “indirectly” (Alcock, 2008; Alcock & Inglis, 2008) 

 Directly by trying to show that a result is true in a specific case 

hoping the same argument or manipulations will work in 

general 

 Indirectly by searching for a reason why one could not find a 

counterexample to the statement 

o To give insight into proving (Lockwood et al., 2012; Sandefur et al., 

2012) 

o To understand why the assertion should be true (Alcock & Weber, 

2010) 

o Use a specific object to indicate the significance of a particular 

condition in a definition or theorem (Watson & Mason, 2005) 

 Highlighting the condition’s role in the proof 

 Showing how the proof fails in the absence of that condition 

o To generate counterexamples (Alcock, 2008; Alcock & Inglis, 2008; 

Lockwood et al., 2012)  

o To generalize (Lockwood et al., 2012) 

• To aid in explaining an argument to another (Alcock & Inglis, 2008) 

• To indicate a dimension of variation implied by a generalization (Watson & 

Mason, 2005) 

• To indicate something that remains invariant while some other features 

change (Watson & Mason, 2005) 



29 
 
The list above demonstrates ways in which application of the tool of exploring examples 

can be useful in developing ideas that an individual may deem as useful in moving the 

argument forward. 

Antonini (2006) classified the types of examples generated by mathematicians 

and mathematics research students when they were specifically asked to create examples. 

The three classifications were trial and error, transformation, and analysis.  The trial and 

error strategy involved searching a collection of recalled examples from a broader 

category and testing each example to see if it met the desired criteria.  Individuals 

utilizing the transformation strategy modified examples that they viewed as satisfying 

some of the criteria until they satisfied all of them.  The analysis strategy occurred when 

the individual identified properties that the desired object would have, and then recalled 

or constructed an object with the desired properties.  Undergraduates have been found to 

almost exclusively use the trial and error strategy (Edwards & Alcock, 2010; Iannone et 

al., 2011).   

Teaching students about generic proof production, using well-chosen examples to 

construct proofs (Mason & Pimm, 1984), may aid in students’ development of ideas that 

can move the proof along.  By showing a given statement holds for an arbitrary object 

from a class of objects may help students to see the structure of the argument (Weber et 

al., 2008).  This reasoning then may be abstracted into a more general, formal proof.  

When considering students and the use of examples, Watson and Shipman (2008) found 

that learner-generated examples served as an effective way to introduce mathematical 

lessons while Iannone et al. (2011) claimed that example generation is not yet well 

enough understood to be a viable pedagogical recommendation.  
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Iannone et al. (2011) found that the practice of generating examples did not 

contribute to valid proof production in real analysis tasks and suspect its contribution 

from the fact that most students used trial and error.  This poses the question that if most 

undergraduate students use trial and error, is there a gradation in these types of examples 

into ones that contribute to proof construction and ones that do not?  Past work may offer 

some insight into this question.  Edwards and Alcock (2010) suggested mathematical 

assumptions and deductions within a chosen strategy may be important to consider as 

there is a dimension of variation from incorrect deductions or assumptions.  Weber 

(2009) cited differences in the purposes of examples, i.e., as a primary strategy versus a 

last resort for difficult concepts.  Sandefur and colleagues (2012) indicated that students 

found utility in exploring examples during proof construction with a specific purpose in 

mind.  However, Alcock and Weber (2010) found that while students used examples for 

specific purposes consistent with those described by mathematicians, they could 

sometimes use examples ineffectively due to an inability to generate examples that satisfy 

the necessary conditions or the inability to connect their reasoning from examples to the 

language of formal proof. 

When one is developing a mathematical proof, exploring examples, instantiating, 

and creative, structural, and critical thinking reside within the definition of informal logic 

or argumentation (Dove, 2009) which is discussed in the next section.  These informal 

arguments may later be conducted to more formal proofs (Raman et al., 2009).  When a 

prover is able to use make these connections, the overall argument is said to have 

cognitive unity.  Boero et al. (1996) described a teaching experiment where eighth grade 

students dynamically explored a situation, made conjectures, and generated proofs of the 
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conjectures.  They described cognitive unity as the phenomenon where an individual is 

able to use the ideas that motivated their conjectures directly in the proofs they construct. 

During the production of the conjecture the student progressively works out 
his/her statement through an intensive argumentative activity functionally 
intermingling with the justification of the plausibility of his/her choices.  During 
the subsequent statement proving stage the student links up with this process in a 
coherent way, organizing some of the justifications (‘arguments’) produced 
during the construction of the statements according to a logical chain. (Boero et 
al., 1996, pp. 119-120) 
 
The generation of the conjectures was viewed as an argumentative activity.  

Pedemonte (2007) discussed the relationship between argumentation and proof.  She 

defined proof as a particular argumentation and described argumentation in the tradition 

of Toulmin’s argumentation and used Toulmin’s (2003) model to compare the structure 

of students’ arguments and the structure of their proofs when investigating topics in 

geometry.  She found that students’ participation in argumentation activity aided in the 

construction of proof.  She extended the conception of cognitive unity:  

Nevertheless, cognitive unity as defined by Boero et al. (1996) does not cover all 
the aspects of the relationship between argumentative conjecturing, proving and 
proof (as product).  The paper has shown the importance of analysing the entire 
resolution process and not only the conjecturing and proving phases. (p. 39) 
  

In her analyses, she conceived of proof as the end product of an argumentation.  The 

relationship between mathematical proof and the acts of argumentation have been 

characterized to some extent in the literature. 

Proof and Argumentation 

 This study seeks to conceptualize the process of constructing mathematical proof 

as a process in which the individual’s personal argument evolves from first encountering 

the task statement to producing a written proof to convince others.  With this conception 

of proof as an end result of argumentation, I elaborate how argument and argumentation 
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have been defined, how they have been related to mathematical proof, and findings of 

empirical studies that have conceptualized proof as argumentation. 

Definitions of Argument  
and Argumentation 

The definitions of an argument can be categorized into two groups: (a) the more 

narrow conception of argument as a sequence of logical deductions, and (b) the broad 

conceptualization of argument that encompasses both formal and informal logic.  Here 

are a few definitions of argument presented in the literature.  The first two are examples 

for the first category and the last encompass informal reasoning practices to various 

degrees in the definitions and are examples of the second category. 

Those of us weaned on formal logic may think this debate is a non-starter because 
there is a perfectly acceptable definition of argument which is synonymous with 
the definition of derivation available in any textbook on formal logic: an 
argument is a sequence of statements/sentences/propositions/formulas such that 
each is either a premise or the consequence of (some set of) previous lines, and 
the last of which is the conclusion. (Dove, 2009, p. 138) 
 
An argument in the logician’s sense is any group of propositions of which one is 
claimed to follow from the others, which are regarded as providing support or 
grounds for the truth of that one. (Copi & Cohen, 1994, p. 5, as quoted in Dove, 
2009, p. 139) 
 
The simplest possible argument consists of a single premise, which is asserted as 
true, and a single conclusion, which is asserted as following from the premises, 
and hence also to be true.  The function of the argument is to persuade you that 
since the premise is true, you must also accept the conclusion. (Scriven, 1972, p. 
55, as quoted in Dove, 2009, p. 139) 
 
An argument is a type of discourse or text—the distillate of the practice of 
argumentation—in which the arguer seeks to persuade the Other(s) of the truth of 
a thesis by producing reasons that support it.  In addition to this illative core, an 
argument possesses a dialectical tier in which the arguer discharges his dialectical 
obligations. (Johnson, 2000, p. 168, as quoted in Dove, 2009, p. 139) 
 
Argumentation is a verbal, social and rational activity aimed at convincing a 
reasonable critic of the acceptability of a standpoint [read: conclusion] by putting 
forward a constellation of propositions justifying or refuting the proposition 
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expressed in the standpoint. (Grootendorst & van Eemeren, 2003, p. 1, as quoted 
in Dove, 2009, p. 139) 
 
[Define] informal logic as the formulation, testing, systematization, and 
application of concepts and principles for the interpretation, evaluation, and 
practice of argumentation or reasoning. (Finocchiaro 1996, p. 93, as quoted in 
Dove, 2009, p. 138) 
 
Now arguments are produced for a variety of purposes.  Not every argument is set 
out in formal defense of an outright assertion.  But this particular function of 
arguments will claim most of our attention […]: we shall be interested in 
justificatory arguments brought forward in support of assertions, in the structures 
they may be expected to have, the merits they can claim and the ways in which 
we set about grading assessing and criticizing them.  It could, I think, be argued 
that this was in fact the primary function of arguments, and that the other uses, the 
other functions which arguments have for us, are in a sense secondary and 
parasitic upon this primary justificatory use. (Toulmin, 2003, p. 12) 
 
An act of communication intended to lend support to a claim. (Aberdein, 2009, p. 
2) 
 
While the definitions of argument above differ in whether they include activities 

that are not formal deductive statements, argumentation theory is a study of argument that 

emphasizes the aspects that are not prone to deductive formalization.  Informal reasoning, 

deductive logic, and critical thinking are thought to be subfields of argumentation theory 

(Aberdein, 2009).  However, some have stated that there is a clear distinction between 

argumentative reasoning and deductive reasoning (Balacheff, 1988); while others have 

not distinguished argumentations and proofs.  For example, in their seminal work 

discussing the proof schemes held by students, Harel and Sowder (1998) conceptualized 

“proof” as encompassing both deductive and empirical arguments.  It may be that 

argumentation is the pathway between informal conceptions and formal proof.  Tall 

(2004) identified three origins of what he terms warrants for truth: (a) the embodied 

world--through perception and action in the physical world, (b) the proceptual world--

through correct calculation or symbolic manipulation, and (c) the formal world--from a 
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set of axioms and basic definitions.  According to Mejia-Ramos and Tall (2005), true 

mathematical proof lives in the formal world.  The concept of informal logic has been 

utilized as a means of conceptualizing the pathways by which one reasons outside formal 

logic. 

In Aberdein’s (2009) conception of argument as an act of communication meant 

to lend support to a claim, proof fits within the definition of argument.  He characterizes a 

species of alleged proof, ‘proof*’.  These are arguments that either have no consensus on 

whether they are proof, or they have broad consensus that they are proof.  These proofs* 

include picture proofs*, probabilistic proofs*, computer-assisted proofs*, and so forth.  

He indicated steps in the process of proving that may require informal argumentation, 

such as, choosing the problem, choosing the methods to tackle the problem, applying the 

method to the problem, the review process when the proof is submitted for publication, 

and the dialectic between the author and the reader of the proof once it is published as 

mathematicians may “seek to generalize it, extend it, transpose it to a different field, 

simplify it, or manipulate it in some other way” (p. 2). 

Lakatos (1976) raised the question, to what extent is mathematics dialectical?  He 

provided a ‘rational reconstruction’ of the successive proofs of the Decartes-Euler 

Conjecture showing that there is continuity between argumentation as a process of 

statement production and the construction of its proof (relationship between constructing 

and modifying conjecture and performing trials to prove the statement).  Lakatos 

indicated that argumentation and proof are developed when someone wants to convince 

oneself or others about the truth of a statement.  He gave the indication that math, for 
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mathematicians, is not a formal mathematical system.  Math is about humans making 

arguments and being presented with counter arguments. 

In keeping with this conception of mathematics, Dove (2009) argued that proof is 

more than a finite list of deductive statements citing how mathematicians use evidentiary 

or non-deductive methods (computer-assisted proofs, probabilistic sieves, partial proofs, 

abduction) using informal logic.  He defined informal logic as the application of concepts 

and principles for the interpretation and evaluation of argumentation and reasoning.  He 

stated informal logic is the logic of mathematical reasoning and that mathematicians use 

it when they assess mathematical reasoning that is not a proof.  It would appear that the 

construction of mathematical proof requires a combination of informal and formal logic.  

In the next section, I describe empirical studies that have utilized the argumentation 

conception of proof construction in their analyses as well as a description of how 

mathematics and argumentation philosophers have utilized the conception to broaden the 

definition of proof.  

Explorations of Proof  
as Argument 

Aberdein (2009) stated that the study of mathematics practice needs an account of 

argument and it has largely been unexplored.  One framework, specifically, has been a 

means of analyzing mathematical proof in terms of argument.  In 1958, Stephen Toulmin 

introduced a means of studying non-formal arguments by providing a structure that 

analyzes the argument into the six components of claim (the assertion that is being 

argued), data (the foundations for the argument), warrant (that which justifies the link 

between the data and the claim), backing (explains the permissibility of the warrant), 

qualifier (the degree of confidence in the claim), and rebuttal (the conditions under which 
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the claim would not hold).  A more detailed description of these components is given in 

the theoretical perspective in the third chapter. 

The Toulmin layout has been used across disciplines in the study of arguments 

and how learning progresses in the classroom (Cole et al., 2012; Krummheurer, 1995).  

Often these studies use only a condensed version of the full model that only categorizes 

statements as data, warrants, and claims.  In recent years, it has been used frequently to 

analyze mathematical arguments inside and outside the realm of proof construction.  I 

describe the findings of recent empirical studies that have used Toulmin analyses for 

mathematical arguments and justifications. 

Pedemonte (2007) used the condensed version of Toulmin’s model (only data, 

warrant, and claim) to compare and analyze the structure of arguments associated with 

French and Italian 12th and 13th grade students’ conjectures and the structure of their 

written proofs.  She found that often structural continuity existed between the 

argumentations, meaning students used the same properties and theorems in the 

argumentation and the proof.  However, there also was structural distance between the 

two.  Specifically, at times, abductive argumentation transformed into a deductive proof, 

and inductive argumentation transformed to a mathematical inductive proof.  She 

recommended analyzing the entire solution process, not just the conjecturing and 

proving. 

Inglis et al. (2007) found mathematics graduate students used warrants based on 

inductive reasoning, intuitive observations about or experiments with some kind of 

mental structure, and formal mathematical justifications when evaluating conjectures 

about a novel number theory topic.  The graduate students provided arguments meant to 
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convince themselves whether or not the conjectures were valid.  Inglis and colleagues 

categorized the warrant-types developed by the participants in terms of their respective 

backing.  Inductive warrants described ways of connecting the hypothesis to the claim 

that were based on empirical evidence.  Structural-intuitive warrants was reasoning based 

on observations or experiments with some sort of structure.  Deductive warrants 

described reasoning based on formal mathematical justifications.  Inglis and colleagues 

warned against the use of the smaller (data, warrant, claim) version of the Toulmin model 

emphasizing the importance of considering the modal qualifier because the type of 

warrant used would affect to what degree the graduate students were convinced that their 

claims implied the conclusions.  Inductive warrants were paired with an appropriate 

modal qualifier meaning that the graduate students were not certain that a conjecture was 

true by the use of examples.  Structural-intuitive warrants gave the individuals direction 

and reduced uncertainty but at times supported incorrect conclusions.  Deductive 

warrants that included mathematical properties and justifications were the only warrants 

that gave the participants certainty.  This points to the possibility that when constructing 

mathematical proof, professionals may engage in argumentation that is not formal proof. 

Fukawa-Connelly (2014) analyzed an instructor’s proof presentation in abstract 

algebra.  He noted that the proof of a statement may involve subproofs or proofs of 

lemmas.  He termed the proofs of the lemmas as local arguments which layer for the 

global argument of the entire proof.  He classified the instructor’s spoken statements as 

data, warrant, backing, qualifier, or conclusion.  He described the standards of evidence 

for coding the instructor’s statements.  For example, “A statement was classified as a 

warrant when it linked the data and conclusion in a way that explained how the data 
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supported the conclusion by drawing upon previously demonstrated facts or facts stated 

as part of the hypothesis” (p. 80). 

Fukawa-Connelly (2014) found that the instructor frequently wrote the data and 

conclusions of the argument, but wrote the warrants, backing, and qualifiers less 

frequently or not at all.  Qualifiers were never written possibly because the instructor 

only presented completely correct statements.  He found that Toulmin analyses were 

useful for the purposes of making sense of the instructor’s writing and dialogue, but the 

analyses were insufficient in explaining all aspects of the instructor’s modeling of proof 

writing.  He called for more research into the teaching of proof writing and the 

development of theoretical lenses that link the actions of lecture-based teaching to aspects 

of student mathematical proficiency. 

Wawro (2011) coded arguments within whole class discussions of an inquiry-

oriented linear algebra classroom.  She found the original Toulmin scheme to be 

insufficient to capture the complexity of some of the arguments observed.  Consequently, 

she developed the expanded schemes of  

1. Embedded structure: data or warrants for a claim had minor, embedded 

arguments within them; 

2. Proof by cases structure: claims were justified using cases within the data 

and/or warrants; 

3. Linked structure: data or warrants for a claim had more than one aspect that 

were linked by words such as ‘and’ or ‘also; and  

4. Sequential structure: data for a claim contained an embedded string of if-

then statements. 
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The studies summarized above provide insights into this proposed study, both 

methodologically and conceptually.  I utilized the full Toulmin model as recommended 

by Inglis et al. (2007).  Fukawa-Connelly’s (2014) standards of evidence for coding each 

statement proved helpful in analysis.  Pedemonte (2007) provided insight into how the 

structure of the arguments may change when an individual is moving from an informal 

argument to a formal written proof.  The conception of proof construction as 

argumentation has shown to be useful in analyzing the process.  In addition to conceiving 

of mathematical proof as an argumentative activity, past research has also conceived of 

creating mathematical proof as a special type of mathematical problem solving (Weber, 

2005).  

Problem Solving 

An individual may enter a proof task without knowing the ideas that warrant the 

statement’s validity or invalidity, or they may not know how to put their ideas together to 

write the argument in a formal, logical format.  In this sense, construction of the 

mathematical proof can be viewed as a mathematical problem; the formulation of these 

ideas requires problem solving.  A review of the literature related to mathematical 

problem solving specifically focused on proof problems is warranted.  

Definition of Problem  

Tasks or situations for which an individual does not recall a solution are often 

defined as problems in the literature (Dewey, 1938; Mason, Burton, & Stacey, 

1982/2010; Schoenfeld, 1985).  This research is concerned with tasks of the type very 

non-routine problems (tasks that “may involve considerable insight, the consideration of 

several sub-problems or constructions and the use of Schoenfeld’s (1985) behavioral 



40 
 
problem-solving characteristics” (Selden & Selden, 2013, p. 305) that the individual has a 

motivation or interest in entering into solving.  Past writings have endeavored to describe 

the individual’s approach to attacking mathematical problems both philosophically and 

empirically.  

Necessary Knowledge for  
Problem Solving  

Schoenfeld (1985, 1992) interviewed mathematicians solving problems and 

identified four important aspects necessary for success in problem solving: (a) Resources 

(knowledge of mathematical facts and procedures), (b) heuristics (problem solving 

strategies); (c) control (having to do with self-monitoring and metacognition); and (d) 

beliefs (about both mathematics and one’s role within mathematics).  Schoenfeld argued 

that thorough descriptions of these categories of problem solving activities are necessary 

and sufficient for the analysis of an individual’s success or failure at solving a problem.  

He noted that mathematicians exhibited greater control skills than students in problem 

solving; professionals navigated among the phases of activity without getting bogged 

down in explorations.  The categories of heuristics, control, and affective beliefs resound 

in other literature surrounding problem solving.  

Heuristics include problem solving strategies that may delineate necessary 

activities or phases of activities relevant in solving problems as well as strategies within 

each of these activities.  Past frameworks have endeavored to describe the phases of 

solving problems.  Dewey (1938) proffered a theory of inquiry, the cyclical process by 

which an individual identifies a problem, chooses to enter the problem, reflects on the 

situation, chooses a tool to apply to the situation, evaluates the effect of the tool’s 

application including reflection on the situation after the tool’s application to determine if 
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the problem situation has changed, and if more tools should be applied.  This framework 

is used and discussed in detail in the theoretical perspective in the next chapter.   

Pólya (1945/1957) presented a model for solving a problem that involved the 

steps of (a) understanding the problem; (b) developing a plan; (c) carrying out the plan; 

and (d) looking back.  There has been some debate as to whether these steps provide a 

description of or prescription for solving a problem.  While Dewey’s (1938) description 

is cyclical, Pólya’s is more linear (Carlson & Bloom, 2005).  Other phases of activity in 

problem solving have been noted and utilized both in analysis and in instruction.  A few 

are read, analyze, explore, plan, verify (Schoenfeld, 1985); entry, attack, review (Mason 

et al., 1982/2010); problem scoping, designing alternative solutions, and project 

realization (Atman et al., 2007).  Problem solving strategies that may be applied while an 

individual is working within each of these activities or phases may include instantiating 

objects, manipulating objects to get a sense of a pattern, working backwards, exploiting a 

related problem, etc. (Burton, 1984; Mason et al., 1982/2010).  Authors have noted that 

students may be limited in their abilities to apply heuristics effectively or to navigate 

amongst the activities or phases of problem solving.  This may be symptomatic of 

students’ difficulty self-regulating, monitoring, and exhibiting control (Schoenfeld, 

1992). 

Self-regulation, monitoring, and control in mathematical thinking have been noted 

as crucial.  This would include an individual asking themselves questions like “Is this 

approach working?” or “How does this help me?” (Carlson & Bloom, 2005).  Schoenfeld 

(1992) found that students at times may choose one approach to solve the problem and 

continue with that approach even if they are not making progress.  Carlson and Bloom 



42 
 
(2005) found that mathematicians engaged in metacognition during every phase of the 

problem solving process and these behaviors appeared to move the mathematicians’ 

thinking and products forward in the solution process.  This may imply that identifying 

ideas that move the argument forward is a metacognitive activity. 

 Research has repeatedly noted that affective aspects such as belief, attitudes, and 

feelings play a role in an individual’s ability to successfully solve problems and in how 

the solving process plays out (e.g., Carlson & Bloom, 2005; McLeod, 1992; Selden, 

McKee, & Selden, 2010).  Affective dimensions may cause mental actions and arise from 

them (Selden et al., 2010).  For example, once a problem is recognized, choosing to enter 

into a problem is an affective choice of the individual (Garrison, 2009; Glassman, 2001; 

Mason et al., 1982/2010).  Carlson and Bloom (2005) noted that while mathematicians 

experienced negative emotional responses when solving problems, they were able to 

control them, which contributed to the mathematicians’ success.  In addition to emotions, 

beliefs about mathematics play a nontrivial role as they “shape mathematical behavior” 

(Schoenfeld, 1992).  The work of Carlson and Bloom has served to describe how the 

stages of problem solving relate to the deemed necessary components of resources, 

heuristics, control, and affective beliefs. 

The Multidimensionality of  
Problem Solving  

Carlson and Bloom (2005) built upon the large body of problem solving literature 

and frameworks working to describe the problem solving behaviors of twelve 

mathematicians.  They conducted personal, task-based interviews with mathematicians 

solving mathematical problems which they audio recorded.  The tasks were chosen to be 

based on mere foundational content knowledge, challenging enough to engage research 
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Figure 1.  Carlson and Bloom's (2005) multidimensional problem solving framework, p. 67. 
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mathematicians, allow for multiple solution paths, and sufficiently complex to lead to 

impasses and affective responses.  They cite their audio-recordings and observations of 

the participants during the interviews as critical for analyzing participants’ affective 

behaviors.  From their analyses, emerged a description of the interplay between the 

phases of problem-solving, cycling, and problem-solving attributes.  They discerned four 

phases of problem solving (orientation, planning, executing, and checking).  Within the 

planning phase was a subcycle of conjecturing, imagining, and evaluating.  In this 

planning subcycle, the mathematicians hypothetically played out and evaluated proposed 

solution approaches.  The mathematicians would rarely solve a problem by working 

through the phases linearly.  The planning cycle would repeat until the mathematician 

found a solution approach that could be effective, and participants would cycle through 

the plan-execute-check phases multiple times within a single problem.  Carlson and 

Bloom noted the resources, heuristics, affective behaviors, and monitoring behaviors 

exhibited during each phase of the problem-solving cycle that are summarized in a two-

dimensional table displayed as Figure 1.  

Proof as a Particular Type of  
Problem Solving  

Selden and Selden (2013) considered two aspects of a final written proof: the 

formal-rhetorical part, the part that depends on unpacking and using the logical structure 

of the statement, associated definitions, and earlier results, and the problem-centered 

part, that depends on genuine mathematical problem solving, intuition, and a deeper 

understanding of the concepts.  They maintain there is a close relationship between 

problem solving and proof, but having good ideas for how to solve the problem-centered 

part of the proof is not sufficient for having a proof.  They cite two kinds of problem 
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solving that can occur in proof construction: solving the mathematical problems and 

converting an informal solution to a formal mathematical form.  

Weber (2005) considered proof from the perspective as a problem solving task, 

defining a mathematical problem as a “task in which it is not clear to the individual which 

mathematical actions should be applied, either because the situation does not immediately 

bring to mind the appropriate mathematical action(s) required to complete the task or 

because there are several plausible mathematical actions that the individual believes 

could be useful” (pp. 351-352).  With this lens, Weber was able to describe three 

qualitatively different types of proof productions: procedural proof productions, syntactic 

proof productions, and semantic proof productions.  He went on to describe learning 

opportunities afforded by each type of proof production.  

Focusing in on the impasses, incubation, and insight that may occur when one is 

solving proof problems in mathematics, Savic (2012) described what mathematicians do 

when they reach an impasse in a proving task.  These impasses or points of getting stuck 

are opportunities for incubation and the generation of new ideas (Byers, 2007).  By 

having mathematicians work on mathematical proofs on their own utilizing Livescribe, 

Savic was able to observe his participants taking breaks from their work which could be 

considered incubation periods to recover from impasses.  He noted that mathematicians 

used methods that occurred earlier in the session, used prior knowledge from their own 

research, used a data base of proving techniques, did other problems from the problem set 

and came back, and generated examples or counterexamples to recover from impasses.  

Additionally, they did other mathematics unrelated to the present task, walked around, 

did tasks unrelated to mathematics, went to lunch, and slept to recover from their 
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impasses.  Savic’s findings suggest that observing mathematicians’ moments of creativity 

may require data collection outside the traditional clinical interview setting.  

Building from the impasse study, Savic (2013) sought to determine if Carlson and 

Bloom’s (2005) Multidimensional Problem-Solving Framework could be used to 

describe the proving process.  He analyzed the Livescribe proof constructions of a 

professional mathematician and a graduate student.  Savic found that for most portions of 

the transcripts the framework could be used to code and describe the proving process.  

However, he found some differences including the mathematician cycling back to 

orienting after a period of incubation to reorient himself to reconsider all of the given 

information and the graduate student not completing the full cycle of planning, executing, 

and checking.  He suggested the four phases of Carlson and Bloom’s framework were 

important for the proving process.  He hypothesized additional problem solving phases 

could be added to the framework including incubation and re-orientation noting further 

research as needed.  

In the above section, I described the current knowledge of mathematical problem 

solving because the proof tasks that the participants were asked to complete were genuine 

problems for the participant as described by Weber (2005).  It is within working on these 

problems that new insights and creativity occur which are the primary interest of this 

proposed study.  The presented frameworks for problem solving agree that problem 

solving occurs in stages (Carlson & Bloom, 2005; Pólya, 1954) in a more or less cyclical 

nature (Carlson & Bloom, 2005; Dewey, 1938).  It is possible that the solution process 

for proof construction problems may play out in a slightly different fashion than the 

phases already identified (Savic, 2013).  However, the individual’s access to resources 
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and heuristics, their abilities to exhibit self-monitoring, and their attitudes, beliefs, and 

emotions will play a role in their ability to complete the proof tasks (Savic, 2013; 

Schoenfeld, 1985, 1992; Selden et al., 2010; Selden & Selden, 2013).  While past 

empirical studies have conceived of proof construction as a particular type of problem 

solving task, much more is yet to be known.  Selden and Selden (2013) identified some 

areas related to proof as problem solving that could use more research:  

These are: how informal arguments are converted into acceptable mathematical 
form; how representation choice influences an individual’s problem-solving and 
proving behavior and success; how students’ and mathematicians’ prove theorems 
in real time (especially when working alone); how various kinds of affect, 
including beliefs, attitudes, emotions, and feelings, are interwoven with cognition 
during problem solving; which characteristics make a problem non-routine (for an 
individual or a class), that is, what are the various dimensions contributing to non-
routineness; and how one might foster mathematical “exploration” and 
“brainstorming” as an aid to problem solving. (pp. 329-330) 
 

 This research sought to add insight to one of these areas, namely how 

mathematicians prove theorems in real time.  Since this research endeavored to describe 

how personal arguments evolve paying special attention to the tools utilized when new 

ideas are formed, I hypothesized that this research could also provide insights into how 

informal arguments are converted into acceptable mathematical form.  Such insights may 

be useful for practitioners because, as described in an earlier section, students have been 

shown to struggle utilizing their ideas in constructing proof.  Students are less likely than 

those experienced with constructing proof to look for ways to use their informal 

understandings to develop ideas for how to prove a statement and are at times 

unsuccessful in identifying the ideas that could potentially be useful in developing an 

argument and often struggle to connect their informal understandings to their formal 

proof constructions (Alcock & Weber, 2010; Raman, 2003; Raman et al., 2009). 



 
 
 
 
 

CHAPTER III 
 

 
METHODOLOGY 

 
 

This research sought to describe the evolution of mathematicians’ personal arguments 

as they construct mathematical proof.  The following research questions guided the 

research: 

Q1 What ideas move the argument forward as a prover’s personal argument 
evolves? 

 
Q1a What problematic situation is the prover currently entered into 

solving when one articulates and attains an idea that moves the 
personal argument forward? 

 
Q1b What stage of the inquiry process do they appear to be in when one 

articulates and attains an idea that moves the personal argument 
forward? (Are they currently applying a tool, evaluating the 
outcomes after applying a tool, or reflecting upon a current 
problem?) 

 
Q1c What actions and tools influenced the attainment of the idea? 
 
Q1d What were their anticipated outcomes of enacting the tools that led 

to the attainment of the idea? 
 

Q2 How are the ideas that move the argument forward used subsequent to the 
shifts in the personal argument? 
 
Q2a In what ways does the prover test the idea to ensure it indeed “does 

work”?  
 
Q2b As the argument evolves, how is the idea used? Specifically, how 

are the ideas used as the participant views the situation as moving 
from a problem to a more routine task? 
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 This chapter describes the theoretical perspective and framing of the study and the 

methods utilized to collect and analyze data.   

Research Strategy 

Crotty (1998) indicated four elements composing one’s research framework: 

epistemology, theoretical perspective, methodology, and methods.  The researcher’s 

epistemological stance indicates the researcher’s assumptions about the nature of 

knowledge and how we come to know what we know.  This research was guided by the 

epistemology of constructionism because the research focuses not only on the activities 

involved with making meaning (building personal mathematical arguments) but also 

activities involved with communicating meaning to others (writing proofs).  As Crotty 

indicated, the focus of constructionism “includes the collective generation [and 

transmission] of meaning” (p. 58).  Constructionism emphasizes how culture influences 

our views of the world.  Professional mathematicians work within the culture of the 

mathematics community.  While their ways of making meaning of problems is an activity 

of the individual mind, it is shaped and influenced by the mathematics community.  

Moreover, the activity of proof writing involves making public one’s own arguments, and 

a valid proof must be acceptable to the mathematics community at large.  I believe we 

construct knowledge through our interactions with our environments and experiences and 

these constructions were negotiated in our interactions with society and the community at 

large.   

Since this research was intended to explore how individuals develop mathematical 

proof under the constructionism epistemology, interpretivism (Crotty, 1998) was the 

theoretical perspective for this study.  Interpretivism was appropriate because this 
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research sought descriptions of the meaning of mathematicians’ behavior situated 

historically and culturally within the mathematics community.  My means of enacting the 

interpretivism perspective was based on John Dewey’s (1938) theories of inquiry and 

instrumentalism (Hickman, 1990) integrated with Toulmin’s argumentation theory and a 

perspective on creative mathematical thinking.  The theoretical framework is described in 

more detail in the next section. 

Because the goal of this research was to understand multiple individuals’ common 

experiences of constructing mathematical proofs, the methodology that best framed this 

research was phenomenology (Creswell, 2007) which “describes the meaning for several 

individuals of their lived experiences of a concept or a phenomenon” (p. 57).  The 

phenomenon of interest here is the development and incorporation of new ideas to move 

a personal argument forward.  In this study, I sought to understand mathematicians’ 

personal arguments in proof construction.  These personal arguments are embodiments of 

how the mathematician understands the situation encompassing the ideas he or she sees 

as pertinent to proving or developing a proof of the statement.  The data were collected 

through interviews, observations, and document analysis of written work.  The methods 

will be further elaborated in this chapter.  

Theoretical Perspective 

The theoretical perspective that framed this research was interpretivism, 

specifically based on John Dewey’s (1938) theories of inquiry and instrumentalism 

(Hickman, 1990) integrated with Toulmin’s argumentation theory and a perspective on 

creative mathematical thinking.  
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Theory of Inquiry 

John Dewey’s (1938) theory of inquiry gives us a means of understanding how 

knowledge is created and how it is perceived useful in problem-solving situations.  In 

periods of inquiry, one is actively engaged in reflecting on problem situations, applying 

tools to these situations, and evaluating the effectiveness of the tools.  Knowledge in the 

“honorific sense” (Dewey, 1938) is the outcome of active, productive inquiry (Hickman, 

1990).  The purpose of this research was to understand how ideas emerge in the proof 

construction process; ideas that move the proof along can be viewed as a certain kind of 

tool to be applied to the problem situation of developing the mathematical proof.   

Hickman (1990), citing Dewey (1938), described how individuals’ experiences 

fall into two categories: everyday experiences and inquirential experiences.  In non-

cognitive, everyday experiences, our actions and responses to stimuli are immediate 

because we do not sense a problem.  There is engagement in the experience but no 

reflection (Hickman, 1990).  These everyday experiences do not require a conscious 

recognition of the relationship between actions and their consequences (Glassman, 2001).  

 Everyday experiences may be “technological” in the sense that the individual 

applies tools to the situation but not inquirential.  For example, a master electrician will 

apply tools to repairing a broken light switch but choosing which tools to apply and 

evaluating the effectiveness of the applied tool is not necessary since the actions have 

become so habitual (Hickman, 1990).  As a more educational example of non-

inquirential tool-use, Mason and colleagues (1982/2010) indicate that it is possible for 

students to engage in a certain mathematical exercises and only have the “appearance of 

thinking” because they merely apply certain rules or techniques given by the teacher.  
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 However, during these non-cognitive experiences (everyday life), problematic 

situations may occur.  There may be a gap, tension, or unexpected outcome.  There is an 

intuitive realization of a pervasive quality that at first we can describe as a problematic 

situation, but the individual may not be able to describe or acknowledge the existence of 

a problem.  Circumstances provide problematic situations, but the individual makes 

problems.  If these intense and unresolved (Hickman, 1990) situations have been deemed 

a problem and the individual expresses interest in some objects of the situation, the 

process of inquiry, the second type of experience, begins.  There needs to be a 

construction and an affective element of interest in actually solving the problem and 

entry for a problematic situation to become a problem to be solved (Garrison, 2009; 

Glassman, 2001; Mason et al., 1982/2010). 

 Inquiry is the intentional process to resolve doubtful situations, the systematic 

invention, development, and deployment of tools (Hickman, 2011).  These doubtful 

situations are the purposes to which tools are applied.  Throughout the entire process, the 

individual has an “end-in-view” or a desired outcome (Garrision, 2009; Glassman, 2001; 

Hickman, 2009).  These ends-in-view provide tentative consequences for which the 

inquirer must seek the means (tools and ways to apply tools) to attain them.  As inquiry 

proceeds, the inquirer may modify their ends-in-view.  In this framework, I refer to these 

“ends-in-view” as the purposes to which tools are applied. 

 The process of active productive inquiry involves reflection, action, and 

evaluation.  Reflection is the dominant trait.  The inquirer must inspect the situation, 

choose a tool to apply to the situation, and think through a course of action.  Garrison 

(2009) described that “a collection of data is the first product in the process of inquiry” 
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(p. 92).  The data are the means or clues to and of something to be attained.  The 

inspection of the traits of the situation involves reflection, a “going outside” the situation 

to something else to gain leverage for understanding the situation (Hickman, 1990).  

After the data are collected, a hypothesis or proposition may be formed about what will 

happen when certain operations or tools are applied to the situation.  These propositions 

are themselves tools (Hickman, 2011).  After this initial reflection of what could happen, 

the inquirer performs an action, applies the tool.  Dewey sometimes refers to these 

actions as “fulfilling experiences” (Prawat & Floden, 1994).  Either during or after the 

fulfilling experience, the inquirer evaluates the appropriateness of the chosen application 

of the chosen tools (Hickman, 1990).  Tools, applications of tools, and evaluation are 

further described in later sections. 

 Dewey (1938) describes knowledge in the “honorific sense” as an outcome of 

inquiry.  Knowledge in the “honorific sense” is described as the satisfactory resolution of 

a problematic situation that yields a warranted assertion (Hickman, 2011).  This 

knowledge may be the construction and understanding of tools or the construction of 

new problems.  At the conclusion of an inquiry, an inquirer may enter and enjoy “non-

reflective” experience of the first kind.  However, these periods of non-reflection tend to 

mature when new problematic situations are encountered, and the entire process begins 

again (Hickman, 1990).  The cyclic nature of the inquiry process is represented in Figure 

2.  Inquiry begins by reflecting on a situation.  The cloud refers to considering the 

perceived problem.  Based on the observations, one considers possible tools to apply to 

the problem and imagines applying the tools to the situation.  The cycle is repeated until 

a tool is chosen.  In Action, the individual actually applies the tool to the situation, and 
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evaluates the effectiveness of the tool.  The individual returns to reflection as he or she 

must reflect on the situation after the tool is applied.  If the problem is still unsolved or a 

new problem is perceived, the process begins again. 

 

 
Figure 1.  A representation of the cyclic phases of Dewey’s theory of inquiry. 
 
 
 

The assumptions and conceptions of the inquirer will play a role in determining if 

situations are identified as problems and how the inquiry plays out.  For example, if a 

student has an empirical proof scheme (where one is convinced by an empirical 

argument; Harel & Sowder, 1998), he or she may engage in inquiry in determining if a 

statement is true by actively looking for examples to apply, and inquiry process may be 

complete from the student’s perspective.  The student may then present these examples 

as proof of the statement’s validity.  The proof may not be correct or sufficient in the 

eyes of the student’s teacher or the mathematics community, but the student has not seen 
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her solution as a problem or her application of presenting a worked example as an 

inappropriate tool for the situation.  Successful inquiry may have occurred in generating 

these tools (the used examples), but inquiry did not occur in the generation of proof for 

the statement.  

As researchers, we will need to account for an affective dimension in the 

participants’ thought processes.  The participant must acknowledge the problem and 

choose to enter into it (Burton, 1984; Dewey, 1938; Glassman, 2001; Mason et al., 

1982/2010).  Additionally, personal affect throughout the inquiry process may be 

noteworthy (Carlson & Bloom, 2005).  We may find that even if a participant identifies 

an aspect of the proof as a problem, or as incomplete, he or she may still choose not to 

engage in the process of solving the problem.  It is probable that engaging in proving will 

have moments of both non-cognitive and inquirential experiences.  Professionals, for 

example, may engage in habitual practices.  It still could be fruitful to describe the 

application of tools by the professional.  

What are tools?  A tool is a theory, proposal, action, or knowledge chosen to be 

applied to a problematic situation.  An inquirer reflects on the problem and chooses an 

appropriate tool to apply to it.  During this reflection, the inquirer may contemplate the 

feasibility of using a tool before applying it to a situation.  Even if a tool is chosen and 

applied, it remains an experiment in the inquiry process (Hickman, 1990) as it may be 

modified and is evaluated.  At times the tool itself may be deemed problematic, i.e., the 

inquirer may have troubles applying the chosen tool or the tool may not perform in the 

expected manner.  Therefore, the tool must be reflected upon and new tools must be 
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chosen and applied to resolve what is problematic about the tool.  Dewey describes how 

tools (or means to an end) can be successful. 

Present actual means are the result of past conditions and past activities.  They 
operate successfully, or ‘rightly’ in (1) the degree in which existing environing 
conditions are very similar to those which contributed in the past to formation of 
the habits, and (2) in the degree in which habits retain enough flexibility to 
readapt themselves easily to new conditions. (Dewey, 1938, p. 39) 
 
Tools may be used in ways that are not inquirential in situations that are habitual 

and routine.  For example, professional mathematicians solving a routine problem, such 

as proving two algebraic groups are not isomorphic, may apply ideas, theorems, and 

strategies methodically without needing to reflect on what actions to take in order to 

solve the problem.  

Certain tools or actions may be applied to certain situations without the individual 

reflecting upon the situation or even needing to identify the situation as a problem.  For 

example, experienced mathematicians may immediately try to instantiate a new definition 

as a means of trying to understand it (Alcock, 2004).  The choice of tool used to bring 

about understanding is immediate.  What follows may require reflection and inquiry.  The 

actual act of instantiating a particular object may or may not be difficult for the 

mathematician, and after instantiating the mathematician may or may not understand the 

definition better.  However, the initial action of trying to instantiate an object to get a 

better sense of the definition is second nature.  

 Habits may result from previous, repeated practice of the individual, or they may 

come from learning from the experiences of others.  In the context of mathematics 

education, students may be taught that particular procedures must be applied to certain 

contexts.  Therefore, when seeing such a problem, they immediately may apply the given 
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procedure.  Students themselves may not have engaged in active productive inquiry to 

gain such knowledge. 

Tools may be inappropriate for the situation but forced on the situation anyway 

(Hickman, 1990).  This can occur in two situations: (a) The individual may not be 

engaged in inquiry but just applying tools to the situation without first reflecting upon 

their appropriateness and (b) the individual may be engaging in inquiry but has limited 

experience with the situation.   

In order to be considered a tool, an object must be used to do some sort of work.  

An object may be a tool in certain situations but not a tool in others; technology is 

context dependent (Hickman, 1990, 2011).  Consider the study conducted by Iannone et 

al. (2011).  Two groups of students were introduced to a novel concept in real analysis.  

One group read through a series of twelve examples of the concept, and the other group 

was asked to complete twelve example generation tasks involving variations of the 

concept.  All students were then asked to complete four proof tasks related to the same 

concept; the proof constructions of both groups were given a correctness score by the 

researchers.  According to a statistical analysis, there was no significant difference 

between the example generation group and the reading group on scores on the four proof 

tasks.  The authors speculated that one explanation for why generating examples did not 

contribute to valid proof production in real analysis tasks was that most students 

generated their examples by trial and error (Antonini, 2006) and therefore were not 

connecting the example generation to the following proof constructions.  In their 

research, Iannone and company introduced students to the strategy of example 

generation, but the example generation was not performed with the purpose of “doing 
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work” in the context of the problem of proving the given statement.  In this sense, for the 

individual inquirers, example generation was not used as a tool to compete the proof 

tasks. 

In Dewey’s (1938) view, intellectual tools derive from the individual’s social 

history (Glassman, 2001).  The tools are products of past inquiries of the individual or 

from the discourse community in which the inquiry resides.  For the mathematician, the 

tools come from the mathematics community at large.  For the student in the mathematics 

classroom, the tools come from past classroom experiences.  Sandefur et al. (2012) cited 

the quality of having the “experience of utility of examples in proving” (p. 15) as an 

aspect that contributed to students’ use of examples in proving; in their past classroom 

experiences, students learned that generating examples can be helpful in constructing 

proof.  One may not yet be an expert in using a tool, but by performing inquiry on the 

tool itself, one becomes more adept.  He or she can gain knowledge about how to apply 

the tool and to what situations the tool should be applied. 

 The environment plays a role in that the limits of the environment are considered 

in the period of reflection when the inquirer thinks through which tools to apply.  For 

example, if opening a bottle, I may want to use a bottle opener, but I realize that I do not 

have one, and I would have to drive to the store to go purchase one; so instead, I choose 

to search for some other tool to do the job.  I am aware of the existence of a bottle opener 

from my past experiences so the tool is available for me to reflect on, but I realize it is 

unfeasible to apply a bottle opener in this situation.  The interview environment may play 

a role in the tools the individual chooses to use.  For example, in the exploratory study, 

Dr. Kellems first mentioned a theorem would be potentially useful to apply to the linear 
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algebra task.  However, Dr. Kellems judged it as inappropriate due to its obscurity and it 

likely that a proof task posed by two graduate students could be solved by simple means. 

Tools utilized in proof construction.  The ideas that the mathematician perceives 

as moving the argument forward are “tools” in that the mathematician sees them as useful 

in “doing work” in achieving some outcome.  

The possible solution presents itself, therefore, as an idea, just as the terms of the 
problem (which are facts are instituted by observation).  Ideas are anticipated 
consequences (forecasts) of what will happen when certain operations are 
executed under and with respect to observed conditions. (Dewey, 1938, p. 39) 
 

These ideas as tools were the primary focus of the investigation in this study, but the 

mathematicians drew upon other tools in developing and utilizing the ideas.  For instance, 

studies have identified certain abilities and knowledge as necessary for students to 

produce proof: knowledge of and the ability to appropriately use various symbolic 

representations (Selden & Selden, 2008), the ability to convert between intuitive 

understandings and formal logical reasoning (Weber & Alcock, 2004), and an 

understanding of the logical structure of mathematics (Selden & Selden, 2008).  The 

above may be considered tools in that they may facilitate the generation and 

implementation of ideas perceived to be useful for the construction of the proof.  

Purposes of tools’ application.  As noted earlier, in inquiry, tools are applied 

with an “end-in-view” or for an intended purpose.  According to Dewey, actions 

performed are a means of ontological change (Prawat & Floden, 1994).  There is a 

situation that the inquirer deems problematic.  The tool is applied to reorganize the 

situation to relieve the tension that the problem caused.  Purposes may be nested within 

each other as there may be problems within problems.  For instance, one may choose to 

apply a computation to an example (Tool A) to get a sense of why the statement works 
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(Purpose A).  If there is an error in the computation, one may choose to try to fix the 

computation error (Purpose B) and would have to apply other tools to fix the error.  The 

same tool may be applied to different purposes, and various tools may be applied to a 

single purpose.  Planning a course of action, gaining understanding, attaining new 

insights, and formalizing an argument are possible purposes in proof construction.  

How can tools be applied?  The application of a tool indicates how a tool is 

used.  One tool can be applied in multiple ways.  Choosing how to apply a tool occurs 

during periods of reflection in a similar way to how a tool is chosen.  The application is 

an experiment that is evaluated and may be modified.  At times a prover refers to “going 

down a path”, in terms of the methods or heuristics chosen to prove a statement.  We can 

think of the “paths” chosen or proposed as an application of tools, in that in each 

application they may employ various tools in certain ways depending on the path and also 

the purpose.  The paths are evaluated as being useful or not.  

 As earlier indicated, a tool may be applied unskillfully or inappropriately.  In this 

case, the tool or the application of the tool may itself become a problematic situation 

subject to further inquiry and reflection.  Else, the inquiry may not be brought to a 

productive close; inquiry may be postponed for a period due to frustration (Hickman, 

1990).  There is the possibility of the failure of artifacts to do their work (to be 

meaningful).  A possible cause of this failure is the neglect on the part of the inquirer to 

continue to connect the means and the ends; meaning the inquirer is just applying facts 

and tools with no real purpose or end in view. 

 As an illustration of how one tool can be applied in different ways, consider the 

tool of instantiation.  Example-use is a tool, but there are different applications of 
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examples.  Alcock and Inglis (2008) described four ways that examples may be used in 

evaluating and proving that have been identified in the literature: (a) generic examples 

(reasoning with an example that can be generalized to a particular class of mathematical 

objects), (b) crucial experiments (checking a conjecture against an example that has no 

special properties), (c) naïve empiricism (justifying a conjecture by checking it against a 

small number of examples), and (d) using counterexamples to refute conjectures.  One 

may instantiate an example and may manipulate it, use the example to test a conjecture, 

use examples and non-examples to discern and expose properties of the mathematical 

objects, or use an example to pilot a proposed manipulation. 

Evaluation of tools.  Systematic inquiry features periods of evaluation either after 

the application of the tool or while the tool is being applied (Prawat & Floden, 1994).  

Tools are tested against the circumstances, and the circumstances are tested against the 

tools (Hickman, 1990).  For instance, a certain tool may not be appropriate for a given 

circumstance, or the tool may provide additional insight into the traits of the 

circumstance.  Carlson and Bloom (2005) characterize similar mental actions of 

“reflecting on the effectiveness of the problem-solving process and products” (p. 48) and 

call it “monitoring”. 

Instances of evaluation can occur before applying a tool, while the tool is being 

applied, and after the tool has been applied.  Before applying a tool, an inquirer considers 

if applying a tool is feasible or will be useful; he or she thinks through possible plans of 

attack.  While the tool is being applied or after it is applied, “the worth of the meanings, 

or cognitive ideas, is critically inspected in light of their fulfillment” (Prawat & Floden, 

1994, p. 44).   
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The criteria used to evaluate tools and applications are products of the discourse 

community (Prawat & Floden, 1994); the decisions made in an evaluation may vary 

depending on the community in which the prover participates.  The criteria can be revised 

and are subject to change.  Certain tools and ideas may be accepted or rejected based on 

the values the prover possesses (Dewey, 1938).   

As Hickman (2011) indicated, technology is context dependent; this means the 

conditions the prover is in will play a role in the evaluation of the inquiry at hand.  For 

example, it is likely that the same mathematician’s proving process will vary depending 

on his or her audience, time constraints, etc.  What the prover deems as useful or resolved 

will vary if she is proving just to convince herself, to convince a colleague, or to convince 

a classroom full of students.  These situations in fact may entail wholly different 

problems for the inquirer.  

It must also be noted that evaluation is in fact a value judgment (Dewey, 1938).  

Two tools may be equally effective, but an individual may choose one over the other due 

to personal preference.  It has been noted that some individuals use examples in proof 

construction more than others (Alcock & Inglis, 2008; Alcock & Simpson, 2005).  This 

may be due to personal values, styles, and preferences. 

What are the consequences after the tool is applied for the prover?  After 

applying a tool, the prover evaluates the effectiveness and usefulness of the tool and re-

inspects the situation.  Regardless of the outcome of the application of the tool, the prover 

will have gained new information.  It makes sense that three possible outcomes of an 

evaluation are the problem has found to be unresolved, the problem has been resolved, or 

the problem has changed. 
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If the prover has deemed that the situation is not yet resolved, he or she must 

reflect again on the problem in light of the new information and may choose a different 

tool, attempt to apply a tool in a different way, or modify the predicted outcome 

(proposition) of applying such tool.  The prover may not change the chosen tool or 

application, but may deem that the tool itself is problematic and engage in inquiry into 

the chosen tool or its application. 

 In evaluating, the prover may find that the current problem is resolved.  Dewey 

(1938; Hickman, 1990) indicates that knowledge or judgments are consequences of 

successful inquiry which may be the knowledge of if the statement is or is not true, 

knowledge of how the given statement may relate to other objects and statements in the 

previously known mathematical structure, a more formulated concept image, a greater 

proficiency in applying various tools, and so forth.  Dewey (Hickman, 1990) indicates 

there is an enriched period or a feeling of satisfaction from a completed inquiry.  These 

enriched periods mature and then may become unstable, and therefore the inquiry process 

may begin again. 

 Upon evaluation, the prover may have deemed that the application of the tool 

changed the situation.  In this case, the prover may not consider the situation as 

problematic and therefore go back to “everyday” experience where the situation may 

become problematic.  The prover may be aware of the problem but choose not to enter 

inquiry in the sense of a moral judgment (Dewey, 1938).  The prover may enter the 

problem, beginning a new cycle of inquiry in which the tools, and the knowledge 

constructed in previous inquiries are available if deemed useful. 
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 I have attempted to give a description of Dewey’s (1938) theory of inquiry, 

working to specifically apply it to the problems of constructing mathematical proof.  The 

next section describes how this research took the perspective that the process of 

constructing mathematical proof consists of more than writing formal deductive 

statements but also includes informal argumentation.  Toulmin’s theory of argumentation 

is used to describe an arguments structure, and I cite other literature that outlines the 

relationship between argumentation and mathematical proof.  Lastly, there is a 

description of how these theories have led to the decision to include the term “personal 

argument” as a descriptor for the prover’s concept image of the problem of constructing a 

mathematical proof.  

Argumentation in Proving  

This research is interested in the development and implementations of ideas that 

the prover deems useful during the process of constructing mathematical proof.  It is 

understood that when the proof problem is unfamiliar, the process involves more than the 

writing of the logical statements that form the proof product.  There is a process and it 

includes “thinking about new situations, focusing on significant aspects, using previous 

knowledge to put new ideas together in new ways, consider relationships, make 

conjectures, formulate definitions as necessary and to build a valid argument” (Tall et al., 

2012, p. 15).  The proof construction process can be seen as involving the practice of 

argumentation (Aberdein, 2009; Inglis et al., 2007; Lakatos, 1976; Pedemonte, 2007).  

Argumentation has been defined in a variety of ways. 

The whole activity of making claims, challenging, them, backing them up by 
producing reasons, criticizing those reasons, rebutting those criticisms, and so on. 
(Toulmin, Rieke, & Janik, 1979, p. 13) 
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An act of communication intended to lend support to a claim. (Aberdein, 2009, p. 
1) 
 
Argumentation is a verbal, social and rational activity aimed at convincing a 
reasonable critic of the acceptability of a standpoint by putting forward a 
constellation of propositions justifying or refuting the proposition expressed in the 
standpoint. (Grootendorst & van Eeemeren, 2003, p. 1) 

 
Argumentation can be thought of as the activity of supporting claims to convince oneself, 

convince a friend, and convince a skeptic (Mason et al., 1982/2010).  Mathematicians 

have developed an internal skeptic in that they not only seek to convince others of the 

statement but to make sense of the mathematics itself (Tall et al., 2012).  

Theory of argumentation.  Toulmin (1958; Toulmin et al., 1979) developed an 

approach to analyzing arguments that focuses on the semantic content and structure.  For 

Toulmin, reasoning refers to “the central activity of presenting the reasons in support of a 

claim” (Toulmin et al., 1979, p. 13).  His view of argument includes more that the 

practice of logical deduction. 

Toulmin’s scheme classifies statements of an argument into six different 

categories.  The claim (C) is the statement that an assertor wishes to argue to their 

audience.  The grounds (G) (at times termed “data” (Inglis et al., 2007; Pedemonte, 2007) 

are the foundations on which the argument is based.  The warrant (W) is the justification 

that the grounds really do support the claim.  Backing (B) presents further evidence that 

the warrant appropriately justifies that the data support the claim.  The modal qualifiers 

(Q) are statements that indicate the degree of certainty that the arguer believes that the 

warrant justifies the claims.  The rebuttals (R) are statements that present the 

circumstances under which the claim would not hold.  This structure is illustrated in the 

diagram in Figure 3. 
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Figure 2.  Toulmin argumentation structure. 
 

 The diagram in Figure 4 is an example of an argument that Oakland is a shoo-in 

for the Super Bowl (C) (Toulmin et al., 1979, p. 88).  Oakland has the strongest and 

most-balanced offensive and defensive squads (G), and only a team that is strong in both 

offense and defense can be tipped for the Super Bowl (W) according to past records (B).  

One presumes (Q) that Oakland is a shoo-in for the Super Bowl (C) unless Oakland is 

plagued by injuries or the other teams do some quick and costly talent buying or there is a 

general upset of the form book (R).  This sports example shows us that an argument 

outside formal logic can be mapped to this structure.  
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Figure 3.  Example of Toulmin layout. 

 

The Toulmin argumentation structure gives us language that can be used to 

describe how the mathematicians progress in their arguments.  Researchers have made 

use of this structure (Inglis et al., 2007; Pedemonte, 2007) to determine how 

mathematicians and students use warrants and qualifiers in their arguments, to describe a 

relationship between proof and argument, and to determine the degree to which they find 

arguments convincing.  The diagram in Figure 5 illustrates an example in which this 

argumentation structure is implemented to analyze a mathematics graduate’s argument 

against the conjecture, “If p1 and p2 are prime, then the product p1p2 is abundant” (Inglis 

et al., 2007, p. 6).  
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today, while all their chief 
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The Past Records of form in the 
field of pro football indicate that  

Oakland is a shoo-in 
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Figure 4.  Toulmin analysis of mathematical argument (Inglis et al., 2007, p. 8). 

 

I made use of Toulmin’s structure to describe the roles that various aspects played 

for the mathematicians in their evolving arguments and to give structural descriptions of 

in what ways the individual’s personal argument evolved.  Inglis et al. (2007) emphasized 

the importance of considering the modal qualifier because the type of warrant used would 

affect to what degree the arguer would be convinced that their claims implied the 

conclusions.  This points to the possibility that when constructing mathematical proof, 

professional mathematicians may engage in argumentation that is not formal proof.  For 

this reason, this research made use of Toulmin’s full model. 

Personal argument.  Aberdein (2009) used the term argument to mean an act of 

communication intended to lend support to a claim.  Aberdein stated that proofs fit within 
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this definition but provided for mathematical practices in the process of proving that go 

beyond the product that may also be considered argument.  Aberdein included choosing 

research problems, choosing methods to tackle problems, incomplete proof sketches in 

applying these methods, and the dialectic between readers of the proof and the author.  

Thurston (1994) noted that in addition to logic and deduction, human thinking includes 

human language, vision, spatial sense, kinesthetic sense, intuition, association, and 

metaphor.  Formal proof is a subset of argumentation.  The informal arguments that lead 

to formulating a conjecture may be used in the construction of the proof (Boero et al., 

1996; Lakatos, 1976; Pedemonte, 2007).  

Since argument has been described as encompassing both informal and formal 

arguments and also arguments to convince oneself or another, this research seeks to 

describe the proving process as an evolving personal argument.  This research adopts 

Aberdein’s (2009) definition of argument as any act of communication meant to lend 

support to a claim.  The argument evolves in that new ideas are incorporated and utilized.  

I use proof to denote the written end-product meant for an “other”.  A proof is a sub-type 

of argument that uses deductive-type warrants and the modal qualifier is absolute (Inglis 

et al., 2007).  The personal argument encompasses all thoughts that the individual deems 

relevant to making progress in proving the statement.  It is a subset of the entire concept 

image of a proof situation. 

Tall and Vinner (1981) described a concept image as the total cognitive structure 

that is associated with the concept.  It can include mental pictures, instantiations of 

concepts, and personal definitions.  The concept image is built up through experiences, 

and it is not always coherent, different stimuli can activate different aspects of the 
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concept image.  Tall and Vinner term the evoked concept image the portion of the 

concept image that is activated at a particular time.  An individual may evoke conflicting 

concept images, but only when conflicting aspects are evoked simultaneously may there 

be any sense of confusion.  Tall and Vinner describe the concept definition as the form of 

words used to specify that concept.  The personal concept definition is the individual’s 

reconstruction of a definition, and the formal concept definition is the one accepted by 

the mathematical community at large.  Professionals in a given mathematical field may 

have multiple personal concept definitions that are consistent with the formal concept 

definition (Alcock, 2008).  As an extension of the construct of concept image, John and 

Annie Selden (1995) conceived of a statement image, a rich mental structure that includes 

concepts, examples, visualizations, and so forth that one associates with a statement.  

The statement image involves the individual’s total cognitive structure associated 

with the proof situation.  There may be aspects of the statement image that are evoked at 

particular times.  There are also aspects of the statement image that the individual may 

perceive to be more or less central to his or her aims in moving the argument forward.  

The personal argument is the particular subset of the statement image which the 

individual views as central to his or her aims in developing the argument.  The focus of 

this study is to describe how mathematicians’ personal arguments evolve in that we are 

looking to see how they incorporate and use new ideas that they view as better enabling 

their arguments forward.  

The personal argument is a subset of the entire statement image, but its boundary 

may be fuzzy.  The individual may determine as some aspects of the statement image as 

central to the personal argument, but there may be aspects that lie on the periphery.  
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George Lakoff (1987) promoted the idea that “human categorization is essentially a 

matter of both human experience and imagination-of perception, motor activity, and 

culture on the one hand, and of metaphor metonymy, and mental imagery on the other” 

(p. 8).  Lakoff observed that some categories do not have gradations of membership while 

others do.  For example, some men are neither clearly tall nor clearly short; they are tall 

to some degree.  Categories that have somewhat fuzzy boundaries are termed graded 

categories.  In these categories, there are central members whose are deemed to fully 

belong to the category. 

Taking these ideas from Lakoff (1987), a personal argument is a graded category.  

The individual is the one who categorizes certain ideas and aspects of the concept image 

of the proof situation as relevant or useful to him or her in developing the argument.  The 

category is graded in that there may be different degrees to which the individual 

incorporates ideas.  Some ideas may be peripheral and others more central; as the 

argument develops an ideas degree of centrality to the argument may change.  This study 

seeks to describe this evolution of the personal argument. 

Mathematical Creative Thinking  

I believe that the development, testing, and implementation of new ideas that 

serve the individual’s aims in producing mathematical arguments are acts of 

mathematical creativity.  These moments where creative thought happens are worth 

studying and describing with empirical evidence.  Indeed mathematicians (Byers, 2007) 

and mathematics educators (Lithner, 2008) have written about what it means for one to 

think creatively in mathematics and what aspects of mathematics are creative.  Defining 
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creativity can be challenging (Haylock, 1997), but there are characteristics of 

mathematically creative thought that can be defined and identified. 

Lithner (2008) posed a framework distinguishing creative from imitative 

reasoning.  In this framework, reasoning is the way of thinking adopted to produce 

assertions and reach conclusions.  Creative reasoning must fulfill the conditions of 

novelty, flexibility, plausibility, and mathematical foundation.  Creative reasoning is used 

in non-routine problem solving or novel tasks.  It can only be observed if the individual is 

encountering a situation that he or she deems challenging.  Creative reasoning must have 

flexibility in that it admits different approaches and adaptations to the situation.  Creative 

reasoning is shown to be plausible because arguments are included to support the strategy 

choice and why conclusions are true.  Creative reasoning is founded on mathematical 

properties. 

Byers (2007), a mathematician, wrote that ideas were the organizing principles of 

mathematical thought and that  

The creative in mathematics is expressed through the birth of new ideas.  These 
ideas may consist of a new way of thinking about a familiar concept or they may 
involve the development of an entirely novel concept.  An idea is usually at the 
heart of a mathematical argument but an idea may even entail a new way of 
looking at a whole area of mathematics.  Creativity in mathematics is inseparable 
from ideas. (p. 191) 
 

Byers illustrated his meaning of mathematical ideas using the idea of a “pattern”.  One 

may grasp a pattern and have some intuition that there is something systematic going on 

– this is still a preliminary stage.  An individual may move on to express the pattern 

explicitly, giving precision to the intuition.  Later, one may need to also determine if the 

pattern can be generalized to an object.  This verifying the validity of the pattern requires 
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another idea that convinces the individual why the pattern is valid.  Byers stated that the 

pattern is an idea but also there is an idea in the verification.  

An idea is both the feeling that something is going on and the feeling of “now I 

understand what’s going on.”  Grasping an idea means looking at things in a certain way.  

Certainly, one will have difficulty grasping the idea of the Fundamental Theorem of 

Calculus if he or she does not see 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑑𝑥
𝑎  as a function of x.  These ideas 

emerge from moments of ambiguity.  

Dewey’s (1938) theory of inquiry (Hickman, 1990) advances the thought that 

knowledge in the honorific sense is a product of active, productive inquiry into 

problematic situations.  Similarly, Byers (2007) emphasized that there is a relationship 

between ambiguity and idea.  The idea overcomes the barrier that is the ambiguity, but 

the ambiguity persists in the resolution in that the idea is a product of the ambiguity.  

After an idea is brought to bear, there is still mathematical work to be done to tease out 

and make explicit the mathematics contained in an idea.  The logical deduction needed to 

convey the formal written proof is another idea.  

Alcock (2008) also gave a description of creativity; she described creative 

thinking as one of four modes of thinking that students could use in constructing 

mathematical proof.  Alcock interviewed mathematician instructors of introduction to 

proof courses that indicated reasoning abilities that they desired their students to develop 

and utilizing in proving statements.  She divided this reasoning into four modes of 

thinking, one of which was creative thinking.  The purpose of the creative thinking mode 

is “to examine instantiations of mathematical objects in order to identify a property or set 

of manipulations that can form the crux of a proof” (p. 78).  In this mode, one 
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investigates an example with the goal of finding an argument or sequence of 

manipulations that will generalize to a proof or one tries to create a counterexample and 

attempts to identify a reason why it cannot be done.  One works with an instantiation with 

the goal of finding some tools that will enable him or her to get a handle on the argument.  

According to Lithner (2008), Byers (2007), and Alcock, looking for and formulating 

mathematical ideas that can be used to solve some sort of mathematical problem are 

activities of creative mathematical thinking.  In other words, creative thinking is looking 

for ideas.  In this research, I take the view that generation of ideas that are used to move 

the proof forward are moments of mathematical creativity brought into fruition in the 

proving process.  

In summary, this research viewed the generation of new ideas used to solve 

problems as acts of mathematical creativity.  In order for these ideas to be created, an 

individual must be encountering some sort of ambiguity within a problem.  When 

analyzing an individual’s navigation through a problem, I utilized Dewey’s (1938) theory 

of inquiry to conceptualize and frame the process.  The specific problems that the 

individuals encountered were the formulation of mathematical proof; therefore, this 

research utilized argumentation theory.  

The above theoretical perspective was the lens through which I viewed the data in 

analysis (Patton, 2002).  My previous experiences and position also played a role in data 

collection and analysis as the data were filtered through my experiences and my role as 

the primary instrument of data collection.  
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Researcher’s Role 

At the outset of this research and throughout the inquiry process, I endeavored to 

consider how my position and past experiences factored into the research.  I entered this 

research with knowledge of the literature on mathematical proof and the theoretical 

perspective described in an earlier section.  In collecting and analyzing data, the data 

were filtered through my experiences and theoretical viewpoints.  Awareness of these 

biases is critical as is looking for and including data that support opposing viewpoints 

(Merriam, 2009).  In the paragraphs below, I describe my own struggles and experiences 

with learning mathematical proof and my position within this research. 

As an undergraduate mathematics major, I had little trouble in performing 

calculations and exhibiting understanding of the mathematics at play in my first few 

mathematics courses.  However, when I entered my first proof-based course, linear 

algebra, I struggled.  I did not fully comprehend how to structure a formal argument, and 

one of my errors was to reverse assumptions and conclusions (Harel & Sowder, 1998).  

After learning how to construct a proof successfully, my proof constructions often 

consisted of solely symbolic language.  I felt the mathematical sophistication of my proof 

was inversely correlated to the number of actual words used.  I viewed the use of pictures 

and written explanations as sub-par since pictures were neither generalizable nor 

mathematically precise, and written explanations had no symbols or equations so could 

not be viewed as math.  Even at the beginning of my graduate career, I would not feel 

comfortable with a proof if I could not translate it to symbolic language.  For example, in 

a master’s level topology class, I was trying to prove the existence of a function with 

given properties.  I knew what the function would do and could draw a picture of it, but I 
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could not write out the algebraic formula.  The professor of that course made it clear to 

me that trying to come up with the formula would be a waste of time.  That began a 

turning point in how I thought about mathematical proof.  Instead of relying so much on 

symbols, I have found that I am better served if I think about the structure of the 

mathematics as it would relate to the structure of the proof.  I now feel more comfortable 

when my arguments include paragraphs of explanation as opposed to purely using 

symbols and implication arrows.  I have worked on my ability to construct pictures and 

diagrams that are general enough to serve as a rigorous argument.  I can see now how 

mathematical sophistication has nothing to do with symbolization.  My struggles with 

proof and the ontological shift in my perception of proof made me believe that other 

novice mathematicians may have similar experiences.  Delving into the literature shows 

that in fact my experiences have indeed been shared by others (Harel & Sowder, 1998; 

Weber & Alcock, 2004).   

Setting and Participants 

The choice to study professional mathematicians was made in order to make 

explicit the context surrounding the generation of ideas that can move the argument 

forward.  Mathematical philosophers have written that the formulation of ideas is a real 

part of what mathematicians do (Byers, 2007; Tall et al., 2012).  The evolution of 

mathematical arguments as moments of creativity is a phenomenon that may resonate 

with the mathematician.  Students may struggle with other issues such as content 

knowledge and understanding of logic (Selden & Selden, 2008) and may not make use of 

tools in a way conducive to the formulation of ideas (Alcock & Weber, 2010).  Better 

understanding what professional mathematicians do may help inform designing 
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experiences for students to better be able to develop, recognize, and utilize ideas when 

constructing proof. 

The settings of this study were offices of mathematicians employed in 

mathematics departments at four-year universities in the Rocky Mountain Region.  I 

solicited participation from individuals employed at various universities because 

departments vary in size.  Participants in this study were professional mathematicians in 

the field of real analysis.  For the purposes of this study, a professional mathematician 

was defined to be an individual holding a doctorate in mathematics that was currently 

teaching and doing research in mathematics.  Specifically, the mathematicians conducted 

research in real analysis or a closely related field or had experience teaching an upper 

undergraduate or graduate course in the subject of real analysis. 

To find participants, I contacted representatives at university mathematics 

departments and accessed department websites to identify mathematicians who either 

taught real analysis courses or whose field of research was closely related to real analysis. 

Email (see Appendix A) served as the initial means of contact with prospective 

participants.  This initial contact email informed the participants that the purpose of the 

study was to observe and describe their processes in solving mathematical proof 

problems in real analysis.  I explained the data collection procedures and time 

commitment and requested their participation.  I initially contacted ten mathematicians 

across four universities.  While five mathematicians agreed to participate, I selected three 

based on their schedules.  Three mathematicians were the entire sample size because it 

was hypothesized that three participants completing three tasks would be sufficient to 
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find saturation in the codes and data observed.  This hypothesis proved correct as the last 

few tasks analyzed did not necessitate generating new codes.  

For the three mathematicians that agreed to participate, I scheduled an initial 

interview and then subsequent interviews at each meeting.  At my request, the 

participants provided demographic and personal information including the number of 

years’ experience in teaching and conducting mathematics research and the participant’s 

primary field of research.  The three participants’ pseudonyms are Dr. A, Dr. B, and Dr. 

C. Table 1 summarizes demographic and professional information about the participants.  

 

Table 1  

Participant Pseudonyms, Years of Experience, and Research Areas 

Pseudonym 
Years teaching or doing 
research in real analysis 
post PhD Primary research areas 

Dr. A 20+ years Queuing theory; 
evolutionary game theory 
 

Dr. B 5 years Applied probability theory 

Dr. C 20+ years Functional analysis 
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Data Collection 

Data were collected from three interviews and participants’ work on mathematical 

proof tasks.  All three interviews were audio- and video-recorded, and participant work 

was recorded via Livescribe notebook technology.  It was necessary for participants to 

solve tasks that were genuine problems in order to observe them formulating new ideas.  I 

defined a situation as a “problematic” if it was unclear to the individual how to proceed.  

I defined a situation as a “problem” if the situation was problematic and the individual 

constructed an affective element of interest and entered into the situation with the 

intention of resolving it (Garrison, 2009; Glassman, 2001; Mason et. al, 1982/2010).  As 

described in the theoretical perspective, only the individual can determine if a situation is 

indeed a problem for him.  Indeed, in the exploratory, pilot study (see Appendices B, C, 

and D), for each of the three mathematicians, at least one of the tasks was not problematic 

for them.  For this reason, this research had the mathematicians choose their own tasks to 

solve.  

 The three participants worked on three or four tasks each.  The study examined 

the work on seven total tasks.  Each individual chose one task that he or she saw as a 

challenge or a genuine problem and also chose one task that he or she anticipated another 

mathematician in his or her field would find difficult or challenging.  In the first 

interview, the participant solved the task he or she found personally challenging.  In the 

second interview, the participants solved the two tasks chosen by another participant as 

potentially problematic for a peer.  Dr. B solved a fourth task on his own with the 

Livescribe notebook between the second and third interviews. 
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Dr. A and Dr. C worked on three tasks, and Dr. B worked on four tasks.  Each 

task is included in Table 2.  Dr. A’s individual task (Individual A) involved applications 

of the Lagrange Remainder Theorem. Dr. B’s individual task (Individual B) required 

relating limits of sequences to limit points.  Dr. C’s individual task (Individual C) asked 

to determine and justify where a given function was continuous.  I call the tasks that the 

participants identified as challenging for a colleague peer tasks.  Dr. A presented the 

Uniform Continuity peer task. Dr. B worked on the Uniform Continuity peer task.  Dr. C 

read the task but did not work on it recognizing it as a routine exercise.  Dr. B presented 

me with formulation 1 of the “additive implies continuous” peer task.  Dr. A worked on 

formulation 1, and Dr. C worked on formulation 2.  Dr. C provided the “Extended Mean 

Value Theorem for Integrals” as a peer task and sent me documents with two different 

versions of the task (formulation 1 and formulation 2).  I chose to give the participants 

the statement of Theorem 1 as it is required to prove Theorem 2, but I did not want not 

recalling or knowing the theorem to impede the participants’ progress.  Dr. A worked on 

formulation 1 of the extended MVT task which came from one of the resources that Dr. C 

provided, but Dr. A found a limitation to its formulation.  I modified the formulation 

given to Dr. B (formulation 2) based on the second version provided by Dr. C and the 

issues found by Dr. A.  

 I chose the Own Inverse task as a backup task.  This task was used for the pilot 

study after performing rounds of task analyses.  Dr. B worked on the Own Inverse task 

after recognizing an inability to complete the extended MVT for integrals task.  When Dr. 

C declared that the Uniform Continuity task would be a routine exercise, I provided the 

Own Inverse task to solve. 
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Table 2 
 
Tasks by Participant 
 
Task Name Chosen by Worked on 

by 
Task 

Additive implies 
continuous 
(Linear) 

Dr. B Dr. A Formulation 1: Define f as linear if for every 
x and y, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). Let f be a 
function on the reals. Prove or disprove that if 
f is linear, then it is continuous.  
 

Dr. C Formulation 2: Let f be a function on the real 
numbers where for every x and y in the real 
numbers, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). Prove or 
disprove that f is continuous on the real 
numbers if and only if it is continuous at 0.  
 

Extended Mean 
Value Theorem 
for Integrals 
(MVT) 

Dr. C Dr. A Formulation 1:  
Given Theorem 1: MVT for Integrals: If f and 
g are both continuous on [a,b] and 𝑔(𝑡) ≥ 0 
for all t in [a,b], then there exists a c in (a,b) 
such that∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑎

𝑏 = 𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏
𝑎 . 

Prove Theorem 2: Extended MVT for 
Integrals: Suppose that g is continuous on 
[a,b], 𝑔′(𝑡) exists for every t in (a,b), and 
𝑔(𝑎) = 0. If f is a continuous function on 
[a,b] that does not change sign at any point of 
(a,b), then there exists a d in (a,b) such that 
∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏
𝑎 = 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏

𝑎 . 
 

Dr. B Formulation 2: 
Given Theorem 1: MVT for Integrals: If f and 
g are both continuous on [a,b] and 𝑔(𝑡) ≥ 0 
for all t in [a,b], then there exists a c in (a,b) 
such that∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑎

𝑏 = 𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏
𝑎 . 

Prove Theorem 2: Extended MVT for 
Integrals: Suppose that g is continuous on 
[a,b], 𝑔′(𝑡) exists for every t in [a,b], and 
𝑔(𝑎) = 0. If f is a continuous function on 
[a,b] that does not change sign at any point of 
(a,b), then there exists a d in (a,b) such that 
∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏
𝑎 = 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏

𝑎 . 
 

Own Inverse Researcher Dr. B 
Dr. C 

Let f be a continuous function defined on 
I=[a,b], f maps I onto I, f  is one-to-one, and f  
is its own inverse.  Show that except for one 
possibility, f must be monotonically 
decreasing on I. 
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Table 2 continued    
Task Name Chosen by Worked on 

by 
Task 

Uniform 
Continuity 
 

Dr. A Dr. B Let f be continuous on the real numbers, and 
suppose lim𝑛→−∞ 𝛼 and lim𝑛→∞ 𝛽. Show f is 
uniformly continuous. 
 

Individual A 
(Lagrange 
Remainder 
Theorem) 

Dr. A Dr. A Let I be a neighborhood of the point 𝑥0 and 
suppose that the function 𝑓: 𝐼 → 𝑅 has a 
continuous third derivative with 𝑓′′′(𝑥) > 0 
for all x in I.  
a) Prove that if 𝑥0 + ℎ ≠ 𝑥0 is in I, there is 

a unique number 𝜃 = 𝜃(ℎ) in the interval 
(0, 1) such that 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) +
𝑓′(𝑥0)ℎ + 𝑓′′(𝑥0 + 𝜃ℎ) ℎ

2

2
. 

b) Prove that limℎ→0 𝜃(ℎ) = 1
3
. 

c)  
Individual B 
(Sequences and 
Limit points) 

Dr. B Dr. B Let E be contained in the real numbers, then E 
is closed if it contains all limits of sequences 
{𝑥𝑛} with 𝑥𝑛 ∈ 𝐸 for each n. 
 

Individual 
C(Determine 
continuity)  

Dr. C Dr. C Discuss the continuity of the function. 

𝑓(𝑥, 𝑦) = �
𝑥2−𝑦2

𝑥−𝑦
𝑖𝑖 𝑥 ≠ 𝑦

𝑥 − 𝑦 𝑖𝑖 𝑥 = 𝑦
� 

 
 
 
 The data collection phase occurred in cycles for each participant.  Participants 

worked on a task or tasks in an interview setting, continued to work on the task on their 

own, turned in their at home work that was captured via Livescribe technology (which is 

described below), participated in a stimulated recall interview of their work, and repeated 

with new tasks in the next interview.  The sequence of interviews and tasks is given in 

Table 3.   

Participants worked on the task on their own for a period of three to six days if 

they did not complete the proof task to their satisfaction in the interview.  Between 

participant interviews, I conducted preliminary analyses of their completed work both in 

the interview setting and of their “at home” work to prepare for the follow-up interviews.  
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Table 3  
 
Sequence of Interviews and Tasks 
 
Participant Interview 1 Interview 2 Interview 3 

Participant A Choose personal task A 
and peer task A 
Work on personal task 
A 
 

Stimulated recall of 
personal task A. Work on 
peer tasks B and C. 

Stimulated recall of peer 
tasks B and C. 

Participant B Choose personal task B 
and peer task B 
Work on personal task 
B 
 

Stimulated recall of 
personal task B. Work on 
peer tasks A and C. 

Stimulated recall of peer 
task A and C.  

Participant C Choose personal task C 
and peer task C 
Work on personal task 
C 

Stimulated recall of 
personal task C. Work on 
peer tasks A and B. 

Stimulated recall of peer 
task A and B.  

 

The Livescribe technology consists of a pen and notebook pair.  The camera at the 

base of the pen captures both the real-time writings and audio.  When one turns on the 

pen and taps the record button on the associated notebook, the pen begins recording audio 

and will record writings in that notebook.  These recordings may be uploaded to a 

computer through Livescribe software.  The Livescribe technology has been utilized to 

capture the work of participants both within and outside the interview setting when 

collecting data (e.g., Savic, 2012, 2013).   

Interview One 

The first interview will consist of two aspects, choosing the tasks and working to 

solve the tasks.  I asked the participant to identify two tasks: one that was personally 

challenging and one that would be challenging for a colleague.  These tasks originated 

from the textbook that the participant used in teaching courses in real analysis, their 
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recollection of problems that they had assigned in the past, and their knowledge of related 

tasks that others would find challenging.  The protocol used is in Appendix E.  

The selection of tasks aspect of the interview was semi-structured.  I implemented 

follow-up instructions and questions to restate directions to the participant or to clarify 

utterances made by the participant.  While the participants were selecting tasks, they may 

have spent time thinking about the tasks which may be interpreted as beginning to enter 

the task (Mason et al., 1982/2010) but did not begin attacking the problem until they have 

chosen the tasks.  Twenty minutes were allotted for task selection.  After the participants 

chose the two tasks, the interview transitioned to the second section. 

In the second section of the interview, the participant worked to solve the task 

found to be personally challenging.  The entire interview was video and audio recorded.  

The participant used a Livescribe pen and notebook while working on solving the 

selected task.  A video camera was placed to face the participant and his writing.  The 

Livescribe set up captured writing in real time synced with audio recordings.  

Prior to beginning the task, I explained that I would like the participant to think 

aloud.  Additionally, I asked the participant to make note of when his perception of the 

task changed with the anticipation that this may occur when the participant saw the 

solution and the task was no longer a problem, or the perceived problem changed.  

Participants worked on the tasks in the interview setting for up until the end of the one-

hour interview.  If the participant did not come to a solution that he or she deemed 

satisfying at the end of the allotted time, then the participant continued to work on the 

tasks alone, outside the interview setting.  
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I took pictures of the work that each participant created in the notebook and 

supplied the participant with a Livescribe pen and notebook to continue the work at 

home.  Participants had the Livescribe notebook for up to six days.  I provided both 

written and oral instructions for how the participant should proceed in this “at home” 

work (see Appendix E).  Anticipating that participants could end up thinking about the 

tasks on their own time, like while waiting in line for lunch (Savic, 2013), the participants 

received instructions to return to the notebook to write down and audio record their 

accounts.  This concluded the first interview.  

Between the first and second interviews, up to nine days elapsed.  I transcribed 

the video data and reviewed the video recordings along with the Livescribe recordings 

from the interviews as well as the later collected “at home” work.  I conducted 

preliminary analyses and generated hypotheses and questions for the second interview.  

The procedures for these analyses are described in the section describing data analysis. 

Interview Two 

The second interview consisted of two parts: a follow-up interview of the 

previous interview and work on two additional tasks.  The third interview involved 

follow-up questions for each task from the second interview.  

A goal of this study was to understand the mathematicians’ thinking processes 

while solving a proof-task without disrupting the process itself.  An interview technique 

that has been used to get at what participants “think about the problem not after they have 

finished working on it, but what their thoughts are as they think their way through the 

problem for the first time (Pirie, 1996, p.7, emphasis in original)” is stimulated recall 

(Calderhead, 1981; Lyle, 2003; Rowe, 2009).  In the stimulated recall interview, 
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videotaped passages of behavior are replayed to individuals to stimulate recall of their 

concurrent cognitive activity.  The typical procedure includes a series of open-ended 

questions posed to the participant as soon as possible after, or during the viewing of a 

segment.  The questions focus on description of the segment, the participant’s thinking, 

or alternative behaviors the participant could have chosen (Lyle, 2003). 

The second interview was scheduled within ten days of the first interview (Lyle, 

2003; Pirie, 1996).  The interview was video and audio recorded, and participants wrote 

with a Livescribe pen in a Livescribe notebook.  The stimulated recall of the previous 

interview was semi-structured in that I chose specific video clips to play back and wrote 

questions.  The written questions targeted the participants’ explaining their thinking at 

certain moments, the reasons behind the decisions-made, or their perceptions of the 

situation including problems they perceived and ideas that they thought could be useful.  

The interview was flexible in that the participant had the opportunity to pause, rewind, 

and playback events that he or she deemed important.  I asked follow-up questions as 

needed.  No questions written specifically asked participants to identify new ideas and the 

context surrounding those ideas as Calderhead (1981) emphasized the importance of 

screening the research goal from the participant.  After the first stimulated recall, 

participants worked on two more tasks, and I did not wish to have my focus on the 

participants’ ideas play a role in their thought processes on these future tasks.  The 

stimulated recall portion of the second interview lasted approximately 40 minutes. 

As an example of the stimulated recall protocol, consider Dr. A’s second 

interview.  I had previously generated hypotheses about what the ideas were and had 

written questions about Dr. A’s motivation when solving the Lagrange Remainder 
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Theorem task.  I began by playing back the Livescribe recording which provided Dr. A’s 

audio and also the writings that accompanied the audio.  After playing a section, I would 

pause the recording to ask questions about what Dr. A was thinking about, what Dr. A 

had anticipated, and what motivated the certain actions that we had just viewed.  Also, 

Dr. A would point to sections where he wrote what he deemed as important information, 

and we would play that section back.  Dr. A would make comments, and I would follow-

up with clarifying questions.  

In the final portion of the second interview, the participants worked on two tasks, 

one at a time.  These tasks were chosen by another participant at the time of that 

participant’s first interview.  The protocol was as the task portion of the first interview, 

but I provided additional resources including a list of definitions and relevant prerequisite 

theorems that the participant may not recall.  The definitions were provided as 

mathematicians possess multiple instantiations of the terms involved (Alcock, 2008), but 

it is possible that the participants did not perceive their definitions as equivalent to those 

given by the author of the book.  Similar to the first interview, at the conclusion of the 

second interview, I provided the participants with a Livescribe pen and notebook to 

continue work on the unfinished tasks for up to six additional days.  I conducted 

preliminary analyses of the data from the two tasks completed in this second interview as 

well as the “at home” work to prepare for the third interview. 

Interview Three  

The third, and final, interview was a stimulated recall of the two tasks completed 

in the second interview.  Procedures for this interview were similar to the first portion of 

the second interview.  This final interview lasted approximately 90 minutes. 
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Data Analysis 

Data analyses proceed in three stages.  The first stage was preliminary analysis of 

interviews 1 and 2 for each participant preceding the stimulated recall of the interview.  

The second stage was refinement of the previous preliminary analysis and descriptive 

accounts of the total work on each task by each participant.  Finally, analyses across tasks 

and individuals were conducted.  Each like-problem was analyzed across the two 

participants that worked on it.  The work by each participant was analyzed across the 

tasks completed.  

The units of analyses to be studied for the first research question were the ideas 

that participants saw as moving the argument forward as these critical incidents were 

what the overall research sought to describe (Patton, 2002).  To answer the first research 

question, I worked to identify and describe these ideas and the context surrounding these 

ideas including the perceived problem or problems when the ideas are articulated, the 

mode of inquiry into which the participant is entered, and what tools previously applied 

contributed to the attainment of the idea.  For the second research question, a further level 

of analysis across the entire task was required to describe how the ideas related to one 

another. 

Preliminary Analyses  

Preliminary analyses of each task-based interview were conducted prior to the 

follow-up stimulated recall interview.  The primary goal of these analyses was to 

hypothesize which moments were significant in moving the argument forward, to 

hypothesize the features of the situation that contributed to the generation of these ideas, 

and identify moments where it is necessary for the participants to clarify the motivations 
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for their actions.  From this analysis, questions were created for the stimulated recall 

interview. 

In this preliminary analysis, I transcribed the videos and watched the video 

recordings in sync with the Livescribe recordings.  I noted moments where (a) the 

participant appeared to generate a new idea, to identify a certain tool as useful, or to gain 

some insight into the problem; and (b) moments where it was unclear what motivated a 

certain action.  Primary evidence for identifying the moments of new insights came from 

the participants’ notations of the appearance of these ideas as per the interview protocol.  

Additionally, I identified insights or ideas that the individual used to some satisfaction in 

that the application of the idea or tool solved a perceived problem or led to the generation 

of a tool that solved the problem.  After identifying the moments where it appeared that 

the participant had generated or used an idea that moved the argument forward, I 

generated initial descriptions of these ideas. 

The moments where these ideas occurred acted as markers of transitions in the 

timeline of the evolution of the argument.  In the next stage of the preliminary analysis, I 

endeavored to give a structural description of the evolution of the argument by 

performing Toulmin (2003) analyses on the argument prior to these markers and 

following these markers resulting in a series of Toulmin diagrams of the personal 

argument.  The Toulmin analysis provided a description of the elements viewed useful by 

the participant and for which purpose.  Additionally, it provided insight into the motives 

of various tool applications, anticipated outcomes, and the perceived problems for the 

participant.  In these initial analyses, motivations and some thinking were unclear; also, 

the individual’s argument was not complete at intermediate points in the proof 
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construction process.  Therefore, at many moments, the Toulmin diagrams did not have 

complete structures.  The definitions given by Toulmin for the components of the 

argument structure are given in the theoretical perspective, but in Table 4 I provide 

working descriptions and standards of evidence for each component within the context of 

the mathematical proof construction process and this study.  Although Toulmin’s 

argumentation scheme was used to classify the role of certain statements in the argument, 

during the argument’s evolution, various components such as warrants, backing, and 

rebuttals for warrants were less articulated than complete statements.  For example, the 

drawing of a picture sometimes acted as a backing for the warrant of a certain claim. 

 

Table 4  

Statement Categories of the Toulmin Argument Model 

Statement Category Description 

Grounds Particular facts about a situation relied on to clarify and 
bolster the claim; may be the hypothesis of the statement 
to be proved, specific features that point toward the 
specific claim 
 

Claim Position being argued for 
 

Warrant Principle or chain of reasoning that connects the grounds 
to the claim 
 

Backing Support or justification for the warrant 
 

Modal Qualifier Specification of limits to the claim, warrant, and backing 
 

Rebuttal Stated exceptions to the claim                                                                                                    
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Once a series of Toulmin models were hypothesized, it provided a 

characterization of the evolving structure of the argument which facilitated describing the 

context surrounding the emergence of the ideas that the participant viewed as moving the 

argument forward.  Reviewing the context surrounding the emergence of the idea, I 

hypothesized what the participant perceived as problematic, the phase of the inquiry 

process that he or she appeared to be in when articulating the idea, the tools used that 

influenced the generation of the ideas, and the anticipated outcomes of using these 

influencing tools.  These hypotheses included how the participant appeared to test the 

idea that he or she viewed as moving the argument forward and how he or she used the 

idea throughout the rest of the argument.  Table 5 describes each aspect that was 

hypothesized as well as the standards of evidence used to identify each concept.  The 

standards of evidence that required researcher inference are noted in italics.  In this 

preliminary analysis, all descriptions were hypotheses which were tested against the 

information gleaned from the follow-up interviews.  From these hypotheses, I selected 

segments of the video to replay for the participants and generated questions to gain 

clarification of the participants’ thought processes.  These questions included requests for 

participants to watch a chosen clip of the interview and describe their thinking and 

motivations for certain actions.  
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Table 5  

Standards of Evidence 

Concept Description Standards of Evidence 

Idea that moves the argument 
forward 

Incorporation of the idea changes 
the set of ideas that the individual 
sees pertinent to the personal 
argument. 

The participant notes the moment 
in the interview or the notebook 
Comments such as: “I now 
see…” 
Line of questioning changes 
  

What the problem is Specific problem the participant 
is currently entered into solving 

Participant comments in the form 
of “I want to…” “I don’t know 
how to…” “I don’t know why…” 
 

Mode of inquiry Reflection: Participant has 
articulated a problem and is 
thinking of tools to apply to the 
problem 
 
Action: Participant is currently 
applying a tool or performing 
some action 
 
Evaluation: Participant has 
applied a tool or is currently 
applying a tool and is specifically 
reflecting on the effectiveness of 
said tool 
 

Reflection: Comments such as 
“what can I do?”; writing or 
articulating observations or what 
is known, instantiating the 
situation with the purpose of 
finding a tool to apply to the 
problem 
 
Action: Participant is computing, 
drawing a picture, articulating a 
theorem, and so forth. 
 
Evaluation: Comments such as 
“does that help me?” 

Influencing tool In its application, the tool used 
effected some action or product 
that the participant used in his 
generation of the idea that moves 
the argument forward. 

The participant refers to the 
product or action either verbally 
or with gestures as he/she 
articulates the idea. 
 
There is a relationship between 
the idea and the product of the 
tools 

Anticipated outcome of 
influencing tool 

The purpose of the applied tool.  What the participant says about 
why the tool may be helpful. 
 

Testing of idea Ways the idea are tested to 
determine its usefulness 

Comments such as “Does that 
work?”; “What does that tell 
me?”; “Is that helpful?” 
 

Use of idea How the idea influenced the 
personal argument 

The participant refers to the idea 
or an outcome of the idea 
An outcome of the idea is evident 
later in the argument 
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Primary Analysis 

The analysis of these data borrowed from strategies of grounded theory (Corbin & 

Strauss, 2008).  Analysis began by writing a description of each idea that moved the 

argument forward and the context surrounding the generation of that idea.  I described the 

argument’s evolving structure via Toulmin diagrams formulated in the preliminary 

analysis and informed by the stimulated recall interviews.  Written stories captured not 

only the moment surrounding the idea but how the idea was tested and used as the 

argument evolved.  I then conducted open iterative coding of each idea to organize, 

describe, and link the data.  Finally, I looked for themes and patterns across participants 

within the same task and across tasks. 

The analyzed data included the interviews of the participants working on each 

task, the follow-up interviews regarding each task, and the individual work of the 

participants on the tasks outside the interview.  All interviews and Livescribe recordings 

were transcribed.  I created a file incorporating all data pertaining to each task.  I 

conducted a further iteration of analysis on the transcripts in conjunction with the video 

and Livescribe data to modify the previously generated list of ideas that moved the 

argument forward.  New ideas were added and moments previously identified as 

significant ideas were combined or deleted based on the complete data set. 

After creating a file incorporating all data pertaining to each task, I built upon the 

primary analyses, identifying the ideas that move the argument forward.  For each idea 

that moves the argument forward, I wrote a description as well as the answers to the 

following questions:  
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1. What problematic situation is the prover currently entered into solving when 
one articulates and attains an idea that moves the personal argument 
forward? 

 
2. What stage of the inquiry process to they appear to be in when one 

articulates and attains an idea that moves the personal argument forward? 
(Are they currently applying a tool, evaluating the outcomes after applying a 
tool, or reflecting upon a current problem?) 

 
3. What actions and tools influenced the attainment of the idea? 
 
4. What were their anticipated outcomes of enacting the tools that led to the 

attainment of the idea? 
 

In the preliminary analysis, I hypothesized answers to the above questions.  I 

utilized the data in the follow-up interviews to test my hypotheses and modify the 

answers to the above questions.  I wrote these descriptions of each idea and modified the 

Toulmin analyses of each idea for each task.  Then, I wrote stories to describe the 

evolution of the argument capturing the participant’s complete work on the task, 

sectioned by the ideas that moved the argument forward.  Specifically, I wrote to give 

thick descriptions about each idea, the problem, tools, anticipations, and mode of inquiry, 

how that changed the argument structure, and what previous ideas influenced that idea 

and what happened with the idea as the argument evolved.  In this process, some ideas 

were collapsed into one idea because the prior determinations were results, tools, or 

plans.  

Once the stories of a single task were written across both participants who worked 

on it, I used strategies of inductive analysis (Patton, 2002) to further analyze, compare, 

and interpret the tasks to develop themes, patterns, and findings across tasks.  The data 

analysis was inductive in that largely “open and axial coding” (Strauss & Corbin, 1998) 

was be used to develop a codebook.  The codes used emerged out of the data and 
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sometimes drew upon the language used by the participants in the style of “in vivo” 

coding (Merriam, 2009) or if appropriate, implemented language used in the literature.  

For example, I drew upon Dewey’s (1938) theory of inquiry to describe the mode of 

inquiry. 

Each idea was coded, individually.  Specifically, I conducted open coding of each 

idea that moved the argument forward, the problem situation encountered, the tools that 

influenced the generation or articulation of the idea, and the anticipated outcomes of said 

tools.  I kept records of the generated codes and decisions made in the research journal 

and associated files and spreadsheets.  The final codebook utilized is given in Appendix 

F.  

I made note of emerging themes and patterns that were apparent in individual 

tasks for individual participants.  Analysis occurred across tasks and participants to 

determine the limits of those patterns and themes.  As the idea-types emerged, I 

categorized idea-types according to their perceived purpose as the argument moved 

forward.  To answer the first research question, spreadsheets aided to analyze each idea-

type across problems, tools, and structural shifts.  The sense of the pattern of how the 

ideas were used and tested came from the writing of the stories, in that it seemed that 

aspects of the stories repeated themselves. 

Strategies for Validating Findings 

In this research, I endeavored to establish trustworthiness in the research results.  

My ability to establish trustworthiness depended on how I conceptualize the study and 

the strategies used in data collection, analysis, and interpretation (Merriam, 2009).  This 

study investigated people’s constructions of reality, and any interpretations of these 
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constructions will never capture an objective truth.  However, this study adopted and 

employed strategies to increase the credibility of my findings: triangulation, reflexivity, 

and peer review.  Descriptions of my use of these strategies are given below.  

Specifically, I considered the credibility of any assertions made about the thought 

processes of the mathematicians.  Human thought cannot be directly observed.  This is 

what motivated the inclusion of the methods of a think-aloud interview, the direction for 

participants to note when their perception of the situation changes, and the follow-up 

stimulated recall interviews.  The research findings most likely cannot be replicated as 

human behavior cannot often be isolated and controlled; therefore, as an alternative to 

traditional reliability, I instead endeavored to ensure “the results are consistent with the 

data collected” (Merriam, 2009, p. 221).  My strategies for consistency and dependability 

were triangulation, peer examination, articulation of the researcher’s role, and 

establishing an audit trail.  Generalizability in the traditional sense cannot occur in this 

research as the participant sample was not large and random; however this research 

endeavored to include enough description of the data and data collection procedures to 

allow the reader to establish if the findings transfer to another situation.  This 

transferability can be aided by the use of rich, thick description. 

Denzin (1978) described four types of triangulation: using multiple methods, 

multiple data sources, multiple investigators, and multiple theories.  In this study, I 

employed multiple data sources and multiple methods.  I employed multiple methods of 

data collection; participants were observed working on tasks in a one-on-one interview 

setting, and they also will complete tasks on their own.  Multiple data sources include the 

interview transcripts and Livescribe pen work from the interviews, the Livescribe pen 
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work from the participants’ individual work, and the follow-up, stimulated recall 

interviews with each participant for each task (Merriam, 2009).  The process of 

triangulation involved comparing observations from the task-based interviews with the 

stimulated recall interviews.  

Since the researcher is the primary instrument of data collection in qualitative 

methodologies, I must explain my biases, assumptions, experiences, and dispositions 

regarding the study.  This reflexivity statement was given in an earlier section.  Its 

inclusion contributes to the credibility of this study.  Peer examination (Merriam, 2009) 

or expert audit review (Patton, 2002) will be conducted by the committee of this 

dissertation.  The committee applied critical eyes to assess the quality of data collection 

and analysis according to the theoretical assumptions of this study.  As a means of 

increasing the consistency and dependability of this study, I maintained a researcher’s 

journal (Merriam, 2009) to record my reflections, questions, and decisions throughout the 

data collection and analyses phases.  I used the journal to construct descriptions of how 

data were collected, how categories were derived, and how decisions were made 

throughout the study. 

Ethical Considerations 

Sensitivity to ethical considerations is important at all stages of the research 

process (Creswell, 2007).  In this particular study, no participants were from vulnerable 

populations; however, I still considered how the qualitative interview process affected the 

participants (Patton, 2002).  Patton (2002) provides a checklist of issues to consider in 

designing a qualitative study and highlights consideration of explaining the purpose, 

promises and reciprocity, risk assessment, confidentiality, informed consent, data access 
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and ownership, interviewer mental health, advice, data collection boundaries, and ethical 

versus legal issues.  I explained to participants that the purpose of the study is to observe 

how mathematicians construct proof.  I used this language in an effort to prevent the 

participants from teaching.  The specific research purpose and theoretical framing was 

not shared in order to facilitate observing the process of proof construction as it occurred.  

For credibility purposes, I asked participants to note when their perspective of the 

problem situation shifted, and this may have hinted to them what my focus was. 

I foresee no greater risk to mathematicians participating in this study than those 

they encountered from their typical practice of engaging in mathematics and discussing it 

with others.  Participation in the study did require them to sacrifice time, three sixty to 

ninety minute interviews and time engaging in the tasks outside the interviews which 

may have had an impact on their professional and personal commitments.  Participants 

were informed of the time requirements prior to providing their consent to participate. I 

did not compensate participants or provide tangible incentives.  

I endeavored to maintain the confidentiality of all participants by assigning 

pseudonyms for the participants and their respective universities of employment unless 

the participants opted to be identified (Patton, 2002).  Video data and Livescribe 

recordings were stored on a password-protected computer.  Participants’ written work 

was stored in locked filing cabinets.  Data will be maintained for three years or until the 

publication of the results from this dissertation.  I followed Institutional Review Board 

(IRB) guidelines and requirements for research with human subjects and obtained an 

expedited IRB approval prior to contacting potential participants and collecting data (see 

Appendix G).  I provided a written description of the aspects of participating in this study 
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to the potential participants and obtained written informed consent.  The chair of the 

dissertation committee was charged with storing the data and consent forms.  The 

dissertation committee chair and I were the only individuals who viewed the video and 

Livescribe data for the purposes of peer review. 

 The topics of the interviews were not likely to be emotionally draining for me as a 

researcher.  Even so, the interviews were conducted over a short period of time, and I 

debriefed with committee members to process all that I observed (Patton, 2002).  The 

topics of the interview did not appear to be painful or uncomfortable for participants as 

they were talking about their experiences in completing a mathematical task within their 

own fields of study, a typical practice in their careers.  However, I provided participants 

with the option of ending the interview or discontinuing work on a task.  The chair of the 

dissertation committee acted as my confidant and counselor on matters of ethics as not all 

issues could have been anticipated in advance. 
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CHAPTER IV 
 
 

FINDINGS 
 
 

Introduction 

 As stated in Chapter I, the study presented sought to describe (a) the ideas 

mathematicians form while constructing mathematical proofs that move their personal 

arguments forward, (b) the inquirential context surrounding the emergence of those ideas, 

and (c) how the ideas are tested and how the ideas do or do not change the situation for 

the mathematician.  Data were interpreted through the framing of Dewey’s theories of 

inquiry and instrumentalism and a conception of an evolving personal argument whose 

structure was modeled by a series of Toulmin (2003) diagrams. 

 Three mathematicians participated in interviews where they solved proof 

problems in real analysis.  Table 6 summarizes demographic and professional 

information about the participants, Dr. A, Dr. B, and Dr. C (pseudonyms).  Dr. A and Dr. 

C worked on three tasks, and Dr. B worked on four tasks.  Table 2 from Chapter III listed 

each task used in this study and Chapter III provided more details on participants and 

tasks. 
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Table 6  

Participant Pseudonyms, Years of Experience, and Research Areas 

Pseudonym 

Years Teaching or Doing 
Research in Real Analysis 
Post PhD Primary research areas 

Dr. A 20+ years Queuing theory; 
evolutionary game theory 
 

Dr. B 5 years Applied probability theory 
 

Dr. C 20+ years Functional analysis 
 

 

Problems, tools, and the types of shifts in the Toulmin structures modeling the 

personal argument were open coded then refined into final types as described in Chapter 

III.  Tables in Appendix F provide the definitions or descriptions that were used after the 

refinement process was completed.  Table 40 in Appendix F gives the descriptions of the 

nine types of problems the participants were entered into solving when they articulated 

ideas.  Table 41 presents descriptions of ten types of tools; more specifically, Table 42 

expands on the various purposes of examples observed as participants articulated ideas.  

Table 43 describes the immediate shifts in the Toulmin structures of the personal 

argument seen upon articulation of a new idea.  This chapter presents the thematic 

findings in response to the primary research questions.  Specifically, I present the 

findings in three sections: the types of ideas that moved the argument forward, themes 

regarding inquirential context surrounding the formulation of these ideas, and themes 

found about how ideas were utilized and tested as the arguments progressed toward a 

complete mathematical proof.   
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Ideas That Moved the Personal Argument Forward 

 The ideas that moved the argument forward were ideas that accompanied a 

structural shift in the personal argument as could be captured by a Toulmin diagram prior 

to and following the articulation of the idea, provided the participant means to 

communicate their personal argument in a logical manner, gave a participant a sense that 

his way of thinking was fitting, or were explicitly referred to by the participant as a useful 

insight.  Pictures, examples, or individual actions were not included as ideas but as tools.  

However, the insights extracted from performing and reflecting upon these tools or a 

collection of tools were included as ideas.  Ideas that moved the argument forward also 

sometimes encapsulated facts, known theorems, and the results of their combination.   

 Proposed warrants (statements or reasons to connect evidence and claim) and 

extracted or generated equations were included as ideas even though the participant may 

not have fully believed the warrant or idea would be true or useful.  I chose to include 

these proposals because at the time that the participants articulated the proposals, they 

seemed to perceive how they could connect the proposal to their argument.   

Additionally, as will be described later, the acts of testing proposed warrants led to 

extracting properties and relationships that were combined to formulate a new idea that 

moved the argument forward.  

Each idea was coded in terms of the work that the idea did for the participant.  

There were 15 idea sub-types that were grouped into three categories: Ideas that Focus 

and Configure, Ideas that Connect and Justify, and Monitoring Ideas.  An action or 

evaluation of that action described at one particular moment could solve multiple 

problems or give rise to multiple feelings.  Therefore, multiple idea-types could have 
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characterized a single moment.  For example, an insight that provided a deductive 

warrant could also give the prover a sense of I can write a proof.   In the following 

sections present these three idea categories and the sub-idea-types within them.  I will 

describe each sub-idea-type using examples, present the salient inquirential contexts 

surrounding the emergence of those ideas, and how those ideas were used as the 

participant proceeded toward a routine conception of the task (see Figure 6).  

 

 

Figure 6.  Idea categories and idea sub-types. 
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Ideas That Focus and Configure 

Ideas that focus and configure are the ones that gave the participants a sense of 

what was relevant, what claims to try to connect to the statement, strategies that would be 

fitting to achieve connections, and a sense of how to structure and articulate the 

argument.  I have identified six such sub-idea-types under this category. 

 Informing the statement image.  Informing the statement image ideas served the 

purpose of broadening or narrowing the conception of the situation.  They were found to 

be useful by the participants and resulted in added data statements to the entire statement 

image.  Ideas met this sub-type if the participant identified them as relevant statements 

but did not attribute them to serving some purpose such as acting as a claim or warrant in 

the central argument or sub-argument to be proven.  These ideas acted as added facts in 

that they were true statements that the participant either believed to be true or justified to 

be true.  I provide two examples of ideas that inform the statement image.   

On the own inverse task, both Dr. B and Dr. C combined the assumptions that the 

function f is one-to-one and continuous to discern that f must be either increasing or 

decreasing.  The statement that f is either increasing or decreasing was added to the given 

assumptions, and it informed their conception of how the function could behave.  It 

narrowed the class of functions that could fit the conditions on f. 

I contrast that idea to a statement given by Dr. C on the own inverse task.  Upon 

first reading the statement, Dr. C elaborated the statement that f was its own inverse by 

writing𝑓�𝑓(𝑥)� = 𝑥: “It’s just another way of saying that f is its own inverse.  And I 

knew that that idea was central to the argument that I was going to come up with.  But I 

didn’t know how it was going to fit in.  I needed to find an algebraic way of making it fit 
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in.”  The participant viewed this statement as identical to the own inverse condition.  The 

participant stated that this algebraic representation of the condition should be relevant in 

some way but was not sure how.  This added data statement expanded the known 

assumption of the function being its own inverse. 

Table 7 details for which participants and on which tasks ideas that informed the 

statement image were identified.  Some ideas contributed new data statements but were 

not coded in this category because the ideas contributed other structural changes that 

were more saliently described in another idea-type.  Dr. B had more instances of 

specifically articulating that ideas informed his perception of what was going on than the 

other two participants, but all three articulated an idea in this category at least once.  New 

data statements were added to the personal arguments on the Extended Mean Value 

Theorem for Integrals (MVT) task and the Additive implies Continuous task but their 

additions were not the salient features of an idea. 

 As shown in Table 7, the ideas that informed the statement image were generated 

while the participants were working on a variety of problems with a range of tools.  Four 

out of the seven instances that were coded in this idea-type were articulated when the 

participants were looking for warrants and while they had been exploring specific 

examples. Structurally, the articulation of a new idea to inform the statement image 

added or specified data statements, changed warrant statements, added subclaims, 

changed qualifiers or rebuttals, and added backing. 

 

 

 



106 
 
Table 7 

Summary of Ideas That Inform the Statement Image 

Inquirential context and structural shifts surrounding the emergence of ideas that 
inform the statement image. 
Tasks Own Inverse (2) 

UC (2) 
A-Ind (1) 
B-Ind (1) 
C-Ind(1) 
 

Participants A (1) 
B(4) 
C (2) 
 

Problem No problem (1)  
Tool Problem (1) 
Understanding statement & objects (1) 
Looking for Warrant (1) 
Looking for (conceptual) warrant (3) 
Articulating or Generalizing (1) 
Determining Backing or Validation (1) 
 

Tool Conceptual knowledge (1) 
Examples (4) 
Heuristics & Experience (1) 
Instantiations & Equivalencies (1) 
Symbolizing (1) 
 

Shift Data added (4) 
Changing warrant (4) 
Added Subclaim (2) 
Changed qualifier/rebuttal (1) 
Added backing (1) 

 

 Informing ideas sometimes broadened the perception of all that was included in 

an object’s description, and this broadened view sometimes lead to eliminating the 

feasibility of proposed warrants or backings for warrants.  This idea served as a means of 

testing a proposed warrant and informing a more narrowed pursuit of a warrant (e.g., why 

functions cannot oscillate more and more wildly on a compact set).  
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 Participants developed and used informing ideas at all stages of the process of 

proof construction.  They used the ideas in the pictures constructed; as the participants 

interpreted these pictures, they formulated new warrants and backings.  The 

mathematicians evaluated the statements’ usefulness both explicitly and implicitly.  

Explicitly, participants formulated formal or informal sub-arguments to persuade 

themselves of the statements’ validity or declared a statement a known fact.  Implicitly, 

the statements were tested against their usefulness which was subjective.  Participants 

generated or noted some instantiations of these ideas as important, but the ideas only 

played a role in the development of the picture.  For example, on the Own Inverse Task, 

Dr. B extracted the fact that if a and b were the endpoints of an interval then either f(a)=a 

and f(b)=b or f(a)=b and f(b)=a as important evidenced by Dr. B’s uttering or writing the 

idea in some form multiple times and writing it as a known statement in the final proof as 

well.  However, no part of the final argument explicitly depended on this fact.  Rather, 

Dr. B used it repeatedly to structure pictures, and Dr. B worked with the pictures to 

formulate ideas used to justify claims in the final proof.  Some informing ideas, like the 

endpoint idea above, remained as data statements throughout the entire proof process.  

Some ideas appeared to drift to the periphery of the personal argument.  

 Truth proposals.  The ideas that are categorized in the truth proposal sub-idea 

type were the participant-generated conjectures about the validity of a given claim.  

Participants made conjectures during the proof process (e.g. proposing warrants), but 

only the ones with the specific purposes of determining the truth of the statement given in 

the task were classified as such (e.g. proposed warrants).  For example, in the Additive 

Implies Continuous task, participants were given the prompt to prove or disprove the 
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claim.  Dr. A was given a false version of the task and Dr. C was given a true version.  As 

such, determining the truth of the claim was a potential problematic issue and the 

decision made would dictate how the participants would proceed.  Dr. A went through a 

series of truth proposals and began the task with the initial inclination that the statement 

was not true based on his resources of past experiences.  However, Dr. A thought about 

the tool needed to prove the statement was not true, and decided that generating a 

counterexample would require borrowing ideas from other realms of mathematics besides 

real analysis and require knowledge beyond that of an undergraduate student in real 

analysis.  The participant’s perceptions about the context of the tasks given contributed to 

deeming pursuing the counterexample inappropriate or infeasible.  Dr. A pursued proving 

the statement was true, that additive implied continuous.  Because Dr. A had not yet 

determined which one was correct, Dr. A used the given and accumulated data to 

generate proposals of whether the statement was true or false.  

As shown in Table 8, the only task that involved truth proposals was the ‘prove or 

disprove’ prompt solved by Dr. A and Dr. C.  Because Dr. A’s version of the task was 

false and generating a counterexample was perceived to be difficult, Dr. A wavered and 

made more truth proposals than Dr. C.  Specifically, Dr. A set about to try to prove the 

statement but was unsuccessful in solving the problems of finding warrants to connect 

additive to continuous.  When reaching an impasse, Dr. A would reflect again on the data 

including the feeling that there is a counterexample, and propose that maybe the 

statement was in fact false: 

Let me try one more time.  Yeah, you need to, what you need to show is that for 
any epsilon.  Okay so need to show, to show continuous, need to show that for 
any epsilon bigger than zero, there exists a delta bigger than zero so that if x is 
between zero and delta, then f of x is less than epsilon.  Right, that would be 
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sufficient, but how do you do that? //Yeah, what I tell people when I’m teaching 
them how to do proofs is that, you, you know especially things like this, that are 
wishy-washy, that tell you to prove or find a counterexample, you try one for a 
while, if you don’t get, if you don’t get an answer then you try the other one.  So, 
right now I’m at the point where I’m gonna look for, I’m ready to start looking for 
a counterexample. 
 

It appeared that truth proposals were made when the gathered data pointed toward one 

side being true or when one did not find success or progress in proving one side.   

 

Table 8 

Truth Proposal Occurrences with Counts 

Aspect Instances 
Task Additive implies Continuous (4) 

 
Participant A (3) 

C(1) 
 

Problem Determining Truth (3) 
Looking for Warrant (1) 
 

Tool Connecting & Permuting (1) 
Heuristics & Experience (1) 
Conceptual Knowledge (1) 
 

Shift Changing claim (4) 
Opening structure (2) 

 
 
 
 Table 8 summarized the problems encountered and utilized tools when 

participants made truth proposals.  The most frequent problem encountered when making 

a truth proposal was determining truth, but Dr. A did once change a truth proposal when 

looking for a warrant.  Participants gathered conceptual knowledge, past experiences, 

assessments of context, and connections amongst known ideas to make decisions.   
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 Making a truth proposal was a choice in how to proceed with the inquiry: whether 

to try to prove or to disprove. This could dictate the opening structure of the argument.  

Changing the truth proposal resulted in changing the claim.  Dr. A switched which side of 

the argument for which to argue four times while working on the task while the 

interviewer was present.  The other participant, Dr. C, swapped claims when finding an 

attempt at generating a counterexample was unsuccessful.  The type of task dictated 

whether these types of truth proposals would be made.  The perception of the type of task 

played a large role in how some of the mathematicians approached constructing their 

proofs.   

 Type of task.  On some tasks, it appeared that participants made assessments 

about what tools or ways of approaching generating connections between the conditions 

and the claim would be fitting.  These feelings about how to classify the problem have 

been deemed ideas about the type of task.  These feelings were classified as ideas that 

move the argument forward because they helped the prover identify what sorts of 

arguments would justify the claim most efficiently.   

On the Extended Mean Value Theorem for Integrals (MVT) task, both 

mathematicians initially had a feeling that proving the Extended Mean Value Theorem 

for Integrals would involve a specific set of one or more symbolic manipulations 

combined with an application of the given First Mean Value Theorem for Integrals.  Dr. 

A held an expectation about a certain way to see it: “This kind of looks like the kind of 

problem that once you see how to do, it then it’s easy.”  In the follow-up interview, Dr. A 

said that the choices for paths to pursue were guided by a feeling that some manipulation 

would work: “I was sort of guessing somehow this would work…I think that’s normal 
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procedure that you guess that something is going to work, and if it doesn’t, you try 

something else.”  Dr. B’s initial work on the task involved several attempts to make the 

two equations look similar.  Dr. B agreed that these first approaches to the task involved 

attempts at some sort of symbol manipulation so that the two theorems would look 

similar to each other.  Dr. B also concluded the (never completed) work on the task with 

the feeling that some symbolic manipulation was appropriate: “I still have a feeling 

there’s a little trick I have to do, just some standard tricks, some rule I have to apply and 

connect the symbols correctly where I can sort of connect these two theorems.”  

 As shown in Table 9, both Dr. A and Dr. B found assessments about task-type to 

be useful, on the MVT task.  Dr. B also asserted that a construction-type proof would be 

fitting for his individually chosen task, and when first entering the uniform continuity 

task, Dr. B spent time discerning the logical structure of the statement in order to 

determine the claim to justify based on what evidence. 

 The task-type ideas were generated when participants were first entering the tasks 

and working to understand the statements and objects.  The participants were orienting 

themselves to the task and reflecting on what was known attending to their conceptual 

knowledge, connections among known ideas, and instantiations of ideas.  The 

participants employed heuristic strategies such as listing what was known or identifying 

the hypothesis and conclusion of the statement which informed their choices of how to 

approach proving the statement.  Ideas about the task type influenced how the 

participants proceeded.  Specifically, identifying the task type gave them a direction in 

what sorts of statements or operations they would need to form to connect the hypothesis 

to the conclusion.   
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Table 9  

Ideas About Task Type Codes With Counts 

Aspect Instances 
Task MVT (2) 

UC (1) 
B-Ind (1) 
 

Participant A (1) 
B(3) 
 

Problem Understanding statements & objects (3) 
 

Tool Conceptual Knowledge (1) 
Connecting & Permuting (1) 
Examples (3) 
Heuristics & Experience (2) 
Instantiations & Equivalencies (1) 
 

Shift Changing claim (1) 
Changing warrant (1)  
Data added (1) 
Data repurposed (1) 
Opening structure (2) 

 
 
 
 Identifying necessary conditions.  Sometimes the mathematicians would extract 

statements or properties that needed to hold in order for the statement to be true; they 

identified necessary conditions.  Necessary conditions gave a sense of “The statement 

can’t possibly be true unless this condition is fulfilled.”  In the additive implies 

continuous task, Dr. A identified a necessary condition, or a statement determined that 

must be true in order for the claim to hold, that the function must pass through the origin.  

Dr. A hypothesized that an argument would involve needing this condition to be true and 

knew that if it were not true then the statement would have to be false.  On the same task, 
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Dr. C also identified the same condition as a necessary condition for the statement to 

hold. 

Table 10 summarizes that both participants Dr. C and Dr. A identified at least one 

necessary condition.  This idea was only articulated five times; each time, the participant 

was questioning the truth of the statement to be proven or a claim that had been made.  

Dr. A and Dr. C identified necessary conditions on the Additive implies Continuous task 

when they had not yet asserted a truth conviction.  Also, Dr. A articulated necessary 

conditions on the Extended MVT task when questioning whether the generated argument 

containing a string of connected expressions would hold.  (Dr. A needed 𝑔(𝑡)
𝑡−𝑎

 to be well-

defined on its domain and 𝑔′(𝑎) to exist.)  

 
Table 10 

Necessary Conditions Codings With Counts 

Aspect Instances 
Task Additive implies Continuous (3) 

Extended MVT for Integrals (2) 
 

Participant A (3) 
C (2) 
 

Problem Looking for warrant (3) 
Tool problem (2) 
 

Tool Conceptual knowledge (3) 
Instantiations & Equivalencies (3) 
Known theorem (1) 
Heuristics & Experience (1) 
Symbolic Manipulation (2) 
Symbolizing (1) 
 

Shift Added backing (1) 
Added subclaim (1) 
Change qualifier / rebuttal (3) 
Changing warrant (1) 
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As shown in Table 10, when the participants identified a necessary condition, they 

were looking for a means to connect the conditions to the claim (looking for a warrant).  

Dr. A also was inquiring into whether his proof or the statement was incorrect (tool 

problem).  The tools used were either (a) heuristic strategies or symbolic manipulations 

interpreted with their conceptual knowledge or instantiations of concepts as a means of 

moving the expression that they had forward, or (b) connections formed amongst their 

conceptual knowledge and instantiations of concepts in an effort to find a connection 

between the data and the claim. 

The mathematicians envisioned the identified necessary condition as being critical 

to their truth assessment.  If they could prove the necessary condition held true, then they 

would continue efforts to prove the statement true.  If they found it not to hold, then they 

would have evidence to support disproving the statement.  Dr. C said, “At that point, I 

don’t think I knew.  I think, well I knew that the answer to the question would depend on 

what that limit was going to be.  If I could figure out what that limit was, I would answer 

the question.”   

Structurally, the necessary conditions ideas largely contributed a qualifier or 

rebuttal to their argument.  For example, since Dr. A was fairly certain that the error on 

the extended MVT task was in the posing of the question and not in the work developed 

in the interview, Dr. A decided to conclude that the developed argument was acceptable 

with the rebuttal, “unless g’(a) does not exist.”  At other times, the necessary condition 

would contribute another sub-claim and sub-argument.  Like in the additive implies 

continuous task, Dr. A and Dr. C pursued proving the function passed through the origin 

attempting an algebraic argument before recalling that the additive condition necessitated 
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the function passed through the origin and the recollection of a standard mathematical 

argument.  The proof that the necessary condition contributed another line or sub-

argument to their personal argument which resulted in a data statement for proving the 

statement was true.  Both participants hypothesized the statement would factor in as a 

line in the overall proof.  This hypothesized trajectory was a new idea of an envisioned 

proof path.   

Envisioned proof path.  An envisioned proof path is an idea that proposes a 

series of arguments that will lead to a solution.  The path may not be complete as there 

may be missing pieces in the middle, or the formalization of the argument may not be 

defined.  However, there are envisioned trajectories.  In his work on the additive implies 

continuous task, Dr. A articulated that if the function was continuous at zero, then that 

would be sufficient.  Dr. A had already proven that the function passed through the origin 

but was having trouble connecting the additive property to continuity.  In the follow-up, 

the participant said that from there the proof would be easy and would only be a couple 

lines.  The diagram in Figure 77 shows my interpretation of Dr. A’s envisioned proof 

path.  The arrows indicate the warrants or arguments that would connect the statements in 

the rectangular boxes.  Solid lines indicate certainty; dashed borders indicate uncertainty. 

As Table 11 shows both participants Dr. A and Dr. B envisioned a path to support 

a claim.  Dr. A had envisioned a proof path on the extended Mean Value theorem task 

after he had already strung together a series of expressions symbolically.  He envisioned 

that the proof would be a matter of “tying up loose edges” to support that his symbolic 

manipulations were mathematically sound.  Dr. B endeavored to understand the given 

first MVT in the extended MVT task.  He developed an understanding of why the 



116 
 
statement was true based on exploring examples of integrals of constant and step 

functions.  Dr. B stated that he could envision how he would prove the statement: 

So now, I’m convinced.  I’ve convinced myself this theorem is true because now 
the standard machine, and that’s building from step functions to continuous 
functions, should prove this…So that’s really good because now I understand the 
first theorem in the context of step functions…  At least at this point, I understand 
better the statement of the first theorem and how to prove the first theorem. 
 

Dr. B did not try to prove the statement, but felt comfortable moving forward based on 

the envisioned path.    

 

 

Figure 7.  Dr. A’s envisioned proof path for the additive implies continuous task.  
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Table 11 

Envisioned Proof Path Codings With Counts 

Aspect Instances 
Task Additive implies Continuous (1) 

Extended MVT for Integrals (2) 
UC (1) 
 

Participant A (2) 
B(2) 
 

Problem Looking for warrant (1) 
Looking for (conceptual) warrant (2) 
Backing for previous idea (1) 
 

Tool Conceptual knowledge (1) 
Connecting & Permuting (2) 
Examples (1) 
Instantiations & Equivalencies (1) 
Other (1) 
 

Shift Change qualifier/rebuttal (3) 
Change warrant (1) 
Data added (1) 
Data repurposed (1) 
None (1) 
 

 

Participants developed envisioned proof paths when looking for justifications 

using connections between ideas and properties developed from exploring examples, 

their known instantiations of concepts, and conceptual knowledge. A result of the 

development of an envisioned proof path was a change to the participants’ personal 

argument structure as a change or addition of a qualifier or rebuttal in that participants 

could articulate under what conditions they could prove the statement to be true as shown 

with Dr. A’s argument after articulating that showing continuous at zero would be 

sufficient in proving continuous everywhere (see Table 12). 
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Table 12 

Dr. A's Personal Argument Structure After Articulating His Envisioned Proof Path 

Data Claim Warrant Backing MQ/Rebuttal 

Getting a 
counterexample 
requires going 
outside analysis;  
f(0)=0;  
f is additive;  
Continuous 
means: if y is 
really small then 
f(y) must be 
really small 

F is continuous If continuous at 
zero, then 
continuity 
follows 
immediately 

If y is really 
small then f(y) 
must be really 
small 
Envisioned steps 

Truth depends on 
continuity at 0 

 
 

 
The envisioned proof path idea-type “did work” for the participants in so far as 

the participants’ intentions when they developed it.  Since the version of the statement 

given was false, Dr. A was not able to fill in the warrant that showed that f was 

continuous at zero.  The envisioned path was abandoned in pursuit of a counterexample.  

Later Dr. A explained that if provided with the fact that f was continuous at zero, then the 

proof would just need a few more lines.  Dr. B did not pursue the envisioned proof path 

for the First MVT because that was not the intention.  The participant was working to get 

enough of an understanding about why it worked to potentially apply it to proving the 

Extended MVT.  In Dr. B’s evaluation, the work achieved the purpose.  Dr. B did realize 

the envisioned proof path while working on the uniform continuity task. 

Ideas about formal logic and the representation system of proof.  As expected 

when the task is to write a proof of the situation, the mathematicians made decisions 

regarding structuring and communicating a formal mathematical argument.  Ideas were 

classified as ideas about formal logic and the representation system of proof if they 
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involved decisions in how to either structure or communicate an argument apart from the 

actual mathematical content of the problem.  It should be noted that not all logical 

decisions were identified as ideas that move the argument forward because many logical 

decisions were embedded within other ideas or the realizations of these ideas which 

typically occurred without incident for the participants to note them as important.  Other 

uses of formal logic and the representation system of proof that contributed to the 

development of other ideas were coded as tools.   

The logic and representation system decisions noted as ideas that move the 

argument forward included decisions on how to structure the argument, what qualifiers to 

use, writing or rewriting the given task’s conditional and hypothesis statements, and 

discerning what constitutes mathematical proof.  As an example consider some of the 

ideas posed by Dr. C on the Own Inverse task.  Early on, Dr. C identified that if a 

function were increasing and not equal to the identity function, then something would go 

wrong with the symmetry.  The participant spent some time trying to identify what that 

something was.  This led to the idea of pursuing a proof by contradiction attempting to 

prove the following statement: “Let f be as given, increasing, and not equal to the 

identity, then f-inverse cannot be f.” Later on, Dr. C developed a warrant found to be 

generalizable and then had the idea to change the argument to prove the statement: “Let f 

be as given and increasing, then f(x) = x.” This idea related to how Dr. C planned to 

structure the argument.   

As noted in Table 13, Dr. B expressed more ideas about logical structure than the 

other two participants, and they appeared on every task that Dr. B worked on.  On two 

tasks, Dr. B decomposed the statement into logical P and Q statements and discerned that 



120 
 
it was appropriate to pursue a P implies Q argument. I asked Dr. B if this was typical of 

his practice, and Dr. B responded that he often found this useful in analysis tasks: 

Doing the P and the Q part? Um, because in analysis, because of the complexity 
of the statement, there’s so many little quantifiers and logical things like that.  For 
me it just helps organize the problem and really isolate the antecedent and the 
consequence so you can just look at them individually, and individually sort of 
decode them, you know.  So it just helps me, it’s difficult for me to look at sort of 
the original statement.  It helps me to visually sort of isolate the statements that, 
that are involved in the logic we are using.  Just on a logical level, yeah.  So, 
that’s, I think that’s what I isolated those is just to make things more organized on 
a logical level so I could identify the, I could work with those sort of individually, 
yeah, in terms of describing them in different mathematical ways if I need to I 
guess, yeah. 
 
 

Table 13 

Logical Structure Codings and Counts 

Aspect Instances 
Task MVT (1) 

Own Inverse (2) 
UC (3) 
B-Individual (1) 
 

Participant A (1) 
B (5) 
C(1) 
 

Problem Backing for previous idea (1) 
Articulate & generalize (1) 
Understanding statements & objects (2) 
Tool problem (1) 
No problem (2) 
 

Tool Connecting & Permuting (1) 
Heuristics & Experience (4) 
Instantiations & Equivalencies (2) 
Knowledge of sociomathematical norms and logical structure (6) 
Symbolizing (2) 
 

Shift Changing/Specified Claim (1) 
Changing Warrant (3) 
Data removed (1) 
None (1) 
Opening structure (2) 
Order of presentation (3) 
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Only one of each of Dr. A and Dr. C’s ideas that move the argument forward were 

classified as ideas about formal logic and the representation system of proof; they were 

an idea about how to better structure a final argument (Dr. C on the own inverse task) and 

an evaluation that an argument did not count as mathematical proof and should be 

explored further (Dr. A on the MVT task). 

The formal logical decisions were not the aspects of the task that participants 

found problematic with the exception of Dr. B’s including determining the logical 

structure of the claim with working to understand the statement.  When making the 

logical decisions, the problems the participants were entered into solving were looking 

for ways to articulate or generalize a warrant, justify a previous idea, or fix a perceived 

error in their write-ups.  

Dr. C, for example, achieved an algebraic contradiction on the Own Inverse task 

and moved to writing the details in a formal proof.  Dr. C made decisions while carrying 

this out to change the argument from a proof by contradiction to a proof that if f were as 

given and non-decreasing, then it must be f(x) = x.  In making that decision, the 

participant made the necessary changes to the inequalities in the original algebraic 

warrant.  However, Dr. C applied these decisions or tools expertly knowing the exact 

outcome each decision would achieve.  Dr. C even described that there were instances of 

writing without thinking which indicates non-inquirential behavior or that no problem 

was perceived.  Dr. C did engage in some checking in rethinking a qualifier used.  The 

participant also checked the argument and realized that it only proved one of two cases 

and went on to prove that second case. 
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 The structural shifts noted in Table 13 indicate the immediate consequences of 

this particular idea.  Decisions like choosing to argue by cases affected the structure of 

the personal argument by adapting or changing the warrant, backing, or order that the 

argument was presented.  The implementation of logical structure ideas did not always 

affect the structure of the personal argument.   Ideas about formal logic and the 

representation system of proof informed how the participants chose to pursue an 

argument and how they chose to present it.     

Summary about ideas that focus and configure.  The six above idea-types were 

grouped together because they all appeared to do work for the participant as far as 

making decisions about how to begin, how to proceed, and what tools and ideas to use in 

doing so.  Specifically, ideas that informed the statement image broadened, narrowed, or 

shifted participants’ view of what statements, facts, relationships, and so forth were 

potentially pertinent to completing the task.  Combining these ideas with other perceived 

useful tools enabled participants to make truth proposals, discernments about task-type, 

and identify necessary conditions.  Truth proposals and identified necessary conditions 

guided the direction of pursuit in that they identified claims to try to connect to the data.  

Ideas about formal logic and the type of task gave information about potential strategies 

for development of connections between the data and the claim.  Envisioned proof paths 

and necessary conditions advised what steps would be needed in order to connect to the 

claim.  Ideas about formal logic and envisioned proof paths informed the organization 

and articulation of the argument.  As noted above, the implementation of these ideas did 

only not affect the organization, data, and claims of the personal argument; focusing and 

configuring ideas also had influence on warrants and backing as they provided 
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information as to which warrants and backings could be useful and which were 

inappropriate.  The warrants and backings were the means by which the connections 

sought were achieved and justified. 

Ideas That Connect and Justify:  
Warrants and Backing  

Warrants and backings were the means by which the participating mathematicians 

connected data with claims.  The mathematicians sought specific warrant and backing 

pairs that would establish connections in ways that could be finally articulated and 

justified in a mathematical proof.  This inquiry sometimes involved looking for and 

finding symbolic manipulations and syntactic applications of known and given theorems 

and definitions that could be pieced together to connect the hypothesis and conclusion.  

Other times, participants needed more information in order to determine what 

manipulations and theorems should be applied and how they could be applied.  So, they 

first searched for a structural or conceptual reason beyond the symbolic representations 

that underlie the link between the two mathematical statements.  In either instance, 

participants made conjectures as to which connections would be useful and the 

connections may or may not have been based on logical deductions.  

 Inglis et al. (2007) found that when mathematics graduates were making 

conjectures, they justified them with warrants that were not always based on deductive 

backing.  Inglis and colleagues identified three such warrant-types.  Deductive warrants, 

(warrants based on deductive backing), structural-intuitive warrants (warrants backed by 

the prover’s intuition and knowledge about the mathematical concepts and their 

relationships), and inductive warrants (warrants backed by the exploration of specific 

examples).  I borrow from Inglis and colleagues to describe the warrant ideas that the 
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mathematicians had while in pursuit of a mathematical proof.  I expand upon their 

classifications to include the warrant-type, syntactic connections, in order to include 

proposed and utilized warrants that serve to connect statements symbolically but do not 

always attend to the mathematical conditions permitting the manipulation’s deployment.  

Each warrant-type was coded as an idea that moved the argument forward because their 

proposal, testing, and implementation either led directly the development of a 

mathematical proof or provided new information deemed useful to the eventual 

construction of the proof.  Examples of these four warrant-types are provided in the 

sections below.  

 Typically, proposed and utilized connections between statements fell into these 

four categories.  As such, the backings for the connections were categorized within the 

warrant type.  There were instances where participants proposed new backings to support 

an already articulated warrant.  Also, there were instances where a vague sense of a 

backing or underlying reason to a connection between the two statements was vaguely 

articulated prior to the establishment of a warrant to match it.  All these ideas were coded 

as proposed backings. 

 Table 14 summarizes the four warrant-type ideas and the proposed backing ideas.  

I will refer to the table in specificity within each subsection and further describe the idea-

type, provide examples, summarize the inquirential context surrounding their emergence, 

and their immediate impact on the personal argument.  A later section describes themes 

regarding the utilization and testing of ideas and the different ways that the warrant-types 

and backings interacted as the argument progressed toward resolving the deemed 

problem. 
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Table 14 

Summary of Warrant-Types and Proposed Backing Ideas With Counts 

 Deductive Syntactic Connections 
 Inductive Structual-Intuitive Proposed Backing 

Task Additive implies 
Continuous (2) 
MVT (1) 
OwnInverse(2) 
UC(2) 
A-Ind (4) 
B-Ind (1) 
C-Ind (3) 
 

MVT (3) 
A-Ind (3) 

MVT (2) 
OwnInverse (4) 
UC (1) 

Additive implies 
Continuous (4) 
Own Inverse (1) 
UC (3) 

Additive implies 
Continuous (1) 
OwnInverse (2) 
UC (1) 
A-Ind (1) 

Participant A (6) 
B (4) 
C (5) 

A (6) B (6) 
C (1) 

A (2) 
B (3) 
C (3) 

A (1) 
B (2) 
C (2) 

Problems Determining truth (3) 
Looking for Warrant 
(3) 
Generalizing/ 
articulating idea (3) 
None (6) 

Looking for Warrant 
(symbolic connection) 
(5) 
None (1) 

Looking for Warrant 
(conceptual )(6) 
Looking for Warrant 
(deductive) (1) 

Determining truth 
(4) 
Looking for 
Warrant 
(deductive) (1) 
Looking for 
Warrant 
(conceptual) (3) 
 

Looking for 
Warrant 
(conceptual) (2) 
Looking for 
Warrant (deductive) 
(1) 
Generalizing/ 
articulating idea (1) 
Tool problem (1) 
None (1) 
 

Modes Reflection (4) 
Action (7) 
Evaluation (2) 
Unknown (1) 
 

Reflection (4) 
Action (1) 
Evaluation (1) 

Reflecting (1) 
Action (3) 
Evaluation (3) 

Reflection (3) 
Evaluation (5) 

Reflection (1) 
Action (2) 
Evaluation (2) 

Tools Conceptual 
Knowledge (6) 
Connecting & 
Permuting (9) 
Heuristics & 
Experience (4) 
Instantiations (1) 
Known Theorem (2) 
Logical structure 
(implied in all) 
Symbolic 
Manipulation (4) 
Symbolizing (3) 
 

Conceptual knowledge 
(1) 
Connecting  & 
Permuting(4) 
Known Theorem (2) 
Symbolic Manipulation 
(4) 

Examples 
-to see why true (4) 
-to understand (1) 
-to test (2) 
- articulate (1) 
Conceptual 
knowledge (3) 
Heuristics & 
Experience (1) 
Instantiations (2) 
Interruption (1) 

Example 
-to understand (1) 
-to test (1) 
Conceptual 
knowledge (6) 
Connecting & 
Permuting (5) 
Heuristics & 
Experience (2) 
Instantiations (2) 
 

Example 
-to see why (2) 
Conceptual 
knowledge (1) 
Connecting & 
Permuting (4) 
 

Structural 
Shifts 

Added subclaim (3) 
Added backing (5) 
Change claim (2) 
Change warrant (5) 
Data added…(3) 
Data repurposed (6) 
Opening (1) 
 

Added subclaim (6) 
Data added (4) 
 

Change backing (2) 
Change warrant (4) 
Data repurposed (1) 

Added subclaim 
(1) 
Change claim (3) 
Change warrant 
(5) 
Data repurposed 
(1) 
Opening (3) 
 

Added backing (2) 
Change MQ/ 
rebuttal (2)  
Change warrant (2) 
Data added (2) 
Data repurposed (1) 
 

Tested None (6) 
Write deductive 
backing (2) 
Symbol connections 
(5) 
Mathematically 
hold(2) 
Unknown (1) 
 

Symbol connections (6) 
(later) mathematically 
hold (6) 
(implied)  

Example (6) 
None (1) 

Look for 
deductive backing 
(5) 
Example (2) 
Context (1) 

Example (3) 
Symbolizing (3) 
Extend case (1) 
Symbol connections 
(1) 
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 Deductive warrants.  Participants had the overall goal of developing deductive 

warrants; that is they worked to develop reasoning why the claim would be true based on 

generalizable logical statements.  Dr. C referred to attaining a deductive warrant as 

figuring out “how to do it algebraically.”  An example of the development of a deductive 

warrant was Dr. C’s development of an algebraic contradiction to the own inverse task.  

Dr. C had been trying to find a reason that could be rendered into a proof why f(x) = x is 

the only increasing function with the properties of being continuous, bijective on the set 

[a,b], and its own inverse.  After some proposed warrants and backings, Dr. C stated that 

“It has to depend somehow on the fact that when I reflect over the diagonal line, the piece 

of the curve that’s below the diagonal line ends up above the diagonal.”  Dr. C then set 

about trying to utilize this idea in a symbolic way deploying several ideas that he had 

developed earlier: an idea to argue by contradiction, an idea about how not being on the 

line y = x meant that a point was either above or below the line, symbolic manifestations 

of what it meant for a function to be its own inverse, and the developed idea that 

something happens when the point is reflected across the line to develop the contradiction 

in Figure 8.  

 

 

Figure 8.  Dr. C’s sketch of a deductive argument for the Own Inverse task. 
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 The structure of the personal argument before and after the articulation of the 

argument is given in Table 15 below.  The actual deductive warrant is the idea that there 

is an x-value, u, such that f(u) must both be greater than and less than u.  The backing for 

the warrant is the series of logical deductions that support it. 

 

Table 15 

Dr. C’s Personal Argument on the Own Inverse Task Before and After Developing a 
Deductive Warrant Idea 

Data Claim Warrant Backing MQ/Rebuttal 

F is its own 
inverse so 
f(f(x))=x and it is 
symmetric about 
y=x 
F is 1-1, 
continuous, onto, f 
is either increasing 
or decreasing 
Reflecting over 
y=x moves points 
below the line 
above the line 
Trichotomy 
principle 
 

F is decreasing 
except f(x)=x 

 Something that 
uses points moving 
above or below the 
line y=x 
The trichotomy 
principle means 
points will be 
below/above the 
line 

 

F is its own 
inverse so 
f(f(x))=x and it is 
symmetric about 
y=x 
F is 1-1, 
continuous, onto, f 
is either increasing 
or decreasing 
Reflecting over 
y=x moves points 
below the line 
above the line 
Trichotomy 
principle 

F is decreasing 
except f(x)=x 

If f were increasing 
and not f(x)=x, 
then would get a 
contradiction that 
f(u)<u and u<f(u) 

Assume u<f(u) 
(since fIx) is not 
x), since f is 
increasing f(u)< 
f(f(u))=u  

“this gets it” 
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 As we can see, Dr. C attended to several data statements.  The development of the 

deductive warrant changed the warrant, the backing, and Dr. C announced a qualifier of 

certainty that he could develop a proof.  It should be noted that the above argument is not 

a completed mathematical proof.  The idea for a deductive warrant came before or during 

the articulation of an actual proof.  The warrant idea is a proposal for a means of 

connecting the data and claim.  It may need to be combined with other ideas to yield a 

mathematically correct proof. 

 As was shown in Table 14, each participant developed a deductive warrant idea 

on at least one task.  Some participants developed more than one deductive warrant for an 

individual task as a means to justify sub-claims within their overall argument.  There 

were two cases where an idea was coded as an (incorrect) deductive argument which 

meant that the prover had believed that they had deductively justified the claim, but the 

backings were based on incorrect mathematical statements.   

 In the example above, Dr. C was addressing the problem of determining 

symbolically what actually went wrong when the point was reflected over the line (coded 

generally articulating an idea).  The contradiction with the inequalities came while he was 

applying the above ideas symbolically (coded connecting & permuting, symbolizing, and 

symbolic manipulation).  In general, participants developed deductive warrants by 

deploying and connecting a variety of known facts, relationships, and heuristics 

symbolically.  Knowledge of logical structure was implied in all cases, just as Dr. C had 

implied there was still the needed step to write down the case that u was greater than f(u).  

The problems encountered were actively seeking to develop a connection, seeking to 
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generally articulate an idea, and to determine truth.  There were instances when 

participants developed deductive warrants without perceiving a problem.   

 Finding warrants that could be articulated generally and in the representation 

system of proof acted as critical moments in the development of mathematicians’ 

arguments.  Upon articulation of the deductive warrants symbolically, participants either 

tested them or declared they were finished with proving that particular claim.  The 

deductive warrant ideas were tested by writing down and checking over the deductive 

statements to back them, checking over the symbolic connections against the given data 

to ensure all connections were allowable, the symbols matched, and that all cases were 

covered.  

 The immediate effect on the personal argument was the adding of sub-claims and 

data statements if several sub-statements were linked together, the changing of the 

warrant and backing, and the purposing of data statements as warrants or backing.  The 

two instances where there was a change in claim referred to Dr. C’s work on the 

individual task that required assessing the continuity of a given function.  The changes in 

claim were due to the open-ended nature of the task where the person working on the task 

was to provide the domain on which the function was continuous.  Dr. C deductively 

made assertions about where the function was continuous.   

 Syntactic connection ideas.  As a means of connecting two statements, 

participants would sometimes search for ways to connect the symbolic representations of 

the two statements.  For example on the extended MVT task, the statement to be proven 

was an equation between two integral statements, and the first MVT that was given as a 

known also had a similar looking equation.  Based on their assumptions about the task-
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type, both Dr. A and Dr. B worked to connect the known equations and expressions to 

result in the an equation of the left-hand-side of the theorem to be proven with the right 

anticipating it would involve symbolic manipulations that would enable an application of 

the First MVT.   

I term the ideas of useful symbolic manipulations syntactic connections.  An 

example of a syntactic connection is the idea Dr. A developed to allow a (t-a) factor 

appear in the product 𝑔(𝑡)𝑓(𝑡) by multiplying and dividing g(t) by (t-a).  These means of 

connections are a type of warrant as they connect the given evidence to the claim.  

However, a series of these syntactic connections may need to be strung together to 

actually connect the evidence to the claim, and they may not always be supportable by 

deductive reasoning or may not attend to the mathematical objects that the symbols 

represent.  For example, Dr. A found multiplying and dividing by (t-a) was useful in 

manipulating the expression to look in an intended way, but Dr. A did not attend to the 

fact that dividing by (t-a) was potentially problematic until going back to clean up the 

“loose edges” of the argument.  

As was shown in Table 14, Dr. A was the only participant to utilize what I termed 

as syntactic connections on the Extended MVT task and on Dr. A’s own chosen 

individual task that applied the Lagrange Remainder Theorem which also involved 

proving a symbolic equation was true.  Dr. B did try to find ways to connect expressions 

symbolically on the Extended MVT but was not successful.  The syntactic connections 

that Dr. A developed either were strung together immediately step-by-step or were left as 

data statements as other equations were developed.  Looking for similarities amongst the 

gathered statements on the Lagrange Remainder Theorem task, Dr. A employed algebraic 
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substitution to eventually connect all the equations.  On The Extended MVT task, once 

Dr. A had symbolically connected the two expressions to result in the equation to be 

proven, Dr. A declared that he now knew the steps of the argument but would need to 

check if the steps were allowed: “I think I know how to do it…I’ve got the skeleton.  I 

know the steps.  I’ve got to make sure each step is right.”  Dr. A then worked to write up 

the proof of the statement.  The syntactic connections remained warrants, but Dr. A 

checked if conditions were met in order to back these syntactic connections.  With 

syntactic connection warrants, the evolving personal argument seemed to consist of a 

continual adding of sub-claims that would eventually be strung together as proven claims 

would become data. 

 Inductive warrants.  Inductive warrants are statements meant to connect data to 

claim based on specific examples.  An instance of an inductive warrant was the warrant 

that convinced Dr. B of the truth of the first MVT.  The task as given is shown below.  

Given: Theorem1- MVT for Integrals: If f and g are both continuous on [a,b] 
and 𝑔(𝑡) ≥ 0 for all t in [a,b], then there exists a c in (a,b) such 
that∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑎

𝑏 = 𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏
𝑎 . 

Prove: Theorem 2 – Extended MVT for Integrals: Suppose that g is continuous 
on [a,b], 𝑔′(𝑡) exists for every t in [a,b], and 𝑔(𝑎) = 0.  If f is a continuous 
function on [a,b] that does not change sign at any point of (a,b), then there exists a 
d in (a,b) such that ∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏

𝑎 = 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏
𝑎 . 

 
 Dr. B had set about trying to understand the two theorems with specific examples 

of functions.  Exploring the first MVT using 𝑔(𝑥) = 1 and 𝑓(𝑥) = 𝑥2, Dr. B developed 

an understanding about what the theorem meant: 

I’m just saying that if I have an area like this then and again the function doesn’t 
really have to be positive, just g has to be positive.  I’m going to assume g equals 
one right here.  It’s telling me I can always find an x so that the area, there’s 
always going to be a rectangle whose area is the same as my function.  That 
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makes sense.  Okay I can always find a rectangle whose area is the same as my 
function there.  
 

Dr. B referred to a picture drawn (see Figure  9) as contributing to the rectangle 

interpretation which was that the ‘c’ chosen would scale down the rectangle formed by 

the area under 𝑔(𝑥) = 1 to a height (𝑓(𝑐)) where the area of the new rectangle is equal to 

the are under 𝑓(𝑥) = 𝑥2 which was the product of 𝑓 and 𝑔.  

 

 

Figure 9.  Dr. B’s first specific example of the First MVT for Integrals. 

 

But it was easy for me to see geometrically that, that’s what I was thinking back 
here.  In this, um previous picture, in this picture [pointing at screen].  One of 
these pictures here, I had a line through it.   But the thought was that, yeah, all it 
was saying is that if you have a function like this that the area underneath g 
[meaning f] is equivalent to the area of some rectangle [pointing to picture] that 
you draw across from that.  And that’s geometrically easy to imagine, you know.  
And then that was just for a special case for one of the functions. 
 
Dr. B worked to extend the idea about having a rectangle to another case where 

𝑔(𝑥) = 1 + 𝑥, but Dr. B was not able to identify a rectangle associated with the non-

constant g(x).  Therefore, the participant decided to do another example keeping g 

constant.  “What if g of x is two? We’re going to slightly complicate, g seems to be 

throwing me off.”  Dr. B thought about 𝑔(𝑥) = 2 and 𝑓(𝑥) = 𝑥2.  Dr. B drew the two 

functions on the interval [0,1] as well as their product.  Dr. B thought for a while about 
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the areas under the product curve and the area under the constant function (see Figure 

10).  The participant placed an ‘x’ at a point on the function f, and concluded that 𝑐 = 𝑑.  

“So I want to say the integral of the function g times f from zero to one, [shades under 

g*f] I can take two [shades under g] this is two, times, alright [marks an x on the f curve], 

and actually in that case, c equals d.”  

 

 

Figure 10.  Dr. B’s specific example for first MVT (MVT-graph6). 

 

As shown in Figure 10, Dr. B tested why 𝑐 = 𝑑, writing the equation for the first 

MVT for the earlier worked example using 𝑔(𝑡) = 1 and 𝑓(𝑡) = 𝑡2 and the equation for 

the first MVT for the current example, getting the constant that makes both equations true 

is 1
√3

.  Even though Dr. B talked about constants ‘c’ and ‘d’ which are used in the first 

and extended MVTs, respectively, these values were the two constants needed for the 

first MVT for the two pairs of example functions.  It is reasonable to assume Dr. B was 

not thinking about the ‘d’ in the extend MVT because the participant was not exploring it 

and in later explorations Dr. B declared it was an attempt to understand the first MVT. 

After exploring the examples involving a constant function, Dr. B discerned a 

grasp on understanding why the first MVT held when one function was constant based on 
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areas of rectangles as well as computations.  “That’s how that works.  You can do this 

thing for any step function.  So if you have g of x equals constant, then c is going to equal 

d.”  So, the idea evolved from seeing that there is a rectangle whose area is equal to the 

area under the product curve to the statement that no matter the constant function, the 

same constant value will make the equation hold.  Dr. B alluded to this also holding for 

any step function and tested this:   

And now, sort of, ideas are starting to sink in here.  Because as soon as I can do 
something for a step function as far as integration theory, you can do other, sort of 
interesting things.  If I had a step function, now this is a step function, so g is not 
continuous in this case, but it is still going to work. 
 
Dr. B generated a step function 𝑔(𝑡) and paired it with the function 𝑓(𝑡) = 𝑡2as 

before.  The participant did not compute the values of the integrals but used properties of 

integrals to rewrite the statement to be proven as a sum of integrals that could restrict g(t) 

to constant functions as before (as seen in Figure 11).   

 

 

Figure 11.  Dr. B's example step function used in exploring the First MVT for Integrals. 
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To the participant, this equation was enough to achieve personal conviction that 

the first MVT held for step functions, and Dr. B envisioned a way of proving the theorem 

would hold for any continuous function using the “standard machine” for integral 

arguments:   

So now, I’m convinced.  I’ve convinced myself this theorem is true because now 
the standard machine, and that’s building from step functions to continuous 
functions, should prove this…So that’s really good because now I understand the 
first theorem in the context of step functions. 
 
To address the greater problem of understanding the First MVT, Dr. B set about 

determining if his proposed idea that the ability to create rectangles of a certain size was 

the key idea supporting why the statement was true.  Because the rectangle idea was 

developed based on a constant function and then supported by a different constant 

function, Dr. B proposed that the theorem could be shown to work for step functions with 

the end in view of using standard integration theory tactics to extend the step functions to 

all continuous functions.  The idea emerged while Dr. B was evaluating the work in 

testing the idea for constant functions.  It proved fruitful when Dr. B developed self-

conviction in the idea’s viability on step functions by partially exploring an example step 

function that spanned the interval [0,1].  Dr. B did not feel the need to input the functions 

into the integral computations or to find the ‘c’ needed to make the equation true and did 

not test varying the function f(x).  This was because Dr. B’s purpose was not to prove the 

First MVT but to gain enough of an understanding of the First MVT to render it in 

exploring why the Extended MVT was true.  Table 16 summarizes the ending structure of 

Dr. B’s argument supporting the First MVT.  It is not a proof as it is based on inductive 

verifications, but it sufficiently convinced Dr. B and gave the feeling of being able to 

render the argument into a proof. 
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In addition to the Extended MVT task, inductive warrant ideas were utilized in the 

Own Inverse task by both Dr. B and Dr. C, and by Dr. B on the Uniform Continuity task.  

Dr. B and Dr. C developed inductive warrant ideas, but Dr. A derived none.  In fact, Dr. 

A did not pose any examples while working on any task, but that may have been due to 

the perceived nature of the tasks that he worked on.  Neither Dr. A nor Dr. C utilized 

specific examples on the additive implies continuous task, and Dr. B only deployed 

examples on the MVT task because he did not achieve success symbolically while Dr. A 

did. 

 

Table 16 

Structure of Dr. B's Personal Argument Specifically Pertaining to Proving the Given 
First MVT for Integrals 

Data Claim Warrant Backing MQ/ Rebuttal 

Statement of 1st 
MVT (𝑔(𝑡) ≥ 0, g 
and f continuous on 
[a,b] 
In 1st MVT, g(t) acts 
as a weighting 
function  
Earlier argument 
that MVT works or 
constant g(t) 

∃𝑐 ∈ [𝑎, 𝑏]such that 
∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑏
𝑎 =
𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏

𝑎   

A standard 
argument that 
extends integrals of 
step functions to 
integrals of 
continuous functions 

Computations 
and pictures with 
𝑔(𝑥) = 1 and 
𝑔(𝑥)  = 2 while 
𝑓(𝑥) = 𝑥2 on the 
interval [0,1] 

Not a proof 

 

As was shown in Table 14, both Dr. B and Dr. C developed and utilized inductive 

warrants while trying to achieve some conceptual understanding of why the statement 

was true or to find a deductive warrant.  The examples utilized ranged from examples 

posed to see why true (used to explore the underlying causes), examples to understand 

the objects or relationships given in the statement, examples to test to see if another claim 
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holds, and examples to help articulate a vague sense of understanding.  The extracted 

warrants from the examples were based on conceptual knowledge.   

The inductive warrants were tested against other examples.  For Dr. B, the 

standard by which the ideas’ feasibility was measured was Dr. B’s personal 

understanding or ability to envision how an argument would go.  These ideas were used 

to formulate an envisioned argument of why the First MVT was true.  As elaborated in a 

later section that discusses the evolution of the personal argument, in other cases the 

inductive warrants were tested to see if the idea extends to other cases and to determine 

why the extracted property had to work so that an underlying cause could be wielded and 

articulated in a deductive argument.  Structurally, the development of an inductive 

argument resulted in a new warrant. 

Structural-intuitive warrants.  A structural-intuitive warrant is to be a statement 

or idea that the prover proposes could link the data to the claim based on a feeling that is 

informed by structure or experience.  Inglis et al. (2007) observed structural-intuitive 

warrant-types as “observations about, or experiences with, some kind of mental structure, 

be it visual or otherwise, that persuades them of a conclusion” (p. 12).  All three 

participants utilized a structural-intuitive warrant (Table 4).  The warrant-type was used 

on the additive implies continuous task, the own inverse task, and the uniform continuity 

task.  I describe Dr. A’s  and Dr. C’s structural-intuitive warrant on the additive implies 

continuous task here. 

Upon first reading the statement to be proven, Dr. A expressed a concern that the 

statement was not true because he remembered that there were things that could be done 

with unmeasurable functions and the axiom of choice that could produce a 
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counterexample.  The proposed warrant that there could be a counterexample was backed 

by a memory he described as vague and unclear.  He was not quite persuaded so his 

structural-intuitive warrant was coupled with a truth proposal not a conviction.   

Dr. C used a structural-intuitive warrant to shed doubt on the truth of the 

statement when he stated that a function with the additive property would not be 

continuous on the real numbers because he knew the only continuous linear functions 

were in the form y = mx, and this function was not of that form.  Moreover Dr. C knew 

that proving the additive property was continuous on the rational numbers would involve 

an inductive argument, but it would not be straightforward for irrational numbers: 

I was thinking about the well-known fact that the only continuous linear functions 
in the reals to the reals are those of the form y equals mx for some fixed m.  And 
one shows that those are continuous on the rationals fairly easy - linear functions 
are continuous on the rationals pretty easily by doing some induction.   
 

The participant had used knowledge of structure to connect the additive property to 

linearity.  Dr. C’s intuition contributed to the idea that the additive property would not be 

enough to show continuity. 

 I did not observe structural-intuitive warrant ideas on any of the individual tasks 

nor on the Extended MVT task.  The majority of the warrants observed on the individual 

tasks were deductive or syntactic connections.  In these tasks, the participants largely 

proceeded to justify their claims deductively or symbolically with little problem.  On the 

Extended MVT task, Dr. A was able to find syntactic connections so did not have to exit 

the representation system of proof.  Dr. B did explore ideas semantically and used 

conceptual knowledge and knowledge of mathematical structure, but the conclusions 

were backed by the exploration of examples deeming the warrants as inductive.   
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With Dr. A and Dr. C on the additive implies continuous task, these structural-

intuitive warrants were starting points when the participants were encountering the 

problem of determining the truth of the statement.  They were reflecting on what they 

viewed as related.  Dr. C mentally compared the additive function to a class of functions 

(conceptual knowledge), and Dr. A related the conditions on the function to previous 

experience (heuristics and experiences).  Other structural-intuitive warrants drew on 

connecting knowledge, experience, and strategies to propose a connection between 

claims specifically in pursuit of a truth determination or a conceptual reason why the 

statement was true.   

On the prove or disprove task, the structural-intuitive warrants informed the 

mathematicians’ initial perceptions that the statements were not true.  For the other tasks, 

since they were not deductive, participants worked to test and generally articulate these 

warrants.  In a later section, I will elaborate some of the ways that inductive and 

structural-intuitive warrants were tested to see if they could be rendered into deductive 

warrants.  Mostly, in testing their warrants, participants worked to try to generalize or 

symbolize their intuition or test their intuition on another example to try to extract a 

general backing. 

Proposed backing and proposed (vague) backing.  With the non-deductive 

warrant types, the backing for a statement was implied by the means of developing the 

warrant and was coupled with the warrant.  With Dr. B’s exploration of an example to 

explain why the First MVT worked for constant functions, Dr. B extracted the warrant 

that one could always find a rectangle backed by the manipulation of the example.  The 

example was the backing.  However, participants sometimes proposed a backing separate 
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from a warrant.  Participants proposed backings for previously identified non-deductive 

warrants but also participants proposed a vague sense of what would underlie a possible 

warrant that may have not yet been articulated.  I first describe an instance of a proposed 

backing for a previously proposed warrant, and then I show how the same participant 

articulated a feeling about what would be instrumental in any warrant.   

Dr. C worked on the Own Inverse task and explored why the identity function 

(f(x) = x) would be the only possible increasing bijective, continuous function that was its 

own inverse.  Based on an instantiation of inverse as being the reflection across the line y 

= x and some explorations involving drawing and imagining pictures, Dr. C had 

articulated that any other increasing function would fail to be its own inverse because it 

would not be the same function when reflected across the line y = x.  Dr. C was unsure 

how to articulate why this would happen in a proof and explored both symbolically and 

with pictures some consequences of being increasing and one’s own inverse as shown in 

Figure 12. 

 

 

Figure 12.  Picture CI-3: Dr. C permuting the logic on the own inverse task. 
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Dr. C then stated “that doesn’t seem to be going anywhere.”  Dr. C characterized 

the above work as “permuting the logic of all the conditions I was interested in, trying to 

find a combination of permutation with those things that I can connect with each other to 

get an argument.”  Dr. C declared this work unfruitful because “I’m not seeing anything 

that I can use in that reformulation of what’s going on.”  Right after declaring that this 

work investigating as in Figure 12Figure 1 was not going anywhere, Dr. C stated,  

Oh, but let’s see here.  The inverse of an increasing function is also an increasing 
function.  And this means that the only way this can work is for f(x) to be x for all 
x in I.  So we can’t have f equal to f-inverse if f is an increasing function.  That 
does it.  You want me to write it up? 
 

 The idea was consistent with his picture CI-3 in Figure 12.  Dr. C had declared a 

general reason why a non-identity function would fail to be its own inverse that could be 

articulated in a formal write up of the proof.  Dr. C felt that this idea was enough to show 

a proof of the statement using the idea if f(x) is a non-identity, increasing function, then it 

won’t be symmetric across the line y=x.  The idea, to the participant, served as a 

reasonable backing for the warrant (contradiction) that the function and its inverse would 

not be the same function.  This instance was an example of a proposed backing idea as it 

was an idea for backing up an already articulated warrant. 

 The problem encountered was finding a reason why an increasing function could 

not be its own inverse that could be generalized.  Dr. C was applying a strategy of 

“permuting the logic” and had been working with picture CI-3 in Figure 112 in an effort 

to find a combination of ideas that could be used for an argument.  The participant had 

almost declared this work unhelpful, but then noticed that the inverse of his increasing 

function was also increasing.  Table 17 illustrates the changes in the personal argument.  

The backing changed from a picture to a statement that f would not be symmetric because 
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the inverse would be a different function since the inverse of an increasing function is 

also increasing. 

 

Table 17 

Dr. C's Personal Argument Upon the Articulation of a Proposed Backing 

 Data Claim Warrant Backing MQ/Rebuttal 

Prior to 
articulation 

F is its own inverse 
so f(f(x))=x and it 
is symmetric about 
y=x 
F is 1-1, 
continuous, onto 

F is decreasing 
except f(x)=x 

If f was 
increasing and 
not the 
identity, then 
the inverse 
would be a 
different 
function 

Picture CI-2 not an argument 

After 
articulation 

F is its own inverse 
so f(f(x))=x and it 
is symmetric about 
y=x 
F is 1-1, 
continuous, onto, f 
is either increasing 
or decreasing 

F is decreasing 
except f(x)=x 

If f was 
increasing and 
not the 
identity, then 
the inverse 
would be a 
different 
function 

Picture CI-3 
and associated 
reasoning that 
the inverse of 
an increasing 
function is also 
increasing 

“that’s it”, 
needs to be 
written up 

 
 
 
 Dr.  C went to work to write up the argument based on this proposed backing but 

got stuck, stating that what was written down did not match what Dr. C was thinking and 

the personal thinking was wrong:   

Did I get things backwards up here? I think I did.  / It’s still correct I think.  
Somehow.  / But I seem to have showed that the inverse of an increasing, or I 
seem to have thought that the increase of a, the inverse of an increasing function 
is a decreasing function.  And that’s not right./ It has to depend somehow on the 
fact that when I reflect over the diagonal line, the piece of the curve that’s below 
the diagonal line ends up above the diagonal.  // And that, I think, is where we 
have to go. 
 

 This was the first time that Dr. C articulated this idea that the points move above and 

below the diagonal as really important:   
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That was the first time I thought, I think that that idea itself was important…I 
should have seen it when I wanted to think about what happens when x and f(x) 
are different.  That’s the trichotomy principle.  Either x is equal to f(x) or it’s less 
than, or it’s greater than.  And it was at about that point that I began to see that 
that was the key to what I needed to do. 
 
The problem was re-assessing why an increasing function would fail to be its own 

inverse.  The participant was looking back at pictures drawn before and was reflecting on 

what was going on.  Dr. C had used the idea that points below the line end up above it 

implicitly when drawing the picture but did not focus on that being a reason why a 

contradiction could happen.  The participant proposed that a contradiction would be 

based on a new warrant was not yet fully articulated.  Comparing the argument structures 

in Table 17 to Table 18, we see that the proposed (vague) backing wiped the warrant-

slate clean and offered a feeling about what would be important in terms of justifying that 

warrant.  As described in an earlier section, Dr. C moved forward to render this and other 

ideas into a deductive warrant and eventually a completed proof.   

 

 

Table 18 

Dr. C's Personal Argument After Proposing a New (Vague) Backing 

Data Claim Warrant Backing MQ/Rebuttal 

F is its own inverse 
so f(f(x))=x and it 
is symmetric about 
y=x 
F is 1-1, 
continuous, onto, f 
is either increasing 
or decreasing 
Reflecting over 
y=x moves points 
below the line 
above the line 

F is decreasing 
except f(x)=x 

 Something that 
uses points moving 
above or below the 
line y=x 
The trichotomy 
principle means 
points will be 
below/above the 
line 
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As was shown in Table 15, each participant proposed a backing at least once in 

every task where non-syntactic thinking led to a deductive argument.  Dr. A also 

proposed a backing in the purely syntactic argument for the individual task when 

identifying that a particular given condition in the theorem statement gave a hint about 

what syntactic connection to propose.  Proposed backing ideas were articulated while 

participants were engaged in solving a variety of problems.  For four of the instances, 

participants were either looking for a warrant or a means of generally articulating their 

already proposed warrant idea.  Connecting and permuting data statements and properties 

was a salient tool contributing to the development of these ideas.   

Structurally, the implementation of a proposed backing idea resulted in varied 

structural shifts in the personal argument.  Backing ideas were tested by trying to yield 

them on specific examples and attempting to symbolize the argument or to extend the 

case.  Dr. A tested the backing for a syntactic connection by seeing if its deployment 

would yield a useful connection.  I explain how these backing ideas potentially could 

yield rendering a non-deductive warrant into a deductive warrant further in Theme 3 of 

the results regarding the evolution of the personal argument. 

 Summary of warrants and backing ideas.  In this section, I described how ideas 

that connect and justify data with claims fell into five categories.  Four of the categories 

were warrant-types paired with their associated backings, deductive warrants, syntactic 

connections, inductive warrants, and structural-intuitive warrants.  The fifth category was 

for proposed backings or ideas that underlie the connection that were articulated 

independently from a warrant.  For each idea-type, I provided a description of the ideas 
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both generally and within an observed example.  In an effort to answer the research 

questions, I described the inquirential context surrounding the emergence of those ideas.   

The warrants and their associated backing were means by which participants 

found connections between data and claims.  Even though non-deductive warrants were 

not the major goal, their articulation, exploration, and utilization proved fruitful in the 

attainment of new information and ideas that guided future explorations or helped 

participants assert truth.  In the next section, I will talk about the ideas related to the 

assessment about the usefulness of the generated ideas or ways of thinking. 

Ideas That Monitor the  
Argument Evolution  

Along with ideas that focus and configure and ideas that connect and justify, in 

the proof construction process, I observed ideas or feelings about the mathematicians’ 

progress on the task.  These monitoring ideas guided the mathematicians’ decisions in 

terms of moving the argument forward.  There were four idea-types that described the 

mathematicians’ progress on the task: truth conviction, “I can write a proof”, unfruitful 

line of inquiry, and support for line of inquiry.  I describe each idea type with examples 

from participants’ work.  As these monitoring feelings could be utilized on any type of 

other idea-type, any type of problem, or on any tool, I focus on describing on how these 

ideas affected decisions made and the structure of the personal argument.  The first 

monitoring idea-types described are those specific to the proof construction process. 

  Truth conviction.  In the ideas that focus and configure section, I described truth 

proposal ideas that were unique to proving statements whose truth value is unknown.  

However, achieving a feeling of truth conviction or personal belief as to why a statement 

must be true is not isolated to any one type of statement.  In fact, as shown in Table 19 in 
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all but three instances participants achieved moments where they were convinced why the 

statement must be true.  The three instances where the participants did not overtly state 

that they had achieved some belief that the statement either was or was not true were Dr. 

A’s work on his individual Lagrange Remainder Theorem task and the Extended Mean 

Value Theorem task, and Dr. B’s work on his individual limits of sequences task.  In all 

of these tasks, participants implied an underlying belief that the proof should work out.  

In fact, Dr. A asserted that the MVT task-type was one where the symbols should work 

out. 

 The three instances where the participants did not overtly state that they had 

achieved some belief that the statement either was or was not true were Dr. A’s work on 

his individual Lagrange Remainder Theorem task and the Extended Mean Value 

Theorem task, and Dr. B’s work on his individual limits of sequences task.  In all of these 

tasks, participants implied an underlying belief that the proof should work out.  In fact, 

Dr. A asserted that the MVT task-type was one where the symbols should work out. 
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Table 19 
 
Moments When Participants Expressed Truth Conviction by Task 
 
Participant Task Moments that came with truth self-

conviction 
Associated ideas 

Dr. A    
 Individual (LRT) Not observed, implicit belief --- 
 Additive implies 

continuous 
Assessment that would not be able to 
prove true 

Unfruitful line of 
inquiry 

 Extended MVT Not observed, implicit belief --- 
Dr. B    
 Individual 

(sequences) 
Not observed, implicit belief -- 

 Extended MVT Envisioned how would prove given 
first MVT 

Inductive Warrant 
Envisioned proof path 
 

 Uniform 
Continuity 

Identifying reasons why showing u.c. 
on the whole function would not be 
difficult once established the function 
was u.c. on a closed interval 

Envisioned proof path 

 Own Inverse Identifying the one exception Structural-intuitive 
warrant 

Dr. C    
 Individual 

(Determine 
continuity)  

(Incorrect) continuity assertion based 
on misreading statement 

Deductive warrant 
Can write a proof 

  Continuity assertion based on 
symbolic manipulation and content 
knowledge 

Deductive warrant 
Can write a proof 

 Additive implies 
continuous 

Fulfilling final necessary condition by 
applying a given condition 

Deductive warrant 
Can write a proof 

 Own Inverse “Heuristically” seeing why the one 
exception must be f(x)=x 

Structural-intuitive 
warrant 

 
 
 
 The following examples illustrate moments where the participants achieved a 

truth conviction.  The own inverse problem statement was not typical of the statements of 

many proof tasks as the own inverse statement had an unknown answer, namely finding 

what the one exception is.  For both Dr. B and Dr. C on this task, finding that the one 

exception was the identity function occurred along with believing that the statement to be 
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proven was true or having an intuitive idea why the statement is true.  These ideas were 

articulated early on. 

Now if it’s its own inverse, that means that’s reflected across this diagonal.  
That’s the geometric way of thinking about inverse functions.  [draws sketch and 
line y=x] So if it started here and here, it would reflect back and forth, like that.  It 
would reflect back and forth and in order to be its own inverse and increasing, so 
its reflection would be the same thing that you started off with.  [runs pen over 
line y=x] And you’d have to be right on that line because there’s no other way of 
doing it.  So, f of x equals x suffices. (Dr. B) 
 
Okay.  I can see heuristically why this must be so.  The exception is f of x equals 
x.  And the other possibility, or the other possibilities all have to have graphs that 
are symmetric about the line y equals x because that’s the f equals f-inverse 
condition.  [long pause] But I don’t see how to do it / algebraically. (Dr. C) 
 

For both participants, there was an early on recognition what the one exception must be 

accompanied by some recognition or belief that any other increasing function could not 

be symmetric over the line y=x which was a structural-intuitive warrant.   

 Dr. B achieved a feeling of a truth conviction on two other theorems when 

envisioning proof paths.  On the uniform continuity task, Dr. B had focused on proving 

the function would be uniformly continuous on a closed interval in the aims of later 

extending it to the entire function.  In searching for a reason why the function, would be 

true on the compact set, Dr. B developed reasons why showing uniform continuity on the 

whole function would not be difficult upon establishing the function was uniformly 

continuous on a closed interval a fact remembered to be true.  As explained earlier, Dr. B 

worked to understand why the given First MVT for Integrals was true by exploring 

examples.  Dr. B achieved an understanding that he could imagine guiding a proof. 

 Dr. A was finally convinced that the version of the additive implies continuous 

task was not true after trying to prove the statement without success or inclination as to 
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how to move forward.  On the same task, Dr. C was convinced that the statement was 

true only upon completing a deductive argument to link the additive property to 

continuity.   

 When the participants articulated a truth conviction prior to arriving at a 

completed deductive argument, they moved to tackle the problems of finding a deductive 

warrant to prove the statement, generalizing or justifying the ideas that convinced them of 

the truth, or to continue to try to prove another statement.  In the case of the tasks where 

participants were to make a truth determination, the truth helped the participants to 

specify the claim and to direct their efforts. 

 I can write a proof.  A moment of transition for participants was when they 

identified that they had gained enough information and had formulated the connections 

necessary to communicate their argument as a final proof.  I observed all participants 

achieve this sense at least once on each of the tasks they proved with the exception of Dr. 

A on two tasks and Dr. B on one task.  On the Extended MVT task, Dr. A found issues 

with how the problem was posed and could only conclude that his argument probably 

held if another condition was met.  On the additive implies continuous task, Dr. A 

generated the counterexample on his own, away from the Livescribe notebook so I only 

was able to observe the articulation of the final proof.  Dr. B reached an impasse on the 

MVT task and solved the own inverse task instead. 

 Table 20 provides descriptions of the moments and idea-types that accompanied 

the feeling that the participant could write a proof.  Note that for three of the instances, 

the moment that participants were able to write a proof and the moment of truth 

conviction was the same.  On the uniform continuity task, Dr. B achieved self-conviction 
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in the task upon envisioning proof path that depended on proving that continuous 

functions on closed intervals are uniformly continuous.  Dr. B fulfilled that envisioned 

proof path in that once achieving an argument (although faulty) for the sub-statement, the 

participant was able to begin and execute a mathematical proof.   

 

Table 20  
 
Moments Where Each Participant Achieved Feelings of "I Can Write a Proof" 
 
Participant Task Moments that came with “I can write a 

proof feeling” 
Idea-types 

Dr. A    
 Individual (LRT) Envisioning symbolic connections 

between current expressions and 
equation to be proven 

Syntactic connection 

 Ext. MVT Not achieved because of conditions on 
statement 

 

 Additive implies 
continuous 

Not observed  

Dr. B    
 Individual 

(Sequence) 
The achieved construction of a 
sequence 

Deductive warrant 
recognition of routine 
 

 Ext. MVT Not achieved  
 Uniform 

Continuity 
Achieving the (incorrect) argument 
showing continuous functions are 
uniformly continuous on closed 
intervals 

(incorrect) Deductive 
warrant 

 Own Inverse Writing of algebraic contradiction Deductive warrant 
Logical structure 

Dr. C Individual 
(Determine 
continuity) 

(Incorrect) continuity assertion based 
on misreading statement 

Deductive warrant 
Truth conviction 

  Continuity assertion based on symbolic 
manipulation and content knowledge 

Deductive warrant 
Truth conviction 

 Own Inverse Achieving a proposed backing for a 
warrant (found issues) 

Proposed backing 

  Writing of algebraic contradiction Deductive warrant 
 Additive implies 

continuous 
Fulfilling final necessary condition by 
applying a given condition 

Deductive warrant 
Truth conviction 
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 As expected, when participants stated that they could prove the statement, they 

moved to try to write down a logical proof.  In two instances, Dr. C miscalculated an 

assessment.  On the individual task, Dr. C did not attend to the full conditions of the 

statement and wrote an argument that was incorrect for the statement as given.  When I 

asked about the argument, the participant found the error and wrote a correct argument.  

On the own inverse task, Dr. C had asserted through explorations that a non-identity 

increasing, bijective function would fail to be its own inverse because the inverse of 

increasing functions were increasing:   

Oh, but let’s see here.  The inverse of an increasing function is also an increasing 
function.  And this means that the only way this can work is for f(x) to be x for all 
x in I.  So we can’t have f equal to f-inverse if f is an increasing function.  That 
does it.  You want me to write it up? 
 

 Dr. C moved to write up the argument, but as described earlier, found issues with 

his thinking.  Dr. C explored more and eventually wrote an algebraic contradiction that 

did not serve as a full proof, but provided self-conviction that a logical argument could be 

written.  

 Often the identification of when the participant could write a proof was coupled 

with recognition of routine.  As a quick example to this, both Dr. A and Dr. B identified 

f(0 )= 0 as a necessary condition for the additive implies continuous statement to be true.  

The participants set about trying to construct an algebraic argument but both had 

moments where they remembered that the argument would be simple.  Dr. A was 

convinced that it had to be true because all linear functions pass through the origin and 

that led to a standard proof by contradiction.  Dr. C remembered the standard argument.  

Most of the proofs that the participants were to write were not as simple and standard as 

the one described, but the mathematicians knew which tools to use and what language 
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would articulate their ideas.  The mathematicians were adept at logically articulating their 

ideas.  That is not to say that they did not make errors.  Participants did sometimes slip up 

quantifiers or miss cases while writing but typically addressed this issue knowing which 

tools to adapt to correct the problem before completing the task. 

Unfruitful line of inquiry.  Participants would sometimes abandon a particular 

line of inquiry because they were not finding it useful in achieving their aims.  An 

unfruitful line of inquiry idea was an idea that persuaded the participant that the tools or 

actions the participant was pursuing or considering to pursue would not be the best choice 

for achieving the purpose set.  These ideas included feelings that there could be an easier 

way, that the method would not solve the problem, or that the method was not 

appropriate given the context or the participants’ perceived evaluation of the situation.  

On the additive implies continuous task, Dr. A generated ideas that fit this category 

including the idea that the statement ought to be true since generating a counterexample 

would not be trivial and would require going outside the realm of real analysis.  This idea 

led to pursuing proving the statement instead of generating a counterexample.  In the 

same task, Dr. A determined not to continue pursuing a set of developed equations 

because it would not be useful in connecting the additive property to continuity for 

irrational numbers.   

 In an effort to prove the statement was true, Dr. A had derived the equation 

𝑓 �𝑚
𝑛
� = 𝑚

𝑛
∗ 𝑓(1).  The participant wrote it and then asserted that the equation was 

probably not true.  “Yeah, I have this horrible feeling that this thing isn’t true.”  Dr. A 

explained in the follow-up interview what he was thinking about when after generating 

the new statements that led to once again considering the statement to be false.   
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Dr. A:  That’s [𝑓 �𝑚
𝑛
� = 𝑚

𝑛
∗ 𝑓(1)] true regardless of any of this measurability 

stuff that I was looking at before. 
 
MT:  So after you got this, what were you thinking should come next or was not 

working? 
 
Dr. A:  Well, any real number is going to be really close to m over n and 

somehow that would be enough.   But yeah, that’s where I could get stuck 
is just because a real number is close to m over n, you’re still back, you 
know, even if you’re a millionth of an inch away.  There’s no rule saying 
that means it’s close.  That’s what you’re trying to prove.  You can’t use 
what you’re trying to prove the thing.  And so, it was just, I was just going 
in circles.  And so, yeah, at some point, I, it dawned on me or whatever 
that it was time to give up trying to prove it and try to look for a 
counterexample because it, there didn’t seem to be any way to get it, you 
know, break that circular stuff.   

 
 While not voiced at the time, Dr. A had evaluated the usefulness of the statement, 

�𝑚
𝑛
� = 𝑚

𝑛
∗ 𝑓(1) , against what was known about establishing continuity, and had 

determined that it could only possibly useful for rational numbers.  In other words, after 

evaluating the new relationships established, Dr. A did not find them to be sufficient tools 

to solve the problem of connecting the linear property to continuity along the real line.  

Furthermore, Dr. A did not appear to have ideas for new tools.  This coupled with the 

previous idea that a counterexample, while “horrible”, could exist, led Dr. A to once 

again consider that the statement might not be true.   

The inquirential context surrounding the determination of an unfruitful line of 

inquiry was largely an evaluation that the tools deployed or the way of thinking about a 

task was not fitting.  To make these evaluations, participants, like Dr. A above, drew on 

their conceptual knowledge, connections and permutations of previously identified as 

relevant ideas, as well as their perceptions of the success they were making against the 

perceptions of what was fitting with the problem setting.   
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When a participant encountered an unfruitful line of inquiry, they would change 

tactics somehow.  The additive implies continuous was a prove-or-disprove task so when 

participants identified an unfruitful line of inquiry, they sometimes would change their 

claims to argue for the other side of truth.  Dr. A had been investigating a proof by 

induction argument to show that the statement was true but found his argument would 

only hold for rational numbers.  Dr. A identified an unfruitful line of inquiry and also 

spoke again about a recollection that there might be a counterexample.  In this case, 

structurally, the data generated previously that was not pursued was repurposed as a 

possible rebuttal to the claim of the statement being true.   

Support for the line of inquiry.  There were feelings that an approach would be 

unfruitful, but there were also moments that gave participants a sense that what they were 

doing was fitting.  On the additive implies continuous task, Dr. C had not known for 

certain that the statement was true but had identified f(0)=0 as a necessary condition for it 

to be true.  The participant was able to prove that the necessary condition held which was 

needed to move forward with the general strategy of determining the value of the limit 

instantiation of continuity.  “If I could figure out what that limit was, I would answer the 

question.  And it was pretty straightforward to figure out what the limit was.  It was the 

additive identity was all I needed to use.” Participants could get a sense of support for a 

line of inquiry along with a feeling that they could write a proof; however, participants 

could also gain support for a line of inquiry without yet having a feeling that they could 

write a proof.  For example, on the Uniform Continuity task, Dr. B had previously 

articulated a feeling that proving the statement as given would be similar to proving what 

Dr. B had characterized as an easier case of the statement (continuous functions on closed 
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intervals were uniformly continuous).  As Dr. B worked to determine why the easier case 

was true, the participant reaffirmed the feeling that the two cases would be similar.  

“Now first of all, I you know, I’m realizing that there’s no difference between showing 

this on all of R than showing this on [a, b].”  Dr. B articulated this sense but was not yet 

come ready to write a proof. 

Summary for monitoring ideas.  Monitoring ideas were used to help participants 

monitor their progress and push them toward a more efficient solution strategy.  Their 

knowledge of content, what was fitting within the realm of analysis tasks, and their 

previously posed ideas were standards against which their progress was monitored. 

This concludes the section detailing the ideas and types of ideas observed in this 

study.  In the final sections of this chapter, I describe holistically how ideas in the three 

categories, focus and configure, connect and justify, and monitor, interact in the evolution 

of the personal argument and  how ideas were generated within the perspective of 

Dewey’s Inquiry framework. 

Logical Mathematical Inquiry  
and the Emergence of Ideas 

In addition to describing the ideas that move the prover’s personal argument 

forward, this research sought to describe the context surrounding their emergence.  The 

previous section described each idea type and the problems and tools surrounding their 

development within each type.  The next subsection gives a description of the 

development or lack of development of ideas while engaging in genuine inquiry; later I 

discuss how engaging in solving different problems with various tools played a role in the 

types of ideas that were formulated and discuss the exhibited non-inquirential tool use.  
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To provide context, I first remind the reader of the types of problems entered and tools 

utilized by the participants in Tables 21 and 22. 

 

Table 21 
 
Problems Encountered by Participants While Proving 
 

Problem Code Description 

Understanding statements 
or objects 
 

The participant does not understand what the statements mean or the 
definition o f a object described in the statement of the proof or how the 
objects in the statement relate and is entered into working understand 

Determining truth Prover is engaged in determining the truth value of the statement 

Looking for warrant 

Prover is looking for a means to connect the statement to the claim that 
eventually can be rendered into a proof.  I f participants specifically are 
searching for conceptual reasons why the statement is true or are seeking to 
connect statements via a symbolic manipulation, then the next two codes 
were used. 

Looking for conceptual 
reason why true 

Prover is trying to find why the statement is true based on conceptual or 
empirical understandings 

Looking for way to 
connect symbolically 

Prover is trying to find means to directly connect symbolic instantiations of 
statements  

Looking for way to 
communicate/generalize 

Prover is engaged in finding a way to communicate or generalize an 
argument, warrant, backing, or other idea 

Looking for backing for 
previous idea 

Prover is engaged in finding general or generalizable support for a posed idea 
or claim 

No problem 

Actions are taken or tools are applied without the individual reflecting on the 
tool to use.  The individual indicates that the action taken is “second nature”, 
“what you’re supposed to do”, “how I usually do it”, etc.   The individual 
may look back at what the action did for him/her but nothing has been 
deemed problematic prior to that evaluation. 

Tool problem 

There is an identification and entrance into solving a problem with individual 
tools or application of these tools, i.e. trouble generating a helpful example, 
computation issues, etc. 
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Table 22 
 
Classifications of Tools Utilized by the Participants to Generate Ideas 
 

Tool Type Description 

Conceptual knowledge Knowledge of relationships among mathematical objects, consequences of 
actions on objects, or mathematical structure 

Known theorem Specific use of a theorem known to be true 
Connecting and permuting Attending to connecting and rearranging previously generated ideas, 

definitions, and related concepts 
Instantiations and 
equivalencies 

Alternative or Non-formal representations of mathematical concepts or 
definitions 

Symbolizing Rewriting statements, definitions, or representations in terms of symbols 
Symbolic manipulations Actions on symbolic representations  
Example a particular case of any larger class about which participants generalize and 

reason 
Heuristics and experiences Rule of thumb, technique that comes with experience 
Logical structure Knowledge of logical structure and the norms of behaving and 

communicating in the mathematics community 
Other Time, disturbances in the situation, outside resources, etc. 
 

 

 Table 23 presents the ideas generated by participants while encountering each 

kind of problem.  Since participants could have encountered multiple problems at a single 

time and a single idea could fall under multiple idea-types, summing to get a total idea 

count is not meaningful.  Participants mostly developed ideas while engaged in the 

problems of looking for warrants, looking for conceptual reasons why true, and 

determining truth.  However, they also developed twenty-two ideas while not perceiving 

any problem.  Table 24 lists the tools that participants deployed that led to the generation 

of ideas of each sub-type.  As can be seen in the table, ideas within each sub-type could 

have been formed by tools of multiple types.  I found it less informative to describe 

exactly which tools contributed to which idea-type.  What was informative was to 

describe the patterns in how ideas emerged.
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Table 23 
 

 
 

  Understanding 
Statements/ 
Objects 

Determining 
Truth 

Looking 
For 
Warrant 

Looking For 
Conceptual 
Reason Why True 

Looking For 
Way To Connect 
Symbolically 

Looking For 
Way To 
Articulate/ 
Generalize 

Looking For 
Backing For 
Previous Idea 

No 
Problem 

Tool 
Problem 

Focusing 
and 
Configuring 
ideas 

informing 
concept 
image 

 C (1) B (1) B(3)  B(1) 
C(1) 

B(1) A(1) B(1) 

task type A(1) 
B(1) 

 A(1) B(1) A(1)     

truth 
proposal 

 A(2) 
C(1) 

A(1)    C(1)   

logical 
structure 

B(2)     B(1) A(1) A(1) 
B(1) 
C(1) 

B(1) 

identifying 
necessary 
conditions 

  A(1) 
C(2) 
 

    A(2) A(2) 

envisioned 
proof path 

  A(1) 
B(1) 

B(2) C(2) C(2) B(1) A(1) A(1) 

Connecting 
and 
Justifying 
ideas 

inductive 
warrant 

  C(1) B(5)   B (3)   

Structural-
intuitive 
warrant 

C (1) A(2) 
C(2) 

C(1) B (4)    A (1)  

syntactic 
connections 

    A(5)   A (1)  

deductive 
warrant 

 C (3) A (1) 
C (1) 

B (1)  B (1) 
C (1) 

B (1)  A (3) 
B (2) 

C (1) 

proposed 
backing 

  C (1) B (2)  C (1)  A (1) C (1) 

Monitoring 
ideas 

truth 
conviction 

C (1) B (2) 
C (1) 

A (2) 
B (2) 

B (1) 
C (1) 

  C (1)   

can write a 
proof  

 C (2) B (1) B (1)  C (2) C (2) A (1) 
B(1) 

 

unfruitful 
line of 
inquiry 

 A (1) A (2) 
B (2) 
C (1) 

B (2) B (1) C (1) B (2)   

support for 
line of 
inquiry 

  A (1) 
C(1) 

B (2)   C (1)   158 

 

Ideas Generated by Problem Encountered 
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Table 24 
 
Ideas Generated by Tool Type 
 
  

Conceptual 
knowledge 

Known 
theorem 

Connecting 
& Permuting 

Instantiations 
and 

Equivalencies Symbolizing 
Symbolic 
manipulation Examples Heuristics 

Logical 
structure Other 

Focusing 
and 
Configuring 
ides 

informing 
concept image 

   B(1) B (1)  B (4) A (1)  A (1) 

 task type B (1)  B (1) B (1)   B (3) A (1) 
B (1) 

  

 truth proposal C (1)  A (1)   A (1) C (1) A (1)   
 logical 

structure 
  B (1) B (2) B (2)   B (4) A (1) 

B(4) 
 

 identifying 
necessary 
conditions 

A (1) 
C (1) 

A (1) A (1) 
C (1) 

A (1) 
C (1) 

C (1) C (1)   A (1)  

 envisioned 
proof path 

B (1)  B (1)    B (1)    

Connecting 
and 
justifying 
ideas 

inductive 
warrant 

B (3)  B (1) B (2)   B (7) 
C (2) 

  B (1) 

 intuitive 
warrant 

A (2) 
C (3) 

 B (2) 
C (2) 

B (1) 
C (1) 

  B (2) 
C (1) 

A (2) 
B (1) 

 A (1) 

 syntactic 
connection 

A (1) A (3) A (5)  A (1)  A (5)    A (1) 

 deductive 
warrant 
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  A (1) 
B (3) 

  A (1) B (2)    

 support for 
line of inquiry 

A (1) 
B (1) 

 B (1)   B (1)     
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In this section, I describe the thematic findings about the context surrounding the 

emergence of the ideas that moved the argument forward within the perspective of 

Dewey’s theory of inquiry.  The ideas emerged from the systematic testing of ideas and 

tools.  I describe this process and some of the notable tools utilized and how the problems 

that the participants encountered progressed as participants proceeded toward the 

resolution of an argument.  I describe a third theme that participants sometimes deemed a 

tool to be unsuccessful, but its deployment led to new insights.  I finally note some other 

observed patterns.   

Theme 1: Ideas Generated through  
the Testing of Ideas and Tools 

While I was unable to describe a distinct pattern as to which types of problems 

and tools contributed to which types of ideas, there was a discernable pattern where the 

participants would propose or articulate an idea or tool, test the tool or idea’s usefulness 

or the usefulness of prior ideas against the consequences of the new idea, and then 

articulate a new idea or evaluation.  The process itself involved the passing through, 

perhaps multiple times, the inquirential cycle of reflecting, acting, and evaluating.  This 

process necessarily began with an initial idea proposal which was often formulated based 

on reflection or heuristic strategies for orienting to a proof task.  Subsequent ideas were 

formulated as new ideas were tested.  I illustrate this process within the context of Dr. 

A’s work on the additive implies continuous task.  

Define f as linear if for every x and y, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).  Let f be a 
function on the reals.  Prove or disprove that if f is linear, then it is continuous. 

  
Opening ideas.  This section elaborates on the generation of the first idea 

integrated into Dr. A’s personal argument then compare his process those of other 
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participants in other tasks.  Upon reading the statement, Dr. A recalled that there could be 

a counterexample based on a memory of previous experience:   

I’m afraid that there’s some counterexample using the axiom of choice.  Okay, let 
me, I’ll try to prove it.  What am I thinking though with the axiom is there might 
be an unmeasurable linear function.  Let’s see, what am I thinking? I’m not sure 
what I’m thinking. 
 

He explained what backed up the idea in the follow-up interview illuminating that the 

vagueness of a memory could be the reason for the unclear thinking. 

MT:  So you initially have this inclination that this wasn’t true.  What made 
you- 

 
A:  Oh, just some vague memory from a long time ago.  Yeah, you know, I 

guess anything can be analysis.  To me this is sort of something that you 
find in a book on set theory.  Or something…I spent some time, I forget 
when it was, twenty years ago, more than that I think.  I was studying set 
theory for some unknown reason.  I think that was when I kind of learned 
this stuff.  Or I knew that these things existed out there.  So, yeah, I had 
this vague recollection that things are not as simple as they sound.  So 
yeah, that’s probably cheating too. 

 
This initial idea was a truth proposal based on a structural-intuitive warrant to 

solve the problem of determining the truth of the statement.  The thought of a potential 

counterexample occurred as Dr. A reflected upon the statement to be proven against 

personal experience.  The participant had not applied any tools prior to this, but reading 

the statement led to remembering experiences outside the field of analysis.  The other 

participants on the other tasks also articulated initial ideas while orienting to the task. 

Upon reading a task, participants entered into the problems of understanding the 

statement or determining truth.  To achieve these goals, participants would often reflect 

upon the given statement in conjunction with seen to be relevant conceptual knowledge, 

experience, and known properties and theorems.  The reflections were, at times, coupled 

with heuristic strategies for orienting to proof tasks such as actively listing the relevant 
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definitions, rewriting and verbally articulating what was known in one’s own words, and 

articulating what to show.  In these reflections, participants connected and permuted 

properties, theorems and definitions, imagined instantiations of concepts and definitions, 

and performed hypothetical actions.  The initial ideas were ideas that informed the 

statement image, truth proposals, truth convictions based on structural-intuitive warrants, 

and ideas about the formal logic or task type.  The testing and realization of these initial 

ideas and subsequent ideas was the mechanism by which the argument moved forward. 

 Ideas generated while testing a developed tool or idea.  Dewey’s (1938) theory 

of inquiry allows for evaluation to occur during and after a proposed tool’s fulfillment.  

The following is an example of an idea developed after a full cycle of inquiry. On the 

Uniform Continuity task, Dr. B had recognized that the given property that the function 

had limits at positive and negative infinity indicated that or a given epsilon, the real line 

could be broken into the union of three intervals: (−∞,𝑁) ∪ [𝑁,𝑀] ∪ (𝑀,∞). 

Where N and M were the x-values beyond which each output was within half of epsilon 

of the limit value (see Figure 13).  Dr. B anticipated that showing uniform continuity on 

these tails would be straightforward and decided to assume that continuous functions on 

closed intervals (like [N,M]) were uniformly continuous.  
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Figure 13.  Dr. B's argument that the function is uniformly continuous on its tails. 

 

Dr. B had nearly concluded his proof, showing that the function was uniformly 

continuous on each of the three intervals.  The participant chose to check to see that the 

argument would support the definition of uniform continuity.  As a means of checking, 

Dr. B walked through where pairs of points x and xo would come from.  Dr. B noted that 

the argument did not account for when they straddled one of the points N and M.  Dr. B 

had checked silently and then articulated the issue out loud: “And, um, but, / let’s see 

there’s a little board work case I have to worry about. [pause] Hmm. I think I have a little 

problem. There’s a little overlap here…if I take x and x-not on each side of N or each 

side of M, I’m in trouble.”  

MT:  Let’s see you write this.  
 
[playback going, no audio playing] 
 
MT:  About 30 seconds of just quiet.  
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Dr. B:  and that’s when I realized that I had this extra case…I know exactly what I 
was doing. I was going, okay, I’ve got this case, this case, because I think 
I handled the endpoints before that. So I was thinking what else could 
happen? So I said okay I could have them straddling. 

 
The idea of the issue with how the argument was structured was proposed while Dr. B 

was evaluating the written argument.  When the issue was identified, Dr. B articulated a 

proposed rebuttal and crossed out what was written previously. 

 Ideas that moved the argument forward were developed and incorporated into the 

personal argument via this mechanism where one developed or proposed tools that could 

potentially be rendered into moving the argument forward; tested the tool or idea against 

previous ideas, conceptions of the problem, conceptual knowledge, and the problem the 

prover intended to solve; and then made an evaluation that either established a new idea 

or devalued a previous idea.  As described in earlier sections, the testing process differed 

across idea-types and problems posed.  The problems posed played a role in determining 

which ideas would be useful.  In the next sub-sections, I specifically describe how 

participants used examples and the tool of connecting and permuting ideas, conceptual 

knowledge, and instantiations of concepts.   

 How examples were used.  In this study, the term example describes any 

particular case of a larger case.  As shown in Appendix F, participants in this study used 

examples for four purposes: (a) to understand, (b) to test, (c) to generate a warrant, and 

(d) to articulate or explain.  I provide examples of each of these purposes below. 

 On the Uniform Continuity task, Dr. B was working to show why a function with 

finite limits at infinity would be uniformly continuous and drew a picture of an example 

function that had the conditions set forth by the task statement in an effort to understand 

the function involved in the problem.  “It’s totally just important for my visualization in 
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understanding the problem.”  Drawing this picture led to his idea that this task was a 

complication of showing that continuous functions on closed intervals are uniformly 

continuous.  This idea was coded as an idea about task type. 

 Dr. C used a specific example to test whether the piecewise function generated on 

the Additive implies Continuous task was a counterexample to the statement.  Dr. C had 

generated the piecewise function 𝑓(𝑥) = {0 𝑖𝑖 𝑥 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑥 𝑖𝑖 𝑥 𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  based on the given 

condition that the function was continuous at x=0 and previous conceptual knowledge 

about additive functions being continuous on the rational numbers but discontinuous on 

the real numbers:   

Well, I knew that it had to work for the rationals.  So I thought I would try 
something that had one definition in the rationals and something else in the 
irrationals.  And it seemed to me that x in one case and zero in the other case 
would be the easiest thing to try as a first effort. 
 

To test whether this function was a counterexample, Dr. C looked to see if it satisfied the 

additive condition, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).  “It’s clear when x and y are both rational 

because x plus y is also rational and f of x plus y is therefore … f(x) + f(y).  But it’s not 

clear for irrationals.”  He chose to plug in 𝑥 = √2 and = 2 − √2 .  These specific 

examples of irrational inputs yielded different values for 𝑓(𝑥 + 𝑦) and 𝑓(𝑥) + 𝑓(𝑦) 

showing his function was not a counterexample.   

 As an instance of where participants explored examples to find a warrant, 

consider Dr. B’s work on the Uniform Continuity task.  Dr. B had narrowed the task to 

tackling the problem of proving a function on the compact set [0,1] was uniformly 

continuous or in Dr. B’s words that it could not get steeper and steeper.  In a search for a 

reason why the function could not get steeper and steeper (a warrant based on conceptual 
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understandings), Dr. B drew a picture of a specific function on the set [0,1] and worked 

to determine why for a specific epsilon equal to 0.5, one could always find a delta.  While 

in the action of thinking about why the example function could not get steeper and 

steeper, Dr. B articulated the idea that the function would achieve a maximum and a 

minimum:   

So I wanna be able to, I need to be able to find for any, I need to be able to find an 
x, a delta such that for any location I might choose, if I go within that of x, it 
won’t vary by more than point 5.  Now I’m starting to get to something because 
one thing I do know is that it has to achieve a min and a max. 

 
 At the time, Dr. B anticipated that the remembered idea that the function would 

have a minimum and maximum would help justify why the function would not get 

steeper and steeper, but was not sure in what way.  So, it became an added data statement 

with a hypothesis that it could inform the generation of a warrant.  Dr. B did test the 

usefulness of this idea by determining the minimum and maximum fact could be 

extended beyond compact sets to the given task.   

 Participants also, at times, utilized examples to articulate or explain their thinking.  

Dr. B and Dr. C did this on the Own Inverse task.  Both participants articulated that they 

had an intuitive feeling why the statement must be true.  After articulating a belief that 

the statement was true, Dr. B reflected back to try to articulate what exactly gave the truth 

conviction.  “So what have I convinced myself geometrically? …  Okay.  So first of all, 

why is f(x)=x the only increasing function.  So my intuition there, if it wasn’t, then if you 

reflected itself, there would have to be double values of this thing from its reflection.” To 

illustrate and test this idea Dr. B drew picture BI-2 shown in Figure 14.  By double 

values, Dr. B meant there will be two points on the same function (𝑎,𝑓(𝑎)) and 

(𝑎, 𝑓−1(𝑎)).  Dr. B was attending to f being its own inverse as symmetry across the line 
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y=x.  Picture BI-2 served the purpose of helping articulate what the intuition was, but the 

participant still had the question, “So why would there be double values on this thing?” 

 

 
Figure 14.  Picture BI-2 drawn by Dr. B on Own Inverse task to assist him in articulating 
his thinking. 

 

 Connecting and permuting ideas, conceptual knowledge, and instantiations 

of concepts.  A tool used by participants that commonly contributed to the generation of 

new ideas was the action of connecting and permuting given and known ideas and 

statements.  The act of connecting refers to putting statements, facts, and instantiations of 

concepts, and so forth together to form new ideas.  Dr. A demonstrated the connecting 

while working on the additive implies continuous task when generating the necessary 

condition idea that the function must pass through the origin.  

Dr. A:  So at some point it occurred to me that f of zero has to be zero… If it’s 
going to be continuous, then it must be a straight line.  Because if it’s not a 
straight line, then it’s not going to be linear.  So, I was thinking straight 
line but at first it didn’t occur to me that it had to go through zero.   

 
MT:  Why was it important that it was zero at zero? 
 
Dr. A:  Uh, I think I was just flailing around.  Yeah, I, well I was going to try to 

do something like g-.  What was I? Yeah.  Ah, yeah, yeah, no I was just 
flailing around.  I mean I knew, I guess I knew that whatever the function 
is, f(x+y) is f(x)+ f(y).  So if it’s going to be continuous, then if y is really 
small, then they have to be about the same.  So you’re going to get f(x+y) 
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is going to be equal to f(x) plus something really small.  And that’s how 
you’re going to show that it’s continuous.  And uh, so I needed that f of 
zero was zero.  If f of zero isn’t zero, then if x is really small, f(x) won’t be 
near zero.  Yeah, so I needed f of zero to be zero and it didn’t occur to me 
that that was obvious so that you didn’t even have to prove it.   

 
Dr. A reflected on the function and the idea of linearity as well as what it meant to 

be continuous.  The participant’s conceptual knowledge was rich with pictures of what it 

meant to be linear and instantiations of continuity at a point.  Dr. A, specifically, drew 

upon a flexible conception of the definition of continuity that involved the notion that a 

continuous function has the property that adding a small amount, y, to an input, x, would 

only move the output a small amount from f(x).  Dr. A never wrote it down, but 

essentially the conception of continuity used was equivalent to the limit definition of 

continuity: lim𝑦→0 𝑓(𝑥 + 𝑦) = 𝑓(𝑥).  The instantiation of the definition fit well with the 

additive property of the function.  This definition of continuity was a tool Dr. A applied 

while reflecting on the problem of what could connect the additive property to continuity.  

The participant anticipated this tool could be used to gather some more information about 

f that could be applied. 

 The permuting characterization of this tool comes from Dr. C’s descriptions of 

work on the Own Inverse task.  To understand why a function that was one-to-one, 

continuous and increasing would fail to be its own inverse, Dr. C explored both 

symbolically and pictorially what would happen if the function were increasing or 

decreasing.  The participant called these actions “permuting the logic”:   

What I’m doing here is permuting the logic of all the conditions I’m interested in, 
trying to find a combination of permutations with those things that I can connect 
with each other to get an argument.  I’m trying to establish that a certain 
definition can be applied that works.  So I’m working with that definition and 
permuting different pieces of it to see if I can find something that I can use to 
construct an argument that establishes what I want. 
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As could be seen in Table 22, participants used connecting and permuting to generate 

ideas of nearly every type.  In the lens of Dewey’s (1938) theory of inquiry, I interpret 

this as participants constantly testing their previously formulated ideas and observations 

against new observations and previous knowledge of structure and instantiations of ideas 

with the end-in-view of solving the problems that they pose for themselves. 

Theme 2: A Progression  
of Problems  

The salient problem types encountered by the participants were presented above in 

Table 21.  It appeared that the participants transitioned through a series of problems to 

tackle or tasks to complete in order to finish the construction of the proof.  I list them 

below.   

1. Understanding the statement and/or determining truth 

2. Determining a warrant of some kind 

3. Validating, generalizing, or articulating those warrants 

4. Writing the argument formally 

Aside from these major problems to solve, the participants also tackled problems 

parallel to or embedded within these problems such as dealing with a found problem with 

a tool.  Some types of problems described in Table 21 are specifications of the problems 

in the list above.  Varying the task changed the problems the participants entered to yield 

new ideas.  The various tasks determined what kinds of warrants the participant pursued.  

Also, when a general, deductive warrant was achieved, writing the argument formally 

was often unproblematic.  For the remainder of this section, I will describe the 

progression of problems within the context of Dr. B’s work on the Own Inverse task, 

generalizing to the other tasks and other participants. 
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 Participants would read the task, and then set to the task of trying to get a handle 

on what was going on in the problem or to determine the truth of the statement.  Dr. B 

began by writing the statement and then working to draw a picture of the conditions:  

“Okay, let’s think about this one.  We have a continuous function on a closed set a,b.  

And it’s one-to-one.  I can draw a picture.  So I’m going to draw a visual picture of 

what’s going on here.  Try to figure out how to prove this.”  While endeavoring to draw 

an example function that would be representative of the function in the statement, Dr. B 

discerned the ideas that the function must be monotonic and where it must start and stop 

on the interval:   

One hundred percent geometric thinking...It’s all part of chipping away at the 
geometric restrictions.  Because that’s what I took to this right away because this 
is my kind of problem.  It’s saying that f has to have this certain geometric 
property.  So, you know, let’s start not literally, I mean in some sense looking at 
your boundaries, …I’m going to say well, they’re telling me it has to have this 
certain geometric property.  Let’s draw the most general picture and sort of 
whittle down.  Yeah, and sort of sculpting.   
 

Dr. B had developed ideas to inform an image of what the function in the statement could 

look like and how it could behave.  Continuing his pursuit to understand the statement 

and objects involved in the statement, Dr. B drew a second picture thinking of what it 

would mean for the function to be its own inverse.  Dr. B articulated an intuitive belief in 

the statement.   

Show that except for one mathematic- see it’s one-to-one, it’s onto, and it’s its 
own inverse.  Now if it’s its own inverse, that means that’s reflected across this 
diagonal.  That’s the geometric way of thinking about inverse functions.  [draws 
sketch and line y=x] So if it started here and here, it would reflect back and forth, 
like that.  It would reflect back and forth and in order to be its own inverse and 
increasing, so its reflection would be the same thing that you started off with.  
[runs pen over line y=x] And you’d have to be right on that line because there’s 
no other way of doing it.  So, f of x equals x suffices.  That should be our only 
increasing function.  So I know that’s what they’re looking for.  F of x equals x 
intuitively seems like the only increasing option they’re talking about. 
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In pursuing the problem of understanding the statement geometrically, Dr. B 

worked to draw pictures of the situation.  This drawing involved reflecting upon and 

connected instantiations of the relevant definitions of one-to-one, continuous, and the 

inverse of a function.  The ideas formulated in this reflection informed the pictures 

created and what was imagined to happen when one reflected an increasing function over 

the line y=x.  The picturing of the situation resulted in an understanding of what the one 

exception should be which provided self-conviction of the statement’s truth.   

Participants moved on from working to understand a statement to working to find 

a warrant that they could use to justify the statement’s truth when they developed a 

personal truth conviction, a truth proposal, or an idea about the task type that pushed 

them toward pursuing certain lines of inquiry that could lead to a warrant.  At times the 

truth proposal or truth conviction was accompanied by a warrant of some type that 

participants immediately sought to justify, other times participants moved to find other 

means of connecting their statement and claim. 

Dr. B found what the one exception was and an intuitive belief that no other 

increasing function would work and  then set about looking for a link or warrant between 

the data and the claim that f(x)=x was the only increasing function with the given 

properties.  Dr. B articulated an initial structural-intuitive warrant: 

So now the question is this.  So what have I convinced myself geometrically? And 
how do I prove those things? Okay.  So first of all, why is f(x)=x the only 
increasing function? So my intuition there, if it wasn’t, then if you reflected itself, 
there would have to be double values of this thing from its reflection 
 
Achieving that link, Dr. B set about working to articulate and to test that warrant.  

The process involved empirically testing a proposed warrant and proposing new warrants 

based on the evaluations of those tests.  The process by which participants worked to 
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validate, to articulate, and to generalize their warrants differed by warrant-type and will 

be elaborated in another section.  If a proposed warrant was tested and found to not be 

valid or if participants could not wield it into a general algebraic articulation, they cycled 

back through the problems to either try to understand more about the objects in the 

statement or they proposed a new warrant which they set about to test.   

Once a generalizable warrant was found and written algebraically, the mechanics 

of writing the argument formally involved the non-inquirential application of tools as 

participants did not perceive this task to be problematic.  After achieving an algebraic 

warrant, Dr. B set about writing the formal argument which involved a proof by 

contradiction with two cases.  Dr. B found this writing to be unproblematic, but made 

errors in his final write up.  This occurrence will be described under the theme of auto-

pilot actions in a subsequent section. 

Theme 3: Tools Deemed of No Use  
May Be Gateways to New Ideas  

In the pilot study, Dr. Heckert was looking for a reason why the characteristic and 

minimal polynomials of a pair of 3x3 similar matrices must be equal.  To gain some 

insight, Dr. Heckert constructed an example 2x2 matrix and calculated a matrix to be 

similar to it.  Dr. Heckert found the characteristic polynomials of each matrix, and they 

were not equal.  The participant found a computation error in this construction of the 

similar matrix.  Instead of trying to fix the mistake, the participant determined that 

working from the examples would not be fruitful.  However, looking at the factored form 

of the polynomials written down, Dr. Heckert started to consider equivalent eigenvalues 

and found that useful in developing an argument.  Dr. Heckert’s work with the specific 
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example deemed to be unfruitful led to a development of an idea that moved the 

argument forward.  This phenomenon also occurred in the current study. 

In an effort to identify an algebraic or generalizable argument why an increasing, 

one-to-one, continuous function not equivalent to f(x)=x could not be its own inverse, Dr. 

C worked on “permuting the logic” of a function being increasing and its own inverse.  

Dr. C drew an example with two points of a function in an increasing relationship located 

below the line y=x.  The participant also showed their reflection points with the view that 

the inverse function could not be equal to the original function if the function were to be 

increasing.  Dr. C then moved to understand what would happen if the function was 

decreasing.  “If f(u) is greater than f(v), how are the points (f(u), u) and (f(v), v) related to 

each other? //Let’s see, f(u) is greater than f(v), but u is less than v.”  However, Dr. C 

actually drew another increasing function (see Figure 15).  I asked about this mismatch.   

Dr. C:  I’m not sure what I was up to there because I drew the picture wrong.  So I 
must have been just on automatic pilot thinking about something else but 
I’m not sure what.  Because I’ve got f(u) clearly smaller than f(v) there.  
So that picture isn’t relevant…I think I was in a trance trying to figure 
things out.   

 
Dr. C determined that this reasoning was not giving him any new information, but then 

extracted the idea that the inverse of an increasing function is increasing which he saw as 

enough to explain why f could not be equal to f-inverse: 

That doesn’t seem to be going anywhere.  / Oh, but let’s see here.  The inverse of 
an increasing function is also an increasing function, and this means that the only 
way this can work is for f (x) to be x for all x in I.  // So we can’t have f equal to f 
inverse if f is an increasing function.  / That does it.  You want me to write it up? 
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Figure 15.  Dr. C's permuting the logic on own inverse task. 
 
 

 Dr. C did not recognize any benefits of his permuting the definition and drew 

something different from what was spoken.  The idea that the inverse of an increasing 

function is also increasing is consistent with the picture drawn.  I asked if the idea came 

from pictures drawn on the previous page or this one.  “I think it came from the whole 

collection of pictures and just thinking about the relationships of points on one graph to 

points on the other graph and the symmetry involved.”  This picture added to the previous 

pictures as well as the participant’s thinking about the relationships of the points on f to 

those on f-inverse played a role in Dr. C’s finding this idea useful, which was similar to 

what Dr. Heckert did with his example formulation. 

Outlier Themes Involving the  
Development of Ideas  

The earlier half of this section presented some general patterns to how 

participants’ developed new ideas by reflecting upon, testing, and evaluating proposed 
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tools and previous ideas.  In this section, I elaborate upon an outlier case where a 

participant engaged in active inquiry, but found now new ideas.  I also describe how 

participants were able to proceed routinely without needing to actively reflect upon their 

actions and consequences of those actions.   

 Inquiry with no ideas.  This section focuses on Dr. B’s initial work on the 

Extended Mean Value Theorem for Integrals task.  Dr. B established a need to find a way 

to link the related equations and determined that some set of symbolic manipulations 

would connect the expressions.  Dr. B tried a series of manipulations but was not 

successful.  This work on the task during the interview was an instance of trying to solve 

a problem by reflecting on a perceived to be problematic issue, applying a tool to resolve 

that issue, and evaluating its usefulness.  After a series of tools were not deemed useful, 

Dr. B proposed modifications to the purpose or approach which could be viewed as tools 

in themselves.  Dr. B had first approached the problem of proving the equation by 

focusing on the problem that the right hand sides of the equation to be proven and the 

equation given were not the same and worked to manipulate the right hand sides of the 

equations in order to see how the given theorem could be applied to the equation to be 

proven.  After applying a number of tools, Dr. B reevaluated and proposed a new purpose 

of trying to directly equate the two right hand sides of the equation but deemed it 

unachievable.  The third tactic was to work to equate the two sides of the equation to be 

proven by working backwards from the right hand side, directly applying the given 

theorem in reverse, and then searching for a symbolic manipulation to equate the 

expression to the left hand side of the equation. 
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The proposed tools were reflective of Dr. B’s way of thinking about the problem.  

The participant thought that some direct application of the First MVT would enable 

pulling the function g(t) or f(t) out of the integral but some manipulation would need to 

be required to attain the derivative and the factor (t-a).  Each tool proposed was aimed at 

either turning the function into its derivative, attaining the factor (t-a), or enabling the 

direct application of the First MVT because the overall goal of the participant was to 

make the left hand side of the equation equal the right hand side of the equation in the 

Extended MVT.  Some tools were reapplied in a different way at different aims, but Dr. 

B did not spend time working on modifying tools.    

Dr. A worked on the same task and also worked to achieve syntactic connections 

amongst the expressions; he, however, was successful in making progress after less than 

two minutes of thinking.  It is difficult to say what about Dr. B’s inquiries did not lead to 

a useful syntactic connection, but I can note the differences between the two 

mathematicians’ approaches.  Both started out with the same anticipation that the First 

MVT would be applied and that symbolic manipulations would be necessary.  There was 

a difference in approaches in that Dr. A sought to equate the left hand side with the right 

knowing that at some point the First MVT for Integrals would be utilized.  Dr. B, on the 

other hand, appeared to want to try to directly equate the right hand side of the First MVT 

with the right hand side of the Extended MVT or to make the two theorems look similar 

enough in order see how they related.  Dr. B attended to the names of the functions and 

explicitly thought of the named function f in the First MVT as analogous to the function 

named g in the Extended MVT and vice versa.  Dr. B did find that directly mapping the 

functions to each other in this way would not yield the desired results, but the perceived 
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analogy persisted through Dr. B’s work on the task.  Dr. A, on the other hand, did not try 

to apply the First MVT right away but only after finding an algebraic manipulation and 

then was flexible in allowing a quotient to act as the function called f in the First MVT.   

Both Dr. A and Dr. B noticed that the two equations looked different from each 

other and proposed manipulations that would attend to the (t-a) factor and the derivative 

g’(t).  A difference was that Dr. B primarily attended to either getting rid of the 

appearance of the derivative g’(t) or creating a derivative in the First MVT.  Dr. A on the 

other hand initially attended to trying to get the (t-a) term to appear on the left hand side 

of the equation.  Dr. B’s attention to g’(t) was a result of his working to directly correlate 

the two theorems as opposed to Dr. A’s work to move the left hand side of the equation 

to be shown to the right hand side knowing that the given theorem would somehow be 

used. 

 Just as inquiry could proceed without participants making progress on the task, 

participants could make progress on the task without engaging in inquiry because they 

perceived no problem.  In the following section, I describe how participants worked on 

the task when they perceived a routine or non-problematic situation. 

Auto-pilot actions.  Participants recognized a routine by the removal or 

resolution of the perceived to be problematic and would sometimes make those moments 

known as they would articulate a feeling of “now I see it” or “I can do it now”.  This 

typically was accompanied by the idea that the participant could write a proof.  

Participants continued to choose tools to apply, but they then knew the tool for the job 

and did not feel the need to stop and evaluate their tools’ effectiveness after applying 

them because they anticipated the effect that it would have.    
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More than once, the participants were writing statements and drawing pictures 

while not thinking about what they were drawing.  They admitted to being in a trance or 

on “autopilot”.  They did this for one of two reasons: (a) writing statements as a stalling 

tactic to think about other problems or the next action they need to take, or (b) they had 

resolved the problem and are just carrying out the actions.   

 On the own inverse task, Dr. C drew an increasing function when stating an 

intention to draw a decreasing function.  When we watched the play-back together in the 

follow-up interview, Dr. C was surprised by these actions.  In the follow-up, the 

participant did not appear to remember the thinking or the goals surrounding these 

actions.  

Dr. C:  I’m not sure what I was up to there because I drew the picture wrong.  So I 
must have been just on automatic pilot thinking about something else but 
I’m not sure what.  Because I’ve got f of u clearly smaller than f of v 
there.  So that picture isn’t relevant.  I think I was in a trance trying to 
figure things out.  Yeah.  Because I’ve started with something that I’m 
reasonably sure can’t be [points to statement f(u)>u] / Oh, wait a minute.  
What is going on? What am I doing there? / I want to show that’s what 
happens.  / Oh, I’m going backwards.  That’s what I’m doing.  I’m trying 
to- Okay, yeah.  So I am trying to get / somehow a contradiction, I guess.  
Yeah.  / What if f of u is bigger than f of v? What can I say about u and v? 
But then I drew the picture wrong.   

 
MT:  Alright.  So, you’re asking so what if it is decreasing? [Points to statement 

‘f(u)>f(v) but u<v’] And then?  
 
Dr. C:  Well, if it’s decreasing, can I force u to be smaller than v is what I’m 

asking myself…I guess.  I’m not- I was kind of thrashing around trying to 
find something that I could use.   

 
 Performing actions while thinking ahead could have been a stalling tactic as 

demonstrated by Dr. C.  After establishing that the idea that an increasing function’s 

inverse is also increasing would be enough to justify the statement, Dr. C moved to write 

up the proof, beginning by writing the utilized assumptions. 
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MT:  Okay.  When you were starting to prove, were you planning to prove by 
contradiction or were you planning to prove that if it’s increasing then it 
has to be f of x equals x?  

 
Dr. C:  Well, I think that I didn’t really know at this point.  What I’m doing, what 

I’m writing out here is a fairly essential part of a formal proof.  I’m also 
stalling for time while my brain figures out how to work on this. 

 
MT:  And what is your brain figuring out? 
 
Dr. C:  What’s it mean to be off the diagonal. 
 

Dr. C was beginning the formal write-up of the proof but was still working on another 

problem.  Dr. B also demonstrated similar autopilot actions.   

The role of interview context and affect.  It appeared that the choices that 

participants made as far as what tools to utilize and what choices were reasonable were 

influenced by the interview situation and their own affect toward the situation.  The 

interview context played a role in Dr. A’s work on the Additive implies Continuous task.  

Dr. A had the initial feeling that the statement was not true because some counterexample 

existed.  However, Dr. A recalled that generating such a counterexample would draw 

upon knowledge from mathematical fields beyond real analysis.  Dr. A perceived that it 

would be difficult to remember how to generate such an example; therefore, the 

participant decided to pursue proving that the statement was in fact true:   

It sure seems like it ought to be true.  But the thing is that, you know, to come up 
with a counterexample you’ve got to go way off the tracks.  It’s not, you’re 
talking I think sort of undergrad real analysis, and so the counterexample is not 
something that you learn about in undergrad real analysis.  It’s elsewhere. 
 

The perception about the problem being solvable by undergraduate students was most 

likely because when Dr. A chose tasks for the other participants, he chose tasks that he 

had previously assigned to his undergraduate students.  The perceived difficulty of 
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generating the counterexample did not fit with Dr. A’s perception of the context of the 

interview situation throughout his work on the task.   

 Affect certainly played a role in participants’ decisions as they chose whether to 

persist or not to persist in solving the problems they encountered.  On the Uniform 

Continuity task, Dr. B made affective decisions when determining whether or not to 

continue trying to reformulate the proof of the theorem that continuous functions on 

closed intervals were uniformly continuous, a statement he knew to be true and to be 

necessary for proving the task statement.  Dr. B had earlier determined to not assume its 

truth and had worked for a period of time to determine why the theorem was true.  The 

majority of Dr. B’s work on the task was in pursuit of this warrant; the participant finally 

wrote an incorrect argument that gave enough self-satisfaction to move on to proving the 

task statement.  When I asked about what Dr. B wrote, it appeared frustration and fatigue 

(affective elements) played a role in this writing and accepting of the incorrect argument:  

“Yeah, I don’t know what I was.  This, this just is, this is just barking up the wrong 

tree…yeah, and probably this is the point I just got so frustrated I decided to prove the 

simpler version.”  By “simpler version,” Dr. B was referring to the final write-up where 

Dr. B made the decision to assume the theorem to be true.  In this task, affect (negatively) 

played a role in that Dr. B wrote and accepted an incorrect sub-argument; however, 

making the decision not to continue pursuing the sub-proof of this theorem known to be 

true was prerequisite to the writing of a final proof of the main statement.   

This section summarized how the inquirential context played a role in the 

development of ideas.  The problems and tools themselves do not dictate whether ideas 

are developed, but the interaction amongst the tools, ways that they were applied, the 
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problem and the acts of reflection and evaluation deployed by the prover determine if 

ideas are generated.  The next section provides findings about how ideas found to move 

the argument forward did in fact move the personal argument forward. 

The Evolution of the Personal Argument 

 I described the ideas that moved the argument forward and I illustrated the 

context surrounding the formulation of those ideas through the lens of Dewey’s (1938) 

theory of inquiry.  In this section, I summarize the observed shifts in the personal 

argument by category of idea.  I depict the findings regarding the conditions surrounding 

certain types of structural shifts.  I conclude the section discussing the interaction 

amongst the three larger idea-types within the inquirential framework as the personal 

argument evolves answering how ideas are used and tested. 

Shifts in the Personal Argument 

Changes in the mathematicians’ personal arguments were coded into 10 

categories.  Table 25 summarizes their descriptions.  In the descriptions of each idea-

type, I summarized which shifts were attributable to the implementation of the idea.   

Table 26 compares the shifts across idea-types.  With the exception of ‘data removed’, 

‘order of presentation’, and ‘no changes’, each structural shift was supported by 10 or 

more generated ideas.  Viewing the gaps in the table by idea category, we see that few 

focusing and configuring ideas informed data being repurposed, changes in claim or 

specification, backing being added or changed.  Monitoring ideas, though few, were 

dispersed throughout all shift-types.  Syntactic connections largely supported the addition 

of sub-claims and data as new equations were formulated and incorporated. 
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Table 25 

Observed Structural Shifts 

Structural Shift Description 
Opening structure 
 

The structure that the participant begins with when 
articulating the first idea 
 

Claim changed or specified The claim of the argument is either changed to a new 
claim or delimited in some way 
 

Sub-claim added In addition to attending to justifying the central claim, 
participants add new claims to proven 
 

Data added, extended or 
specified 

New statements are incorporated into the set of 
statements that the participant deems as relevant or  
existing statements are extended to new cases or existing 
statements are reformulated 
 

Data statements repurposed Given statements or previously generated ideas are 
purposed in the argument as claims, warrants, backing, or 
MQ/rebuttals 
 

Data removed Previously perceived relevant statements are removed 
 

Warrant added, changed or 
removed 

Warrant is added if none previously existed,  replaced by 
a new warrant, or eliminated as a potential link between 
statements 
 

Backing added, changed, or 
removed 

Backing statements are incorporated if none previously 
existed, replaced, or eliminated 
 

Qualifier or rebuttal changed Qualifier or rebuttal is typically implicit or not present, 
this code notes when one is specified or removed 
 

Order of presentation The relevant statements are not changed or deleted but 
are rearranged or combined with other claim structures 
 

None 
 

No changes  
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Table 26 
 
Structural Shifts Enabled by Each Idea-Type 
 
  

opening 
structure 

Claim 
Changed or 
Specified 

Sub-claim 
added 

Data added, 
extended, 
specified 

Data 
statements 
repurposed 

Data 
removed 

Warrant 
changed or 
removed 

Backing 
added or 
changed 

Qualifier 
or 
rebuttal 
changed none 

Order of 
presentation 

Focusing 
and 

Configuring 
ideas 

informing 
concept image 

B (1) 
C (1) 

C (1) B (2) A (1) 
B (3) 

  B (4) B (1) B (1)   

task type B (1) B (1)   C (1) B (1) B(1) B (1)      
truth proposal C(1)   A (1)     A (1)   
logical 
structure 

B (2) B (1) A (1)   A (1) B (2) 
C (1) 

   B (2) 
C (1) 

identifying 
necessary 
conditions 

A (1)  A (3)    A (1)  C (1) B (1)  

envisioned 
proof path 

  A (1) B (1) A (1)  B (1)  B (1) 
C (2) 

B (1)  

Connecting 
& 

Justifying 
ideas 

inductive 
warrant 

    B (1)  B (5) B (4) B (2)   

intuitive 
warrant 

A (1) 
C (2) 

A (1) 
B (1) 
C (1) 

B (1)  C (1)  B (3) 
C (1) 

    

syntactic 
connections 

A (1)  A (7) A (8)        

deductive 
warrant 

A (1) C (2) A (1) 
B (1) 

A (1) A (2)  
B (1) 
C (3)  

 A (1) 
B( 2) 
C (2) 

A (2) 
B (3) 
C  (1) 

   

proposed 
(vague) warrant 

   A (1) 
B (1) 

C (1)  B (1) 
C (1) 

B (2) 
C  (1) 

B (1) 
C (1) 

  

Monitoring 
ideas 

truth conviction 

C (1) A (1) 
B (1) 
C (2) 

A (2) 
B (2) 

A (2) C (3)  B (1) 
C (1) 

 B (2) B (1)  

can write a 
proof  

A (1) C (2) A (1) A (1) A (1) 
C (3) 

 B (2) 
C (2) 

B (1) C (1)   

unfruitful line 
of inquiry 

 A  (1)  A (1) B (1)  B (2) 
C (1) 

B (1) B (1)   

support for line 
of inquiry 

 C (1) A (3) 
B (1) 
C (1) 

 A (1)     B (1)  

 183 
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Theme 1: Ideas That Inform Can  
Be Repurposed  
 

Many data statements were repurposed as warrants or backing for the central 

argument or sub-arguments.  On the Additive Implies Continuous task, Dr. A utilized a 

previous idea to be data in generating a deductive warrant.  When building the 

counterexample used to disprove the statement, Dr. A utilized the property f �m
n
� =

𝑚
𝑛

f(1).  This property was a proven claim while the participant was trying to prove the 

statement was true.  The statement also served as evidence when Dr. A concluded that f 

would be true on rational numbers but not for irrational numbers based on a structural-

intuitive warrant that irrational numbers could not be close enough to the quotient m/n.  

So Dr. A’s proven claim generated while trying to prove the statement was true became 

data in arguments that the statement was false based on a structural-intuitive warrant and 

also a deductive warrant.   

 The ideas that were purposed were those that ended up being necessary or to 

underlie the claim.  Consequently, many of the statements given as conditions in the 

statement of the task began as data statements and were repurposed as warrants or 

backings for warrants.   

Theme 2: Claims Could Be  
Reversed or Specified  

On tasks where there was more unknown than how to prove the claim, 

participants developed ideas to move the argument forward when they were able to 

specify or determined they would reverse the claim.  Dr. B and Dr. C specified the claim 

when they determined what the one exception was on the Own Inverse task.  Dr. C 

specified a claim on the determine continuity task each time something new was 
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discovered about the function.  Dr. A and Dr. C detailed initial truth proposals on the 

additive implies continuous task.  When they found that pursuing the proving the side 

that they had proposed would be an unfruitful line of inquiry, they reversed the claim and 

worked to argue for the opposite side.  I describe this swapping of claims for Dr. A 

below. 

Because the prompt on the additive implies continuous was to ‘prove or 

disprove’, Dr. A needed to determine for which claim to argue.  Deciding which was true 

was a persistent question.  Dr. A switched which side of the argument for which to argue 

four times during work on the task while the interviewer was present.  Dr. A called this 

state of mind, being ‘aBayesian’ meaning being amenable to a probability distribution 

informed by the collected data: 

When you’re trying to prove something you don’t know whether it’s true or not, 
you need to be ‘aBayesian’.  So what one does is you come up with a prior, and 
you think, well, I’m ninety percent sure that linear functions are continuous, I’m 
ninety percent sure.  Since I’m ninety percent sure, I’m more than fifty percent 
sure, I’m going to prove that the functions are continuous.  And then I try and I 
try and I try, and eventually, given all this new data that I’ve tried for 15 minutes 
to prove that linear functions are continuous and I can’t do it.  Suddenly, my 
posterior distribution has changed.  I now think that it’s like, uh, eighty percent 
sure that it’s not true.  And so what I start to do then is look for a counterexample. 
 

 Dr. A began the task with the initial inclination that the statement was not true 

based on the resources of past experiences.  However, the participant thought about the 

tool needed to prove the statement was not true, and decided that generating a 

counterexample would require borrowing ideas from other realms of mathematics besides 

real analysis and require knowledge beyond that of an undergraduate student in real 

analysis.  These perceptions about the context of the tasks given contributed to deeming 

pursuing the counterexample inappropriate or infeasible.  Dr. A pursued proving the 
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statement was true, that additive implied continuous.  The participant gathered 

information about the function, that it passed through the origin and that all outputs for 

rational inputs would be the input times the function evaluated at one.  Reflecting on the 

gathered information Dr. A decided that these tools would not serve the purpose of 

showing that the function was continuous on all the real numbers.  Because Dr. A saw no 

means of connecting additive to continuous, he returned to the claim that it was not true 

suspecting a counterexample.   

 The consideration of the claim was short lived because Dr. A presented a rebuttal 

that the counterexample would be hard to attain.  Dr. A indicated not remembering how 

to construct the counterexample just that it existed.  So Dr. A once again attended to 

proving the statement was true.  He worked proposing new approaches and articulated 

that showing that the function was continuous at zero would be sufficient as only a few 

more steps would show the function was continuous on the entire domain.  Dr. A did not 

find a means of doing this and ended the interview session saying that based on his lack 

of progress, the statement was most likely untrue, but he would not be able to generate 

the counterexample in the interview.   

 It appeared the ‘prove or disprove’ nature of the statement and the requirement to 

draw upon knowledge outside the realm Dr. A perceived to be relevant to the interview 

tasks contributed to this switching between opposite claims.  The events preceding the 

claim swaps were not finding appropriate tools to argue the current direction, having a 

convincing rebuttal, or evaluating progress.  Dr. C swapped claims when he found his 

attempt at generating a counterexample was unsuccessful.  Dr. C decided that if the 

function he generated was not a counterexample, then no function would be a 
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counterexample since all functions that would be continuous on the rationals and 

discontinuous otherwise would be of the same class of functions of the one he generated. 

Theme 3: Testing and Exploring 
Non-Deductive Warrants  

As described earlier, a phase of the proof construction process involved working 

to test proposed warrants which often meant working to render non-deductive warrants 

into deductive warrants that could be generally articulated in a proof.  The testing process 

would result in the formulation of new warrant-type ideas as the argument progressed.   

This section provides descriptions of some ways that syntactic connections were 

developed into deductive warrants.  I explain an instance where a participant cycled 

through proposing and testing non-deductive warrants until finding an idea that could 

yielded into a deductive argument, and I illustrate how non-deductive, non-syntactic, 

informal reasoning was successfully rendered into a deductive argument.   

Rendering syntactic connections into deductive warrants.  The non-deductive 

warrant type that was most easily rendered into a deductive warrant was the syntactic 

connection because their representations both lie within the representation system of 

proof.  Dr. A was the only participant to develop syntactic connection ideas so I will 

focus on what his work on the MVT task whose statement I present below.   

Given: Theorem1- MVT for Integrals: If f and g are both continuous on [a,b] 
and 𝑔(𝑡) ≥ 0 for all t in [a,b], then there exists a c in (a,b) such 
that∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑎

𝑏 = 𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏
𝑎 . 

Prove: Theorem 2 – Extended MVT for Integrals: Suppose that g is continuous 
on [a,b], 𝑔′(𝑡) exists for every t in (a,b), and 𝑔(𝑎) = 0.  If f is a continuous 
function on [a,b] that does not change sign at any point of (a,b), then there exists a 
d in (a,b) such that ∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏

𝑎 = 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏
𝑎 . 
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On the Extended Mean Value Theorem Task, Dr. A began with a conception 

about the task-type that there was some set of connections that would allow the left hand 

side of the equation to be rendered into the right hand side utilizing the given first MVT 

and other conditions of the statement.  Dr. A proposed a series of three syntactic 

connections that when strung together made the symbolic expressions match up.  The 

three manipulations were (a) multiplying and dividing by (t-a), (b) applying the given 

first MVT to the new statement, and (c) applying the regular MVT to the resulting 

function utilizing the given fact that g(a)=0.  His resultant equations are given in Figure.   

 After writing the work in Figure 16, Dr. A went through checking to see the 

symbols matched up.  This gave Dr. A a feeling about how the argument would go but 

that this work was not yet a proof, “Okay, this isn’t rigorous, so I think now I know how 

to do it.”  Dr. A then started the task of identifying and securing what he called “loose 

edges.”  Upon the formulation of syntactic connections between statements, Dr. A set 

about checking to see if the manipulations were logically or mathematically valid.   
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Figure 16.  Dr. A’s sketch of a proof for the Extended Mean Value Theorem for 
Integrals. 

 

 The participant first wrote a lemma to support the equation 𝑔′(𝑑) = 𝑔(𝑐)−𝑔(𝑎)
𝑐−𝑎

=

𝑔(𝑐)
𝑐−𝑎

 for some d.  Dr. A attended to the rest of his argument and noted that he had a 

potential problem with t-a in the denominator of the function 𝑔(𝑡)
𝑡−𝑎

 as t gets close to a.  

“Okay, so I gotta be careful with g(t) over (t-a), because when t gets small, I’m dividing 

by zero.” Dr. A was not encountering a problem as he was working to make his work into 

a proof.  Dr. A explained in the follow-up interview that he had not yet realized that the 

above was an issue until he had entered into checking over the work. 

MT:  Okay.  So were you, were you thinking about this that you have to be 
careful about this function earlier? Like on the previous page? 

Dr. A:  No.  I don’t think so.  No, no, I don’t think so.  And now, I’m wondering if 
I have to because let’s see, ah, because you’re integrating, yeah, you’re  
integrating from a to b so I do have to be careful.  Yeah.  / Yeah, it looks 
like, yeah, I’m not sure exactly what I was thinking there.  But yeah, you 
have to be careful when you’re, if you are integrating from a to b, you’ve 
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got a problem with this g of t over t minus a.  So what I want to do is like 
call g of t over t minus a, call that h of t or something.  And just make sure 
that h of t is a nice function.  So yeah, I mean it’s fine except possibly so 
when yeah, and so taking that some kind of limit, so that’s where it’s 
conceivably a problem, and I’m not 100 percent sure it’s resolved, but 
yeah, if there’s any problem, that’s where it is. 

 
MT:  Okay.  So this question of it potentially being a problem, it just was right 

then.   
 
Dr. A:  I think it dawned on me right about there.   
 
Dr. A had identified a necessary condition for his proof argument to hold.  The 

participant recognized that the rational function would be in the form zero over zero 

when evaluated at t=a since g(a) was given to be zero, so it would be appropriate to 

apply l’Hopital’s rule to determine the limit as t approaches a and discerned that the limit 

would be g’(a).  Dr. A noted that the statement of the theorem did not say that the 

function’s derivative was defined at its endpoints, so he recognized a problem and either 

the problem was with his argument or with the posing of the task statement.  Dr. A 

checked over the argument and the wording of l’Hopital’s rule, and decided to end the 

argument with the rebuttal “unless g’(a) does not exist.” 

Dr. A illustrated a technique to approaching proofs of this type where one 

proposes a series of manipulations to make the expressions match up and then works to 

justify the connections logically.  How the participant justified his connections relied on 

ideas that inform planning.  His decision to first justify the use of the regular MVT was 

an idea about formal logic, and he identified a necessary condition that the rational 

function be well-defined which focused his inquiry.  In this example, I demonstrated how 

some arguments that only illustrate the symbolic connections are incomplete and that 
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leaving an argument as such is problematic.  However, the instance also illustrates how 

syntactic connections can be useful to the prover. 

Cycling through non-deductive warrants successfully.  All participants 

proposed some type of non-deductive warrant, but Dr. B proposed the most.  Across the 

four tasks he worked on, he proposed nine inductive or structural-intuitive warrants, 

while Dr. C proposed four, and Dr. A proposed two.  For this reason, I will use Dr. B’s 

work on the own inverse task which involved cycling through a series of proposed 

warrants and example functions and in the end, developing a deductive backing based on 

one of the inductive warrants.   

Let f be a continuous function defined on I=[a,b], f maps I onto I, f  is one-to-one, 
and f  is its own inverse.   Show that except for one possibility, f must be 
monotonically decreasing on I. 
 
Prior to first proposing warrant, Dr. B had made some assertions about f needing 

to be either monotonically increasing or decreasing, where it would have to start and stop, 

and that being its own inverse would mean that it was symmetric about the line y=x.  The 

participant drew a picture of the situation (Picture BI-1 in Figure 17) and articulated a 

thought that the one exception would be f(x)=x because “its reflection would be the same 

thing that you started off with.  And you’d have to be right on that line because there’s no 

other way of doing it.”  
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Figure 17.  Picture BI-1 by Dr. B in Own Inverse task. 

 

Dr. B had articulated a truth conviction based on a structural-intuitive argument while 

working through the construction of a general picture.  The personal argument structure is 

given in Table 27. 

  Dr. B articulated the intuition that gave self-conviction of why f(x)=x was the one 

exception, namely that if f was increasing, not the identity, and symmetric about y=x, 

then it would not pass the vertical line test for functions.   

Dr. B: So now the question is this.  So what have I convinced myself 
geometrically? And how do I prove those things? Okay.  So first of all, 
why is f(x)=x the only increasing function.  So my intuition there, if it 
wasn’t, then if you reflected itself, there would have to be double values of 
this thing from its reflection. 

 
At this point, Dr. B had not drawn any other pictures besides BI-1 in Figure 17.  To 

illustrate and provide some backing for this idea the participant drew picture BI-2 shown 

below in Figure 18.  By double values, Dr. B meant there would be two points on the 

same function (a, f(a)) and (𝑎, 𝑓−1(𝑎)).  Dr. B was interpreting f being its own inverse as 

symmetry across the line y=x. 
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Table 27 

Dr. B's Own Inverse Personal Argument Structure Upon Articulating Warrant 1 

Data Claim Warrant Backing MQ/Rebuttal 

F is one-to-one, onto, 
and continuous 
mapping I to I 

F is monotonically 
increasing from a to b 
or decreasing from b to 
a 

Monotonic and 
continuous is the same 
as one-to-one 
There’s no other way 
about it 

Geometric 
instantiations of 
definitions 

 

F is continuous, 
monotonically 
increasing from a to b 
and its own inverse 
Geometric instantiation 
of “own inverse” 

F(x)=x “you’d have to be right 
on that line (y=x)” 

“there’s no other way of 
doing it” 
Own inverse means “its 
reflection would be the 
same thing that you 
started off with”  
Picture BI-1 

“I’ve convinced 
myself” “intuitively 
seems like the only 
option” 
 

F is one-to-one, onto, 
continuous, its own 
inverse on [a,b] 
F is either 
monotonically 
increasing from a to b 
or decreasing from b to 
a. 

F is monotonically 
decreasing except for 
the one function f(x)=x 

   

 

 

 
 

Figure 18.  Picture BI-2. 

 

 Picture BI-2 (see Figure 18) served the purpose of helping Dr. B articulate what 

his intuition was.  When evaluating this picture against the goal of validating and 

generalizing the warrant, Dr. B still had the question, “So why would there be double 
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values on this thing?”  Dr. B tried working with BI-2 to answer the question but decided 

he would need to draw another picture to figure out why it would have to happen and 

drew BI-3 (see Figure 19) with the point (𝑎,𝑓(𝑎)) and thought about why (𝑎,𝑓−1(𝑎)) 

would also be a point.  “So why does there have to be an f-inverse of a corresponding to, 

oh, because this is in the same domain.”  

 

 

Figure 19.  Picture BI-3. 

 

The participant’s articulation of the intuition changed the warrant supporting the 

claim that the only increasing function would be f(x)=x (see Table 28).  The backing 

continued to be based on intuition but also now based on some empirical data from the 

drawn pictures because based on the picture Dr. B thought there was now evidence that 

this double-value idea would always happen. 
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Table 28 
 
Dr. B's Own Inverse Personal Argument Structure Upon Articulating Warrant 2 
 

Data Claim Warrant Backing MQ/Rebuttal 

F is one-to-one, onto, 
and continuous 
mapping I to I 

F is monotonically 
increasing from a to b 
or decreasing from b to 
a 

Monotonic and 
continuous is the same 
as one-to-one 
There’s no other way 
about it 

Geometric 
instantiations of 
definitions 

 

F is continuous, 
monotonically 
increasing from a to b 
and its own inverse 
Geometric instantiation 
of “own inverse” 

F(x)=x Otherwise there would 
be double y-values 
from reflection. 

Intuition, Picture BI-1, 
Support from example 
picture BI-2; picture 
BI-3  

Intuitive self-conviction 
 

F is one-to-one, onto, 
continuous, its own 
inverse on [a,b] 
F is either 
monotonically 
increasing from a to b 
or decreasing from b to 
a. 

F is monotonically 
decreasing except for 
the one function f(x)=x 

   

 
 
 
 Picture BI-2 (see Figure 18) served the purpose of articulating an intuitive 

warrant. Dr. B did not find it useful in determining why the double values phenomenon 

would always have to occur so he worked with picture BI-3 (see Figure 19).  Being 

convinced by the example, Dr. B determined that the double values idea would serve as a 

contradiction and worked to articulate this in a symbolic proof by contradiction.  

However, Dr. B was unable to write down why the function would have double values.  

Dr. B wrote down these thoughts symbolically and continued working on and adding to 

picture BI-3.  Dr. B worked for a period of time but was interrupted by a knock at the 

door while trying to articulate why the point on his picture (a, f(a)) would also have to 

correspond to a point (𝑎, 𝑓−1(𝑎)) within the representation system of proof.   

Dr. B returned to working on the task explaining that he had been interrupted and 

worked to reorient himself to what he had worked on before.  “So what’s going on here? I 
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was just about to get on this.  I have this nice picture.  And on my picture I know, I can 

see that if I reflect this type of function, it’s not going to be one-to-one.”  The participant 

articulated a contradiction that was wholly different from what he had worked on before 

based on the picture that was meant to justify his previous warrant.  When I asked Dr. B 

about this change, in the follow-up interview, he said that he had probably forgotten what 

he had done before and was trying to figure out what he was trying to contradict earlier.  

“I’m just trying.  I think there’s so many little facts about this I’m trying to think what am 

I trying to contradict here?...I sort of lost track of what I was doing because of when I got 

interrupted.”  The interruption resulted in a new warrant that Dr. B attributed to being 

based on the picture, so he developed warrant 3, an inductive warrant (see Table 29). 

 

Table 29   
 
Dr. B's Own Inverse Personal Argument Structure Upon Articulating Warrant 3 
 

Data Claim Warrant Backing MQ/Rebuttal 

F is one-to-one, onto, 
and continuous 
mapping I to I 

F is monotonically 
increasing from a to b 
or decreasing from b to 
a 

Monotonic and 
continuous is the same 
as one-to-one 
There’s no other way 
about it 

Geometric 
instantiations of 
definitions 

 

F is one-to-one, onto, 
continuous, and its own 
inverse 

It is possible for f to be 
decreasing 

There are a plethora of 
examples 

Drawn and mental 
pictures 

Absolute 

F is continuous, 
monotonically 
increasing from a to b 
and its own inverse 
Geometric instantiation 
of “own inverse” 

F(x)=x Otherwise f would not 
be one-to-one 

Picture BI-3 “I can see” 
 

F is one-to-one, onto, 
continuous, its own 
inverse on [a,b] 
F is either 
monotonically 
increasing from a to b 
or decreasing from b to 
a. 

F is monotonically 
decreasing except for 
the one function f(x)=x 
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Dr. B then tried to figure out why the function, specifically the one in picture BI-3, could 

not be one-to-one.  While exploring Dr. B noted that the point (𝑎, 𝑓(𝑎)) would connect to 

its inverse point but did not see how that could happen based on the picture drawn:   

It has to go through something over here.  [Draws line connecting (𝑓−1(𝑎), 𝑎) to 
f(x)] // so let me get this right.  That function can’t be it…So if the inverse 
function came through there, what would happen? / Right.  So I think I see what’s 
going on.  If I go through there, it can’t do that.  So I’m thinking backwards. 
 
This time while exploring, Dr. B noted the inverse point to (𝑎,𝑓(𝑎)) and noted 

that there would be a path from the origin to the inverse point to (𝑎,𝑓(𝑎)) (see Figure 

20), but he had been thinking of (𝑎,𝑓(𝑎)) coming directly along a path to the origin.  Dr. 

B explored for a while wondering about why the two paths would happen and eventually 

concluded that there would not be a path from (0,0) to (𝑎,𝑓(𝑎)) otherwise it would result 

in double values.  The idea that there would need to be a path up and then down was a 

potential backing for his warrant that the function would not be one-to-one, but Dr. B 

expressed confusion noticing an issue with how he had originally drawn the picture. 

 

 
 
Figure 20.  Picture BI-3.4. 
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Dr. B had not connected points on f to their inverse points previously.  It seemed 

that this was a change in the way of thinking about the picture of the function.  Dr. B now 

thought of f and f-inverse as a single function where previously it appeared there was f 

and f-inverse came from reflection.  Dr. B was not able to fully articulate the change.  His 

idea here was still a vague idea that something goes wrong when points are connected, 

but he did assert that he had been thinking about it “backwards” (see Table 30). 

 

Table 30 

Dr. B's Own Inverse Personal Argument Structure Upon Articulating An Issue With His 
Picture 

Data Claim Warrant Backing MQ/Rebuttal 

F is one-to-one, onto, 
and continuous 
mapping I to I 

F is monotonically 
increasing from a to b 
or decreasing from b to 
a 

Monotonic and 
continuous is the same 
as one-to-one 
There’s no other way 
about it 

Geometric 
instantiations of 
definitions 

 

F is one-to-one, onto, 
continuous, and its own 
inverse 

It is possible for f to be 
decreasing 

There are a plethora of 
examples 

Drawn and mental 
pictures 

Absolute 

F is continuous, 
monotonically 
increasing from a to b 
and its own inverse 
Geometric instantiation 
of “own inverse” 
Picture BI-3 additions 

F(x)=x Otherwise would not 
be one-to-one 

Picture BI-3 “I’m thinking about it 
backwards” 
 

F is one-to-one, onto, 
continuous, its own 
inverse on [a,b] 
F is either 
monotonically 
increasing from a to b 
or decreasing from b to 
a. 

F is monotonically 
decreasing except for 
the one function f(x)=x 

   

 
 
 
 The problem was articulating why he knew the increasing function would not be 

one-to-one.  Dr. B used the picture BI-3 to do so anticipating the picture was “nice” and 

would reveal why this would happen.  However, the picture was originally drawn to 

justify another warrant.  Dr. B even stated that this picture was not going to work.  The 
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personal argument shifted in that Dr. B articulated some more justification as to why the 

function would not be one-to-one, that it would have to connect (a, f(a)) to its inverse.  

However, Dr. B was not quite able to articulate this as such just yet.  The participant 

noted as a rebuttal to the argument, that there was something wrong with the picture in 

that the lines he drew connecting may not actually be there. 

 Dr. B stated that in his previous pictures he had not fully been using the fact that f 

was its own inverse so he stated, “Instead let’s do, supposing that f inverse of x equals f of 

x for all x.”  Dr. B explained, “I finally realized that’s the other fact I needed.  Because 

it’s its own inverse, right?  And that’s really what I’m contradicting…Yeah, I think I was 

like, what am I contradicting here? And I hadn’t written this down.”  Dr. B stated he was 

not using the fact, but that was the fact that his argument was actually contradicting with 

the pictures.  This idea led to his drawing of a new picture that used this idea where if 

(𝑥,𝑓(𝑥)) was a point on the function, then (𝑓−1(𝑥), 𝑥) was also a point on the function.  

The participant had developed a vague sense about what would be an important reason 

behind a contradiction.  Dr. B introduced idea that could be used to back a warrant; the 

idea was coded as a proposed (vague) backing.  The idea about the two points having to 

occur was coupled with this proposed (vague) backing about f being its own inverse and 

increasing when Dr. B found a contradiction that 𝑓�𝑓−1(𝑥)� would need to be both 

greater than x and less than f(x).  Dr. B had begun drawing picture BI-4 (see Figure 21) 

knowing that his previous pictures were not capturing the own inverse idea and that lines 

drawn connecting points may not actually be there.  So picture BI-4 only had points at the 

beginning and end of the interval and at (x, f(x)) and its inverse point.  Then Dr. B 

thought for a minute and a half about why there would be a problem before drawing a 
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dash above the point (x, f (x)) corresponding to the point (x,x) and declaring “if f-

inverse…then it can’t go through there.  Right, okay, I get it.” I asked about what the 

contradiction was that Dr. B seemed to have found. 

 

 
 
Figure 21.  Picture BI-4.2. 

 

Dr. B: I wanted to show that when I plugged f(x) into the original function, that 
gives two different values that can’t be equal actually.  Because since f 
equals f-inverse, then f(f(x)) would be x.  But I mean then that would mean 
you have a decreasing function because f(x) is right there.  You can see it 
geometrically.  I think what I realized that I had to have f(f(x)) be less than 
f(x).  But at this, if I also had that the inverse was equal to the original 
function, that also tells me f(f(x)) would also have to be greater than f(x).  
Yeah, so they can be both of those things at once.  

 
Dr. B had articulated a fourth warrant based on an example that was developed based on 

a (vague) backing (see Table 31).  Dr. B worked to articulate this idea and justifying why 

this would have to happen.  In doing so, he focused on f having to decrease on some 

portion if it was its own inverse and was able to render his argument into an algebraic 

form. 
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Table 31 
 
Dr. B's Own Inverse Personal Argument Structure Upon Articulating Warrant 4 
 

Data Claim Warrant Backing MQ/Rebuttal 

F is one-to-one, onto, 
and continuous 
mapping I to I 

F is monotonically 
increasing from a to b 
or decreasing from b to 
a 

Monotonic and 
continuous is the same 
as one-to-one 
There’s no other way 
about it 

Geometric 
instantiations of 
definitions 

 

F is one-to-one, onto, 
continuous, and its own 
inverse 

It is possible for f to be 
decreasing 

There are a plethora of 
examples 

Drawn and mental 
pictures 

Absolute 

F is continuous, 
monotonically 
increasing from a to b 
and its own inverse 
Geometric instantiation 
of “own inverse” 
Picture BI-3 additions 

F(x)=x Otherwise f(f(x)) 
would need to be both 
less than and greater 
than f(x) 

Picture BI-4  
F(f(x))=x implies 
f(f(x)) is greater than x 
on the picture 
F(f(x)) would need to 
be less than x for f to be 
increasing 

Based on picture 

F is one-to-one, onto, 
continuous, its own 
inverse on [a,b] 
F is either 
monotonically 
increasing from a to b 
or decreasing from b to 
a. 

F is monotonically 
decreasing except for 
the one function f(x)=x 

   

 

 In summary (see Table 32), Dr. B proposed Warrant 1 based on structural-

intuitive understanding which utilized picture BI-1 to work through the conditions of the 

statement to arrive at that understanding.  The participant articulated the intuition more 

specifically as Warrant 2 and used Picture BI-2 to test and articulate it and Picture BI-3 to 

discern why it would work generally.  Dr. B thought he found a reason why and moved to 

articulate it in a proof but found that he was not able to generally articulate why the 

function would have double values.  Dr. B returned to working with the same picture BI-

3 to validate and generalize the warrant.  While testing the idea Dr. B was interrupted and 

upon returning, he articulated the inductive Warrant 3.  The participant still needed to 

justify why it always worked so he continued exploring Picture BI-3.   
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Table 32 
 
Dr. B's Progression of Warrants on the Own Inverse Task 
 

The change Warrant Backing MQ/Rebuttal 

Warrant 1 “you’d have to be right 
on that line (y=x)” 

“there’s no other way of doing it” 
Own inverse means “its reflection 
would be the same thing that you 
started off with”  
Picture BI-1 
 

“I’ve convinced myself” 
“intuitively seems like the only 
option” 
 

Warrant 2 Otherwise there would be 
double y-values from 
reflection. 
 

Intuition, Picture BI-1, Support from 
example picture BI-2; picture BI-3  

Intuitive self-conviction 
 

Warrant 3 Otherwise f would not be 
one-to-one 
 

Picture BI-3 “I can see” 
 

Proposed backing Otherwise would not be 
one-to-one 
 

Picture BI-3 “I’m thinking about it backwards” 
 

Warrant 4 Otherwise f(f(x)) would 
need to be both less than 
and greater than f(x) 

Picture BI-4  
F(f(x))=x implies f(f(x)) is greater 
than f(x) on the picture 
F(f(x)) would need to be less than f 
(x) for f to be increasing 
OR 
The function will end up decreasing 
on a portion since (x, f(x)) and 
(f(x),x) are both points on the graph. 

Based on picture 

 
 

While exploring why the function would not be one-to-one, Dr. B noted a property that 

the function needed to have to be its own inverse that his picture was not capturing.  The 

participant chose to abandon his picture, BI-3, and reflect once again about what it meant 

to be its own inverse.  He applied the instantiation of the concept by writing the statement 

f(f(x))=x and used this conception of own inverse along with previous ideas about where 

an increasing function with the given properties should start and stop to draw Picture BI-

4 with the aims of determining a contradiction.  The exploration of this picture involved 

attending to how both points would be on the same function and how the function was 

meant to be increasing.  Through this exploration, Dr. B extracted Warrant 4 which he 

was able to use in pursuing an algebraic argument.  Dr. B’s acts of articulating, testing, 
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and exploring examples to generate backing for his warrants are examples of inquiry 

resulting in new information.  Dr. B was able to reason informally and to achieve a 

formal argument in the end.  However, Dr. B’s and Dr. C’s work on the own inverse task 

were the only instances where insights gathered from working with non-deductive 

warrants led directly to the formulation of a deductive warrant. 

 When are ideas from informal explorations developed into deductive 

warrants?  A goal for Dr. B and Dr. C who explored inductive and structural-intuitive 

warrants was to move from these informal understandings into a deductive warrant.  As 

illustrated above, Dr. B actively pursued justifying that his warrants formulated on 

intuition and examples would always occur.  Dr. B explored finding this justification 

empirically.  As described earlier, Dr. C worked to justify his warrants both symbolically 

and with pictures in acts he called permuting the logic.   

 Taking the view of the inquiry framework, the participants had gathered, assessed, 

and connected data statements to formulate a proposed warrant.  They evaluated the 

warrant based on its ability to convince them of the truth and their ability to justify it in a 

mathematically deductive way.  Finding it problematic to do so, they set about either re-

exploring to formulate a new warrant or inquiring into and exploring their current warrant 

until a new insight was found, that new insight could be a reformulation or specification 

of the warrant, a possible backing for the warrant, or a new unrelated piece of 

information.  Dr. B explored and found an entirely new proposed warrant that the 

function would fail to be one-to-one.  These new insights were tested either by trying to 

prove the statement or by further exploring.  At one point, Dr. C moved to test his ideas 

by writing the proof symbolically, but while thinking about his next step he noticed 
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something amok with his thinking.  While exploring why the function would fail to be 

one-to-one, Dr. B also noticed something was “backwards” about his thinking and the 

picture that he had drawn. 

 At some point during both of their efforts to justify their warrants, they both 

identified (if vaguely) aspects of the conception of a function being its own inverse that 

they were not attending to that they should.  Dr. B said he was not using the idea that 

f(f(x))=x and that his pictures were not accounting for how points on the inverse and 

points on the function must connect.  Dr. C said he was not focusing on how points below 

the line y=x end up above the line and vice versa.  They identified that these aspects of 

the own inverse property would be important in any contradiction that they might get, 

and this assertion of a proposed backing was critical to their attainment of the deductive 

warrant.   

 Informed by this new piece of data, the participants moved to perform more 

explorations (or actions).  This time Dr. B’s picture only held the given pieces of 

information and the aspects that he found useful; Dr. C connected the ideas that his 

previous explorations had shown to be pertinent including the proposed backing idea.  

The acts of inquiring yielded new information including a sense that there was something 

missing from how they had been thinking about the ideas.  These missed or unfocused 

aspects of the own inverse property ended up being central to the mathematical 

justification of the contradictions that they found.   

Relationship Among Idea 
Categories 

This section provides a description of how ideas within the three outlined idea 

categories, Focusing and Configuring, Connecting and Justifying, and Monitoring were 
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tested and used with each other in the evolution of the personal argument.  I first 

demonstrate the development, testing, and interaction of ideas within the context of a 

specific task.  Later, I summarize how this example compares and contrasts with the work 

on other tasks by other participants before summarizing the chapter.   

 Dr. C’s evolving argument on the additive implies continuous task.  I chose to 

demonstrate utilizing the additive implies linear task because its directions to prove or 

disprove provided an open ended format.  Dr. C deployed both formal and informal 

modes of thought, made his monitoring thoughts apparent either within his work on the 

task or in the follow-up interview, and was not certain he could solve the task until he had 

developed a deductive warrant so was actively engaged in inquiry as moved forward.  

The statement as given to Dr. C is presented. 

Let f be a function on the real numbers where for every x and y in the real 
numbers, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).  Prove or disprove that f is continuous on the 
real numbers if and only if it is continuous at 0.   
 

 Dr. C read the statement and articulated a truth proposal, “It’s certainly 

continuous on the rationals.  I don’t believe it for the reals though.” The assertion was 

based on connecting perceived to be relevant content knowledge about how one proves 

that linear functions (in the form y = mx) are continuous:   

I was thinking about the well-known fact that the only continuous linear functions 
in the reals to the reals are those of the form y equals mx for some fixed m.  And 
one shows that those are continuous on the rationals fairly easy - linear functions 
are continuous on the rationals pretty easily by doing some induction. 
 

Although not voiced aloud during his work on the task, Dr. C had brought in statements 

and facts that he perceived to be relevant.  These ideas that informed the statement image 

were the basis of his truth proposal.  The conjecture was made based on his knowledge of 

mathematical structure and relationships.  It was a structural-intuitive warrant.  The truth 
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proposal informed Dr. C’s decision moving forward.  He shifted his inquiry focus from 

determining the truth of the statement to looking for a way to disprove the statement 

which he knew to be achieved by developing a counterexample.  The structure of his 

argument is given in Figure 22. 

   Dr. C chose to develop a function that was continuous at zero and continuous on 

the rational numbers and discontinuous otherwise based on his earlier structural-intuitive 

warrant idea.  The example would serve as a means of testing his warrant.  To test the 

example, Dr. C knew that the function would need to be continuous at zero and have the 

additive property.  The participant justified that the function was continuous at zero non-

problematically as he had designed it to be so.  Dr. C tested the additive property with a 

specific critical example of a pair of irrational inputs whose sum was rational.  Dr. C 

worked through the example and concluded that his function did not satisfy the additive 

condition.   

As a means of testing the structural-intuitive warrant by trying to develop a 

deductive argument based on the same ideas that informed a warrant, Dr. C deployed the 

tool of an example in the anticipation that it would serve to disprove the statement.  Dr. C 

found his example tool failed.  He evaluated the situation and stated that maybe the 

statement was true. 

Dr. C:  It turned out that didn’t work.  And if the easier ones didn’t work, then the 
harder ones probably wouldn’t either.  Matter of fact, if the easier one 
didn’t work, then it seemed likely that none of the harder ones would 
work.   

 
M:  Okay.  So I was going to ask about that.  So after you found that it didn’t 

work, it didn’t satisfy it.  You paused for a while.  Was it because you 
were trying to think of different examples, or were you convincing 
yourself that it- 
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Dr. C:  Yeah.  I was trying to convince myself that if this didn’t work, then 
nothing would. 

 
  

 

Figure 22.  Dr. C's personal argument structure on additive implies continuous task upon 
articulating a truth proposal. 

 

As can be seen in Figure 23, the new truth proposal informs the claim rectangle on the 

right.  The warrant backed by inductive information provides some connection between 

the data and claim, but as the warrant is not a deductive type, the connection is not solid 

and the qualifier is not absolute. 

 

(implied) not a 
proof 

F(x+y)= f(x)+ f(y) 
The only continuous linear functions on 

the reals are of the form y=mx 
Prove linear functions are continuous 
on the rationals easily by induction 

F is not continuous on the reals 

No clear way of proving 
for the reals 

The induction argument 
won’t work for irrational 

numbers 
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Figure 23.  Personal argument structure upon changing the truth proposal based on an 
inductive warrant. 

 

Dr. C had used the example as a means of testing not only the warrant but the 

truth proposal it backed.  This moment was characterized by a second truth proposal but 

this time  achieved by an inductive warrant, content knowledge about a type of function, 

and a feeling that pursuing a counterexample would be an unfruitful line of inquiry.  The 

tools used and the monitoring idea that there is an unfruitful line of inquiry worked with 

the inductive warrant to connect the data to the truth proposal. 

Dr. C then moved to try to prove the statement was true or to provide an absolute 

link between the data and the claim.  The participant deployed tools of instantiations of 

the definition of continuous that he deemed to be fitting with the additive property of the 

function as well as his knowledge of properties of limits to extract the equation given in 

“maybe” 

F(x+y)= f(x)+ f(y) 
F continuous at zero 

Proposed function does not have the 
additive property 

F is continuous on the reals 

No function can be 
continuous at 0, continuous 

on rational numbers but 
discontinuous otherwise, 

and additive 

If that function was not a 
counterexample, no 

others would be. 
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Figure 24.  Dr. C concluded that the continuity of the function depended on the value of  

lim𝜀→0 𝑓(𝜀) being equal to zero or not. 

 

 

Figure 24.  Dr. C's limit equations. 

 

Dr. C had developed a necessary condition based on the deployment of tools 

chosen based on data statements perceived to be useful and a deductive warrant.  In an 

effort to fulfill the condition and test his earlier truth proposal, Dr. C determined that the 

function would need to satisfy f(0) the second necessary condition informed his planning.  

He remembered an algebraic proof that f(0)=0 which satisfied one aspect and provided 

support for the line of inquiry of attempting to prove the statement true.  However, Dr. C 

still had a condition to fulfill, “So f of zero is zero.  But that doesn’t mean that the limit as 

epsilon goes to zero of f of epsilon is zero.  Does it?  Why should it?”  Dr. C looked back 

at his writing of the statement because he “was thinking about how to bring the definition 

of continuity into the picture.  That was returning to what I was given and figuring out 

how to bring that into the picture to evaluate.  Or to show that limit was f of zero which is 

the central question for continuity at the origin.”  In an effort to glean more data, Dr. C 

looked back at the statement and saw that it was given that the function was continuous at 

zero.  “Ah, but we’re given that f is continuous at the origin.  And we know that f of zero 
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equals zero.  So the limit as epsilon goes to zero of f of epsilon is zero.  I think that makes 

it work.”  Dr. C symbolically evaluated that his assertions were correct and declared truth 

conviction.  This was coupled with a sense that he could now write the proof based on his 

deductive warrants.  Because Dr. C’s work in proving the task was based on deductive 

warrants within the representation system of proof, the writing of the proof did not 

require the formulation of any new ideas (see Figure 25). 

 

 

Figure 25.  Personal argument structure upon the realization of a necessary condition. 

 

 Interaction of ideas for Dr. C.  During the task, Dr. C articulated ideas from 

every idea category as summarized in Table 33.  The first idea was to bring in some 

perceived to be relevant facts to inform the statement image which when combined led to 

a truth proposal based on structural-intuitive backing.  The proposal was tested by a 

possible counterexample that was generated based on the insights relevant to the 
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structural-intuitive warrant.  The possible counterexample function was tested by a 

numerical example and found to not serve as a counterexample.  Conceptual knowledge, 

an inductive warrant, and a sense of an unfruitful line of inquiry informed a new truth 

proposal.  The truth proposal was tested by the pursuit of a deductive argument.  The 

fulfillment of the argument was achieved by deductive warrants but focused by the 

identification of necessary conditions whose fulfillment inspired monitoring ideas of 

support for the line of inquiry which supported the continuation of the proof to the 

fulfillment of the necessary condition and a truth conviction and the feeling of being able 

to write a proof. 

 

Table 33 

Ideas Generated During Dr. C’s Work on the Own Inverse Task 

Focusing and Configuring Connecting and Justifying  Monitoring 

• Informing statement 
image 

• Truth proposals (2) 
• Necessary 

conditions (3) 

• Structural-Intuitive 
warrant 

• Inductive warrant 
• Deductive warrant 

(2) 

• Unfruitful line of 
inquiry 

• Support for line of 
inquiry 

• Truth conviction 
• I can write a proof 

 
 
 
 As described above, the idea-types were not always formed independently of 

other idea-types but sometimes simultaneously in coordination with each other.  After Dr. 

C tested his proposed function and found that it did not serve as a counterexample, he 

identified a new truth proposal based on an inductive warrant and an identification of an 

unfruitful line of inquiry.  The example was just an example until Dr. C used it to justify 
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his new truth proposal.  Dr. C would not have made a new truth proposal if it had not 

been for his evaluation combining the identification of an unfruitful line of inquiry, the 

evidence from the example, and conceptual knowledge of types of functions.  The 

identification that searching for a counterexample would be an unfruitful line of inquiry 

essentially was an idea to pursue proving that the statement was true based on conceptual 

knowledge and the empirical evidence.  No one of these three idea-types was generated 

prior to the other, their formulation depended on the others, and all three categories of 

focusing and configuring, connecting and justifying, and monitoring were apparent in this 

single moment.   

 Because of this possible amalgam of idea-types into one single moment, linear or 

even cyclical of patterns defining the steps at which these ideas are formed such as 

focusing and configuring, then connecting and justifying, then monitoring, repeat are not 

generally discernable.  What is noticeable is a process of proposing or articulating an 

idea, testing the idea’s usefulness or the usefulness of prior ideas against the 

consequences of the new idea, and then articulating a new idea.  The process itself 

involved the passing through, often multiple times, the inquirential cycle of reflecting, 

acting, and evaluating.   

 Consider again what followed Dr. C’s articulation that f(0)=0 was a necessary 

condition.  Dr. C tested the truth proposal against this necessary condition.  He reflected 

upon why f(0)=0 could possibly be true and began to think about ways of proving it so.  

Dr. C recalled a standard argument that would prove f(0)=0 and applied that argument.  

In the evaluation of the results of his actions against the statement to be proven, Dr. C 

declared a monitoring idea of support for the line of inquiry, namely pursuing proving the 
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statement true, but also another necessary condition, that f is continuous at zero.  Even 

though there is no discernable pattern amongst the order that the ideas in each category 

emerge, the idea categories have purposes in structuring the argument and informing the 

problem-solving pathways. 

The focusing and configuring ideas of informing the statement image, truth 

proposals, and necessary conditions provided the data and claims of the argument 

structure as well as a proposed pathway.  The warrants filled in the links between the data 

and claim, and the backing, once deductive, made those links sound.  We saw in Figure 

24 that the identification of the necessary condition that f(0)=0 provided another 

rectangular box claim that was known to be needed to serve as data being somehow 

connected with other data to support the final claim.  This focused Dr. C’s inquirential 

pursuit.  He moved to solve the problem of warranting that f(0)=0.  The monitoring ideas 

were not always visible in the argumentation structure, but their effects were apparent in 

the decisions made in that Dr. C abandoned pursuing a counterexample and continued 

trying to pursue proving true when monitoring ideas were achieved.  

 Summary of the relationship amongst idea types.  Every other participant on 

each task identified ideas from each of the three idea categories.  For each participant, the 

focusing and configuring ideas informed the rectangle data and claim boxes, warrants and 

backing, as expected, served as connections between the data and claims, and  monitoring 

ideas, in combination with other means of testing ideas, provided information to the 

prover as to whether their work was fitting or not. 

As seen with Dr. C, the evolution of the personal argument is not linear in 

identifying focusing and configuring ideas, identifying connections and justifications, and 
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then making monitoring decisions since single moments may characterize multiple idea-

types, simultaneously.  The process of articulating ideas, testing the new idea or previous 

ideas against these new ideas, and then proposing new ideas was apparent.  The process 

of testing ideas varied by idea-type as described in earlier sections, but the process 

involved active, productive inquiry.  In general, the ideas were tested against their 

abilities to do work in solving a perceived problem.  As these problems evolved, the ideas 

were eventually tested against their ability to work with the existing personal argument 

structure to move the argument into a general, deductive proof.   

Summary of Findings 

 The purpose of this study was to describe the ideas mathematicians developed to 

move their personal arguments forward, to describe the inquirential context surrounding 

the emergence of those ideas, and to describe how the mathematicians used and tested 

those ideas as they proceeded to resolve the proof problem.  The mathematicians in this 

study developed ideas that moved their personal arguments forward.  That is, they 

developed insights, feelings, and statements whose incorporation into the personal 

argument changed the argument’s structure.  I grouped ideas into three categories 

according to their perceived functionality: Ideas that Focus and Configure, Ideas that 

Connect and Justify, and Monitoring Ideas.  The focus and configure ideas included ideas 

from six sub-types: statement image, task-type, truth proposal, necessary condition, 

envisioned proof path, and logical structure ideas.  The ideas that connect or justify were 

the proposed warrant and backings for warrants, meaning the proposed reasoning to 

connect the evidence with the claim.  I further classified the proposed warrants based on 
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their respective backings.  Monitoring ideas were feelings the participants had about their 

progress and success in completing the proof tasks and solving their problems.   

 The ideas emerged through the mathematicians’ purposeful recognition of 

problems to be solved and reflective and evaluative procedures to solve them that 

incorporated the implementation and development of tools.  These tools included rich 

conceptual knowledge, multiple instantiations of concepts and definitions, purposeful 

exploration of specific examples, knowledge of heuristic strategies, and the connecting 

and permuting of ideas and statements.  The ideas did not emerge in a linear or cyclical 

pattern of an idea from each category.  However, there was a pattern of working to (a) 

understand the statement or determine the truth of the statement, (b) find a warrant (or a 

reason why the statement would be true), (c) validate, generalize, and articulate the 

warrant, and (d) write the final proof.    

 As the mathematicians articulated and incorporated new ideas, the structure of 

their personal arguments changed, notably that data statements could be repurposed as 

warrants or backing or participants could change their claims.  When the mathematicians 

reasoned informally, they would proceed to test their non-deductive warrants in an effort 

to progress into formal arguments.  In the next chapter, I summarize these findings 

against the literature and provide possible explanations.  In addition, I elaborate on 

limitations and hypothesize implications of these findings for teaching and research in 

mathematical proof. 



 
 
 
 
 

CHAPTER V 
 
 

DISCUSSION AND CONCLUSIONS 
 
 

In this chapter, I present a summary of the study and a discussion of the ideas the 

participating mathematicians developed to move their argument forward, how that 

development occurred, and how those ideas were utilized and tested as the personal 

argument evolved.  It then presents considerations for the implications of the findings for 

research and teaching.  Finally, it suggests future research paths to investigate further 

understanding how certain idea-types are tested and to investigate methods for helping 

students develop and utilize ideas to move their arguments forward. 

Summary of the Study 

 There is general agreement that the mathematician’s proving process involves an 

attainment of ideas that are organized in a way to move an argument toward a 

mathematical proof (Rav, 1999; Tall et al., 2012).  Research is needed to document the 

context surrounding how mathematicians formulate useful ideas and how these ideas 

contribute to the development of the argument.  The purpose of this research was to 

describe the evolution of the personal argument in professional mathematicians’ proof 

constructions, to describe the situations surrounding the emergence of ideas that moved 

the argument forward, and to describe how those ideas are tested and used.  Specifically, 

this research sought descriptive answers to the following questions:  
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Q1 What ideas move the argument forward as a prover’s personal argument 
evolves? 

 
Q1a What problematic situation is the prover currently entered into 

solving when one articulates and attains an idea that moves the 
personal argument forward? 

 
Q1b What stage of the inquiry process do they appear to be in when one 

articulates and attains an idea that moves the personal argument 
forward? (Are they currently applying a tool, evaluating the 
outcomes after applying a tool, or reflecting upon a current 
problem?) 

 
Q1c What actions and tools influenced the attainment of the idea? 
 
Q1d What were their anticipated outcomes of enacting the tools that led 

to the attainment of the idea? 
 

Q2 How are the ideas that move the argument forward used subsequent to the 
shifts in the personal argument? 
 
Q2a In what ways does the prover test the idea to ensure it indeed “does 

work”?  
 
Q2b As the argument evolves, how is the idea used? Specifically, how 

are the ideas used as the participant views the situation as moving 
from a problem to a more routine task? 

 
The research was framed in Dewey’s (1938) theory of inquiry, a conception of the 

proof construction process as involving an evolution of a personal argument, and 

Toulmin’s (2003) model of argument structure.  I asked three mathematicians teaching or 

doing research in the field of real analysis to participate in the study by solving three 

mathematical proof tasks either while being video-taped or on their own time.  

Participants recorded all their work in Livescribe notebooks.  Participants chose 

perceived to be problematic tasks, and I contributed one task.  In the end, participants 

worked on three or four total tasks among the seven total tasks included in the study.  

After the mathematicians completed a task, they participated in follow-up interviews with 
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protocols informed by my preliminary analyses and hypotheses developed from viewing 

their submitted work prior to the follow-up interview.  Informed by the complete data set, 

I identified each idea that moved the argument moved forward, detailed the Toulmin 

structure of the argument prior to and following the formulation of that idea, and the 

inquirential context that contributed to that idea.  Open iterative coding of the ideas seen, 

problems, tools, and shifts in the structural argument preceded analysis for categories and 

themes across participants working on the same task and then across tasks for the same 

participant. 

Major Findings 

The three participants worked on seven total tasks.  Results of open-iterative 

coding discerned that they entered into solving nine types of perceived problems utilizing 

ten categories of tools (see Tables 40 and 41 in Appendix F).  Ideas that moved the 

argument forward corresponded to structural shifts in the Toulmin diagrams of the 

personal argument, provided the participant means to communicate their personal 

argument in a logical manner, gave participants a feeling that their way of thinking was 

fitting or unfruitful, or were explicitly referred to by the participants as a useful insight 

into the resolution of an issue that they had identified as problematic.   

 The framework of logical inquiry was useful in describing the process of 

generating and testing ideas that moved the argument forward.  No tool category or 

problem was indicative of a single idea category as problems and tools transcended idea 

category.  The interplay of problem, tool, previously articulated ideas, and the 

individual’s perspective determined how ideas were generated.  
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Ideas That Moved the Personal  
Argument Forward   

As the three participants worked on the proof construction tasks, they developed 

feelings about how the proof development would go, identified key relationships, and 

made decisions in order to make progress on the task.  These feelings, decisions, and 

moments of insight were the ideas that moved the argument forward.  Some of the ideas 

identified have been remarked upon by previous literature as “decisions” (Carlson & 

Bloom, 2005), “resources” (Carlson & Bloom, 2005), and ideas or moments (Raman et 

al., 2009).  Other researchers have commented on the use of various resources, tools or 

explorations by students and mathematicians to achieve the senses of understanding of a 

proof situation that characterize some of the ideas that were identified in Chapter IV (e.g.,  

Alcock, 2004; Alcock & Inglis, 2008; Lockwood et al., 2012; Watson & Mason, 2005; 

Weber & Alcock, 2004).  This work, however, contributes to the existing knowledge in 

this area with the specific purpose of identifying the moments, decisions, and ideas that 

moved the argument forward from the prover’s perspective, and makes its contribution 

unique.   

The ideas were grouped into 15 idea-types that were further grouped into three 

idea categories according to their function in moving the personal argument forward.  

The ideas that focus and configure which included ideas that inform the statement image, 

task type, truth proposals, identified necessary conditions, envisioned proof paths, and 

formal logic ideas provided insight into making decisions about how to begin, how to 

proceed, and what tools and ideas to use in doing so.  The ideas that connect and justify 

included four types of warrants based on their paired backing as well as proposed 

backings.  These ideas were proposals for how to link the given data statements to the 
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claim statement and how to validate those links.  Deductive warrant-types were those 

sought for the final written arguments, but the articulation, exploration, and utilization of 

non-deductive warrants proved fruitful in the attainment of new information and ideas 

that guided future explorations or helped participants assert truth.  Participants utilized 

monitoring ideas to evaluate their progress and to make decisions regarding their progress 

toward a more efficient solution strategy, which were captured by four sub-idea-types. 

Ideas that focus and configure.  The ideas that focus and configure were those 

that did work for the participant in terms of where to focus, how to begin, how to 

proceed, and what tools to utilize.  Ideas that inform the statement image were 

statements, relationships, and proven claims that the participant deemed as relevant to the 

personal argument but had not yet been utilized as a warrant, claim, or backing.  These 

ideas could have been the results of elaborating or connecting given conditions from the 

task statement or previous knowledge brought into the conception of the task.  I have 

chosen to distinguish these ideas from general tools and conceptual knowledge.  These 

ideas could be wielded as tools (connecting and permuting ideas) and may have resulted 

from applying conceptual knowledge, but, uniquely, they were statements of fact that the 

participant deemed as potentially useful or utilized to inform his conception of the 

personal argument.   

Since most work in problem solving has been to identify useful strategies or to 

describe the cognitive processes involved, the formulation of ideas that inform the 

statement image have not been characterized by other literature as notable moments.  

However, decisions about how to use these ideas and others in the focusing and 

configuring category could be seen as falling into the much broader “resources” problem-
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solving attribute in Carlson and Bloom’s (2005) multi-dimensional problem solving 

framework.  Mason et al. (1982/2010) provide mathematical thinking strategies for 

students breaking down the problem-solving process into three phases into entry, attack, 

and review.  In the entry phase, students are to ask the questions, “What do I know?, 

What do I want?, What can I introduce?”.  Ideas that inform the statement image seem to 

fall under the “What do I know” question as it encapsulates what is known from the task 

statement and from past experience.  While in the literature these ideas inform how to get 

started, this research has shown that these ideas can be formulated at every stage of the 

proof construction process. 

On the tasks that instructed to prove or disprove, participants developed proposals 

of truth based upon intuition, experience, or examples.  Other researchers have studied 

the similar constructs of the formulation of conjectures or evaluations of truth (e.g., Inglis 

et al., 2007; Lockwood et al., 2012; Pedemonte, 2007).  More specifically, they studied 

the reasoning activities involved with formulating these conjectures.  This research 

supports Lockwood and colleagues’ findings that proving and disproving are related in 

that participants may work to prove or disprove simultaneously.   

Participants developed ideas about the type of task that they were presented on 

four of the seven tasks.  These ideas were accompanied by feelings about what kinds of 

approaches would be useful or appropriate.  The problem solving literature has indicated 

that identifying problem-type or problems similar to the current problem as potentially 

useful heuristics (Pólya,1945/1957; Schoenfeld, 1985); mathematicians were noted to 

perform this behavior as Carlson and Bloom (2005) stated that when orienting to a 

problem, the mathematicians “scanned knowledge and classified the problem” (p. 67). 
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The mathematicians in this study identified necessary conditions on the additive 

implies continuous and extended MVT tasks.  That is they identified conditions that they 

would have to prove in order for the task claim or a claim they asserted to be true.  These 

ideas provided direction for their inquiry efforts and anticipated consequences should 

they succeed or fail in fulfilling the conditions.  The identification of this idea-type as 

moving the argument forward did not occur on the other tasks.  It is possible that this was 

because the two tasks held the nature where participants worked syntactically (as 

characterized by Weber and Alcock (2004) to connect given data to an algebraic 

formulation of a definition.  Identifying necessary conditions is related to understanding 

and unpacking relevant definitions recognized by mathematicians and mathematics 

educators as a useful step in constructing mathematical proof (e.g. Selden & Selden, 

1995; Weber & Alcock). 

Both Dr. A and Dr. B achieved moments where they could envision a proof path; 

that is they proposed a series of statements that they could see leading to a solution while 

looking for a warrant or backing for a warrant.  These were identified when participants 

were stuck on justifying some sub-claim.  They had a sense of “if I can show this, then 

I’m done”.  Selden and Selden (1995) described how student provers could benefit from 

unpacking the logic of a statement to develop a proof framework, essentially the series of 

claims needed to be validated in order to achieve a mathematical proof of a given 

statement.  The proof framework nearly encompasses what is meant by an envisioned 

proof path except that the achievement of an envisioned proof path may require more 

than the unpacking of the logic of the statement and is accompanied by a sense of how 
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one would justify all other claims provided he/she could justify an initial claim.  These 

envisioned proof paths gave participants a sense of “If I had this, then I’d be done.” 

Ideas about formal logic and the representation system of proof were decisions 

made about how to structure the mathematical argument and what logical tools to use 

including proofs by cases, proving by contradiction, determining qualifiers, and making 

decisions on what constituted mathematical proof.  Ideas of this type are reflective of the 

theoretical description by Selden and Selden (2013) who classify the proof problem into 

two parts, the formal-rhetorical part and the problem-centered part.  They state that the 

formal-rhetorical part does not depend on genuine problem solving or a deep 

understanding or intuition about the concepts involved.  The mathematicians 

demonstrated a fluid knowledge of formal logic and ways of communicating ideas within 

the norms of the mathematics community.  This most likely contributed to these ideas not 

always being identifiable or seen as meaningful to the participant.  While the 

mathematicians did not encounter problems when making these decisions, a novice, most 

likely would need to reflect upon these decisions. 

The focusing and configuring ideas “did work” for the participants by informing 

the participants’ focus and how to structure both the final argument and also their work 

while still constructing.  While these ideas relate to other constructs in the literature such 

as resources for problem solving, formulating conjectures, unpacking the logic of the 

definitions and statements, and the formal-rhetorical aspect of constructing mathematical 

proof, this research is the first to characterize ideas that inform the statement image, 

identified necessary conditions, and envisioned proof paths as moments that move the 

argument forward.  Implementation of these ideas influenced the statements of data and 
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claims and the ways in which the participants structured their ideas.  Additionally, this 

study demonstrates that these ideas provided insights into what kinds of warrants and 

associated backing would appropriately associate the data and claim. 

Ideas that connect and justify.  Ideas that connect and justify were the 

statements that participants viewed or proposed could link the statement with the claim as 

well as the ideas that could back them.  As noted in Chapter IV, I adapted Inglis et al.’s 

(2007) constructs to classify the types of warrants viewed.  Inglis and colleagues 

described how mathematics graduates formulated conjectures based on deductive, 

structural-intuitive, and inductive backing.  Participants in this study also proposed and 

utilized warrants of these three types, but these findings expand on the work of Inglis et 

al. by proposing a fourth warrant-type, describing the situation surrounding the 

formulation of these warrant-types and how participants utilized these warrants as their 

personal arguments evolved. 

The fourth warrant-type was based on observations that Dr. A would propose 

connections between statements based on symbolic manipulations without attention to the 

mathematical objects with which they were associated; warrants of this type were termed 

syntactic connections.  An example was Dr. A’s series of algebraic manipulations to 

connect the expression ∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏
𝑎  to 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏

𝑎  on the Extended MVT 

for integrals task without attending to see if his manipulations were mathematically 

justified.  The naming of the warrant-type was inspired by Weber and Alcock’s (2004) 

classification of a proof production by logically manipulating mathematical statements 

without referring to intuitive representations as a syntactic proof production.  A syntactic 
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connection could be utilized in a syntactic proof production, but the proof production also 

required its later being connected to a deductive backing. 

Dr. A was the only participant to exhibit syntactic connections on the Extended 

MVT task as well as the Lagrange Remainder Theorem task.  Presumably, this was 

because these two tasks involved specifically justifying symbolic equations.  Dr. B, who 

also worked on the Extended MVT task, did not exhibit this type of warrant, but also did 

not find any means of warranting the statement to be proven.  For Dr. C, the proof of the 

additive implies continuous task did involve a syntactic (Weber & Alcock, 2004) 

argument; however, he justified each step beyond the algebraic manipulation.  Dr. C’s 

work was therefore classified as utilizing deductive warrants.   

In addition to warrant-types, on five occasions, participants proposed backing for 

a previously generated warrant or a vague feeling about what would back a justification 

for the claim.  The backing ideas were proposed largely while participants were looking 

for a warrant or a means of generally articulating a previously proposed warrant via 

connecting and permuting data statements and properties.  These ideas characterized as 

proposed backings have not been previously identified in the literature as only few 

research efforts have utilized the full Toulmin (2003) model that includes backing.  

However, Raman (2003) referred to a mathematician identifying the “only one thing” that 

could explain why the claim was true and could be translated into formulas.  The 

utilization of these proposed backings is discussed in a later section. 

Participants developed structural-intuitive or inductive warrant-types when 

specifically searching for conceptual reasons why the statement would be true.  The 

mathematicians formed (or attempted to form) syntactic connections when they suspected 
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that they would need to connect the symbols in the “right way”.  As will be discussed 

later, upon articulating a warrant participants would set about the task of either searching 

for justification for their non-deductive warrants or articulating them generally which led 

to either formulating new warrants, proposing new backings, or the algebraic translation 

of their warrant idea.  The decisions about the usefulness of the warrants and 

determinations about the participants’ progress were enveloped in the third category of 

monitoring ideas.   

Monitoring ideas.  Monitoring ideas guided the mathematicians’ decisions and 

gave them feelings as to whether their current line of inquiry was fitting or not.  Two of 

the monitoring idea-types were specific to the proof construction process, truth 

convictions and feelings that one could write a proof.  The other two, feelings that the 

actions taken were fitting or would be unfruitful, are relevant to problem solving 

processes in general. 

The truth convictions displayed by participants were supported by deductive, 

inductive, and structural-intuitive warrants.  In one case, the conviction that the statement 

was not true was supported by the participants’ inability to find a warrant to support the 

statement.  I purposely separated feelings of truth conviction from truth proposals.  A 

truth proposal was a means of getting started in proving a statement by providing a 

direction in which to argue; truth proposals were not necessarily accompanied by the 

participants’ belief.  A truth conviction, on the other hand, was a feeling that the 

connections that the participant had developed were enough to justify the assertion to 

himself.  This feeling of personal certainty also distinguishes a truth conviction from a 

conjecture justified by non-deductive backing as described by Inglis et al. (2007) as well 
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as the types of conjectures developed by the participants in Lockwood and colleagues’ 

(2012) study about how examples were used in conjecturing.  Inglis et al. describe how 

the conjectures made were accompanied by modal qualifiers that indicated incomplete 

conviction.  While the modal qualifiers that accompanied truth convictions in this study 

often indicated that the participant’s argument was not a proof (“intuitively”, “I can see”, 

“heuristically”), the participants expressed some sense of belief. 

On three of the tasks, participants did not display moments where they developed 

a truth conviction; instead, they displayed an implicit belief that the statement was true 

and it was up to them to justify the connection.  These three tasks were Dr. A’s work on 

the Lagrange Remainder Theorem task, Dr. A’s work on the Extended MVT, and Dr. B’s 

work on the Sequences and Limit Points task.  On both the Lagrange Remainder 

Theorem task and the Extended MVT, Dr. A expressed an idea about the type of task; he 

determined upon reading the task that some series of correctly applied symbolic 

manipulations should yield the desired result.  Dr. B chose his individual task, the 

Sequences and Limit Points task, from a list of homework tasks for his students.  Dr. B’s 

belief in the statement was possibly developed on a previous attempt at the problem.   

The moment a truth conviction is attained is related to Raman and colleagues’ 

(2009) characterization of moments when provers identify a key idea or conceptual 

insight (Sandefur et al., 2012).  A conceptual insight is an idea that gives a sense as to 

why the statement is likely to be true.  Therefore, the truth conviction is not the 

conceptual insight, but the warrant that engendered the truth conviction could be, if the 

participant was able to express what it was that convinced him as sometimes the sense 
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that a participant achieves could be vague and require more explorations to articulate it 

(Mason et al., 1982/2010).   

When participants’ moments of truth conviction were supported by deductive 

warrants, the ideas that gave a sense of personal truth conviction were the same as those 

that gave a sense that one could write a proof.  In tasks where the truth conviction was 

supported by ideas other than non-deductive warrants, the participants deemed that there 

was still work to be done before they could write down a proof.  The feeling of being able 

to write down a proof accompanied the participants’ development of a deductive warrant 

or a syntactic connection.  In one case, Dr. C stated he could write a proof after proposing 

a backing that “the inverse of an increasing function was increasing”; however, he was 

not able to write a proof when he tried and needed to go back to continue exploring.  The 

formulation of these deductive warrants is further discussed in a later section.   

Raman and colleagues (2009) term the idea that gives a sense that one can write a 

proof as a technical handle.  Technical handles are the “ways of manipulating or making 

use of the structural relations that support the conversion of a CI [conceptual insight] into 

acceptable proofs” (Sandefur et al., 2012, p. 6).  Raman and others allow for the 

conceptual insight that convinced the prover to be a different conceptual insight from the 

one rendered into a technical handle.  I will later discuss how the findings of this study in 

regards to the evolution of the personal argument and the process of developing ideas that 

move the argument forward relate to the conceptual insight and technical handle 

constructs.   

Truth convictions and feelings that one was ready to write a proof were 

monitoring ideas unique to problem solving in proof construction tasks.  Feelings that one 
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was engaged in an unfruitful line of inquiry or that the results supported the current line 

of inquiry were related to the metacognitive behaviors deemed necessary for success in 

problem solving (e.g., Carlson & Bloom, 2005; Pólya, 1945/1957; Schoenfeld, 1985, 

1992).  Carlson and Bloom (2005) defined acts of monitoring as “the mental actions 

involved in reflecting on the effectiveness of the problem-solving process and products” 

(p. 48).  They found that in solving problems mathematicians would “engage in 

metacognitive behaviors” and “act on their monitoring in ways that moved them 

forward.”  Carlson and Bloom defined the actions or decisions made in response to the 

monitoring behaviors as control decisions and self-regulation.  The identification of 

unfruitful lines of inquiry or support for a line of inquiry always accompanied a decision 

to either abandon the line of thought or to keep pursuing it.  Certainly monitoring actions 

in the sense of Carlson and Bloom were present throughout the inquiry process as 

monitoring is reflective of the ongoing reflecting and evaluating behaviors present in 

active-productive inquiry.  Ideas that move the argument forward that involved 

monitoring were decisions or determinations made upon evaluating performed actions 

against the problem one had entered into solving and the current personal argument.   

Process of Developing Ideas 

I observed that participants would proceed through the solving of the problem or 

tasks of (a) understanding the statement or determining truth, (b) looking for a warrant, 

(c) working to validate, generalize, justify, or articulate their warrant, and (d) writing the 

formal proof (see Figure 26).  Within this progression, participants could cycle back to a 

previous problem or work to solve the problem with an enacted tool.  Generally 

participants did not find writing the formal proof to be problematic once they had 
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identified a generalizable warrant.  Specifically, the following aspects have been 

identified as part of the proof construction process: Understanding the statement or 

described objects (Alcock, 2008; Alcock & Weber, 2010; Carlson & Bloom, 2005; Savic, 

2013); determining the truth of the statement (Sandefur et al., 2012); determining why the 

statement is true (Raman et al., 2009; Sandefur et al., 2012); translating ideas into 

analytic language (Alcock & Inglis, 2008; Alcock & Weber, 2010; Weber & Alcock, 

2004); and justifying a previous idea (Alcock, 2008; Alcock & Weber, 2010).  This 

research is unique in its specific efforts to identify the problems encountered as 

participants develop new ideas in the proof construction process at different stages. 

 

 
Figure 26.  Progression of problems as the personal argument evolves. 
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Dewey’s (1938) framework of logical inquiry was useful in describing the process 

of generating and testing ideas that moved the argument forward.  Participants entered the 

task focused on the problem of understanding the statement or determining the truth of 

the statement.  They reflected upon what was known, formed connections among the 

information given in the statement of the task as well as their prior knowledge and 

experience, and generated new ideas.  The act of forming connections would involve 

drawing pictures, imagining pictures, or connecting definitions.  The initial ideas 

formulated were ideas that informed the statement image, ideas about task type, truth 

proposals or truth convictions based on structural-intuitive warrants.   

Depending on whether the idea formulated solved the problem of understanding 

the statement or determining truth, the participant would either continue working to 

understand the situation or they would move to either look for a connection (warrant) 

between the data and claim or work to generalize or deductively justify their structural-

intuitive warrants.  To look for a warrant, participants would again perform or imagine 

actions of drawing and working through examples, performing symbolic manipulations, 

connecting and permuting the definitions and data statements, and drawing upon 

alternative instantiations of definitions of concepts and conceptual knowledge.  They 

would perform these actions until they had completed an action, formulated a new idea, 

or determined that they were engaged in an unfruitful line of inquiry.  If no idea was 

found, participants would either perform more actions of the same type or would reflect 

upon earlier generated relationships, pictures, and statement in the personal argument and 

make a change.  If a new idea was generated when solving the problem of understanding 



232 
 
the statement, it was either a proposed warrant, an additional datum to inform the 

statement image, an envisioned proof path, or an identified as necessary condition.   

The participants would evaluate the statements and relationships developed in 

their personal argument in light of the new ideas generated, their own conceptual 

knowledge, and experience.  In this evaluation, they would determine if they needed to 

continue pursuing a warrant and given the new information how they would do so, or 

they would move on to test the warrant by trying to translate it into a general algebraic 

form (if it was structural-intuitive or inductive) or to determine why the warrant had to 

hold (if it was non-deductive).  If a participant had developed deductive warrants to 

connect the conditions of the statement to the claim of the statement, then they moved to 

write up the proof formally.   

 The observation that ideas emerged as a result of engaging in genuine inquiry was 

based on Dewey’s (1938) and others’ descriptions of the theory of inquiry (Hickman, 

1990).  As was described in Chapter III, knowledge is the outcome of active, productive 

inquiry (Hickman, 1990).  When engaged in the intentional process to resolve doubtful 

situations, an individual intentionally and systematically invents, develops and deploys 

tools (Hickman, 2011).  The ideas that moved the argument forward were the tools 

developed and deployed to resolve the perceived to be problematic situations within their 

efforts to construct a mathematical proof. 

The ideas were generated based on evaluations of the results of performing 

actions or applying tools to a situation.  Carlson and Bloom (2005), drawing upon the 

work of Pólya (1945/1957) and Schoenfeld (1985, 1992), called these evaluations 

“strategic control decisions” (p. 64).  In their multi-dimensional problem solving 
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framework, Carlson and Bloom formulated a problem solving cycle similar to Dewey’s 

(1938) cycle of reflecting, acting, and evaluating where participants orient to a task, then 

cycle through planning, executing, and checking actions.  The three-part cycle could be 

repeated to resolve a given issue prior to the participants’ cycling forward to repeat the 

three-part cycle to resolve the next issue.  Savic (2013) observed that for mathematicians, 

the proof construction process was consistent with the multi-dimensional problem solving 

framework with the exception of participants “cycling back to orienting” and not 

completing a full planning-executing-checking cycle.  The findings of this research 

support the work of Carlson and Bloom and build upon it by describing the ideas 

generated while engaged in the process.   

Utilized tools.  The types of tools deployed that contributed to the generation of 

ideas (see Table 41) have previously been identified as useful in the proof construction 

process.  What I note here are the salient themes about how the tool-use contributed to 

the generation of the ideas that moved the argument forward, relating the findings to what 

has been noted in the literature.  These themes included the utility of examples, the 

connecting and permuting of data statements, and the usefulness of perceived to be 

useless tools.  Additionally, I comment on how the mathematicians made deft choices in 

the tools they did deploy that could only be explained by their vast experience.   

In this study, example-use contributed to the formulation of inductive warrants, 

structural-intuitive warrants, ideas that informed the statement image, and in one case an 

envisioned proof path.  At times, the inductive and structural-intuitive warrants 

developed due to the exploration of examples were enough to generate a truth proposal or 

truth conviction.  Dr. B was the only individual to employ examples with the purpose of 
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understanding the statement or objects involved with the statement and the purpose of 

articulating his thinking.  These findings support the work of a number of researchers 

who have suggested and documented that example use can inform conjectures as to 

whether a statement is true or not (e.g., Harel & Sowder 1998; Lockwood, Ellis, Knuth, 

Dogan, & Willliams, 2013) as well as give insights into how to construct a proof (e.g., 

Lockwood et al., 2013; Sandefur et al., 2012; Watson & Mason, 2005).  This work adds 

to previous findings in further documenting how these ideas informed by examples are 

tested and connected with other ideas within the personal argument and how they 

contribute to the evolution of an argument into a formal proof. 

Lockwood and colleagues (Lockwood et al., 2012) give a comprehensive 

framework for describing mathematicians’ example activity when exploring and proving 

conjectures.  The framework includes the types of examples explored, uses of examples, 

and strategies mathematicians employ when using examples.  Both Dr. B and Dr. C 

utilized examples with the purpose of understanding why the statement would be true to 

get insight into proving and to validate, justify, or test a previous idea.  The only example 

generated by Dr. A was a counterexample successfully utilized to disprove a statement.  

Examples were utilized in various ways including using a picture in conjunction with 

generic symbolic explorations, exploring while constructing the picture, and using the 

picture of a specific case to determine the underlying structure of the situation. 

Dr. A’s non-proclivity to example-use could be explained by the specific tasks on 

which he worked as opposed to the tasks that Dr. B and Dr. C completed.  Two of his 

tasks, the extended MVT and the Lagrange Remainder Theorem task, involved the 

equating of symbolic expressions.  Dr. A was able to propose and justify symbolic 
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manipulations to connect the two expressions.  The additive implies continuous task 

involved a type of function that could be difficult to visualize or represent in a picture.  

Dr. A pictured straight lines as a special case and utilized them to make progress but 

knew that “weird things” could happen.   

As documented by other researchers (Alcock & Weber, 2010; Lockwood et al., 

2013), successful utilization of examples in proof construction did not occur without 

drawing upon other sources of knowledge.  The tools of conceptual knowledge, 

understandings rich with instantiations of concepts and definitions, and the connecting 

and permuting of known statements not only informed the construction and exploration 

of examples; they supported the development of ideas from every type.  Carlson and 

Bloom (2005) documented that these heuristics and resources were used and distinctions 

between how they were used in each of the problem-solving phases.   

In some instances of the current study, a participant would deem a tool to be 

unhelpful in its original purpose.  However, its deployment and exploration resulted in 

added pictures, equations, or insights that contributed to the formulation of new ideas to 

move the argument forward.  I explain this occurrence within the perspective of the 

theory of inquiry.  The participant evaluated a line of inquiry to be unfruitful in solving 

the perceived problem.  This evaluation ended the cycle; the participant, then needed to 

step back and reflect again on the situation and determine which problem to enter into 

next.  Either in pursuit of solving the same problem or a newly entered problem, the 

participant would need to once again reflect on the situation (the personal argument and 

the statement image that encompasses it) and imagine how to connect aspects of the 

statement image together to apply to the problem.  The previously deployed tool resulted 
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in new data which alone did not achieve the original purpose.  However, connecting the 

data to other ideas or reflecting on the data for a new purpose could result in new 

proposed actions to solve a problem.  This reflecting again is reminiscent of Mason and 

colleagues’ (1982/2010) advice to learners that going back to the “Entry” phase (or 

reflecting) aspect after working on the problem and getting stuck may enable greater 

understanding of the situation due to achieving more relevant experience.   

Certainly, the decisions made by the mathematicians were influenced by their rich 

experience and knowledge bases.  Alcock and Weber (2010) noted student struggles with 

choosing demonstrative examples to aid in their proving.  The mathematicians deftly 

chose examples informed by the imagined consequences they could evoke.  For instance, 

when choosing an example to test if the function he proposed to be a counterexample 

fulfilled the additive property (𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)), Dr. C chose values of x and y 

to be irrational but to have a rational sum not equal to zero because Dr. C had developed 

the function to be continuous at zero and continuous on a domain restricted to rational 

numbers but discontinuous on the real numbers.  Lockwood et al. (2013) also found that 

mathematicians’ choices of examples were informed by knowledge and experience.  

Experience contributed to the participants’ flexible and rich understandings of relevant 

definitions.  On the additive implied continuous task, both Dr. A and Dr. C utilized an 

instantiation of the definition of continuity that would capitalize on the additive property 

of the function.  Dr. C knew that showing lim𝑡→𝑥 𝑓(𝑡) = 𝑓(𝑥) would be equivalent to 

lim𝜀→0 𝑓(𝑡 + 𝜀) = 𝑓(𝑡).  This instantiation of the definition proved critical and useful to 

their generation of ideas and Dr.  C’s eventual proving of the statement.  Individuals who 
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were novice in real analysis could encounter struggles with these tasks that the 

mathematicians in this study did not.   

The role of affect and context.  Although not overwhelmingly present in the 

data, participants’ affect and perceptions about the context of the study played a role in 

the decisions made.  Schoenfeld (1985, 1992) described how an individual’s 

mathematical belief system including what mathematics is and one’s role in mathematics 

will contribute to their choices in whether or not they will enter or persevere in a 

problem.  A student problem solver may, due to an affective belief about one’s ability, 

may choose not to enter a problem.  The mathematicians in this study displayed affective 

beliefs that they could solve the problems encountered knowing that if something they 

tried did not work, then they could always try something else.  Largely, the 

mathematicians’ decisions based on affect were appropriate.  However, there were times, 

though, where even for mathematicians, frustration and exhaustion contributed to the 

participants deciding to discontinue work on a task without completion or, in one 

instance, writing and accepting an argument that was not mathematically valid without 

checking it.   

As detailed in Chapter III, Dewey’s (1938) theory of inquiry posits that decisions 

made depend on how one perceives the situation and the resources available.  The 

mathematicians in this study held perceptions about how much time they should be 

spending on problems, that the knowledge required to solve the tasks would be from the 

realm of real analysis, and what theorems they were allowed to (and should) assume and 

which ones they would need to prove.  These perceptions affected the decisions that they 

made.  For example, even though Dr. A initially thought there could be a counterexample 
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to the additive implies continuous task, he moved to try to prove the statement true based 

on his perception that generating a counterexample would involve skills and difficulty 

inappropriate for the tasks encountered in the interview.  The participants’ sometimes 

utilized their observations about the interview context to their advantage.  On the 

extended MVT task, both Dr. B and Dr. A determined that if a theorem was given, then it 

would be utilized in some way in the proof.  It may be that experience in mathematical 

problem solving especially in solving “homework-type” problems has attuned the 

participants to account for conditions on the situation beyond what is outlined in the task 

statement.   

Inquiry with no ideas.  As described in Chapter IV, Dr. B worked on the 

Extended MVT for Integrals task but achieved no insights into how to prove it beyond a 

feeling that it would involve some set of symbolic manipulations.  In working on that 

task, the participant displayed the reflective and evaluative nature of active productive 

inquiry, identifying a target goal based on observations about the situation, proposing and 

enacting tools, and evaluating their effectiveness.  Dr. B engaged in inquiry but yielded 

no results.  It is difficult to say why Dr. B achieved no success, but Dr. A did achieve 

success utilizing the same overall strategy of finding a symbolic manipulation to connect 

expressions.  As a reminder to the reader, the task as given to Dr. B is restated below.   

Given: Theorem1- MVT for Integrals: If f and g are both continuous on [a,b] and 
𝑔(𝑡) ≥ 0 for all t in [a,b], then there exists a c in (a,b) such that∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑑𝑎

𝑏 =
𝑓(𝑐)∫ 𝑔(𝑡)𝑑𝑑𝑏

𝑎 . 
 
Prove: Theorem 2 – Extended MVT for Integrals: Suppose that g is continuous on 
[a,b], 𝑔′(𝑡) exists for every t in [a,b], and 𝑔(𝑎) = 0.  If f is a continuous function 
on [a,b] that does not change sign at any point of (a,b), then there exists a d in 
(a,b) such that ∫ 𝑔(𝑡)𝑓(𝑡)𝑑𝑑𝑏

𝑎 = 𝑔′(𝑑)∫ (𝑡 − 𝑎)𝑓(𝑡)𝑑𝑑𝑏
𝑎 . 
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I looked to the literature for an explanation.  Schoenfeld (1992) said the following 

will help us analyze one’s success or failure in problem solving: the individual’s 

knowledge, use of heuristic strategies, behaviors of monitoring and control, and belief 

systems.  Dr. B had a sufficient knowledge base as the task only required one to utilize 

the given First MVT for Integrals in combination with knowledge from undergraduate 

real analysis.  Dr. B deployed a number of heuristic strategies including listing what was 

known and applying symbolic manipulations that he knew to typically be useful in 

integral problems (like integrating by parts and substituting with a limit definition).  As a 

mathematician, we could expect that his beliefs about mathematics would be conducive 

to success in problem solving.   

This leaves his monitoring and control, or the ability to recognize that the 

participant was headed down an unproductive path.  Comparing Dr. A’s work on the task 

to Dr. B’s, both participants worked to symbolically connect the statements.  Dr. A’s 

focus was on making the left hand side of the equation to be proven to look like the right 

hand side anticipating that some application of the given first MVT would be used.  Dr. 

B, on the other hand, seemed to focus on relating the two theorems, directly, letting the 

two functions, f and g, in the first MVT for integrals be the same as the two functions, f 

and g, in the extended MVT for integrals allowing for possibly swapping their names.  

This way of thinking pervaded even the participant’s work with examples as Dr. B used 

the same example functions when exploring the first MVT as he did on the extended 

MVT.  Dr. B did not recognize his pursuit as non-productive despite engaging in 

monitoring or evaluative behavior.  In order to move his students into better habits of 

monitoring and control, Schoenfeld (1985) had his students work in groups, and Dewey 
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(1938) posits that tools and the standards against which tools are evaluated are products 

of the social context.  Dr. B was working in isolation.  It may be that Dr. B needed to 

discuss this problem with another in order to illuminate that his way of thinking about the 

two theorems would be unproductive.   

Non-inquirential tool use.  Participants also engaged in periods where they were 

completing parts of the task without perceiving a problematic situation.  This occurred 

upon participants’ development of a deductive warrant when they moved to write the 

argument formally.  Selden and Selden (2013) described this aspect of the proof 

construction process as the formal-rhetorical part; they indicate that no real problem 

solving is needed when completing this part of the proof construction.  Indeed once 

participants had developed a general algebraic argument, writing the argument formally 

posed no problem.  However, this disengagement from the reflective and evaluative 

nature of inquiry resulted in errors without recognition.  Schoenfeld (1992) would term 

this acting without “control”.  The first two sub-sections of the major findings provided 

answers to the first research question outlining the ideas that moved the argument 

forward and the context surrounding the formulation of the ideas.  The next section 

answers the final research question: How were the ideas used and tested as the personal 

argument progressed to a routine situation? 

The Uses and Testing of Ideas  

This study was not the first to utilize Toulmin models to document changes in 

one’s argument (Pedemonte, 2007; Zazkis, Weber, & Mejia-Ramos, 2015).  However, it 

is the one of few to pay special attention to the types of backing involved which has 

afforded the classification of warrants.  This classification of warrants has given some 
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insight into describing how the personal argument can evolve from the informal to the 

formal; however the development of warrants was not the only structural change 

informative in this study.  Utilizing Toulmin diagrams in conjunction with the conception 

of the personal argument enabled the identification of the trends of changing or deleting 

claims, purposing data statements into warrants or backing, and changes to the overall 

structure of the claim by adding sub-claims or reorganizing the format of the argument.  

These structural changes informed the discernment of idea-types and idea categories and 

how those ideas are used to move the argument forward.  In an effort to answer the 

research questions about how ideas were used and tested as the personal argument 

evolved, I discuss the aforementioned observed structural shifts, but first I provide the 

general overview of how the ideas from each category were used in the development of 

the personal argument. 

Participants generated ideas that moved the argument forward from each of the 

three idea categories of Focusing and Configuring, Connecting and Justifying, and 

Monitoring on every task.  The ideas were tested and used together as the personal 

argument evolved toward a final proof product.  The focusing and configuring ideas 

informed both the data and claim statements as well as the overall structure of the 

argument in that the integration of some ideas from this category gave the 

mathematicians insight to what sub-claims they would need to justify and into what 

logical form to articulate the argument (proof by contradiction, by cases, and so forth).  

Figure 27 demonstrates how Dr. A’s idea of an envisioned proof path on the additive 

implies continuous task based on his statement that showing the function was continuous 

at zero would be continuous informed the structure and provided a new claim statement.   
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Figure 27.  Demonstration of how adding an idea that focuses and configures (envisioned 
proof path) informs structure. 

 

 The Connecting and Justifying ideas included four types of warrants discerned by 

their coupled backing and proposed backings.  These warrant ideas provided the 

connections hypothesized as needed from the focusing and configuring ideas.  

Monitoring ideas would determine if the warrant was acceptable (translatable into a 

formal deductive argument) or if it needed more exploration in order to validate, 

generalize or justify the warrant.  The work to test the idea sometimes resulted in new 

warrants, new backing, or new focusing and configuring ideas.  In light of these new 

insights, monitoring ideas along with the structural decisions made from the planning 

ideas would contribute to how the participant would proceed.  Ideas were tested in this 

manner until participants successfully developed a (perceived to be) deductive warrant or 

“two or three 
lines” 

F is continuous 

“How do I 
show that?” 

F(x+y)= f(x)+ f(y); 
f(0)=0; getting a 
counterexample 
requires going 

outside analysis; if 
y is really small, 

then f(y) must be 
  
 

F is continuous at 
0 

If y is really small then 
f(y) must be really 

small 
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chain of deductive warrants to connect the data to the claim.  These processes led into the 

routine writing down of the final formal proof.   

Moving non-deductive arguments into deductive ones.  The process of 

utilizing and moving an argument toward a final proof that originally was based on a 

non-deductive warrant was demonstrated by all three participants on at least one task 

each.  The framing of their efforts in terms of the evolving personal argument described 

via Toulmin models within Dewey’s theory of inquiry provides some insight into 

answering the mathematics education research community’s questions to how and if 

informal arguments can be converted into an acceptable proof form.   

As detailed in Chapter IV, Dr. A moved an argument based on syntactic 

connections into a deductive proof by first making the symbolic connections and then 

going back to check if each step could proceed logically.  Weber and Alcock (2004) 

described process of constructing a proof within the representation system of proof 

(syntactically) as involving choosing a proof framework, listing assumptions, deriving 

new assertions by applying established theorems and rules of inference, and continuing 

until reaching the appropriate conclusion.  Dr. A’s production demonstrates a different 

pattern specific to syntactic proof productions involving the equating of symbolic 

expressions.  The syntactic connections acted as an in-between tool establishing a path 

between hypothesis and conclusion whose reasonableness would need to be backed 

deductively.  Dr. A’s practice of working to make the symbols look “nice” and then 

going back to check the manipulations’ mathematical integrity seems to be a reasonable 

practice.   
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This study teased out this particular instance of a syntactic connection which 

differed from the process described by Weber and Alcock (2004); however, it could be 

viewed under the recent study conducted by Zazkis and colleagues (2015).  Zazkis et al. 

found that students who successfully translated informal into formal arguments either (a) 

attempted to translate the argument into the representation system of proof which they 

termed “syntactifying,” (b) tried to find a deductive reason for a claim that their informal 

argument justified termed “rewarranting,” or (c) attempted to add more detail to the proof 

which they called “elaborating”.  Dr. A engaged in elaborating when moving his 

argument based on syntactic connections into a deductive proof.   

Using the language of Zazkis and colleagues (2015), on the own inverse task, it 

appeared that Dr. B and Dr. C attempted syntactifying but were unsuccessful and 

proceeded to inquire until they could rewarrant.  Dr. B was first convinced of the truth of 

the Own Inverse task by a structural-intuitive warrant.  Testing that warrant empirically, 

the participant gained new insights and a new warrant.  Dr. B tested that second warrant 

and found that his way of picturing the function was inaccurate.  Reflecting again on the 

situation in light of all he had done previously, Dr. B identified that he was not utilizing 

the full implications of the given data statement that the function was its own inverse.  

The missing implication was one Dr. B could symbolize and did so.  The participant 

proposed that this implication would underlie any successful warrant (contradiction).  

The new proposed backing informed further exploration where Dr. B developed a new 

warrant that he was able to render into a symbolic form.  On the same task, Dr. C also 

developed warrants based on inductive and structural-intuitive backing, worked to test 

them, and was unable to render them into a symbolic form.  When reassessing, Dr. C 
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identified an implication of the function being its own inverse that he thought would be 

the underlying reason for any warrant (contradiction).  Dr. C, like Dr. B, was able to 

articulate that implication symbolically.  Exploring with symbolic statements, Dr. C was 

able to produce a contradiction or warrant finally used in the final argument.   

The summarized processes of Dr. B and Dr. C seem almost identical through the 

lens of Zazkis et al.’s (2015) framing; however, their non-deductive warrants prior to 

their final arguments were not the same.  They drew very different pictures, and explored 

justifying their warrants in different ways.  Dr. B realized that he should be using the 

implication of the function being its own inverse of 𝑓(𝑓(𝑥)) = 𝑥 implying both (x, f(x)) 

and (f(x), x) would be points on the same line and that would underlie his contradiction.  

Dr. C, on the other hand, identified the implication involving how reflecting over the line 

would move points above the line to below the line as being the key.  This underlying 

quality of the property of a function being its own inverse that the participants found 

translatable into a symbolic form is reminiscent of the key idea as it was first described 

by Raman in 2003.  This key idea (not to be confused with the key idea that was later 

renamed as conceptual insight (Raman et al., 2009; Sandefur et al., 2012) is a “heuristic 

idea which one can map to a formal proof with appropriate sense of rigor”.  A faculty 

member in Raman’s study called the idea that she categorized as a key idea, was the 

“only one thing” about the situation that provided both an explanation for why the claim 

was true and was translatable into formulas that could demonstrate that the claim was 

true.   

Prof A: Let’s see, an even function.  There is only one thing about it, and that is 
its graph is reflected across the axis.  Yeah, and you can be quite convinced that it 
is true by looking at the picture.  If you said enough words about the picture, 
you’d have a proof. (Raman, 2003, p. 323) 
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Raman (2003) did not necessarily implement Toulmin’s framework so did not 

classify whether key ideas would serve as warrants or backing in an argument, but I 

contend that the idea articulated by the faculty member in her study, that the function is 

reflected across the axis, would act as a backing in a final argument because it does not 

directly connect data and claim for the task which was proving that the derivative of an 

even function is odd.  The ability to identify that one thing about a given condition that 

one could informally see as explaining why the statement would be true seems to be a 

non-trivial task based on the number of researchers who have wondered about the process 

of converting informal arguments into an acceptable mathematical form (e.g., Boero et 

al., 1996; Pedemonte, 2007; Raman et al., 2009; Sandefur et al., 2012 Selden & Selden, 

2013; Zazkis et al., 2015). 

As previously mentioned, in her later work, Raman, in conjunction with 

colleagues (2009), conceived of the constructs of conceptual insight (which was 

sometimes also called key idea) and technical handle.  A conceptual insight gives a sense 

of why the statement is true (a truth conviction), and more than one conceptual insight 

can be attained in proving a given claim.  A technical handle is an idea that renders a 

conceptual insight into a symbolic mathematical form (a feeling that one could write a 

proof).  Sandefur and colleagues (2012) have given some insight into how exploring 

examples can potentially facilitate students’ development of conceptual insights and 

technical handles, but the literature as of now has not been able to move beyond those 

descriptions. 

The conceptual insight and technical handle constructs seem to be difficult to 

utilize in research practice.  As seen in this study, moments of truth conviction and 
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feelings that one can write down a proof can occur at the same moment, and feelings of 

truth conviction may not be observed.  Between articulating a truth conviction and a 

feeling that they could write down a proof, participants in this study were sometimes seen 

to move through multiple warrants, some not always generalizable or valid.  If 

researchers were to try to identify the conceptual insights and technical handles in a given 

proof construction, would they identify all the proposed warrants as conceptual insights 

and the means of translating one of those insights into a deductive warrant as the 

technical handle?  Or are warrants that cannot be translatable into a symbolic form 

merely heuristic ideas (ideas that give personal conviction; Raman, 2003) and conceptual 

insights are the warrants that an outsider could perceive as having potential to be 

symbolically represented?  Despite the difficulty utilizing the constructs when describing 

process, the constructs of conceptual insight and technical handle have afforded 

researchers language to speak about ideas that could move an individual’s proof 

construction forward and provided the inspiration for this study. 

Another vein of research regarding the movement of informal argumentation into 

deductive proof regards cognitive unity which describes a situation where arguments 

developed while evaluating or producing conjectures are translated into a mathematical 

proof (Garuti, Boero, Lemut, & Mariotti, 1996).  Of particular interest are the instances 

where the initial arguments developed were based on reasoning outside the representation 

system of proof.  For this study, that would be truth convictions or truth proposals based 

on structural-intuitive or inductive warrants.  Researchers have contemplated the 

conditions for and the obstacles to cognitive unity (Bubp, 2015; Pedemonte; 2007) noting 

the ways of reasoning (deductively or abductively) when first formulating conjectures 
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influencing whether or not cognitive unity occurred.  Only one participant in this study 

demonstrated cognitive unity for those cases of interest; Dr. A initially had an intuition 

and memory that there was a possible counterexample to the additive implies continuous 

task that involved the axiom of choice and eventually produced one.  This study suggests 

that cognitive unity can only occur when the prover happens to be first convinced by 

arguments that are completely generalizable and translatable into symbolic notation 

which may dissuade those teaching mathematical proof from trying to evoke this 

practice.  On a brighter note, this study shows that one can begin with a non-deductive 

warrant, continue to reason outside the representation system of proof, and eventually 

develop a non-deductive warrant or propose a backing that could support a symbolic 

deductive argument. 

Implications for Research and Teaching 

 In this section, I discuss the implications of these results for research and for 

teaching.  I argue for the continued use of full Toulmin models to document the evolving 

argument and for attending to the ideas that the individual finds useful in moving the 

argument forward.  More research is needed in order for these results to inform teaching 

practices, but I consider some preliminary implications including recommendations for 

teaching problem-solving within introduction to proof courses and engaging students in 

testing their arguments. 

Value of the Full Toulmin Model 

Mathematics education researchers have worked to analyze the mathematical 

arguments of individuals using a restricted, ternary form of Toulmin’s (2003) 

argumentation scheme, limiting to data, warrant, and claim (e.g. Krummheurer,1995; 
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Pedemonte, 2007; Zazkis et al., 2015).  I argue that in order to understand an individual’s 

argument prior to the articulation of a formal proof and therefore their process in 

constructing a mathematical proof, the constructs of backing, modal qualifier, and 

rebuttal need to be included to capture the whole proof construction process.  Inglis et al. 

(2007) also argued this point focusing on the importance of qualifiers; Inglis and 

colleagues found that the qualifier would signal if the mathematics graduates in their 

studies were using a non-deductive or deductive warrant.   

 Authors have dismissed the need for the full model indicating that in 

mathematical proofs the qualifier is implied as absolute and that a mathematical proof 

would have no rebuttals.  Work in the restricted model tends to try to incorporate the 

backing into the warrant or assume the warrant is based on deductive reasoning.  

Considering Dr. B’s idea on the own inverse task that he could see from the picture that if 

a function was one-to-one, continuous, onto, its own inverse, and increasing, then it 

would have to be f(x)=x, otherwise it would not be one-to-one.  “I have this nice picture.  

And on my picture I know, I can see that if I reflect this type of function, it’s not going to 

be one-to-one.”  Restricting to the ternary model would reduce the full statement to the 

diagram on the left side of Figure 28.  Incorporating the modal qualifier and backing in 

the diagram to the right of Figure 28 provides the details about Dr. B’s personal argument 

and its progression.   
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Figure 28.  Discernment of Dr. B’s argument structure in the ternary versus full Toulmin 
model. 

 

 In addition to providing more information and a better model of the prover’s 

thinking, the full model has explanatory power in that it gave a reason why Dr. B was not 

able to render this particular argument into an algebraic form.  The proposed 

contradiction that the function would fail to be one-to-one due to reflection is a 

contradiction that could prove the statement.  However, Dr. B’s formulation of this 

contradiction was based on a picture that was not completely general in that it did not 

capture why the function would always fail to be one-to-one due to its symmetry across 

the line y=x.  Recognizing this, Dr. B abandoned the picture and the one-to-one 

contradiction and continued on a different path.  My understanding of why Dr. B 

abandoned the one-to-one idea was supported by my specific endeavors to include 

attention to the backing and qualifiers.  I am not suggesting that researchers using the 

ternary model would ignore or overlook the fact that Dr. B’s warrant was based on an 
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example, but if researchers were looking for patterns across large numbers of Toulmin 

structures, the inclusion of the backing and qualifier could illuminate more patterns 

explaining the participants’ decisions and thinking at various moments while constructing 

proof. 

 Related to the recommendation that researchers utilize the full Toulmin model is 

the recommendation of utilizing language to describe the types of warrants developed.  I 

found adapting Inglis et al.’s (2007) classification of warrant-types to be useful in 

describing the insights formulated by the participants, how those ideas were tested as the 

personal arguments evolved, and why participants made the decisions that they did.  

Earlier in this chapter, I proposed that attending to backing may lend itself to explaining 

how the understandings based on informal reasoning can be successfully translated into a 

mathematical proof.   

Attending to Ideas that Move the  
Personal Argument Forward 

The invention of the personal argument construct was necessitated by the desire to 

talk about all the ideas, relationships, concepts, pictures, and so forth that an individual 

personally judges as important to solving the problem and the perceived relationships and 

importance of those elements at various points in time.  More specifically, it was 

developed to test and elaborate the hypothesis that there are critical moments where the 

nature of individual’s thinking shifts.  Previous proof researchers have used Toulmin 

models to describe arguments at various moments such as upon the articulation of a 

conjecture (Inglis et al., 2007; Pedemonte, 2007; Zazkis et al., 2015), at interactive 

moments within a classroom situation (Prusak, Hershkowitz, & Schwarz, 2012; Wawro, 

2011), and upon writing a final proof (Pedemonte, 2007; Zazkis et al., 2015).   
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Raman and colleagues (2009) have documented that students can come close to a 

proof from an outsider’s (instructor’s or researcher’s) perspective but not recognize their 

ideas as useful suggesting that the judgment of whether progress is made is subject to the 

individual.  When investigating an individual’s process in constructing mathematical 

proof alone, we as researchers cannot anticipate all the moments and insights generated 

that would be significant for the proof construction process.  I argue that attending to the 

moments when ideas are generated that the individual sees as useful breaks the proof 

construction process into significant events all of which are needed to illustrate the story 

of the process.   

Further Research into the  
Development and Testing 
of Ideas  

Conceiving of the ideas that move the argument forward as a means of describing 

the proof construction process is relatively unexplored.  Therefore, many avenues of 

research are open to explore how these ideas develop, how they are tested, and the 

consequences their development provides for the evolution of the argument.  The 

findings of this study were descriptive and exploratory.  Within the realm of these tasks, 

in the field of real analysis, I found 15 idea-types falling into three major categories 

according to their function within the conception of the structure of a personal argument.  

The process of developing and testing these ideas was interpreted within Dewey’s theory 

of inquiry and described in the findings in prior sections. 

This research gave descriptive accounts of the tools deemed useful and the 

purposes and anticipations of the deployment of these tools.  Among these tools were 

conceptual knowledge, rich instantiations of concepts and definitions, the connecting and 



253 
 
permuting of known ideas, and the use of examples.  Further research into how 

participants specifically utilized one of these types of tools in developing ideas would 

provide further insight into the proof construction process.  Utilizing a comprehensive 

framework like Lockwood and colleagues’ (2012) categorization of types of examples, 

uses of examples, and example-related strategies would provide both insight into how 

ideas evolve but also contribute to the example-use literature.  This research would be 

especially useful if one continued to explore content areas such as real analysis since 

many studies involving the example-use of mathematicians focus on tasks related to 

number theory.   

Dewey’s (1938) theory of inquiry was useful in describing the problem-solving 

context surrounding the emergence of these ideas.  However, other cognitive frameworks 

may provide more information.  For example, instead of describing the problem situation 

and application of tools surrounding the emergence of ideas, one may be interested in 

how individuals recognize what knowledge they already possess would be useful and 

how that contributed to the creation of new ideas.  In which case, theories of transfer may 

be appropriate.   

Other variations of studies would include work trying to refine the idea-types or 

further characterize their development by focusing specifically on one of the idea 

categories of Focusing and Configuring ideas, Connecting and Justifying ideas, or 

Monitoring ideas.  Varying across mathematical content areas may yield new and 

clarifying findings to what ideas are useful, how they’re developed, and how they are 

tested, as well as providing insight as to how the proof construction process compares 

across mathematical content. 



254 
 
Implications for Teaching  

Better understanding the practice of professional mathematicians can inform 

mathematics educators in determining the activities in which students should engage and 

in making recommendations for goals for student learning.  However, precisely how to 

teach and facilitate the development of these practices and the achievement of these 

learning goals requires knowing where students start in relation to those goals and what 

kinds of activities facilitate their progression toward those goals.  In the context of the 

development and utilization of ideas that move the personal argument forward, we know 

that when constructing proof students struggle in effectively utilizing tools to develop 

useful ideas (e.g., Alcock & Weber, 2010), may generate new statements or relationships 

but not recognize their usefulness in moving the argument forward (e.g., Raman et al., 

2009), or may utilize ideas in ways not appropriate for the mathematics community (e.g., 

Harel & Sowder, 1998).  More research is needed to recommend best practices for 

actively facilitating students’ abilities to develop, recognize, and utilize the ideas that 

they can see as useful in moving their arguments toward a mathematical proof.  However, 

I present some preliminary suggestions from this study.  .   

As found by Carlson and Bloom (2005) in their study of mathematicians engaged 

in problem solving, I found rich conceptual knowledge greatly influenced the 

participants’ generation of ideas to move the argument forward.  There is disagreement 

amongst those educating mathematics undergraduate students as to whether or not 

mathematical content should be taught in conjunction with an introduction to proof or if 

transition to proof courses should only involve content in which all students have 

workable understandings.  Policy documents regarding best practices in mathematics 
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education (CCSM, NCTM) contend that the development of the practice of 

argumentation should be present in all mathematics classes.  Therefore despite where 

students first learn about proof; instructors of advanced mathematics undergraduate 

courses should continue to devote some instructional time to developing student capacity 

to construct proofs.  This would not be time wasted as engaging in argumentation can 

reciprocally facilitate the development of richer conceptual understanding (Harel & 

Sowder, 2007). 

The design of this study was based on the perspective that the formulation and 

subsequent application of ideas to move an argument forward were acts of creativity that 

could only emerge from experiencing periods of ambiguity.  As such, we cannot expect 

students to develop the propensity formulate and utilize ideas unless we provide proof 

construction activities that involve their entering into genuinely problematic situations in 

the sense of Schoenfeld (1985).  Selden and Selden (2008, 2013) assert that mathematical 

proof has a problem-centered part (the solving of the problem of getting to the given 

hypothesis to the conclusion) and formal-rhetorical part (unpacking the logical statements 

and definitions and converting a solution into an acceptable mathematical form), and for 

students, problem solving can occur in both realms.  I suggest that students should 

experience problem solving in both aspects as the mathematicians in this study not only 

generated ideas about how to connect the mathematical statements but also about how to 

communicate their reasoning effectively.   

This research suggested that there is value in continuing to teach heuristic 

strategies for problem solving and proving such as identifying task type, unpacking the 

logic of a given statement, listing what is known (broadening the statement image), and 
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drawing pictures (to narrow the statement image).  All these strategies were employed 

more than once to result in perceived to be useful ideas.  Specifically, they were deployed 

when the mathematicians were working on the problems of understanding the statement 

or objects and determining statement truth.  Dr. A offered a lesser known heuristic when 

encountering “prove or disprove” tasks of “being aBeysian”, that is being flexible in 

moving back and forth between trying to prove or disprove a statement.  

When teaching students about proving, it may be of value to attune students to the 

possibilities of formulating some of the idea-types found in this study so they can 

hypothesize roles for the ideas that they generate and make evaluations about how to 

proceed.  Having students attend to feelings of personal truth conviction versus feelings 

of being able to write a proof may require ongoing enculturation of students into the 

sociomathematical norms of the mathematics community.  However, this study suggests 

attending to and utilizing the reasoning that convinced them of the truth of a statement 

can be a starting point for finding a warrant that can move the argument forward. 

The mathematicians in this study envisioned proof paths and identified necessary 

conditions while engaging in the task.  They also recognized when to purpose elements in 

their collection of known statements.  These ideas necessitated the already explicitly 

taught practices of reflecting and evaluating as well as attention to understanding the 

relevant objects and definitions.  Opening students to the potential of formulating these 

ideas that the mathematicians did may provide purpose to the already taught strategies. 

Previous literature supports having students engage in working in small groups to 

solve problems (e.g., Schoenfeld, 1985, 1992) and developing argumentation through 

classroom discourse and peer interaction (e.g., Prusak et al., 2012).  Explicit further 
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research is needed to understand how idea generation and testing patterns would play out 

in the classroom situation as these findings are limited to an individual context. 

Limitations 

 The findings of the study provided implications for both research and teaching; 

however, there are limitations to how the findings can be interpreted.  I note some of the 

surprises in data collection and known limitations below including imprecise 

formulations on two of the tasks that Dr. A worked on, the small sample size, the 

delimited content area, and the inconsistencies with typical practice for professional 

mathematicians.  

While participants did choose rich tasks for their colleagues to work on, in two 

cases, the participants provided imprecise formulations of the task statement.  One of the 

formulations of the Extended Mean Value Theorem Task provided by Dr. C did not 

provide enough conditions for the statement to be true.  Dr. B provided a formulation of 

the additive implies continuous task that he said he knew to be true, but without a 

necessary condition, the statement was actually false.  

I did not identify the issue with the Extended Mean Value Theorem Task prior to 

presenting the first participant with the task.  This participant identified the issue and I 

rectified the problem for the next participant to work on the task.  The first participant 

also identified that in order for the additive implies continuous statement to be true, the 

function would also need to be continuous at zero.  The participant also identified the 

formulation of the counterexample would require going outside the realm of real analysis.  

I decided to rewrite the task to include the necessary condition so that the statement 

would be true.   
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As a result of these initially imprecise formulations, participants worked on 

slightly different versions for two of the three common tasks.  Dr. A ended his proof of 

the Extended Mean Value Theorem for Integrals with a possible rebuttal and not a proof 

with which he was completely satisfied.  Dr. A did eventually formulate a 

counterexample to his version of the additive implies continuous task but deemed its 

generation as involving ideas outside the realm of real analysis.  Dr. A ended up 

remembering how to construct the counterexample while on a long driving trip and later 

wrote it up.  This was the only task that had the potential to be correctly solved by a 

counterexample, and its development was not captured.  More research is needed to 

describe the ideas that would move a personal argument forward when one was 

developing a counterexample.   

An unexpected outcome to the research design of how tasks were chosen and 

given to participants was that one participant, Dr. A, did not engage in tasks conducive to 

reasoning outside the formal representation system of proof.  Two of the tasks that Dr. A 

worked on could be solved by making symbolic connections among statements.  On the 

third task, Dr. A worked to both prove and disprove the statement.  The work in proving 

the statement supported by Dr. A’s imagining graphical instantiations of concepts and 

definitions was largely deductive in nature.  The interview and Livescribe notebook only 

captured his memory of the potential of a counterexample and the writing of the formal 

proof by counterexample.  While not a primary focus of this study, the findings related to 

converting argumentation based on inductive data into formal arguments were based on 

only two of the participants.   
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This study does not presume to generalize the findings beyond the context of the 

interview situation.  Since the sample was restricted to three male mathematicians, I 

provide only descriptive answers to the research questions.  I purposefully limited data 

collection to one mathematical content area, real analysis, to ensure the participants in the 

study would in fact be able to exhibit expertise not only in proving and problem solving 

but in proving and problem solving within that realm.  Therefore, it may be that themes 

salient in this study may be less prevalent in other fields of mathematics.   

The context of the interview situation provided limitations on the interpretation 

and generalization of the findings.  Working on tasks presented by an interviewer in front 

of a camera, while speaking aloud, and in the time constraints provided are not 

representative of a research mathematician’s typical practice.  The tasks presented 

genuine problem solving situations for the participants, but they were still “school tasks”.  

As such, participants, informed by their training in school mathematics, brought in their 

own conceptions about “hints” given by the statement formulation, what were reasonable 

expectations for a solution, and what theorems they were allowed to assume and which 

ones they would need to prove.  The context was also limiting in that participants worked 

in isolation.  They did not interact with peers and limited utilization of written resources.  

This is not normative practice for mathematicians or for students. 

Further Research 

 Related to the implications for research noted above, I am interested in designing 

further studies that utilize the findings of this research effort.  Specifically, I wish to 

continue pursuing how mathematicians develop, test, and reformulate their ideas that 

Connect and Justify, and I would like to work with others to design teaching experiments 
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where students are guided to move their understandings based on non-deductive warrants 

into understandings that can be rendered into deductive mathematical proof.   

 The mathematicians sometimes formulated ideas about what “task type” they 

were working on and chose either symbolic or informal modes of reasoning in 

accordance with those judgments In this study, participants pursued or generated 

syntactic connection warrant-types on two of the seven tasks and inductive warrants and 

structural-intuitive warrants were found to be useful on multiple, but not all tasks.  The 

formulation of the Own Inverse task, in particular, lent itself to informal argumentations 

that gave participants a personal sense of why the statement was true but proved 

challenging to translate into deductive proof.  Based on this observation, I hope to design 

studies that narrow to certain task-types to further study the use and testing of inductive 

warrants or syntactic connections and how they contribute to the development of a 

deductive warrant and an eventual formal proof.  As part of that research, I would like to 

further investigate the structural shift where data statements are purposed into warrants or 

backing as that was seen to be a critical moment for both Dr. A and Dr. C developing an 

idea that could be translatable into a deductive warrant. 

 The findings of this research will be useful if eventually, they can inform the 

teaching of students.  It has long been described that a beginner prover struggles with 

providing arguments based on deductive reasoning as they may find non-deductive 

arguments to be more convincing and explanatory (e.g., Harel & Sowder, 1998; Healy & 

Hoyles, 2000; Weber, 2010).  More research is needed to lead to a design of a teaching 

experiment where students are guided to move their non-deductive warrants into 

deductive warrants that can be translated into a written proof.  This would involve 
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instruction where students would encounter a proof problem, formulate an understanding 

or warrant that they personally find convincing and the teacher and students together test 

to move students’ personal arguments based on non-deductive warrants.   

Concluding Remarks 

 Informed by the writings of mathematicians and mathematics educators that the 

construction of proof for mathematicians involves the formulation and utilization of ideas 

this research aimed to provide descriptions of the ideas that mathematicians find useful in 

moving their arguments forward.  More specifically, this research proposed to describe 

the context surrounding the formulation of those ideas and the subsequent consequences 

of the incorporation of those ideas into the personal argument.   

 The utilization of Dewey’s (1938) theory of inquiry in conjunction with Toulmin 

models to describe the progression of the personal argument provided descriptive 

answers to how ideas are developed and tested and how they were utilized.  

Mathematicians were found to develop ideas to inform their planning, ideas that served to 

connect and justify statements, and ideas about their progress.  Ideas formulated were 

tested against their ability to solve the four major problems of understanding the 

statement or determining truth, providing a warrant, justifying or generalizing a warrant, 

and writing a final proof.  Mathematicians deployed various tools do develop and test 

ideas including conceptual knowledge, heuristics, exploring specific examples or 

pictures, and utilizing heuristic strategies.   

 This work contributes to the proof literature by conceiving of and providing 

empirical evidence of ideas that move the personal argument forward opening new 

avenues for research into the process of constructing mathematical proof.  Additionally, I 
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describe instances of mathematicians moving their non-deductive arguments into a final 

deductive proof and provide descriptions of the inquirential activity surrounding those 

progressions.  More research is needed to apply these findings to the introduction to proof 

classroom, but preliminary suggestions are to engage students in proving activities that 

present opportunities for problem solving, to continue the teaching of heuristic strategies, 

and to define some possible purposes of these strategies such as looking for necessary 

conditions and envisioning a proof path. 
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Example Initial Contact Email/ Participation Request 

Dear Dr. _______,  

I obtained your name from your department as well as the fact that you are currently 
teaching or have previously taught the course __________________. 

As a doctoral candidate in the field of mathematics education, I am interested in 
observing how expert mathematicians like you engage in the processes of solving 
mathematical proof problems in the field of real analysis.  As such, I would like to 
conduct a series of 3 interviews with you to learn about how you construct proofs. Two 
of the interviews will last thirty to sixty minutes, and one interview will take 90 minutes. 
You will be asked to solve 3 proof problems all together; I will request that you think 
aloud as you prove and then answer questions about your process after you have 
completed the proving tasks. 

If you are willing and available, we would appreciate your participation.  Please let me 
know if you have more questions. 
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In the spring of 2012, I collaborated with a colleague, Jeffrey King (who will be 

referred to as King in the rest of this chapter) to conduct task-based interviews with three 

mathematicians.  This data collection and the following analyses served as an exploratory 

study for the proposed study.  The purpose of the phenomenological study was to 

describe the nature of professional mathematicians’ proof construction and proof writing 

processes.  Harel and Sowder (2007) called for a comprehensive perspective on the 

teaching and learning of mathematical proof; they stated that the goals on the teaching of 

proof were to “gradually help students develop an understanding of proof that is 

consistent with that shared and practiced by the mathematicians of today” (p. 47).  If 

these are the goals in teaching proof, then it is necessary to have an accurate and 

comprehensive understanding of the mathematicians’ proof construction processes and 

the reasoning techniques by which they construct proof.  We sought to give insight into 

these processes by focusing on understanding the mechanisms that lead to new insights.  

More specifically our research questions in the exploratory study were:  

What is the nature of the process of constructing and writing proof for 

professional mathematicians? 

a. What tools and reasoning techniques are used by mathematicians to 

construct proof? 

b. How do professional mathematicians use key idea and technical 

handle in constructing and writing proof? 

c. To what purposes are the identified tools applied? 
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Theoretical Framing of the Exploratory Study 

This exploratory research was guided by the epistemology of social 

constructivism (Crotty, 1998).  We, the researchers, believed we construct knowledge 

through our interactions with our environments and experiences and these constructions 

were negotiated in our interactions with society and the community at large.  Since this 

research was intended to explore how individuals think about and talk about 

mathematical proof under the social constructivist epistemology, interpretivism (Crotty, 

1998) was the theoretical perspective for this study.  

We applied Dewey’s theory of inquiry and tool-use (Dewey, 1938; Hickman, 

1990) to analyze mathematicians’ proof construction process.  Dewey defines inquiry as 

the intentional process to resolve doubtful situations, through the systematic invention, 

development, and deployment of tools (Hickman, 2011).  A tool is a theory, proposal, or 

knowledge chosen to be applied to a problematic situation.  Throughout the entire inquiry 

process, there is an “end-in-view” (Garrison, 2009; Glassman, 2001; Hickman, 2009).  

These ends-in-view provide tentative consequences which the inquirer must seek the 

means (tools and ways to apply tools) to attain.  These ends-in-view may be modified and 

adapted as the inquiry process proceeds.  

The process of active, productive inquiry involves reflection, action, and 

evaluation.  Reflection is indeed the dominant trait.  The inquirer must inspect the 

situation, choose a tool to apply to the situation, and think through a course of action.  

After this initial reflection of what could happen, the inquirer performs an action, applies 

the tool.  In these actions, the inquirer operates in some way on the situation; she applies 

a tool to the situation, thus altering it.  Reciprocally, during or after the fulfilling 
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experience, the inquirer evaluates the effects and appropriateness of the application of the 

chosen tools (Hickman, 1990).  

We attempted to focus on understanding the mechanisms that lead to new 

insights.  Raman and colleagues (Raman, Sandefur, Birky, Campbell, & Somers, 2009; 

Raman & Weber, 2006) have developed a model for describing student difficulties for 

proof production, including the moments of finding a conceptual insight (sometimes 

termed key idea) and a technical handle.  Attaining a conceptual insight gives the prover 

a sense of conviction and why a particular claim is true.  A technical handle is an idea 

that renders the proof communicable; discovering a technical handle gives the prover a 

sense of “now I can prove it” (Raman et al. 2009).  These constructs characterize 

moments when the prover creates a new insight, an instance of the invention and 

deployment of a tool.  

Dewey’s theory of inquiry and Raman and colleagues’ framework of conceptual 

insight (or key idea) and technical handle provided the primary framing for the 

exploratory study.  As will be described in a later section, the theoretical perspective of 

the exploratory study needed to be expanded in order to more fully characterize the 

processes exhibited by the participants.  Therefore, a detailed description of the 

theoretical perspective that will guide the proposed research is given following the 

description of the exploratory study. 

Methods of the Exploratory Study 

Participants  

The participants, Drs. Nielsen, Heckert, and Kellems (pseudonyms), were chosen 

according to their diversity among several factors, including years of experience, gender, 
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pure versus applied mathematics research, and primary field of study.  Two of the 

participants were faculty members at a Rocky Mountain region university, which had a 

department of mathematics that included both mathematicians and mathematics 

educators.  One of the participants was a faculty member at a Pacific Northwest region 

university, which included mostly research mathematicians but included a small portion 

of mathematics educators. 

Data Collection 

Data were collected from a pre-interview questionnaire and task-based interviews 

(Appendix C).  After soliciting participation, we sent an open-ended questionnaire to 

participants via email.  The questionnaire served to elicit routine demographic 

information, as well as primary field of study, applied versus pure nature of their 

mathematical research, and teaching experience.  The task-based interviews included 

three proof construction tasks and follow-up questions.  These included one task from the 

field of analysis, one task from the field of abstract algebra, and one task from linear 

algebra.  Having diverse tasks enabled researchers to describe a variety of proof tools and 

reasoning techniques, as well as the topic-dependence of these tools and reasoning 

techniques.  

To determine the tasks, we generated a list of seven statements requiring proof.  

The statements came from beginning graduate and upper level undergraduate text books 

and also tasks used in other studies.  We attempted to construct proofs to the tasks 

individually and piloted the tasks on graduate students studying mathematics education as 

well as mathematician colleagues.  I then created task analyses for each of the tasks 

noting hypotheses for tools applied to the phases of manipulating, getting a sense, 
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looking for conceptual insights and technical handles, and writing formal proofs.  We 

focused on these aspects because according to Sandefur et al. (2012), during these phases 

of inquiry in to the development of proof, students were observed to draw upon different 

tools including the exploration of examples.  The three final proofs were decided upon 

based on varied content area and aptitude for multiple tools used.  The tasks are given in 

the bulleted list below.  

• Linear Algebra Task: If two 3 × 3 matrices are similar, then they have the same 

characteristic and same minimal polynomials. 

• Analysis Task: Let f be a continuous function defined on 𝐼 = [𝑎, 𝑏] f maps I onto 

I, f is one-to-one, and f is its own inverse.  Show that except for one possibility, f 

must be monotonically decreasing on I. 

• Abstract Algebra Task: Prove or disprove: 𝑆4 is isomorphic to 𝐷12 where Sn 

represents the set of permutations of n elements, and D12 the dihedral group with 

order 24.  Note: The members of Sn are bijective mappings from the set {1, 2, . . . 

, n} onto itself.  The group operation in Sn is composition. 

We chose tasks from three fields: linear algebra, real analysis, and abstract 

algebra.  The linear algebra task held potential for the participants to use various tools 

while getting a sense of the situation (equation manipulation, application of definitions, 

and exploration of examples) and both finding the key idea of the proof as well as 

developing a technical handle could require the application of various tools as there are 

multiple ways to solve the problem.  We anticipated participants with expertise within the 

field of linear algebra would use a semantic property-based approach, having a greater 

interest and more experience.  We expected participants whose fields of study were not 
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abstract algebra to pursue more syntactic approaches of equation manipulation due to 

lack of familiarity or lack of recently constructing similar proofs. 

On the analysis task, we anticipated the potential for both symbolic manipulation 

and the exploration of pictures and examples when participants searched for a conceptual 

insight.  We anticipated the rendering of the ideas into a mathematical proof as potentially 

problematic.  

We chose the abstract algebra task due to its potential to necessitate the use of 

various tools to enable understanding of the two groups and to discern properties of the 

groups if the individual is unfamiliar with the two groups in question.  We supposed the 

prover would most likely search for a property that one group had and the other did not 

that should be preserved under isomorphism and this could require the application of 

various tools. The order of the tasks was the same for all interviews.  Interviews took 

approximately 90 minutes, where interviewers invoked the think-aloud protocol as 

described by Patton (2002).  The interviewers, King and myself, asked clarifying 

questions consistent with those described by Weber (2008), as well as reflective follow-

up questions pertaining to specific actions taken by the participants or comments they 

made.   

Data Analysis 

Interviews were recorded, video-taped, and transcribed, and observation notes 

were taken by each interviewer.  Both interviewers watched all three interviews prior to 

coding.  We noted moments where participants appeared to be applying new tools.  In 

initial analysis, we attempted to describe the tool, the purpose of the tool, and develop 

codes for each tool.  These analyses were not conducive to answering the research 
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questions.  Therefore, we developed a coding scheme based on Dewey’s theory of inquiry 

(Dewey, 1938; Hickman, 1990) and Raman and colleagues’ characterization of 

conceptual insight and technical handles (Raman et al., 2009; Raman & Weber, 2006).  

The coding scheme was largely deductive (Patton, 2002).  We included Dewey’s theory 

of inquiry as the research questions regarded individual’s tool use in the sense described 

in that framework.  The constructs of conceptual insight and technical handle were 

included as well due to the purpose of looking for how these ideas are developed and 

used by participants when constructing proof.  Of course, since we had already conducted 

preliminary analyses, the execution of the coding scheme was informed by the data we 

had.  For example, since instantiation of example objects had been observed, we included 

potential purposes for the use of examples informed by the literature.  If the deductive 

coding scheme was insufficient in characterizing an event, we generated new codes based 

on the data. The coding scheme is given in Appendix D.  

In applying the coding scheme, we parsed transcripts into “major events,” or 

individual actions or groups of actions involving one purpose or one problem.  We coded 

each major event by type of experience, problem, tool-used, purpose of tools-used, and 

type of evaluation.  We described problems and tools in context for clarity.  We then 

further subdivided major events if we determined that more than one purpose or more 

than one problem occurred in its duration.  Coders added additional codes for problems, 

tools, and purpose of tools as needed.  The researchers coded the interviews individually 

and then met to discuss and agree upon codings.  After we coded the data together, I 

synthesized the data and provide the summary of results below. 
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Results from the Exploratory Study 

The main themes that seemed to emerge from the data were that there is a 

progression of problems, and ideas may stem from “failed” tool applications.  

Mathematicians seemed to progress through the pattern of trying to understand a 

statement, look for a reason why the statement would be true (key idea), looking for a 

reason why the statement would be true that could easily be translated to a formal proof 

(key idea that can be translated to a technical handle), and looking for a means to 

communicate the proof.  The articulation of ideas often required re-checking the 

arguments that originally convinced them.  Also, ideas that the prover deems useful may 

emerge from actions taken even if the outcomes of the action do not match the 

mathematicians’ expectations. 

The Progression of Problems 

As consistent with the problem solving literature (Carlson & Bloom, 2005), the 

mathematicians began their proof constructions by working to understand the statement 

to be proven and the definitions of the terms given in the proof statement by symbolizing 

the statement, or instantiating the objects in questions via graphical examples.  For 

example, in the linear algebra task, participants gave instantiations of the term similar by 

giving their own definitions using symbolizations.  From the codes, it was apparent that 

the participants began each problem first attempting to manipulate the premises they were 

given in order to get a sense of the mathematics they were using.  Then, participants 

generally began applying tools with the purpose of looking for a sense of belief and 

insight into the reason why the statement is true or false or a key idea. 
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As a case of this, after reading the analysis task, Dr. Kellems stated, “What I’m 

puzzled by is why it has to be decreasing.” We interpreted this as articulation of a 

problem of not knowing why the statement should be true.  Dr. Kellems applied the tool 

of turning “it into a geometry problem” by drawing a picture.  He informed his picture by 

his conceptual knowledge of what it would mean pictorially for a continuous function to 

be one-to-one and onto: “it can’t go up and down” and for a function to be its own 

inverse: “it has to be symmetric when I flip it over the line.”  

He deemed his picture as fitting the hypothesis and the conclusion but he still 

needed “to think about why that’s true.”  He then drew the identity function and deemed 

that it was the one exception. Finally he drew another picture including a single point and 

the line y = x.  He applied the found property of knowing the one exception and his 

graphical conception of the graph needing to be symmetric about the line y = x. Using 

these ideas he reasoned,  

I have to have the geometric reflection of that point on my graph, and that forces 
it to be decreasing, because when I flip a point, well, if I flip a point above that y 
equals x line across that line, it moves to the right and down. And so there's a 
geometric argument that it has to be decreasing. 
 
After this geometric reasoning, he asserted, “I think I’m done.”  He shifted into 

articulating an informal argument that consisted of captioning his picture with the 

thoughts he articulated previously.  He made the active choice to not construct an 

algebraic argument. 

You're asking a very tough question for me, because I would at the moment regard 
it as a challenge to make this geometric argument rigorous without switching to 
an analytic argument. And that's because I repeatedly get students in calculus 
classes and most recently last week in a non-Euclidean geometry class who give 
me a beautiful geometric argument, short and sweet, start a new paragraph, and 
say, “mathematically this means that” and give me the algebraic argument. I have 
no quarrel with saying algebraically or analytically this means that. But to claim 
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that the geometric argument is not mathematical really bugs me. And so 
motivated by that, I would attempt to avoid doing what you're pushing me 
towards, which is to write down the analytic argument.  
 
Once participants acquired a key idea (or conceptual insight) about the problem, 

they switched to applying tools with the purpose of looking for technical handle, or a way 

to communicate the proof (Raman et al., 2009; Raman & Weber, 2006).  Consider the 

following example.  Dr. Nielsen had been working on the analysis task. 

Ok so, on the other hand if we start here and if we do something like that, 
can we make it be its own inverse? It just has to be symmetrical about that 
point. Ok, now at least I believe the statement. [pause] Ok so it must be 
monotonically decreasing, so now what could I do to give a proof of that? 
Well, I could try to just kind of do a straightforward thing, say let c be less 
than d, and I want to show that, see decreasing, that f of c is greater than f 
of d.  
 

Dr. Nielsen had grasped a key idea by generating pictures of graphs.  His idea was that no 

matter how the graph looked, if a one-to-one function was not monotonically decreasing, 

it would not be its own inverse.  When he switched to asking himself how to give a proof 

of that idea, we interpreted it as moving to searching for a technical handle.  He 

proceeded to inquire into symbolic statements to communicate his pictorial idea.  

For two of the participants, Dr. Heckert and Dr. Kellems, converting a pictorial or 

numeric argument to an analytic argument was not always deemed necessary.  On the 

analysis task, Dr. Heckert claimed he would not have continued with a proof beyond his 

confirmation with a numeric example if we had not asked for such.  As described earlier, 

on the analysis task, Dr. Kellems claimed he was finished after his pictorial argument and 

did not need to write any more for his geometric argument to be an acceptable proof. 
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Ideas May Stem from “Failed” Tool Applications 

The linear algebra task asked participants to show two similar 3 × 3 matrices 

would have the same characteristic and minimal polynomials. Dr. Heckert set about the 

problem of determining why the statement should be true by thinking through a number 

of possible tools.  He contemplated the feasibility of using the following tools: 1) if he 

had a theorem for determinants, 2) if he could argue that the polynomials are a property 

of the transformations in the change of bases, or 3) if he could “do something about row 

reduction preservation”.  However, he did not deem any of the tools as being immediately 

helpful.  He transitioned into working a numeric example where he generated two 2 by 2 

similar matrices and went about computing their characteristic polynomials to see why 

they would be the same. He wrote out what the characteristic polynomials were for each 

of the two matrices; however, the polynomials did not turn out to be the same. Dr. 

Heckert decided that he must have committed a computation error which was later 

confirmed by the researchers when analyzing his written work. Dr. Heckert chose not to 

inquire into where the error occurred because “even without looking for my error, I don’t 

think that that’s promising to do it from the definition.” (He had viewed manipulating 

example instantiations of the definition of “similar matrices” as working from the 

definition.) Dr. Heckert thought back on his past idea on how the polynomial is a 

property of the transformation itself, but he asked himself, “Why would you even believe 

that?” He then looked back upon the polynomials which were written in standard form.  

Think of the polynomial as a property of the transformation itself. So how would 
you make that a proof? Why would you believe that? Certainly it’s clear that if 
this thing has roots, oh I see, so you could go to a field where all the roots are 
there and then you would do it by eigenvectors - or eigenvalues. Eigenvalues have 
to be the same, okay, alright. 
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He recognized the roots would be eigenvalues and that the eigenvalues would be 

the same for the two matrices. He determined he could construct a proof by reasoning 

about the eigenvalues. Dr. Heckert then constructed an argument that proved the two 

characteristic polynomials would be the same, if all the eigenvalues of the matrices were 

distinct. Dr. Heckert then constructed an argument that required the eigenvalues to be 

distinct in order for his proof to work, and claimed that he did not care enough to worry 

about the case where the matrix held repeated eigenvalues.  

At the time of formulating the idea of arguing by eigenvalues, Dr. Heckert had 

chosen to argue that the polynomials were a result of a property that was independent of 

the bases of the matrices. He had entered into solving the problem of finding a warrant 

for such a claim. On his paper, he had an example of a characteristic polynomial that was 

previously generation in the specific example exploration. He referred to that 

characteristic polynomial when he stated, “Certainly, it’s clear if this thing has roots.” It 

seemed that the failed example did in fact play a role in his formulation of the idea. Prior 

to trying the example he did articulate the thought that he may be able to argue that the 

characteristic polynomial of a matrix was dependent on the linear transformation and 

independent on the bases, but he abandoned it because he could not immediately identify 

some sort of backing for his claim. He appeared to have the conceptual knowledge that 

two similar matrices have the same eigenvalues. He did not, however, mention 

eigenvalues until he had written out the characteristic polynomials of his example 

matrices that he had earlier determined were “not going to be useful”. Upon completion 

of the problem Dr. Heckert explained why he originally determined the example would 

not be useful.  
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It’s not because the example didn’t work out. It’s because there’s nothing 
promising in the pattern here. There’s nothing that’s telling me why this operation 
is connected to this operation. I mean for getting the 32, the 𝜆2 − 5𝜆. There’s no 
easy way for me to see why that’s going to be the same in these two cases. 
 
The example was not useful for his purpose of deducing some structure from the 

operations performed. The example was useful for finding a warrant for the argument that 

the characteristic polynomials resulted from a property that was independent of the bases 

in that having the polynomial written out may have brought to mind other uses for 

characteristic polynomials, namely the determination of eigenvalues. At the time of the 

pilot study, we did not follow up with Dr. Heckert to confirm that the written polynomial 

played that role that we hypothesized. This episode does point to how a tool may be 

deemed unhelpful for one purpose but may aid in the generation of new ideas if used for 

a different purpose.  

It also bears noting that Dr. Heckert drew upon a significant amount of content 

knowledge. His instantiations of what it meant for two matrices to be similar included (a) 

similar matrices occur from changes of bases, (b) similar matrices have equivalent 

eigenvalues, and (c) similar matrices determine the same linear transformation. Despite 

the rich content knowledge, the task appeared to be problematic. The content knowledge 

may have informed him as to why the statement probably should be true; he immediately 

called to mind that the characteristic polynomials were probably a consequence of some 

intransient property of a change of basis. However, he needed to perform some 

investigation in order to determine what that property would be. 

Discussion of the Exploratory Study 

The exploratory study set about to describe what tools and reasoning techniques 

were used by mathematicians to construct proof and to specifically describe how the 
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mathematicians used the tools of key idea (or conceptual insight) and technical handle.  

We observed participants using a combination of semantic and syntactic reasoning when 

developing proofs.  They relied on significant content knowledge, notably rich 

instantiations of definitions.  They drew of pictures and explored examples to familiarize 

themselves with the mathematical statements and to search for reasons why the statement 

would be true.  Notably the tools applied were meant to address the problems of 

understanding a statement, looking for a reason why the statement would be true (key 

idea), looking for a reason why the statement would be true that could easily be translated 

to a formal proof (key idea that can be translated to a technical handle), and looking for a 

means to communicate the proof.  We, at times, found that participants developed an 

initial idea that could have been viewed as a conceptual insight but then they searched for 

additional ideas that could help them communicate why the statement would be true.  

For two participants, translating a geometric (or pictorial) argument or an 

argument using a numeric example to an analytic or formal, deductive argument was not 

always deemed necessary.  On the analysis task, Dr. Kellems made it a point to stop at his 

geometric argument.  Dr. Heckert felt satisfied enough with his argument on the linear 

algebra task that did not generalize to all cases to not pursue further, and he only wrote a 

generic, analytic argument for the analysis task because he knew we wished it.  Finally, 

we found that Dr. Heckert explored a pair of similar matrices to determine why they 

should have the same minimal and characteristic polynomials.  Making a computation 

error and determining the exploration as not useful, he chose to abandon the exploration.  

However his doing the exploration informed his ways of thinking about the situation 

which in turn led to a useful idea that he used as the technical handle of his proof.  
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We at times found that ideas participants found useful were not easily classified 

as either technical handles or conceptual insights. In the next subsections, I elaborate on 

issues faced with this particular classification and other observations from the exploratory 

story that specifically needed more exploration, which I propose to address in this study.  

Additionally, I discussed some observed limitations in the design of the exploratory study 

and follow up on how I intend to circumvent these limitations in the proposed study. 

Lesson Learned 1: Conceptual Insight (Key Idea) and Technical Handle Constructs  

In the exploratory study, the goals were specifically to describe how 

mathematicians developed and used conceptual insights and technical handles.  We 

found, however, that those two constructs’ definitions were not clear enough to be 

utilized in ways that we could find standards of evidence that would clearly identify an 

idea as a conceptual insight or a technical handle.  We defined a conceptual insight as an 

idea that gave the prover insight as to why the statement would be true.  A technical 

handle was defined as an idea that enabled the prover to communicate the argument. We 

were not sure if these two constructs should encompass all insights that were granted 

from exploring the objects.  For example, in Dr. Heckert’s construction of the proof of the 

analysis task, the exploration of the numerical example provided a structure for his final 

argument.  However, it is unclear what would have been classified as the technical 

handle. In the abstract algebra task, Dr. Kellems spent time exploring the object, the 

group S4, it was unclear whether he was looking for a conceptual insight (a reason why S4 

would not be isomorphic to D12) or if he was just familiarizing himself with the object.  

Either way, he was looking for ideas that would help him proceed into solving the task. 
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A conceptual insight may appear to be articulated however it is not always enough 

to convince the prover or it may not be utilized if it is not apparent how it can be rendered 

into a formal proof.  For example, in the abstract algebra proof, Dr. Heckert cited possible 

reasons why the two groups, S4 and D12, would not be isomorphic: D12 has a non-trivial 

center and S4 does not.  However, he did not view this idea as being easy to prove.  He 

instead proved the theorem via the argument that D12 has an element of order twelve but 

S4 does not. 

Obtaining a technical handle was not always viewed as necessary, especially if the 

mathematician felt a geometric argument was sufficient.  As described earlier, Dr. 

Kellems chose to use his informal, pictorial argument as proof citing it as a geometric 

argument.  He did note that translating the argument into a symbolic one would be 

difficult for him.  Dr. Heckert, similarly, stated that on the analysis task, he only wrote out 

a detailed, symbolic argument for the sake of the interview.  

Interviewer: Well after that you sort of said, okay now I guess I’ll go through the 
details of doing this up. Were you thinking that way because you 
were pretty convinced by.. 

 
Dr. Heckert: Oh yeah, I was totally done here in my mind.  
 
Interviewer: So, as a proof, when you’re thinking of this as a proof, is that sort of 

saying like okay because you feel like you have a good sense of the 
answer or is it because you know if you are trying to present this to 
somebody else, 

 
Dr. Heckert: Well because there’s so many different levels of proof.  If I’m trying 

to get students to be able to go from the concept to the proof which is 
hard then I really want to do more of this to show them the details 
but yeah I mean if I was working with somebody and we wanted to 
check if are we off base here, is this right?  We would have been 
done back there.  

 
Interviewer: So yeah, even if you were doing research, you would have been like 

good we’re done. 
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Dr. Heckert: Oh yeah, and we wouldn’t have written the stuff down.  Yeah so this 

is all about trying to have people be able to write it or have you 
watch how I would write it up, but I didn’t, I didn’t need any of this 
to convince myself from here. 

 
Interviewer: So since you’re in an interview with us you’re like okay I’ll write it 

up, but if you were by yourself you wouldn’t write it up then. 
 
Dr. Heckert: Oh yeah yeah yeah. 
 
Dr. Heckert recognized that “going from the concept to the proof” is a difficult 

task for students, but he stated that in his personal research, he would not worry about 

writing the detailed proof for a small result such as the one that we asked him to prove.  

Conceptually convincing oneself of the truth of a statement would be what mattered.  We 

did not follow up on what situations would promote the need for the writing of the formal 

proof beyond this conversation; it appeared that the audience of the proof mattered when 

it came to if he would write out the details of the proof.  For the proposed study, it may be 

important to choose tasks that necessitate the mathematicians’ writing of some form of 

formal proof or to specify that the goal is to have them to work to not only understand the 

concept and why the statement should be true (the conceptual insight) but also to work to 

write out the details of the proof so that a student of the course in question would be able 

to read and understand it.  

In algebraic arguments, it was sometimes unclear if an idea was a conceptual 

insight or a technical handle.  Dr. Nielsen completed the linear algebra task by discerning 

certain manipulations that would enable him to get the equivalence, det(𝐴 − 𝑥𝑥) =

det (𝑃−1𝐴𝐴 − 𝑥𝑥).  It is unclear whether we should have classified the manipulations as 

conceptual insights or technical handles as the manipulations both gave him insight as to 

why the statement would be true as well as a means for writing out the proof.  
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The identification of conceptual insights (or key ideas) and technical handles was 

not always a straight forward process.  Additionally, there seemed to be insights gathered 

by the individuals that were meaningful to the participant but did not fall into the two 

categories.  The proposed study will look into the ideas that the mathematician deems as 

useful even if it does not fulfill the specific purposes of giving insight as to why a 

statement is true or direct insight into how to prove the statement without focusing on the 

categorization into conceptual insights and technical handles. 

Lesson 2: Example of an Evolving Personal Argument 

Even though describing the evolution of the personal argument was not the 

purpose of the exploratory pilot study; the data provided insight into how I could describe 

the progression of an argument into a mathematical proof.  I will discuss Dr. Heckert’s 

construction of the proof for the analysis task, and I will explain how certain ideas 

seemed to emerge that Dr. Heckert viewed as important and helpful, and provides a 

rational for conducting the proposed dissertation study. 

Upon reading the problem, Dr. Heckert drew a picture of a function that matched 

the problem’s criteria.  The purpose appeared to be for him to familiarize himself with the 

situation and to confirm that such a function exists.  He stated, “So there is such a 

function.”  The domain and range of his initial instantiation was [0, 1].  He then began to 

draw another set of x and y axes and placed brackets indicating an arbitrary interval 

because he was not certain the “one exception” could be found on the interval [0, 1], but 

soon he hypothesized that the interval did not matter.  He noted that he had not yet 

thought of the one exception, “I can’t imagine what the exception is now but maybe when 

I prove it, I’ll find it.” 
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He stated his plan would be to prove the statement by contradiction beginning 

with the assumption: There exists a, b such that f(a) is greater than or equal to f(b) and a 

< b.  He determined proving by contradiction would be useful; therefore it is an idea that 

can move the proof forward.  We did not follow up on his decision process for choosing 

to prove by contradiction; so we could not determine what about the situation contributed 

to the choice to argue by contradiction. 

On his picture from before (the x and y axis with the arbitrary interval), he drew 

the line “y = x”.  After the interview, he stated that he drew the line because the 

conditions of the statement were that the function be its own inverse and that meant the 

function would need to be symmetric along the line “y=x”: “Well, this is because it’s its 

own inverse.  I just wanted it to be symmetric about that and I knew it had to take the 

interval into itself.”  After drawing the line, he identified it as the one exception 

mentioned in the statement of the problem.  “Oh, ha! That’s the one exception.  Okay, so, 

I don’t know why that suddenly came from that picture.” 

The discovery that the identity function was the one exception was another idea 

that moved the proof forward.  Dr. Heckert was not actively engaged in solving the 

problem of determining the one exception when he had the idea; he had previously put 

the problem aside.  At the time he was beginning to draw a picture to inform his argument 

by contradiction.  He actively checked each assumption of the problem statement to 

confirm that the identity map was indeed the one exception.  

He returned to his picture, informed that he would be excluding the identity map 

from the contradictory argument. “Okay, I see if we’re not the identity map, we have a 

here and b here. And there’s something wrong with that because if f(a) = c, f(b)=d, the 
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problem with that then is c and d have to map in reverse.  These two connect in some 

way…It’s going to violate one-to-oneness in some way.” 

The discovery that he would not be considering the identity map informed the 

conditional. “It seemed clear somehow that what was going on that if I can’t stay on that 

line, then the fact that I’m my own inverse is going to do that to me. And that’s going to 

be the basis of the one-to-one violation.” 

Here, we see an idea that if the function increased and deviated from the line y =x 

(did not “stay on that line”) on some portion and the function was its own inverse, then 

the function would not be one-to-one. After the interview, Dr. Heckert stated that this 

drawing had contributed to a vague picture in his mind of what would happen. “I didn’t 

have this picture in my head yet, but I was picturing that it would do this.” 

So, it appeared that the personal argument contained a mental picture that the 

function would have to change direction leading to a violation of one-to-oneness. It is 

unclear from the transcript if Dr. Heckert had the mental picture prior to his physical 

drawings or if it came simultaneously with the drawing. If he had the picture before the 

drawing, the physical actions enabled him to confirm and articulate his hypothesis. If the 

mental picture emerged as he drew the physical picture, then the picture aided in the 

generation of the idea. It is probable that the mental picture coincided with his 

manipulations of the drawing because Dr. Heckert felt the need to “go to the numbers and 

come back.” Later, he explained why he went to the numbers. “Partly, I’m tired and the 

letters were irritating me, and I wanted to make sure that I was putting them in the right 

place.”  
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He moved to a numeric example. He created a situation where f(2) = 1 which was 

less than f(3)=4. He worked through the situation, finding that f(1) = 2 and f(4) = 3 since 

the function was its own inverse. He then applied the Intermediate Value Theorem (IVT) 

to the situation to get the result he wanted, namely that the function would not be one-to-

one. “In this case, we’re already done because by the intermediate value theorem 

something between hits this point and something between here hits that point.” Prior to 

working through the numeric example, Dr. Heckert did not mention IVT, but we do not 

have evidence that he was not thinking of it specifically in the previous mental pictures. 

Regardless, IVT became a technical tool to ensure that the function would need to pass 

through a given y-value twice and hence violate one-to-oneness. 

At this point, it appeared Dr. Heckert’s argument included his vague picture which 

was confirmed by his numeric example and backed by the intermediate value theorem. 

He was personally convinced. He knew what the basic idea of the proof would be.  

So the basic idea of the proof is that if we are not the identity, what happened here 
is going to happen. We’ll have the intermediate value theorem. Any point in here 
could be here. Your counterexample to being one-to-one. So something in here 
has to hit that point, and something in here has to hit that point. Since it’s 
continuous. So, I’ll write up the annoying details on this one.” 
 
Dr. Heckert transitioned his inquiry to writing an analytic argument that 

generically translated his mental and numeric pictures into a formal proof. He began by 

changing his numeric example to one involving general values a and b. In his numerical 

example, f(a) < a. He chose to argue by cases and this was his first case. Even though he 

described this step as writing up “the annoying details”, the task required him to think, 

going back to his pictures in order to describe what was happening.  
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For the analytic argument, he decided to argue by cases.  Sometime during the 

inquiry into the proof whether f(c) was above the identity function or below it became 

important or useful to him.  In the numeric example, he had made f(a) be below the line 

and f(b) be above the line. The first case maintained that f(a) was below the line, but he 

only stipulated that f(b)>f(a). So, whether f(b) was above or below the line did not appear 

to matter. He maintained the use of IVT, just as in the numeric example and the pictorial 

example that preceded it. In fact he formalized the use of the theorem by using it as a 

warrant for his claim that the function will violate one-to-oneness. ("So any y 

between...f(a) and a is the image of some point in [c, a].") Alternatively, the formalized 

use of the theorem may have been backing for the warrant that the function would need to 

violate one-to-oneness. 

From here, Dr. Heckert continued to work on formulating an argument that 

incorporated the ideas of (1) arguing by contradiction that one-to-oneness would be 

violated, (2) the IVT would be necessary to show this violation, (3) using the case where 

f(a) < a (which was informed by his picture that assumed the function was not the 

identity). Dr. Heckert identified that the second case where f(a) > a would have an 

argument “identical to this one.” He stated the third case where f(a) = a was the case of 

the one exception.  

Dr. Heckert’s argument did evolve. He began with a picture or instantiation of the 

situation to convince himself that such a function existed. He happened across the one 

exception, but recognizing it helped him to think about cases that were not the identity 

giving him a picture that a function that was not decreasing and its own inverse would 

have to violate one-to-oneness. So he knew he would argue by contradiction showing the 
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violation of one-to-oneness. Moving to a numerical example was a means of giving a 

structure to how the proof should go. While working through the numeric example, he 

articulated the use of the IVT. His generic argument was a translation from the numeric 

example into general terms; in his generalizing, he saw the need to differentiate between 

cases: where f(a) < a, f(a) > a, and f(a) = a.   This particular episode highlights the need 

for exploring the experienced mathematician’s  proof construction in-depth with a focus 

on personal argument evolvement. 

Lesson Learned 3: A problem is an Individual Determination  

Despite having more content knowledge than the students for which the tasks 

were originally written (upper level undergraduates and lower-level graduates), the 

mathematicians did seem to engage in genuine inquiry. We had evidence that the 

individuals did need to reflect upon the problem situations and for the analysis and linear 

algebra tasks did not immediately know why the statement would be true, and, in the case 

of the analysis task, Dr. Nielsen and Dr. Heckert both needed to spend time thinking 

about and trying different approaches to converting their conceptual understandings of 

why the statement would be true to a symbolic proof.  

 Dr. Nielsen and Dr. Heckert did not appear to view the abstract algebra task as 

problematic. Both Dr. Nielsen and Dr. Heckert knew that it would be easier to show the 

two groups were not isomorphic, most likely through experience. They both appeared to 

go through a checklist, checking the order of the group, noting properties they knew 

about the group, and finally choosing to use the fact that D12 has an element of order 

twelve but S4 does not. The creation and emergence of ideas for these two individuals 

was not apparent to us because they were able to apply techniques that they had used in 
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the past. Dr. Kellems did not appear to view the linear algebra task as problematic. He 

began by trying what he termed and advanced formula for determinants.  

I know a property of 3 by 3 determinants that you probably don't, which I'll write 
down here, which is that for 3 by 3 matrices, the determinant of A is a triple 
product, it's a trace of something called the Freudenthal product and a Jordan 
product. So this is fancy algebra that I use in a completely different context, 
which is really the statement in traditional linear algebra terms that the 
determinant is related to, and again I'll get this wrong as I've not done basic linear 
algebra in a long time, but something like the minor, I don't even know how you 
write the minor. But the determinant is A times something.  
 

He applied the tool of the advanced property but could not recall all the coefficients of 

the formula. Therefore, he switched to the definition of characteristic polynomial being 

the determinant of the matrix. A-xI. 

And so I know that A cubed minus A squared trace A plus some coefficient which 
I don't remember the name of, A minus determinant A equals zero. So I'm going to 
switch gears, and start all over. I'm being much too fancy. Characteristic 
polynomial... and I'll do it for A is determinant A minus x I [𝑑𝑑𝑑 (𝐴 − 𝑥𝑥)]. And I 
know what A is; so that determinant of P inverse B P minus x I [𝑑𝑑𝑑 (𝑃−1𝐵𝐵 −
𝑥𝑥)], and that's determinant P inverse B P minus x P inverse P [𝑑𝑑𝑑 (𝑃−1𝐵𝐵 −
𝑥𝑃−1𝑃], and now I'm getting to the same place I was trying to get without all the 
fancy. This comes from doing determinants of 3 by 3 matrices over non 
associative algebras which is related to my research, so that's why that came up 
first.  
 

After applying this definition, he seemed to know the manipulations he needed to 

perform in order to get the equality det(𝐴 − 𝑥𝑥) = det (𝐵 − 𝑥𝑥) because he did not 

appear to propose manipulations. Breaking the identity matrix, I, into 𝑃−1𝑃 seemed 

merely natural. He stated that the algebra technique was one he used in many contexts 

and was second nature for him. Although he viewed that we presented the problem as 

algebraic, the manipulations he performed had conceptual meaning for him. 

That is an algebraic technique that I have used in many contexts, and therefore is 
second nature for me. In addition, and you heard me use that language from the 
beginning, you have presented this as a straight algebra problem, but I see 
immediately that it is about invariances of linear transformations under change of 
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basis. And the reason that linear, that that um... well in this case polynomials, that 
this category of problem is invariant under change of basis is precisely because of 
that algebraic property. And so for me, the connection between that algebraic 
statement and the um, the invariance that is associated with the, the geometry if 
you will of that invariant statement, those are things that are very imbedded in my 
thinking of linear algebra. 
 

 Dr. Kellems’s professional practice had dealings in matrix algebra, Dr. Nielsen 

and Dr. Heckert’s research did not reside in that area. Dr. Heckert did not produce an 

algebraic argument but spent time thinking about properties of linear transformations and 

eventually gave an eigenvalue argument that worked only if all the eigenvalues were 

distinct. Dr. Nielsen did give an algebraic argument, but he needed to explore algebraic 

manipulations and properties before arriving at the manipulation that gave him the 

equivalence he sought. 

 A task that is problematic for one mathematician may be routine or familiar to 

another as observed in the exploratory study. Problems are an individual construction, 

and the individual is the one who can determine if the task is problematic or not. 

Professionals in a given field of mathematics may be able to identify if a problem is one 

he or she can solve easily or if it will require him or her to reflect upon the situation and 

think through proposed actions. For these reasons, selection of tasks for the proposed 

study needs restructuring.  

Lesson Learned 4: Units of Analysis  

The protocol for coding involved looking at each action taken, noting problem 

perceived at that time if any, the purpose of the action, and the participants’ evaluation of 

the action as being helpful for achieving said purpose.  The analysis resulted in a list of 

actions which was useful in answering the question of what tools are applied.  However, 

using actions as the unit of analysis would not be useful in fulfilling the research 
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purposes of describing what ideas the individuals perceive as useful and in what ways the 

ideas are used.  The proposed study needs to focus on the moments where ideas emerge 

as opposed to noting what the tools are. 

Limitation: Presence of the interviewer. In the pilot study, we performed 

interviews using the think-aloud protocol (Patton, 2002).  We chose to have participants 

think aloud because we were interested in their thought processes as they occurred.  We 

chose to be in the room with the mathematicians as they worked so that we could observe 

their actions in real time.  By focusing on their actions as they occurred, we strived to 

minimize having pre-formed hypotheses as to the motives for the mathematicians’ 

actions.  The format of the interview did allow for questions from the researchers while 

the participants were working.  Our interrupting questions were limited and usually 

occurred during a break in the participants thinking or when they were switching between 

plans of attack.  The purposes of these questions were to bring closure to the abandoned 

plan of attack and to learn motivations for moving on to a new plan.  The protocol also 

included follow-up questions that occurred at the end of each task.  We had made notes 

during the task about what we wanted to ask about as they occurred.  

 Our questions or the think-aloud protocol may have played a role in how the 

problem solving evolved.  In the linear algebra task, Dr. Nielsen had worked on showing 

the characteristic polynomials of two similar matrices were equal, but he had reached an 

impasse.  He moved on to the second part of the problem that required him to show the 

minimal polynomials of the similar matrices were equal.  He completed that portion by 

discerning a property of taking powers of matrices.  He returned to the characteristic 

polynomial portion.  One of the interviewers asked him if moving to the minimal 
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polynomial gave him any clarity about what to do for the characteristic polynomial.  Dr. 

Nielsen responded that he did not see something directly related and thought about 

abandoning the algebraic approach and switching to thinking about it conceptually. 

But there's a big difference; characteristic polynomial you're not plugging in the 
matrix in for the variable, in for x here, and the minimal polynomial you were. I 
definitely used that fact here. Perhaps a better reason to move on to minimal 
polynomial case was just to give myself some time to not think about the other 
one for a while. And I think that maybe now I would stop doing it algebraically 
and use facts that I may or may not remember correctly about characteristic 
polynomials and try a different approach. And they say something or try 
something like I know something about the roots of the characteristic polynomial 
and eigenvalues and I know something about similarity there, and that might be a 
more reasonable approach to try to answer the first one. But that would definitely 
take some trying to remember my basic linear algebra facts. I don't know if there 
is anything else. I suppose I could look at the algebraic one more time. It 
definitely, would think it should work.  
 

However, Dr. Nielsen then decided to look at the algebra “one more time” because “it 

should work.”  He thought about the problem algebraically again noting that A-xI was a 

matrix that he wanted to relate to the matrix, 𝑃−1(𝐴 − 𝑥𝑥)𝑃 which was an approach 

different from those he had tried earlier for the characteristic polynomial but related to 

the manipulations he learned from his explorations of the minimal polynomial as he had 

earlier discerned that for any matrix A, (𝑃−1𝐴𝐴)𝑘 = 𝑃−1𝐴𝐴.  The interviewer’s questions 

that asked Dr. Nielsen if he perceived that the minimal polynomial portion would help 

with the characteristic polynomial portion may have played a role in Dr. Nielsen’s 

decision to think more about the algebra.  His articulation of the situation, specifically, 

that he would need to think about some possibly forgotten facts from linear algebra and 

that perhaps there should be similarities between the two pieces may have contributed to 

his not pursuing the conceptual approach.  After completing the task, he did state that he 

realized that it would be more work to think about properties of eigenvalues. 
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I didn't see immediately how doing this sort of a... how using the second problem 
helped me with the first problem at all. So I really just said ok well, this isn't 
going to work, I gotta try something else. Although, a second later I realized this 
did help me. And I was able to use the same trick to get the other one 
algebraically. And the reason I probably came back to that is I realized that it was 
going to be perhaps more work to go look up properties of eigenvalues, to remind 
myself of those facts... It seems like that it was actually harder than I thought it 
would be. 
 

It is not certain that the nature of the protocol or the question influenced how Dr. Nielsen 

thought about the problem, but in the future study, I would like to minimize the 

possibility that the researcher would influence the problem-solving process. 

 A limitation of the protocol of the exploratory study was that the questions asked 

during the interview were restricted to what the researchers noted at the time.  We 

concurrently were focusing on the actions and comments made by the participant.  We 

missed opportunities to ask about interesting aspects. Patton (2002) described this 

limitation of the task-based interview.  After viewing the video, transcripts, and written 

work from Dr. Nielsen’s linear algebra task, I noted actions and situations where it was 

unclear what the purpose of the action was or what he viewed as problematic.  For 

example, Dr. Nielsen proposed a property of minimal polynomials that he said “would be 

nice”.  For 𝑝(𝑥), the minimal polynomial of a matrix B. Dr. Nielsen was trying to show 

𝑝(𝑃−1𝐵𝐵) = 0. He stated it would be nice if 𝑝(𝑃−1𝐵𝐵) = 𝑝(𝑃−1)𝑝(𝐵)𝑝(𝑃) but then 

created and worked through a counterexample which eventually led to a discernment of a 

property involving taking powers of the matrix, 𝑃−1𝐵𝐵.  

But I'm not sure if we can do that easily at all, because we might have things like 
P inverse of B P squared plus stuff equals zero. And when you do that, that's 
doing P inverse B P, so that looks good. Those would be identity matrix, so you 
would get P inverse B squared P plus stuff equals zero. So that's exactly the thing 
that we want. 
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(𝑃−1𝐵𝐵)2 + ⋯ = 0 
𝑃−1𝐵𝐵𝑃−1𝐵𝐵 

𝑃−1𝐵2𝑃 + ⋯ = 0 
 
He extracted the property 𝑝(𝑃−1𝐵𝐵) = 𝑃−1𝑝(𝐵)𝑃.  During the interview, we 

were preoccupied by the fact that Dr. Nielsen discovered a property that allowed him to 

get the result he wanted.  We did not ask him clarify his purpose in creating the above 

counterexample that led to the property.  In analyzing the event, it was unclear if the 

purpose of exploring the example was to convince himself why his proposed property 

was untrue or if he had already convinced himself that it was not true and was squaring it 

out to find some other insight into the problem.  Understanding the purpose of his 

exploration of the counterexample would be important to answering the research 

questions of the proposed study, specifically to answer the questions about the situations 

surrounding the emergence of new ideas.  It is likely that situations like the above, where 

individuals perform actions without articulating the purpose of the actions, would occur 

in another task-based interview.  In the current study, I will seek methods that encourage 

the mathematicians to clarify purposes behind actions taken but minimize potential 

interference with their problem-solving processes. 

Limitation: Graduate Student, Faculty Member Relationship 

The participants of the pilot study were professors and the interviewers were 

graduate students.  At times, it appeared that the mathematicians were teaching the 

interviewers as opposed to articulating their thought processes.  The graduate student to 

faculty member relationship coupled with the researchers’ introduction statement to the 

interview, “We are interested in understanding how you construct proof,” may have 

contributed to the mathematicians taking on a teaching role during the interview.  
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Rephrasing the introduction to the interview to “I wish to document your thought 

processes as you construct proof.” may help in preventing the “teaching” issue. 

 Additionally, the mathematicians perceived that there were actions that the 

student researchers were hoping that the participants would take.  The linear algebra task 

required mathematicians to prove a property of 3x3 matrices. Dr. Heckert suspected that 

we had crafted the item so that participants would move to exploring the simpler case of 

2 by 2 matrices which is just what he did.  “Okay so I do have to do what you probably 

want me to do, which is- So I don’t like the three by three because that’s too much work, 

so I’m going to go to the two by two.”  The other participants also may have suspected 

there were choices that we expected them to make. 

Limitation: Interview Situation Influencing Inquiry Choices  

Because of time considerations, the interview situation may have prevented 

inquiry into certain unresolved issues and influenced what situations were deemed 

problematic.  Dr. Heckert’s proof in the linear algebra task showed that the characteristic 

polynomials of two similar matrices were equivalent only in the case that the matrices 

had distinct eigenvalues.  Dr. Heckert stated that he was not very concerned with 

resolving the issue for repeated eigenvalues. “If the eigenvalues aren’t distinct, I’m not 

sure I care much, but do you care?  But if the eigenvalues are not distinct, I don’t care.  

Because now there’s probably some trick I should think about and I probably would just 

look in a linear algebra book.  But, um, but this is the idea.”  

 On the analysis task, Dr. Kellems gave a picture and an oral argument; it served 

the purpose of communicating his conviction to the interviewers so there was no need for 

him to write out his proof.  He did state that it would be difficult to translate the picture 
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into a symbolic proof.  His argument was informal in that he pointed to and motioned 

with his pictures as he spoke through the argument, only writing down his conclusions.  

The fact that the interviewers were in the room with Dr. Kellems may have played a role 

in his choice not to give a formal written argument. 

Significance of the Exploratory Study 

Despite the above limitations, the results of the exploratory study provide some 

implications for the teaching and research of proof construction.  Participant 

mathematicians were observed to begin by orienting themselves to the problem, 

persuading themselves of the reasons why the statement should be true, searching for 

ideas that may be rendered into a proof, and then finally proceeding to write a formal 

proof.  As such, practitioners may consider introducing proof as the development of an 

argument.  Instead of solely teaching students to write arguments regarding known 

content and teaching proof techniques, it would be valuable to provide opportunities for 

students to wrestle with statements whose truth or warrants for truth they do not yet 

know.  As was observed, if a prover is given opportunity to explore the problem, 

applying various tools, even unsuccessfully, may enable the individual to develop useful 

ideas. 

For the mathematicians, arguments that convinced themselves and proofs that 

would be acceptable to a general community did not seem to be the same; 

mathematicians made shifts from convincing themselves to looking for proof ideas.  

However, they always considered if the ideas that showed them why the statement would 

be true could be rendered into a formal proof.  At times, their ideas could be formalized; 

other times, mathematicians needed to search for another idea that could be more easily 
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formalized.  This confirms the research of Raman and colleagues (Raman, 2003; Raman 

et al., 2009) who argued that mathematicians are aware of how their personal arguments 

have the potential to be connected to more formal proof.  Encouraging students to search 

for ways to connect their private arguments to a more public one would be in keeping of 

developing mathematical habits consistent with the mathematicians of today.  It is also 

necessary to point out to students that some mathematical proofs have more than one 

possible key idea and some ideas are more easily rendered into proof than others. 

As an expansion of the key idea and technical handle framework (Raman et al., 

2009; Sandefur et al., 2012), this study has shown that while these two constructs may be 

observed in the proof constructions of mathematicians, classifying each idea developed or 

each purpose of an investigation into these two terms can be difficult.  It may be more 

beneficial for researchers to identify ideas that the provers find useful and provide apt 

descriptions of what the ideas are and how the individual sees them as useful.  Instead of 

classifying the purpose of an action as to search for a conceptual insight or technical 

handle (Sandefur et al., 2012), researchers may analyze actions surrounding the 

generations of ideas for their purpose and the problems the applications of such tools they 

may seek to solve.  

 This research has served to confirm the ways in which proof construction can be 

viewed as a special type of problem solving as participants were observed to orient 

themselves to the task, plan, execute, and check their strategies (Carlson & Bloom, 2005).  

However, where Carlson and Bloom viewed one task as a problem, we noted multiple 

problems within one proof construction task as proving requires not just the development 

of an answer but the development of a personal argument (the development itself may 
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require the resolution of several problems) that also must be translated into a written, 

logical proof.  The study suggests that if researchers seek to describe the development of 

mathematical proof through the multidimensional problem solving framework of Carlson 

and Bloom, researchers may wish to consider the existence of multiple problems within 

the proof construction task.  In the following section, I describe the explicit ways in 

which the exploratory study has informed the methodology of the proposed study. 

Implications for Data Collection and Analysis 

The lessons learned from and the observed limitations of the exploratory study 

can inform the design of the proposed study.  In this section, I will briefly describe 

methodological decisions that were directly influenced by the exploratory study including 

decisions to have the participants choose their own problems, incorporate a follow-up, 

stimulated recall interviews, and to redefine the units of analysis. 

 The exploratory study showed that if the researcher chooses the tasks, the tasks 

may or may not present problematic situations for the mathematicians.  For the proposed 

study, a problem is a situation where the individual cannot recall a situation and resolving 

the situation requires a “going outside” the situation to think about possible solutions 

(Hickman, 1990).  The definition of problem and problematic is further expanded in the 

Theoretical Perspective.  Only the individual is able to identify a situation as being 

routine or not.  Consequently, the individuals will choose the proof tasks that they will 

solve.  

 The presence of the interviewer and the interview situation played a role in how 

the problem-solving situations unfolded.  As opposed to a task-based interview with a 

think-aloud protocol, the proposed study will involve the researcher video recording 
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mathematicians working on problems as the mathematicians think-aloud.  Contrary to the 

exploratory study, the protocol for the proposed study will not allow for interrupting, 

clarifying questions or follow-up questions during the proof construction recording.  I 

will act as an observer and recorder of the mathematicians’ thought processes.  This 

decision to minimize the researchers’ presence is an effort to downplay the possibility 

that the mathematician will attempt to “teach” the researcher as well as minimize 

interrupting and changing the mathematicians’ thought processes as they unfold.  I will 

still seek to understand the participants’ thinking behind their decisions in constructing 

the proof.  This will be partially accomplished by asking the mathematicians to think-

aloud as they prove the statements; additionally, I will ask the mathematicians to 

participate in a follow-up, stimulated recall interview.  After the initial, proof-

construction interview, I will review the video noting moments where clarification is 

needed to discern the purposes of actions, what in the situation contributed to choosing an 

action or not to take an action, what ideas or properties seemed important, and so forth.  

In the follow up interview, I will play back these moments for the participants, have them 

watch it, and explain the situation and answer questions I have noted.  The stimulated 

recall protocol will be elaborated in a later section. 

 The purpose of the proposed research is to describe how personal arguments 

evolve.  For this reason, analyzing by each action taken may not be the most appropriate 

unit of analysis.  Instead, I will begin by noting moments where new ideas are 

incorporated that the prover sees as useful for moving the argument forward and describe 

what the ideas are.  For each idea, I will describe the problem(s) perceived by the 

mathematician when the idea is articulated and when it is implemented, the anticipated 
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application of the idea, the other tools that the mathematician used as the idea emerged, 

and how the idea relates to other ideas.  The definition of an idea that moves an argument 

forward will be further described in the theoretical perspective. 

The proposed study focuses on individual’s construction of solutions to 

mathematical proof problems; therefore, theoretical perspective that will be used for this 

study is a constructivist perspective within an interpretivist framework (Crotty, 1998) 

utilizing John Dewey’s Theory of Logical Inquiry (1938) using argumentation theory 

(Toulmin, Rieke, & Janik, 1979) and a perspective on creative thinking.  The data for this 

study will consist of data from 3 mathematicians, completing 3 tasks over the course of 3 

interviews.  Each interview will include a follow-up, stimulated recall of the 

mathematician’s work on the task(s) from the previous interview.  Data for this study will 

be the written work, transcripts, video recordings, and Livescribe recordings of 

participants’ work on the 3 tasks in the interview setting.  Participants will complete 

additional work on tasks outside the interview setting.  This work will be recorded via 

Livescribe pen.  Follow-up, stimulated recall interviews will be conducted as well. 

The data analyses will proceed in two major phases.  The purpose of the first 

phase of preliminary analyses will be to identify the ideas that move the argument 

forward, to hypothesize the situations or actions performed by the participant that 

effected the generation of these ideas, and to create questions for the stimulated recall 

interview.  In the second phase of analysis, I will create descriptions of the individual’s 

proof construction of each task focusing on each idea that moves the argument forward as 

the unit of analysis.  The descriptions will describe the idea, the perceived problem when 

the idea was articulated, the mode of inquiry entered into when the idea is articulated, and 
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the tools that the participant utilized leading up to the articulation of the idea.  

Additionally, these descriptions will describe how the ideas are used subsequent to their 

articulation.  After I have given case descriptions of each idea and each task, I will 

conduct open coding on each task and cross-case analyses across tasks to generate 

categories and themes to answer the research questions. 
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Pre-interview Questionnaire 

1. What would you describe as your primary mathematical field of study? 

2. What courses have you taught in the past? 

3. How long have you been in your current position? 

4. Please give a general description of your research, including whether you would 

consider your research to be applied mathematics or pure mathematics. 

Task-based Interview Protocol 

• Preliminary Statement 

◦ Thank you for taking the time to participate in this interview.  The purpose 

of this interview is to explore how you construct and write mathematical 

proofs.   

◦ During this interview, we will ask you to construct two proofs.  While you 

are completing these tasks, we will ask you to think aloud.  We will also 

ask clarifying questions as you are working.  After you have finished these 

tasks, we will ask a few open-ended questions. 

◦ If at any time you feel uncomfortable with the interview, we will stop.  

Are you ready to begin? 

• Observations 

◦ Evidence of informal reasoning. 

• Probing Questions 

◦ If quiet, ask “What are you thinking?” 
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◦ If participant writes without explaining, interviewer can ask for 

explanation. 

◦ Interviewers may ask clarifying questions 

• 1st Task – Linear algebra 

◦ Task:  If two 3x3 matrices are similar, then they have the same 

characteristic and same minimal polynomials. 

◦ Provided definitions:   

▪ Similar: Two n x n matrices A and B are similar if there exists a matrix 

P such that  

▪ Characteristic: The characteristic of an n x n matrix A is the 

polynomial given by det(A-xI). 

▪ Minimal Polynomial: The minimal polynomial of an n x n matrix A is 

the polynomial p of the least degree such that p(A) = 0. 

• 2nd Task – Analysis Task: Let f be a continuous function defined on I=[a,b], f 

maps I onto I, f  is one-to-one, and f  is its own inverse.  Show that except for 

one possibility, f must be monotonically decreasing on I. 

• 3rd Task – Abstract Algebra Task: Prove or disprove:  𝑆4 is isomorphic to 𝐷12. 

(Sn represents the set of permutations of n elements, and D12 the dihedral 

group with order 24.  Note: The members of Sn are bijective mappings from 

the set {1, 2, . . . , n} onto itself. The group operation in Sn is composition.) 

• Follow-up Questions 

A= P− 1 BP
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◦ Can you further explain the use of (picture, diagram, drawing., informal 

reasoning..)? 

◦ In what ways do your processes in constructing proof vary across content 

area?, if at all? 
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Coding Procedures 

1. Go through and note major events.  These may be individual actions or groups of 

actions involving one purpose or one problem. 

2. Code if the actions are in response to a problem or not.  There are 4 recommended 

codes here.  More may be added. 

3. Separate into “problem” episodes and periods of non-problems. Give a 

description of each problem using the initial coding list and adding as needed. Or 

you may note more specific problems and we may be able to generalize the code 

from there.  

o Here we will have sections of different inquiries, and non-inquiries 

o We can describe the sequences of problems/non-problems 

o Within each problem we can describe the inquiry involved 

o Within each non-problem, maybe we can describe circumstances that lead 

to a problem 

4. Describe the actions performed utilizing verb and object 

o Identify major tool and how it is applied 

 Note a single tool can be acted upon in a variety of ways 

 Note that other tools may supplement the actions 

o Code the purpose of the action. Use the codes already provided, but you 

will most likely add to the list or modify/combine codes. 

o Code if evaluation appears to occur or not. 

 If evaluation occurs: 
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• Code as “planning” or “usefulness” or “both” evaluation 

• Code the  decision of the evaluation 

5. Code the actions (each tool application) as one of the four modes of thinking and 

note places that are none of the above modes of thinking (we may make a 5th!). 

Operating Definitions 

Problem/Inquiry 

A situation is a problem if it is (1) tense and unresolved for the individual, and (2) the 

individual acknowledges the issue and begins to reflect on the situation and possible 

solutions.  Sections of transcript will be classified as inquiry, non-inquirential, problem 

but no inquiry, or other.   

 “Inquiry” is happening if the following are occurring: 

o There has been an issue that is deemed problematic 

o  The individual has inspected the situation to discern qualities of the 

situation and has reflected on a tool to apply to the situation with an 

intended purpose 

o The individual applies the tools chosen with an end-in-view 

o The individual is evaluating (deciding if it’s useful, re-inspecting the 

situation to see how it changed) during and after the application of the tool 

 The situation is “non-inquirential tool-use”; note both experts and novices may 

have these types of experiences 

o Actions are taken or tools are applied without the individual reflecting on 

the tool to use 
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o The individual indicates that the action taken is “second nature”, “what 

you’re supposed to do”, “how I usually do it”, and so forth. 

o The individual may look back at what the action did for him/her but 

nothing has been deemed problematic prior to that evaluation 

 “Problem but no inquiry” is reserved for situations where: 

o The individual acknowledges that there is something amiss with his/her 

proof but does not enter into actions to try to solve it 

o The individual may even reflect and describe the problem or the tool 

he/she would use to resolve it but does not apply the tool and enter the 

problem 

6. We need to have an “other” code.  Use it when the individual is not engaged in 

proof construction 

Possible problems. The following is a list of problems that an individual may 

encounter when proving from the literature and informed from preliminary analyses. 

• Don’t understand what the statement means  

• Unfamiliarity with the mathematical objects  

• Unsure if the statement is true 

• Trying to find out why the statement is true (looking for a Conceptual Insight) 

• Must communicate the argument (looking for a Technical Handle) 

• I want to generalize (my arguments, my picture, my example, etc.) (data) 

• I want to translate to analytic language (data & lit)  [translate back to the 

representation system of proof   

• I want to check to see if what I’ve claimed (any conjecture) is true  
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• Problems with individual tools 

o Trouble generating a helpful example 

o Computation issues 

Tools 

A tool is a theory, proposal, heuristic, or knowledge chosen to be applied to a 

situation for a specified purpose.  To be considered a tool, an object must be used to do 

some sort of work.  Tools may be used in habitual or inquirential actions.  A tool cannot 

be separated with its end-in-view, so note the proposed (perhaps implied) purpose for 

using each tool.  A tool can be applied in different ways; note how the tool is applied.  If 

the subject is engaged in inquiry, make note of evaluating actions made before, during, or 

after a tool is applied.  The following is a list of possible tools we may see. 

• Examples  

o Known functions 

o Pictures of functions with specific properties 

• Instantiations of mathematical concepts 

• Heuristics, algorithms 

• Known theorem/property 

• Conceptual Knowledge- Knowledge of how things are connected, implications of 

actions, etc. 

• Found theorem/property 

• Symbolizing 

• Symbol manipulation 

• Logical Structure 
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o Break into cases 

o WLOG argument 

Purposes of Applied Tools 

The purposes of applying tools are inseparable from the tools themselves.  The 

purposes are related to the problem to be solved but possible will be more specialized 

than just “to solve this problem”.  Note the purpose of using the tool is not necessarily the 

actual outcome.  For instance, one may apply and manipulate a counterexample with the 

purpose of refuting a conjecture but as a result of the manipulation obtain an insight as to 

how to communicate the proof.  Because of this, unless the participant verbalizes the 

purpose of using a certain tool, we may need to infer the intended purpose.  I can give a 

preliminary list of possible purposes. 

Purposes of using examples.  These purposes were specifically identified in the 

literature and preliminary analyses: 

o Understanding- a statement, definition, objects, etc.  

o Indicate what is included and what is excluded by a condition in a 

definition or theorem  

o Build a sense of what’s going on 

o Explore behavior and illustrate structure 

o To indicate a dimension of variation implied by a generalization 

o To indicate something that remains invariant while some other features 

change 

o Evaluate the truth of a statement or conjecture/checking inferences 

o Generating arguments 
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o “Directly” and “indirectly”  

 Directly:  trying to show that a result is true in a specific case 

hoping the same argument or manipulations will work in general 

 Indirectly:  searching for a reason why one could not find a 

counterexample to the statement 

o To give insight into proving (looking for a TH) 

o To understand why the assertion should be true (Looking for a CI) 

o Use a specific object to indicate the significance of a particular condition 

in a definition or theorem 

 Highlighting the condition’s role in the proof 

 Showing how the statement fails in the absence of that condition 

o Generating counterexamples 

o As an aid to explain an argument to another (interviewer, student, …) 

Purposes of other tools. The following purposes may be observed for other tools.  

 Use aspects of mathematical structure (logic, theorems, definitions) 

o To drive the steps of the proof 

o To reduce the complexity 

o To start or structure the argument 

o To inform the manipulations 

 Look for a TH:  if the individual is seeking a way to make their argument 

communicable 
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 Look for a CI:  Looking for a conceptual insight is performing actions to gain an 

insight as to why the statement is true (why examples should work the way they 

do, why it is not possible to find a counterexample) 

 Generalize an argument 

 To articulate or communicate an idea 

 Translate an idea from one representation to another 

Application of Tools 

The application of tools indicates the course of action or how the tool is used.  One 

tool can be applied in multiple ways.  Choosing how to apply a tool occurs during periods 

of reflection in a similar way to how a tool is chosen.  The application is an experiment 

that is evaluated and may be modified.  When coding applications, most likely you will 

note the action word associated with the tool or the specific way the tool is used.  For 

instance, an individual may use the tool of logic and formulate a contrapositive of the 

statement.  The tool was logic.  The way it was applied or course of action was 

formulating a contrapositive statement.  For the application of examples the literature 

suggests a pattern in the application.   

Examples as tools. If the tool is an example, the hypothesis is that there is a sequence 

of manipulating, getting a sense of a pattern, and articulating that pattern (MGA).  The 

“manipulating” indicates the various ways that the example is applied to the situation, or 

the actions that are taken on the example.  These are numerous but may include:  

experimenting (testing against a conjecture), transforming (perhaps while imagining), 

identifying properties, performing algorithms on, and so forth.  Manipulations of these 

objects may require the application of tools such as conceptual knowledge, structural 
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knowledge, known mathematical properties, and other tools.  When one encounters a 

mathematical object and manipulates it, he or she continues the manipulation until he or 

she gets a sense of a pattern from the manipulations carried out.  Getting a sense is an 

outcome of a manipulation.  It may occur in an instant, but the sense may be vague and 

require further manipulation in order for the sense to be articulated.  An articulation is a 

representation of the perceived pattern recognized from the manipulations.  An 

articulation may be verbal, diagrammatic, or symbolic.  Articulation may occur instantly 

once one gets a sense, or one may need to perform further manipulations to articulate.  If 

one attains a vague sense of a pattern from the manipulations performed, but is unable to 

articulate it then “to articulate” becomes a purpose of the inquiry.  According to the MGA 

framework, the sense that is articulated then becomes a mathematical object which can be 

manipulated in successive cycles since the MGA process is seen as helical.  So an 

articulation may be a tool in further inquiry. 

 Coding application of examples. We will assume applying the tool “using 

examples” or “specializing” will involve a MGA cycle or cycles if the individual is 

actually engaged in inquiry.  We note how the individual is manipulating the object.  We 

note evaluations occurring during and after manipulating.  The vague “getting-a-sense” 

and articulations may be a subsets of the evaluations. 

Evaluation 

There are two types of evaluation: planning and usefulness.  The evaluation for 

usefulness is the posing of the questions: How well did the tool or plan of attack work to 

resolve the initial problematic situation? or How well did this tool help me achieve my 

intended purpose?  Planning poses the question: what does the application of this tool tell 



329 
 
me about how to proceed?  Planning may entail a re-inspection of the situation to 

determine how the problem has changed, if it is resolved, or if there is a new problem to 

address.  Instances of evaluation can occur before applying a tool, while the tool is being 

applied, and after the tool has been applied.  Before applying a tool, an inquirer 

considers if applying a tool is feasible or will be useful; she thinks through possible plans 

of attack.  While the tool is being applied or after it is applied, “the worth of the 

meanings, or cognitive ideas, is critically inspected in light of their fulfillment (Prawat & 

Floden, 1994, p. 44).”  It may be difficult to always observe this.  Evaluation may be a 

thought process occurring simultaneously with the actions performed.  The following are 

evidence of evaluation: 

 Verbalization- “that helps me.”; “that’s not working”; “that’s not the 

problem”;etc. 

 Periods of quiet thought followed by a course of action or an observation about 

the problem situation- evidence of planning 

 Periods of quiet thought followed by a CHANGE in tool or application- evidence 

of usefulness evaluation 

 BUT evaluation may be a thought process that we don’t observe. 

The following note possible decisions of usefulness evaluations: 

• Tool application is effective 

o Problem is still unresolved, but I’ll keep applying the same tool in the 

same way. 

o Problem solved:  The tool was applied with satisfaction and the problem is 

no longer an issue.  Remember there may be many “problems” within one 
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proof task.”  Also “solved” is a judgment made by the prover not the 

observer or the mathematics community; it is possible that the solution is 

mathematically incomplete or even incorrect.  The prover moves on to the 

next task which may or may not become a problematic situation.  Dewey 

indicates the resolving of a problem can be accompanied with a feeling of 

satisfaction or enjoyment and an attainment of new knowledge. 

• Tool application is ineffective, Problem is unresolved:  When the problem is 

unresolved, the cycle starts again.  The prover inspects the situation including the 

original problem and the tool itself.  She then makes a planning evaluation as to 

the action to take next.  Choices made could be:  

o abandonment of the previous tool and choosing a new one 

o choosing to apply the same tool in the same or a different way 

o determining the tool is problematic and engaging in inquiry to resolve the 

problem with the tool (this is most likely to happen if evaluation is an 

interruption during the “fulfilling experience”) 

o Exiting inquiry (giving up without satisfaction) 

• Problem changed:  It may be that the application of the tool changed the nature of 

the situation for the individual causing something else to be problematic or 

interesting.  In this case, the prover may not deem the situation as problematic and 

therefore go back to “everyday” experience where the situation may become 

problematic.  The prover may be aware of the problem but choose not to enter 

inquiry in the sense of a moral judgment (Dewey, 1938).  The prover may enter 
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the problem, beginning a new cycle of inquiry in which the tools, and the 

knowledge constructed in previous inquiries are available if deemed useful. 

Mode of Thinking 

The modes are ways of doing tools, or subsets of tools used for specific purposes. 

• Instantiating is the attempt to meaningfully understand a mathematical object 

by thinking about the objects to which it applies.  It is using or generating 

instantiations for the purpose of understanding. 

o Code as instantiating if: 

 Purpose is to understand something (object, statement, 

definition, etc.) 

 Tool used is an instantiation (example, alternative definition, 

intuitive conception, etc.) of a mathematical object 

• Creative thinking entails examining instantiations to identify a property or set 

of manipulations that can form the key idea of a proof.  The purpose of the 

creative thinking may be to gain a critical insight, to illustrate the structure of 

the mathematical objects, to show that the result is true in a specific case, or to 

search for a reason why one could not find a counterexample. 

o Code as creative thinking if: 

 Purpose is to gain insight into the “crux” of the proof 

 Tools used are instantiations (alternative conceptions of the 

mathematical objects, examples, etc.) 

• Structural thinking uses the form of the mathematics to deduce a proof.  

Structural thinking employs syntactic reasoning.  The tools used in structural 
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thinking will most likely be known properties and theorems, algebraic 

manipulations, and the logical structure of mathematics.  Additionally, Alcock 

notes how structural thinking may inform instantiating and creative and 

critical thinking.   

o Code as structural thinking if: 

 The tools used are related to the “representation system of 

proof” in the sense of Weber & Alcock (2004) 

 Purposes will most likely vary 

• Critical thinking has the goal of checking the correctness of assertions made in 

the proof.  This may occur either syntactically or semantically.   

o Code as critical thinking if the purpose is to check an assertion.  

Various tools may be used. 
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Definitions of Tools Used in Exploratory Study 

Table 34 

Codes Used for Type of Experience in Exploratory Study 

Code/Category Description Example 
Inquiry There has been an issue that is deemed 

problematic.  The individual has inspected 
the situation to discern qualities of the 
situation and has reflected on a tool to 
apply to the situation with an intended 
purpose.  The individual applies the tools 
chosen with an end-in-view.  The 
individual is evaluating (deciding if it’s 
useful, re-inspecting the situation to see 
how it changed) during and after the 
application of the tool 
 

“Why would that be true?  
I can’t think of a property 
of the determinants why 
that would be true, so 
maybe I’ll play with an 
example to see if I can 
discern what would make it 
work that way.” 

Non-
inquirential 
Tool Use 

Actions are taken or tools are applied 
without the individual reflecting on the 
tool to use.  The individual indicates that 
the action taken is “second nature”, “what 
you’re supposed to do”, “how I usually do 
it”, etc.  The individual may look back at 
what the action did for him/her but 
nothing has been deemed problematic 
prior to that evaluation. 

“Okay we’re moving 
towards things that I can do 
quicker than other things.  
...  Um, so it’s certainly not 
true.  And um D12 has a 
non-trivial center and S4 
doesn’t.” [The knowledge 
of the group structure is a 
tool used to give a 
conceptual insight, but it 
required no inquiry to be 
found.] 

Problematic 
no Inquiry 

The individual acknowledges that there is 
something amiss with his/her proof but 
does not enter into actions to try to solve 
it.  The individual may even reflect and 
describe the problem or the tool he/she 
would use to resolve it but does not apply 
the tool and enter the problem. 

“This proof isn’t finished 
because there’s some 
annoying little detail that I 
don’t want to deal with.” 

Other Use this code when the individual is not 
engaged in proof construction. 

Instances where they are 
answering our questions, 
making a demonstration for 
our benefit, etc. 
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Table 35 

Codes Used for Problems Encountered in Exploratory Study 

Code Description Example 
Understanding the statement Doesn’t understand what the 

statement means, how the 
objects in the statement relate, 
etc. 

 

Unfamiliar objects Doesn’t understand a definition 
or an object described in the 
statement in the proof 

 

Veracity of Statement Unsure if the statement is true or 
not 

 

Why true Trying to find out why the 
statement is true (looking for a 
conceptual insight) 

 

Communicating/Articulating/ 
Generalizing 

Attempting to 
communicate/articulate an 
argument, insight or thought; this 
could be looking for a technical 
handle if they are trying to 
articulate/communicate the proof 

 

Translating Trying to translate back to the 
representation system of proof 
(formulate an argument in 
analytic language) 

 

Checking Checking to see if an assertion is 
true 

 

Tool Problem Problem with individual tools or 
application of those tools, i.e. 
trouble generating a helpful 
example, computation issues, 
etc. 
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Table 36 

Codes Used for Tools Used in Exploratory Study 

Code Description Example 
Examples 
(specializing) 

Watson and Mason (2005) describe 
an example as a particular case of 
any larger class about which students 
generalize and reason, and they 
describe exemplification as using 
something specific to represent a 
general class with which the learner 
is to become familiar. 

Specific numbers, 
representations of 
functions (graphical, 
analytic, table), pictures 
of objects. 

Instantiations of 
concepts 

Non-formal representations of 
mathematical concepts  

Function as shooting 
objects from one location 
to another. 

Heuristics/algorithms Rule of thumb, technique that comes 
with experience 

Computational shortcuts, 
modeling 

Symbolizing Rewriting statements, definitions, or 
representations in terms of symbols 

Rewriting “the 
determinant of A equals 
the determinant of B” as 
det(A)=det(B) 

Known 
theorem/property 

 MVT, monotonically 
increasing functions are 
one-to-one 

Conceptual 
knowledge 

Knowledge of relationships among 
mathematical objects, consequences 
of actions on objects, or 
mathematical structure 

 

Found property 
(trick) 

A property/insight/manipulation that 
was proved or found by the prover 

Conceptual insight, 
technical handle,  

A 
proposal/hypothesis 

Dewey tells us an idea/hypothesis 
that is tested is a tool 

Proposed manipulation of 
symbols 

Logical structure Knowledge of logical structure WLOG arguments, 
formulation of a 
statement, etc. 
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Table 37 

Codes Used for Purposes of Using Examples in Exploratory Study 

Code Description Example 
Understanding Understanding- a statement, definition, 

objects, etc. Indicate what is included and 
what is excluded by a condition in a 
definition or theorem.  Build a sense of 
what’s going on.  Explore behavior and 
illustrate structure.  To indicate a dimension 
of variation implied by a generalization.  To 
indicate something that remains invariant 
while some other features change. 

Start-up examples 

Evaluate the 
Truth 

Choosing specific objects to see whether the 
assertion held for those objects. 

Testing a small 
number of examples.  
Testing a “critical” 
example. 

Generating 
Arguments 

Using examples to gain insight into building 
the proof.  Directly:  trying to show that a 
result is true in a specific case hoping the 
same argument or manipulations will work in 
general.  Indirectly:  searching for a reason 
why one could not find a counterexample to 
the statement.  To give insight into proving 
(looking for a TH).  To understand why the 
assertion should be true (Looking for a CI).  
Use a specific object to indicate the 
significance of a particular condition in a 
definition or theorem.  Showing how the 
statement fails in the absence of that 
condition. 

Prover computes the 
characteristic 
polynomial of two 
generated similar 
matrices hoping the 
computation will 
illuminate why the 
characteristic 
polynomials must be 
equal 

Generating 
counterexamples 

Generating counterexamples to prove a 
statement (conjecture) is false 

 

Explaining The prover uses the example not as an aid to 
explain an argument to another (the 
interviewer, student, etc.) 

“Let me show you 
why this works” 
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Table 38 

Evaluation Codes Used in Pilot Study 

Code Description Example 
Evaluation There are two types of evaluation: 

planning and usefulness.  The evaluation 
for usefulness is the posing of the 
questions: How well did the tool or plan of 
attack work to resolve the initial 
problematic situation? or How well did 
this tool help me achieve my intended 
purpose?  Planning poses the question: 
what does the application of this tool tell 
me about how to proceed?  Planning may 
entail a re-inspection of the situation to 
determine how the problem has changed, 
if it is resolved, or if there is a new 
problem to address.  Instances of 
evaluation can occur before applying a 
tool, while the tool is being applied, and 
after the tool has been applied.   
 

Evidence of evaluation: 
Verbalization- “that helps 
me.”; “that’s not working”; 
“that’s not the problem”;etc. 
Periods of quiet thought 
followed by a course of 
action or an observation 
about the problem situation- 
evidence of planning 
Periods of quiet thought 
followed by a CHANGE in 
tool or application- evidence 
of usefulness evaluation 

BUT evaluation may be a 
thought process that we don’t 
observe 
Planning: “Is it easy from 
here?  From the definition?” 
 

Decision- 
Tool is 
effective 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem is still unresolved, but I’ll keep 
applying the same tool in the same way. 
 
 

“I think that helps me” 

Problem solved:  The tool was applied with 
satisfaction and the problem is no longer an 
issue.  Remember there may be many 
“problems” within one proof task.”  Also 
“solved” is a judgment made by the prover 
not the observer or the mathematics 
community; it is possible that the solution 
is mathematically incomplete or even 
incorrect.  The prover moves on to the next 
task which may or may not become a 
problematic situation.  Dewey indicates the 
resolving of a problem can be accompanied 
with a feeling of satisfaction or enjoyment 
and an attainment of new knowledge 
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Table 38    
Code Description Example 
Decision- 
Tool is 
ineffective 

Tool application is ineffective, Problem is 
unresolved:  When the problem is 
unresolved, the cycle starts again.  The 
prover inspects the situation including the 
original problem and the tool itself.  She 
then makes a planning evaluation as to the 
action to take next.  Choices made could 
be:  

 

abandonment of the previous tool and 
choosing a new one 

“This is not helping, what 
else can I try?” 

choosing to apply the same tool in the same 
or a different way 

 

determining the tool is problematic and 
engaging in inquiry to resolve the problem 
with the tool (this is most likely to happen 
if evaluation is an interruption during the 
“fulfilling experience”) 

“I can tell that’s not going to 
work, what else can I try?” 

Exiting inquiry (giving up without 
satisfaction) 

“maybe I’ll move on to the 
next problem” 

Decision- 
Problem 
Changed 

Problem changed:  It may be that the 
application of the tool changed the nature 
of the situation for the individual causing 
something else to be problematic or 
interesting.  In this case, the prover may not 
deem the situation as problematic and 
therefore go back to “everyday” experience 
where the situation may become 
problematic.  The prover may be aware of 
the problem but choose not to enter inquiry 
in the sense of a moral judgment (Dewey, 
1938).  The prover may enter the problem, 
beginning a new cycle of inquiry in which 
the tools, and the knowledge constructed in 
previous inquiries are available if deemed 
useful. 
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Table 39 

Modes of Thinking Codes Used in Exploratory Study 

Code Description Example 
Instantiating Instantiating is the attempt to meaningfully 

understand a mathematical object by 
thinking about the objects to which it 
applies.  It is using or generating 
instantiations for the purpose of 
understanding. 
Code as instantiating if: 
Purpose is to understand something 
(object, statement, definition, etc.) 
Tool used is an instantiation (example, 
alternative definition, intuitive conception, 
etc.) of a mathematical object 

Draws coordinate axes 
and a function that is 
decreasing and concave 
down that is its own 
inverse; adds y=x.  Then 
states “so there is such a 
function” 

Creative 
Thinking 

Creative thinking entails examining 
instantiations to identify a property or set 
of manipulations that can form the key idea 
of a proof.  The purpose of the creative 
thinking may be to gain a critical insight, to 
illustrate the structure of the mathematical 
objects, to show that the result is true in a 
specific case, or to search for a reason why 
one could not find a counterexample. 
Code as creative thinking if: 
Purpose is to gain insight into the “crux” of 
the proof 
Tools used are instantiations (alternative 
conceptions of the mathematical objects, 
examples, etc.) 
 

“So I have, we’ll make 
the interval zero to five.  
I have f of 2 less than 
[looks back at previous 
writing] f of 3.  Let’s say 
this is, uh, one and four.  
So one, and three, four.  
But then, that says that f 
of four is, f is its own 
inverse so f of four is 
three.  And um, in this 
case, we’re already done 
because by the 
intermediate value 
theorem something 
between hits this point 
and something between 
here hits that point.  
[36:30] So the proof is 
now a matter of 
collecting the right places 
for that to happen.  So 
the basic idea of the 
proof is that if we are not 
the identity, what 
happened here is going to 
happen.”   
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Table 39 continued 
Code Description Example 
Structural 
Thinking 

Structural thinking uses the form of the 
mathematics to deduce a proof.  Structural 
thinking employs syntactic reasoning.  The 
tools used in structural thinking will most 
likely be known properties and theorems, 
algebraic manipulations, and the logical 
structure of mathematics.  Additionally, 
Alcock notes how structural thinking may 
inform instantiating and creative and 
critical thinking.   
Code as structural thinking if: 
The tools used are related to the 
“representation system of proof” in the 
sense of Weber & Alcock (2004) 
Purposes will most likely vary 
 

“Okay so there’s I can 
probably do this without 
a lot of cases, but um 
looks like it might be 
helpful to say case 1 is a 
is less than…” 
Is breaking into cases to 
form the argument. 

Critical 
Thinking 

Critical thinking has the goal of checking 
the correctness of assertions made in the 
proof.  This may occur either syntactically 
or semantically.   
Code as critical thinking if the purpose is 
to check an assertion.  Various tools may 
be used. 
 

“I think that a one-to-one 
function on an interval 
attains its maximum and 
minimum on the 
endpoints. But I should 
probably try to prove 
that.” 
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Interview One 

“Thank you for agreeing to participate. The cameras here will record your writing 

from above as well as you from the front. I will have you write in the Livescribe 

notebook with the Livescribe pen.  

“Our purpose here is to observe you solving mathematics challenging proving 

tasks. I believe that only you can determine which tasks would be challenging or 

genuinely problematic and which tasks are not. So you will choose the tasks you will 

work on. [Researcher hands the professor the book or the professor takes out the book.] 

Which book are you using? In what course did you use it? How long have you known 

this book?  Please take some time going through the book. Identify one task that you find 

challenging and one task you believe other mathematicians in your field may find 

challenging. By challenging, I mean that upon reading it, you do not recall a solution or 

have an immediate sense of how the proof should go. This may be a theorem that needs 

proving or a numbered exercise that you would reserve as a challenge problem for your 

students.  [Allow up to 15 minutes for the professor to choose a task. If they deem all the 

tasks in their book as non-problematic, offer the token textbook.] 

“When you identify a task, read it aloud and explain your initial perception of the 

problem.  [Possible follow-up questions: What is your initial inclination of how to solve 

the problem? How does this problem differ from some of the other tasks surrounding it in 

the book? Had you encountered this task in designing your course or assigning 

homework to your students?] 
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[Have participants choose one task and show it to us. Then have them find a 

second task that he or she perceives as potentially problematic for a peer. Ask the 

participants to choose from among the two tasks the one he or she finds challenging.] 

“I ask that you think aloud so that I can observe as much as possible. Please 

articulate what you are thinking including what you find challenging about the problem. 

It is okay if you cannot articulate what exactly is the issue. If at any point during the 

problem, you find the task is no longer problematic, please let me know when that 

happens.  Indicate points when you start seeing the situation differently, or any shifts in 

your perspective of the problem. [Allow up to an additional 20 minutes for the participant 

to solve. Explain to the participant the amount of time allotted.] 

“It looks like we are out of time, but I will request that you continue to work on 

the task on your own time in this week prior to our next meeting. As during the interview, 

I ask that you write in this notebook, and think-aloud as you write. You may choose to 

write out your thoughts in the notebook as well. I would like you to note either in speech 

or in writing the moments where your perceptions of the situation shift. If you think about 

the problem while you are away to the notebook, please take time to return to the 

notebook and record what you thought about.”  [Make copies of the work created in the 

interview. Transfer the Livescribe files to personal computer. Send participant with 

notebook and pen.] 

Interviews Two and Three 

Hello, again. This interview will consist of two parts. The first will be reviewing the task 

you worked on previously; the second will consist of you working on a new task. 
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Stimulated Recall 

Use the laptop to play back chosen sections of the interview. Explain to the 

participant that he/she can pause the video at any time. 

I have chosen intervals of our last session that I would like us to watch together. I 
will pause the tape at certain moments and ask you to explain your thinking and 
the decisions you made. Describe your choices of action and why you chose it. 
Please elaborate on any element of the situation. I would rather you were honest 
and say little about a choice you made rather than create an explanation. During 
playback, feel free to pause or rewind and replay the tape to explain the situation 
as you see fit.  

[Ask for questions. Play back chosen video. Ask questions that will be generated in 

analyses. Include follow-up questions when appropriate of the form: “Say more about 

that.” Record time stamps of when the participant stopped, paused, or rewound the 

video.] 

Review of the Participant’s Individual Work 

The participant will bring his or her Livescribe pen and notebook to the interview 

and describe his or her thought processes throughout solving the problem.“Thank you for 

continuing to work on the task. Where did you work? For how long? Did you think about 

the task outside of the time you were sitting down with the notebook? 

Did you solve the task to your satisfaction? If so, describe the moments when you 

realized what you were trying would work. If not, explain some things you tried and the 

results of trying them.” 

[If the participants describe moments of gaining new insights or ideas that they 

viewed as moving their argument forward, ask them about the results of incorporating 

this idea.]  
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Work on Task Chosen by Another Participant 

Provide the participant with the written proof task. Have available relevant 

definitions and instantiations of definitions (Alcock, 2008). Provide context to the task 

including the name and author of the book and the chapter from which the task was 

derived. 

“I ask that you think aloud so that I can observe as much as possible. Please 

articulate what you are thinking including what you find challenging about the problem. 

It is okay if you cannot articulate what exactly is the issue. If at any point during the 

problem, you find the task is no longer problematic, please let me know when that 

happens.  Indicate points when you start seeing the situation differently, or any shifts in 

your perspective of the problem.”  [Allow up to an additional 20 minutes for the 

participant to solve. Explain to the participant the amount of time allotted.] 

“It looks like we are out of time, but I will request that you continue to work on 

the task on your own time in this week prior to our next meeting. As during the interview, 

I ask that you write in this notebook, and think-aloud as you write. You may choose to 

write out your thoughts in the notebook as well. I would like you to note either in speech 

or in writing the moments where your perceptions of the situation shift. If you think about 

the problem while you are away to the notebook, please take time to return to the 

notebook and record what you thought about.”  [Make copies of the work created in the 

interview. Transfer the Livescribe files to personal computer. Send participant with 

notebook and pen.] 
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Table 40 

Problem Types Encountered by Participants 

Problem Code Description 

Understanding 
statements or objects 

The participant does not understand what the statements mean 
or the definition of a object described in the statement of the 
proof or how the objects in the statement relate and is entered 
into working understand 

Determining truth 
Prover is engaged in determining the truth value of the 
statement 

Looking for warrant 

Prover is looking for a means to connect the statement to the 
claim that eventually can be rendered into a proof. I f 
participants specifically are searching for conceptual reasons 
why the statement is true or are seeking to connect statements 
via a symbolic manipulation, then the next two codes were 
used. 

Looking for conceptual 
reason why true 

Prover endeavors to find why the statement is true based on 
conceptual or empirical understandings 

Looking for way to 
connect symbolically 

Prover endeavors to find means to directly connect symbolic 
instantiations of statements  

Looking for way to 
communicate/generalize 

Prover is engaged in finding a way to communicate or 
generalize an argument, warrant, backing, or other idea 

Looking for backing for 
previous idea 

Prover is engaged in finding general or generalizable support 
for a posed idea or claim 

No problem 

Prover applies tools or actions without needing to reflect on 
choice. The individual indicates that the action taken is 
“second nature”, “what you’re supposed to do”, “how I usually 
do it”, etc.  The individual may look back at what the action 
did for him/her but nothing has been deemed problematic prior 
to that evaluation. 

Tool problem 

There is an identification and entrance into solving a problem 
with individual tools or application of these tools, i.e. trouble 
generating a helpful example, computation issues, etc. 
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Table 41 

Classifications of Tools Utilized by the Participants That Contributed to Idea Generation 

Tool classifications  
Conceptual knowledge Knowledge of relationships among mathematical objects, 

consequences of actions on objects, or mathematical structure 
Known theorem Specific use of a theorem known to be true 
Connecting and 
permuting 

Attending to connecting and rearranging previously generated 
ideas, definitions, and related concepts 

Instantiations and 
equivalencies 

Alternative or Non-formal representations of mathematical 
concepts or definitions 

Symbolizing Rewriting statements, definitions, or representations in terms 
of symbols 

Symbolic manipulations Actions on symbolic representations  
Example a particular case of any larger class about which students 

generalize and reason, and they describe 
Heuristics and 
experiences 

Rule of thumb, technique that comes with experience 

Logical structure Knowledge of logical structure and the norms o behaving and 
communicating in the mathematics community 

Other Time, disturbances in the situation, outside resources, etc. 
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Table 42 

Purposes of Using Tools of Examples 

Types of examples utilized 
Examples to understand A specific example is used to understand a statement, 

definition, objects, etc.; indicate what is included and what is 
excluded by a condition in a definition or theorem; build a 
sense of what’s going on; explore behavior and illustrate 
structure; indicate a dimension of variation implied by a 
generalization; indicate something that remains invariant 
while some other features change. 

Examples to test Choosing specific objects to determine i f an assertion held for 
those objects 

Examples to generate a 
warrant 

Using examples to gain insight into building proof: 
• Directly by trying to show that a result is true in a 

specific case hoping the same argument or 
manipulations will work in general, OR 

• Indirectly by searching for a reason why one could not 
find a counterexample to the statement, OR 

• To understand why the assertion should be true, OR 
• To indicate the significance o f a particular condition 

in a definition or theorem OR 
• To generate a counterexample 

Examples to articulate or 
explain 

Using an example to more clearly articulate one’s own sense 
of an idea or to explain one’s own idea or argument to another 
or oneself 
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Table 43 

Shifts in Toulmin Structure of Personal Arguments 

Structural Shifts in the Personal Argument 
Opening structure The structure that the participant begins with when articulating 

the first idea 
Claim changed or 
specified 

The claim of the argument is either changed to a new claim or 
delimited in some way 

Sub-claim added In addition to attending to justifying the central claim, 
participants add new claims to proven 

Data added, extended or 
specified 

New statements are incorporated into the set of statements that 
the participant deems as relevant or  existing statements are 
extended to new cases or existing statements are reformulated 

Data statements 
repurposed 

Given statements or previously generated ideas are purposed 
in the argument as claims, warrants, backing, or MQ/rebuttals 

Data removed Previously perceived relevant statements are removed 
Warrant added, changed 
or removed 

Warrant is added if none previously existed,  replaced by a 
new warrant, or eliminated as a potential link between 
statements 

Backing added, 
changed, or removed 

Backing statements are incorporated if none previously 
existed, replaced, or eliminated 

Qualifier or rebuttal 
changed 

Qualifier or rebuttal is typically implicit or not present, this 
code notes when one is specified or removed 

Order of presentation The relevant statements are not changed or deleted but are 
rearranged or combined with other claim structures 

None No changes  
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