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ABSTRACT 

Adhikari, Achut Prasad An Exponentiality Test Using a Modified Lilliefors Test. 

Published Doctor of Philosophy dissertation, University of Northern Colorado, 

2014.  

 

A new exponentiality test was developed by modifying the Lilliefors test of 

exponentiality for the purpose of improving the power of the test it directly modified. 

Lilliefors has considered the maximum absolute differences between the sample 

empirical distribution function (EDF) and the exponential cumulative distribution 

function (CDF). The proposed test considered the sum of all the absolute differences 

between the CDF and EDF. By considering the sum of all the absolute differences rather 

than only a point difference of each observation, the proposed test would expect to be less 

affected by individual extreme (too low or too high) observations and capable of detecting 

smaller, but consistent, differences between the distributions. The proposed test statistic is 

not only easy to understand but also very simple and easy to compute. The proposed test 

was compared directly to the Lilliefors test (LF-test), the Cramer-Von Mises test (CVM-

test), Finkelstein & Schafers test (S-test) and the  ̃n test (D-test).  

The critical values were developed and the accuracy of the intended significance 

levels was verified for the proposed test. The results showed that all five tests of 

exponentiality worked very well in terms of controlling the intended significance levels. 

The proposed test performed very closely to the other four tests of exponentiality in terms 

of the accuracy of the intended significance levels across all considered sample sizes.  
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The proposed exponentiality test (PML-test) did successfully improve upon the 

power of the test it directly modified (i.e. LF-test). The actual method employed in the 

development of the test statistic in this study, achieved its primary goal of improving the 

power of the LF-test of exponentiality. This study showed that the proposed 

exponentiality test (PML-test) demonstrated consistently superior power over the S-test, 

LF-test, CVM-test, and D-test for most of the alternative distributions presented in this 

study. The D-test, CVM-test, and S-test exhibited similar power for a fixed sample size 

and significance level. The LF-test consistently showed the lowest power among five 

exponentiality tests. So, practically speaking the proposed test can hope to replace the 

other four exponentiality tests discussed throughout this study while maintaining a very 

simple form for computation and easy to understand for those people who have limited 

knowledge of statistics.  

This study has shown that using the sum of all the absolute differences between 

the two functions (CDF and EDF) will have more power than just using the maximum 

differences between these two functions (like LF-test) or using the sum of squared 

differences between these two functions (like Cramer-Von Mises type test). The research 

presented here has the potential to modify many other tests and / or to develop tests for 

distributional assumption.  

 



v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank several people for their professional and personal assistance. 

I pay tribute to the Department of Applied Statistics and Research Methods (ASRM) of 

the University of Northern Colorado (UNC) for providing me opportunities to use its 

resources. My gratitude goes to Dr. Jay, my research advisor, who has helped me since I 

was admitted to this university. He made extremely valuable suggestions and has 

therefore contributed to enhancing the standard of this study.  In this endeavor, Dr. Jay 

deserves my special thanks for his guidance and efforts to make it more useful to the 

users and bring this study to its final form. I am equally grateful to Dr. Lalonde, Dr. 

Shafie, and Dr. Gilliam whose thorough guidance strengthened my study.  

I am also very grateful to my parents Dev Nath Upadhyaya Adhikari and Bhim 

Kumari Upadhyaya for their enthusiastic encouragements in every walk of my life. I 

would like to thank my beloved wife Sita Sharma-Adhikari, daughter Kyasurina Adhikari 

and son Kshitiz Adhikari for their valuable assistance; their attendance made me fresh in 

every walk of my movement. My educational journey at this point was not possible 

without the continuous support from my wife. She shared both my joy and sorrow, which 

I expect throughout my life. She fills my life with all the colors that I didn’t know 

existed. She always brings a smile to my face and makes me forget all my problems. To 

my family, I am so sorry for the time spent away from you and look forward to a better 

future where we can share and enjoy throughout our life. I love you, and I dedicate this 

dissertation to you.  



vi 

 

Although my first school is my home where I learned to speak the first word like 

mama, I started my formal education from Shree Prembasti Higher Secondary School, 

Bharatpur, Chitwan, Nepal. All of my previous teachers from that school inspired me for 

a better future. I can never forget my previous teachers whose guidance made me a good 

citizen, a good educator and a good researcher.  

The shaping of my career goals were further enhanced by the Institute of 

Agriculture and Animal Science (IAAS), Rampur, Chitwan, Nepal of the Tribhuvan 

University (TU). I learned the experimental designs for the first time from this institute 

along with several course materials especially in the biological field.  I am also indebted 

to this institute.  

I cannot overlook the significant efforts from Dr. Steiner and Dr. Mundfrom of 

the New Mexico State University (NMSU) whose advice and guidance helped me to 

pursue the doctoral degree at the University of Northern Colorado. Dr. Steiner was my 

research advisor in my Master’s program at the New Mexico State University.  

Finally, my wife’s parents, Narayan Dutta Upadhyaya Paudel and Subhadra Devi 

Paudel, also deserve my special thanks; their blessings are on my head and their love is in 

my heart.  

I shall feel amply rewarded if this study proves helpful in the development of 

genuine research. I look forward to suggestions from all readers for the further 

improvements on the subject matter of this study.   



vii 

 

TABLE OF CONTENTS 

CHAPTER  

I. INTRODUCTION.………………………………………………………..1 

Importance of Assumptions in Statistical Tests…………………………...1 

Background Information…………………………………………………..2 

Notations and Assumptions……………………………………………….2 

Purpose of this Study……………………………………………………...3 

Significance of this Study…………………………………………………3 

Research Questions to be Resolved……………………………………….5 

Limitations of this Study…………………………………………………..5 

Definitions…………………………………………………………………6 

II. LITERATURE REVIEW………………………………………………..10 

Categories of Goodness of Fit Tests……………………..........................10 

The Chi-Squared Goodness-of-Fit Test…………….……………………11 

Empirical Distribution Function Tests of Normality...…………………..14 

Correlation Tests of Normality…….…………………………….............25 

Descriptive Methods of Normality Tests………………………………...28 

Comparing Different Goodness of Fit Tests……………………………..30 

Exponentiality Tests……………………………………………………...31 

III. METHODOLOGY……………………………………………................43 

Development of Test Statistic……………………………………………43 



viii 

 

Development of Critical Values………………………………………….44 

Power Analyses Procedures...……………………………………………44 

Number of Trials, Significance Levels and Alternative Distributions…..46 

Research Questions Revisited……………………………………………50 

Software and Programming Considerations……………………………..52 

IV. RESULTS……………………………………………..............................53 

Development of Critical Values.................................................................53 

Analyses of Significance Level………………………………………….55 

Power Analyses…………………………………………………………..56 

V. DISCUSSION………………………………………................................71 

Research Findings......................................................................................71 

Recommendations for Future Research………………………………….73 

REFERENCES…………………………………………………………………………..76 

APPENDIX A-Code…..…………………………………………………………………82 

APPENDIX B-Power and Significance Level Analyses Tables and Figures……………89 

 

 

 

  

 

 

 

 



ix 

 

LIST OF FIGURES 

FIGURE  

1. Observations in a Contingency Table……………………………………12 

2. Number of Trials on Monte Carlo Simulations………………………….46 

3. Significance Levels in Previous Studies……………………....................48 

4. Alternative Non-Symmetric Distributions in Previous Studies………….49 

5. Alternative Symmetric Distributions in Previous Studies…….…………49 

6. Power for Alternative Distribution: Weibull (1, 0.50)…………………...58 

7. Power for Alternative Distribution: Weibull (1, 0.75)…………………...59 

8. Power for Alternative Distribution: Gamma (4, 0.25)…………………...60 

9. Power for Alternative Distribution: Gamma (0.55, 0.275)……................61 

10. Power for Alternative Distribution: Gamma (0.55, 0.412)……................63 

11. Power for Alternative Distribution: Chi-Square (1)……………………..65 

12. Power for Alternative Distribution: Gamma (4, 0.75)…………………...66 

13. Power for Alternative Distribution: Chi-Square (2)……………………..67 

14. Power for Alternative Distribution: t (5)………………………………...68 

15. Power for Alternative Distribution: log-normal (0, 1)…………………...69 

 

 

 

 



x 

 

 

LIST OF TABLES 

TABLE  

1. Skewness and Kurtosis of Alternative Distributions…………………….45 

2. Classification of Continuous Distributions………………………………45 

3. Critical Values for the Proposed Exponentiality Test (θ = 1)……………54 

4. Average Simulated Significance levels………………………………….56 

 

 



1 

 

CHAPTER I 

 

INTRODUCTION 

 

This chapter purveys the background information, the importance of assumptions 

in any statistical tests, some notations being used, the purpose and significance of the 

study, the research questions to be addressed, the limitations of the study, and some 

definitions necessary to understand the related theories behind this study.  

Importance of Assumptions in Statistical Tests 

Testing equality of the means is a very common task encountered by researchers 

and statistical consultants (Yan, 2009).  Exponential distributions are quite often used in 

duration models and survival analysis, including several applications in macroeconomics, 

finance and labor economics (optimal insurance policy, duration of unemployment spell, 

retirement behavior, etc.). Quite often the data-generating process for estimating these 

types of models is assumed to behave as exponential. This calls for developing tests for 

distributional assumptions in order to avoid misspecification of the model (Acosta & 

Rojas, 2009). 

 The exponential distribution is often concerned with the amount of time until 

some specific event occurs. Also, the exponential distribution can be used to model 

situations where certain events occur with a constant probability per unit length 

(Thongteeraparp & Chodjuntug, 2011). 

 “The validity of estimates and tests of hypotheses for analyses derived from 

linear models rests on the merits of several key assumptions. The analysis of variance can
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lead to erroneous inferences if certain assumptions regarding the data are not satisfied” 

(Kuehl, 2000, p. 123).  

As statistical consultants we should always consider the validity of the 

assumptions, be doubtful, and conduct analyses to examine the adequacy of the model. 

“Gross violations of the assumptions may yield an unstable model in the sense that 

different samples could lead to a totally different model with opposite conclusions” 

(Montgomery, Peck, & Vining, 2006, p. 122).  

Background Information 

This study developed a new test of exponentiality. In order to assess the 

exponentiality assumptions, several techniques have been developed in the field of 

statistics, ranging from descriptive statistics including plots to the inferential statistics.  

The Chi-Square Goodness-of-Fit Test is quite general and can be applied for any 

distribution (Conover, 1999) but this test requires large sample size, and the formation of 

intervals for a continuous distribution is arbitrary (Agresti, 1996). The Kolmogorov-

Smirnov Goodness-of-Fit Test appears to be more powerful than the Chi-Square 

Goodness-of-Fit Test for any sample size (Lilliefors, 1967). Seier (2002) found that the 

power of Anderson-Darling Goodness-of-Fit Test outperforms the Kolmogorov-Smirnov 

Goodness-of-Fit Test. Among the Shapiro-Wilk, Anderson-Darling, Lilliefors and 

Kolmogorov-Smirnov Goodness-of-Fit Tests, the Shapiro-Wilk Goodness-of-Fit Test is 

the most powerful (Razali & Wah, 2011). 

Notations and Assumptions 

Due to the frequent use and the lengthy names of some commonly used 

Goodness-of-Fit Tests which were compared in this study, it was chosen to use the full 
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name of any test only for the first time in each chapter. This study used the short 

(abbreviated) form of these tests thereafter in each chapter (e.g. χ
2
-test for Chi-Square 

Goodness-of-Fit Test, KS-test for Kolmogorov-Smirnov Goodness-of-Fit Test, AD-test 

for Anderson-Darling Goodness-of-Fit Test, SW-test for Shapiro-Wilk Goodness-of-Fit 

Test, LF-test for Lilliefors Test for exponentiality, PML-test for proposed modified 

Lilliefors exponentiality test, CVM-test for Cramer-Von Mises test of exponentiality, 

GOFT for Goodness-of-Fit Test, etc.).  

Purpose of this Study 

 The purpose of this study was to develop a new Goodness-of-Fit Test (GOFT) of 

exponentiality and compare it with four other existing GOFTs in terms of computation 

and performance. The LF-test considered the supremum difference between the sample 

empirical distribution function (EDF) and the cumulative distribution function (CDF) of 

the exponential distribution (Lilliefors, 1969). The proposed test considered the sum of 

all the absolute differences between the EDF and the exponential CDF. 

This study approximated the alpha levels by using the corresponding percentile of the 

ordered observed test statistics from the proposed test. By considering the sum of all the 

absolute differences rather than only a point difference of each observation, the proposed test 

was expected to be less affected by individual extreme (too low or too high) observations and 

capable of detecting smaller, but consistent, differences between the distributions. It is 

relevant to point out that the sample size and / or the outlier(s) can have a striking effect on 

the GOFT. 

Significance of this Study 

LF-test has proven to have low power among the commonly used exponentiality 

tests in many power studies (Schafer, Finkelstein & Collins, 1972, etc.). 
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Overholt & Schaffer (2013) proposed a modified Lilliefors normality test by 

using the sum of all absolute differences between the normal CDF and EDF. The authors 

compared their test with the AD-test, LF-test, and the SW-test in terms of significance 

levels and the power under ten different sample sizes and four different significance 

levels. Their study showed that the proposed test statistic had similar accuracy in regards 

to the significance levels when compared to the other three tests. The authors claimed 

that their test method showed some improvement in terms of power over the original 

Lilliefors test in their sets of parameters used in the study. They also argued that the 

increase in power was due to incorporating more information in their test statistic. This 

study will extend this idea for testing the exponentiality of the distribution.  

Shaw (1994) introduced the test II statistic (horizontal distance test statistic) that 

uses the sum of all differences between two step functions for testing the null hypothesis 

that two randomly selected independent samples of equal size come from population 

having the same cumulative distribution function. Shaw showed that the power of the 

KS-test was found to be lower than the test II statistic. 

Combining and extending the ideas of Overholt & Schaffer (2013), and Shaw 

(1994) in the context of exponentiality test constitutes a natural modification and / or 

extension of original LF-test in which this study used the sum of all the absolute 

differences between the EDF and exponential CDF as the test statistic for exponentiality 

test. Articles using the sum of all the absolute differences between the EDF and the 

exponential CDF as a test statistic are almost non-existent. It was expected prior to this 

investigation that an increase in power was resulted due to incorporating more 

information in the LF-test. It was also expected this proposed test would be less affected 
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by extreme observation(s) because this test does not depend only on a single observation.  

If the proposed exponentiality test exhibits meaningful increases in power over the other 

four existing exponentiality tests, there would be a more powerful alternative available 

for researchers and a consulting statistician may be able to test for exponentiality using 

the proposed exponentiality test. Even if the proposed test demonstrates comparable 

power over the existing commonly used exponentiality GOFTs, the proposed test would 

be easier to understand for people who have a limited knowledge of statistics.  

Research Questions to be Resolved 

The following questions were addressed in this study:  

Q1 How will the proposed test be designed to assure reliable critical values 

and their corresponding significance levels?  

 

Q2 For specified significance levels, how will the proposed test perform in 

terms of detecting departures from exponentiality for data simulated from 

12 alternative distributions?  

 

Q3 For specified significance levels, how will the proposed test compare in 

terms of power with the four other exponentiality tests (Cramer-Von 

Mises test (CVM-test), Lilliefors test (LF-test), Finkelstein & Schafers 

statistics (S-test) and  ̃ -test (D-test) as shown in 60, 61, 62, and 63 

respectively? 

 

Limitations of this Study 

Power comparisons were examined for the proposed test and the other four 

exponentiality tests using 12 alternative distributions (11 right skewed and 1 symmetric 

distributions). Only three significance levels were examined in this study. It is possible 

that the findings of this study may be limited only to these sets of parameters.   
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Definitions 

Power (1-β): Power of a test is the probability of rejecting null hypothesis when 

the null hypothesis is false. 

Level of significance (α): α is the allowed maximum probability of rejecting null 

hypothesis when the null hypothesis is true. 

Test statistic: It is the numerical value obtained from a statistical test. The test 

statistic summarizes how far that estimate falls from the parameter value in the null 

hypothesis. 

p-value (p): p is the probability of getting a sample statistic or a more extreme 

sample statistic in the direction of the alternative hypothesis when the null hypothesis is 

true. 

z-score: z-score represents the number of standard deviations that a data value 

falls above or below the mean. 

Critical value (C.V.): This separates the critical region from the non-critical 

region. 

Critical region or rejection region: It is the range of values of the test statistic that 

indicates that there is a significance difference and that the null hypothesis should be 

rejected. 

Non-critical or non-rejection region: It is the range of values of the test statistic 

that indicates that the difference was probably due to chance and that the null hypothesis 

should not be rejected. 

Random variable (R.V.): Variable whose values are determined by chance is 

called a random variable. 
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Null hypothesis (H0): Null hypothesis is a statistical hypothesis that states that 

there is no difference between a parameter and a specific value.  

Alternative hypothesis (H1): Alternative hypothesis is a statistical hypothesis that 

states the existence of difference between a parameter and a specific value.  

Right-tailed test: A one-tailed test which indicates that the null hypothesis should 

be rejected when the test statistic is in the critical region on the right side of the 

population parameter being tested. 

Parametric methods: Any hypothesis test or confidence interval that is based on 

the assumption that the population distribution function is known, or known except for 

some unknown parameters, is called a parametric method. 

Nonparametric methods: Any statistical methods which do not assume a particular 

population probability distribution, and are therefore valid for data from any population 

with any probability distribution, which can remain unknown. 

Monte Carlo simulation: This is a broad class of computational algorithms that 

rely on repeated random sampling to obtain numerical results. 

Goodness-of-Fit Test (GOFT): A test of conformity between an experimental 

results and theoretical expectations. 

Normality assumption: It is the supposition that the underlying random variable of 

interest is distributed normally. 

Exponentiality assumption: It is the supposition that the underlying random 

variable of interest is distributed exponentially. 

Probability density function (PDF, f(x)): A function f(x) is a PDF for some 

random variable X if and only if it satisfies the properties: 
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f(x) ≥ 0                                                             (1)           

for all real x, and  






1)( dxxf                                                          (2) 

Cumulative distribution function (CDF, F(x)): The cumulative distribution 

function of a random variable X is defined for any real x by 

][)( xXpxF                                                        (3) 

Empirical distribution function (EDF): The cumulative distribution of the 

observed data values is called the empirical distribution function. 

Supremum of x (SUPx): For SUPx(f(x)); the supremum is the smallest value of x 

within f(x), which is greater than or equal to all other values of x in f(x). 

Infimum of x (INFx): For INFx(f(x)); the infimum is the largest value of x within 

f(x), which is less than or equal to all other values of x in f(x). 

Unbiased estimator: An estimator T is said to be an unbiased estimator of τ(θ) if 

E(T) = τ(θ), for all θ ϵ Ω, otherwise we say T is a biased estimator. 

Asymptotic relative efficiency (ARE): Let n1 and n2 be the sample sizes required 

for two tests T1 and T2 to have the same power under the same level of significance. If α 

(probability of type I error) and β (probability of type II error) remain fixed, the limit of 

n2/n1 as n1 → ∞ is called the ARE of the first test to the second test if that limit is 

independent of α and β. 

Uniformly minimum variance unbiased estimator (UMVUE): Let X1, X2, …, Xn 

be a random sample of size n from f(X ; θ), an estimator T
*
 of  τ(θ) is called UMVUE of 

τ(θ) if following holds: 
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i. T
* 
is an unbiased estimator for τ(θ) i.e. E(T

*
) = τ(θ) 

ii. For any other unbiased estimator T of τ(θ), variance(T
*
) ≤ Variance(T) for all θ ϵ 

Ω 

Parameter: A parameter can be defined as the numerical summary of a population. 

Skewness: Skewness is the third moment around the mean and characterizes 

whether the distribution is symmetric (skewness = 0).  

Kurtosis: Kurtosis is a function of the fourth central moment and characterizes 

peakedness, where the normal distribution has a value of three and small values 

corresponding to thinner tails (less peakedness). 
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CHAPTER II 

 

LITERATURE REVIEW 

 

This chapter provides a synopsis of the theories necessary to understand this 

research project. The summary and synthesis of a variety of nonparametric Goodness-of-

fit-tests (GOFT) are presented, explained and compared.  

Categories of Goodness of Fit Tests  

Dufour, Farhat, & Gardiol (1998) reported 40 different tests that can be used to 

test normality. These tests were grouped into three categories: empirical distribution 

function (EDF) tests which pertain to the location-scale model; the skewness and 

kurtosis-based moment tests; and correlation tests which are based on the ratio of two 

estimates of scale obtained from order statistics. 

Arshad, Rasol, & Ahmad (2003) evaluated the Anderson Darling and modified 

Anderson Darling test statistics for testing the goodness of fit. They modified the 

completely specified generalized Pareto distribution by using their probability weighted 

moment estimates. The authors divided the goodness of fit techniques into four 

categories: tests of Chi-Square types, moment ratio techniques, tests based on correlation, 

and tests based on empirical distribution function (EDF). Researchers argued that the test 

of Chi-Square type have less power due to loss of information caused by grouping. 

Similarly, use of EDF tests has been difficult due to lack of readily available tables of 
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significance point for the case where the parameters of the assumed distribution have to 

be estimated from the sample data.  

Seier (2002) categorized the GOFTs into four groups: tests based on skewness 

and kurtosis, EDF tests, regression and correlation tests, other tests of normality (e.g. 

empirical characteristic function based tests, U-statistics based tests, etc.).  

Oztuna, Elhan, & Tuccar (2006) divided the GOFTs into two broad groups: 

Graphical methods (e.g. Histogram, Stem and Leaf Plot, Boxplot, Normal Quantile 

Quantile plot, Normal Probability Plot, etc.) and tests methods (e.g. Kolmogorov-

Smirnov test, Lilliefors corrected Kolmogorov-Smirnov test, Shapiro-Wilk test, D’ 

Agostino-Pearson omnibus test, Jarqua-Bera test, etc.).  

Most of the GOFTs for testing exponentiality of the distribution are based on the 

GOFTs originally developed to test normality in the nineteenth century. In order to better 

understand the GOFTs developed for testing exponentiality of the distribution, it is 

relevant to review the GOFTs developed for testing normality as well. An explanation of 

the different types of GOFTs follows.  

The Chi-Squared Goodness-of-Fit Test  

According to Conover (1999) the oldest and best-known Goodness-of-Fit Test is 

the Chi-Squared Goodness-of-Fit Test (χ
2
-test), first presented by Pearson (1900). The 

test assumes that the sample is a random sample whose measurement scale is at least 

nominal. Pearson wanted to test the hypotheses: 

H0 P (X is in class j) =   
  for j = 1, … , c (i.e. the sample has been drawn 

from a population that follows a specified distribution) 

 

H1 P (X is in class j) ≠   
  for at least one class (i.e. the sample has not been 

drawn from a population that follows the specified distribution) 
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The data consist of N independent observations of a random variable X. The N 

observations are grouped into c classes (in most of the cases these c categories are the 

natural classes or defined by the researcher), and the number of observations in each class 

are presented in the form of a 1 X c contingency table as shown in Figure 1.  

Class 

               1    2  …    c             Total  

Observed Frequencies                                         N   N  

Figure 1. Observations in a Contingency Table 

 

Let Oj denotes the number of observations in class j, for j = 1, 2, … , c and   
  be the 

probability of a random observation of X being in class j, assuming that the null 

hypothesis is true. The expected number of observations in class j is denoted by Ej 

assuming the null hypothesis is true is defined as: 

Ej =     ,        j = 1, 2, … , c                                           (4) 

The test statistic,  2 , is then given by: 

    


c

j 1

        
 

  
                                                      (5) 

To find the critical value, it is necessary to know the null distribution of the test 

statistic. However, the exact distribution of χ
2
 is difficult to find. It can be approximated 

with the Chi-Squared distribution with c-1 degrees of freedom. The critical values can be 

found in many nonparametric statistics books. The null hypothesis is rejected if the test 

O1 O2 … Oc 
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statistic, χ
2
, is greater than the 1-α quantile from the Chi-Squared distribution with c-1 

degrees of freedom. This test will always be a right-tailed test.  

The χ
2
-test was designed for nominal data. However, it can also be used in 

continuous data: 

The Chi-Squared Goodness of Fit Test is not limited to discrete random 

variables. It can also be used to test whether the data come from a specified 

continuous distribution, where some of the unknown parameters may be 

estimated from the data. The first step is to “discretize” the continuous random 

variable by forming intervals, which then become the classes described in the 

test. The number of observations in each interval Oj is compared with the 

expected number in each interval 

Ej = N * P (X is in interval j)                                           (6) 

when the null hypothesis is true. (Conover, 1999, pp 245) 

 

If some of the Ej’s are small, the χ
2
-test may not be accurate. Several studies have 

examined the Ej’s and the Chi-Squared approximation and suggested the minimum values 

for the expected counts in each cell. Cochran (1952) suggested that none of the Ej’s 

should be less than 1 and no more than 20 % of the cells should be smaller than 5. 

Yarnold (1970) proposed that if the number of classes under consideration, s, is 3 or 

more, and if r denotes the number of expectations less than 5, then the minimum 

expectation may be as small as 5r/s. Koehler and Larntz (1980) argued that “for the null  

hypothesis of symmetry, the chi- squared approximation for the Pearson statistic is quite 

adequate at the 0.05 and 0.01 nominal levels for expected frequencies as low as 0.25 

when k (number of categories) > 3, n > 10, n
2
/k > 10” (p. 343). From these discussions, it 

can be inferred that the researchers could combine some of the cells if many of the Ej’s 

are small.  
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Liu (2012) conducted Monte Carlo simulations to investigate what sample sizes 

are required to obtain the desired power for the χ
2
-test. The author listed the sample sizes 

and power of the test under different non-central Chi-Squared distributions. 

Agresti (1996) pointed out some limitations of the χ
2
-test. The test requires large 

samples. If the data were given in raw form and intervals for the classes had to be 

determined, the formation of these intervals is somewhat arbitrary and therefore a 

weakness in applying the χ
2
-test to any continuous distribution. 

The primary advantage of the χ
2
-test is that it is quite general. It can be applied for 

any distribution, either discrete or continuous, for which the cumulative distribution 

function (CDF) can be computed.   

Empirical Distribution Function Tests of Normality 

The idea of the empirical distribution function (EDF) tests in testing normality of 

data is to compare the EDF which is estimated based on the data with the 

cumulative distribution function (CDF) of normal distribution to see if there is a 

good agreement between them. The most popular EDF tests are the ones 

developed by Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling. 

(Yap & Sim, 2011, p. 5) 

The function )(xF  often is referred to simply as the distribution function of X, 

and the subscripted notation,     , sometimes is used. The EDF is the observed CDF of 

the data denoted by   . Bain & Engelhardt (1992) argued that “the EDF tests generally 

are considered to be more powerful than the χ
2
-test, because they make more direct use of 

the individual observations. Of course, then they are not applicable if the data are 

available only as grouped data” (p. 457). 

  The first known EDF Goodness of Fit Test was introduced by Kolmogorov 

(1933). The Kolmogorov-Smirnov test was first proposed by Kolmogorov (1933) and 

then developed by Smirnov (1939) (Mendes & Pala, 2003). The Kolmogorov-Smirnov 
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GOFT (referred to as KS-test here forth) belongs to the supremum class of EDF statistic 

and this class of statistics is based on the largest vertical difference between the 

hypothesized and empirical distribution (Conover, 1999). Conover (1999) and Yap & 

Sim (2011) presented the precise description of this test. Unlike the χ
2
-test, the 

Kolmogorov Goodness of Fit Tests (KS-test) was designed for ordinal data. The KS-test 

statistic enables the readers to form a confidence band. The KS-test assumes that the 

sample is a random sample and the data consist of observations X1, X2, … , Xn of sample 

size, n, associated with some unknown distribution function, denoted by )(xF . The test 

statistics is based on the largest vertical difference between the hypothesized and 

empirical distribution which actually measures the discrepancy between the empirical 

distribution function (    and the hypothesized distribution function (      . This test 

requires that the null distribution (     ) be completely specified with known 

parameters. In the KS-test,       is taken from a normal distribution with known 

parameters mean, µ, and standard deviation, σ. Depending upon the researchers’ interest, 

the hypothesis could be one-sided or two sided. The hypotheses and test statistic for KS-

test is also defined differently for three different types of hypotheses. 

Two sided Test 

H0 )(xF        for all   from - ∞ to + ∞  

H1 )(xF        for at least one value of    

The test statistic, D, be the greatest absolute vertical distance between and       and 

)(xS  is given by: 

  
   
 

                                                            (7) 
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 Schoder, Himmelmann, & Sim. (2006) ran Monte Carlo simulations to assess the 

performance of the KS-test, depending on sample size and severity of violations of 

normality. This test performs badly (cannot detect non-normal) on data with single 

outliers, 10 % outliers and skewed data at sample sizes < 100, whereas normality was 

rejected  to an acceptable degree for likert-type data. From this study, it can be inferred 

that the KS-test with the Lilliefors correction cannot be recommended as a tool to identify 

reliably deviations from normality. Similar results were obtained by Yap & Sim (2011). 

They studied and compared the power of eight selected normality tests. Results showed 

that the KS-test performed poor in terms of power. Seier (2002) also reported that the 

KS-test relatively has lower power as compared to other GOFTs. 

 Lilliefors (1967) demonstrated that KS-test can be used with small sample sizes 

(at least four) where the validity of the χ
2
-test would be questionable. Lilliefors further 

explained that the KS-test appears to be a more powerful test than the χ
2
-test for any 

sample size. Mendes & Pala (2003) studied the Shapiro-Wilk, Lilliefors, and 

Kolmogorov-Smirnov GOFTs under various sample sizes and distributions. The study 

found that the Shapiro-Wilk test gave the most powerful results followed by the Lilliefors 

test.  The KS-test results were the weakest in power among all three tests. 

 In implementing the KS-test, most statistical software packages use the sample 

mean and sample variance as the parameters of the normal distribution. However, the 

sample mean and sample variance do not necessarily provide the closest fit to the 

empirical distribution of the data. Drezner, Tuyrel, & Zerom (2009) proposed a modified 

KS-test in which they optimally choose the mean and variance of the normal distribution 

by minimizing the KS statistics. Drezner et al. demonstrated that the power of the 
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proposed test indicated that the test is able to discriminate between the normal 

distribution and distributions such as uniform, bi-modal, beta, exponential and log-

normal which are different in shape, but has a relatively lower power against the 

student’s t-distribution that is similar in shape to the normal distribution. 

 Breton, Devore, & Brown (2008) estimated the power of a test for normality for 

any mean, variance, skewness, and kurtosis. They suggested that if samples are of size 

less than 20, the KS-test can be expected to yield greater power than the χ
2
-test; otherwise 

the χ
2
-test is preferred. The χ

2
-test is to be generally preferred over KS-test if the sample 

size is between n = 18 and n = 330. 

 Although the KS-test is originally designed to handle continuous data, it can also 

be applied with non-continuous distribution. Conover (1972) derived a method for 

finding the exact critical level for the KS-test for all completely specified distribution 

functions, whether continuous or non-continuous. Pettitt & Stephens (1977) proposed a 

modified KS-test that can handle the discrete and grouped data. They found identical 

power between the modified KS-test and the χ
2
-test. 

 Razali & Wah (2011) explored the four most commonly used GOFTs of 

normality for the purpose of comparing power. Among Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors, and Anderson-Darling tests; the KS-test yield the least power while 

the Shapiro-Wilk test yielded the most power for all types of distribution and sample 

sizes under the study. 

 From these arguments, it can be concluded that the KS-test may be preferred over 

the χ
2
-test for small samples. When certain parameters of the distribution must be 

estimated from the sample, the KS-test no longer should be employed at least not using 
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the commonly tabulated critical points. Among the most common GOFTs of normality 

(e.g. Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors, and Anderson-Darling tests), the 

KS-test has the smallest power. Since, the KS-test was the first EDF type GOFT, many 

subsequent tests (including the tests for exponentiality) are based on some form of the 

modification of this test. So, this test is still a valuable resource in the foundation of many 

GOFTs. 

 To test the hypothesis that the sample has been drawn from a population with a 

completely specified density function, Anderson and Darling (1954) proposed a 

distribution-free Goodness-of-Fit Test. This procedure may also be used if one wishes to 

reject the hypothesis whenever the true distribution differs materially from the 

hypothetical and especially when it differs in the tails. The Anderson-Darling test (AD-

test) is a modification of the Cramer-Von Mises test (CVM-test). It differs from the 

CVM- test in such a way that it gives more weight to the tails of the distribution (Farrel & 

Stewart, 2006). 

Denote the specified cumulative distribution function by )(xF  and the empirical 

cumulative distribution function by        The AD-test statistic, wn

2
, belongs to the 

quadratic class of EDF statistic which is an average of the squared discrepancy,        

      , weighted by Ψ[ )(xF ] and the increase in  xF  (and the normalized n). 

 

  
   ∫               (    )     

 

  
                                (8) 

                          

The weight function is some non-negative function as shown in 9. 

 

 (    )                                                          (9) 

                               

Substituting equation 9 into equation 10 produces 
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   ∫                                   

 

  
                    (10) 

In order to make the computation of this statistic easier, the following formula can  

be applied (Arshad, Rasol, & Ahmad, 2003), 

  
     

 

 
                                                   (11) 

where,        is the cumulative distribution function of the specified distribution and   ’s 

are the ordered data. The hypothesis is to be rejected if test statistic,   
 , is sufficiently 

large: 

 The weight function   xF , 0≤  xF ≤ 1, is to be chosen by the statistician so 

as to weight the deviations according to the importance attached to various 

portions of the distribution function. This choice depends on the power against 

the alternative distributions considered most important. (Anderson and Darling, 

1952, pp. 194) 

 

Seier (2002) pointed out that the tests based on skewness and kurtosis tends to 

have lower power than AD-test for skewed distributions when the kurtosis is low. Razali 

& Wah (2011) assessed both symmetric and asymmetric distributions for the purpose of 

comparing the power of four formal tests of normality: Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors, and Anderson-Darling. The study found that although the AD-test 

does not outperform the power of Shapiro-Wilk GOFT (SW-test), it outperforms the 

power of the other two GOFTs. Researchers also found that for sample size ≤ 30, the 

power at the 5 % significance level for all four tests was low (less than 40 %). 

Instead of applying the Monte Carlo simulations, Henderson (2006) used four 

experimentally-derived data sets representing normal, positive kurtotic, positively 

skewed and negatively skewed distributions to testing experimental data for univariate 

normality. The study found that Anderson-Darling, Shapiro-Wilk, Shapiro-Francia, and 

Filliben tests correctly classified all four test samples. The author further explained: 



20 

 

It is not easy to draw firm conclusions from the foregoing regarding the best  

test for normality. In general, however, the Anderson–Darling, Shapiro–Wilk, and 

Shapiro–Francia tests appear to be the most frequently favored tests. Certainly 

these three tests perform well when used on the four test samples of the type 

commonly encountered in clinical chemistry when studying experimentally-

derived results. (Henderson, 2006, pp. 128) 

 

Normality tests are not only used to determine whether a data set is well-

modeled by a normal distribution or to compute how likely an underlying random 

variable is to be normally distributed, but also for evaluating the performance of the 

normality tests to ensure the validity of the t-statistic used for assessing significance of 

regressors in a regression model. Islam (2011) explored 40 distributions and found that 

Anderson-Darling statistic is the best option among the five normality tests: Jarque-

Bera, Shapiro-Wilk, D’Agostino & Pearson, Anderson-Darling, and Lilliefors GOFT. 

Stephens (1974) argued that:  

Even if a new statistic is proposed and claimed to have advantages only for a 

certain type of alternative (say very skewed, or long-tailed), for a real comparison 

with statistics of the Shapiro-Wilk or Anderson-Darling type, we need to see how 

the new statistic fares when used on other alternatives also. (p. 6) 

 

From the above arguments, it can be concluded that the AD-test required the 

density function be completely specified. The power of this test outperforms the 

Kolmogorov-Smirnov, Lilliefors and Skewness-Kurtosis based GOFTs of normality. 

Evans, Drew, & Leemis (2008) presented mathematical derivations of the 

distributions of the Kolmogorov-Smirnov, Cramer-Von Mises, and Anderson-Darling 

test statistics in the case of exponential distribution when the parameters are unknown 

and estimated from sample data for small sample sizes via maximum likelihood. These 

derivations can help the readers to understand how the maximum likelihood estimators 

can be used to derive the distributions of these test statistics. 
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A modification of the KS-test was proposed by Lilliefors (1967). The test 

compares the empirical distribution of X with a normal distribution where its unknown µ 

and σ are estimated from the given sample data. This test is suitable when the unknown 

parameters of the null distribution must be estimated from the sample data. The only 

difference between Lilliefors and KS-test statistic is that the CDF,      ,  is obtained 

from the normalized sample (Zi) while CDF,      ,   in the KS-test used the original Xi 

values. The test assumes the sample is a random sample. The hypotheses of interest are: 

H0 The data comes from a normal distribution with unknown mean and 

unknown standard deviation 

 

H1 The distribution function of the Xi’s is non-normal   

The test statistic, D, is obtained by 

  
   
 

             ,                                             (12) 

where )(xS is the sample cumulative distribution function and F*(x) is the cumulative 

normal distribution function with µ =  ̅, the sample mean, and σ
2
 = S

2
, the sample 

variance, defined with denominator n-1. The test rejects the null hypothesis that the 

observations are from a normal distribution, if the test statistic, D, exceeds the critical 

value. 

 The exact quantiles, and the exact mathematical form of null distribution, are 

unknown. The null distribution has been obtained approximately, by generating  

thousands of pseudo-random numbers on a computer, and estimating quantiles from the 

empirical distribution function of the thousands of subsequent values of the test statistic  

(Conover, 1999). Lilliefors used 1000 random samples of various sample sizes to 

approximate the distribution of the test statistic, D.  The ordered (1 – α)
th

 percentile was 
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used to find the critical values for the selected sample size and the desired significance 

level.  

Lilliefors also compared the power of this test with the χ
2
-test in several non-

normal distributions and found this test to be more powerful in the situations reported. 

Yap & Sim (2011) compared the power of eight selected normality tests of sample data 

generated from several distributions. The study showed that Kolmogorov-Smirnov, 

Lilliefors and Anderson-Darling tests did not outperform the SW-test.  

 Razali & Wah (2011) investigated the power of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors, and AD-test. Study found that Lilliefors test outperforms the KS-test 

only among the four GOFTs. They also argued that even though the Lilliefors statistic is 

same as the Kolmogorov-Smirnov statistic, the table for critical values is different which 

leads to a different conclusion about the normality of data.  

 Dallal & Wilkinson (1986) claimed that there exist some difficulties finding an 

analytic approximation to Lilliefors’ table. They attempted to duplicate Lilliefors 

simulation. In order to find the corrected table, they used SYSTAN’s NONLIN 

procedure. The authors argued that their proposed table corrects the critical values for 

testing normality originally proposed by Lilliefors (1967). 

To test the hypothesis that a set of data arises from a normal distribution with 

unknown mean and variance, Scott & Stewart (2011) presented a modified version of the 

one-sample Cramer-Von Mises test (CVM-test). The test statistic takes the form: 

      
 

   
 ∑ [   (

     

 
)]

 
 
                                           (13) 

where,      (
    ̅

 
) for i = 1, 2, …, n. Authors demonstrated that their test was superior 

than the Lilliefors test in terms of power.  
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The Cramer-Von Mises two-sample normality test (CVM-test) is one of the best-

known distribution free GOFT. This test was first introduced by Cramer (1928) and Von 

Mises (1931) (as cited in Xiao & Gordon, 2007). Conover (1999) gives a thorough and 

precise description of this test. The test assumes that the samples are random and their 

measurement scale is at least ordinal. In general, the random variables are assumed to be 

continuous. If they are discrete, then the test is likely to be conservative. Assuming there 

are two random samples: X1, X2, …, Xn and Y1, Y2, … , Ym with unknown distribution 

functions F(x) and G(x), the hypotheses of interest are: 

H0 )(xF       for all   from - ∞ to + ∞  

H1 )(xF       for at least one value of    

Consider S1(x) and S2(x) be the empirical distribution functions of the two 

samples. The Cramer-Von Mises test statistic adds up the squared differences between 

the cumulative distribution function being compared as given in equation 14, 

   
  

      
               ,                                          (14) 

where, m and n are the sample sizes of the first and second populations respectively. 

 The exact distribution of the test statistic, T2, is found by considering all orderings 

of Xs and Ys to be equally likely under the null hypothesis. Quantiles for T2 using the 

asymptotic distribution when n → ∞ and m → ∞ are given in many nonparametric 

statistics books. The test rejects the null hypothesis if the test statistic exceeds the (1 – α) 

quantiles of W1-α.   

Sprent (1989) argued that adding the squared differences between the cumulative 

distribution functions being compared makes the CVM-test often more powerful than the 

Kolmogorov-Smirnov test.  
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 Shaw (1994) investigated the use of horizontal distances between the two sample 

step functions to develop a nonparametric rank test for testing the null hypothesis that 

two randomly selected independent samples of equal size come from populations having 

the same cumulative distribution functions. The author evaluated three horizontal 

distance test statistics for this purpose as shown in 15, 16, and 17. 

Test I:                                                           (15) 

Test II:   ∑                                                      (16) 

Test III:   ∑            ,                                         (17)              

where R(x) and R(y) are the step functions for each of the two independent samples. All 

three tests were two tailed at the α = 0.05 level. The test rejects the null hypothesis at the 

level of significance α if the test statistic exceeds the 1 – α quantile. For most of the 

distributions under study, the power of Test II and Test III were identical but both of 

them outperformed the Test I statistic. The power of the Smirnov test was found to be 

lower than both the Test II and Test III statistic. The author explained that the test II 

statistic is easier to calculate then test III statistic. 

 Overholt & Schaffer (2013) proposed a modified Lilliefors normality test by 

using the sum of all the absolute differences between the normal CDF and EDF. They 

compared their test with the AD-test, LF-test, and the SW-test in terms of significance 

levels and the power under ten different sample sizes and four different significance 

levels. Their study showed that their test statistic had similar accuracy in regards to the 

significance levels when compared to other three tests. The authors claimed that their test 

method showed improvement in terms of power over the original Lilliefors test in their 
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sets of parameters used in the study. They argued that the increase in power was due to 

incorporating more information in their test statistic.  

Correlation Tests of Normality 

 Correlation tests are based on the ratio of two estimates of scale obtained from 

order statistics: a weighted least-squares estimate given that the population is normally 

distributed and the unbiased estimate of scale for any population, i.e. the sample variance.  

Correlation tests focus on the slope of the line when the order statistics of the sample are 

confronted with their expected value under normality and these tests focused on the 

strength of the linear relationship (Seier, 2002). 

 The most well-known of the correlation based GOFTs is defined by Shapiro & 

Wilk (1965), originally restricted for n ≤ 50. The test considers that the data consist of a 

random sample X1, X2, … , Xn of size n whose distribution function, F(x), is unknown. 

The hypotheses of interest are 

H0 )(xF  is a normal distribution function with unspecified mean and 

variance 

 

H1 )(xF  is non-normal  

The denominator, D, of the test statistic is calculated such that 





n

i

D
1

     ̅  ,                                                 (18) 

where  ̅ is the sample mean.   

Ordering the sample from smallest to largest produces X
(1)

 ≤ X
(2)

 ≤… ≤ X
(n)

. Also 

denote the best linearly unbiased coefficients of the Xi’s by ai (where ai represents what 

the order statistics would look like if population is normal). The Shapiro-Wilk statistic 

(Shapiro &Wilk, 1965), W, is given by: 
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[∑   ( 

            ) 
   ]

 
.                                      (19) 

The test statistic, W, is basically the square root of Pearson’s correlation between the 

ordered statistics X
(i)

 and the coefficients ai. This test statistic is scale and origin 

invariant. 

 If the test statistic is close to 1, the sample behaves like a normal distribution. On 

the other hand, if the test statistic is too small (i.e. too far below 1), the sample looks non-

normal. The test rejects the null hypothesis at the level of significance α if the test 

statistic is less than the α 
th 

quantile. These quantile values can be found in many 

nonparametric statistics books.  

As mentioned earlier, although the SW-test is originally restricted for n ≤ 50,     

D’ Agostino (1971) presented a test that may be used for n greater than 50. Similarly, 

Shapiro & Francia (1972) suggested an approximate test for n greater than 50.  

 A problem common to most of the GOFTs is sensitivity to the presence of outliers 

in the sample. In fact a single such observation can lead to rejecting the null hypothesis 

even if the majority of the data are drawn from a normal distribution (Coin, 2008). The 

author showed a possible extension of SW-test that is not as much affected by outlier(s). 

The author claimed that the proposed test was able to determine whether the majority of  

the data is normally distributed, and moreover, it presents an optimal capacity of outlier 

detection. The study concluded that the Shapiro-Wilk (when feasible) and the Shapiro-

Francia approximates are among the most powerful GOFTs against practically all 

alternatives. 

 Shapiro, Wilk, & Chen (1968) studied nine statistical procedures for evaluating 

normality. Their study concluded that the Shapiro-Wilk statistic provides a generally 
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superior omnibus measure of non-normality. Stephens (1974) suggested that “even if a 

new statistic is proposed and claimed to have advantages only for a certain type of 

alternative, for a real comparison with the statistics of the Shapiro-Wilk or Anderson-

Darling type, we need to see how the new statistic fares when used on other alternatives” 

(p. 8).  

Oztuna, Elhan, & Tuccar (2006) compared four GOFTs of normality to 

investigate the type I error rates and power of the tests. The authors found that for small 

sample sizes, the SW-test outperforms the power of Lilliefors corrected Kolmogorov-

Smirnov, D’ Agostino Pearson, and Jarqua-Bera tests. Yap & Sim (2011) studied and 

compared the power of eight selected normality tests. Results of this study indicated that 

SW-test has the best power properties over a wide range of asymmetric distributions. 

Mendes & Pala (2003) compared the Shapiro-Wilk, Lilliefors, and Kolmogorov-Smirnov 

tests for type I error and for power. Their study found that for all different sample sizes 

and distributions, Shapiro-Wilk test gave the most powerful results followed by Lilliefors 

test. Kolmogorov-Smirnov test results were the weakest among the three tests. Razali & 

Wah (2011) also found that the Shapiro-Wilk test is the most powerful normality test, 

followed by Anderson-Darling test, Lilliefors test, and Kolmogorov-Smirnov test among 

the four GOFTs. 

From the above discussions, it can be concluded that in recent years, the SW-test 

has become the preferred test of normality because of its good power properties as 

compared to a wide range of alternative tests. This test is very simple to compute once 

the table of linear coefficients is available, and the test is quite sensitive against a wide 

range of alternatives even for small samples (n < 20). A drawback of the Shapiro-Wilk 
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test is that for large sample sizes, it may prove awkward to tabulate or approximate the 

necessary values of the multipliers in the numerator of the statistic. Also, it may be 

difficult for large sample sizes to determine percentage points of its distribution. 

Practically speaking, another weakness of the SW-test is the difficulty some researchers 

have in understanding exactly what the test does. 

Descriptive Methods of Normality Tests 

Moment tests derive from the recognition that the third and fourth moments of the 

standard normal distribution are equal to 0 and 3, respectively. Hence, deviations from 

normality may be assessed using the sample moments i.e. the coefficients of skewness 

and kurtosis (Dufour, Farhat, & Gardiol, 1998). 

The simplest and perhaps the oldest graphical display for one-dimensional data is 

the histogram, which divides the range of the data into bins and plots bars corresponding 

to each bin. The height of each bar reflects the number of data points in the 

corresponding bin (Oztuna et al., 2006). The histogram graphically summarizes the 

distribution of a data set such as the center of the data, spread of the data, skewness of the 

data, presence of outliers, and presence of multiple modes in the data. Unfortunately, the 

manner in which histograms depict the distribution of the data is somewhat arbitrary, 

depending heavily on the choice of bins and bin widths. 

A stem-and-leaf plot is a variant on histograms that combines the features of a 

graphic and a table in that the original data values are explicitly shown in the display as a 

“stem” and a “leaf” for each value. The stem determines a set of bins into which leaves 

are sorted, and the resulting list of leaves for each stem resembles a bar in a histogram 

(Oztuna et al., 2006). Turned on its side, it has the same shape as the histogram. In fact, it 
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shows each observation, and displays information that is lost in a histogram.  Stem and 

leaf plots are useful for quick portrayals of small data sets. Similar conclusions can be 

drawn from stem-and-leaf plot and the histogram about the shape of the distribution 

(Bluman, 2012). 

A boxplot provides an excellent visual summary of many important aspects of a 

distribution. According to Bluman (2012), Tukey developed the boxplot display, based 

on the five-number summary (minimum, first quartile, median, third quartile, and 

maximum) of the data. Suspected outliers appear in a boxplot as individual points O or an 

asterisk outside the box. If these appear on both sides of the box, they suggest the 

possibility of a heavy-tailed distribution. If they appear on only one side, they suggest the 

possibility of a skewed distribution. 

The normal Q-Q plot may be the single most valuable graphical aid in diagnosing 

how a population distribution appears to differ from a normal distribution. Normal Q-Q 

plots plot the quantiles of a variable’s distribution against the quantiles of the normal 

distribution. For values sampled from a normal distribution, the normal Q-Q plot has the 

points all lying on or near the straight line drawn through the middle half of the points. 

Scattered points lying away from the line are suspected outliers that may cause the 

sample to fail a normality test (Oztuna et al., 2006). 

 The normal probability plot (P-P plot) graphs observed cumulative probabilities 

of occurrence of the standardized residuals on the Y axis and of expected normal 

probabilities of occurrence on the X axis, such that a 45-degree line will appear when the 

observed conforms to the normally expected (Oztuna et al., 2006).  
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Comparing Different Goodness of Fit Tests 

Many GOFTs for normality and exponentiality are available in literature but they 

have different performances in different situations. Most of the researches presented in 

this chapter show that the criteria to compare different GOFTs are mostly based on the 

power, type I error rates, and the simplicity of their computation for general use. This 

study has presented the comparative powers and some prominent features of the 

commonly used GOFTs on above discussions.  

Finding the correlations among the different GOFTs is also an interesting field for 

many researchers. Stephens (1974) investigated the correlation among various GOFT 

statistics. The study found fairly strong correlations between the various test statistics 

leading to similar conclusions for hypotheses testing. 

 Although simple descriptive statistics can provide some information relevant to 

the GOFT, more precise information can be obtained by performing one of the GOFTs of 

exponentiality to determine whether the sample comes from a exponentially distributed 

population.  

Graphical displays try to answer the question of how the data are distributed by 

showing what the data distribution “looks like”, but they do not focus on the issue of how 

the data distribution compares with some theoretical distributions: 

An analyst often concludes that the distribution of the data ‘is normal’ or ‘not 

normal’ based on the graphical exploration (Q–Q plot, histogram or box plot) and 

formal test of normality. Even though graphical methods are useful in checking 

the normality of a sample data, they are unable to provide formal conclusive 

evidence that the normal assumption holds. The graphical method is subjective as 

what seems like a ‘normal distribution’ to one may not necessarily be so to others. 

In addition, vast experience and good statistical knowledge are required to 

interpret the graph properly. Therefore, in most cases, formal statistical tests are 

required to confirm the conclusion from graphical methods. (Yap & Sim, 2011, p. 

2) 
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Exponentiality Tests 

In order to test the null hypothesis that the random variable X has an exponential 

distribution, Dahiya & Gurland (1972) presented a GOFT for the exponential 

distribution. They used the generalized minimum χ
2
 estimators to develop a test.  The test 

statistic,  ̂, takes the form as shown in equation 20, 

 ̂      ̂ ,                                                        (20) 

where  ̂    ̂       ̂ ,  ̂   (   ̂ )
  

   ̂  ,  ̂ is an estimator of covariance 

matrix, and W is a matrix of known constants. The authors claimed that the power of   ̂ 

test of fit for the exponential distribution is invariant with respect to the scale parameter 

of the alternative distribution. Although they claimed that the test is highly efficient to 

detect the departure from the exponential distribution, this test could be difficult to 

compute and difficult to understand for those who have a limited knowledge of statistics. 

Statistical inference under progressive censoring has received the attention of 

many authors. In many life tests, it is common practice to cease testing before all units 

have failed. In singly censored samples, n units are placed on a test and as each failure 

occurs, the time is noted. Finally, at some pre-determined time or after a pre-determined 

number of failures, the test is terminated. Data obtained from such experiments are called 

censored data (Wang, 2008). Wang developed a test statistic to test whether the 

progressively type-II censored samples come from an exponential distribution. If the 

lifetime distribution is exponential, S1, S2, … , Sm are all independent and identically 

distributed as exponential with scale parameter θ, then the test statistic proposed by Wang 

takes the form, 

    ∑    
               

               

   
   ,                                      (21) 
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where, the numerator and denominators are censoring scheme and remaining surviving 

units respectively. Author compared this statistic with the statistic proposed by 

Balakrishnan & Lin (2002) which takes the form,  

  
 

   
∑

               

               

   
   .                                           (22) 

The author argued that the test statistic,   , performs better than the test statistic T , 

except for a few cases. 

Acosta & Rojas (2009) constructed a simple information matrix (IM) 

misspecification test for exponential distributions that can be applied in duration models.  

Assume a random variable u has exponential distribution with parameter, θ. The 

proposed IM statistic can be expressed as: 
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where,  ̂    ∑   
 
    and the statistic follows a Chi-square distribution with one degree 

of freedom. Authors concluded that this test statistic exhibited good empirical size 

properties and good power against Weibull and gamma distributions. They further 

explained that the IM test procedure can also be applied to other distributions (i.e. 

weibull, gamma, etc.), although the interpretation of the IM statistics is less 

straightforward. 

Instead of using the original observations for testing the exponential distribution 

using the Kolmogorov-type statistics, Seshadri, Csorgo, & Stephens (1969) used two 

techniques to transform the original observations to the random variable which will be 

uniformly distributed on the null hypothesis. In one of the transformation techniques, 

researchers transform the observations yi to Zj given by, 
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Zj = ∑
  

 

 
    , where S = ∑   

 
                                             (24) 

The authors called this transformation J and write Z = Jy where Z = (z1, z2, …,zn) and y = 

(y1, y2, …, yn) and therefore the test of hypothesis is actually a test for the uniformity of 

Z.  

 In another transformation, they transformed the y-values differently to produce 

another set Z’ = (z’1, z’2, … z’n) as follows. Let y(i) (1    ) denote the order statistics 

of y. Then writing y(0) = 0, and di = (n+1-i)(y(i) – y(i-1)), (1    ) gives,  

  
  = ∑

  

 

 
    , where S = ∑   

 
                                            (25) 

The authors called this transformation as a K transformation and write Z’ = Ky. 

According to them, this transformation used a method discussed by Durbin (1961). The 

Zi’s(1      ) are also uniformly distributed in the unit interval and therefore the 

test of hypothesis is actually a test for the uniformity of Z’. Using the Kolmogorov-

smirnov type tests, authors claimed that the K transformation produced more powerful 

results as compared to J transformation. 

Spinelli & Stephens (1987) developed five tests for testing two parameters 

exponentiality (a given random sample of n values of x comes from the exponential  

distribution) when origin (θ) and scale (η) parameters are estimated from the data. The  

tests developed by authors were either EDF based or regression based tests. To 

understand these five test statistics, assume              . The authors estimated the 

parameters required for their tests as shown in the equation 26. 
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The five different test statistics are given by the following equations:                             
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Among these test statistics, authors claimed that the A
2
 test statistic is the superior in 

terms of the power in their sets of parameters. 

Lilliefors (1969) explored a test for testing whether a set of observations is from 

an exponential population when the mean is not specified but must be estimated from the 

sample. This test used the same concept for normality test developed by Lilliefors (1967).  

The test statistic, D, takes the form as shown in equation 34, 

                  ,                                             (34) 

where s(x) is the sample CDF and F
*
(x) is the cumulative distribution function of the 

exponential distribution with  ̅  
 

 
, where λ is the scale parameter. Author presented the 

critical values for using five significance levels with various sample sizes. Using the log 

normal and χ
2
 (1) distributions as an alternative distributions, the study compared the 

power of this test with the χ
2
 test and found that this test is more powerful than χ

2
 test for 

testing whether a set of observations is from an exponential distribution. The author 

further explained that this test can be used with sample sizes which are too small for use 
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of the χ
2
 test. It is important to note that this test can further be explored with several 

alternative distributions (not just two). 

 For testing the goodness of fit of exponential distribution, Schafer, Finkelstein & 

Collins (1972) proposed a test and compared it with the test presented by Lilliefors 

(1969). The statistic proposed was, 

 ̃                    ̃       ,                                 (35) 

where, λ is a scale parameter,  ̃       = 1 -     
  

   ̅ 
    ,        is the empirical 

distribution function (EDF). According to Pugh (1963), the test statistic,  ̃ , is based on 

the Blackwell-Rao and Lehman-Scheffe theorems which gives the best unbiased 

estimate. Authors compared this statistic with the statistic proposed by Lilliefors (1969) 

which takes the form, 

 ̂        ̂        ,                                              (36) 

where,  ̂ = 1 – exp( 
 

 ̅
) and  ̂ is the maximum likelihood estimate of F(x ; λ). Using 

lognormal and χ
2
 (1) as alternative distributions, authors argued that their test is more 

powerful than the test proposed by Lilliefors (1969) for most part of the parameters, 

sample size, and significance levels under study. 

 Barry & Margolin (1976) obtained the computationally efficient approximations 

of the Kolmogorov-Smirnov type (such as proposed by Lilliefors (1969)) one sample 

statistic to test GOFT for the exponential data with unknown scale parameter.  

 Rogozhnikov & Lemeshko (2012) reviewed some tests for exponentiality and 

compared their powers. One of the tests they reviewed will also be considered in the 

proposed test for the purpose of power comparison which is presented in 37. Let exp(θ) 
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be exponential distribution with the density function f(x) = exp [(-x / θ) / θ]. In test 

statistic, the authors used scaled observations Yj = (Xj /  ̂ ) or their transformed values  

              , where   ̂   ̅  and X1, X2, …, Xn be the given independent 

observations of nonnegative random variables. The Cramer-Von Mises exponentiality 

test (CVM) is given by: 
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                                       (37) 

which is basically the modification of one sample Cramer-Von Mises test for normality 

in the context of testing exponentiality of the distribution which replaces the normal CDF 

by exponential CDF. Among the all tests studied, authors could not unambiguously 

choose a test with the highest power with respect to every considered competing 

alternative distribution. Authors further explained it was as well unrealistic to place the 

tests in some unconditional order (i.e. descending by power). 

Grouped data can often arise due to the lack of resolution of the measurement 

instruments. They also arise when data are deliberately rounded to certain accuracy and 

are presented, say, in the form of histogram (Spinelli, 2001). Spinelli used two statistics 

of the Cramer-Von Mises (CVM) type to test for the exponential distribution when data 

are grouped. Suppose a random sample of n observations of X is given, labeled x1, x2, …, 

xn. The observed values of X fall into one of the K groups whose lengths may be 

different. When the parent distribution is exponential, the probability of an observation 

falling in group j is pj =             
    

, j = 1, 2, …, K. Let Oj be the number of 

observations in group j. Let npj = ej be the estimate of the expected number of 

observations in group j. Also, let Zj = ∑        
 
    and Hj = ∑   

 
   , where, i,j = 1, 2, 
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…, K. Finally, tj =           / 2 with pk+1 = p1. The CVM type statistics are then given 

by: 

       ∑    
    

 
                                                   (38) 
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{  (    )}
                                                   (39) 

The W
2
 and A

2
 test statistics are the different functions of the Zj, Hj, and tj which are in 

fact the modification of the Cramer-Von Mises (CVM) type tests to test for the 

exponential distribution when the data are grouped. The author compared these statistics 

with χ
2
-GOFT which is given by: 

   ∑
       

 

  

 
                                                      (40) 

The author concluded that the proposed tests are easy to compute, the asymptotic 

approximations apply for small sample sizes, and the test statistics have good power in 

comparison to the Pearson’s Chi-Square test statistic. 

 Pettitt (1977) presented the asymptotic distributions of two Cramer-Von Mises 

type statistics used to test for the exponential distribution with censored data when the 

scale parameter must be estimated from the sample. The author also derived the 

asymptotic percentage points for these statistics. 

 Gail & Gastwirth (1978) developed a scale-free GOFT for testing the exponential 

distribution based on the Gini statistic. The Gini statistic is defined as: 

    
∑        

 
   

        ̅
 ,                                                   (41) 

where  ̅ is the sample mean . Authors showed that, the Gini based statistic is more 

powerful scale-free test of exponentiality against a variety of alternatives. Compared to 

the maximum likelihood test, the asymptotic relative efficiency of the Gini statistic is 
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0.69 against gamma and 0.88 against Weibull alternatives.  On the basis of good power 

compared to competing tests, ease of computation, availability of exact critical values and 

robustness to measurement error, authors recommend the Gini statistic as a scale-free 

goodness-of-fit test for the exponential distribution. 

 Chen (2008) investigated the analysis of variance tests for testing the 

exponentiality of two distributions. The first statistic proposed was the V-exponential 

statistic for complete samples which turns out to be a normalized ratio of the square of 

the generalized least square estimator (also the minimum variance unbiased estimator) of 

the common scale parameter to a pool sum of squares about the sample means. This 

statistic is origin and scale invariant and has a null distribution depends only on the 

sample size. The statistic takes the form: 

          
     ̅            ̅         

           ,                                    (42) 

where, Y1 = [Y11, Y12, …, Y1n1]
T
, Y2 = [Y21, Y22, …, Y2n2]

T
 ,  ̅  = ∑    

  
   /ni (for i = 1,2 

and j = 1, 2, .. ni) , S
2
 = S1

2
 + S2

2
,  n* = max(n1, n2), and   

   ∑ (     ̅ )
   

   . The  

second proposed statistic was the two samples V*-exponential statistic which is in fact a 

two sample generalization of the one-sample Shapiro-Wilk statistic (Shapiro &Wilk, 

1965). The test statistic takes the form: 

           
     ̅            ̅         

         {         [  
    

 ]      ̅            ̅        }
,             (43) 

where,   
   ∑ (     ̅ )

   
   , i = 1, 2. Author compared W-exponential test (based on 

Shapiro-Wilk statistic), V-exponential statistic, and V*-exponential statistic and argued 

that the powers were comparable which are useful additions to the current literature on 

testing exponentiality of two distributions. 
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 Bakalizi (2005) presented three GOFTs for the Rayleigh distribution with grouped 

data. Suppose, there is a random sample of size n from the Rayleigh distribution with 

PDF given by: 

        
 

      
 

  

   .                                               (44) 

Assume that the inspection times are ti, i = 1, 2, …, k-1. Also assume that t0 = 0 and tk = 

∞. Thus, the intervals are [0, t1), [t1, t2), …, [tk-1, ∞); and the i
th

 interval is [ti-1, ti). Let ri be 

the number of failures in the i
th

 interval. The EDF, Fn(ti) evaluated at the upper bounds of 

the i
th

 interval or group is given by: 

        
 

 
 ∑   

 
                                                        (45) 

The maximum likelihood estimator (MLE) of the distribution function of the Rayleigh 

distribution at ti,        ̂  is given by: 

       ̂  = 1 -    
 

  
 

 ̂                                                 (46) 

A natural measure of distance between the two estimators at ti is then given by: 

                 ̂                                                 (47) 

The author proposed following three statistics which are the weighted distance, Si, at all 

inspection times t1, t2, …, tk-1: 

Q1 = ∑   
   
                                                          (48) 

Q2 =        ̂          ̂                                              (49) 

Q3 = ∑ (
 

 
  )

 

  
   
                                                   (50) 

The author compared the powers of Q1, Q2, Q3, χ
2
-test, and likelihood ratio test (LRT) 

and concluded that Q2 test and the Chi-Squared test have the best performance with the 

Chi -Squared test better for smaller significance levels or smaller number of inspection 
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intervals, and the Q2 test better otherwise. Overall, the worst test in terms of power 

appears to be the likelihood ratio test (LRT).  

 Thongteeraparp & Chodjuntug (2011) compared the powers of five GOFTs for 

testing exponential distribution with grouped data. Of the five GOFTs, three of them 

were the Q1, Q2, and Q3 statistics presented by Bakalizi (2005) as were shown above. 

The other two statistics were the Anderson-Darling statistics (A) and the Cramer-Von 

Mises statistic (W) as shown below: 

      ∑
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   ,                                               (51) 

where, pj =     
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)
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)
 for j = 1, 2, …, K;  Hj = ∑   

 
   , Zj = N1 + N2 + … + 

Nj – n(p1 + p2 + … + pj), and Nj is the number of observations in the j
th

 interval. 

      ∑   
   

 
                                                    (52) 

The authors claimed that the empirical type I error rates at the nominal 0.05 level of 

significance, the statistics Q1, Q2 and Q3 can control the type I error for all sample sizes 

and number of inspection intervals. Statistics A and W cannot control the type I error for 

the number of inspection intervals equal six for sample size equal to 50 and statistic W 

cannot control the type I error for number of inspection intervals equal to six for all 

sample sizes, number of inspection intervals equal seven for sample size n equal 50 and 

100 and number of inspection intervals equal ten at sample size n equal 100. The tests Q2 

and Q1 have more powers than Q3, W, and A tests. 

 Morris & Szynal (2013) presented GOFTs for six distributions (exponential, 

Weibull, extreme value, logistic, normal, and Cauchy). Authors derived the GOFTs from 

characterization conditions of continuous distributions in terms of moments of the k
th
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record values. In order to estimate the associated expectations, they used U-statistics. 

Their study mostly focused on the mathematical derivation of the associated expectations 

which will be very helpful to understanding the theory behind the expectations of the 

population parameters under considerations.  

 Using the Integrated Distribution Function (IDF), Klar (2001) proposed GOFTs 

for exponential and the normal distributions. The test is based on the IDF, Ψ(t) = E(X-t)
+
 

= ∫           
 

 
 and the EDF, Ψn(t), as shown below: 

Ψn(t) = ∫            
 

 
    = 

 

 
 ∑        

          ,                     (53) 

where, 1 denotes the indicator function, and       = n
-1

 ∑ {    } 
    which is the EDF 

of X1, X2, …, Xn. The proposed test statistic for testing exponentiality is scale-invariant 

and turned out to be: 
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              (54) 

The author compared the power of this test with the CVM-type test (W
2
) and AD-type 

test (A
2
) and concluded that the proposed test is a serious competitor to classical tests for 

exponentiality (W
2
 and A

2
) .     

 Baratpour & Rad (2012) developed a new exponentiality test based on the 

cumulative residual entropy. The proposed test statistic takes the form: 
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The power of this test was compared with the S* test (Proposed by Finkelstein & Schafer 

(1971), Lilliefors test (1969), W
2
 test (proposed by Van-Soest (1969) and the KLCmn test    
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proposed by Choi, Kim, & Song (2004). Authors argued that the power of these test were 

almost identical but the proposed test was claimed to be computationally easier. 

The Lilliefors test was found to have low power by several authors. The Type II 

statistics (Shaw, 1994) were found to have higher power than the Kolmogorov-Smirnov 

test. Overholt & Schaffer (2013) established that their test has more power than Lilliefors 

test (1967). Articles reporting the sum of all the absolute differences between the 

exponential CDF and EDF (continuous variable) are almost non-existence. This study 

extended the concept of sum of all the differences from Shaw (1994) and Overholt & 

Schaffer (2013) in the context of exponentiality test. Hence, it is reasonable to assume the 

proposed test would outperform for both the KS-test and the Lilliefors test (1969). The 

proposed test statistic takes the form as shown in equation 56 and will be discussed 

further in chapter three, 

              



n

i

D
1

              ,                                              (56) 

where        is the CDF of exponential distribution using the maximum likelihood 

estimator for the scale parameter θ and       is the sample cumulative distribution 

function.     
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CHAPTER III 

 

METHODOLOGY 

 
This chapter summarizes the derivation of a proposed test statistic, data sources, 

relevant R syntax and the strategies to address specific research questions from chapter I.   

Development of Test Statistic 

The proposed study is a right tail test which considers the sum of all the absolute 

differences between exponential cumulative distribution function (CDF) and the sample 

empirical distribution function (EDF) hoping to gain more power than the Lilliefors test 

(1969). The proposed modified Lilliefors test statistic (PML) takes the form, 

    ∑               
 
   ,                                         (57) 

where        is the CDF of exponential distribution using the maximum likelihood 

estimator for the scale parameter θ and       is the sample cumulative distribution 

function. The estimator  ̂ is the uniformly minimum variance unbiased estimator 

(UMVUE) of the scale parameter θ. 

The CDF,       , is given by 58 

       = 1 – exp( 
  

 ̅
),                                               (58) 

where  ̅   
∑   

 
   

 
 . The EDF is given by 59 

      = i/n.                                                        (59)
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Development of Critical Values 

For each sample size (4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50), 50,000 

trials (replications) of size n were generated from an exponential distribution. The 

proposed test statistic was determined for each replication. Critical values (CV) were 

determined from these groups of replications. Three different significance levels (0.01, 

0.05, and 0.10) were considered. Since the proposed test is a right tail test, the critical 

value for various significance levels are 50,000*(1-α)
th

 ordered value of the simulated 

test statistics. For example, for α = 0.05, 50,000*(1-0.05) = 47,500 
th

 test statistic was the 

observation which was smaller than only 2,500 other observations. Three scale 

parameters (θ = 1, 5, 10) were used to generate critical values. The scale parameters were 

arbitrarily chosen.  

Power Analyses Procedures 

To compare the power of the proposed test and the other four exponentiality tests, 

this study utilized three significance levels (0.01, 0.05 and 0.10) and 50,000 replications 

were drawn from each sample size (n = 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 

200, 300, 400, 500, 1000, and 2000). This study compared the power of the proposed test 

to the Lilliefors test (LF-test), Schafer et al. test (D-test), Finkelstein and Schafers 

statistics (S-test) and Cramer-Von Mises test (CVM-test). A total of 12 alternative 

distributions were utilized (Weibull(1,0.50), Weibull(1,0.75), Gamma(4,0.25), 

Gamma(0.55,0.275), Gamma(0.55,0.412), Gamma(4,0.50), Gamma(4,0.75),  

Gamma(4,1), Chi-Square(1), Chi-Square(2), t(5), and log-normal (0,1)) to see how the 

proposed test statistic works. Among 12 alternative distributions, only the t(5) 

distribution is the symmetric distribution. The rest 11 distributions are right skewed 



45 

 

distributions. These distributions covered a wide range of skewness and kurtosis which 

were arbitrarily chosen. Table 1 presents the skewness and kurtosis by distributions used 

in this study.  

Table 1 

Skewness and Kurtosis of Alternative Distributions 

Distributions Skewness Kurtosis 

Weibull(1,0.50) 6.62 87.72 

Weibull(1,0.75) 3.06 18.51 

Gamma(4,0.25) 4 12 

Gamma(0.55,0.275 3.81 11.44 

Gamma(0.55,0.412) 3.12 9.35 

Gamma(4,0.50) 2.83 8.49 

Gamma(4,0.75) 2.31 6.93 

Gamma(4,1) 1 6.00 

Chi-Square(1) 2.83 15 

Chi-Square(2) 2 9 

t(5) 0 9 

 

 

Shapiro, Wilk, & Chen (1968) classified the continuous distributions into five 

major groups based on the nature of the alternative distributions. Their classifications are 

summarized in table 2.  

Table 2 

Classification of Continuous Distributions 

Group Skewness Kurtosis Category 

1 > 0.30 > 3.00 Asymmetric, long-tailed 

2 > 0.30 < 3.00 Asymmetric, short-tailed 

3 ≤ 0.30 > 4.50 Symmetric, long-tailed 

4 ≤ 0.30 < 2.50 Symmetric, short-tailed 

5 ≤ 0.30 2.5≤ Ku≤ 4.50 Near Normal 
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Number of Trials, Significance Levels and Alternative Distributions 

Sample sizes and number of trials are important variables in Monte Carlo 

simulations for power comparisons. Of the previous studies discussed in chapter II, 35 of 

them directly compared powers among several GOFTs. As seen in Figure 2, researchers 

have used anywhere from 400 – 1,000,000 replications in their simulation studies, with 

10,000 replications being the most popular choice. A Pareto chart from the articles was 

cited in chapter II and is shown in figure 2. 

Figure 2. Number of Trials on Monte Carlo Simulations   

Several studies have been conducted to approximate the optimum number of 

replications for given parameter settings. According to Hutchinson & Bandalos (1997): 

Once the variables and levels within variables have been selected and the design 

has been specified, the next decision involves selecting the number of 

replications, where replications essentially represent the number of times the 
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analysis will be repeated with a different sample. With a large number of 

replications, the sampling distribution of results can be examined. With too few 

replications, idiosyncratic results based on a particular sample are more likely to 

arise. Unfortunately for simulation researchers there are no definite guidelines for 

selecting the appropriate number of replications. The specific number will depend 

on the type of phenomenon being studied, the extent to which the steps of the 

simulation can be automated, as well as available computer resources. Wilcox 

(1988) recommended 10,000 replications as a conservative choice, whereas 

Robey and Barcikowski (1992) suggested that in some cases over 100,000 

replications might be needed to adequately detect discrepancies between nominal 

and actual type I error rates. However, in some areas of research such as 

discriminant analysis, the number of replications has varied from 2 to 5,000 

(Sedek & Huberty, 1994). In structural equation modeling, it is not uncommon to 

see as few as 20 replications (Browne & Cudeck, 1989; MacCallum, Roznowski, 

& Necowitz, 1992). (Hutchinson & Bandalos, 1997, p. 238) 

 

Schaffer & Kim (2007) studied the number of replications required in control 

charts and indicated that using 10,000 replications was unnecessarily large and a smaller 

number of replications could be used to reproduce the target average run lengths within 

the 2% error bands. In many cases, only 5,000 replications or fewer were required. 

Lilliefors (1967) used 1,000 replications. In this study, 50,000 replications (trials) were 

run for each sample size. 

Lilliefors (1967) used 0.01, 0.05, 0.10, 0.15, and 0.20 significance levels. Of the 

previous studies discussed in chapter II, authors used 11 different significance levels for 

power comparisons. The top three significance levels used were the 5 %, 10 % and 1 %. 

A Pareto chart of significance level used by several authors as discussed in chapter II are 

shown in figure 3. The proposed study used 0.01, 0.05 and 0.10 significance levels.   
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Figure 3. Significance Levels in Previous Studies   

Of the studies discussed in chapter II, authors used 20 different types of 

alternative distributions for power comparisons. For each type of distribution there were 

several parameters’ combinations. Among the 20 different types of alternative 

distributions, eight distributions were symmetric and 12 distributions were non-

symmetric. These distributions are presented in figures 4 & 5. The Top five non-

symmetric distributions used were: Chi-square, lognormal, Beta, Weibull, and 

exponential. Similarly, the top five symmetric distributions used were: t, Uniform, 

Cauchy, Laplace, and Logistic. Lilliefors (1967) used Chi-square (3), t (3), exponential, 

and Uniform (0, 1) distributions.  
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Figure 4. Alternative Non-Symmetric Distributions in Previous Studies  

Figure 5. Alternative Symmetric Distributions in Previous Studies   
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The proposed study used 12 alternative distributions (Weibull(1,0.50), 

Weibull(1,0.75), Gamma(4,0.25), Gamma(0.55,0.275), Gamma(0.55,0.412), 

Gamma(4,0.50), Gamma(4,0.75),  Gamma(4,1), Chi-Square(1), Chi-Square(2), t(5) and 

log-normal (0,1)) to see how the proposed test statistic works. Among 12 alternative 

distributions, only the t(5) distribution is symmetric. The rest 11 distributions are right 

skewed distributions. 

 Of the studies discussed in chapter II, authors used 19 different sample size 

patterns from three to 2,000. Lilliefors (1967) used four to 30 (inclusive) and over 30 

sample sizes. This study used 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50 sample 

sizes for obtaining critical values. This will further be mentioned when addressing 

specific research questions. 

Research Questions Revisited 

Below, each research question from Chapter I is restated and addressed individually 

in order to describe how this study would answer each of the research question using the 

defined parameter settings. 

Q1 How will the proposed test be designed to assure reliable critical values 

and their corresponding significance levels?  

 

This study used data simulation techniques to mimic the desired parameters 

settings. Three different scale parameters (θ = 1, 5, and 10) were used to generate random 

samples from exponential distribution. Sample sizes 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 

40, 45 and 50 were used. The study considered three different significance levels (α) 

(0.01, 0.05 and 0.10). For each sample size and significance level, 50,000 trials were run 

from an exponential distribution which generated 50,000 test statistics. The 50,000 test 

statistics were then arranged in the order from smallest to largest. The proposed test is a 
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right tail test. If α = 0.05 is considered, the 95
th

 percentile of the test statistic was used as 

the critical value for the given sample size. 

Q2 For specified significance levels, how will the proposed test perform in 

terms of detecting departures from exponentiality for data simulated from 

12 alternative distributions? 

 

Data were produced from  varieties of 12 distributions (Weibull(1,0.50), 

Weibull(1,0.75), Gamma(4,0.25), Gamma(0.55,0.275), Gamma(0.55,0.412), 

Gamma(4,0.50), Gamma(4,0.75),  Gamma(4,1), Chi-Square(1), Chi-Square(2), t(5) and 

log-normal (0,1)) to see how the proposed test statistic works. Fifty thousand replications 

were drawn from each distribution for sample sizes 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 

80, 90, 100, 200, 300, 400, 500, 1000, and 2000. For each sample size, the proposed test 

statistic and critical values were compared to make decisions about the null hypothesis. 

There were 50,000 trials for each sample size. The study tracked the number of rejections 

(rejection yes or no) in 50,000 trials to evaluate capacity of the proposed test to detect the 

departure from exponentiality. 

Q3 For specified significance levels, how will the proposed test compare in 

terms of power with the four other exponentiality tests (Cramer-Von 

Mises test (CVM-test), Lilliefors test (LF-test), Finkelstein & Schafers 

statistics (S-test) and  ̃ -test  as shown in 60, 61, 62, and 63 respectively? 

 

This study used the distributions, sample sizes and alpha levels as mentioned 

above in Q1 and Q2 for this purpose. 

Cramer-Von Mises test (CVM) is given by: 

      
 

   
 ∑ [   (

     

 
)]

 
 
   ,                                    (60) 

where, ti = 1 – exp( 
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)  , and  ̅   

∑   
 
   

 
 . Lilliefors test (LF-test) is given by: 

  
   
 

               ,                                            (61) 
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where, F*(xi) = 1 – exp( 
  

 ̅
)  ,  ̅   

∑   
 
   

 
, and       is the empirical distribution 

function (EDF). Finkelstein & Schafers statistics (S-test) is given by: 
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                          (62) 

where,  ̂    ̅   
∑   

 
   

 
   Schafer et al. (1972) test ( ̃ ) (here after denoted by D-test) is 

given by: 

 ̃                    ̃       ,                                 (63) 

where, λ is a scale parameter,  ̃       = 1 -     
  

   ̅ 
    ,        is the EDF. According 

to Pugh (1963), the test statistic, D-test, is based on the Blackwell-Rao and Lehman-

Scheffe theorems which gives the best unbiased estimate.  

Software and Programming Considerations 

The study used R 3.0.2 for most of the simulations to generate test statistics, 

critical values and power comparisons. The outputs from R were presented in tables and 

charts in chapter IV. Microsoft Excel 2010 was also used to make tables and charts. The 

required R syntaxes were presented in appendix A. Monte Carlo simulation techniques 

were used to generate random numbers which were used to approximate the distribution 

of critical values for each test. 
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CHAPTER IV 

   

RESULTS 

 

This chapter answers all the three research questions from chapter I based on the 

Monte Carlo simulations whose computational algorithms rely on repeated random 

sampling to obtain numerical results. This study developed a new test of exponentiality 

by modifying the Lilliefors test of exponentiality. Lilliefors considered the maximum 

differences between the empirical distribution function (EDF) and the cumulative 

distribution function (CDF). The proposed test considered the sum of all the absolute 

differences between the CDF and EDF. The proposed test statistic is not only easy to 

understand but also very simple and easy to compute. 

Below, each research question from Chapter I is restated and addressed individually 

in order to describe how this study answered each of the research question using the defined 

parameter settings. 

Development of Critical Values 

Q1 How will the proposed test be designed to assure reliable critical values 

and their corresponding significance levels?  

This study used data simulation techniques to mimic the desired parameters 

settings. Three different scale parameters (θ = 1, 5, and 10) were used to generate random 

samples from exponential distribution. Sample sizes 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 

40, 45 and 50 were used. The study considered three significance levels (0.01, 0.05, and 

0.10).  The actual distribution of the proposed test statistic is unknown. So, this study 
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used the data simulation techniques to approximate the critical values instead of using its 

asymptotic distribution. 

For each sample size and significance level, 50,000 trials were run from an 

exponential distribution which generated 50,000 test statistics. The 50,000 test statistics 

were then arranged in the order from smallest to largest. The proposed test is a right tail 

test. The critical value for various significance levels are 50,000*(1-α)
th

 ordered value of 

the simulated test statistics. So, this study used 99
th

, 95
th

, and 90
th

 percentile of the test 

statistics as the critical values for the given sample size for the 0.01, 0.05, and 0.10 

significance levels respectively. Table 3 shows the critical values for the proposed test. 

Due to space limitations, only five digits are shown on table 3. 

Table 3 

Critical Values for the Proposed Exponentiality Test (θ = 1) 

n α = 0.01 α = 0.05 α = 0.10 

4 1.0567 0.8331 0.7409 

5 1.1760 0.9315 0.8202 

6 1.2703 1.0109 0.8931 

7 1.3642 1.0856 0.9562 

8 1.4647 1.1580 1.0189 

9 1.5403 1.2209 1.0757 

10 1.6274 1.2875 1.1310 

15 1.9444 1.5561 1.3653 

20 2.2271 1.7731 1.5636 

25 2.4762 1.9682 1.7342 

30 2.7097 2.1624 1.9066 

35 2.9111 2.3291 2.0584 

40 3.1062 2.4837 2.1904 

45 3.3216 2.6331 2.3204 

50 3.4557 2.7526 2.4309 

 

The critical values from the simulated data generated for the three different values 

of the scale parameters (θ = 1, 5, and 10) are exactly the same for the set of parameters. It 
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appeared that the critical values for the proposed test are the functions of the sample size 

(n) and the significance levels (α) but invariant with the choice of the scale parameter (θ). 

Analyses of Significance Level 

Q2 For specified significance levels, how will the proposed test perform in 

terms of detecting departures from exponentiality for data simulated from 

12 alternative distributions? 

 

To answer the second research question, it was relevant to verify the accuracy of 

the intended significance levels and to analyze the power of the proposed test. To verify 

the accuracy of the three intended significance levels (α = 0.01, 0.05, and 0.10), data 

were generated from exponential distributions (null distribution: exponential (θ = 5) and 

alternative distribution: exponential (θ = 10)). For sample sizes 5, 10, 15, 20, 25, 30, 40, 

50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, and 2000; 50,000 trials were 

performed and the null hypothesis of data came from an exponential distribution was 

tested by five exponentiality tests. To allow for a better view of the five exponentiality 

tests across all sample sizes and significance levels, the columns for Lilliefors test are 

labelled by “LF”, Cramer-Von Mises test by “CVM”, proposed modified Lilliefors test 

by “PML”, Shafer et al. test by “D” and Finkelstein & Schafers test by “S” for the rest of 

the tables presented in this study. The number of times a given test reject null hypothesis 

was counted and the total number of rejections were divided by 50,000 which should be 

pretty close to the intended significance levels. The simulated significance levels are 

presented on tables 4 and B.1. Due to the limitations of the space, the simulated 

significance levels are rounded to three digits.  
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Table 4 

Average Simulated Significance Levels 

α LF D CVM S PML 

0.01 0.010 0.010 0.010 0.010 0.010 

0.05 0.051 0.051 0.051 0.051 0.051 

0.10 0.100 0.100 0.101 0.101 0.101 

 

The results showed that all five tests of exponentiality worked very well in terms 

of controlling the intended significance levels. The study found that the proposed test 

performs very closely to other four tests of exponentiality in terms of the accuracy of the 

intended significance levels (for each sample size and overall averages across the 19 

different sample sizes). 

To analyze the power of the proposed test, data were generated from 12 different 

alternative distributions (combination of 19 sample sizes and 3 significance levels). The 

results of the power analysis showed that powers were increased with increased sample 

sizes. Similarly, powers were also increased with the higher significance levels (higher 

values of α) in the set of the parameters under consideration. The detailed results of the 

power analysis are discussed below in answering research question 3, while comparing 

the powers across the five exponentiality tests.  

Power Analyses 

Q3 For specified significance levels, how will the proposed test compare in 

terms of power with the four other exponentiality tests (Cramer-Von 

Mises test (CVM-test), Lilliefors test (LF-test), Finkelstein & Schafers 

statistics (S-test) and  ̃ -test as shown in 60, 61, 62, and 63 respectively?  

 

To compare the power of the proposed test and the other four exponentiality tests, 

this study utilized three different significance levels (0.01, 0.05, and 0.10) and 50,000 

replications were drawn from each sample size (n = 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 
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80, 90, 100, 200, 300, 400, 500, 1000, and 2000). A total of 12 alternative distributions 

were utilized (Weibull(1,0.50), Weibull(1,0.75), Gamma(4,0.25), Gamma(0.55,0.275), 

Gamma(0.55,0.412), Gamma(4,0.50), Gamma(4,0.75),  Gamma(4,1), Chi-Square(1), 

Chi-Square(2), t(5) and log-normal (0,1)) for power comparisons. The tables and figures 

of power analysis for every one of the twelve alternative distributions which are not in 

the body of text can be found in appendix B.  

First consider the relationship between the alternative distribution, Weibull (1, 

0.50) and the simulated power. Table B.2 and figure 6 summarize the power analysis for 

the Weibull (1, 0.50) alternative distribution. The PML-test outperformed the power for 

all other four exponentiality tests across all significance levels and sample sizes. The 

power of all four exponentiality tests exceeded the LF-test. The CMV-test, the D-test, and 

the S-test showed similar performance in power. It appears that for sample sizes 40 or 

more, the powers for all five exponentiality tests close to 1. 
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Figure 6. Power for Alternative Distribution: Weibull (1, 0.50)  

Second consider the relationship between the alternative distribution, Weibull (1, 

0.75) and the simulated power. Table B.3 and figure 7 summarize the power analysis for 

the Weibull (1, 0.75) alternative distribution. This distribution has the same scale 

parameter (θ = 1) with the previous Weibull (1, 0.50) distribution but the shape parameter 

(β) is changed from 0.50 to 0.75. This caused the power to reduce substantially across all 

sample sizes and all significance levels under consideration.  

The PML-test outperformed the power for all other four exponentiality tests 

across all sample sizes and significance levels. In all parameter settings under 

investigation, the powers for the LF-test were the lowest as compared to other four 

exponentiality tests. The powers of the S-test and CVM-test were almost identical across 
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all sample sizes and significance levels. For a fixed significance level, the powers for the 

D-test were greater than the S-test and CVM-test for small sample sizes but this 

relationship was reversed for medium to large sample sizes. For all significance levels 

with sample sizes at least 200, the powers for all five exponentiality tests were almost 

equal and they approach 1. 

Figure 7. Power for Alternative Distribution: Weibull (1, 0.75)  

Third consider the relationship between the alternative distribution, Gamma (4, 

0.25) and the simulated power. Table B.4 and figure 8 summarize the power analysis for 

the Gamma (4, 0.25) alternative distribution. According to Bain & Engelhardt (1992), the 

shape parameter, k, in the Gamma distribution determines the basic shape of the graph of 

the probability distribution function (PDF). The value of the shape parameter in null 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

P
o

w
e

r 
(1

 -
 β

) 

Sample Size (n) 

Power for Five Exponentiality Tests, α = 0.05 
Alternative Distribution:Weibull (θ=1,β=0.75) 

LF-test

PML-test

CVM-test

D-test

S-test



60 

 

distribution is 1 and the shape parameter in this alternative distribution is 0.25 which are 

much different. The PML-test outperformed the powers of all other four exponentiality 

tests across all sample sizes and all significance levels under consideration. For a fixed 

significance level, the powers of the D-test, CVM-test, and S-test exceeded the powers of 

the LF-test for small sample sizes. For medium to large sample sizes, the LF-test, D-test, 

S-test, and the CVM-test exhibited the identical power across all significance levels. In 

all parameter settings, the powers of the D-test, the CVM-test and the S-test were similar. 

For sample sizes at least 40, the powers of all five exponentiality tests were found almost 

equal which were close to 1 across all significance levels. 

Figure 8. Power for Alternative Distribution: Gamma (4, 0.25)  
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Forth consider the relationship between the alternative distribution, Gamma (0.55, 

0.275) and the simulated power. Table B.5 and figure 9 summarize the power analysis for 

the Gamma (0.55, 0.275) alternative distribution. The PML-test outperformed other four 

exponentiality tests across all sample sizes and significance levels. The LF-test exhibited 

the lowest power across all sample sizes and significance levels. For sample sizes at least 

50, the powers for all five tests were found almost equal which were close to 1 across all 

significance levels. In all parameter settings, the powers for the CVM-test, the D-test, and 

the S-test were identical but all these three tests outperformed the LF-test across all 

sample sizes and significance levels.  

Figure 9. Power for Alternative Distribution: Gamma (0.55, 0.275) 
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Although the overall power trends in the previous alternative distribution (Gamma 

(4, 0.25)) and this distribution were similar among five exponentiality tests, the powers 

for this distribution was lower than the previous alternative distribution across all sample 

sizes and significance levels. In the previous alternative distribution, the value of the 

shape parameter (K) is 0.25 which is 0.275 in this alternative distribution. 

Fifth consider the relationship between the alternative distribution, Gamma (0.55, 

0.412) and the simulated power. Table B.6 and figure 10 summarize the power analysis 

for the Gamma (0.55, 0.412) alternative distribution. The PML-test outperformed other 

four exponentiality tests across all sample sizes and significance levels. The LF-test 

exhibited the lowest power across all sample sizes and significance levels. For sample 

sizes at least 80, the powers for all five tests were found almost equal which were close to 

1 across all significance levels. In all parameter settings, the powers for the CVM-test, 

the D-test, and the S-test were identical but all these three tests outperformed the LF-test 

across all sample sizes and significance levels. Comparing the powers for this alternative 

distribution with the previous alternative distribution (Gamma (0.55, 0.275)), the powers 

were reduced in this alternative distribution across all sample sizes and significance 

levels. This is due to only the change in shape parameter (k) from 0.275 to 0.412. The 

scale parameters (θ) were the same on these two alternative distributions. It is relevant to 

argue that for Gamma alternative distribution, the powers for these five exponentiality 

tests depend only on the shape parameter (k). It is also important to note that the shape 

parameter (k) in the null distribution was 1. So, this study showed that as the shape 

parameter in the alternative distribution is close to the shape parameter of the null 

distribution, the simulated powers would be decreased. 
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Figure 10. Power for Alternative Distribution: Gamma (0.55, 0.412) 

 

Before considering the power for next two alternative distributions, it is 

imperative to discuss that the Chi-Square distribution is a special case of Gamma 

distribution. According to Bain and Engelhardt (1992), if a variable Y is a special 

Gamma distribution with scale parameter (θ = 2) and shape parameter (k = ν/2), the 

variable Y is said to follow a Chi-Square distribution with ν degrees of freedom. So, if Y 

~ Gamma (θ = 2, k = ν/2), a special notation for this distribution can be written as: 

Y ~ χ
2
 (ν)                                                          (64)                                                          

Using 64, the Gamma (4, 0.5) and the Chi-Square (1) distributions are equivalent. This 
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shape parameter (k). So, the powers of the Gamma (4, 0.5) and Chi-Square (1) alternative 

distributions must be equivalent.   

Sixth consider the relationship between the alternative distributions, Gamma (4, 

0.5), Chi-Square (1) and the simulated power. Table B.7 and figure 11 summarize the 

power analysis for the Gamma (4, 0.5) and Chi-Square (1) alternative distributions. For a 

fixed sample size and a significance level, powers for these two alternative distributions 

were exactly the same. As in the previous alternative distributions, the PML-test 

outperformed all other four exponentiality tests across all sample sizes and significance 

levels. The LF-test was in the last place on the power curve. The powers for the CVM-

test and S-test were identical for a fixed sample size and a significance level. The D-test 

demonstrated the superior power than the CVM-test and the S-test for small sample sizes 

across all significance levels but this relationship was reversed for medium to large 

sample sizes. For sample sizes at least 200, the powers for all five tests were equivalents 

which were close to 1. As compare with the previous alternative distribution (Gamma 

(0.55, 0.412)), powers for these two alternative distributions decrease across all sample 

sizes and significance levels. It is relevant to note that the shape parameter (k) was 

changed from 0.412 to 0.50 which caused the decrease in power. It appears that as the 

value of the shape parameter (k) approaches that of the null distribution (k = 1), the 

simulated powers decreases.  
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Figure 11. Power for Alternative Distribution: Chi-Square (1) 

 

Seventh consider the relationship between the alternative distribution Gamma (4, 

0.75) and the simulated power. Table B.8 and figure 12 summarize the power analysis for 
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exponentiality tests across all sample sizes and significance levels. The LF-test was in the 
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than the CVM-test and the S-test for small sample sizes across all significance levels but 
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distributions were significantly decrease across all sample sizes and significance levels. It 

is relevant to note that the shape parameter (k) was changed from 0.5 to 0.75 which 

caused the decrease in power. Among five Gamma alternative distributions discussed in 

this chapter, this alternative distribution exhibited the lowest power across all sample 

sizes and significance levels.  

Figure 12. Power for Alternative Distribution: Gamma (4, 0.75) 
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Square (2) alternative distributions must produce similar powers for the set of parameters 

(n and α). In other words Gamma (4, 1) and Chi-Square (2) alternative distributions can 

be used for the simulation of significance levels. 

Eighth consider the relationship between the alternative distributions, Gamma (4, 

1), Chi-Square (2) and the simulated power. Table B.9 and figure 13 summarize the 

power analysis for the Gamma (4, 1) and Chi-Square (2) alternative distributions. The 

powers of all five exponentiality tests across all sample sizes and significance levels were 

too low which were pretty close to their significance levels. It is due to the fact that the 

power of these five exponentiality tests depends only on the shape parameter (k). It 

appears that the scale parameter (θ) does not have any role on the simulated powers.  

Figure 13. Power for Alternative Distribution: Chi-Square (2) 
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Ninth consider the relationship between the alternative distribution t (5) and the 

simulated power. Table B.10 and figure 14 summarize the power analysis for the t (5) 

alternative distribution. This is the only one symmetric distribution used in the power 

analyses. All five exponentiality tests quickly detected non-exponentiality. For sample 

sizes at least 15, the powers for all five tests were almost identical which were close to 1. 

The range of the powers was found to be very narrow across all sample sizes for a fixed 

significance level.  

Figure 14. Power for Alternative Distribution: t (5) 
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exponentiality tests demonstrated similar power across all significance levels. For 

medium to large sample sizes, the PML-test and S-test were in the top, the CVM-test was 

in the middle and the D-test and LF-test were in the bottom of the power curve. It appears 

that the PML-test exhibited equal or better power among five exponentiality tests in the 

set of parameters considered in this study. For sample sizes at least 1000, the powers for 

all five tests were almost identical which were close to 1. 

Figure 15. Power for Alternative Distribution: log-normal (0, 1) 

From the above discussions, this study claimed that the PML-test demonstrated 

consistently superior power over the S-test, LF-test, CVM-test, and D-test for most of the 

alternative distributions presented in this study. The D-test, CVM-test, and S-test 

exhibited similar power for a fixed sample size and a significance level. The LF-test 

0

0.2

0.4

0.6

0.8

1

1.2

P
o

w
e

r 
(1

 -
 β

) 

Sample Size (n) 

Power for Five Exponentiality Tests, α = 0.05 
Alternative Distribution: log-normal (0,1) 

LF-test

PML-test

CVM-test

D-test

S-test



70 

 

consistently showed the lowest power among five exponentiality tests. So, practically 

speaking the proposed test can hope to replace the other four exponentiality tests 

discussed throughout this study while maintaining a very simple form for computation 

and easy to understand for those people who have limited knowledge of statistics.  
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CHAPTER V 

 

DISCUSSION 

 

This chapter summarizes the research findings and the recommendations for 

future research.  

Research Findings 

The purpose of this study was to develop a new Goodness-of-Fit Test (GOFT) of 

exponentiality and compare it with four other existing GOFTs in terms of computation 

and performance. Using data simulation techniques, critical values for a new test were 

developed for three specific significance levels. The accuracy of the intended significance 

levels were verified for the new developed test (PML-test) and compared them with the 

Lilliefors test (LF-test), Cramer-Von Mises test (CVM-test), Finkelstein & Schafers test 

(S-test) and  ̃n test (D-test developed by Schafer et al. (1972)). The power comparisons 

among these five exponentiality tests were done using 11 right skewed and one 

symmetric alternative distribution. These results were presented in tables and figures and 

thoroughly discussed.  

 The newly developed test was primarily a modification of the original 

exponentiality test developed by Lilliefors (1969). Lilliefors considered the maximum 

absolute differences between the sample empirical distribution function (EDF) and the 

exponential cumulative distribution function (CDF). The proposed test considered the 

sum of all the absolute differences between the CDF and EDF. By considering the sum of 

all the absolute differences rather than only a point difference of each observation, the 
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proposed test would expect to be less affected by individual extreme (too low or too high) 

observations and capable of detecting smaller, but consistent, differences between the 

distributions. The proposed test statistic is not only easy to understand but also very 

simple and easy to compute. 

 The code for critical values was developed in R 3.0.2 which is included in 

appendix A. To develop critical values, data were generated from an exponential 

distribution with three different scale parameters (θ). Fifteen different sample sizes and 

three specific significance levels were considered for the development of critical values. 

For each sample size and significance level, 50,000 trials were run from an exponential 

distribution which generated 50,000 test statistics. The 50,000 test statistics were then 

arranged in the order from smallest to largest. The proposed test is a right tail test. The 

critical value for various significance levels are 50,000*(1-α)
th

 ordered value of the 

simulated test statistics. So, this study used 99
th

, 95
th

, and 90
th

 percentile of the test 

statistics as the critical values for the given sample size for the 0.01, 0.05, and 0.10 

significance levels respectively.  

To verify the accuracy of the three intended significance levels (α = 0.01, 0.05, 

and 0.10), data were generated from exponential distributions (null distribution: 

exponential (θ = 5) and alternative distribution: exponential (θ = 10)). For sample sizes 5, 

10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, and 2000; 50,000 

trials were performed and the null hypothesis of data came from an exponential 

distribution was tested by five exponentiality tests. The results showed that all five tests 

of exponentiality worked very well in terms of controlling the intended significance 

levels. The study found that the proposed test performs very closely to other four tests of 
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exponentiality in terms of the accuracy of the intended significance levels (for each 

sample size and overall averages across the 19 different sample sizes). 

 To compare the power (1 – β) of the proposed test and the other four 

exponentiality tests, this study utilized three different significance levels (0.01, 0.05, and 

0.10) and 50,000 replications were drawn from each sample size (n = 5, 10, 15, 20, 25, 

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, and 2000). A total of 12 

alternative distributions were utilized (11 right skewed distribution and one symmetric 

distribution). This study showed that the PML-test demonstrated consistently superior 

power over the S-test, LF-test, CVM-test, and D-test for most of the alternative 

distributions presented in this study. The D-test, CVM-test, and S-test exhibited similar 

power for a fixed sample size and a significance level. The LF-test consistently showed 

the lowest power among five exponentiality tests. So, practically speaking the proposed 

test can hope to replace the other four exponentiality tests discussed throughout this study 

while maintaining a very simple form for computation and easy to understand for those 

people who have limited knowledge of statistics. The proposed exponentiality test did 

successfully improve upon the power of the test it directly modified (i.e. LF-test). The 

actual method employed in the development of the test statistic in this study achieved its 

primary goal of improving the power of the LF-test of exponentiality.  

Recommendations for Future Research 

 This study has presented a more powerful test of exponentiality which is not only 

easy to compute but also easy to understand. This study has shown that using the sum of 

all the absolute differences between the two functions (CDF and EDF) will have more 

power than just using the maximum differences between these two functions (like LF-



74 

 

test) or using the sum of squared differences between these two functions (like Cramer-

Von Mises type test). The research presented here has the potential to modify many other 

tests and / or to develop tests for distributional assumption. The concept of sum of all the 

absolute differences between the EDF and CDF can be used to test if the data came from 

some distributions such as Beta distribution, Snedecor’s F distribution, Pareto 

distribution, Weibull distribution, Gamma distribution, etc. 

 This study used data simulation techniques to generate random samples of several 

null and alternative distributions based on some specific parameter settings. Some 

outliers can be incorporated into these simulated data to see how the proposed test and 

other exponentiality tests mentioned throughout this study (possibly many more tests) 

work on this new situation. 

 This study focused on the comparative powers among five exponentiality tests. 

Although this study used specific sample sizes and significance levels to study power, 

this study did not focus what sample size(s) would be appropriate to achieve the desired 

power for desired significance levels. This research question can be addressed by 

continuing the present work.  

 Instead of using the supremum of the EDF and CDF, the average differences 

between these two functions can be evaluated for testing exponentiality. According to 

Bluman (2012), the median is affected less than mean by extremely high or extremely 

low values. So, the median differences between the EDF and CDF can also be used to test 

exponentiality. The latter would be a better test of exponentiality if there are potential 

outliers or influential observations in the data.  
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 Multivariate analysis (MVA) is one of the demanding fields in statistics which 

involves observations and analysis of more than one outcome variables at a time. Many 

MVA procedures assume multivariate exponentiality (MVE). There are not many 

effective tests for MVE. Researchers usually see if individual dependent variables have a   

univariate exponential distribution. Adding extra dimensions on the dependent variables 

and considering the sum of all the absolute differences between the EDF and CDF with 

constitutes the natural extension of this current study.  

 This study used only the continuous distributions for power study. Some discrete 

distributions can be used as alternative distributions and can see how these five 

exponentiality tests (may be more) work to detect the departure from exponentiality.  
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APPENDIX A 

Code 

A.1: R Code for Critical Values Table 

For: Scale Parameter (θ = 10) 

 

set.seed (12345) 

CV_One_Percent  = numeric(0) 

CV_Five_Percent  = numeric(0) 

CV_Ten_Percent   = numeric(0) 

E = numeric(0) 

for (k in 4:50){ 

n = k 

for    (i in 1:50000){ 

y      = (rexp(n,10)) 

sn1  = (1:n)/n 

Fx1 = sort(1-exp(-y/mean(y))) 

KS1= abs(sn1-Fx1) 

E[i] = sum(KS1)} 

D= sort(E) 

CV_One_Percent[k]    = D[49500] 

CV_Five_Percent[k]    = D[47500] 

CV_Ten_Percent[k]     = D[45000]} 

Table_Of_CV = cbind(CV_One_Percent,CV_Five_Percent,CV_Ten_Percent) 
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A.2: R Code for Significance Level Comparisons 

For: Sample Size (n = 500) 

 

n    = 500 

set.seed (12345) 

sn1  = (1:n)/n 

sn2  = ((1:n)-1)/n 

sn3  = ((1:n)-0.5)/n 

sn4  = (((1:n)-0.5)-1)/n 

En1 = numeric(0) 

En2 = numeric(0) 

En3 = numeric(0) 

En4 = numeric(0) 

En5 = numeric(0) 

for (i in 1:50000){ 

y         = (rexp(n,5)) 

Fx1     = sort(1-exp(-y/mean(y))) 

Fx1D  = sort(1-(1-(y/(n*mean(y))))^(n-1)) 

c1        = 0.08333/n 

KS1     = abs(Fx1-sn1) 

KS2     = abs(sn2-Fx1) 

KS3     = abs(Fx1-sn3) 

KS4     = abs(sn4-Fx1) 

KS1D  = abs(Fx1D-sn1) 

KS2D  = abs(sn2-Fx1D) 

ind1     = which(KS1 < KS2) 

ind1D  = which(KS1D < KS2D) 

ind2     = which(KS3 < KS4) 

e1        = KS1 

e1D     = KS1D 

e2 = KS3 

e1[ind1]   <- KS2[ind1] 

e1D[ind1D] <- KS2D[ind1D] 

e2[ind2]   <- KS4[ind2] 

Fct1       = cbind(KS1,KS2) 

Fct2       = cbind(Fct1,max=apply(Fct1,1,max)) 

Fct3       = subset(Fct2,select=c(3)) 

Fct4       = sum(Fct3) 

En1[i]     = max(KS1,KS2) 

En2[i]     = sum(KS3*KS3)+c1 

En3[i]     = sum(KS1) 

En4[i]     = max(e1D) 

En5[i]     = Fct4 } 

LF     = numeric(0) 

CVM = numeric(0) 

PML  = numeric(0) 
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D       = numeric(0) 

S        = numeric(0) 

sn11   = (1:n)/n 

sn22   = ((1:n)-1)/n 

sn33   = ((1:n)-0.5)/n 

sn44   = (((1:n)-0.5)-1)/n 

for (i in 1:50000){ 

x             = (rexp(n,10)) 

Fx2         = sort(1-exp(-x/mean(x))) 

Fx2D      = sort(1-(1-(x/(n*mean(x))))^(n-1)) 

c2           = 0.08333/n 

KS11      = abs(Fx2-sn11) 

KS22      = abs(sn22-Fx2) 

KS33      = abs(Fx2-sn33) 

KS44      = abs(sn44-Fx2) 

KS11D   = abs(Fx2D-sn11) 

KS22D   = abs(sn22-Fx2D) 

ind11      = which(KS11 < KS22) 

ind11D   = which(KS11D< KS22D) 

ind22      = which(KS33 < KS44) 

e11         = KS11 

e11D      = KS11D 

e22    = KS33 

e11[ind11]    <- KS22[ind11] 

e11D[ind11D]  <- KS22D[ind11D] 

e22[ind22]    <- KS44[ind22] 

Fct5       = cbind(KS11,KS22) 

Fct6       = cbind(Fct5,max=apply(Fct5,1,max)) 

Fct7       = subset(Fct6,select=c(3)) 

Fct8       = sum(Fct7) 

stat1       = max(KS11,KS22) 

stat2       = sum(KS33*KS33)+c2 

stat3       = sum(KS11) 

stat4       = max(e11D) 

stat5       = Fct8 

LF[i]      = sum(En1 > stat1)/50000 

CVM[i]  = sum(En2 > stat2)/50000 

PML[i]   = sum(En3 > stat3)/50000 

D[i]        = sum(En4 > stat4)/50000  

S[i]         = sum(En5 > stat5)/50000 } 

LF1PCT  = 50000 - sum(LF > 0.01,na.rm=TRUE) 

LF5PCT  = 50000 - sum(LF > 0.05,na.rm=TRUE) 

LF10PCT = 50000 - sum(LF > 0.10,na.rm=TRUE) 

LFn = cbind(LF1PCT/50000,LF5PCT/50000,LF10PCT/50000) 

CVM1PCT  = 50000 - sum(CVM > 0.01,na.rm=TRUE) 

CVM5PCT  = 50000 - sum(CVM > 0.05,na.rm=TRUE) 
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CVM10PCT = 50000 - sum(CVM > 0.10,na.rm=TRUE) 

CVMn = cbind(CVM1PCT/50000,CVM5PCT/50000,CVM10PCT/50000) 

PML1PCT  = 50000 - sum(PML > 0.01,na.rm=TRUE) 

PML5PCT  = 50000 - sum(PML > 0.05,na.rm=TRUE) 

PML10PCT = 50000 - sum(PML > 0.10,na.rm=TRUE) 

PMLn = cbind(PML1PCT/50000,PML5PCT/50000,PML10PCT/50000) 

D1PCT  = 50000 - sum(D > 0.01,na.rm=TRUE) 

D5PCT  = 50000 - sum(D > 0.05,na.rm=TRUE) 

D10PCT = 50000 - sum(D > 0.10,na.rm=TRUE) 

Dn = cbind(D1PCT/50000,D5PCT/50000,D10PCT/50000) 

S1PCT  = 50000 - sum(S > 0.01,na.rm=TRUE) 

S5PCT  = 50000 - sum(S > 0.05,na.rm=TRUE) 

S10PCT = 50000 - sum(S > 0.10,na.rm=TRUE) 

Sn = cbind(S1PCT/50000,S5PCT/50000,S10PCT/50000) 

One_Pct     = cbind (LF1PCT/50000,  D1PCT/50000,  CVM1PCT/50000,  S1PCT/50000,  

PML1PCT/50000) 

Five_Pct    = cbind (LF5PCT/50000,  D5PCT/50000,  CVM5PCT/50000,  S5PCT/50000,  

PML5PCT/50000) 

Ten_Pct     = cbind (LF10PCT/50000, D10PCT/50000, CVM10PCT/50000, 

S10PCT/50000, PML10PCT/50000) 

All_Output  = cbind (One_Pct,Five_Pct,Ten_Pct) 
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A.3: R Code for Power Analysis 

For: Sample Size (n = 500) and Alternative Distribution: Gamma (0.55, 0.412) 

 

n    = 500 

set.seed (12345) 

sn1  = (1:n)/n 

sn2  = ((1:n)-1)/n 

sn3  = ((1:n)-0.5)/n 

sn4  = (((1:n)-0.5)-1)/n 

En1 = numeric(0) 

En2 = numeric(0) 

En3 = numeric(0) 

En4 = numeric(0) 

En5 = numeric(0) 

for (i in 1:50000){ 

y     = (rexp(n,5)) 

Fx1 = sort(1-exp(-y/mean(y))) 

Fx1D = sort(1-(1-(y/(n*mean(y))))^(n-1)) 

c1      = 0.08333/n 

KS1     = abs(Fx1-sn1) 

KS2     = abs(sn2-Fx1) 

KS3     = abs(Fx1-sn3) 

KS4     = abs(sn4-Fx1) 

KS1D  = abs(Fx1D-sn1) 

KS2D  = abs(sn2-Fx1D) 

ind1      = which(KS1 < KS2) 

ind1D   = which(KS1D < KS2D) 

ind2      = which(KS3 < KS4) 

e1         = KS1 

e1D      = KS1D 

e2  = KS3 

e1[ind1]   <- KS2[ind1] 

e1D[ind1D] <- KS2D[ind1D] 

e2[ind2]   <- KS4[ind2] 

Fct1       = cbind(KS1,KS2) 

Fct2       = cbind(Fct1,max=apply(Fct1,1,max)) 

Fct3       = subset(Fct2,select=c(3)) 

Fct4       = sum(Fct3) 

En1[i]    = max(KS1,KS2) 

En2[i]    = sum(KS3*KS3)+c1 

En3[i]    = sum(KS1) 

En4[i]    = max(e1D) 

En5[i]    = Fct4 } 

LF      = numeric(0) 

CVM  = numeric(0) 

PML   = numeric(0) 
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D        = numeric(0) 

S        = numeric(0) 

sn11   = (1:n)/n 

sn22   = ((1:n)-1)/n 

sn33   = ((1:n)-0.5)/n 

sn44   = (((1:n)-0.5)-1)/n 

for (i in 1:50000){ 

x            = (rgamma(n,0.412,0.55)) 

Fx2        = sort(1-exp(-x/mean(x))) 

Fx2D     = sort(1-(1-(x/(n*mean(x))))^(n-1)) 

c2          = 0.08333/n 

KS11     = abs(Fx2-sn11) 

KS22     = abs(sn22-Fx2) 

KS33     = abs(Fx2-sn33) 

KS44     = abs(sn44-Fx2) 

KS11D  = abs(Fx2D-sn11) 

KS22D  = abs(sn22-Fx2D) 

ind11     = which(KS11 < KS22) 

ind11D  = which(KS11D< KS22D) 

ind22     = which(KS33 < KS44) 

e11        = KS11 

e11D     = KS11D 

e22   = KS33 

e11[ind11]    <- KS22[ind11] 

e11D[ind11D]  <- KS22D[ind11D] 

e22[ind22]    <- KS44[ind22] 

Fct5       = cbind(KS11,KS22) 

Fct6       = cbind(Fct5,max=apply(Fct5,1,max)) 

Fct7       = subset(Fct6,select=c(3)) 

Fct8       = sum(Fct7) 

stat1       = max(KS11,KS22) 

stat2       = sum(KS33*KS33)+c2 

stat3       = sum(KS11) 

stat4       = max(e11D) 

stat5       = Fct8 

LF[i]      = sum(En1 > stat1)/50000 

CVM[i]  = sum(En2 > stat2)/50000 

PML[i]   = sum(En3 > stat3)/50000 

D[i]        = sum(En4 > stat4)/50000  

S[i]         = sum(En5 > stat5)/50000 } 

LF1PCT  = 50000 - sum(LF > 0.01,na.rm=TRUE) 

LF5PCT  = 50000 - sum(LF > 0.05,na.rm=TRUE) 

LF10PCT = 50000 - sum(LF > 0.10,na.rm=TRUE) 

LFn = cbind(LF1PCT/50000,LF5PCT/50000,LF10PCT/50000) 

CVM1PCT  = 50000 - sum(CVM > 0.01,na.rm=TRUE) 

CVM5PCT  = 50000 - sum(CVM > 0.05,na.rm=TRUE) 
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CVM10PCT = 50000 - sum(CVM > 0.10,na.rm=TRUE) 

CVMn = cbind(CVM1PCT/50000,CVM5PCT/50000,CVM10PCT/50000) 

PML1PCT  = 50000 - sum(PML > 0.01,na.rm=TRUE) 

PML5PCT  = 50000 - sum(PML > 0.05,na.rm=TRUE) 

PML10PCT = 50000 - sum(PML > 0.10,na.rm=TRUE) 

PMLn = cbind(PML1PCT/50000,PML5PCT/50000,PML10PCT/50000) 

D1PCT  = 50000 - sum(D > 0.01,na.rm=TRUE) 

D5PCT  = 50000 - sum(D > 0.05,na.rm=TRUE) 

D10PCT = 50000 - sum(D > 0.10,na.rm=TRUE) 

Dn = cbind(D1PCT/50000,D5PCT/50000,D10PCT/50000) 

S1PCT  = 50000 - sum(S > 0.01,na.rm=TRUE) 

S5PCT  = 50000 - sum(S > 0.05,na.rm=TRUE) 

S10PCT = 50000 - sum(S > 0.10,na.rm=TRUE) 

Sn = cbind(S1PCT/50000,S5PCT/50000,S10PCT/50000) 

One_Pct     = cbind (LF1PCT/50000,  D1PCT/50000,  CVM1PCT/50000,  S1PCT/50000,  

PML1PCT/50000) 

Five_Pct    = cbind (LF5PCT/50000,  D5PCT/50000,  CVM5PCT/50000,  S5PCT/50000,  

PML5PCT/50000) 

Ten_Pct     = cbind (LF10PCT/50000, D10PCT/50000, CVM10PCT/50000, 

S10PCT/50000, PML10PCT/50000) 

All_Output  = cbind (One_Pct,Five_Pct,Ten_Pct)
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APPENDIX B 

Power and Significance Level Analyses Tables and Figures 

Table B.1 

Simulated Significance Levels 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.010 0.010 0.010 0.010 0.011 0.049 0.051 0.051 0.051 0.052 0.098 0.100 0.101 0.101 0.099

10 0.010 0.011 0.011 0.010 0.010 0.051 0.051 0.051 0.051 0.053 0.101 0.101 0.102 0.103 0.104

15 0.010 0.010 0.010 0.010 0.011 0.050 0.050 0.050 0.050 0.051 0.101 0.100 0.099 0.100 0.100

20 0.010 0.010 0.010 0.010 0.010 0.050 0.049 0.050 0.050 0.050 0.099 0.100 0.100 0.099 0.100

25 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.050 0.050 0.049 0.100 0.099 0.098 0.098 0.101

30 0.009 0.009 0.009 0.008 0.009 0.049 0.049 0.049 0.050 0.049 0.097 0.098 0.099 0.101 0.099

40 0.010 0.011 0.010 0.010 0.009 0.050 0.049 0.049 0.049 0.050 0.099 0.101 0.098 0.099 0.098

50 0.010 0.010 0.011 0.011 0.011 0.050 0.050 0.051 0.051 0.050 0.100 0.099 0.099 0.098 0.098

60 0.010 0.010 0.011 0.010 0.010 0.052 0.052 0.052 0.053 0.052 0.102 0.103 0.103 0.103 0.103

70 0.011 0.010 0.010 0.010 0.010 0.050 0.050 0.051 0.051 0.050 0.100 0.100 0.101 0.101 0.101

80 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.051 0.051 0.051 0.100 0.101 0.100 0.102 0.103

90 0.011 0.011 0.011 0.012 0.011 0.051 0.050 0.052 0.052 0.052 0.100 0.099 0.102 0.102 0.104

100 0.010 0.010 0.011 0.011 0.011 0.050 0.050 0.050 0.052 0.052 0.098 0.098 0.101 0.102 0.101

200 0.010 0.010 0.010 0.010 0.010 0.050 0.051 0.051 0.052 0.052 0.099 0.100 0.102 0.101 0.101

300 0.011 0.011 0.011 0.011 0.011 0.052 0.052 0.052 0.051 0.052 0.100 0.100 0.102 0.102 0.102

400 0.011 0.011 0.011 0.011 0.010 0.050 0.050 0.052 0.051 0.051 0.102 0.101 0.100 0.099 0.100

500 0.010 0.010 0.010 0.010 0.010 0.050 0.050 0.049 0.049 0.049 0.100 0.100 0.100 0.100 0.100

1000 0.011 0.011 0.010 0.010 0.010 0.053 0.053 0.051 0.052 0.052 0.102 0.101 0.103 0.101 0.102

2000 0.010 0.010 0.011 0.011 0.011 0.051 0.051 0.049 0.049 0.049 0.102 0.102 0.101 0.101 0.101

n

α = 0.01 α = 0.05 α = 0.10
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Table B.2 

Simulated Power for Alternative Distribution: Weibull (1, 0.5) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.171 0.221 0.190 0.189 0.279 0.276 0.354 0.310 0.317 0.466 0.338 0.452 0.383 0.396 0.566

10 0.386 0.433 0.452 0.449 0.539 0.568 0.626 0.613 0.616 0.731 0.657 0.713 0.697 0.700 0.806

15 0.585 0.626 0.654 0.651 0.733 0.750 0.786 0.797 0.796 0.863 0.822 0.852 0.852 0.854 0.909

20 0.734 0.759 0.800 0.799 0.848 0.865 0.885 0.901 0.900 0.936 0.913 0.929 0.934 0.934 0.961

25 0.835 0.858 0.891 0.889 0.919 0.931 0.942 0.953 0.952 0.971 0.958 0.966 0.972 0.972 0.983

30 0.901 0.913 0.941 0.939 0.957 0.965 0.971 0.979 0.978 0.987 0.981 0.985 0.988 0.988 0.993

40 0.969 0.974 0.985 0.985 0.990 0.992 0.994 0.996 0.996 0.998 0.996 0.997 0.998 0.998 0.999

50 0.991 0.992 0.997 0.996 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000

60 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.3 

Simulated Power for Alternative Distribution: Weibull (1, 0.75) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.033 0.051 0.036 0.036 0.067 0.087 0.129 0.094 0.095 0.176 0.137 0.192 0.146 0.149 0.257

10 0.058 0.077 0.072 0.072 0.115 0.146 0.190 0.163 0.164 0.261 0.221 0.275 0.238 0.241 0.360

15 0.089 0.111 0.109 0.109 0.167 0.201 0.243 0.232 0.231 0.330 0.289 0.340 0.317 0.319 0.434

20 0.120 0.141 0.153 0.155 0.216 0.257 0.299 0.299 0.302 0.401 0.357 0.404 0.394 0.396 0.506

25 0.152 0.181 0.198 0.201 0.264 0.320 0.358 0.364 0.368 0.463 0.424 0.467 0.465 0.469 0.572

30 0.186 0.210 0.240 0.243 0.310 0.366 0.405 0.425 0.431 0.518 0.475 0.519 0.526 0.529 0.624

40 0.259 0.289 0.332 0.339 0.405 0.461 0.494 0.528 0.536 0.615 0.574 0.612 0.632 0.635 0.711

50 0.335 0.364 0.427 0.439 0.501 0.550 0.579 0.625 0.630 0.698 0.664 0.693 0.719 0.722 0.785

60 0.411 0.438 0.513 0.522 0.582 0.634 0.660 0.705 0.711 0.766 0.735 0.759 0.788 0.789 0.840

70 0.482 0.505 0.591 0.598 0.654 0.699 0.724 0.774 0.778 0.824 0.792 0.811 0.844 0.846 0.883

80 0.550 0.575 0.653 0.659 0.706 0.753 0.772 0.820 0.825 0.864 0.834 0.850 0.881 0.885 0.913

90 0.613 0.636 0.717 0.725 0.769 0.801 0.817 0.863 0.866 0.895 0.871 0.884 0.912 0.913 0.935

100 0.669 0.690 0.772 0.779 0.815 0.842 0.855 0.894 0.897 0.920 0.901 0.911 0.935 0.936 0.951

200 0.950 0.954 0.981 0.981 0.984 0.989 0.990 0.995 0.995 0.996 0.995 0.996 0.998 0.998 0.998

300 0.995 0.996 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.4 

Simulated Power for Alternative Distribution: Gamma (4, 0.25) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.286 0.340 0.312 0.303 0.412 0.395 0.469 0.445 0.457 0.604 0.453 0.605 0.521 0.537 0.699

10 0.575 0.615 0.630 0.618 0.696 0.741 0.781 0.777 0.771 0.854 0.813 0.849 0.841 0.838 0.907

15 0.788 0.813 0.829 0.818 0.868 0.897 0.915 0.921 0.916 0.949 0.940 0.951 0.951 0.948 0.972

20 0.902 0.914 0.929 0.921 0.945 0.964 0.970 0.974 0.971 0.983 0.980 0.984 0.985 0.984 0.992

25 0.959 0.965 0.973 0.969 0.979 0.988 0.990 0.992 0.990 0.995 0.994 0.995 0.996 0.995 0.998

30 0.983 0.985 0.990 0.988 0.992 0.996 0.996 0.998 0.997 0.998 0.998 0.999 0.999 0.999 0.999

40 0.998 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.5 

Simulated Power for Alternative Distribution: Gamma (0.55, 0.275) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.246 0.299 0.268 0.262 0.366 0.352 0.429 0.400 0.412 0.560 0.410 0.558 0.475 0.492 0.660

10 0.503 0.547 0.559 0.549 0.633 0.681 0.727 0.721 0.717 0.812 0.761 0.805 0.795 0.793 0.875

15 0.716 0.746 0.765 0.752 0.817 0.852 0.874 0.883 0.877 0.924 0.908 0.926 0.925 0.921 0.956

20 0.852 0.867 0.891 0.882 0.914 0.939 0.950 0.956 0.952 0.971 0.965 0.971 0.974 0.972 0.984

25 0.926 0.937 0.951 0.945 0.963 0.976 0.980 0.985 0.982 0.989 0.988 0.990 0.992 0.991 0.995

30 0.964 0.969 0.978 0.974 0.982 0.990 0.992 0.994 0.993 0.996 0.995 0.996 0.997 0.997 0.998

40 0.994 0.995 0.997 0.996 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

50 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

Table B.6 

Simulated Power for Alternative Distribution: Gamma (0.55, 0.412) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.106 0.144 0.117 0.115 0.186 0.190 0.257 0.217 0.223 0.362 0.246 0.354 0.287 0.299 0.465

10 0.215 0.255 0.262 0.259 0.339 0.386 0.445 0.425 0.427 0.555 0.483 0.548 0.524 0.525 0.662

15 0.353 0.393 0.409 0.402 0.498 0.546 0.593 0.598 0.596 0.698 0.653 0.699 0.691 0.690 0.787

20 0.472 0.506 0.545 0.538 0.616 0.675 0.711 0.727 0.723 0.801 0.769 0.800 0.805 0.801 0.869

25 0.583 0.620 0.662 0.658 0.722 0.779 0.804 0.822 0.818 0.870 0.852 0.872 0.881 0.878 0.921

30 0.682 0.706 0.755 0.745 0.797 0.845 0.863 0.883 0.879 0.916 0.901 0.916 0.926 0.924 0.951

40 0.828 0.844 0.881 0.875 0.903 0.933 0.941 0.954 0.952 0.968 0.963 0.969 0.975 0.973 0.982

50 0.912 0.922 0.947 0.944 0.957 0.972 0.975 0.984 0.982 0.988 0.986 0.988 0.991 0.991 0.994

60 0.958 0.963 0.978 0.974 0.981 0.990 0.991 0.995 0.994 0.996 0.996 0.996 0.998 0.997 0.998

70 0.981 0.983 0.991 0.989 0.992 0.995 0.996 0.998 0.998 0.999 0.998 0.999 0.999 0.999 0.999

80 0.992 0.993 0.996 0.995 0.996 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

90 0.997 0.997 0.999 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.7 

Simulated Power for Alternative Distribution: Chi-Square (1) 

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.063 0.092 0.070 0.070 0.120 0.132 0.187 0.149 0.153 0.270 0.185 0.267 0.212 0.220 0.363

10 0.119 0.150 0.149 0.148 0.211 0.254 0.306 0.282 0.283 0.408 0.342 0.407 0.375 0.378 0.519

15 0.196 0.232 0.235 0.233 0.316 0.366 0.414 0.411 0.409 0.522 0.472 0.525 0.510 0.512 0.631

20 0.270 0.299 0.326 0.324 0.402 0.466 0.508 0.521 0.523 0.620 0.576 0.621 0.622 0.622 0.720

25 0.345 0.383 0.418 0.416 0.494 0.563 0.599 0.619 0.619 0.702 0.669 0.703 0.712 0.713 0.792

30 0.422 0.452 0.503 0.497 0.570 0.642 0.675 0.702 0.700 0.767 0.740 0.770 0.784 0.783 0.844

40 0.572 0.600 0.654 0.651 0.705 0.766 0.788 0.819 0.817 0.861 0.845 0.864 0.878 0.876 0.912

50 0.689 0.713 0.769 0.768 0.809 0.852 0.867 0.895 0.891 0.921 0.911 0.922 0.935 0.933 0.955

60 0.785 0.801 0.853 0.849 0.878 0.914 0.922 0.944 0.942 0.959 0.952 0.958 0.968 0.967 0.978

70 0.857 0.867 0.910 0.904 0.925 0.948 0.954 0.969 0.967 0.976 0.973 0.977 0.983 0.982 0.988

80 0.907 0.915 0.944 0.939 0.951 0.971 0.974 0.983 0.982 0.988 0.985 0.987 0.991 0.991 0.994

90 0.939 0.945 0.966 0.964 0.973 0.983 0.985 0.991 0.990 0.993 0.993 0.993 0.996 0.995 0.997

100 0.963 0.966 0.981 0.979 0.984 0.990 0.992 0.995 0.994 0.996 0.996 0.997 0.998 0.997 0.998

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.8 

Simulated Power for Alternative Distribution: Gamma (4, 0.75)

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.019 0.028 0.020 0.020 0.036 0.061 0.085 0.065 0.066 0.113 0.105 0.142 0.112 0.114 0.183

10 0.024 0.034 0.028 0.028 0.046 0.078 0.102 0.084 0.084 0.142 0.136 0.168 0.143 0.144 0.221

15 0.033 0.043 0.036 0.036 0.062 0.097 0.122 0.107 0.106 0.166 0.163 0.194 0.172 0.173 0.251

20 0.039 0.048 0.046 0.046 0.073 0.114 0.136 0.128 0.128 0.188 0.185 0.218 0.199 0.200 0.280

25 0.045 0.057 0.056 0.057 0.085 0.135 0.157 0.151 0.153 0.212 0.210 0.240 0.229 0.232 0.309

30 0.052 0.062 0.067 0.066 0.096 0.149 0.174 0.172 0.176 0.235 0.234 0.268 0.256 0.259 0.338

40 0.072 0.085 0.091 0.093 0.125 0.190 0.213 0.217 0.222 0.286 0.281 0.315 0.313 0.316 0.389

50 0.090 0.106 0.120 0.125 0.160 0.225 0.248 0.262 0.267 0.328 0.325 0.354 0.363 0.366 0.437

60 0.112 0.126 0.147 0.150 0.190 0.265 0.289 0.313 0.317 0.379 0.375 0.403 0.420 0.422 0.491

70 0.136 0.148 0.176 0.180 0.219 0.300 0.325 0.355 0.357 0.419 0.414 0.442 0.466 0.470 0.533

80 0.160 0.175 0.203 0.205 0.242 0.336 0.359 0.391 0.396 0.457 0.453 0.480 0.506 0.511 0.574

90 0.184 0.202 0.236 0.242 0.285 0.372 0.393 0.438 0.442 0.497 0.493 0.517 0.547 0.551 0.608

100 0.207 0.223 0.267 0.273 0.315 0.411 0.433 0.472 0.475 0.528 0.529 0.551 0.587 0.589 0.643

200 0.465 0.481 0.564 0.561 0.594 0.699 0.713 0.770 0.769 0.800 0.797 0.809 0.849 0.849 0.870

300 0.691 0.704 0.786 0.783 0.805 0.872 0.878 0.915 0.912 0.925 0.924 0.928 0.951 0.950 0.959

400 0.839 0.844 0.905 0.902 0.911 0.947 0.950 0.970 0.968 0.974 0.975 0.976 0.986 0.984 0.987

500 0.922 0.927 0.961 0.957 0.962 0.981 0.982 0.991 0.990 0.992 0.992 0.992 0.996 0.996 0.997

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.9 

Simulated Power for Alternative Distribution: Chi-Square (2)

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.011 0.011 0.011 0.011 0.011 0.050 0.049 0.051 0.051 0.049 0.098 0.097 0.098 0.098 0.097

10 0.009 0.009 0.010 0.009 0.009 0.047 0.048 0.048 0.048 0.050 0.098 0.098 0.097 0.097 0.101

15 0.011 0.011 0.009 0.009 0.011 0.050 0.049 0.049 0.048 0.048 0.098 0.098 0.097 0.096 0.096

20 0.009 0.009 0.009 0.009 0.009 0.050 0.048 0.049 0.050 0.048 0.099 0.100 0.099 0.097 0.099

25 0.010 0.010 0.009 0.009 0.010 0.052 0.050 0.050 0.050 0.049 0.101 0.100 0.101 0.100 0.100

30 0.009 0.009 0.009 0.009 0.009 0.051 0.050 0.051 0.051 0.049 0.099 0.101 0.101 0.101 0.101

40 0.010 0.010 0.010 0.010 0.010 0.051 0.050 0.049 0.050 0.050 0.099 0.100 0.099 0.100 0.099

50 0.010 0.010 0.010 0.011 0.010 0.050 0.050 0.049 0.049 0.051 0.100 0.099 0.099 0.099 0.098

60 0.010 0.010 0.010 0.010 0.011 0.051 0.051 0.052 0.052 0.052 0.103 0.103 0.103 0.102 0.102

70 0.010 0.010 0.011 0.010 0.010 0.052 0.052 0.051 0.050 0.052 0.100 0.102 0.101 0.100 0.101

80 0.011 0.011 0.010 0.010 0.010 0.050 0.050 0.050 0.051 0.052 0.100 0.102 0.100 0.101 0.101

90 0.011 0.011 0.010 0.011 0.011 0.051 0.050 0.051 0.052 0.051 0.101 0.101 0.100 0.099 0.102

100 0.010 0.011 0.011 0.011 0.010 0.050 0.051 0.050 0.051 0.051 0.099 0.100 0.102 0.103 0.102

200 0.010 0.010 0.011 0.010 0.010 0.052 0.052 0.051 0.051 0.051 0.101 0.101 0.101 0.101 0.100

300 0.010 0.010 0.010 0.010 0.010 0.052 0.052 0.051 0.050 0.052 0.098 0.099 0.100 0.102 0.101

400 0.010 0.010 0.010 0.010 0.010 0.051 0.051 0.051 0.049 0.049 0.102 0.102 0.100 0.099 0.100

500 0.010 0.010 0.010 0.010 0.010 0.052 0.052 0.051 0.049 0.050 0.101 0.101 0.101 0.102 0.102

1000 0.011 0.011 0.011 0.010 0.011 0.053 0.053 0.052 0.051 0.051 0.102 0.101 0.102 0.100 0.101

2000 0.010 0.010 0.010 0.010 0.010 0.050 0.050 0.049 0.049 0.049 0.101 0.101 0.100 0.100 0.100

n

α = 0.01 α = 0.05 α = 0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 

 

Table B.10 

Simulated Power for Alternative Distribution: t (5)

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.887 0.874 0.884 0.874 0.869 0.903 0.895 0.904 0.897 0.900 0.915 0.909 0.916 0.912 0.915

10 0.993 0.992 0.991 0.988 0.987 0.995 0.994 0.994 0.992 0.992 0.996 0.995 0.995 0.994 0.994

15 1.000 1.000 0.999 0.999 0.999 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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Table B.11 

Simulated Power for Alternative Distribution: log-normal (0, 1)

LF D CVM S PML LF D CVM S PML LF D CVM S PML

5 0.019 0.020 0.019 0.018 0.018 0.070 0.073 0.073 0.072 0.058 0.131 0.132 0.134 0.134 0.106

10 0.031 0.035 0.034 0.033 0.033 0.097 0.104 0.102 0.101 0.096 0.169 0.175 0.177 0.177 0.163

15 0.042 0.048 0.046 0.043 0.049 0.119 0.128 0.129 0.129 0.127 0.197 0.205 0.210 0.212 0.204

20 0.049 0.053 0.053 0.051 0.056 0.137 0.144 0.148 0.151 0.152 0.221 0.231 0.240 0.244 0.241

25 0.053 0.061 0.062 0.062 0.067 0.156 0.164 0.174 0.178 0.179 0.249 0.258 0.275 0.280 0.279

30 0.060 0.066 0.070 0.069 0.075 0.171 0.179 0.195 0.203 0.202 0.267 0.281 0.305 0.314 0.314

40 0.080 0.087 0.093 0.095 0.100 0.208 0.216 0.243 0.253 0.258 0.322 0.334 0.369 0.382 0.385

50 0.096 0.105 0.117 0.125 0.131 0.245 0.254 0.292 0.307 0.313 0.375 0.384 0.428 0.443 0.448

60 0.116 0.125 0.145 0.154 0.161 0.292 0.300 0.352 0.370 0.380 0.428 0.439 0.503 0.518 0.525

70 0.137 0.143 0.176 0.186 0.195 0.330 0.342 0.410 0.426 0.438 0.480 0.489 0.564 0.580 0.587

80 0.162 0.170 0.203 0.217 0.223 0.372 0.381 0.458 0.481 0.495 0.528 0.536 0.622 0.637 0.648

90 0.183 0.194 0.238 0.261 0.274 0.413 0.421 0.515 0.538 0.547 0.579 0.582 0.673 0.685 0.694

100 0.208 0.216 0.276 0.305 0.313 0.460 0.470 0.561 0.585 0.594 0.621 0.628 0.723 0.735 0.740

200 0.498 0.507 0.671 0.696 0.700 0.818 0.821 0.908 0.910 0.915 0.921 0.923 0.965 0.961 0.963

300 0.784 0.789 0.910 0.918 0.921 0.968 0.968 0.990 0.988 0.989 0.991 0.991 0.998 0.996 0.997

400 0.941 0.939 0.985 0.984 0.985 0.996 0.996 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000

500 0.989 0.990 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n

α = 0.01 α = 0.05 α = 0.10
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