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ABSTRACT 
 
 

Bronsert, Michael Richard.  A Joint Model of a Longitudinal Process and Informative  
Time Schedule Data. Published Doctor of Philosophy Dissertation, University of 
Northern Colorado, 2009. 

 
 
 

Longitudinal studies are commonly encountered in a variety of research areas in 

which the scientific interest is in the pattern of change in a response variable over time.   

These observations are traditionally scheduled prospectively and therefore common fixed 

time interval models for repeated measurements are adequate.  Conversely, in 

informative schedule studies in which subsequent observations are scheduled on the basis 

of prior response outcomes, time between observations now becomes informative in the 

longitudinal process.  Traditional fixed time approaches, however, are unable to utilize 

the informative nature of the data lessening the inferences achieved by these approaches.  

Therefore, the purpose of this research was the development of a joint model of a 

longitudinal process and informative time schedule data.  Maximum likelihood estimates 

(MLE) for two special cases of the proposed model were obtained from Monte Carlo 

simulated data by employing the Multivariate Newton-Raphson optimization routine 

implemented in a SAS/IML call statements.  Parameter estimates were determined for a 

few select cases of subject and observation length and included parameter estimates for 

rectangular and nonrectangular observation matrices.  Finally, estimates obtained from 



 v

PROC MIXED and from the proposed model were compared for accuracy and efficiency 

by examining their bias, variance, mean square error (MSE), and relative efficiency. 



 vi

 

 

 

ACKNOWLEDGEMENTS  

 

I would like to thank all the people who guided and supported me throughout my 

graduate studies, including this dissertation.  First of all, I would like to thank Dr. Khalil 

Shafie for his guidance and support throughout the development and writing of my 

doctoral dissertation.  Without his advice and deep understanding of mathematics, I 

would not have succeeded.   I would also like to thank Dr. Daniel Mundfrom, Dr. Jay 

Schaffer, and Dr. Robert Heiny for their constructive criticism and support of the 

development of this dissertation.  

  I also wish to thank my parents, Neal and Patty Bronsert for their continual 

support and love.  I especially would like to thank my wife, Bridget Bronsert for her 

support and understanding of my educational and career goals and the sacrifices she 

made so that I might obtain those goals.  Most importantly, I would like to thank my son, 

Jonah Bronsert, and daughter, Makenna Bronsert for their gift of love and patience.  I am 

indebted to them both.      

Finally, I would like to thank and remember my grandmother, Gertrude ‘Trudy’ 

Long.  She was indisputably the kindest and the most empathetic individual that I ever 

had the fortune to know and love.  Her genuine interest in the lives of all who knew her 

and her ability to make even the worst day a little brighter will be sorely missed by all.  I 

love you Grandma and I will meet you under the pine tree. 



 vii

 

 

 

TABLE OF CONTENTS 

CHAPTER        Page 

 I. INTRODUCTION      1 
 
  Statement of the Problem     3 
  Purpose and Research Questions    5 
  Justification for This Study     6 
  Terminology       11 
  Limitations       12 
  Conclusion       13 
 
 II. REVIEW OF LITERATURE     15 
 
  Simple Longitudinal Models     16 
  Historical Longitudinal Models    17 
  Mixed-Effects Longitudinal Models    18 
  Survival and Longitudinal Models    22 
  Vector Autoregressive     27 
  Conclusion       30 
 
 III. METHODOLOGY      31 
 
  Notation       32 
  Proposed Model      33 
  Parameter Estimation      38 
  Optimization Algorithm     40 
  Data Simulations      43 
  Model Evaluation      46 
  Conclusion       48 
 

IV.  RESULTS AND DISCUSSION    49 
 
   Joint Model of Informative Schedule Data   50 
   Parameter Estimate Evaluation    51 
   Vector Autoregressive Parameters    52 
   VAR: Mixed-Effects Comparison    67 
   Gaussian-Exponential Parameters    70 
   GE: Mixed-Effects Comparison    79 



 viii  

   Discussion       84 
  

V. CONCLUSIONS AND RECOMMENDATIONS  113 
    
   Conclusion       113 

  Recommendations for Future Researchers   117 
 

   REFERENCES      118 
 
   APPENDICES      123 
 
   A Gradient Derivatives for Gaussian-         
    Exponential Informative Model   123 
   B SAS Code for Vector Autoregressive   
    and Gaussian-Exponential Informative Models 125 
   C Maple Codes for Gaussian-Exponential     
    Derivative Calculations    130 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix

 
 
 
 
 
 

LIST OF TABLES 
 
TABLE          Page 
 
1. Parameter Values for Both Special Cases of the Proposed    42 
   Informative Schedule Model. 
 
2. Sample Size, Number of Observations, Observation Scheme,  44 
   and Total Number of Observations Utilized for Each 
   Simulation Study. 
 
3. Mixed-Effects Parameter Estimates for Vector Autoregressive  68 
   with Rectangular Design. 
 
4. Mixed-Effects Parameter Estimates for Vector Autoregressive  69 
   with Nonrectangular Design. 
 
5. Mixed-Effects Parameter Estimates for Gaussian-Exponential  82 
   with Rectangular Design. 
 
6. Mixed-Effects Parameter Estimates for Gaussian-Exponential  83 
   with Nonrectangular Design. 
 
7. Parameter Estimates for 20 Subjects with 100 Observations in   86 
      a Rectangular Design for Vector Autoregressive Model.  
  
8. Parameter Estimates for 20 Subjects with 200 Observations in   87 
      a Rectangular Design  for Vector Autoregressive Model. 
 
9. Parameter Estimates for 20 Subjects with 400 Observations in   88 
      a Rectangular Design for Vector Autoregressive Model. 
 
10. Parameter Estimates for 50 Subjects with 250 Observations in   89 
      a Rectangular Design  for Vector Autoregressive Model. 
 
11. Parameter Estimates for 50 Subjects with 500 Observations in   90 
      a Rectangular Design  for Vector Autoregressive Model. 
 
12. Parameter Estimates for 50 Subjects with 1000 Observations in   91 
      a Rectangular Design  for Vector Autoregressive Model. 



 x

 
13. Parameter Estimates for 100 Subjects with 500 Observations in   92 
      a Rectangular Design  for Vector Autoregressive Model. 
 
14. Parameter Estimates for 100 Subjects with 1000 Observations in   93 
      a Rectangular Design  for Vector Autoregressive Model. 
 
15. Parameter Estimates for 100 Subjects with 2000 Observations in   94 
      a Rectangular Design for Vector Autoregressive Model. 
 
16. Parameter Estimates for 20 Subjects with 80 Observations in   95 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
17. Parameter Estimates for 20 Subjects with 170 Observations in   96 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
18. Parameter Estimates for 20 Subjects with 340 Observations in   97 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
19. Parameter Estimates for 50 Subjects with 200 Observations in   98 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
20. Parameter Estimates for 50 Subjects with 425 Observations in   99 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
21. Parameter Estimates for 50 Subjects with 850 Observations in   100 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
22. Parameter Estimates for 100 Subjects with 400 Observations in   101 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
23. Parameter Estimates for 100 Subjects with 850 Observations in   102 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
24. Parameter Estimates for 100 Subjects with 1700 Observations in   103 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
25. Parameter Estimates for 20 Subjects with 100 Observations in   104 
      a Rectangular Design for Gaussian-Exponential Model.  
  
26. Parameter Estimates for 20 Subjects with 200 Observations in   104 
      a Rectangular Design  for Gaussian-Exponential Model. 
 
27. Parameter Estimates for 20 Subjects with 400 Observations in   105 
      a Rectangular Design for Gaussian-Exponential Model. 
 



 xi

28. Parameter Estimates for 50 Subjects with 250 Observations in   105 
      a Rectangular Design  for Gaussian-Exponential Model. 
 
29. Parameter Estimates for 50 Subjects with 500 Observations in   106 
      a Rectangular Design  for Gaussian-Exponential Model. 

 
30. Parameter Estimates for 50 Subjects with 1000 Observations in   106 
      a Rectangular Design  for Gaussian-Exponential Model. 
 
31. Parameter Estimates for 100 Subjects with 500 Observations in   107 
      a Rectangular Design  for Gaussian-Exponential Model. 
 
32. Parameter Estimates for 100 Subjects with 1000 Observations in   107 
      a Rectangular Design  for Gaussian-Exponential Model. 
 
33. Parameter Estimates for 100 Subjects with 2000 Observations in   108 
      a Rectangular Design for Gaussian-Exponential Model. 
 
34. Parameter Estimates for 20 Subjects with 80 Observations in   108 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
35. Parameter Estimates for 20 Subjects with 170 Observations in   109 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
36. Parameter Estimates for 20 Subjects with 340 Observations in   109 
      a Nonrectangular Design for Vector Autoregressive Model. 
 
37. Parameter Estimates for 50 Subjects with 200 Observations in   110 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
38. Parameter Estimates for 50 Subjects with 425 Observations in   110 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
39. Parameter Estimates for 50 Subjects with 850 Observations in   111 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
40. Parameter Estimates for 100 Subjects with 400 Observations in   111 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
41. Parameter Estimates for 100 Subjects with 850 Observations in   112 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 
42. Parameter Estimates for 100 Subjects with 1700 Observations in   112 
      a Nonrectangular Design for Gaussian-Exponential Model. 
 

 



 xii

 
 
 
 
 
 

LIST OF FIGURES 
 
FIGURE          Page 
 
1. Bias, Variance, and MSE for 1β  of VAR Model with Both   54 
  Rectangular and Nonrectangular Sample Estimates. 
 
2. Bias, Variance, and MSE for 2β  of VAR Model with Both   55 
  Rectangular and Nonrectangular Sample Estimates. 
 
3. Bias, Variance, and MSE for 3β  of VAR Model with Both   56 

  Rectangular and Nonrectangular Sample Estimates. 
 
4. Bias, Variance, and MSE for 4β  of VAR Model with Both   57 
  Rectangular and Nonrectangular Sample Estimates. 
 
5. Bias, Variance, and MSE for 11σ  of VAR Model with Both   59 
  Rectangular and Nonrectangular Sample Estimates. 
 
6. Bias, Variance, and MSE for 12σ  of VAR Model with Both   60 
  Rectangular and Nonrectangular Sample Estimates. 
 
7. Bias, Variance, and MSE for 22σ  of VAR Model with Both   61 
  Rectangular and Nonrectangular Sample Estimates. 
 
8. Bias, Variance, and MSE for 11φ  of VAR Model with Both   63 
  Rectangular and Nonrectangular Sample Estimates. 
 
9. Bias, Variance, and MSE for 12φ  of VAR Model with Both   64 
  Rectangular and Nonrectangular Sample Estimates. 
 
10. Bias, Variance, and MSE for 21φ  of VAR Model with Both   65 
  Rectangular and Nonrectangular Sample Estimates. 
 
11. Bias, Variance, and MSE for 22φ  of VAR Model with Both   66 
  Rectangular and Nonrectangular Sample Estimates. 
 
 



 xiii  

12. Bias, Variance, and MSE for 0β  of GE Model with Both    71 

  Rectangular and Nonrectangular Sample Estimates. 
 
13. Bias, Variance, and MSE for 1β  of GE Model with Both    72 
  Rectangular and Nonrectangular Sample Estimates. 
 
14. Bias, Variance, and MSE for 2σ  of GE Model with Both    74 
  Rectangular and Nonrectangular Sample Estimates. 
 
15. Bias, Variance, and MSE for ρ  of GE Model with Both    75 
  Rectangular and Nonrectangular Sample Estimates. 
 
16. Bias, Variance, and MSE for φ  of GE Model with Both    77 
  Rectangular and Nonrectangular Sample Estimates. 
 
17. Bias, Variance, and MSE for γ  of GE Model with Both    78 
  Rectangular and Nonrectangular Sample Estimates. 
 
18. Bias, Variance, and MSE for α  of GE Model with Both    80 
  Rectangular and Nonrectangular Sample Estimates. 
 
19. Bias, Variance, and MSE for δ  of GE Model with Both    81 
  Rectangular and Nonrectangular Sample Estimates. 
 
 



 

 

1

 

 

 
 

CHAPTER I 
 

INTRODUCTION 

 

Repeated measurement data arises when measurements of the same response 

variable are taken repeatedly on each of a number of experimental units or subjects which 

may be allocated to one of several treatment schemes.  Repeated measurement data are in 

contrast to cross-sectional designs in which a single measurement of the response 

variable is taken on each subject which also may be allocated to one of several treatment 

schemes.  The major advantage of repeated measurement designs over cross-sectional 

designs is their capacity to separate inherent between-subject from within-subject 

variability (Diggle, Heagerty, Liang, & Zeger, 2002).  This separation of the two 

variability sources allows for the characterization in the change of the response variable 

across observations and the factors that influence that change (Fitzmaurice, Laird & 

Ware, 2004).  However, repeated measurement designs, in general, require more complex 

computational approaches than cross-sectional designs since observations on each subject 

are considered correlated, i.e., subsequent response measurements are dependent on prior 

measurement values.  For example, the amount of weight an individual is able to lose 

following the administration of a weight loss pill is dependent on his or her prior weight, 

i.e., heaver individuals may have more opportunity to lose more weight than lighter 

individuals.  This correlation, if ignored, would potentially result in overestimation of the 
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sampling variability since the excess amount of variability shared between correlated 

observations would not be removed from the estimates of variability obtained for each 

observation separately.  In essence, this failure to remove the overlapping variability 

would result in its inclusion in the overall estimate twice.  Consequently, this 

overestimation of variability would in turn lead to an overly pessimistic estimate of 

precision which ultimately could result in misleading inferences obtained from the use of 

this variability estimate (Fitzmaurice et al., 2004). 

The term ‘longitudinal data’ has also been applied to the study of repeated 

measurements in which the response variable is observed over a given time period 

(Davis, 2002).  These studies are commonly encountered in epidemiology, clinical trials 

and social science studies where the scientific interest is in the pattern of change in a 

response variable over time (Hedeker & Gibbons, 2006).  That is to say, that time of 

observation is considered a factor in the explanation of the change in the response 

variable along with other planned factors of interest.  For example, this approach allows 

research practitioners to evaluate how a set of given factors or a single factor (e.g., 

preventive care protocols, novel drug treatments, skills training, etc.) effects changes in a 

response variable (e.g., disease progression, biomarker changes, results on a skill 

assessment test, etc.) across a given time period.  Furthermore, this statistical method also 

allows practitioners to characterize changes in a response variable (e.g., aneurysm size, 

tumor growth, etc.) over a given time period in the absences of other explanatory factors 

other than time itself.  

A cornucopia of longitudinal methods has been developed to accommodate 

several different study designs along with a variety of response and explanatory variable 
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types (c.f., Crowder & Hand, 1990: Laird, Donnelly & Ware, 1992: Lindsey, 1993: 

Everitt, 1995: Keselman, Alginas & Kowalchuk, 2001).  These methods range from a 

simple univariate approach to the more complex mixed-effects models, but in general 

each method is often utilized more often for a specific discipline or developed to solve a 

particular research objective that other approaches fail to address adequately (Davis, 

2002).  That is to say, the choice of a particular method utilized by a researcher depends 

on the objective of the research project, the particular design of the study protocol, and 

the nature of the process that generates the responses observed during the study.  For 

example, mixed-effects models were developed to address research objectives that 

traditional repeated measurement approaches were unable to achieve due to the overly 

restrictive assumption of constant variances and the inability to analyze datasets 

containing missing values in these models.  However, these traditional approaches may 

be preferred for some designs in which these limitations are of less importance or absent 

altogether since they are, in general, less computationally complex.  Thus, when choosing 

a statistical model one methodological approach’s strength may be its weakness given a 

different set of research objectives and the underlying process that generates the observed 

response variable.  

 

Statement of the Problem   

Despite the variety of approaches to the analysis of longitudinal data, a common 

characteristic of each method is the assumption that time of observation is a fixed factor.  

This assumption limits the inferential scope or the explanatory ability of the model to the 

specific times observed within the given study protocol (Montgomery, 2005).  Indeed, in 
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experimental longitudinal studies in which observation times are prospectively scheduled 

on the bases of theoretical, pharmacokinetic or convenience reasons, this assumption is 

valid by design.  Here, each subject regardless of treatment group would be observed 

more or less at the same time periods resulting in relatively consistent time intervals 

across subjects.  However, this approach is in contrast to a so called ‘observational’ 

longitudinal study in which a different stochastic structure is present in the data collection 

protocol.  In this design, observation periods are not prospectively scheduled but are 

adaptively determined on the bases of prior response outcomes, i.e., subsequent 

observation periods are determined based on the outcome of the response variable of the 

previous observations.  This adaptive scheduling approach based on prior response 

outcomes, therefore, assumes that time between subsequent observations has inherent 

information to contribute to the explanation of the changes in the response variable or 

assumes an ‘informative schedule’ design.  The informative nature of this design can be 

appreciated in that shorter time frames between two given observations would most likely 

have smaller changes observed in the response variable while longer time frames would 

most likely have correspondingly larger changes in the response variable.  It is also 

important to note that, potentially, each subject would have different informative lengths 

of observations suggesting that time in this model is no longer a fixed factor in the 

explanation of changes observed in the response variable.  Therefore, applying existing 

longitudinal models with the assumption that time is a fixed factor would result in 

incorrect estimates of the sampling variability and could therefore result in misleading 

inferences when applied to data having this stochastic structure.  This inability for 

existing longitudinal models to account for the informative nature of observed time 
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schedules suggests a need for a method that jointly models the distribution of informative 

intermittent times and corresponding measured responses, and not the usual conditional 

models, measured responses given the schedule times.  The utilization of this joint model 

on informative schedule data would potentially result in more accurate estimates of 

sampling variability and therefore, would improve the overall generalizabiltiy of the 

given study. 

 

Purpose and Research Questions 

The purpose of this study, as mentioned above, was the development of a novel 

approach that jointly models a longitudinal process with the addition of an informative 

component for time of observation.  The addition of informative time schedules, as 

opposed to fixed time schedules employed in traditional longitudinal methods, would 

potentially broaden the inferential scope obtained when applied to informative schedule 

data.  This increased scope of inference allows for improved modeling of the change in a 

response variable over time by utilizing the additional information captured in the 

informative schedules.  To achieve this goal of modeling an informative component for 

time along with repeatedly measured responses, this study investigated the following 

research questions:  

1. Can a novel approach be developed that would jointly model a longitudinal 
response variable with a set of corresponding intermittent informative time 
intervals of observations? 

 
2. Can an efficient numerical iterative method be developed to determine the 

maximum likelihood estimates for the proposed model?   
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3. In the presence of Monte Carlo simulated informative schedule data, how 
accurate and efficient is this proposed model in estimating the population 
parameters?    

 
4. How are these maximum likelihood estimates influenced by a few select 

variations in subject sample size, total number of observations for each 
subject, and the degree of variation in observation lengths for each subject 
contained in the simulated sample?  

 
5. Finally, how does the proposed model’s parameter estimates compare on 

accuracy and efficiency with common parameter estimates obtained by the 
mixed-effects model implemented in SAS PROC MIXED when analyzing 
simulated informative schedule data? 

 

Justification for This Study 

Traditionally in longitudinal studies, observational times are prospectively 

scheduled based on some design protocol prior to the initiation of the study as mentioned 

above.  Despite the underlying rationale for the chosen protocol, a prospective 

observational schedule may not be the best approach for all research questions.  In these 

situations an informative schedule paradigm incorporating an adaptive observation 

schedule may be more beneficial in achieving the research objectives not to mention 

improving patient care over traditional approaches.  This benefit can be seen in a study on 

the enlargement of Abdominal Aortic Aneurysm (AAA) in which patients’ aneurysms 

were observed over a given time period to better characterize rate of growth and the 

accompanying risk of rupture without surgical repair.  At some time, in this time interval, 

patients would enter the experiment and their aneurysm’s sizes would be measured and 

depending on the observed size would be randomly assigned to either a surgical repair or 

a surveillance group.  Patients belonging to the surveillance group would have their 

aneurysms measured by ultrasonography during each physician visit.  Depending on the 

measurement observed the next observation time would be scheduled, where presumably 
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the larger the size of the aneurysm the closer the next appointment would be and hence 

the smaller the changes in size of the aneurysms would be observed.  Observations for 

each patient would continue until a predetermined size was reached in which the patient 

would then enter the surgical repair group.  Surgical repair was eventually performed on 

all patients to prevent the risk of rupture which could be fatal (Ingoldby, Wujanto & 

Mitchell, 1986). 

In the above study protocol it is obvious that a fixed schedule paradigm may not 

be in the best interest of patient care given the risk of rupture in patients with larger 

aneurysms.  The use of an adaptive schedule approach therefore, would allow shorter 

observation intervals for patients with larger aneurysm sizes reducing the risk of a rupture 

occurring between physician visits.  This scheduling approach, as presented above, would 

subsequently result in different observation intervals for each patient that would be 

dependent at least on the last observed size of the patient’s aneurysm.  That is, even if 

each patient was observed a fixed number of times, the intervals between observations 

would not be the same and since the magnitude of each interval is dependent on the prior 

outcome, these interval measurements would contribute informatively to the process of 

change in aneurysm size in these individuals.  Furthermore, the number of observations 

for each subject would most likely not be equal since some individual’s aneurysms would 

take longer to reach the critical size for surgery requiring a longer observation period than 

others.  These two conditions would therefore result in each subject’s observation vectors 

being of different lengths and having different intervals between each observation 

resulting in a ‘nonrectangular’ schedule design.  This nonrectangular characteristic of the 

sample matrix obtained from informative schedule designs prevents the use of traditional 
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analytic strategies for longitudinal studies, such as repeated measures analysis of variance 

(ANOVA) or multivariate analysis of variance (MANOVA) since they typically require 

all data to be available on all subjects at each measurement point (Diggle et al., 2002).  

The use of these methods would therefore require that the resulting data obtained under 

an informative schedule design be modified to accommodate their model assumptions.   

However, transformation methods such as deleting missing data or imputing missing 

observations can lead to substantial bias and undermine the validity of the results 

obtained (Lavori, 1992; Gibbons et al., 1993; Taylor & Amir, 1994).  Furthermore, 

deleting or imputing data would essentially weaken the informative nature of the time 

intervals observed in this design by either removing them altogether or substituting 

misleading observations into the sample, respectively.  Another approach would be the 

use of mixed-effects models which by the nature of their design allow for the analysis of 

nonrectangular sample matrices (Laird & Ware, 1982).  However, these methods still 

require the assumption that time is a fixed factor in the explanation of the response 

process and therefore would result in the loss of the informative nature of the time 

intervals.  While mixed-effects models would allow for estimations of the growth process 

to be obtained, these results would essentially restrict the generalizabiltiy of the given 

study since they treat the observed time schedules as a fixed factor. 

It should also be noted that the total number of observations for each patient could 

also be different, given that not all patients would start at the beginning of the 

surveillance nor would each patient’s initial aneurysm size be the same at the entrance of 

the study further contributing to the nonrectangular aspect of the sample designs.  This 

latter issue of different initial aneurysm sizes would potentially result in truncation of the 
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aneurysm enlargement process.  That is, patients with initially larger aneurysms and 

therefore more serious risk of rupture would more quickly reach the size requiring 

surgical repair causing them to leave the surveillance group sooner than patients with 

smaller initial sizes.  The patients that experience the event of surgery earlier would 

therefore have their observations underrepresented in the sample which would result in 

the bias of the actual growth rate estimate.  This condition is referred to as informative 

censoring as discussed by Wu & Carroll (1998), Hogan & Laird (1997a, b), and many 

other authors.  Consequently, data containing informative censoring has been shown to 

give biased results when analyzed by mixed-effects models suggesting an analytical 

weakness in these model designs when faced with nonrectangular sample matrices.  

However, this issue of informative censoring would potentially be less of an analytical 

problem in an informative schedule design due to the assumed observation schedule 

protocol.  In other words, individuals that have a more progressive or serious condition 

requiring early surgical intervention which would potentially result in informative 

censoring occurring would also have shorter observation schedules and subsequently 

more observations measured.  This increased observational schedule would allow for 

individuals with rapid aneurysm growth to have more influence on the overall estimate of 

the growth process by the inclusion of more observations in the obtained sample matrix.  

Thus, the use of mixed-effects models to analyze informative schedule designs would not 

only result in restricted inferences but would potentially result in biased estimates in the 

growth process itself. 

The purpose for studying the nature of aneurysm growth in these individuals was 

to better characterize the average and inter-patient variability in AAA expansion which 
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would allow for the development of more accurate protocols outlining when surgical 

intervention is necessary for patients with AAA.  This better understanding of the growth 

process of AAA is necessary since it has been shown that a policy of early elective 

surgery for small aneurysms does not generally improve mortality rate (Lederle, Wilson, 

Johnson, Reinke, Littooy, Acher et al., 2002).  Therefore, the utilization of an informative 

scheduling design would allow for improved estimates of the AAA growth process and 

would subsequently allow for more accurate determination of surveillance protocols and 

ultimately improved patient survivability.  Furthermore, this model’s utility is not 

necessarily limited to the above research project but can be beneficial in any study design 

in which an informative schedule model would be beneficial to the study participants by 

increasing the frequency of observation or when improved accurate estimates of the 

response variable are required especially in the presence of informative censoring.  For 

example, the biological behavior of early gastric carcinoma, especially its growth rate, is 

not well documented and remains a significant cause of cancer deaths (Jemal et al., 

2005).  Furthermore, long term survival after surgery for gastric cancer is poor but 

prognosis improves with early detection, which suggests the need for accurate estimation 

of early development of gastric carcinoma (Heemsker, Lentze, Hulsewe & Hoofwijk, 

2007).  This area of research could potentially benefit from an informative scheduling 

design in light of the finding that some malignancies can grow rapidly (Haruma et al., 

1991).  The employment of an informative design in the evaluation of gastric carcinoma 

would allow for increased observation of patients with greater potential for the 

development of gastric carcinomas.  This increased observation of patients with 

aggressive conditions would have the added benefit of improved estimates of gastric 
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carcinoma development since informative censoring would potentially be an issue in 

these patients who enter surgical intervention quickly.  Other research areas that might 

benefit from this design would be in the field of psychiatry.  For example, an increase in 

patient evaluation would better characterize the benefit of some novel 

psychopharmacological agent or psychotherapeutic method, especially in cases where 

failure to elicit improvements in patient conditions could result in adverse mental states 

or potentially result in patient suicide (Simon & Savarino, 2008).  Once again, the use of 

an informative schedule design would allow for this desired increase in patient 

observation especially in patients that are responding poorly to prescribed therapeutic 

treatments.  These poor responders are more likely to experience an event, such as 

suicide, which would result in informative censoring and consequently would result in 

biased estimates of the benefits of the prescribed psychotherapeutic intervention or 

psychopharmacological agent.  On the other hand, improved estimation of therapeutic 

values of the prescribed treatment would aid practitioners in better understanding the 

mental disease process and hopefully improve quality of life for these individuals.  These 

examples suggest that other research questions or fields of study would also benefit from 

an informative schedule design approach especially where patient care would be 

improved with increased physician or healthcare practitioner observation.   

 

Terminology 

The following terms that will be used frequently throughout the study will be 

formally defined here: 

1. Fixed time is the assumption that levels associated with the time factor are the 
only levels of interest and therefore any analysis would be limited to drawing 
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conclusions on the specified levels included in the study protocol.  These 
levels are typically prospectively determined and, as the name implies, are 
fixed across the study interval.   

 
2. Informative time is the assumption that levels associated with the time factor 

will vary in length with their magnitudes dependent on prior observational 
outcomes suggesting that they contribute informatively on subsequent 
response observations.  The magnitude of each informative time interval is 
adaptively determined for each subject and will vary across the study 
interval.  

 
3. Longitudinal data are a set of observations of a response variable or variables 

that is measured repeatedly on each subject over a given time period.  These 
measurements are scheduled on some prospective fixed time interval and 
limit the analysis to conclusions on the specific time intervals used in the 
study. 

 
4. Informative schedule data are a set of observations of a response variable or 

variables that is measured repeatedly on each subject over a given time 
period. These measurements are scheduled on some adaptive time interval 
and their lengths are dependent on the prior observations suggesting that the 
magnitudes of the intervals are informative to the change realized in the 
response variable or variables. 

 

 Limitations 

The limitations of this study that should be considered by researchers would be 

the following: 

1. This study was limited to a single normally distributed response variable and 
therefore should not be applied to studies that might contain multivariate 
and/or non-normal response variables. 

 
2. Furthermore, the present study made the assumption that time was 

exponentially distributed or that the log of time was normally distributed, 
these assumptions should be considered before applying the results to other 
studies which may have different time factor distribution assumptions. 

 
3. As will be outlined in chapter three, a single set of model parameter 

coefficients will be utilized in simulating informative schedule data and a 
limited set of sample and observation sizes along with observation lengths 
will be simulated. 
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4. Furthermore, the evaluation of parameter estimates will be limited to three 
different criteria as outlined in chapter three. 

 
5. Finally, common parameter estimates obtained from the analysis of the 

proposed model will be compared to a single traditional longitudinal 
approach and therefore may not be compared to parameter estimates obtained 
from other analysis approaches not included in this study. 

 

Conclusion  

Currently, traditional approaches to longitudinal analysis require the assumption 

that time be a fixed factor in the explanation of changes in the response variable.  This 

analytical approach is generally adequate for most research designs in which subjects are 

observed on a prospective fixed observation schedule.  However, this traditional 

approach does not hold in cases of adaptive schedule designs in which subsequent 

observation are determined following the observance of the response variable.  Since 

times between observations are adaptively determined and informative in the response 

trajectory, models with fixed time assumptions are incapable of analyzing the informative 

nature of the data lessening the inference achievable.  This inability for traditional 

approaches to capture the full informative nature of informative schedule data suggests a 

need for a novel approach.  Consequently, this study proposes the development and 

evaluation of a novel model that jointly models an informative time component with a 

longitudinal measured response variable that can be utilized for the analysis of 

informative schedule study designs. 

To better understand the issues presented in the introduction, chapter two provides 

a more comprehensive review of traditional approaches to longitudinal analysis and other 

joint model designs found in the literature along with other pertinent information 

necessary.  Chapter three introduces the proposed model along with an outline of the 
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specific methods utilized to evaluate its efficacy in analyzing Monte Carlo simulated 

informative schedule data.  Chapter four presents the results of the evaluation of the 

simulated data by the proposed informative schedule model while chapter five discusses 

the implications of the results and future research directions. 
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CHAPTER II 
 

REVIEW OF LITERATURE 

 

As discussed in chapter one, the purpose of this study was the development of a 

model that incorporates an informative time component along with a corresponding set of 

longitudinal measurements of a response variable.  While there is plenty of literature that 

covers the development of longitudinal models with time as a nonrandom component, we 

are unaware of any research conducted on the joint modeling of longitudinal and 

informative schedule data at the time of this study.  However, there is a growing presence 

in the literature of research investigating the joint modeling of survival time and 

longitudinal data which might be pertinent to the present study. 

For the reader to achieve a contextual understanding of the relevant issues to this 

study a review of the literature is presented that introduces several tactics to longitudinal 

analysis.  This review of the methodological approaches presented in the literature is 

divided into five sections.  The first section presents simple methods for analyzing 

longitudinal data that consist of condensing the repeated observations into a single 

variable used in a subsequent analytical approach.  The second section presents historical 

methods of analyzing longitudinal data that preserves the temporal nature of the data but 

has, in general, become obsolete due to unrealistic assumptions and requirements which 

are inherent to these models.  The third section presents mixed-effects models that 
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incorporate random effects that are specific to each subject and are generally utilized in 

most longitudinal research studies.  The fourth section presents methods that jointly 

model longitudinal and survival data which includes a single random event time or 

survival time associated with the occurrence of the event of interest.  Finally, the fifth 

section presents a short introduction of Vector Autoregressive (VAR) models that are 

utilized in time series analysis and have the common objective to the proposed 

informative schedule model of modeling a set of repeatedly measured observations 

conditioned on prior responses outcomes. 

 

Simple Longitudinal Models 

In many research studies the objective is to evaluate changes in a response 

variable over time by observing repeated measures on a single subject.  These repeated 

measurements result in observations that are correlated within-subject and therefore 

require more sophisticated statistical methods to account for this dependency of 

observations.  One of the earliest methods for dealing with correlated data were presented 

by Student (1908) in his development of the t-test which avoids the issue of correlation 

by calculating a single summary variable for each subject used to analyze changes in a 

response variable from a pre-test to a post-test condition.  Essentially, this approach 

constructs a single independent observation by obtaining the differences between the pre-

test and the post-test for each subject which, subsequently, simplifies the analysis 

approach substantially.  However, this method is of little use for any complex analysis 

involving more than two observation times and therefore, would be of little help with 

informative schedule designs which typically involves multiple observation occasions.  
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Other approaches that involve the conversion of a set of correlated observations measured 

on a single subject into a single response variable have also been developed.  These 

approaches essentially convert the analysis from a longitudinal one with correlated data 

to a univariate problem void of dependency issues and have been termed in the literature 

as summary-statistic approach (Dawson & Lagakos, 1991, 1993: Frison & Pocock, 1992: 

Dawson, 1994), response feature analysis (Crowder & Hand, 1990), or derived variable 

analysis (Diggle et al, 2002).   Matthew, Altman, Campbell and Royston, (1990) 

summarized several different approaches including (a) the use of the overall mean, (b) 

comparing the area under the curve, (c) the maximum or minimum value for each group, 

(d) time to maximum or minimum response and (e) regression coefficients to evaluate the 

rate of change between groups.  Despite their ease of use, these methods have several 

drawbacks in that the analysis loses temporal aspects preventing the use of time-varying 

covariates.  In addition, there is in general a substantial loss of statistical power and there 

is a level of uncertainty in the derived summary variable potentially violating the 

assumption of homoscedasticity (Hedeker & Gibbons, 2006).  Furthermore, the removal 

of temporal aspects in the data clearly prevents the use of time as an informative 

component in the change of the response variable in these summary statistical methods 

and therefore would not be a candidate method for analysis of informative schedule data. 

 

Historical Longitudinal Models 

Traditional approaches to repeated measures designs in which temporal aspects of 

the data have been preserved have centered on two models: the univariate repeated 

measures analysis of variance (ANOVA; Winer, 1971) and the multivariate analysis of 
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variance (MANOVA) approach to repeated measurements (Cole & Grizzle, 1966).  

These methods persistent presence as an analytical tool in the study of repeated 

measurements can be attributed to their familiar methodology and ease of interpretation 

despite their inherent shortcomings.  Here the primary focus of the analysis for both 

methods is on the comparisons of mean group responses for varying observations and 

neither model is informative about subject-specific changes across time.  Furthermore, 

time points at which the response variables are observed are assumed to be fixed across 

subjects for both models and are treated as a classification variable (Hedeker & Gibbons, 

2006).  This fixed-time assumption, intrinsic in these methods, precludes the use of time 

as an informative component in the change of the response variable observed within-

subjects and therefore, is of little use in achieving the present study’s objectives.  In 

addition, these models are of limited general use for most complex research situations 

because of the unrealistic assumption of equal variance-covariance structure and 

difficulties associated with missing data across time points (Everitt, 1995).  

 

Mixed-effects Longitudinal Models 

A more informative and practical approach to the analysis of longitudinal data are 

the use of mixed-effects models which includes the addition of random effects that are 

unique to a particular subject allowing for the evaluation of individual changes in the 

response variable along with fixed effects of the mean response for each group across 

time (Laird & Ware, 1982).  More specifically, the mixed-effects model extends the 

general linear model (GLM) by modeling the combination of sample population 

characteristics that are assumed to be shared by all subjects, and subject-specific effects 
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that are unique to a particular individual (Fitzmaurice et. al., 2004).  For this reason, 

mixed-effects models have become increasingly popular for modeling longitudinal data 

due to their more informative or subject-specific evaluation of the response variable of 

interest.  Consequently, a variety of different approaches to mixed-effects models have 

been developed with varying assumptions underlying the random effect components and 

methods of obtaining model parameter estimates (Davis, 2002).  These models are 

identified with a variety of descriptive names, e.g., variance component models 

(Dempster, Rubin, & Tsutakawa, 1981), random effects models (Laird & Ware, 1982), 

empirical Bayes models (Hui & Berger, 1983), random coefficient models (de Leeuw & 

Kreft, 1986), mixed models (Longford, 1987), two-stage models (Bock, 1989), multilevel 

models (Goldstein, 1995), and hierarchical linear models (Raudenbush & Bryk, 2002).  

Despite their differences in component assumptions and estimation methods, mixed-

effects models, in general, allow for the analysis of unbalanced designs associated with 

missing data due to subject attrition (Hedeker & Gibbons, 2006), a common problem in 

many longitudinal studies.  Although mixed-effects models allows for the analysis of 

non-rectangular designs, time of observation in these models are still considered fixed, 

limiting inferences to the time points present in the data vectors and ultimately preventing 

their use as an informative component in explaining changes in the response variable.  

Thus, once again, the nonrandomness assumption for time intrinsic in mixed-effects 

models prevents the use of these methodologies in an informative schedule design. 

Despite the underlying assumption inherent in mixed-effects models that prevent 

their usage in the analysis of informative schedule data, their prevalence as a statistical 

tool for analyzing longitudinal data and ability to analyze non-rectangular observation 
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vectors makes this approach the most likely comparative candidate for the analysis of 

informative schedule data and therefore warrants a more in-depth evaluation.  Therefore, 

if we assume that samples of m individuals are measured repeatedly over time, the 

resulting observation for the ith individual on the jth occasion would be,ijy which would 

be observed at time, ijt .  The complete set of observations realized for the ith individual 

would result in a vector of observations of the response variable, ( )
iinii yy ,,1 Κ=y  and a 

corresponding vector of observed times, ( )
iinii tt ,,1 Κ=t  collected over in  repeated 

measurements.  These vectors of observations and times allow for, but do not require, 

each individual to have a unique sequence of measurement occasions hinting to this 

methods ability to handle non-rectangular designs.  Using vector and matrix notation, the 

mixed-effects model can be expressed as 

 

iiiii εγZβXy ++=  

 

where β is a 1×p  vector of fixed effects, iγ  is a 1×q  vector of random effects with a 

mean of zero and covariance matrix of iG , iX is a pni ×  matrix of covariates, iZ is a 

qni ×  matrix of covariates, with pq ≤ , and iε is a 1×in  vector of errors assumed to be 

independent of iγ , and also with a mean of zero and a covariance of iR (Laird & Ware, 

1982; Jennrich & Schluchter, 1986).  Ordinarily, it is further assumed that iR is the 

diagonal matrix, 
inI2σ , where 

inI denotes an ii nn ×  identity matrix (Fitzmaurice et. al., 

2004).  With these definitions, the matrix iX is a known design matrix containing p 
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covariate vectors of fixed effects (e.g., time of observation, gender, age, treatment group, 

etc)  associated with each repeated measure for the ith individual and contains the 

information that relates the unknown vector of regression coefficients, β to the mean of 

the vector of responses, iy .  In essence, the mixed-effects model is a GLM where 

everything is the same and has the same general sample population interpretation except 

for the addition of the known design matrix, iZ  and the vector of unknown random 

effects, iγ  that are subject-specific.  Here, iZ is a design matrix that is a subset of the 

columns of iX which links the vector of random effects, iγ  to the response vector, iy  for 

the ith individual.  The addition of the vector of random effects associated with the ith 

individual describes a subset of regression parameters and how they deviate from the 

sample population fixed effects.  Simply put, each individual has a set of subject-specific 

coefficients that describe how their mean responses deviates from the sample population 

mean.  Furthermore, these subject-specific deviations obtained by the inclusion of the ith 

random effects vector results in two different mean response profiles.  The conditional or 

subject-specific mean foriy , given by iγ , is ( ) iiiiiE γZβXγy +=|  and the marginal or 

population-averaged mean is determined by( ) µβXy == iiE  since, iγ  is zero when 

averaged over the distribution of the random effects (Fitzmaurice et. al., 2004).  This 

ability of the mixed-effects model to not only calculate the mean response of the sample, 

but to also determine the subject-specific mean responses, makes this model an attractive 

and more informative approach to longitudinal analysis.  Consequently, the addition of 

the PROC MIXED procedure in the SAS system allows for the analysis of repeated 

measures or longitudinal designs by implementing the mixed-effects model and by 
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modeling the covariance structures directly through the use of likelihood based methods 

(Littell, Henry, & Ammerman, 1998).     

 

Survival and Longitudinal models 

As mentioned above, there is an increasing presence in the literature of research 

investigating the joint modeling of survival time and longitudinal data.  This approach 

has some bearing on the present study because it jointly models a sequence of 

observations with a single random time event, which is similar to this study’s objective of 

jointly modeling a sequence of observations with a set of corresponding informative time 

events or schedules.  Therefore, the general approaches implemented in the literature of 

joint modeling of survival and longitudinal data may be of informative value in the 

development of the model in this study.  

The primary goal of survival analysis is to estimate causal or predictive models in 

which the risk of an event depends on covariates or predictor variables (Kaplan & Meier, 

1958).  Cox (1972) introduced a model for the analysis of time to event data using 

proportional hazards regression methods in which the predictor variables can be either 

constant or vary across time.  When the predictor variables vary across time and are 

observed multiple times during the experiment the resulting data set can be considered as 

repeated measurements.  Consequently, methods investigating the joint modeling of 

longitudinal measurement and survival time data have been developed. 

The usefulness of any survival analysis is dependent on the accuracy of the 

estimation of the regression parameters used in the expression of the hazard function 

which suggests that a complete knowledge of the predictor variable history is important.  
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Unfortunately, in most cases, time-dependent predictors are measured only periodically 

and with measurement error which can lead to biased estimation of regression parameters 

used in the survival analysis (Prentice, 1982).  Furthermore, even when measurement 

error is unimportant, a complete knowledge of the predictor variables must be known to 

maximize the partial likelihood used in this analysis (Cox, 1975).  To improve on the 

estimation of model parameters, Tsiatis, DeGruttola, and Wulfsohn (1995) used a two-

stage approach in which the response variable trajectory is initially determined by using a 

mixed-effects longitudinal model and the second stage uses the estimates from the 

previous model to improve the covariate history that enters the hazard function of the 

Cox model.  Essentially, the authors used a mixed-effects model to summarize the history 

or trajectory of the response variable up to some given time point where this obtained 

estimate is utilized in the subsequent proportional hazards model as a predictor variable 

or covariate in the estimation of the survival parameters.  Once the obtained estimates 

from the mixed-effects model have entered the proportional hazards model, the survival 

parameters are estimated by maximizing the partial likelihood as usual.  Faucett and 

Thomas (1996) used a similar approach of a repeated measures random effects model to 

estimate the response variable parameters and the survival process parameters 

simultaneously allowing for a more precise and accurate estimate of the relationship 

between the response variable and survival time event.  They specified their model into 

two submodels where one describes the relationship of the observed covariate 

measurements as a function of the true, unobserved covariate values and the other 

describes the relationship between the risk of disease and the true, unobserved time-

dependent covariate.  The first model, the covariate tracking model, is essentially a 
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subject-specific linear model of the true, unobserved covariate or response variable at a 

given time, measured with some error, while the second model, the disease risk model, is 

the proportional hazards model that depends on the unobserved covariate from the first 

model at the same given time point.  To estimate the unknown parameters for the overall 

model, Faucett and Thomas (1996) used Gibbs sampling which is a Monte Carlo method 

for generating samples from the joint posterior distribution of unknown parameters in a 

model, conditional only on the observed data.  The use of this sampling approach allows 

for the estimation of the unknown parameters for both submodels simultaneously since 

the joint distribution of their proposed model is not conjugate.  Wulfsohn and Tsiatis 

(1997) also modeled the response variable parameters and the survival process 

simultaneously to improve on parameter estimation due to measurement error.  Their 

approach, once again, used a mixed-effects model to summarize the history or trajectory 

of the response variable or covariate and the Cox’s proportional hazards model to 

determine the survival or event time parameters.  However, the estimation of their 

model’s unknown parameters was obtained by maximizing the joint likelihood for the 

covariate process and the failure time process of the observed data by using the 

expectation-maximization (EM) algorithm which they argued is a superior approach.  

Henderson, Diggle, and Dobson (2000) approached the modeling of event times and 

longitudinal analysis by conditioning on an unobserved or latent zero-mean bivariate 

Gaussian process that drives a pair of linked submodels.  Here the two submodels, the 

measurement and intensity models, are in essence the mixed-effects model and the 

proportional hazards model that are conditionally independent given the latent association 

process which, subsequently, links the two models.  Here, the association between the 
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two models is described through the cross-correlation between the latent processes and, 

when absent, suggests that the joint model does not improve on the estimation of the 

parameters over the two models separately.  These latent coefficients enter into the 

proportional hazard model and measure the association induced by the mixed-effects 

model parameters on the estimation of the survival analysis.   Ultimately, these parameter 

estimates, including the latent process coefficients, were obtained by the maximization of 

the joint model using the EM estimation algorithm.  Wang and Taylor (2001) also jointly 

modeled longitudinal and survival processes through the use of the mixed-effects and 

proportional hazards models, but included an Ornstein-Uhlenbeck (IOU) stochastic 

process to better estimate the time-dependent parameters.  The IOU stochastic process 

allows the response trajectory to vary around a straight line that is realized by each 

subject’s path, since the slope of the response can vary over time.  The inclusion of the 

IOU stochastic process allows for better estimation of the mixed-effects parameters that 

are used in the subsequently linked proportional hazards model.  Parameters of their 

model were estimated by employing the Markov Chain Monte Carlo (MCMC) which is 

an iterative process that samples from the desired distribution and constructs a Markov 

chain that has the desired distribution as its equilibrium distribution.  Lin, Turnbull, 

McCulloch and Slate, (2002) jointly modeled longitudinal time-dependent predictor 

variables with a latent class process modeled by a multinomial distribution, which 

describes the probability of an individual belonging to a specific latent class.  Each 

subpopulation has its own model for the longitudinal process which is determined by the 

mixed-effects model with subpopulation differences entering the mean.  This model 

captures common characteristics of the response trajectories within the subpopulation 
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through the latent classes resulting in improved estimations of covariates that enter into 

the proportional hazards model.  Tseng, Hsieh and Wang, (2005) jointly modeled 

longitudinal data using linear mixed-effects models with accelerated failure time (AFT) 

analysis; an alternative method that allows a parametric approach that is considered more 

robust to unmeasured confounders when compared to Cox proportional hazard model.  

Here AFT is a linear model of the log of the predicted failure time related by the response 

variable and determined by the mixed-effects model which allows for the influence of the 

entire covariate history on subject-specific risk.  The parameter estimates for the joint 

model of mixed-effects responses and the AFT process was determined by the use of the 

EM algorithm for the conditional distribution.  Finally, Elashoff, Li, and Li (2007) 

developed a method to jointly model longitudinal measurements and competing risk 

failure time data which allows for the addition of more than one type of event included.  

However, this approach still models a single random event occurrence but allows for a 

variety of events to be considered in the model.  The proposed model can be divided into 

three sub-models with the longitudinal response outcome being modeled by the mixed-

effects approach, the second model assuming a multinomial distribution that models the 

probability that a specific risk has occurred for the given individual and the third model is 

the hazard function for the specific risk observed.  Essentially, this model allows for a 

separate longitudinal and proportional hazards model for each of the specified risk 

components and incorporates the probability of the specified risk occurring in those 

models.  The parameters associated with this model were also determined by maximum 

likelihood estimation via an EM algorithm. 
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As mentioned above, a common characteristic of each of the above approaches is 

the modeling of a single random event of interest by utilizing the information obtained 

through the measurement of a response variable across time.  These approaches, despite 

including a single random time event, still include the assumption that response variable 

measurements are taken on a fixed time interval which prevents them from being utilized 

in an informative schedule design.  Furthermore, a common problem that seems to be the 

impetus for most of these joint models is the need to improve on the evaluation of the 

response trajectory to prevent biased estimates obtained from the subsequent proportional 

hazard or accelerated failure time analysis.  While improved estimation is always an 

objective in any study, this particular issue of accurately estimating the complete 

response trajectory or history of the response variable was not a direct concern for this 

study. 

 

Vector Autoregressive 

Time series analysis is concerned with modeling stochastic processes and for 

constructing predictions based on the developed models (Lutkepohl, 1991).  This 

analytical ability to model time-dependent processes for the purpose of predicting or 

forecasting future observations is the reason that these models have become increasingly 

popular in the area of econometrics where the goal is to determine the future direction of 

economic indices.  These models have also become popular in the area of meteorology 

where the prediction of future environmental conditions is a particular research goal, 

along with many other fields of study that contain stochastic data. 
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Time series data shares a remarkable similarity to longitudinal data in that the 

response variables are measured repeatedly over a given time interval and that these 

measured responses are correlated.  Despite the similarities, time series data usually 

consist of a small number of long sequences of repeated measurements, whereas 

longitudinal data consist of a large number of relatively short sequences of repeated 

measures (Fitzmaurice et al., 2004).  However, time series models also share a common 

assumption with longitudinal data in that repeated measures taken closer together in time 

are expected to be more highly correlated than repeated measures taken further apart in 

time.  This assumption of decreasing correlation over time is a key component of Vector 

Autoregressive (VAR) models which describe the evolution and interdependencies of a 

set of variables over the same sample period as a linear function of only their past 

evolutions (Hipel, Mcleod, & Lennox, 1977).  In essence, VAR models assume that past 

response outcomes are informative in the realization of current observations.  For 

example, in a two variable case, we can let the time path for the response, ty ,1 be affected 

by current and past realizations of the response, ty ,2 and let the time path of, ty ,2 be 

affected by current and past realizations of the response, ty ,1  at time t.  This would give a 

simple bivariate formula of the following: 
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Or, equivalently, in vector and matrix form: 
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is termed the lag which is essentially the prior 

observations for 1y  and 2y  at time 1−t (Lutkepohl, 1991).  The addition of the vector of 

lags in the previous equation allows for current realizations of the response variables to 

be a linear function of prior responses.  Furthermore, the inclusion of the lag vector 

suggests that each element or past realization of a single response affects the observed 

path of every variable included in the model, that is, each response variable is influenced 

by its own past realization along with the past realizations of the other response 

outcomes.  The degree that past realizations affect the path of the current outcomes is not 

limited to first order lags as the above model demonstrates but can include any 

combination of p lags.  Also, the amount of variables included in the model is not limited 

to a bivariate outcome but can be modeled for k variables.  For example, in a 1×k vector 

of responses, ty collected up to time t and including p lags, would have the following  

structure: 

tptpttt eyAyAyACy +++++= −−− Λ2211  
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Here the path for the vector of responses, ty  would be influenced by or a linear function 

of the p lags and a kk×  matrix of regression coefficients, iA where pi ,,1Κ=  along with 

the vector of errors, te  for time t.  Essentially, this model would be termed a VAR with p 

lags or VAR(p).  It should also be noted that the k variables for time t would be a function 

of the p lags for the k variables, similar to the bivariate model presented above.  More 

precisely, each variables path is not only affected by its own lags but is also affected by 

the lags for all other variables contained in the model. 

 

Conclusion 

In many different research areas, longitudinal studies play an important role in our 

understanding of the research objectives which cannot be obtained by other analytical 

approaches.  Consequently, the literature is filled with a variety of different longitudinal 

approaches and model assumptions to accommodate the variety of response variable 

types and design issues faced by many researchers.  Despite the multitude of different 

approaches, the underlying assumption of fixed time effects is common to all model 

approaches, which prevents their utilization in the analysis of informative schedule data.  

Furthermore, while there is a growing presence of joint models for longitudinal data and 

survival time analysis, these model’s research objectives are not consistent with the 

objectives of this study and therefore are of limited use in this study.  For the reader to 

achieve a better understanding, the proposed joint model and the methods employed in 

the evaluation of that model are presented in chapter three.  Chapter four presents and 

discusses the results obtained from the evaluation of the proposed model and the 

conclusion of those results and future research directions is presented in chapter five. 
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CHAPTER III 
 

METHODOLOGY 

 

As discussed in chapters one and two, traditional approaches utilized in the 

analysis of longitudinal data have several shortcomings in the explanatory ability of these 

methods when applied to observations collected by an informative schedule design 

suggesting the need for a different approach that better explains their nature.  To this end, 

the purpose of the present study was the development of a joint model for a longitudinal 

process and time of observation with improved explanatory ability when applied to 

informative schedule data. 

 To accomplish this study’s purpose, chapter three begins with a discussion of the 

notation that was employed in the development of the proposed model.  The second 

section presents the general structure of the informative schedule model and two special 

cases of that model that are considered further in this study.  Also, this section includes 

the associated likelihood equation for one of the special cases and the SAS likelihood call 

statement for the other case that is subsequently used for model parameter estimation.  

The third section presents a discussion of the method of maximum likelihood estimation 

employed in obtaining the parameter coefficients for this model and the competing 

mixed-effects model design.  The fourth section discusses the particulars of the 

optimization algorithm constructed to numerically determine model parameter estimates.  
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The fifth section describes the design issues associated with obtaining Monte Carlo 

simulated sample data used in the evaluation of these two models and the final section 

presents a discussion of the methods and criteria used to evaluate the effectiveness of the 

coefficient estimates and compared estimates obtained from the informative schedule 

models to the mixed-effects approach. 

 

Notation 

Suppose we have a set of m subjects or individuals followed over an interval 

from[ )τ,0 .  The ith individual provides a vector of quantitative observations, 

( )
iinii yy ,,1 Κ=y  with a corresponding informative vector of time schedules, 

( )
iinii tt ,,1 Κ=t  where the observations and time intervals range from inj ,,1Κ=  and the 

individuals range from mi ,,1Κ= .  It should be noted that this notation allows for each 

individual to have a different observation schedule length.  The resulting joint 

distribution of iy and it is in general ( )ii
i

f t,y
Θ

, where iΘ is a matrix of unknown 

parameters needing to be estimated.  The resulting function of iy is conditioned on the 

vector of corresponding time schedules, namely: 

 

( ) ( ) ( )iiiii iii
fff tt|yt,y ΘΘΘ = .       (3.1) 

 

If it  has no information on iΘ then the joint distribution reduces to the following: 

 

( ) ( ) ( )iiiii fff
ii

tt|yt,y ΘΘ =        (3.2) 
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and from the likelihood point of view, the model will be the same as a traditional analysis 

of longitudinal data in that time is no longer an informative component. 

 

Proposed Model  

The model we considered for the ith individual considers a one step dependency 

and has the following general form: 

 

( ) ( ) ( ) ( ) ( ).,|,,|| 11
2

11111 −−Θ
=

−−ΘΘΘ ∏= ijijij

n

j
ijijijijiiiii yttfyttyftftyff

i

i

iii
t,y .  (3.3) 

 

We assume )( 1itf  does not depend on iΘ , so for the purpose of likelihood function we 

can ignore it.  Furthermore, the resulting function of the initial observation,1iy is 

conditioned on time of observation, 1it  which is the same approach found in traditional 

longitudinal models.  However, subsequent observations of the response variable, ijy  are 

no longer exclusively conditioned on time of observation, ijt alone but are now also 

conditioned on the most recent pervious observation, 1−ijy  and time of observation. 

The likelihood function for model (3.3) is the product of the terms for m 

individuals, namely: 

( ) ( )ii

m

i
imm fttyyL t,yΘ ∏

=
Θ=

1
11 ,,,,,, ΚΚ  

     ( ) ( ) ( )1111

21

11 ,|,,|| −−Θ−−

=

Θ

=

Θ ∏∏= ijijijijijijij

n

j

m

i

ii yttfyttyftyf
i

i

ii
 (3.4) 
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where ( )mΘΘ= ,,1 ΚΘ .  It should be noted from the above equation that the initial 

observation is a function of the unknown parameters and conditioned on time of 

observation alone, while subsequent observations are conditionally dependent on the 

most recent prior observation and time interval along with the unknown model 

parameters.  This conditional dependence on the prior responses is what allows for the 

schedule times of observation to be informative in this proposed joint model (i.e., the 

present depends on the recent past).  It should also be noted that since dependence is 

limited to the prior observed response or is of first-order, the model assumes that 

correlations between response observations decay as time separation increases, which is a 

common assumption found in many time series models.  As a matter of fact, longitudinal 

data share remarkable similarities to time series data, despite differing analytical goals 

and general structure of data collection, in that measurements of a response variable are 

measured repeatedly over a given time period and are assumed to be correlated.  

Consequently, one special case of the model in (3.3) can be represented in a general time 

series structure.  This special case, which is termed the Vector Autoregressive (VAR) 

model, can be represented as the following: 
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.  (3.5) 

Here, 








2,

1,

ij

ij

Z

Z
is a vector of Gaussian white noise with zero mean and covariance Σ, while 










22,21,

12,11,

ii

ii

φφ
φφ

 is a matrix of autoregressive coefficients and 
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





2,

1,

i

i

µ
µ

 is vector of mean 



 

 

35

constants for the ith individual and which are dependent on some explanatory variables 

by ii Xβ=µ , where β  is a vector of coefficients associated with some explanatory 

variables and iX is a design matrix for the ith individual.   This mean constants vector iµ  

is composed of a mean,1,iµ  associated with the response variable, ijy  and a mean, 2,iµ  

associated with the log of time of observation, ijt .  Finally, ( ) 

















−









−

−

2,

1,

1

1

log i

i

ij

ij

t

y

µ
µ

is the 

mean adjusted effect of the prior response outcome and time interval for the ith 

individual. 

In the VAR case the response variable is considered to be normally distributed 

while the log of time is consider to also be normally distributed or log normal.  These 

normality assumptions for both the response variable and time of observation results, 

essentially, in a bivariate normal model.  Furthermore, the inclusion of the mean adjusted 

prior response and time interval as regression coefficients contributes to this models 

informative schedule nature. 

To simplify the notation for model (3.5), let 







=

2,

1,

i

i
i µ

µ
µ , 
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ij
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W . 

 

With these notations the model has the reduced form of: 

 

ijijiij ZWφW += −1 .        (3.6) 
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This model looks like a Vector Autoregressive of order 1 for each individual, which is a 

common model utilized in econometrics in modeling the dynamic behavior of economic 

and financial time series and in forecasting models (Lutkepohl, 1991).  Consequently, 

SAS has incorporated a call statement, VARMALIK into SAS/IML (Interactive Matrix 

Language) procedure that will compute the log-likelihood function for a Vector 

Autoregressive Moving-Average model (SAS Institute, 2004).  The approach 

implemented in the call statement utilizes the conditional approximation to the log-

likelihood equation (Reinsel, 1997) and is computed as -0.5 x the sum of log determinant 

of the innovation variance and the weighted sum of squares of residuals (SAS Institute, 

2004).  However, an iterative numerical method, such as the multivariate Newton-

Raphson, is still required to solve for estimates of model parameters and consequently the 

development of this iterative numerical approach is the primary purpose of the proposed 

study.  

In many natural processes, random variation conforms to a particular probability 

distribution known as the normal distribution, which is the most commonly observed 

probability distribution.  Therefore, a second special case for model (3.3) can be 

represented in this more familiar distributional form.  This special case, which will be 

termed the Gaussian-Exponential model (GE), can be represented as the following: 
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In the Gaussian-Exponential case the response variable is considered to be conditionally 

normal given time while time of observation is assumed to be distributed exponentially.  

Furthermore, the initial observation is assumed to be a function of the unknown 

regression parameters only, while the subsequent responses are conditioned on the 

unknown parameters along with the affects of the prior response outcome and time of 

observation.  This conditional association on prior response outcomes contributes to this 

model’s ability to analyze informative schedule data.  

The above model would result in a log-likelihood for the ith individual of: 
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The log-likelihood function for the GE model for all individuals would be the sum of the 

terms for m individuals, namely: 
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Here, the log-likelihood function for the m individuals has a complicated form, forcing 

the use of some numerical iterative method to determine maximum likelihood estimates 

for the GE model.  As mentioned above, the development of the procedure to determine 

the numerical method to estimate the parameters is the primary purpose of this study.  

Furthermore, the construction of the first-order derivatives was necessary to improve 

efficient estimation of model parameters and was calculated with the aid of Maple 

software (see Appendix C for Maple code).  

 

Parameter Estimation 

Given that distributional assumptions have been made about the vector of 

responses iy  for both special cases of the model, a very general approach to estimation of 

the model parameter Θ  can be obtained by assuming an iterative method to find the 

maximum likelihood estimates (MLE).  In this method the estimates used in the model 

are iteratively obtained and are estimates for Θ that would maximize the log of the 

likelihood functions of the proposed model, i.e., the estimated value of Θ that best 

explains or models the observed data given the distributional assumptions.  In general, 

ML estimators have the added benefit of having large sample consistency, that is there is 

a high probability that the derived estimate is close to the true population estimate, and 

are asymptotically unbiased in that as the sample size gets larger the parameters being 

estimated approach the true population values (Fitzmaurice et al., 2004).   

Parameter estimations for both special cases of model (3.3) were accomplished by 

utilizing the nonlinear optimization call module available through SAS/IML (SAS 

Institute, 2004).  This module offers a set of optimization subroutines for minimizing or 
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maximizing a user or subroutine supplied continuous function to determine estimate 

values.  The log-likelihood function for the both models and the derivatives for each 

parameter of the GE model were constructed in SAS/IML as a user defined module and 

made available to the nonlinear optimization subroutine.  In the case of the VAR model, 

the call subroutine VARMALIK which computes the conditional approximate log-

likelihood values was utilized and made available to the nonlinear optimization 

subroutine.  In both cases estimates were obtained by employing the numerical iterative 

method of the multivariate Newton-Raphson method.  This numerical iterative method 

seeks to find an approximation of the MLE of Θ or the vector of unknown model 

parameters by solving the following equations:  

 

( ) ( )mmmm gH ΘΘΘΘ ˆˆˆˆ 1

1

−

− −=  

 

so that ΘΘ ˆˆ →m  as ∞→m and where ( )mH Θ̂  is the Hessian matrix of the log-likelihood 

function, and ( )mg Θ̂  is the derivative of the log-likelihood function or the gradient vector.  

In essence, this approach produces a series of parameter estimates that become closer and 

closer to the ML estimates.  The use of this iterative method was chosen due to its 

preferred characteristics of a quick convergence of parameter estimates and the assurance 

of a positive-definite covariance matrix at each iteration step (Lindstrom & Bates, 1988).  

Furthermore, this method is also the preferred approach implemented by the PROC 

MIXED procedure utilized in the analysis of repeated measures data which allows for a 

more direct comparison between the proposed model estimates and the estimates 

obtained through the utilization of the mixed-effects procedure.  Finally, it should be 
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noted that the second-order derivatives for both models and first-order derivatives for the 

VAR model were approximated by finite difference method (Gill, Murray, Saunders, & 

Wright, 1983) through log-likelihood function calls and therefore, will not be presented 

here. 

 

Optimization Algorithm 

The primary purpose of this study was the development of an efficient method for 

the estimation of model parameters for the two proposed special cases of the informative 

schedule model.  To accomplish this goal, we took advantage of the extensive library of 

optimization routines callable from the matrix programming language of SAS available 

to solve nonstandard estimation problems (SAS Institute, 2004).  The optimization 

subroutine used in this study relied on the calculated results of user-supplied callable 

modules for determining parameter estimates.  In the case of the GE model two modules 

where constructed in which one returned the maximum likelihood value or objective 

function and the other which calculated the vector of gradient results (see Appendix B for 

SAS code).  In the case of the gradient vector, first-order derivatives (see Appendix A for 

derivatives) were determined for each parameter and constructed in a call subroutine 

made available to the optimization algorithm.  In the case of the VAR model, a module 

was developed that incorporated the conditional log-likelihood module VARMALIK (see 

Appendix B for SAS code) and was made available to the nonlinear optimization 

function to calculate the likelihood value of the simulated data. 

The optimization algorithms utilized for this study was the double dogleg or 

NLPDD subroutine which combines the ideas of the quasi-Newton and trust-region 
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methods.  The quasi-Newton optimization method was selected for this study since this 

subroutine allows for the approximation of the inverse Hessian matrix based on changes 

in the gradient vector between iterations.  The primary advantage of this modified 

numerical method is that the Hessian matrix does not need to be approximated at each 

point, which may be computationally expensive (Jöreskog, 1967).  This improved 

efficiency was especially important in the case of the VAR model in which both the 

gradient and the Hessian matrix needed to be estimated by finite difference method.  The 

inclusion of the trust-region method was chosen since this method allows for the 

optimization of a restricted region of a quadratic approximation of the nonlinear objective 

function as opposed to the entire objective function, i.e., at each iteration the step size 

must remain within a specified trust-region (Dennis, Gay, & Welsch, 1981).  Hence, this 

subroutine utilizes the dual quasi-Newton update method but does not require a line 

search to be performed.  The specific update method employed in this study was the dual 

Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) method of updating the Cholesky 

factor of an approximate Hessian matrix which is related by ,* RRH ′=  where *H is the 

approximated Hessian matrix and R is the Cholesky decomposition factor (Davidon, 

1959; Fletcher & Powell, 1963).  Furthermore, the initial determination of the second-

order derivatives or Hessian matrix for both models and the first-order or Gradient vector 

for the VAR model was computed by the numerically more expensive central difference 

formula (Gill et al, 1983) which allowed for improved accuracy in the approximation of 

the starting Hessian matrix for both methods and the gradient vector for the VAR model.  

Finally, the true parameter values (see Table 1 for values) were supplied as the initial 

starting values to both nonlinear optimization subroutines with the goal that these values 
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would improve the likelihood of obtaining an efficient and rapid convergence of the 

objective function. 

Finally, Monte Carlo simulated data for both special cases was analyzed by 

implementing the PROC MIXED procedure and utilizing the maximum likelihood 

estimation option.  The simulated data for both special cases was subsequently analyzed 

by the mixed-effects method where time of observation was assumed to be sequential and 

evenly distributed.  Furthermore, the variance-covariance structures of the data were 

assumed to follow a compound symmetry structure. 

 
Table 1.  
 
Parameter values for both special cases of the proposed informative schedule model. 
 

Fixed Model Parameter Values 

Vector Autoregressive Gaussian-Exponential 
Parameter True value  Parameter True value 

1β  4  β 0 0.2 

2β  2  β 1 0.5 

3β  3  2σ  4 

4β  1  ρ  0.5 

11φ  0.8  φ  0.2 

12φ  0.3  γ  0.5 

21φ  0.2  α  2.0 

22φ  0.5  δ  0.04 

11σ  4    

22σ  0.1    

12σ  2    
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Data Simulations 

Monte Carlo simulations of known parameter conditions were generated in 

SAS/IML for both special cases of the proposed models.  For parsimonious reasons, 

parameters were assumed to be constant across subject, i.e., the subscript i was not 

included in parameter estimations.  The fixed population parameters for each special case 

is outlined in table 1 and were chosen for the purpose of illustrating the proposed model’s 

utility only. 

In the VAR case the observations for the response variable were assumed to 

follow a normal distribution for the measurement error while the observation for the time 

intervals were assumed to follow a log-normal distribution.  Simulated data for the VAR 

model was accomplished by utilizing the SAS call subroutine VARMASIM which 

generates a random sequence of time series data in a user defined given structure (see 

Appendix B for SAS code).  For the GE case, observations once again were assumed to 

follow the normal distribution conditioned for time of observation while the observations 

for the time intervals were assumed to follow an exponential distribution.  Simulated data 

were accomplished for the GE model by generating random normal values adjusted by 

the appropriate mean and variance values in the case of the response variable and random 

exponential values adjusted by mean in the case of time of observation (see Appendix B 

for SAS® code).  Since, the generated observations included the effects of prior 

outcomes, the resulting data matrices were considered to be correlated.  In either special 

case the sample sizes and the lengths of the individual subject’s observation vectors were 

varied following the patterns outlined in table 2. 
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Table 2.  
 
Sample size, number of observations, observation scheme, and total number of 
observations utilized for each simulation study. 
 

Monte Carlo Simulation Scheme 
Sample 

Size 
Number of 

Observations 
Observation Design 

Scheme 
Total Number of 

Observations 
Scheme 
Number 

20 

5 Rectangular 100 1 
5 & 3 Nonrectangular 80 2 

10 Rectangular 200 3 
10 & 7 Nonrectangular 170 4 

20 Rectangular 400 5 
20 & 14 Nonrectangular 340 6 

50 

5 Rectangular 250 7 
5 & 3 Nonrectangular 200 8 

10 Rectangular 500 9 
10 & 7 Nonrectangular 425 10 

20 Rectangular 1000 11 
20 & 14 Nonrectangular 850 12 

100 

5 Rectangular 500 13 

5 & 3 Nonrectangular 400 14 

10 Rectangular 1000 15 

10 & 7 Nonrectangular 850 16 

20 Rectangular 2000 17 

20 & 14 Nonrectangular 1700 18 

 

In essence, three different sample sizes were simulated with three levels of observations 

for each subject under two differing observation length protocols resulting in a total of 18 

different sample schemes.  The first observation length protocol would result in a 

rectangular design for all subjects, (i.e., each subject has the same number of 

observations), while the second protocol would result in half of the subjects obtaining a 

reduction in the lengths of their observation vectors resulting in a nonrectangular design.  

Furthermore, a two factor design matrix (e.g., gender, pre- and post-treatment, etc.) was 

included to demonstrate the models ability to include the possibility of multiple treatment 

factors.  This design matrix included a random assignment to each subject the inclusion 
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of the estimation of the secondβ parameter(s), i.e., approximately half of the subjects 

would include both β parameters, [ ]( )11=iX  while the other half would have a single β  

parameter, [ ]( )01=iX  thus allowing for separate estimates based on different factors.  

Finally, 5,000 iterations of Monte Carlo simulated data were generated for both models.  

These simulated data were then subsequently analyzed by the appropriate proposed 

informative schedule model, i.e., GE and VAR model, and by the traditional longitudinal 

approach of mixed-effects model to obtain parameter estimates.  

In the special case of the VAR model eleven parameters were utilized in the 

construction of the Monte Carlo simulated data.  These parameters included a vector of 

explanatory variables or β parameters used to determine mean outcome for both the 

response variable and log of time of observation.  Here, 1β  would be associated with the 

mean response for the observed data while 3β  would be the mean log time of 

observations for all subjects included in the data matrix.  While, 2β  and 4β  are additive 

to the other two β parameters dependent on the inclusion of the explanatory variable 

supplied by the design matrix, respectively.  The variance-covariance of the response 

variable and log of time of observation also need to be estimated.  The parameters, 

11σ and 22σ are the variance estimates for the response variable and log of time, 

respectively.  While the parameter, 12σ is the covariance shared between the response 

variable and log of time.  The VAR model also includes a matrix of regression 

coefficients,φ which maps the mean adjusted prior response outcomes onto the current 

observed response variable and log of time of observation. 
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For the GE model, eight parameters were utilized in the construction of simulate 

data.  These included a vector of explanatory variables or β parameters where,0β  is the 

intercept and, 1β  would be additive to the intercept coefficient dependent on the 

inclusion of the explanatory variable supplied by the design matrix.  Included with the 

overall mean responses are the inclusions of the parameters that account for the prior 

response outcome and the current time of observation.  Here the coefficient, φ accounts 

for the effect of the prior response outcome on the mean response while the coefficient, 

γ  accounts for the effect of the current log of time of observation on the mean response. 

Parameters associated with modeling time of observation include a constant parameter, 

α and a coefficient that maps time of observation, δ .  Finally, two parameters were 

included that estimated the amount of variance, 2σ and correlation, ρ seen between the 

responses. 

 

Model Evaluation 

While there are, in theory, a multitude of parameter estimates that can model a 

given observed process, there are in general some characteristics of estimators that make 

them better than others.  Parameter estimates obtained from the analysis of the proposed 

model and by the mixed-effects model were evaluated by examining their biases, 

variance and mean square errors of the simulated data. 

Bias was defined as the difference between the estimator obtained and the true 

parameter being estimated, that is if T is an estimator of( )Θτ , then the bias is given by:  

 

( ) ( )Θ−= TETbias  
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With this definition an estimator that is closest on average to the true parameter being 

estimated will have the smallest bias.  However, a slightly biased estimator that is highly 

centered on the parameter of interest and is less variable may be preferable to an unbiased 

estimator that is less concentrated (Bain & Engelhardt, 1992).  The mean square error 

(MSE) is a reasonable criterion that considers both the variance and the bias of an 

estimator and is defined as the following: 

 

( )[ ]2)()( TbiasTVarTMSE +=  

 

The use of MSE can be used to evaluate two or more estimators in how well they 

estimate the unknown parameters.  

Finally, a direct comparison between the proposed model and the mixed-effects 

model was accomplished by comparing the relative efficiency of the common parameter 

estimates of the two models.  Comparisons involving the variances of estimators can be 

used to determine which makes more efficient use of the data.  This determination can be 

obtained by examining the relative efficiency of the estimator T of ( )Θτ  to another 

estimator *T of ( )Θτ  and is given by: 

 

( ) ( )
( )TMSE

TMSE
TTrel

*
*, =  

 

This definition suggests that the estimator *T is said to be efficient if ( ) 1, * ≤TTrel  for 

another estimator of T.  In each case of the proposed model, an estimate for β was 
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common with the traditional approach of a mixed-effects model (see Chapter two for 

mixed-effects model parameters).  These parameter estimates obtained from the 

simulated data for both informative schedule models and by mixed-effects approach was 

compared by examining their biases, mean square errors, and relative efficiency.  

 

Conclusion 

The following study exploited the flexibility and versatility of the maximum 

likelihood approach of parameter estimation to evaluate the proposed model efficiency 

when compared to analysis by way of mixed-effects implemented in the SAS PROC 

MIXED subroutine.  This evaluation was performed on Monte Carlo simulated 

informative schedule data with known parameters and data structure generated for each 

special case of the proposed model.  Parameter estimations of the two special cases and 

the traditional approach were evaluated on the bases of bias, mean squared error, and the 

relative efficiency of the estimated parameters.  These parameter estimate evaluation 

approaches were utilized to compare common parameters between the proposed model 

and the mixed-effects model.  Finally, the results of this study are presented and 

discussed in chapter four while chapter five provides the conclusions of this research and 

future research directions.  
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CHAPTER IV 
 

RESULTS AND DISCUSSION 

 

The purpose of this study was the development of a novel approach that jointly 

models a longitudinal process and the informative component for time of observation.  To 

achieve this goal of modeling an informative time component along with a repeatedly 

measured response variable, this study investigated the following research questions: 

1. Can a novel approach be developed that would jointly model a longitudinal 
response variable with a set of corresponding intermittent informative time 
intervals of observation? 

 
2. Can an efficient numerical iterative method be developed to determine the 

maximum likelihood estimates for the proposed model? 
 
3. In the presence of simulated informative schedule data, how accurate and 

efficient is this proposed model in estimating known population parameters? 
 
4. How are these maximum likelihood estimates influenced by a few select 

variations in subject sample size, number of observations, and the degree of 
variation in observation lengths for each subject? 

 
5. Finally, how does the proposed model’s parameter estimates compare on 

accuracy and efficiency with common parameter estimates obtained by the 
mixed-effects model when analyzing the same simulated informative 
schedule data? 

 
Chapter four begins by evaluating the constructed nonlinear optimization 

algorithms used to estimate parameters for both special cases of the proposed informative 

schedule models.  Secondly, this chapter summarizes the definitions that were utilized to 
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evaluate the obtained estimates and outlines the alterations in the data matrices that were 

evaluated.  Thirdly, this chapter summarizes and discusses the average parameter 

estimates obtained from the VAR simulated data along with the average variance, bias, 

and MSE for each alteration in subject and number of observation along with alteration in 

sample matrices.  This section also includes a comparison of estimates obtained from the 

mixed-effects model implemented by PROC MIXED when analyzing the same Monte 

Carlo simulated data.  The fourth section includes a similar summarization and discussion 

of the GE model parameter estimates along with the bias, variance, and MSE evaluations 

and comparison of mixed-effects estimates.  The fifth section discusses the resulting 

estimates and evaluations obtained from both models and all 18 different simulation 

schemes.  And finally, the resulting estimates for all simulation schemes and both model 

approaches are presented in tables 7 through 42. 

 

Joint Model of Informative Schedule Data 

In the special case of the Vector Autoregressive (3.5) model eleven parameters 

were utilized in the construction of the Monte Carlo simulated data while in the special 

case of the Gaussian-Exponential (3.9) model nine parameters were utilized in the 

construction of the simulated data.  In both cases, randomly generated data of know 

distributions was shaped accordingly to the established model parameters and simulated 

to known observation lengths and matrices designs before being analyzed by either of the 

two developed optimization subroutines and by the mixed-effects method.  The resulting 

simulated data matrix for each model was presented to the constructed optimization 

algorithm which also had the appropriate log-likelihood equation made available in a call 



 

 

51

function for both models and the gradient vector in the case of the GE model.   In both 

cases, the developed optimization algorithms resulted in convergence in nearly every case 

and estimates for each model parameter were obtained (Tables 7 through 42) suggesting 

that an efficient numerical iterative method could be developed to jointly model a 

longitudinal process with informative time schedules.  However, when sample sizes and 

the number of observations were at their smallest amounts both developed numerical 

iterative methods demonstrated a small proportion of cases (maximum of 1.94% for both 

models) where convergence was not achieved.  This was not surprising since 

optimization algorithms are known to be less efficient when analyzing samples with 

small number of observations.  In fact, as the number of observation increased the 

occurrence where convergence was not obtained decreased dramatically for both 

developed optimization algorithms and at the larger number of observations convergence 

occurred in every case. 

 

Parameter Estimate Evaluation 

One of the purposes of this study was to evaluate the proposed models accuracy 

and precision in estimating model parameters (see Chapter III for mathematical 

definitions).  Here we defined accuracy in terms of the amount of bias or deviation the 

resulting estimates showed on average in relationship to the true parameter value while 

estimate precision would be defined in terms of the average amount of spread or variation 

in the obtained estimates.  A third approach utilized in the evaluation of the informative 

schedule model parameters was the use of MSE which combines the contribution of both 

variance and bias of the parameter estimate into a single value.  This latter approach 
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allows for the evaluation of the relative contribution that bias and variation have on the 

obtained estimate.  A second purpose of this study was to evaluate the effect of a few 

select changes in the simulated data matrix has on the accuracy and precision of the 

obtained estimates.  Here simulated data were generated at three different subject 

amounts along with three different levels of observations resulting in 18 different 

simulation schemes.  Furthermore, these 18 simulation schemes were also generated for 

sample matrices in which half of the subjects had shorter observation lengths which were 

utilized to evaluate the effects that nonrectangular designs might have on parameter 

estimation.  A final purpose of this study was to evaluate a single parameter estimate 

from the proposed model in comparison to the mixed-effects approach.  Here the use of 

relative efficiency, which is a ratio of the MSEs for both models, was utilized for 

estimate evaluation along with bias and variation.  

 

Vector Autoregressive Parameters  

The VAR model includes a matrix of β parameters that along with the design 

matrix determines the mean outcome for both the response variable and the log of time of 

observation.  Here, all four mean parameter estimates followed similar patterns of 

accuracy and precision as number of observations increased for both sample matrices 

designs.  When numbers of observations were at their lowest amounts, the obtained 

estimates showed a substantial amount of variation, i.e., obtained parameter estimates 

were less precise at low sample numbers (Figure 1 through 4 and Tables 7 through 24).  

In addition, at lower number of observations a small amount of bias in obtained estimates 

was also seen.  However, the non-directionality of the bias suggests that the observed 
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inaccuracy of estimates maybe due more to imprecision in the estimates than a systematic 

bias.  For example, if all average estimates were negative in value this would suggest that 

the optimization method was systematically under estimating the population parameter.  

In addition, the amount of bias in estimation was relatively small compared to the amount 

of variation of obtained estimates.  This fact is supported by the overwhelming influence 

that variation has on the calculation of the MSE values suggesting that the inaccuracy in 

the estimation is relatively small compared to the amount of imprecision in estimation.  

Furthermore, as number of observations increased the amount of variation and observed 

bias decreased substantially and, essentially, estimates become centered at 850 

observations for all four parameters.  Finally, estimates obtained from nonrectangular 

sample matrices showed a slightly larger amount of variation in obtained estimates when 

compared to estimates obtained from rectangular sample matrices at similar number of 

observations.  In the two cases where rectangular and nonrectangular sample matrices 

have the same amount of number of observations the observed averaged variation for 

nonrectangular estimates was larger than the average variation for rectangular estimates.  

Thus, a rectangular sample matrix improves the precision in obtained estimates over 

nonrectangular designs.  However, rectangular design matrices showed little effect on the 

amount of bias when compared to nonrectangular design matrices.  
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Figure 1. Bias, variance, and MSE for 1β of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 2. Bias, variance, and MSE for 2β of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 3. Bias, variance, and MSE for 3β of VAR model with both rectangular and 

nonrectangular sample estimates. 
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Figure 4. Bias, variance, and MSE for 4β of VAR model with both rectangular and 
nonrectangular sample estimates. 
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The VAR model also contains a symmetrical matrix of variance-covariance 

parameters where 11σ is the variance associated with the response variable, 22σ is the 

variance associated with the log of time, and 12σ is the covariance between both response 

outcomes.  In the case of the two variance parameters a similar pattern of precision and 

accuracy was observed while the covariance parameter showed a slightly different 

pattern.  Both variance parameters demonstrated a systematic negative bias in estimation 

which was observation dependent, i.e., estimates became less negatively bias as the 

number of observations increased (Figure 5 and 7 and Tables 7 through 24).  In other 

words, the estimates obtained for the variance parameters for the VAR model are 

asymptotically unbiased.  On the other hand, the covariance parameter did not show any 

systematic pattern in bias estimates but at lower number of observations obtained 

estimates did show some small amount of non-directional bias which may be due more to 

imprecision of estimation (Figure 6).  For all three variance-covariance parameters, 

estimates demonstrated a large amount of variation at smaller number of observations.  

However, as the number of observations increased the variation in obtained estimates 

decreased dramatically.  Also, the amount of bias in estimation was relative small 

compared to the amount of variation of estimates for all three variance-covariance 

parameters which was supported by the MSE values.  Finally, rectangular samples 

matrices demonstrated a small decrease in the average amount of variation in obtained 

estimates for variance-covariance parameters when compared to estimates obtained from 

nonrectangular sample matrices.  Also, in the case of the variance parameters estimates 

obtained from rectangular sample designs showed less bias when compared to estimates 

obtained from nonrectangular designs.  
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Figure 5. Bias, variance, and MSE for 11σ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 6. Bias, variance, and MSE for 12σ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 7. Bias, variance, and MSE for 22σ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Finally, the VAR model contains a matrix of regression coefficients that maps the 

mean adjusted prior response outcomes onto the current observed response variable and 

log of time of observation.  The diagonal elements of the regression coefficients 

demonstrated similar patterns of accuracy and precision while the off-diagonal regression 

coefficients demonstrate similar patterns of precision and accuracy to each other.  In the 

case of the diagonal elements there was a systematic negative bias in obtained estimates 

while for the off-diagonal elements there was a systematic positive bias in obtained 

estimates which in both cases where asymptomatically unbiased (Figure 8 through 11 and 

Tables 7 through 24).  For all four regression coefficients, obtained estimates 

demonstrated a large amount of variation at smaller number of observations which 

progressively became more precise as the number of observations increased and 

essentially became centered by 850 observations.  In addition, the relative contribution of 

the bias had little affect on the obtained MSE values, suggesting that estimate precision 

was more responsible for the observed results than the accuracy of the obtained estimates.  

Finally, the amount of variation in estimates for rectangular designs was less when 

compared to variations seen for nonrectangular designs at similar number of 

observations, suggesting that rectangular matrices improve estimate precision.  But this 

trend was not clearly seen in the case of biasness which suggests that rectangular designs 

do not necessarily improve estimate accuracy.  In fact, in a few cases the estimates 

obtained from nonrectangular sample matrices resulted in less bias estimates than for 

estimates obtained from rectangular sample matrices at similar number of observations 

but was not the case every time. 
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Figure 8. Bias, variance, and MSE for 11φ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 9. Bias, variance, and MSE for 12φ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 10. Bias, variance, and MSE for 21φ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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Figure 11. Bias, variance, and MSE for 22φ of VAR model with both rectangular and 
nonrectangular sample estimates. 
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VAR: Mixed-Effects Comparison  

The same Monte Carlo simulated data used to estimate VAR parameters were also 

analyzed by the mixed-effects model.  The analysis approach of the mixed-effects data 

assumed that the variance-covariance matrix followed a compound symmetrical structure 

and that observations of the response variable were correlated with each other across 

time.  Furthermore, for the mixed effects approached observation lengths were assumed 

to be evenly spaced, i.e., the time between observations was no longer considered to be 

informative. 

For all number of observations and for both rectangular and nonrectangular 

designs, the mixed-effects approach showed a substantial negative bias in estimates as 

compared to the response parameter1β  (Tables 3 and 4).  This observed substantial bias 

suggests that the analysis of informative schedule data by traditional longitudinal 

methods could substantially underestimate model parameters.  Furthermore, the amount 

of variation seen in estimates obtained by the mixed-effects approach was much less than 

the amount of variation seen in estimates obtained by the VAR model.  In addition, both 

approaches demonstrated decreasing variation as number of observations increased, but 

this trend was much more pronounced in the VAR model.  Consequently, with a larger 

decrease in the amount of variation of estimates and a substantially less bias, the relative 

efficiency of the VAR model parameter was larger when compared to the mixed-effects 

model. 
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Table 3.  
 
Mixed-effects parameter estimates for Vector Autoregressive with rectangular design. 

 

Vector Autoregressive 

Observations Bias Variance MSE 
Relative 

Efficiency 

     
20 Subjects  

     

100 
-0.2278 41.5787 41.6306  
-7.0329 5.2637 54.7255 1.3145 

     

200 
-0.0438 11.7070 11.7089  
-7.0124 4.8266 54.0010 4.6120 

     

400 
-0.0519 4.4727 4.4754  
-7.0516 3.6995 53.4248 11.9374 

     
50 Subjects  

     

250 
0.1398 12.0888 12.1084  
-7.0397 1.9783 51.5362 4.2562 

     

500 
-0.0212 3.7542 3.7546  
-7.0017 1.8650 50.8888 13.5535 

     

1000 
-0.0315 1.5550 1.5559  
-6.9854 1.3943 50.1907 32.2574 

     
100 Subjects  

     

500 
-0.0194 4.9053 4.9056  
-6.9709 0.9965 49.5896 10.1087 

     

1000 
-0.0239 1.7999 1.8005  
-7.0047 0.8780 49.9436 27.7393 

     

2000 
-0.0123 0.8133 0.8135  
-6.9921 0.7435 49.6332 61.0120 

     
Note: Italicized results are for Vector Autoregressive model. 
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Table 4.  
 
Mixed-effects parameter estimates for Vector Autoregressive with nonrectangular design. 

 

Vector Autoregressive 

Observations Bias Variance MSE 
Relative 

Efficiency 

     
20 Subjects  

     

80 
0.0734 50.2752 50.2806  
-6.9895 5.4942 54.3476 1.0809 

     

170 
0.0144 16.3259 16.3261  
-6.9169 4.7735 52.6170 3.2229 

     

340 
-0.0436 5.0974 5.0993  
-7.0568 3.8492 53.6477 10.5205 

     
50 Subjects  

     

200 
0.0721 23.0159 23.0211  
-6.9619 2.1203 50.5890 2.1975 

     

425 
0.0147 4.9416 4.9418  
-7.0162 1.8451 51.0718 10.3346 

     

850 
-0.0357 2.0163 2.0176  
-7.0235 1.5293 50.8589 25.2079 

     
100 Subjects  

     

400 
-0.0955 7.3969 7.4061  
-7.0231 1.0671 50.3911 6.8040 

     

850 
-0.0197 2.1595 2.1599  
-6.9921 0.9794 49.8687 23.0884 

     

1700 
0.0063 0.9196 0.9196  
-6.9899 0.7913 49.6494 53.9891 

     
Note: Italicized results are for Vector Autoregressive model. 
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Gaussian-Exponential Parameters 

The GE model includes a vector of β parameters that along with the design matrix 

determines the mean outcome for the response variable.  Here, both mean parameter 

estimates followed similar patterns of precision as number of observations increased for 

both sample matrices designs but a slight difference in accuracy patterns was observed.  

When the number of observations were at their lowest amounts, the obtained estimates 

for both parameters showed a substantial amount of variation that became less 

pronounced as the number of observations increased suggesting that estimates become 

more centered as the number of observations increase (Figure 12 and 13 and Tables 25 

through 42).  Although, it should be noted that in both cases of the mean parameters a 

small amount of variation in the obtained estimates was still present even at the largest 

number of observations.  In the case of the 0β parameter the average estimates showed a 

systematic positive bias in obtained estimates that became asymptomatically unbiased as 

number of observations also increased.  However, this trend was not as consistent in the 

obtained estimates for 1β and in a few cases the average estimate demonstrated a negative 

bias.  Once again, the relative contribution of the bias had little effect on the obtained 

MSE values, suggesting that estimate precision was more responsible for the observed 

results than the accuracy of the obtained estimates.  Finally, the estimates obtained from 

rectangular sample matrices, once again seemed to result in less variation in the obtained 

estimates when compared to nonrectangular estimates but this trend was not necessarily 

observed in the case of bias.  
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Figure 12. Bias, variance, and MSE for 0β of GE model with both rectangular and 

nonrectangular sample estimates. 
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Figure 13. Bias, variance, and MSE for 1β of GE model with both rectangular and 
nonrectangular sample estimates. 
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The GE model also contained parameters for the variance of the responses, 2σ  

and a parameter for the correlation between subsequent responses, ρ .  For both of these 

parameters the trends for precision and accuracy appeared to be similar as number of 

observations increased.  Both parameters demonstrated a systematic negative bias in 

estimates at low number of observations which became less pronounced as the number of 

observations increased (Figures 14 and 15 and Tables 25 through 42).  These 

observations suggest that the GE model tends to underestimate the variance and 

correlation parameters but that they are asymptotically unbiased as the number of 

observations in the sample matrix increases.  Both parameters also demonstrated an 

observation dependent decease in the amount of variation in the obtained estimates and 

the obtained estimates essentially became centered by 850 observations, albeit more 

pronounced for the variance parameter.  Furthermore, both parameter estimates appear to 

be more influence by estimate precision than by the accuracy of estimates in that bias 

values had little effect on the calculated MSE values.  Also, estimates from 

nonrectangular sample matrices demonstrated a slight increase in variation of estimates 

when compared to estimates obtained from rectangular designs.  However, this was not 

observed in every case for the variance parameter which might suggest that there might 

be the effect of number of subjects.  Finally, estimates obtained from nonrectangular 

matrices did not appear to decease or increase the amount of bias seen for either 

parameter. 
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Figure 14. Bias, variance, and MSE for 2σ of GE model with both rectangular and 
nonrectangular sample estimates. 
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Figure 15. Bias, variance, and MSE for ρ of GE model with both rectangular and 
nonrectangular sample estimates. 
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Included with the overall mean response are the inclusion of the parameters that 

account for the prior response outcome and the current time of observation.  Here the 

parameter, φ accounts for the effect of the prior response outcome on the mean response 

while the coefficient γ accounts for the effect of the current time of observation on the 

mean response.  In the case of the prior response parameter, the obtained estimates 

demonstrated a slight negative bias at low number of observations that was weakly 

dependent on the number of observations (Figure 16 and Tables 25 through 42).  This 

weak dependency on changes in number of observations might suggest that the bias in 

estimates might be due more to imprecision of the estimates.  On the other hand, 

variation in the estimates did demonstrate a strong dependency on number of 

observations, in that as the number of observations increased the amount of observed 

variation in the estimates decreased.  In the case of the current time of observation the 

obtained estimates demonstrated a systematic positive bias in obtained estimates that was 

clearly dependent on the number of observations (Figure 17 and Tables 25 through 42).  

The time parameter estimates also demonstrated a clear dependency on the number of 

observations with increased amount of estimate variation being seen at low number of 

observations.  In both case of prior response parameters, the amount of bias seemed to 

have marginal influence on the calculated MSE values, once again suggesting that 

variation or precision is more influential in the obtained estimates.  Finally, the effects on 

estimates obtained from nonrectangular sample matrices seemed to be limited to the 

variation in the estimates for both prior response parameters.  
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Figure 16. Bias, variance, and MSE forφ of GE model with both rectangular and 
nonrectangular sample estimates. 
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Figure 17. Bias, variance, and MSE forγ of GE model with both rectangular and 
nonrectangular sample estimates. 
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Finally, the GE model also contained parameters associated with modeling time 

of observation which included a constant parameter, α and a coefficient that maps time 

of observation, δ .  For both of these parameters the variation in the estimates obtained 

showed a clear dependency on number of observations (Figure 18 and 19 and Tables 25 

through 42).  However, the estimates obtained for the constant parameter demonstrated a 

slight non-directional bias while the mapping coefficient demonstrated a clear systematic 

positive bias in estimates.  Once again, precision of the estimates appeared to be more 

influential on the estimation of both parameters in that MSE values were essentially the 

same as the variance values.  Finally, for both parameter estimates obtained from 

rectangular sample matrices seemed to have small amount of variation and bias when 

compared to nonrectangular obtained estimates. 

 

GE: Mixed-Effects Comparison 

For all number of observations and for both rectangular and nonrectangular 

designs, the mixed-effects approach showed a slight negative bias in estimates as 

compared to the response parameter0β  (Tables 5 and 6).  Furthermore, both approaches 

demonstrated a decrease in the variation of obtained estimates as the number of 

observations increased but this effect was more pronounced in the case of the GE model.  

Consequently, with a more pronounced decrease in the amount of variation of estimates 

and with a slightly less bias, the relative efficiency of the GE model parameter was larger 

when compared to the mixed-effects model suggesting improved estimation efficiencies. 
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Figure 18. Bias, variance, and MSE forα of GE model with both rectangular and 
nonrectangular sample estimates. 
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Figure 19. Bias, variance, and MSE forδ of GE model with both rectangular and 
nonrectangular sample estimates. 
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Table 5.  
 
Mixed effect parameter estimates for Gaussian Exponential with rectangular data 

 

Gaussian Exponential 

Observations Bias Variance MSE 
Relative 

Efficiency 

     
20 Subjects  

     

100 
0.0159 0.0152 0.0154  
-0.1997 0.3177 0.3576 23.1508 

     

200 
0.0143 0.0097 0.0099  
-0.2221 0.1630 0.2124 21.5208 

     

400 
0.0013 0.0060 0.0060  
-0.2233 0.0921 0.1420 23.5716 

     
50 Subjects  

     

250 
0.0080 0.0092 0.0093  
-0.2103 0.1128 0.1570 16.9391 

     

500 
0.0049 0.0051 0.0051  
-0.2052 0.0617 0.1038 20.4493 

     

1000 
0.0057 0.0033 0.0033  
-0.2073 0.0364 0.0794 23.9598 

     
100 Subjects  

     

500 
0.0006 0.0059 0.0059  
-0.2023 0.0525 0.0934 15.9413 

     

1000 
0.0026 0.0033 0.0033  
-0.1997 0.0278 0.0677 20.2368 

     

2000 
0.0009 0.0029 0.0029  
-0.1989 0.0179 0.0575 20.1704 

     
Note: Italicized results are for Gaussian Exponential model. 
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Table 6.  
 
Mixed effect parameter estimates for Gaussian Exponential with nonrectangular data 

 

Gaussian Exponential 

Observations Bias Variance MSE 
Relative 

Efficiency 

     
20 Subjects  

     

80 
0.0267 0.0178 0.0185  
-0.1864 0.3882 0.4230 22.8186 

     

170 
0.0164 0.0118 0.0120  
-0.2249 0.2035 0.2540 21.1180 

     

340 
0.0069 0.0069 0.0070  
-0.2408 0.1116 0.1695 24.3489 

     
50 Subjects  

     

200 
0.0129 0.0107 0.0109  
-0.2088 0.1377 0.1813 16.6695 

     

425 
0.0057 0.0064 0.0065  
-0.1999 0.0720 0.1120 17.3542 

     

850 
0.0027 0.0038 0.0038  
-0.2054 0.0384 0.0806 21.3207 

     
100 Subjects  

     

400 
0.0081 0.0075 0.0075  
-0.2121 0.0654 0.1104 14.6750 

     

850 
0.0050 0.0041 0.0041  
-0.2018 0.0367 0.0774 18.7685 

     

1700 
0.0017 0.0031 0.0031  
-0.2042 0.0175 0.0592 18.8589 

     
Note: Italicized results are for Gaussian Exponential model. 
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Discussion 

The results obtained from the analysis of both the VAR and GE simulated data 

indicate that model parameters can be estimated using the maximum likelihood method.  

These obtained estimates generally showed low bias especially for larger number of 

observations and in most cases approached the true parameter value as the number of 

observations increased.  In a few cases the amount of bias observed, especially for low 

number of observations, demonstrated a systematic trend.  Namely, the estimates for the 

two variance components of the VAR model showed evidence that the proposed model 

underestimates these parameters.  However, this was not the case for the estimates of the 

covariance parameter in this model.  Evidence of underestimation was also seen in the 

GE model for the variance and correlation parameters.  Underestimation of variance is a 

common issue in maximum likelihood estimation especially when sample sizes are 

relatively small (Fitzmaurice et al. 2004) and this may be the issue seen in our models.  

Furthermore, in a few cases for both VAR and GE model parameter estimates 

demonstrated a systematic overestimation.  However, for both models and for all 

parameters the amount of bias observed decreased as the number of observations 

increased and at larger number of observations was essentially equal to the true 

population parameter.   

For both models and all parameters the amount of variation in estimates was 

substantially large at low number of observations but as the number of observations 

increased the amount of variation in estimates decrease.  Also, for the most part 

evaluation of the estimate’s MSE revealed the same patterns and approximately the same 

values as those observed for variation in estimates.  This significant dependency on 
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variation in the calculation of the MSE values suggest that parameter estimate 

performance was largely influenced by the variation of the estimates and less by the 

amount of bias.  More precisely, estimates obtained from each model show very little 

inaccuracy but have large amount of imprecision at low number of observations. 

When estimates were obtained from nonrectangular designs, the overall patterns 

of bias and variation in estimates seen in rectangular designs held.  However, in many 

cases the amount of variation of estimates obtained from rectangular sample matrices was 

slightly decrease when compared to nonrectangular samples matrices.  And in a few cases 

this improved performance of estimates obtained from rectangular sample matrices was 

also seen in bias of obtained estimates. These results suggest that rectangular or complete 

sample matrices result in more accurate and precise estimates. 

Finally, the estimates obtained from both proposed models showed improved 

performance when compared to estimates obtained from the mixed-effects model.  This 

improved performance was most obvious in the VAR model in that the bias of the mixed-

effects model was substantially larger.  However, a ‘fair’ comparison between the 

informative schedule model and the mixed-effect was not strictly possible since there 

were very little overlap in common parameters.  Although, it should be noted that the 

addition of parameters that allow for the estimation of prior response and time of 

observation effect on the observed response outcome can only contribute to better 

understanding of the process that generated the data. 
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Table 7.  
 
Parameter estimates for 20 subjects with 100 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.7722 -0.2278 41.5787 41.6306 

      

2β  2 1.9708 -0.0292 12.6666 12.6674 

      

3β  3 3.1489 0.1489 69.5616 69.5838 

      

4β  1 1.0691 0.0691 21.2965 21.3013 

      

11σ  4 3.7972 -0.2028 0.3813 0.4224 

      

12σ  0.1 0.0909 -0.0091 0.0963 0.0964 

      

22σ  2 1.8961 -0.1039 0.0934 0.1042 

      

11φ  0.8 0.7805 -0.0195 0.0051 0.0055 

      

12φ  0.3 0.3172 0.0172 0.0194 0.0197 

      

21φ  0.2 0.2105 0.0105 0.0024 0.0025 

      

22φ  0.5 0.4677 -0.0323 0.0093 0.0103 
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Table 8.  
 
Parameter estimates for 20 subjects with 200 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9562 -0.0438 11.7070 11.7089 

      

2β  2 1.9818 -0.0182 2.4234 2.4237 

      

3β  3 2.9842 -0.0158 22.6441 22.6444 

      

4β  1 0.9833 -0.0167 4.7488 4.7491 

      

11σ  4 3.9037 -0.0963 0.1725 0.1817 

      

12σ  0.1 0.1002 0.0002 0.0436 0.0436 

      

22σ  2 1.9490 -0.0510 0.0458 0.0484 

      

11φ  0.8 0.7839 -0.0161 0.0021 0.0024 

      

12φ  0.3 0.3140 0.0140 0.0080 0.0082 

      

21φ  0.2 0.2052 0.0052 0.0011 0.0011 

      

22φ  0.5 0.4808 -0.0192 0.0040 0.0044 
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Table 9.  
 
Parameter estimates for 20 subjects with 400 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9481 -0.0519 4.4727 4.4754 

      

2β  2 1.9745 -0.0255 0.9161 0.9168 

      

3β  3 3.1034 0.1034 8.9457 8.9564 

      

4β  1 1.0455 0.0455 1.8189 1.8209 

      

11σ  4 3.9603 -0.0397 0.0779 0.0795 

      

12σ  0.1 0.1000 0.0000 0.0216 0.0216 

      

22σ  2 1.9745 -0.0255 0.0205 0.0212 

      

11φ  0.8 0.7915 -0.0085 0.0010 0.0011 

      

12φ  0.3 0.3002 0.0002 0.0035 0.0035 

      

21φ  0.2 0.2021 0.0021 0.0005 0.0005 

      

22φ  0.5 0.4880 -0.0120 0.0019 0.0021 
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Table 10.  
 
Parameter estimates for 50 subjects with 250 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.1398 0.1398 12.0888 12.1084 

      

2β  2 2.1030 0.1030 4.2328 4.2434 

      

3β  3 2.8447 -0.1553 24.5113 24.5354 

      

4β  1 0.9310 -0.0690 6.6238 6.6286 

      

11σ  4 3.9285 -0.0715 0.1609 0.1660 

      

12σ  0.1 0.1046 0.0046 0.0397 0.0397 

      

22σ  2 1.9636 -0.0364 0.0391 0.0404 

      

11φ  0.8 0.7923 -0.0077 0.0018 0.0018 

      

12φ  0.3 0.3091 0.0091 0.0069 0.0070 

      

21φ  0.2 0.2037 0.0037 0.0009 0.0009 

      

22φ  0.5 0.4894 -0.0106 0.0036 0.0037 
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Table 11.  
 
Parameter estimates for 50 subjects with 500 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9788 -0.0212 3.7542 3.7546 

      

2β  2 1.9891 -0.0109 0.7946 0.7947 

      

3β  3 3.0710 0.0710 7.5976 7.6026 

      

4β  1 1.0334 0.0334 1.5924 1.5935 

      

11σ  4 3.9522 -0.0478 0.0682 0.0705 

      

12σ  0.1 0.0987 -0.0013 0.0167 0.0167 

      

22σ  2 1.9818 -0.0182 0.0184 0.0187 

      

11φ  0.8 0.7947 -0.0053 0.0008 0.0008 

      

12φ  0.3 0.3043 0.0043 0.0030 0.0031 

      

21φ  0.2 0.2023 0.0023 0.0004 0.0004 

      

22φ  0.5 0.4926 -0.0074 0.0015 0.0016 
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Table 12.  
 
Parameter estimates for 50 subjects with 1000 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9685 -0.0315 1.5550 1.5559 

      

2β  2 1.9829 -0.0171 0.3234 0.3237 

      

3β  3 2.9754 -0.0246 3.2904 3.2910 

      

4β  1 0.9912 -0.0088 0.6788 0.6789 

      

11σ  4 3.9796 -0.0204 0.0352 0.0356 

      

12σ  0.1 0.0996 -0.0004 0.0086 0.0086 

      

22σ  2 1.9933 -0.0067 0.0079 0.0080 

      

11φ  0.8 0.7965 -0.0035 0.0004 0.0004 

      

12φ  0.3 0.3017 0.0017 0.0015 0.0015 

      

21φ  0.2 0.2004 0.0004 0.0002 0.0002 

      

22φ  0.5 0.4967 -0.0033 0.0007 0.0007 
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Table 13.  
 
Parameter estimates for 100 subjects with 500 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9806 -0.0194 4.9053 4.9056 

      

2β  2 1.9889 -0.0111 0.9978 0.9979 

      

3β  3 3.0026 0.0026 9.2970 9.2970 

      

4β  1 1.0000 0.0000 1.8722 1.8722 

      

11σ  4 3.9638 -0.0362 0.0801 0.0815 

      

12σ  0.1 0.0972 -0.0028 0.0201 0.0202 

      

22σ  2 1.9785 -0.0215 0.0204 0.0209 

      

11φ  0.8 0.7959 -0.0041 0.0009 0.0009 

      

12φ  0.3 0.3053 0.0053 0.0034 0.0034 

      

21φ  0.2 0.2019 0.0019 0.0004 0.0004 

      

22φ  0.5 0.4945 -0.0055 0.0017 0.0017 
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Table 14.  
 
Parameter estimates for 100 subjects with 1000 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9761 -0.0239 1.7999 1.8005 

      

2β  2 1.9876 -0.0124 0.3706 0.3707 

      

3β  3 3.0889 0.0889 3.5258 3.5337 

      

4β  1 1.0455 0.0455 0.7260 0.7281 

      

11σ  4 3.9801 -0.0199 0.0344 0.0348 

      

12σ  0.1 0.1040 0.0040 0.0084 0.0084 

      

22σ  2 1.9905 -0.0095 0.0090 0.0090 

      

11φ  0.8 0.7985 -0.0015 0.0004 0.0004 

      

12φ  0.3 0.3013 0.0013 0.0015 0.0015 

      

21φ  0.2 0.2013 0.0013 0.0002 0.0002 

      

22φ  0.5 0.4964 -0.0036 0.0007 0.0007 
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Table 15. 
 
Parameter estimates for 100 subjects with 2000 observations in a rectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9877 -0.0123 0.8133 0.8135 

      

2β  2 1.9971 -0.0029 0.1676 0.1676 

      

3β  3 3.0078 0.0078 1.6703 1.6703 

      

4β  1 1.0014 0.0014 0.3410 0.3410 

      

11σ  4 3.9908 -0.0092 0.0165 0.0166 

      

12σ  0.1 0.0998 -0.0002 0.0043 0.0043 

      

22σ  2 1.9948 -0.0052 0.0043 0.0044 

      

11φ  0.8 0.7982 -0.0018 0.0002 0.0002 

      

12φ  0.3 0.3007 0.0007 0.0007 0.0007 

      

21φ  0.2 0.2006 0.0006 0.0001 0.0001 

      

22φ  0.5 0.4976 -0.0024 0.0004 0.0004 
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Table 16.  
 
Parameter estimates for 20 subjects with 80 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.0734 0.0734 50.2752 50.2806 

      

2β  2 2.0890 0.0890 17.1728 17.1808 

      

3β  3 2.9918 -0.0082 83.7806 83.7807 

      

4β  1 0.8921 -0.1079 28.2052 28.2168 

      

11σ  4 3.7270 -0.2730 0.5056 0.5801 

      

12σ  0.1 0.0906 -0.0094 0.1227 0.1228 

      

22σ  2 1.8622 -0.1378 0.1279 0.1468 

      

11φ  0.8 0.7769 -0.0231 0.0069 0.0074 

      

12φ  0.3 0.3215 0.0215 0.0260 0.0265 

      

21φ  0.2 0.2110 0.0110 0.0035 0.0036 

      

22φ  0.5 0.4635 -0.0365 0.0132 0.0145 
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Table 17.  
 
Parameter estimates for 20 subjects with 170 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.0144 0.0144 16.3259 16.3261 

      

2β  2 2.0223 0.0223 3.6316 3.6321 

      

3β  3 2.9298 -0.0702 28.4676 28.4726 

      

4β  1 0.9600 -0.0400 6.7809 6.7825 

      

11σ  4 3.8764 -0.1236 0.1966 0.2119 

      

12σ  0.1 0.0893 -0.0107 0.0506 0.0507 

      

22σ  2 1.9422 -0.0578 0.0520 0.0554 

      

11φ  0.8 0.7843 -0.0157 0.0028 0.0031 

      

12φ  0.3 0.3070 0.0070 0.0096 0.0096 

      

21φ  0.2 0.2041 0.0041 0.0013 0.0013 

      

22φ  0.5 0.4799 -0.0201 0.0047 0.0051 
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Table 18.  
 
Parameter estimates for 20 subjects with 340 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9564 -0.0436 5.0974 5.0993 

      

2β  2 1.9803 -0.0197 1.0594 1.0598 

      

3β  3 3.0439 0.0439 10.4686 10.4705 

      

4β  1 1.0190 0.0190 2.1559 2.1563 

      

11σ  4 3.9480 -0.0520 0.0943 0.0970 

      

12σ  0.1 0.1017 0.0017 0.0251 0.0251 

      

22σ  2 1.9744 -0.0256 0.0245 0.0251 

      

11φ  0.8 0.7910 -0.0090 0.0012 0.0013 

      

12φ  0.3 0.3010 0.0010 0.0043 0.0043 

      

21φ  0.2 0.2023 0.0023 0.0006 0.0006 

      

22φ  0.5 0.4883 -0.0117 0.0023 0.0024 
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Table 19.  
 
Parameter estimates for 50 subjects with 200 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.0721 0.0721 23.0159 23.0211 

      

2β  2 2.0310 0.0310 4.7024 4.7034 

      

3β  3 2.9322 -0.0678 36.3688 36.3734 

      

4β  1 0.9649 -0.0351 8.3279 8.3292 

      

11σ  4 3.8916 -0.1084 0.2075 0.2193 

      

12σ  0.1 0.0942 -0.0058 0.0508 0.0508 

      

22σ  2 1.9547 -0.0453 0.0510 0.0530 

      

11φ  0.8 0.7925 -0.0075 0.0026 0.0026 

      

12φ  0.3 0.3083 0.0083 0.0094 0.0095 

      

21φ  0.2 0.2042 0.0042 0.0012 0.0013 

      

22φ  0.5 0.4885 -0.0115 0.0048 0.0049 
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Table 20.  
 
Parameter estimates for 50 subjects with 425 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.0147 0.0147 4.9416 4.9418 

      

2β  2 2.0010 0.0010 1.0043 1.0043 

      

3β  3 3.0113 0.0113 10.0859 10.0861 

      

4β  1 1.0164 0.0164 2.0348 2.0351 

      

11σ  4 3.9655 -0.0345 0.0805 0.0817 

      

12σ  0.1 0.0966 -0.0034 0.0208 0.0208 

      

22σ  2 1.9773 -0.0227 0.0214 0.0219 

      

11φ  0.8 0.7933 -0.0067 0.0009 0.0010 

      

12φ  0.3 0.3045 0.0045 0.0035 0.0035 

      

21φ  0.2 0.2019 0.0019 0.0005 0.0005 

      

22φ  0.5 0.4931 -0.0069 0.0018 0.0019 
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Table 21.  
 
Parameter estimates for 50 subjects with 850 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9643 -0.0357 2.0163 2.0176 

      

2β  2 1.9838 -0.0162 0.4176 0.4179 

      

3β  3 3.0000 0.0000 3.9642 3.9642 

      

4β  1 0.9944 -0.0056 0.8118 0.8118 

      

11σ  4 3.9797 -0.0203 0.0388 0.0393 

      

12σ  0.1 0.0992 -0.0008 0.0098 0.0098 

      

22σ  2 1.9905 -0.0095 0.0099 0.0100 

      

11φ  0.8 0.7967 -0.0033 0.0005 0.0005 

      

12φ  0.3 0.3019 0.0019 0.0017 0.0017 

      

21φ  0.2 0.2008 0.0008 0.0002 0.0002 

      

22φ  0.5 0.4955 -0.0045 0.0008 0.0009 
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Table 22.  
 
Parameter estimates for 100 subjects with 400 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9045 -0.0955 7.3969 7.4061 

      

2β  2 1.9608 -0.0392 1.5213 1.5228 

      

3β  3 3.0978 0.0978 14.1507 14.1602 

      

4β  1 1.0507 0.0507 3.2248 3.2274 

      

11σ  4 3.9536 -0.0464 0.1058 0.1080 

      

12σ  0.1 0.0981 -0.0019 0.0279 0.0279 

      

22σ  2 1.9734 -0.0266 0.0279 0.0286 

      

11φ  0.8 0.7957 -0.0043 0.0012 0.0013 

      

12φ  0.3 0.3045 0.0045 0.0044 0.0044 

      

21φ  0.2 0.2021 0.0021 0.0006 0.0006 

      

22φ  0.5 0.4944 -0.0056 0.0023 0.0024 
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Table 23.  
 
Parameter estimates for 100 subjects with 850 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 3.9803 -0.0197 2.1595 2.1599 

      

2β  2 1.9963 -0.0037 0.4426 0.4427 

      

3β  3 3.0293 0.0293 4.4227 4.4236 

      

4β  1 1.0062 0.0062 0.9028 0.9028 

      

11σ  4 3.9769 -0.0231 0.0428 0.0433 

      

12σ  0.1 0.0937 -0.0063 0.0106 0.0106 

      

22σ  2 1.9860 -0.0140 0.0105 0.0107 

      

11φ  0.8 0.7969 -0.0031 0.0005 0.0005 

      

12φ  0.3 0.3022 0.0022 0.0018 0.0018 

      

21φ  0.2 0.2014 0.0014 0.0002 0.0002 

      

22φ  0.5 0.4970 -0.0030 0.0009 0.0009 
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Table 24.  
 
Parameter estimates for 100 subjects with 1700 observations in a nonrectangular design. 

Vector Autoregressive 

Parameter True Value Estimate Bias Variance MSE 

      

1β  4 4.0063 0.0063 0.9196 0.9196 

      

2β  2 2.0032 0.0032 0.1918 0.1918 

      

3β  3 2.9985 -0.0015 1.8004 1.8004 

      

4β  1 0.9958 -0.0042 0.3754 0.3754 

      

11σ  4 3.9893 -0.0107 0.0191 0.0192 

      

12σ  0.1 0.0996 -0.0004 0.0049 0.0049 

      

22σ  2 1.9933 -0.0067 0.0050 0.0050 

      

11φ  0.8 0.7979 -0.0021 0.0002 0.0002 

      

12φ  0.3 0.3016 0.0016 0.0008 0.0008 

      

21φ  0.2 0.2006 0.0006 0.0001 0.0001 

      

22φ  0.5 0.4971 -0.0029 0.0004 0.0004 
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Table 25.  
 
Parameter estimates for 20 subjects with 100 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2159 0.0159 0.0152 0.0154 

      

1β  0.5 0.5077 0.0077 0.0438 0.0438 

      
2σ  4 3.9751 -0.0249 0.0603 0.0609 
      
ρ  0.5 0.4932 -0.0068 0.0168 0.0169 
      
φ  0.2 0.2001 0.0001 0.0090 0.0090 
      
γ  0.3 0.5520 0.0520 0.1093 0.1120 
      

α  2 2.0044 0.0044 0.0130 0.0130 
      
δ  0.04 0.0688 0.0288 0.0021 0.0029 

 
Table 26.  
 
Parameter estimates for 20 subjects with 200 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2143 0.0143 0.0097 0.0099 

      

1β  0.5 0.5007 0.0007 0.0233 0.0233 

      
2σ  4 3.9902 -0.0098 0.0117 0.0118 
      
ρ  0.5 0.4897 -0.0103 0.0073 0.0074 
      
φ  0.2 0.1966 -0.0034 0.0048 0.0048 
      
γ  0.3 0.5165 0.0165 0.0319 0.0322 
      

α  2 2.0027 0.0027 0.0064 0.0064 
      
δ  0.04 0.0520 0.0120 0.0011 0.0012 
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Table 27.  
 
Parameter estimates for 20 subjects with 400 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2013 0.0013 0.0060 0.0060 

      

1β  0.5 0.5031 0.0031 0.0130 0.0131 

      
2σ  4 3.9954 -0.0046 0.0092 0.0092 
      
ρ  0.5 0.4937 -0.0063 0.0039 0.0039 
      
φ  0.2 0.1966 -0.0034 0.0024 0.0025 
      
γ  0.3 0.5085 0.0085 0.0108 0.0109 
      

α  2 2.0017 0.0017 0.0029 0.0029 
      
δ  0.04 0.0450 0.0050 0.0006 0.0007 

 
Table 28.  
 
Parameter estimates for 50 subjects with 250 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2080 0.0080 0.0092 0.0093 

      

1β  0.5 0.5017 0.0017 0.0216 0.0216 

      
2σ  4 3.9999 -0.0001 0.0309 0.0309 
      
ρ  0.5 0.4950 -0.0050 0.0072 0.0072 
      
φ  0.2 0.1990 -0.0010 0.0044 0.0044 
      
γ  0.3 0.5167 0.0167 0.0244 0.0247 
      

α  2 1.9989 -0.0011 0.0061 0.0061 
      
δ  0.04 0.0504 0.0104 0.0009 0.0010 
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Table 29.  
 
Parameter estimates for 50 subjects with 500 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2049 0.0049 0.0051 0.0051 

      

1β  0.5 0.4945 -0.0055 0.0117 0.0118 

      
2σ  4 3.9943 -0.0057 0.0086 0.0086 
      
ρ  0.5 0.4975 -0.0025 0.0032 0.0033 
      
φ  0.2 0.1988 -0.0012 0.0020 0.0020 
      
γ  0.3 0.5043 0.0043 0.0103 0.0103 
      

α  2 2.0015 0.0015 0.0027 0.0027 
      
δ  0.04 0.0434 0.0034 0.0005 0.0005 

 
Table 30.  
 
Parameter estimates for 50 subjects with 1000 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2057 0.0057 0.0033 0.0033 

      

1β  0.5 0.4954 -0.0046 0.0065 0.0065 

      
2σ  4 3.9999 -0.0001 0.0025 0.0025 
      
ρ  0.5 0.4989 -0.0011 0.0014 0.0014 
      
φ  0.2 0.1971 -0.0029 0.0010 0.0010 
      
γ  0.3 0.5037 0.0037 0.0047 0.0047 
      

α  2 2.0008 0.0008 0.0013 0.0013 
      
δ  0.04 0.0405 0.0005 0.0003 0.0003 
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Table 31.  
 
Parameter estimates for 100 subjects with 500 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2006 0.0006 0.0059 0.0059 

      

1β  0.5 0.5053 0.0053 0.0115 0.0115 

      
2σ  4 3.9929 -0.0071 0.0109 0.0109 
      
ρ  0.5 0.4948 -0.0052 0.0037 0.0038 
      
φ  0.2 0.1985 -0.0015 0.0021 0.0021 
      
γ  0.3 0.5071 0.0071 0.0102 0.0102 
      

α  2 1.9994 -0.0006 0.0025 0.0025 
      
δ  0.04 0.0445 0.0045 0.0006 0.0006 

 
Table 32.  
 
Parameter estimates for 100 subjects with 1000 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2026 0.0026 0.0033 0.0033 

      

1β  0.5 0.5009 0.0009 0.0073 0.0073 

      
2σ  4 4.0014 0.0014 0.0059 0.0059 
      
ρ  0.5 0.4969 -0.0031 0.0015 0.0015 
      
φ  0.2 0.1970 -0.0030 0.0011 0.0011 
      
γ  0.3 0.4972 -0.0028 0.0027 0.0027 
      

α  2 2.0029 0.0029 0.0013 0.0013 
      
δ  0.04 0.0396 -0.0004 0.0003 0.0003 
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Table 33.  
 
Parameter estimates for 100 subjects with 2000 observations in a rectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2009 0.0009 0.0029 0.0029 

      

1β  0.5 0.5005 0.0005 0.0059 0.0059 

      
2σ  4 4.0001 0.0001 0.0011 0.0011 
      
ρ  0.5 0.4976 -0.0024 0.0007 0.0007 
      
φ  0.2 0.1998 -0.0002 0.0005 0.0005 
      
γ  0.3 0.5010 0.0010 0.0018 0.0018 
      

α  2 2.0008 0.0008 0.0006 0.0006 
      
δ  0.04 0.0397 -0.0003 0.0002 0.0002 

 
Table 34.  
 
Parameter estimates for 20 subjects with 80 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2267 0.0267 0.0178 0.0185 

      

1β  0.5 0.5106 0.0106 0.0486 0.0487 

      
2σ  4 3.9795 -0.0205 0.1369 0.1374 
      
ρ  0.5 0.4927 -0.0073 0.0224 0.0225 
      
φ  0.2 0.2009 0.0009 0.0111 0.0111 
      
γ  0.3 0.5632 0.0632 0.1592 0.1632 
      

α  2 1.9925 -0.0075 0.0193 0.0193 
      
δ  0.04 0.0749 0.0349 0.0028 0.0040 
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Table 35.  
 
Parameter estimates for 20 subjects with 170 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2164 0.0164 0.0118 0.0120 

      

1β  0.5 0.5071 0.0071 0.0267 0.0268 

      
2σ  4 3.9884 -0.0116 0.0342 0.0343 
      
ρ  0.5 0.4883 -0.0117 0.0096 0.0097 
      
φ  0.2 0.1944 -0.0056 0.0056 0.0056 
      
γ  0.3 0.5193 0.0193 0.0396 0.0400 
      

α  2 1.9994 -0.0006 0.0077 0.0077 
      
δ  0.04 0.0555 0.0155 0.0013 0.0015 

 
Table 36.  
 
Parameter estimates for 20 subjects with 340 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2069 0.0069 0.0069 0.0070 

      

1β  0.5 0.5074 0.0074 0.0140 0.0141 

      
2σ  4 3.9995 -0.0005 0.0034 0.0034 
      
ρ  0.5 0.4938 -0.0062 0.0039 0.0040 
      
φ  0.2 0.1974 -0.0026 0.0026 0.0026 
      
γ  0.3 0.5083 0.0083 0.0089 0.0090 
      

α  2 2.0014 0.0014 0.0034 0.0034 
      
δ  0.04 0.0471 0.0071 0.0007 0.0008 
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Table 37.  
 
Parameter estimates for 50 subjects with 200 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2129 0.0129 0.0107 0.0109 

      

1β  0.5 0.5028 0.0028 0.0254 0.0254 

      
2σ  4 3.9942 -0.0058 0.0207 0.0208 
      
ρ  0.5 0.4877 -0.0123 0.0091 0.0093 
      
φ  0.2 0.1985 -0.0015 0.0056 0.0056 
      
γ  0.3 0.5100 0.0100 0.0210 0.0211 
      

α  2 2.0034 0.0034 0.0073 0.0073 
      
δ  0.04 0.0544 0.0144 0.0013 0.0015 

 
Table 38.  
 
Parameter estimates for 50 subjects with 425 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2057 0.0057 0.0064 0.0065 

      

1β  0.5 0.5055 0.0055 0.0125 0.0125 

      
2σ  4 3.9987 -0.0013 0.0158 0.0158 
      
ρ  0.5 0.4957 -0.0043 0.0035 0.0035 
      
φ  0.2 0.1948 -0.0052 0.0026 0.0026 
      
γ  0.3 0.5085 0.0085 0.0147 0.0148 
      

α  2 2.0009 0.0009 0.0028 0.0028 
      
δ  0.04 0.0436 0.0036 0.0006 0.0006 
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Table 39.  
 
Parameter estimates for 50 subjects with 850 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2027 0.0027 0.0038 0.0038 

      

1β  0.5 0.4985 -0.0015 0.0074 0.0074 

      
2σ  4 3.9978 -0.0022 0.0057 0.0057 
      
ρ  0.5 0.4980 -0.0020 0.0017 0.0017 
      
φ  0.2 0.2002 0.0002 0.0013 0.0013 
      
γ  0.3 0.5021 0.0021 0.0046 0.0046 
      

α  2 2.0001 0.0001 0.0013 0.0013 
      
δ  0.04 0.0404 0.0004 0.0004 0.0004 

 
Table 40.  
 
Parameter estimates for 100 subjects with 400 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2081 0.0081 0.0075 0.0075 

      

1β  0.5 0.5004 0.0004 0.0171 0.0171 

      
2σ  4 3.9959 -0.0041 0.0154 0.0155 
      
ρ  0.5 0.4954 -0.0046 0.0047 0.0048 
      
φ  0.2 0.1957 -0.0043 0.0029 0.0029 
      
γ  0.3 0.5078 0.0078 0.0187 0.0188 
      

α  2 1.9977 -0.0023 0.0034 0.0034 
      
δ  0.04 0.0489 0.0089 0.0007 0.0008 
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Table 41.  
 
Parameter estimates for 100 subjects with 850 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2050 0.0050 0.0041 0.0041 

      

1β  0.5 0.4966 -0.0034 0.0074 0.0074 

      
2σ  4 4.0017 0.0017 0.0052 0.0052 
      
ρ  0.5 0.4972 -0.0028 0.0016 0.0016 
      
φ  0.2 0.1984 -0.0016 0.0012 0.0012 
      
γ  0.3 0.5090 0.0090 0.0088 0.0089 
      

α  2 2.0005 0.0005 0.0014 0.0014 
      
δ  0.04 0.0404 0.0004 0.0003 0.0003 

 
Table 42.  
 
Parameter estimates for 100 subjects with 1700 observations in a nonrectangular design. 

Gaussian-Exponential 

Parameter True Value Estimate Bias Variance MSE 

      

0β  0.2 0.2017 0.0017 0.0031 0.0031 

      

1β  0.5 0.5007 0.0007 0.0063 0.0063 

      
2σ  4 3.9968 -0.0032 0.0018 0.0018 
      
ρ  0.5 0.4980 -0.0020 0.0009 0.0009 
      
φ  0.2 0.1995 -0.0005 0.0006 0.0006 
      
γ  0.3 0.5003 0.0003 0.0039 0.0039 
      

α  2 2.0002 0.0002 0.0007 0.0007 
      
δ  0.04 0.0405 0.0005 0.0002 0.0002 
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CHAPTER V 

 

CONCLUSION AND RECOMMENDATION 

Conclusion 

 The primary impetus for this study was the development of an approach that 

could jointly model a longitudinal process with informative schedule data.  In this study 

two proposed models were developed that demonstrated that parameter estimates could 

be obtained from simulated data exhibiting an informative schedule structure.  For both 

the Vector Autoregressive and Gaussian-Exponential models, parameter estimates 

showed much more bias and variability when observation numbers were at the lowest 

levels which was not surprising.  However, in almost all cases the amount of bias and 

variability in the estimates decreased substantially when observation numbers increased.  

In fact, when observation numbers were at their highest levels the amount of bias and 

variation in estimates for all model parameters were relatively small compared to the 

value of the parameter being estimated.  In essences, both proposed models demonstrated 

large sample consistency and were asymptotically unbiased which are two desirable 

characteristics of any estimator (Fitzmaurice et. al., 2004).   

At small observation numbers, one would expect that there would be a certain 

amount of non-directional variation in obtained estimates due to inefficiency in the 

optimization algorithm.   In fact, for both models several parameters did demonstrate a 
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non-directional bias in obtained estimates at small observation numbers.  However, this 

was not necessarily the case for bias in estimates for the variance parameters for both 

proposed models and the correlation parameter in the GE model.  In these cases, the 

estimates obtained demonstrated that the proposed models underestimated the true 

parameter values slightly which suggests a common issue in estimation between both 

approaches.  This underestimation of variance components when estimates are obtained 

by maximum likelihood estimation is a common problem and arises because the error in 

estimating the other model parameters are not being accounted for in the estimation of the 

variance components (Fitzmaurice et. al., 2004; Wu, Gumpertz, & Boos, 2001).  To 

account for this bias associated with the estimation of multiple parameters many different 

techniques have been developed with restricted maximum likelihood (REML) estimation 

being one of the more common approaches.  Here estimates for the variance components 

are determined from the relevant part of the data separate from the part that is used to 

estimate the other parameters and can be achieved in a number of ways (Wu et. al., 

2001).  One possible way to obtain the REML would require that data be transformed 

into a linear combination that does not depend on the other parameters and then 

maximize a slightly modified log-likelihood equation to obtain estimates for the variance 

components (Wu et. al., 2001).  Since both proposed informative schedule models 

included several parameters that need to be simultaneously estimated, an alternative 

approach to estimating the variance components with the goal of reducing the amount of 

observed bias would be a logical future approach.  However, these variance components 

were not the only parameters that showed some level of underestimation.  In fact, there 

were a few parameters from both models that also demonstrated a systematic 
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overestimation in obtained estimates.  However, it should be noted that in every case the 

amount of bias observed for these parameters decreased substantially as observation 

numbers increased, suggesting that at least part of the observed systematic bias may be 

due to inefficiency in estimation of the developed algorithms at small observation 

numbers. 

   When parameter efficiency was evaluated for nonrectangular samples, bias 

and variation in estimates showed similar trends and nearly similar values as seen in 

rectangular samples.  In addition, estimates obtained from nonrectangular sample 

matrices also demonstrated large sample consistency and were asymptotically unbiased.  

However, in several cases the amount of variation in estimates and in a few cases the 

amount of  bias observed was marginally larger in estimates obtained from 

nonrectangular sample matrices when compared to estimates obtained from rectangular 

sample matrices at similar observation numbers.  In general, when there are missing data, 

there will be a level of loss of information and a reduction in the precision of obtained 

estimates which could account for this reduced efficiency for nonrectangular estimates 

(Lin & Stivers, 1975; Fitzmaurice et. al., 2004).    

Finally, the comparison of common parameters with the mixed-effect approach 

demonstrated that both models were, in general, more efficient at estimating the true 

parameter values.  For both models, the amount of bias observed for the mixed-effects 

model estimates was larger than for estimates from either informative schedule model.  

This underestimation of the mixed-effects model compared to the informative schedule 

model was more obvious in the Vector Autoregressive model.  Also, estimates for both 

informative schedule and mixed-effects models resulted in a reduction in the observed 
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variation of estimates as observation numbers increased.  However, this reduction in the 

amount of variation was more pronounced in the informative schedule models when 

compared to the mixed-effects model.  Thus, both informative schedule models 

demonstrated increased relative efficiency when compared to estimates obtained from the 

mixed-effects model.  However, it should be reminded to the reader that a single 

parameter was compared between the informative schedule models and the mixed-effects 

model.  The efficiency of a particular model over another approach can not be ascertained 

in the evaluation of a single parameter in most cases.  Although, a direct comparison of 

all informative schedule model parameters can not be performed since the mixed-effects 

model does not include estimates for many of these parameters and, in fact, is where the 

potential benefit of the informative schedule model resides.  More precisely, the 

informative schedule model not only allows for the estimation of mean changes of the 

response variable but would also allow for the estimation of the effect that time intervals 

has on the obtained response outcome which would not be possible in analysis by 

traditional approaches.   

This study, in conclusion, demonstrates that the two proposed informative 

schedule models were able to estimate parameters when data were simulated having 

informative schedule stochastic structure.  The estimates obtained from informative 

schedule models also demonstrated that they could be estimated efficiently, especially 

when subject or observation numbers where large.   Furthermore, this study demonstrated 

that efficient estimation can still be achieved even when sample matrices are unbalanced 

or nonrectangular.  Finally, estimates for the informative model were as efficient or more 

efficient than estimates obtained by traditional longitudinal methods. 
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Recommendations for Future Researchers 

 The optimization algorithms developed for this study did well in estimating 

the Monte Carlo simulated informative schedule data constructed for each model 

approach.  Although, there are other optimization algorithms available that may give 

different patterns in estimates than what was observed in this study.  Therefore, one 

should exercise caution when applying other algorithms to the informative schedule 

models.  Furthermore, optimization routines are susceptible to starting values and in 

many cases parameter estimates can be drastically different when other values are 

supplied (Cam, 1990; SAS Institute, 2004).  Since, a single set of starting values was 

supplied to the subroutines other initial values might result in entirely different estimates 

and should therefore be considered when choosing starting values.  It should also be 

noted that the starting values supplied in this study were close to the root of the supplied 

function to increase the likelihood of convergence.  Other values, especially ones further 

from the root of the function or values not within the feasible range may result in 

different estimates not to mention changes in bias and variation seen in those estimates.  

Also, the utilized algorithm developed depends on the approximation of the Hessian 

matrix for both models and the approximation of the gradient vector in the GE model 

which would potentially result in less efficient estimations.  Therefore, the determination 

of the Hessian matrix and gradient vector of the likelihood equations would potentially 

improve overall estimation efficiency.  Finally, a model’s utility is best demonstrated by 

the analysis of ‘real’ data which was not performed in the present study.  The analysis of 

data that exhibits informative schedule stochastic structure and the subsequent 

interpretation of the obtained results would be a logical future approach.    
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APPENDIX A 

 

GRADIENT DERIVATIVES FOR GAUSSIAN- 
EXPONENTIAL INFORMATIVE MODELS 
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For the second special case of the informative schedule model, the Gaussian-

Exponential derivatives are given below.  The derivative for the eight parameters can be 

summarized as: 
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APPENDIX B 

 

SAS CODE FOR VECTOR AUTOREGRESSIVE AND GAUSSIAN- 
EXPONENTIAL INFORMATIVE MODELS 
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Vector Autoregressive Function Call.  
 
 
start  logl(x)  global(y, xmatrix, nobs, m); 
nn=cusum(nobs); 
opt={1}; 
beta=J(2,2,.); 
beta[1,1]=x[1]; 
beta[1,2]=x[2]; 
beta[2,1]=x[3]; 
beta[2,2]=x[4]; 
 
sigma=J(2,2,.); 
sigma[1,1]=x[5]; 
sigma[1,2]=x[6]; 
sigma[2,1]=x[6]; 
sigma[2,2]=x[7]; 
ss=det(sigma); 
 
Phi=J(2,2,.); 
Phi[1,1]=x[8]; 
Phi[1,2]=x[9]; 
Phi[2,1]=x[10]; 
Phi[2,2]=x[11]; 
 
index=1:nn[1]; 
mu=xmatrix[1,]*beta; 
w1=y[index,1]-mu[ ,1]; 
w2=y[index,2]-mu[ ,2]; 
w= w1||w2; 
call varmalik(lnl,w,phi, ,sigma,,,opt); 
fun=lnl[1]; 
 
do k= 2 to m; 
 
lb=nn[k-1]+1; 
index=lb:nn[k]; 
mu=xmatrix[k,]*beta; 
 
w1=y[index,1]-mu[ ,1]; 
   w2=y[index,2]-mu[ ,2]; 
w= w1||w2; 
 
call varmalik(lnl,w,phi, ,sigma,,,opt); 
      fun=fun+lnl[1]; 
end; 
 
return(fun); 
finish logl; 
 
x0={4, 2, 3, 1, 4, 0.1, 2, 0.8, 0.3, 0.2, 0.5}; 
 
optn = {1 0 . 1 . . . 11};  
 
 
call nlpdd (rc, xres, "logl", x0, optn,,,); 
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Gaussian-Exponential Function Call. 
 
 
start maxlike(x) global(y, xmatrix, obsvec); 
 m=ncol(y)/2; 
 observ=m/2; 
 j=1;  
 fun=0;fun1=0;fun2=0;fun3=0; 
  
 
 do k = 1 to m; 
  if k <= observ then half=obsvec[1,1]; 
   else half=obsvec[2,1]; 
 
 f1 = -0.5*log(x[1])-0.5*(((y[1,j]-(xmatrix[1,k]*x[2])- 
          (xmatrix[1,k+1]*x[3]))**2)/x[1]); 
 
 fun1=fun1+f1; 
 
 do i = 2 to half; 
 
 f2=-0.5*log(x[1])-0.5*log(1-(x[4]**2))-0.5*(((y[i,j]- 
         (y[i,j+1]*x[5])-(y[i-1,j]*x[6])-(xmatrix[1,k]*x[2])- 
         (xmatrix[1,k+2]*x[3]))**2)/(x[1]*(1-(x[4]**2)))); 
 
 f3 =(x[7]+(y[i-1,j]*x[8])-exp(x[7]+(y[i-1,j]*x[8]))*y[i,j+1]); 
 
   fun2=fun2+f2; 
   fun3=fun3+f3; 
  end; 
 j=j+2; 
 end; 
 
 fun = m+fun1+fun2+fun3; 
 
return(fun); 
finish maxlike; 
 
 

Gaussian-Exponential Gradient Call. 
 
 
start maxlike(x) global(y, xmatrix, nvector, maxsub); 
  
 i=1;tic=0; 
 fun=0;fun1=0;fun2=0;fun3=0; 
  
 do k = 1 to maxsub; 
   
  mu=(xmatrix[1,i]*x[2])+(xmatrix[1,i+1]*x[3]); 
  f1=-0.5*log(x[1])-0.5*(((y[tic+1,1]-mu)**2)/x[1]); 
   
  fun1=fun1+f1; 
 
  do j = 2 to nvector[1,k]; 
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 f2=-0.5*log(x[1])-0.5*log(1-(x[4]**2))-0.5*(((y[tic+j,1]-
(y[tic+j,2]*x[6])-(y[tic+j-1,1]*x[5])-mu)**2)/(x[1]*(1-(x[4]**2)))); 
 f3=(x[7]+(y[tic+j-1,1]*x[8])-exp(x[7]+y[tic+j-
1,1]*x[8])*y[tic+j,2]); 
 
   fun2=fun2+f2; 
   fun3=fun3+f3; 
  end; 
  i=i+2;tic=tic+nvector[1,k]; 
 end; 
 
 fun=maxsub+fun1+fun2+fun3; 
 
return(fun); 
finish maxlike; 
 
start gradient(x) global(y, xmatrix, nvector, maxsub); 
  
 i=1; tic=0; 
 sigma1=0;sigma2=0;beta1a=0;beta2a=0;beta1a=0;beta1b=0;beta2b=0;rho=0
;gamma=0;phi=0;alpha=0;delta=0;sumy1=0;sumy2=0;sumni=0;summinus=0; 
 g=j(1,8,.); 
 
 do k =1 to maxsub; 
 
   sumni=sumni+nvector[1,k]; 
   summinus=summinus+(nvector[1,k]-1); 
   sumy1=sumy1+y[tic+1,1]; 
 
  mu=(xmatrix[1,i]*x[2])+(xmatrix[1,i+1]*x[3]); 
  yi1=y[tic+1,1]; 
 
  sig1=((yi1-mu)**2)/(x[1]**2); 
  bet1=(yi1-mu)*(xmatrix[1,i+1]/x[1]); 
  bet2=(yi1-mu)*(xmatrix[1,i]/x[1]); 
   
  sigma1=sigma1+sig1; 
  beta1a=beta1a+bet1; 
  beta2a=beta2a+bet2; 
 
  do j = 2 to nvector[1,k]; 
 
   yij=y[tic+j,1]; 
   tij=y[tic+j,2]; 
   yijm=y[tic+j-1,1]; 
 
   rij=(yij-(tij*x[6])-(yijm*x[5])-mu); 
 
   sig2=(rij**2)/((x[1]**2)*(1-(x[4]**2))); 
   bet1b=rij*(xmatrix[1,i+1]/(x[1]*(1-(x[4]**2)))); 
   bet2b=rij*(xmatrix[1,i]/(x[1]*(1-(x[4]**2)))); 
   rho2=(rij**2)*(x[4]/(x[1]*((1-(x[4]**2))**2))); 
   gam2=rij*(tij/(x[1]*(1-(x[4]**2)))); 
   phi2=rij*(yijm/(x[1]*(1-(x[4]**2)))); 
   alp2=(exp(x[7]+(yijm*x[8]))*tij); 
   del2=(yijm*exp(x[7]+(yijm*x[8]))*tij); 
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   sumy2=sumy2+y[tic+j,1]; 
 
   sigma2=sigma2+sig2; 
   beta1b=beta1b+bet1b; 
   beta2b=beta2b+bet2b; 
 
   rho=rho+rho2; 
   gamma=gamma+gam2; 
   phi=phi+phi2; 
 
   alpha=alpha+alp2; 
   delta=delta+del2; 
 
  end; 
  i=i+2;tic=tic+nvector[1,k]; 
 
  sumy2=sumy2-y[tic,1]; 
 
 end; 
 
 sumy=sumy1+sumy2; 
 
 g[1] = (0.5*sigma1)+(0.5*sigma2)-(sumni/(2*x[1])); 
 g[2] = beta1a+beta1b; 
 g[3] = beta2a+beta2b; 
 g[4] =((summinus*x[4])/(1-(x[4]**2)))-rho; 
 g[5] = phi; 
 g[6] = gamma; 
 g[7] = summinus-alpha; 
 g[8] = sumy-delta; 
 
return (g); 
finish gradient; 
 
x0 = {4, 0.2, 0.5, 0.5, 0.2, 0.5, 1, 0.04}; 
 
optn = {1 0 . 1 . . . 11};  
 
con=j(1,8,.0000001)//j(1,8,.); 
 
call nlpdd (rc, xres, "maxlike", x0, optn, con) grd="gradient"; 
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APPENDIX C 

 

MAPLE CODE FOR GAUSSIAN-EXPONENTIAL DERIVATIVES 
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> with(linalg): 
> with(codegen, makeproc): 
>  
>  
>  
> beta:=vector[col](p); 

 
> X:=matrix(m,n); 

 
>  

 
>  

 
>  

>  

>  

>  

>  

>  

>  

>  

>  
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