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ABSTRACT

Bronsert, Michael RichardA Joint Model of a Longitudinal Process and Informative
Time Schedule Dat&ublished Doctor of Philosophy Dissertation, University of
Northern Colorado, 2009.

Longitudinal studies are commonly encountered in a variety of researshrarea
which the scientific interest is in the pattern of change in a response variableneve
These observations are traditionally scheduled prospectively and the@fomen fixed
time interval models for repeated measurements are adequate. Conversely, in
informative schedule studies in which subsequent observations are scheduled on the basis
of prior response outcomes, time between observations now becomes informative in the
longitudinal process. Traditional fixed time approaches, however, are unable® util
the informative nature of the data lessening the inferences achieved bypihesehes.
Therefore, the purpose of this research was the development of a joint model of a
longitudinal process and informative time schedule data. Maximum likelihoodbéss
(MLE) for two special cases of the proposed model were obtained from Monte Carl
simulated data by employing the Multivariate Newton-Raphson optimizationeout
implemented in a SAS/IML call statements. Parameter estimatesdetarmined for a
few select cases of subject and observation length and included parameiaiesstr

rectangular and nonrectangular observation matrices. Finally, estirbtdesed from



PROC MIXED and from the proposed model were compared for accuracy andefficie

by examining their bias, variance, mean square error (MSE), and reféitieney.
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CHAPTER |

INTRODUCTION

Repeated measurement data arises when measurements of the same response
variable are taken repeatedly on each of a number of experimental units oissubjeb
may be allocated to one of several treatment schemes. Repeated measdega are in
contrast to cross-sectional designs in which a single measurement of theeespons
variable is taken on each subject which also may be allocated to one of geatmatnt
schemes. The major advantage of repeated measurement designs o\s&ctiass-
designs is their capacity to separate inherent between-subject from-suthect
variability (Diggle, Heagerty, Liang, & Zeger, 2002). This separation ofitbe
variability sources allows for the characterization in the change ofgpernse variable
across observations and the factors that influence that change (Fitzimlzaircde&
Ware, 2004). However, repeated measurement designs, in general, require more complex
computational approaches than cross-sectional designs since observations on eetch subj
are considered correlated, i.e., subsequent response measurements are depenaient on pri
measurement values. For example, the amount of weight an individual is able to lose
following the administration of a weight loss pill is dependent on his or her prior weight,
i.e., heaver individuals may have more opportunity to lose more weight than lighter

individuals. This correlation, if ignored, would potentially result in overestimatiomeof



sampling variability since the excess amount of variability shared betweesated
observations would not be removed from the estimates of variability obtained for each
observation separately. In essence, this failure to remove the overlappinditsariabi
would result in its inclusion in the overall estimate twice. Consequently, this
overestimation of variability would in turn lead to an overly pessimistic atiof
precision which ultimately could result in misleading inferences obtaioedtiie use of
this variability estimate (Fitzmaurice et al., 2004).

The term ‘longitudinal data’ has also been applied to the study of repeated
measurements in which the response variable is observed over a given time period
(Davis, 2002). These studies are commonly encountered in epidemiology, dliaisal t
and social science studies where the scientific interest is in the pattdrangfe in a
response variable over time (Hedeker & Gibbons, 2006). That is to say, that time of
observation is considered a factor in the explanation of the change in the response
variable along with other planned factors of interest. For example, this appraach all
research practitioners to evaluate how a set of given factors or e fsiogir (e.g.,
preventive care protocols, novel drug treatments, skills training, etc.)sefesmges in a
response variable (e.g., disease progression, biomarker changes, resuki on a s
assessment test, etc.) across a given time period. Furthermore figtisatenethod also
allows practitioners to characterize changes in a response varigblateurysm size,
tumor growth, etc.) over a given time period in the absences of other explanetory fa
other than time itself.

A cornucopia of longitudinal methods has been developed to accommodate

several different study designs along with a variety of response ana&xplavariable



types (c.f., Crowder & Hand, 1990: Laird, Donnelly & Ware, 1992: Lindsey, 1993:
Everitt, 1995: Keselman, Alginas & Kowalchuk, 2001). These methods range from a
simple univariate approach to the more complex mixed-effects models, but ralgene
each method is often utilized more often for a specific discipline or developed t@solve
particular research objective that other approaches fail to address alye(Retes,

2002). That is to say, the choice of a particular method utilized by a researchetsdepe
on the objective of the research project, the particular design of the studyopratatc

the nature of the process that generates the responses observed during.tHeostudy
example, mixed-effects models were developed to address researclvebjiett
traditional repeated measurement approaches were unable to achieve due tdythe ove
restrictive assumption of constant variances and the inability to analysewat
containing missing values in these models. However, these traditional approaghes ma
be preferred for some designs in which these limitations are of less impartaatzsent
altogether since they are, in general, less computationally complex. Tierscioosing

a statistical model one methodological approach’s strength may be its weghkmeesa
different set of research objectives and the underlying process that getiegaibserved

response variable.

Statement of the Problem

Despite the variety of approaches to the analysis of longitudinal datahaocom
characteristic of each method is the assumption that time of observatioxeid &attor.
This assumption limits the inferential scope or the explanatory abilibheahbdel to the

specific times observed within the given study protocol (Montgomery, 2005). Indeed, in



experimental longitudinal studies in which observation times are prospectiiielyuted

on the bases of theoretical, pharmacokinetic or convenience reasons, this assismpti
valid by design. Here, each subject regardless of treatment group would be observed
more or less at the same time periods resulting in relatively consistenntervals

across subjects. However, this approach is in contrast to a so called ‘obsdfvationa
longitudinal study in which a different stochastic structure is present in healiction
protocol. In this design, observation periods are not prospectively scheduled but are
adaptively determined on the bases of prior response outcomes, i.e., subsequent
observation periods are determined based on the outcome of the response variable of the
previous observations. This adaptive scheduling approach based on prior response
outcomes, therefore, assumes that time between subsequent observationsdrds inher
information to contribute to the explanation of the changes in the response variable or
assumes an ‘informative schedule’ design. The informative nature of thys desi be
appreciated in that shorter time frames between two given observations woulketpst
have smaller changes observed in the response variable while longer timewrtes
most likely have correspondingly larger changes in the response valtiablalso
important to note that, potentially, each subject would have different informatgthk

of observations suggesting that time in this model is no longer a fixed fac¢har |
explanation of changes observed in the response variable. Therefore, appbting exi
longitudinal models with the assumption that time is a fixed factor would result in
incorrect estimates of the sampling variability and could therefore resulsleading
inferences when applied to data having this stochastic structure. Thigyrfabili

existing longitudinal models to account for the informative nature of observed time



schedules suggests a need for a method that jointly models the distribution oftinforma
intermittent times and corresponding measured responses, and not the usual conditional
models, measured responses given the schedule times. The utilization of tmepteht

on informative schedule data would potentially result in more accurate estiofat

sampling variability and therefore, would improve the overall generaligabilthe

given study.

Purpose and Research Questions

The purpose of this study, as mentioned above, was the development of a novel
approach that jointly models a longitudinal process with the addition of an informative
component for time of observation. The addition of informative time schedules, as
opposed to fixed time schedules employed in traditional longitudinal methods, would
potentially broaden the inferential scope obtained when applied to informative schedul
data. This increased scope of inference allows for improved modeling of the amange i
response variable over time by utilizing the additional information captured in the
informative schedules. To achieve this goal of modeling an informative component for
time along with repeatedly measured responses, this study investlgatetawing
research questions:

1. Can a novel approach be developed that would jointly model a longitudinal

response variable with a set of corresponding intermittent informative time

intervals of observations?

2. Can an efficient numerical iterative method be developed to determine the
maximum likelihood estimates for the proposed model?



3. Inthe presence of Monte Carlo simulated informative schedule data, how
accurate and efficient is this proposed model in estimating the population
parameters?

4. How are these maximum likelihood estimates influenced by a few select
variations in subject sample size, total number of observations for each
subject, and the degree of variation in observation lengths for each subject
contained in the simulated sample?

5. Finally, how does the proposed model's parameter estimates compare on
accuracy and efficiency with common parameter estimates obtained by the
mixed-effects model implemented in SAS PROC MIXED when analyzing
simulated informative schedule data?

Justification for This Study

Traditionally in longitudinal studies, observational times are prospectively
scheduled based on some design protocol prior to the initiation of the study as mentioned
above. Despite the underlying rationale for the chosen protocol, a prospective
observational schedule may not be the best approach for all research questiorse In the
situations an informative schedule paradigm incorporating an adaptive observation
schedule may be more beneficial in achieving the research objectives notitmment
improving patient care over traditional approaches. This benefit can be seéndy ars
the enlargement of Abdominal Aortic Aneurysm (AAA) in which patients’ arsusy
were observed over a given time period to better characterize rate ¢t giasivthe
accompanying risk of rupture without surgical repair. At some time, in thesititerval,
patients would enter the experiment and their aneurysm’s sizes would be mheaslre
depending on the observed size would be randomly assigned to either a surgical repair or
a surveillance group. Patients belonging to the surveillance group would have their

aneurysms measured by ultrasonography during each physician visit. Dependieg on t

measurement observed the next observation time would be scheduled, where presumably



the larger the size of the aneurysm the closer the next appointment would ba@nd he
the smaller the changes in size of the aneurysms would be observed. Obsexations f
each patient would continue until a predetermined size was reached in whichehe pati
would then enter the surgical repair group. Surgical repair was eventuédisnpeat on

all patients to prevent the risk of rupture which could be fatal (Ingoldby, Wujanto &
Mitchell, 1986).

In the above study protocol it is obvious that a fixed schedule paradigm may not
be in the best interest of patient care given the risk of rupture in patientsrgéh la
aneurysms. The use of an adaptive schedule approach therefore, would allow shorter
observation intervals for patients with larger aneurysm sizes reducingklo# a rupture
occurring between physician visits. This scheduling approach, as presented audde, w
subsequently result in different observation intervals for each patient that eul
dependent at least on the last observed size of the patient's aneurysm. Thatifs, ev
each patient was observed a fixed number of times, the intervals between abservat
would not be the same and since the magnitude of each interval is dependent on the prior
outcome, these interval measurements would contribute informatively to thegpodce
change in aneurysm size in these individuals. Furthermore, the number of observations
for each subject would most likely not be equal since some individual's aneurysms would
take longer to reach the critical size for surgery requiring a longer alieerperiod than
others. These two conditions would therefore result in each subject’s observatora vect
being of different lengths and having different intervals between each observati
resulting in a ‘nonrectangular’ schedule design. This nonrectangular tenestacof the

sample matrix obtained from informative schedule designs prevents the usktioinah



analytic strategies for longitudinal studies, such as repeated measalyetsaof variance
(ANOVA) or multivariate analysis of variance (MANOVA) since they tally require

all data to be available on all subjects at each measurement point (Diggl2@d2).

The use of these methods would therefore require that the resulting data obtained under
an informative schedule design be modified to accommodate their model assumptions.
However, transformation methods such as deleting missing data or imputifrggmiss
observations can lead to substantial bias and undermine the validity of the results
obtained (Lavori, 1992; Gibbons et al., 1993; Taylor & Amir, 1994). Furthermore,
deleting or imputing data would essentially weaken the informative nature tohthe
intervals observed in this design by either removing them altogether ortstifgti
misleading observations into the sample, respectively. Another approach would be the
use of mixed-effects models which by the nature of their design allow fonaheses of
nonrectangular sample matrices (Laird & Ware, 1982). However, these mdttods s
require the assumption that time is a fixed factor in the explanation of the response
process and therefore would result in the loss of the informative nature of the time
intervals. While mixed-effects models would allow for estimations of tbethrprocess

to be obtained, these results would essentially restrict the generalzafititte given

study since they treat the observed time schedules as a fixed factor.

It should also be noted that the total number of observations for each patient could
also be different, given that not all patients would start at the beginning of the
surveillance nor would each patient’s initial aneurysm size be the sahgeeatttance of
the study further contributing to the nonrectangular aspect of the samplesdebigs

latter issue of different initial aneurysm sizes would potentially r@sttuncation of the



aneurysm enlargement process. That is, patients with initially largeryane and
therefore more serious risk of rupture would more quickly reach the size requiring
surgical repair causing them to leave the surveillance group sooner tlearsaith
smaller initial sizes. The patients that experience the event of seaytigr would
therefore have their observations underrepresented in the sample which would result in
the bias of the actual growth rate estimate. This condition is referrednforasative
censoring as discussed by Wu & Carroll (1998), Hogan & Laird (1997a, b), and many
other authors. Consequently, data containing informative censoring has been shown to
give biased results when analyzed by mixed-effects models suggestingj\ical
weakness in these model designs when faced with nonrectangular samplesmatric
However, this issue of informative censoring would potentially be less of artiealaly
problem in an informative schedule design due to the assumed observation schedule
protocol. In other words, individuals that have a more progressive or seriousaronditi
requiring early surgical intervention which would potentially result in in&dive
censoring occurring would also have shorter observation schedules and subsequently
more observations measured. This increased observational schedule would allow for
individuals with rapid aneurysm growth to have more influence on the overall estimate of
the growth process by the inclusion of more observations in the obtained sample matri
Thus, the use of mixed-effects models to analyze informative schedule desigdsatoul
only result in restricted inferences but would potentially result in biasedatss in the
growth process itself.

The purpose for studying the nature of aneurysm growth in these individuals was

to better characterize the average and inter-patient variability in égeansion which
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would allow for the development of more accurate protocols outlining when surgical
intervention is necessary for patients with AAA. This better understanding gifdvwh
process of AAA is necessary since it has been shown that a policy of eatlyeelec
surgery for small aneurysms does not generally improve mortalityuedere, Wilson,
Johnson, Reinke, Littooy, Acher et al., 2002). Therefore, the utilization of an informative
scheduling design would allow for improved estimates of the AAA growth prondss a
would subsequently allow for more accurate determination of surveillance qgdeoéma
ultimately improved patient survivability. Furthermore, this model’s utiitgot
necessarily limited to the above research project but can be beneficialstudgpylesign
in which an informative schedule model would be beneficial to the study particiants b
increasing the frequency of observation or when improved accurate estimiies of
response variable are required especially in the presence of inforneatsiog. For
example, the biological behavior of early gastric carcinoma, espeitsadjrowth rate, is
not well documented and remains a significant cause of cancer deathlsefJaima

2005). Furthermore, long term survival after surgery for gastric cancer is poor but
prognosis improves with early detection, which suggests the need for acstiratgien

of early development of gastric carcinoma (Heemsker, Lentze, Hulsddao®&vijk,

2007). This area of research could potentially benefit from an informative scheduling
design in light of the finding that some malignancies can grow rapidly (Heetia.,
1991). The employment of an informative design in the evaluation of gastricaragci
would allow for increased observation of patients with greater potential for the
development of gastric carcinomas. This increased observation of patignts wi

aggressive conditions would have the added benefit of improved estimates of gastric
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carcinoma development since informative censoring would potentially be annssue
these patients who enter surgical intervention quickly. Other researchheteasght
benefit from this design would be in the field of psychiatry. For example, ansedrea
patient evaluation would better characterize the benefit of some novel
psychopharmacological agent or psychotherapeutic method, especially in cages whe
failure to elicit improvements in patient conditions could result in adverse meaiesd s

or potentially result in patient suicide (Simon & Savarino, 2008). Once again, the use of
an informative schedule design would allow for this desired increase in patient
observation especially in patients that are responding poorly to prescribed therapeut
treatments. These poor responders are more likely to experience an evert, such a
suicide, which would result in informative censoring and consequently would result in
biased estimates of the benefits of the prescribed psychotherapeumienhtan or
psychopharmacological agent. On the other hand, improved estimation of therapeutic
values of the prescribed treatment would aid practitioners in better understanding the
mental disease process and hopefully improve quality of life for these indaidliaése
examples suggest that other research questions or fields of study would algdroemef
an informative schedule design approach especially where patient cadeb&oul

improved with increased physician or healthcare practitioner observation.

Terminology
The following terms that will be used frequently throughout the study will be
formally defined here:

1. Fixed timeis the assumption that levels associated with the time factor are the
only levels of interest and therefore any analysis would be limited to drawing
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conclusions on the specified levels included in the study protocol. These
levels are typically prospectively determined and, as the name impées, a
fixed across the study interval.

Informative timas the assumption that levels associated with the time factor
will vary in length with their magnitudes dependent on prior observational
outcomes suggesting that they contribute informatively on subsequent
response observations. The magnitude of each informative time interval is
adaptively determined for each subject and will vary across the study
interval.

Longitudinal dataare a set of observations of a response variable or variables
that is measured repeatedly on each subject over a given time period. These
measurements are scheduled on some prospective fixed time interval and
limit the analysis to conclusions on the specific time intervals used in the
study.

Informative schedule dat@e a set of observations of a response variable or
variables that is measured repeatedly on each subject over a given time
period. These measurements are scheduled on some adaptive time interval
and their lengths are dependent on the prior observations suggesting that the
magnitudes of the intervals are informative to the change realized in the
response variable or variables.

Limitations

The limitations of this study that should be considered by researchers would be

the following:

1.

This study was limited to a single normally distributed response vadable
therefore should not be applied to studies that might contain multivariate
and/or non-normal response variables.

Furthermore, the present study made the assumption that time was
exponentially distributed or that the log of time was normally distributed,
these assumptions should be considered before applying the results to other
studies which may have different time factor distribution assumptions.

As will be outlined in chapter three, a single set of model parameter
coefficients will be utilized in simulating informative schedule data and a
limited set of sample and observation sizes along with observation lengths
will be simulated.
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4. Furthermore, the evaluation of parameter estimates will be limited &® thre
different criteria as outlined in chapter three.

5. Finally, common parameter estimates obtained from the analysis of the
proposed model will be compared to a single traditional longitudinal
approach and therefore may not be compared to parameter estimates obtained
from other analysis approaches not included in this study.

Conclusion

Currently, traditional approaches to longitudinal analysis require the assampt
that time be a fixed factor in the explanation of changes in the response variable.
analytical approach is generally adequate for most research desigmshrsubjects are
observed on a prospective fixed observation schedule. However, this traditional
approach does not hold in cases of adaptive schedule designs in which subsequent
observation are determined following the observance of the response variable. Since
times between observations are adaptively determined and informative isgbese
trajectory, models with fixed time assumptions are incapable of analym@rgformative
nature of the data lessening the inference achievable. This inabilitgddranal
approaches to capture the full informative nature of informative schedule da¢stsugg
need for a novel approach. Consequently, this study proposes the development and
evaluation of a novel model that jointly models an informative time component with a
longitudinal measured response variable that can be utilized for the analysis of
informative schedule study designs.

To better understand the issues presented in the introduction, chapter two provides

a more comprehensive review of traditional approaches to longitudinal anakysther
joint model designs found in the literature along with other pertinent information

necessary. Chapter three introduces the proposed model along with an outline of the
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specific methods utilized to evaluate its efficacy in analyzing MonteGarlulated
informative schedule data. Chapter four presents the results of the evaluatien of t
simulated data by the proposed informative schedule model while chapter twsséis

the implications of the results and future research directions.
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CHAPTER Il

REVIEW OF LITERATURE

As discussed in chapter one, the purpose of this study was the development of a
model that incorporates an informative time component along with a corresponding set of
longitudinal measurements of a response variable. While there is plengyatiiie that
covers the development of longitudinal models with time as a nonrandom component, we
are unaware of any research conducted on the joint modeling of longitudinal and
informative schedule data at the time of this study. However, there is egnongsence
in the literature of research investigating the joint modeling of surviva &nd
longitudinal data which might be pertinent to the present study.

For the reader to achieve a contextual understanding of the relevant issugs to thi
study a review of the literature is presented that introduces seveied tadongitudinal
analysis. This review of the methodological approaches presented in thaerktésat
divided into five sections. The first section presents simple methods for analyzing
longitudinal data that consist of condensing the repeated observations into a single
variable used in a subsequent analytical approach. The second section prasentd his
methods of analyzing longitudinal data that preserves the temporal nature datbatda
has, in general, become obsolete due to unrealistic assumptions and requirements which

are inherent to these models. The third section presents mixed-effects thatels
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incorporate random effects that are specific to each subject and ardlgernidraed in
most longitudinal research studies. The fourth section presents methods that jointly
model longitudinal and survival data which includes a single random event time or
survival time associated with the occurrence of the event of interest. Fthallfth
section presents a short introduction of Vector Autoregressive (VAR) mbdelsre
utilized in time series analysis and have the common objective to the proposed
informative schedule model of modeling a set of repeatedly measured observations

conditioned on prior responses outcomes.

Simple Longitudinal Models

In many research studies the objective is to evaluate changes in a response
variable over time by observing repeated measures on a single subject. phatedre
measurements result in observations that are correlated within-subjectrafokr¢he
require more sophisticated statistical methods to account for this dependency of
observations. One of the earliest methods for dealing with correlated datpresented
by Student (1908) in his development of tiiest which avoids the issue of correlation
by calculating a single summary variable for each subject usedlya@caanges in a
response variable from a pre-test to a post-test condition. Essentiallypdioaeh
constructs a single independent observation by obtaining the differencesbehe pre-
test and the post-test for each subject which, subsequently, simplifies tre@sanaly
approach substantially. However, this method is of little use for any complgsianal
involving more than two observation times and therefore, would be of little help with

informative schedule designs which typically involves multiple observationioosas
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Other approaches that involve the conversion of a set of correlated observatiangdeas
on a single subject into a single response variable have also been developed. These
approaches essentially convert the analysis from a longitudinal one withated data

to a univariate problem void of dependency issues and have been termed in the literature
as summary-statistic approach (Dawson & Lagakos, 1991, 1993: Frison & Pocock, 1992:
Dawson, 1994), response feature analysis (Crowder & Hand, 1990), or derived variable
analysis (Diggle et al, 2002). Matthew, Altman, Campbell and Royston, (1990)
summarized several different approaches including (a) the use of the oweaall (im)
comparing the area under the curve, (c) the maximum or minimum value for each group,
(d) time to maximum or minimum response and (e) regression coefficients totevhkia

rate of change between groups. Despite their ease of use, these methods halve sever
drawbacks in that the analysis loses temporal aspects preventing thedinmse\airying
covariates. In addition, there is in general a substantial loss of sthpstigar and there

is a level of uncertainty in the derived summary variable potentially violdteng t
assumption of homoscedasticity (Hedeker & Gibbons, 2006). Furthermore, the removal
of temporal aspects in the data clearly prevents the use of time as an iv®rmat
component in the change of the response variable in these summary statishiodsme

and therefore would not be a candidate method for analysis of informative schedule data

Historical Longitudinal Models
Traditional approaches to repeated measures designs in which temporal aspects of
the data have been preserved have centered on two models: the univariate repeated

measures analysis of variance (ANOVA; Winer, 1971) and the multivariatesenaly
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variance (MANOVA) approach to repeated measurements (Cole & Gri&66).

These methods persistent presence as an analytical tool in the study efdrepea
measurements can be attributed to their familiar methodology and easeprétaten
despite their inherent shortcomings. Here the primary focus of the arfalylsath

methods is on the comparisons of mean group responses for varying observations and
neither model is informative about subject-specific changes across tintaermaore,

time points at which the response variables are observed are assumed to bedssed acr
subjects for both models and are treated as a classification variabl&€H&daibbons,
2006). This fixed-time assumption, intrinsic in these methods, precludes the use of tim
as an informative component in the change of the response variable observed within-
subjects and therefore, is of little use in achieving the present study’s wigedin

addition, these models are of limited general use for most complex reseaatiorsst
because of the unrealistic assumption of equal variance-covariance structure and

difficulties associated with missing data across time points (Everitt, 1995).

Mixed-effects Longitudinal Models

A more informative and practical approach to the analysis of longitudireabhdat
the use of mixed-effects models which includes the addition of random effectsethat a
unique to a particular subject allowing for the evaluation of individual changes in the
response variable along with fixed effects of the mean response for each@uoag a
time (Laird & Ware, 1982). More specifically, the mixed-effects mogtdrels the
general linear model (GLM) by modeling the combination of sample population

characteristics that are assumed to be shared by all subjects, and fdujéicteffects
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that are unique to a particular individual (Fitzmaurice et. al., 2004). For this reason,
mixed-effects models have become increasingly popular for modeling lomgikuaidita
due to their more informative or subject-specific evaluation of the responselearfia
interest. Consequently, a variety of different approaches to mixed-effededs have
been developed with varying assumptions underlying the random effect components and
methods of obtaining model parameter estimates (Davis, 2002). These models are
identified with a variety of descriptive names, e.g., variance component models
(Dempster, Rubin, & Tsutakawa, 1981), random effects models (Laird & Ware, 1982),
empirical Bayes models (Hui & Berger, 1983), random coefficient models @ler. &
Kreft, 1986), mixed models (Longford, 1987), two-stage models (Bock, 1989), multilevel
models (Goldstein, 1995), and hierarchical linear models (Raudenbush & Bryk, 2002).
Despite their differences in component assumptions and estimation methods, mixed
effects models, in general, allow for the analysis of unbalanced designs tessotia
missing data due to subject attrition (Hedeker & Gibbons, 2006), a common problem in
many longitudinal studies. Although mixed-effects models allows for the @afys
non-rectangular designs, time of observation in these models are still cosh$ixkete
limiting inferences to the time points present in the data vectors and ultijpegegnting
their use as an informative component in explaining changes in the response.variable
Thus, once again, the nonrandomness assumption for time intrinsic in mixed-effects
models prevents the use of these methodologies in an informative schedule design.
Despite the underlying assumption inherent in mixed-effects models that prevent
their usage in the analysis of informative schedule data, their prevalenstatstizal

tool for analyzing longitudinal data and ability to analyze non-rectangulandai®mn
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vectors makes this approach the most likely comparative candidate for tyssaofl
informative schedule data and therefore warrants a more in-depth evaluatioeftorehe
if we assume that samplesmfndividuals are measured repeatedly over time, the

resulting observation for théh individual on thgth occasion would bgy; which would

be observed at time, . The complete set of observations realized fortthandividual
would result in a vector of observations of the response variga,.bie(yil,K ,ymi) and a
corresponding vector of observed timess (til,K ,tini) collected ovem. repeated
measurements. These vectors of observations and times allow for, but do not require,
each individual to have a unique sequence of measurement occasions hinting to this
methods ability to handle non-rectangular designs. Using vector and matriomaitai

mixed-effects model can be expressed as

Vi =XB+Zy, +g

wherefis a px1 vector of fixed effectsy, is aqx1 vector of random effects with a
mean of zero and covariance matrix@f, X;is an x p matrix of covariatesZ;is a

n xq matrix of covariates, with < p, andg, is a n, x 1vector of errors assumed to be
independent ofy, , and also with a mean of zero and a covariandg @ifaird & Ware,
1982; Jennrich & Schluchter, 1986). Ordinarily, it is further assume®Rmthe
diagonal matrix,c°l o » wherel denotes am, xn identity matrix (Fitzmaurice et. al.,

2004). With these definitions, the matg is a known design matrix containipg
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covariate vectors of fixed effects (e.g., time of observation, gender, agedre group,
etc) associated with each repeated measure faththredividual and contains the

information that relates the unknown vector of regression coefficiptdsthe mean of
the vector of responseg,. In essence, the mixed-effects model is a GLM where

everything is the same and has the same general sample population itiempertzpt

for the addition of the known design matrik, and the vector of unknown random
effects,y, that are subject-specific. Her2,is a design matrix that is a subset of the
columns of X, which links the vector of random effectg, to the response vectoy, for

theith individual. The addition of the vector of random effects associated wittinthe
individual describes a subset of regression parameters and how they deviateefrom t
sample population fixed effects. Simply put, each individual has a set of suyigeiftes
coefficients that describe how their mean responses deviates from the sam@éqgropul
mean. Furthermore, these subject-specific deviations obtained by the inclukierttof
random effects vector results in two different mean response profiles. Thearaidit

subject-specific mean fgr, given byy, , isE(yi |Yi)= X.p+Z,y, and the marginal or
population-averaged mean is determinedEfyy ) = X, = p since,y, is zero when

averaged over the distribution of the random effects (Fitzmaurice et. al., 2004). This
ability of the mixed-effects model to not only calculate the mean responsesaintipde,

but to also determine the subject-specific mean responses, makes this modattreatt
and more informative approach to longitudinal analysis. Consequently, the addition of
the PROC MIXED procedure in the SAS system allows for the analysis of@dpeat

measures or longitudinal designs by implementing the mixed-effects arulély



22

modeling the covariance structures directly through the use of likelihood bagemtimet

(Littell, Henry, & Ammerman, 1998).

Survival and Longitudinal models

As mentioned above, there is an increasing presence in the literature aftresear
investigating the joint modeling of survival time and longitudinal data. This approach
has some bearing on the present study because it jointly models a sequence of
observations with a single random time event, which is similar to this studytgiobjef
jointly modeling a sequence of observations with a set of corresponding infornatve ti
events or schedules. Therefore, the general approaches implemented iratheelité
joint modeling of survival and longitudinal data may be of informative value in the
development of the model in this study.

The primary goal of survival analysis is to estimate causal or pregiciddels in
which the risk of an event depends on covariates or predictor variables (Kaplae& Me
1958). Cox (1972) introduced a model for the analysis of time to event data using
proportional hazards regression methods in which the predictor variables can be either
constant or vary across time. When the predictor variables vary acrossd@aea
observed multiple times during the experiment the resulting data set can ioe@mhas
repeated measurements. Consequently, methods investigating the joint modeling of
longitudinal measurement and survival time data have been developed.

The usefulness of any survival analysis is dependent on the accuracy of the
estimation of the regression parameters used in the expression of the hazard funct

which suggests that a complete knowledge of the predictor variable histopoigant.
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Unfortunately, in most cases, time-dependent predictors are measured ardicphyi

and with measurement error which can lead to biased estimation of regressiogtg@aram
used in the survival analysis (Prentice, 1982). Furthermore, even when measurement
error is unimportant, a complete knowledge of the predictor variables must be known to
maximize the partial likelihood used in this analysis (Cox, 1975). To improve on the
estimation of model parameters, Tsiatis, DeGruttola, and Wulfsohn (1995) used a two
stage approach in which the response variable trajectory is initiadlyndeed by using a
mixed-effects longitudinal model and the second stage uses the estimiat¢isef

previous model to improve the covariate history that enters the hazard function of the
Cox model. Essentially, the authors used a mixed-effects model to summahstdhe

or trajectory of the response variable up to some given time point where this obtained
estimate is utilized in the subsequent proportional hazards model as a prediatde vari
or covariate in the estimation of the survival parameters. Once the obtainedesstima
from the mixed-effects model have entered the proportional hazards model, thalsurvi
parameters are estimated by maximizing the partial likelihood as usauatetFand
Thomas (1996) used a similar approach of a repeated measures random effedts model
estimate the response variable parameters and the survival processtg@aram
simultaneously allowing for a more precise and accurate estimaterefatienship
between the response variable and survival time event. They specified theirmtwdel i
two submodels where one describes the relationship of the observed covariate
measurements as a function of the true, unobserved covariate values and the other
describes the relationship between the risk of disease and the true, unobserved time

dependent covariate. The first model, the covariate tracking model, is @éganti
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subject-specific linear model of the true, unobserved covariate or response \&rable
given time, measured with some error, while the second model, the disease risksnodel, i
the proportional hazards model that depends on the unobserved covariate from the first
model at the same given time point. To estimate the unknown parameters for the overa
model, Faucett and Thomas (1996) used Gibbs sampling which is a Monte Carlo method
for generating samples from the joint posterior distribution of unknown paranreters i
model, conditional only on the observed data. The use of this sampling approach allows
for the estimation of the unknown parameters for both submodels simultaneously since
the joint distribution of their proposed model is not conjugate. Wulfsohn and Tsiatis
(1997) also modeled the response variable parameters and the survival process
simultaneously to improve on parameter estimation due to measurement error. Their
approach, once again, used a mixed-effects model to summarize the histosctoriraj

of the response variable or covariate and the Cox’s proportional hazards model to
determine the survival or event time parameters. However, the estimatioimr of the
model’s unknown parameters was obtained by maximizing the joint likelihood for the
covariate process and the failure time process of the observed data by using the
expectation-maximization (EM) algorithm which they argued is a supapiproach.
Henderson, Diggle, and Dobson (2000) approached the modeling of event times and
longitudinal analysis by conditioning on an unobserved or latent zero-mean bivariate
Gaussian process that drives a pair of linked submodels. Here the two submodels, the
measurement and intensity models, are in essence the mixed-effectantted
proportional hazards model that are conditionally independent given the latenaass

process which, subsequently, links the two models. Here, the association between the
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two models is described through the cross-correlation between the latent ecesse
when absent, suggests that the joint model does not improve on the estimation of the
parameters over the two models separately. These latent coefficientse the
proportional hazard model and measure the association induced by the mixed-effects
model parameters on the estimation of the survival analysis. Ultimatedg parameter
estimates, including the latent process coefficients, were obtained byximairation of

the joint model using the EM estimation algorithm. Wang and Taylor (2001) also jointly
modeled longitudinal and survival processes through the use of the mixed-effects and
proportional hazards models, but included an Ornstein-Uhlenbeck (IOU) stochastic
process to better estimate the time-dependent parameters. The IOUWtgtiqgrbaess

allows the response trajectory to vary around a straight line that is delajizach

subject’s path, since the slope of the response can vary over time. The inclusion of the
IOU stochastic process allows for better estimation of the mixedteffacameters that

are used in the subsequently linked proportional hazards model. Parameters of their
model were estimated by employing the Markov Chain Monte Carlo (MCMChwic

an iterative process that samples from the desired distribution and consivizsteoa

chain that has the desired distribution as its equilibrium distribution. Lin, Turnbull,
McCulloch and Slate, (2002) jointly modeled longitudinal time-dependent predictor
variables with a latent class process modeled by a multinomial distribwtich

describes the probability of an individual belonging to a specific latent dizessh
subpopulation has its own model for the longitudinal process which is determined by the
mixed-effects model with subpopulation differences entering the mean. This mode

captures common characteristics of the response trajectories within plopslabion
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through the latent classes resulting in improved estimations of covariatestirainto

the proportional hazards model. Tseng, Hsieh and Wang, (2005) jointly modeled
longitudinal data using linear mixed-effects models with acceleratiede time (AFT)
analysis; an alternative method that allows a parametric approach thasidered more
robust to unmeasured confounders when compared to Cox proportional hazard model.
Here AFT is a linear model of the log of the predicted failure time celatehe response
variable and determined by the mixed-effects model which allows for themct of the
entire covariate history on subject-specific risk. The parameter éssifica the joint

model of mixed-effects responses and the AFT process was determined by dhéhes

EM algorithm for the conditional distribution. Finally, Elashoff, Li, and Li (2007)
developed a method to jointly model longitudinal measurements and competing risk
failure time data which allows for the addition of more than one type of event idclude
However, this approach still models a single random event occurrence but allows for a
variety of events to be considered in the model. The proposed model can be divided into
three sub-models with the longitudinal response outcome being modeled by d¢de mix
effects approach, the second model assuming a multinomial distribution that thedels
probability that a specific risk has occurred for the given individual and the third lmode
the hazard function for the specific risk observed. Essentially, this modet dtowa
separate longitudinal and proportional hazards model for each of the specified risk
components and incorporates the probability of the specified risk occurring in those
models. The parameters associated with this model were also determmaditnum

likelihood estimation via an EM algorithm.
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As mentioned above, a common characteristic of each of the above approaches is
the modeling of a single random event of interest by utilizing the informatiomebta
through the measurement of a response variable across time. These approaclees, despit
including a single random time event, still include the assumption that respoiasdevar
measurements are taken on a fixed time interval which prevents them frapubkzed
in an informative schedule design. Furthermore, a common problem that seems to be the
impetus for most of these joint models is the need to improve on the evaluation of the
response trajectory to prevent biased estimates obtained from the subsequentpabporti
hazard or accelerated failure time analysis. While improved estimatbmags an
objective in any study, this particular issue of accurately estimdtergomplete
response trajectory or history of the response variable was not a direct con¢lis f

study.

Vector Autoregressive

Time series analysis is concerned with modeling stochastic procesisks a
constructing predictions based on the developed models (Lutkepohl, 1991). This
analytical ability to model time-dependent processes for the purpose of predicting
forecasting future observations is the reason that these models have beceasmigigr
popular in the area of econometrics where the goal is to determine the futctierioé
economic indices. These models have also become popular in the area of meteorology
where the prediction of future environmental conditions is a particular cesgaal,

along with many other fields of study that contain stochastic data.
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Time series data shares a remarkable similarity to longitudireimé#tat the
response variables are measured repeatedly over a given time interval dmeisehat
measured responses are correlated. Despite the similarities, fi@seds¢a usually
consist of a small number of long sequences of repeated measurements, whereas
longitudinal data consist of a large number of relatively short sequences atedepe
measures (Fitzmaurice et al., 2004). However, time series models alsa sharmon
assumption with longitudinal data in that repeated measures taken clodeertagéime
are expected to be more highly correlated than repeated measures téilezrapart in
time. This assumption of decreasing correlation over time is a key componermtaf Ve
Autoregressive (VAR) models which describe the evolution and interdependenaies of
set of variables over the same sample period as a linear function of only their pas
evolutions (Hipel, Mcleod, & Lennox, 1977). In essence, VAR models assume that past
response outcomes are informative in the realization of current observations. For

example, in a two variable case, we can let the time path for the respgieeaffected
by current and past realizations of the respogsgand let the time path ofy,, be
affected by current and past realizations of the respgnsat timet. This would give a

simple bivariate formula of the following:

Yie =Ci+ AuYies + AYora €y
Yor = Cz + Az,lyl,t—l + Az,z Yora T €5

Or, equivalently, in vector and matrix form:
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Yir _ C A1,1 A1,2 Yita €
[yzj - {CJ " {Au Az,z }[ y2,tl:| " |:eZ,ti|

G
Here, the vecto
G,

} is a set of constants or intercepts, the m{tﬁ“ 22} is a set

Poa

2

of regression coefficients, the vec{o?”} iIs Gaussian white noise with a mean of zero
t

Yita

and covariance af, and the vecto{ }is termed the lag which is essentially the prior

Yo
observations fory, andy, at timet —1(Lutkepohl, 1991). The addition of the vector of
lags in the previous equation allows for current realizations of the response ganable

be a linear function of prior responses. Furthermore, the inclusion of the lag vector
suggests that each element or past realization of a single responselafettserved

path of every variable included in the model, that is, each response variable is influence
by its own past realization along with the past realizations of the other respons
outcomes. The degree that past realizations affect the path of the curtenesiis not
limited to first order lags as the above model demonstrates but can include any
combination op lags. Also, the amount of variables included in the model is not limited

to a bivariate outcome but can be modeledfeariables. For example, inkax1vector
of responsesy, collected up to timéand includingp lags, would have the following
structure:

Y = C+ A.Lyt—l + Azyt—z +A + Apyt—p +&
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Here the path for the vector of responsgswould be influenced by or a linear function
of thep lags and & xk matrix of regression coefficient®y wherel =1,K , p along with
the vector of errorsg for timet. Essentially, this model would be termed a VAR waith

lags or VAR(). It should also be noted that theariables for timé would be a function
of thep lags for thek variables, similar to the bivariate model presented above. More
precisely, each variables path is not only affected by its own lags bsi iafédcted by

the lags for all other variables contained in the model.

Conclusion

In many different research areas, longitudinal studies play an importaut lir
understanding of the research objectives which cannot be obtained by other analytical
approaches. Consequently, the literature is filled with a variety of diffemegitudinal
approaches and model assumptions to accommodate the variety of response variable
types and design issues faced by many researchers. Despite the nofltitifiéeent
approaches, the underlying assumption of fixed time effects is common to all model
approaches, which prevents their utilization in the analysis of informativdidelaata.
Furthermore, while there is a growing presence of joint models for loig#l data and
survival time analysis, these model’s research objectives are not consigitethie
objectives of this study and therefore are of limited use in this study. For tlee tea
achieve a better understanding, the proposed joint model and the methods employed in
the evaluation of that model are presented in chapter three. Chapter four medents
discusses the results obtained from the evaluation of the proposed model and the

conclusion of those results and future research directions is presented in chepter fi
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CHAPTER Il

METHODOLOGY

As discussed in chapters one and two, traditional approaches utilized in the
analysis of longitudinal data have several shortcomings in the explanatdgyailihese
methods when applied to observations collected by an informative schedule design
suggesting the need for a different approach that better explains their nédutes end,
the purpose of the present study was the development of a joint model for a longitudinal
process and time of observation with improved explanatory ability when applied to
informative schedule data.

To accomplish this study’s purpose, chapter three begins with a discussion of the
notation that was employed in the development of the proposed model. The second
section presents the general structure of the informative schedule model andcialo spe
cases of that model that are considered further in this study. Also, thimsectudes
the associated likelihood equation for one of the special cases and the SAS likedihood ¢
statement for the other case that is subsequently used for model parameédioastim
The third section presents a discussion of the method of maximum likelihood estimation
employed in obtaining the parameter coefficients for this model and the ¢ognpet
mixed-effects model design. The fourth section discusses the particullaes of

optimization algorithm constructed to numerically determine model paranséiteates.
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The fifth section describes the design issues associated with obtaining Mdote Ca
simulated sample data used in the evaluation of these two models and the final section
presents a discussion of the methods and criteria used to evaluate the effectiéine
coefficient estimates and compared estimates obtained from the inf@setiedule

models to the mixed-effects approach.

Notation
Suppose we have a setrofubjects or individuals followed over an interval

from[0, 7). Theith individual provides a vector of quantitative ehstions,
y, = (yil,K ,yini) with a corresponding informative vector of timéedules,
t = (til,K ,tini) where the observations and time intervals rang® fr=1K ,n and the

individuals range from=1K ,m. It should be noted that this notation allowsdach
individual to have a different observation schedeigth. The resulting joint

distribution ofy; andt; is in generaf (y,.t,), where®, is a matrix of unknown

parameters needing to be estimated. The resditimagion of y; is conditioned on the

vector of corresponding time schedules, namely:

fo, (yi’ti): fo, (yi |ti)f®i (ti)' (3.1)

If t; has no information o®, then the joint distribution reduces to the follogin

f®i(yi’ti): f@i(Yi |ti)f(ti) (3.2)
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and from the likelihood point of view, the modeliMaie the same as a traditional analysis

of longitudinal data in that time is no longer aformative component.

Proposed Model
The model we considered for thh individual considers a one step dependency

and has the following general form:

n

f@i (yi ae ) = f@i (yil |ti1)f (til)H f@i (yij |tij ’tij—l’ Yij—l)f@i (tij |tij—1’ yij—l)' . (3.3)

=2

We assumef (t, Yoes not depend o@,, so for the purpose of likelihood function we
can ignore it. Furthermore, the resulting functdrthe initial observation,, is
conditioned on time of observatiofy, which is the same approach found in traditional
longitudinal models. However, subsequent obsematof the response variablg, are
no longer exclusively conditioned on time of obsdion, t; alone but are now also
conditioned on the most recent pervious observatipn and time of observation.

The likelihood function for model (3.3) is the prad of the terms fom

individuals, namely:

L(@, yl!K !ym!tllK 'tm):H f@)i(yi 'ti)

m
i=1

n

:H fo, (Yi1|ti1)H fo, (Yij It vtij—leij—l)fGi (tij |tij—1-Yij—1) (3.4)
i-1

=2
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where® = (0, K ,0,,). It should be noted from the above equation tiinitial

observation is a function of the unknown paramedecdsconditioned on time of
observation alone, while subsequent observatiansarditionally dependent on the
most recent prior observation and time intervahglwith the unknown model
parameters. This conditional dependence on tloe msponses is what allows for the
schedule times of observation to be informativehia proposed joint model (i.e., the
present depends on the recent past). It shouddbalsoted that since dependence is
limited to the prior observed response or is d@tforder, the model assumes that
correlations between response observations dedayp@separation increases, which is a
common assumption found in many time series mod&tsa matter of fact, longitudinal
data share remarkable similarities to time seréa,dlespite differing analytical goals
and general structure of data collection, in thaasurements of a response variable are
measured repeatedly over a given time period amdssumed to be correlated.
Consequently, one special case of the model i) ¢33 be represented in a general time
series structure. This special case, which isedrthe Vector Autoregressive (VAR)

model, can be represented as the following:

[ S A | 5 |

7
Here, [Z" '1} is a vector of Gaussian white noise with zero neahcovarianc&, while
i 2

$i11 #a2 .
b o1 b 2o is a matrix of autoregressive coefficients and™ | is vector of mean
. ' Hio
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constants for théh individual and which are dependent on some egbtay variables

by n, = SX,, where g is a vector of coefficients associated with sox@anatory
variables andX; is a design matrix for thi¢h individual. This mean constants vecfor

is composed of a meam,, associated with the response variagleand a meany, ,

associated with the log of time of observatign, Finally, [ Yia }—{ﬂ”D is the
( |09(tij—1) Hi 2

mean adjusted effect of the prior response outcamdetime interval for theh

individual.

In the VAR case the response variable is considierée normally distributed
while the log of time is consider to also be noidgndistributed or log normal. These
normality assumptions for both the response vagiaht time of observation results,
essentially, in a bivariate normal model. Furthemen the inclusion of the mean adjusted
prior response and time interval as regressiorficaaits contributes to this models

informative schedule nature.

To simplify the notation for model (3.5), kgt= {ﬂ”} , Z; {Z“},

i2 Zij 2
_| i i Y th1
®i Léi 21 #i ,22}  andW, :[Iog(]tij )}_[MJ'

With these notations the model has the reduced &rm

Wi =0oW,  , +2;. (3.6)

[
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This model looks like a Vector Autoregressive adarl for each individual, which is a
common model utilized in econometrics in modeling tlynamic behavior of economic
and financial time series and in forecasting mo@alskepohl, 1991). Consequently,
SAS has incorporated a call statement, VARMALIKOISAS/IML (Interactive Matrix
Language) procedure that will compute the log-lk@bd function for a Vector
Autoregressive Moving-Average model (SAS Instit@@04). The approach
implemented in the call statement utilizes the domhl approximation to the log-
likelihood equation (Reinsel, 1997) and is compwed0.5 x the sum of log determinant
of the innovation variance and the weighted susgofares of residuals (SAS Institute,
2004). However, an iterative numerical methodhsagthe multivariate Newton-
Raphson, is still required to solve for estimatesiodel parameters and consequently the
development of this iterative numerical approadésprimary purpose of the proposed
study.

In many natural processes, random variation corgdoa particular probability
distribution known as the normal distribution, whis the most commonly observed
probability distribution. Therefore, a second spkcase for model (3.3) can be
represented in this more familiar distributionainfio This special case, which will be

termed the Gaussian-Exponential model (GE), caeesented as the following:

,1(yi1—xza]ﬁ)2
f@i( i’ti):—le © o
2
1(Yij 7= V18- X B (3 7)

X ﬁ ! e? ) exda+s, Y, _1)exp(— glerinsly )

1]
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In the Gaussian-Exponential case the responsebl@igaconsidered to be conditionally
normal given time while time of observation is ased to be distributed exponentially.
Furthermore, the initial observation is assumeldet@a function of the unknown
regression parameters only, while the subsequspbnses are conditioned on the
unknown parameters along with the affects of therpesponse outcome and time of
observation. This conditional association on preaponse outcomes contributes to this
model’s ability to analyze informative scheduleadat

The above model would result in a log-likelihood fleeith individual of:

7£(y\l’x \’1B)2

In(L,)=C + log ;le 2 o7
v2rn (Uiz)E
n _ _ (yu uyi’yij71¢i*><'ijl‘)2
+Y log o7l 7) (3.8)
2 N )

+ i log _exp (@ + 5y, . )exp (e’(““’“y“’l)tij )]
-2

The log-likelihood function for the GE model fot addividuals would be the sum of the

terms formindividuals, namely:

m

In(L) = mC + Z {— %Iog (aiz )_ %.(yil - éilﬁ)z ]

i-1 i

Ny

SB[ )l i) el

i=1j

|
N

+ Z a + 0 Yij-1— exp(a + 0 Yii ,1)~tij )
i=1

N
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Here, the log-likelihood function for tha individuals has a complicated form, forcing
the use of some numerical iterative method to deter maximum likelihood estimates
for the GE model. As mentioned above, the deveboyrof the procedure to determine
the numerical method to estimate the parameteéheiprimary purpose of this study.
Furthermore, the construction of the first-order\d®ives was necessary to improve
efficient estimation of model parameters and wésutated with the aid of Maple

software (see Appendix C for Maple code).

Parameter Estimation
Given that distributional assumptions have beenenadmbut the vector of

responsey, for both special cases of the model, a very géa@@roach to estimation of

the model paramet@® can be obtained by assuming an iterative methdddahe
maximum likelihood estimates (MLE). In this methibe estimates used in the model
are iteratively obtained and are estimates@®dhat would maximize the log of the
likelihood functions of the proposed model, i.bg estimated value @ that best
explains or models the observed data given thelaisibnal assumptions. In general,
ML estimators have the added benefit of havingdagmple consistency, that is there is
a high probability that the derived estimate iselto the true population estimate, and
are asymptotically unbiased in that as the sanipéegets larger the parameters being
estimated approach the true population valuesr{ftzice et al., 2004).

Parameter estimations for both special cases oeh{B8B) were accomplished by
utilizing the nonlinear optimization call moduleagable through SAS/IML (SAS

Institute, 2004). This module offers a set of mitiation subroutines for minimizing or
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maximizing a user or subroutine supplied contindonstion to determine estimate
values. The log-likelihood function for the botlodels and the derivatives for each
parameter of the GE model were constructed in ASAs a user defined module and
made available to the nonlinear optimization subn@u In the case of the VAR model,
the call subroutine VARMALIK which computes the clitonal approximate log-
likelihood values was utilized and made availabléhe nonlinear optimization
subroutine. In both cases estimates were obtdap@mnploying the numerical iterative
method of the multivariate Newton-Raphson meth®his numerical iterative method
seeks to find an approximation of the MLE@for the vector of unknown model

parameters by solving the following equations:

so that®,, —»© asm—» » and whereH ((:)m) is the Hessian matrix of the log-likelihood

function, ancg((:)m) is the derivative of the log-likelihood function ihe gradient vector.

In essence, this approach produces a series ahptgaestimates that become closer and
closer to the ML estimates. The use of this iteeatnethod was chosen due to its
preferred characteristics of a quick convergengeacdmeter estimates and the assurance
of a positive-definite covariance matrix at eaehnation step (Lindstrom & Bates, 1988).
Furthermore, this method is also the preferred@ggr implemented by the PROC
MIXED procedure utilized in the analysis of repebteeasures data which allows for a
more direct comparison between the proposed matieh@es and the estimates

obtained through the utilization of the mixed-etfeprocedure. Finally, it should be
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noted that the second-order derivatives for botdeteand first-order derivatives for the
VAR model were approximated by finite differencethual (Gill, Murray, Saunders, &
Wright, 1983) through log-likelihood function calsid therefore, will not be presented

here.

Optimization Algorithm

The primary purpose of this study was the develaprakan efficient method for
the estimation of model parameters for the two pseg special cases of the informative
schedule model. To accomplish this goal, we tablaatage of the extensive library of
optimization routines callable from the matrix pragming language of SAS available
to solve nonstandard estimation problems (SAStinsti2004). The optimization
subroutine used in this study relied on the catedlaesults of user-supplied callable
modules for determining parameter estimates. drcse of the GE model two modules
where constructed in which one returned the maxiriketihood value or objective
function and the other which calculated the veotagradient results (see Appendix B for
SAS code). In the case of the gradient vectat-trder derivatives (see Appendix A for
derivatives) were determined for each parametercandtructed in a call subroutine
made available to the optimization algorithm. He tase of the VAR model, a module
was developed that incorporated the conditionalilegihnood module VARMALIK (see
Appendix B for SAS code) and was made availablaémonlinear optimization
function to calculate the likelihood value of theslated data.

The optimization algorithms utilized for this stuasas the double dogleg or

NLPDD subroutine which combines the ideas of thesgiNewton and trust-region
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methods. The quasi-Newton optimization method sedscted for this study since this
subroutine allows for the approximation of the irseHessian matrix based on changes
in the gradient vector between iterations. Thenpry advantage of this modified
numerical method is that the Hessian matrix do¢seed to be approximated at each
point, which may be computationally expensive (Skog, 1967). This improved
efficiency was especially important in the cas¢hef VAR model in which both the
gradient and the Hessian matrix needed to be estihiey finite difference method. The
inclusion of the trust-region method was chosenesthis method allows for the
optimization of a restricted region of a quadrafproximation of the nonlinear objective
function as opposed to the entire objective fumgtiee., at each iteration the step size
must remain within a specified trust-region (Denday, & Welsch, 1981). Hence, this
subroutine utilizes the dual quasi-Newton updatéhoekbut does not require a line
search to be performed. The specific update methgquloyed in this study was the dual

Broyden, Fletcher, Goldfarb, and Shanno (DBFGShowbf updating the Cholesky
factor of an approximate Hessian matrix which lateel byH" = RR ,whereH " is the

approximated Hessian matrix afds the Cholesky decomposition factor (Davidon,
1959; Fletcher & Powell, 1963). Furthermore, thiéal determination of the second-
order derivatives or Hessian matrix for both moaeld the first-order or Gradient vector
for the VAR model was computed by the numericallyrenexpensive central difference
formula (Gill et al, 1983) which allowed for impred accuracy in the approximation of
the starting Hessian matrix for both methods aedjttadient vector for the VAR model.
Finally, the true parameter values (see Table Vdares) were supplied as the initial

starting values to both nonlinear optimization suwitines with the goal that these values
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would improve the likelihood of obtaining an efeat and rapid convergence of the
objective function.

Finally, Monte Carlo simulated data for both speceses was analyzed by
implementing the PROC MIXED procedure and utilizthg maximum likelihood
estimation option. The simulated data for bothcggeases was subsequently analyzed
by the mixed-effects method where time of obseovaivas assumed to be sequential and
evenly distributed. Furthermore, the variance-cev&e structures of the data were

assumed to follow a compound symmetry structure.

Table 1.

Parameter values for both special cases of theopeapinformative schedule model

Fixed Model Parameter Values

Vector Autoregressive Gaussian-Exponential
Parameter True value Parameter True value

B 4 Lo 0.2

JiX 2 B 0.5

Bs 3 o 4

B, 1 p 0.5

¢11 0.8 ¢ 0.2

P12 0.3 /4 0.5

P21 0.2 a 2.0

P20 0.5 o 0.04

o 4

O, 0.1

O, 2
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Data Simulations

Monte Carlo simulations of known parameter condsiavere generated in
SAS/IML for both special cases of the proposed rsdEor parsimonious reasons,
parameters were assumed to be constant acrosstsubje the subscriptwas not
included in parameter estimations. The fixed papoih parameters for each special case
is outlined in table 1 and were chosen for the psepof illustrating the proposed model’'s
utility only.

In the VAR case the observations for the respoas@bie were assumed to
follow a normal distribution for the measuremembervhile the observation for the time
intervals were assumed to follow a log-normal distiion. Simulated data for the VAR
model was accomplished by utilizing the SAS calirseutine VARMASIM which
generates a random sequence of time series dataser defined given structure (see
Appendix B for SAS code). For the GE case, obsmms once again were assumed to
follow the normal distribution conditioned for tinoé observation while the observations
for the time intervals were assumed to follow apanential distribution. Simulated data
were accomplished for the GE model by generatingaom normal values adjusted by
the appropriate mean and variance values in theaabe response variable and random
exponential values adjusted by mean in the caimefof observation (see Appendix B
for SAS® code). Since, the generated observatrarisded the effects of prior
outcomes, the resulting data matrices were coresiderbe correlated. In either special
case the sample sizes and the lengths of the thdivsubject’s observation vectors were

varied following the patterns outlined in table 2.



44

Table 2.

Sample size, number of observations, observatibaemnse, and total number of
observations utilized for each simulation study.

Monte Carlo Simulation Scheme

Sample Number of Observation Design  Total Number of Scheme
Size Observations Scheme Observations Number
5 Rectangular 100 1
5&3 Nonrectangular 80 2
20 10 Rectangular 200 3
10&7 Nonrectangular 170 4
20 Rectangular 400 5
20& 14 Nonrectangular 340 6
5 Rectangular 250 7
5&3 Nonrectangular 200 8
50 10 Rectangular 500 9
10&7 Nonrectangular 425 10
20 Rectangular 1000 11
20& 14 Nonrectangular 850 12
5 Rectangular 500 13
5&3 Nonrectangular 400 14
10 Rectangular 1000 15
100 10&7 Nonrectangular 850 16
20 Rectangular 2000 17
20& 14 Nonrectangular 1700 18

In essence, three different sample sizes were atedilvith three levels of observations
for each subject under two differing observatiamgi protocols resulting in a total of 18
different sample schemes. The first observatiagtle protocol would result in a
rectangular design for all subjects, (i.e., eadfjesti has the same number of
observations), while the second protocol would ltasthalf of the subjects obtaining a
reduction in the lengths of their observation vectesulting in a nonrectangular design.
Furthermore, a two factor design matrix (e.g., @engre- and post-treatment, etc.) was
included to demonstrate the models ability to idelthe possibility of multiple treatment

factors. This design matrix included a randomgassient to each subject the inclusion
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of the estimation of the secofigharameter(s), i.e., approximately half of the scisje
would include bothg parametergX; =[1 1) while the other half would have a singfe
parameter(X; =[L 0]) thus allowing for separate estimates based oardiit factors.

Finally, 5,000 iterations of Monte Carlo simulatiata were generated for both models.
These simulated data were then subsequently awidbyzthe appropriate proposed
informative schedule model, i.e., GE and VAR modal] by the traditional longitudinal
approach of mixed-effects model to obtain parametémates.

In the special case of the VAR model eleven pararaetere utilized in the
construction of the Monte Carlo simulated dataesSehparameters included a vector of

explanatory variables d¥ parameters used to determine mean outcome fortheth
response variable and log of time of observatidere, 5, would be associated with the
mean response for the observed data whilevould be the mean log time of

observations for all subjects included in the dagrix. While, 5, and g, are additive
to the other tw@ parameters dependent on the inclusion of the rapday variable
supplied by the design matrix, respectively. Thaance-covariance of the response
variable and log of time of observation also neelld estimated. The parameters,

o, and o,,are the variance estimates for the response varatal log of time,
respectively. While the parameter,,is the covariance shared between the response
variable and log of time. The VAR model also irtgs a matrix of regression
coefficientsgp which maps the mean adjusted prior response ousomnte the current

observed response variable and log of time of elsen.
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For the GE model, eight parameters were utilizetthenconstruction of simulate

data. These included a vector of explanatory éegaorp parameters wherg, is the

intercept and 8, would be additive to the intercept coefficient eegent on the

inclusion of the explanatory variable supplied by tesign matrix. Included with the
overall mean responses are the inclusions of thenpeters that account for the prior
response outcome and the current time of obsenatiere the coefficienty accounts

for the effect of the prior response outcome omtiean response while the coefficient,
y accounts for the effect of the current log of tioi@bservation on the mean response.
Parameters associated with modeling time of observanclude a constant parameter,
a and a coefficient that maps time of observatién, Finally, two parameters were
included that estimated the amount of varianceand correlationp seen between the

responses.

Model Evaluation

While there are, in theory, a multitude of paramestimates that can model a
given observed process, there are in general sharaaeristics of estimators that make
them better than others. Parameter estimatesebt&iom the analysis of the proposed
model and by the mixed-effects model were evalubyeeixamining their biases,
variance and mean square errors of the simulated da

Bias was defined as the difference between theasir obtained and the true

parameter being estimated, that iF i an estimator af®), then the bias is given by:

biagT)=E(T - 0)
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With this definition an estimator that is closestaverage to the true parameter being
estimated will have the smallest bias. Howevetjghtly biased estimator that is highly
centered on the parameter of interest and is kesable may be preferable to an unbiased
estimator that is less concentrated (Bain & Engelhd992). The mean square error
(MSE) is a reasonable criterion that considers bwghvariance and the bias of an

estimator and is defined as the following:
MSKT) =Var(T) + [biadT)[

The use of MSE can be used to evaluate two or esimmators in how well they
estimate the unknown parameters.

Finally, a direct comparison between the proposedehand the mixed-effects
model was accomplished by comparing the relatifieiefcy of the common parameter
estimates of the two models. Comparisons involtiegvariances of estimators can be
used to determine which makes more efficient usbetlata. This determination can be

obtained by examining the relative efficiency o tstimatof of (@) to another

estimatorT” of 7(®) and is given by:

reI(T,T*):@-Q

MSHT)

This definition suggests that the estimaToiis said to be efficient ifel(T,T*)<1 for

another estimator df. In each case of the proposed model, an estimafewas
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common with the traditional approach of a mixeceef§ model (see Chapter two for
mixed-effects model parameters). These paramstienates obtained from the
simulated data for both informative schedule modal$ by mixed-effects approach was

compared by examining their biases, mean squaseseand relative efficiency.

Conclusion

The following study exploited the flexibility anceksatility of the maximum
likelihood approach of parameter estimation to e&td the proposed model efficiency
when compared to analysis by way of mixed-effetisiemented in the SAS PROC
MIXED subroutine. This evaluation was performedvonte Carlo simulated
informative schedule data with known parametersdatd structure generated for each
special case of the proposed model. Parametenagins of the two special cases and
the traditional approach were evaluated on thesalskias, mean squared error, and the
relative efficiency of the estimated parameterbese parameter estimate evaluation
approaches were utilized to compare common parasie¢tween the proposed model
and the mixed-effects model. Finally, the resoftthis study are presented and
discussed in chapter four while chapter five presithe conclusions of this research and

future research directions.
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CHAPTER IV

RESULTS AND DISCUSSION

The purpose of this study was the developmentrmivel approach that jointly

models a longitudinal process and the informat@pgonent for time of observation. To

achieve this goal of modeling an informative tinoenponent along with a repeatedly

measured response variable, this study investightetbllowing research questions:

1.

Can a novel approach be developed that would yomddel a longitudinal
response variable with a set of correspondingnmtéznt informative time
intervals of observation?

Can an efficient numerical iterative method be dtgwed to determine the
maximum likelihood estimates for the proposed m@del

In the presence of simulated informative schedata,chow accurate and
efficient is this proposed model in estimating kmopopulation parameters?

How are these maximum likelihood estimates infl@ehby a few select
variations in subject sample size, number of olsens, and the degree of
variation in observation lengths for each subject?

Finally, how does the proposed model's parametéanates compare on
accuracy and efficiency with common parameter eg@siobtained by the
mixed-effects model when analyzing the same siradlatformative
schedule data?

Chapter four begins by evaluating the constructadinear optimization

algorithms used to estimate parameters for botbigpeases of the proposed informative

schedule models. Secondly, this chapter summattizedefinitions that were utilized to
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evaluate the obtained estimates and outlines teetbns in the data matrices that were
evaluated. Thirdly, this chapter summarizes asdutises the average parameter
estimates obtained from the VAR simulated datagleith the average variance, bias,
and MSE for each alteration in subject and numbebseervation along with alteration in
sample matrices. This section also includes a eoisyn of estimates obtained from the
mixed-effects model implemented by PROC MIXED wilaealyzing the same Monte
Carlo simulated data. The fourth section inclualegmilar summarization and discussion
of the GE model parameter estimates along wittbthe, variance, and MSE evaluations
and comparison of mixed-effects estimates. Tl §&ction discusses the resulting
estimates and evaluations obtained from both madelsall 18 different simulation
schemes. And finally, the resulting estimatesatbsimulation schemes and both model

approaches are presented in tables 7 through 42.

Joint Model of Informative Schedule Data

In the special case of the Vector Autoregressive) (®odel eleven parameters
were utilized in the construction of the Monte ©asimulated data while in the special
case of the Gaussian-Exponential (3.9) model namarpeters were utilized in the
construction of the simulated data. In both casesjomly generated data of know
distributions was shaped accordingly to the esgthbll model parameters and simulated
to known observation lengths and matrices desigfe® being analyzed by either of the
two developed optimization subroutines and by tiheetieffects method. The resulting
simulated data matrix for each model was preseotéae constructed optimization

algorithm which also had the appropriate log-likebd equation made available in a call
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function for both models and the gradient vectahm case of the GE model. In both
cases, the developed optimization algorithms reduit convergence in nearly every case
and estimates for each model parameter were obtélrables 7 through 42) suggesting
that an efficient numerical iterative method cobéddeveloped to jointly model a
longitudinal process with informative time schedulédiowever, when sample sizes and
the number of observations were at their smallestusnts both developed numerical
iterative methods demonstrated a small proportfaases (maximum of 1.94% for both
models) where convergence was not achieved. Téssnet surprising since
optimization algorithms are known to be less edintiwhen analyzing samples with
small number of observations. In fact, as the remalb observation increased the
occurrence where convergence was not obtainedatesdelramatically for both
developed optimization algorithms and at the largenber of observations convergence

occurred in every case.

Parameter Estimate Evaluation

One of the purposes of this study was to evalletgtoposed models accuracy
and precision in estimating model parameters ($epter Il for mathematical
definitions). Here we defined accuracy in termshef amount of bias or deviation the
resulting estimates showed on average in relatiprisithe true parameter value while
estimate precision would be defined in terms ofaberage amount of spread or variation
in the obtained estimates. A third approach @dim the evaluation of the informative
schedule model parameters was the use of MSE wbitiibines the contribution of both

variance and bias of the parameter estimate istogle value. This latter approach
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allows for the evaluation of the relative contribuatthat bias and variation have on the
obtained estimate. A second purpose of this sival/to evaluate the effect of a few
select changes in the simulated data matrix hakeaccuracy and precision of the
obtained estimates. Here simulated data were gtukat three different subject
amounts along with three different levels of obaéions resulting in 18 different
simulation schemes. Furthermore, these 18 sinoulatthemes were also generated for
sample matrices in which half of the subjects Haafter observation lengths which were
utilized to evaluate the effects that nonrectanguésigns might have on parameter
estimation. A final purpose of this study was valaate a single parameter estimate
from the proposed model in comparison to the migteets approach. Here the use of
relative efficiency, which is a ratio of the MSEs both models, was utilized for

estimate evaluation along with bias and variation.

Vector Autoregressive Parameters
The VAR model includes a matrix @fparameters that along with the design

matrix determines the mean outcome for both theorese variable and the log of time of
observation. Here, all four mean parameter eséistatiowed similar patterns of
accuracy and precision as humber of observatiameased for both sample matrices
designs. When numbers of observations were atltveest amounts, the obtained
estimates showed a substantial amount of variatenobtained parameter estimates
were less precise at low sample numbers (Figunealigh 4 and Tables 7 through 24).
In addition, at lower number of observations a $@alount of bias in obtained estimates

was also seen. However, the non-directionalitthefbias suggests that the observed
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inaccuracy of estimates maybe due more to impatisi the estimates than a systematic
bias. For example, if all average estimates wegative in value this would suggest that
the optimization method was systematically undémeging the population parameter.

In addition, the amount of bias in estimation walatively small compared to the amount
of variation of obtained estimates. This factupported by the overwhelming influence
that variation has on the calculation of the MSEi®a suggesting that the inaccuracy in
the estimation is relatively small compared todah®unt of imprecision in estimation.
Furthermore, as number of observations increasedrtiount of variation and observed
bias decreased substantially and, essentiallynatts become centered at 850
observations for all four parameters. Finallyjreates obtained from nonrectangular
sample matrices showed a slightly larger amountghtion in obtained estimates when
compared to estimates obtained from rectangulapkamatrices at similar number of
observations. In the two cases where rectangnthnanrectangular sample matrices
have the same amount of number of observationgliberved averaged variation for
nonrectangular estimates was larger than the agefaggation for rectangular estimates.
Thus, a rectangular sample matrix improves theigimtin obtained estimates over
nonrectangular designs. However, rectangular desggtrices showed little effect on the

amount of bias when compared to nonrectangulagdesatrices.
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The VAR model also contains a symmetrical matrixafiance-covariance

parameters where,, is the variance associated with the response \arial), is the

variance associated with the log of time, anglis the covariance between both response

outcomes. In the case of the two variance paramatsimilar pattern of precision and
accuracy was observed while the covariance pararsiebeved a slightly different
pattern. Both variance parameters demonstratgdt@nsatic negative bias in estimation
which was observation dependent, i.e., estimateasrbe less negatively bias as the
number of observations increased (Figure 5 andd7Tables 7 through 24). In other
words, the estimates obtained for the variancenpeters for the VAR model are
asymptotically unbiased. On the other hand, theucance parameter did not show any
systematic pattern in bias estimates but at lowernlrer of observations obtained
estimates did show some small amount of nhon-doeatibias which may be due more to
imprecision of estimation (Figure 6). For all thneariance-covariance parameters,
estimates demonstrated a large amount of variatie@maller number of observations.
However, as the number of observations increaseddhation in obtained estimates
decreased dramatically. Also, the amount of biasstimation was relative small
compared to the amount of variation of estimateslfichree variance-covariance
parameters which was supported by the MSE valkeslly, rectangular samples
matrices demonstrated a small decrease in thegevaraount of variation in obtained
estimates for variance-covariance parameters wheapared to estimates obtained from
nonrectangular sample matrices. Also, in the chdlee variance parameters estimates
obtained from rectangular sample designs showedbies when compared to estimates

obtained from nonrectangular designs.



59

" o e S hd
S 08
[ ]
0 O
=
Q@
[
o
N
o
" (@)
09 000 oo O o 8 S 8
S ERE IS B 8 9 5 <
O
<
© [ ]
N
o ..
O o )
9 o e
O i S QL ( I
o
882839888 2 S S g
— ANN O << 10 e} — — N
©
o1O
Filled Circles: Rectangular
Open Circles: Nonrectangular
< [ J
o
N
o Og.
e 5
g QS ..
o o o
09 000 00w O Q 3 S S
BS SRR 3598 8 S = S

Total Number of Observations

Figure 5 Bias, variance, and MSE fer,; of VAR model with both rectangular and
nonrectangular sample estimates.



60

-
Q
o
® o
o {. ... ... [ ) O ............ P S T @
o 80. 0 @ 6]
o
e 5
N
o
o
' g8e839%88 g 8 8 g
DG GAN O I b o 9 S &
S NNe)
o
{
(e}
Q
o
< O
o 9.
IS
e}
Sog o o
I G © S [ 2
o
o 000 oow o o =4 = =4
QS ~ow o o n 38 S 8
— ANN O << 10 e} — — N
8]0
© Filled Circles: Rectangular
) Open Circles: Nonrectangular
©
Q
IS
O
3 %o
o
e}
Sog o o
O L Qo o .
o
8828898483 2 S S g
DS NN O TS O o 9 ~ IS

Total Number of Observations

Figure 6 Bias, variance, and MSE fer,,of VAR model with both rectangular and
nonrectangular sample estimates.



61

Bias
S o o o e
S .ooO.
O
(e}
S
Q@
[
<
=<+ 40
o
882839888 2 S g g
P AN OIS O o 9 ~ I
Variance
Y O
o
o [
o
o
O
3 R
o
0goe o o
I S © SO 0.
o
09 000 oW o o 8 8 8
BSNRE3SY 3 2 8 S g
2 1o
o . .
Filled Circles: Rectangular
Open Circles: Nonrectangular
o
= [ J
o
8 Og
© [
Ogoe o o
© e Qs o..
o
o o o
09 000 00w O Q 3 S S
SRS 8 S = S

Total Number of Observations

Figure 7. Bias, variance, and MSE fer,,of VAR model with both rectangular and
nonrectangular sample estimates.



62

Finally, the VAR model contains a matrix of regiesscoefficients that maps the
mean adjusted prior response outcomes onto thentwbserved response variable and
log of time of observation. The diagonal elemeritdhe regression coefficients
demonstrated similar patterns of accuracy and gimtiwhile the off-diagonal regression
coefficients demonstrate similar patterns of pienisind accuracy to each other. In the
case of the diagonal elements there was a systenegative bias in obtained estimates
while for the off-diagonal elements there was despsitic positive bias in obtained
estimates which in both cases where asymptomatiocabiased (Figure 8 through 11 and
Tables 7 through 24). For all four regression ftoehts, obtained estimates
demonstrated a large amount of variation at smalletber of observations which
progressively became more precise as the numlmdrsefrvations increased and
essentially became centered by 850 observationaddition, the relative contribution of
the bias had little affect on the obtained MSE &ajisuggesting that estimate precision
was more responsible for the observed resultsttiteaccuracy of the obtained estimates.
Finally, the amount of variation in estimates fectangular designs was less when
compared to variations seen for nonrectangulagdsst similar number of
observations, suggesting that rectangular mathopsove estimate precision. But this
trend was not clearly seen in the case of biasnkat suggests that rectangular designs
do not necessarily improve estimate accuracyadh fn a few cases the estimates
obtained from nonrectangular sample matrices redut less bias estimates than for
estimates obtained from rectangular sample matatssnilar number of observations

but was not the case every time.
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VAR: Mixed-Effects Comparison

The same Monte Carlo simulated data used to estil&R parameters were also
analyzed by the mixed-effects model. The analgsmoach of the mixed-effects data
assumed that the variance-covariance matrix foklbaveompound symmetrical structure
and that observations of the response variable emrelated with each other across
time. Furthermore, for the mixed effects approdaobleservation lengths were assumed
to be evenly spaced, i.e., the time between obSensawas no longer considered to be
informative.

For all number of observations and for both readgrgand nonrectangular
designs, the mixed-effects approach showed a sulataegative bias in estimates as

compared to the response paramgjdiTables 3 and 4). This observed substantial bias

suggests that the analysis of informative schedala by traditional longitudinal

methods could substantially underestimate modelrpaters. Furthermore, the amount
of variation seen in estimates obtained by the diedects approach was much less than
the amount of variation seen in estimates obtalmyetthe VAR model. In addition, both
approaches demonstrated decreasing variation aBarwhobservations increased, but
this trend was much more pronounced in the VAR rho@ensequently, with a larger
decrease in the amount of variation of estimatesaasubstantially less bias, the relative
efficiency of the VAR model parameter was largeewltompared to the mixed-effects

model.
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Mixed-effects parameter estimates for Vector Aujoessive with rectangular design.

Vector Autoregressive

Observations Bias Variance MSE R_elgtwe
Efficiency
20 Subjects
100 -0.2278  41.5787  41.6306
-7.0329 5.2637 54.7255 1.3145
200 -0.0438  11.7070 11.7089
-7.0124 4.8266 54.0010 4.6120
400 -0.0519 4.4727 4.4754
-7.0516 3.6995 53.4248 11.9374
50 Subjects
250 0.1398 12.0888 12.1084
-7.0397 1.9783 51.5362 4.2562
500 -0.0212 3.7542 3.7546
-7.0017 1.8650 50.8888 13.5535
1000 -0.0315 1.5550 1.5559
-6.9854 1.3943 50.1907 32.2574
100 Subjects
500 -0.0194 4.9053 4.9056
-6.9709 0.9965 49.5896 10.1087
1000 -0.0239 1.7999 1.8005
-7.0047 0.8780 49.9436 27.7393
2000 -0.0123 0.8133 0.8135
-6.9921 0.7435 49.6332 61.0120

Note: ltalicized results are for Vector Autoregiressmodel.
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Mixed-effects parameter estimates for Vector Aujoeasive with nonrectangular design.

Vector Autoregressive

Observations Bias Variance MSE R_elf'mve
Efficiency
20 Subjects
80 0.0734 50.2752 50.2806
-6.9895 5.4942 54.3476 1.0809
170 0.0144 16.3259 16.3261
-6.9169 47735 52.6170 3.2229
340 -0.0436 5.0974 5.0993
-7.0568 3.8492 53.6477 10.5205
50 Subjects
200 0.0721 23.0159 23.0211
-6.9619 2.1203 50.5890 2.1975
425 0.0147 49416 49418
-7.0162 1.8451 51.0718 10.3346
850 -0.0357 2.0163 2.0176
-7.0235 1.5293 50.8589 25.2079
100 Subjects
400 -0.0955 7.3969 7.4061
-7.0231 1.0671 50.3911 6.8040
850 -0.0197 2.1595 2.1599
-6.9921 0.9794 49.8687 23.0884
1700 0.0063 0.9196 0.9196
-6.9899 0.7913 49.6494 53.9891

Note: Italicized results are for Vector Autoregiessnodel
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Gaussian-Exponential Parameters

The GE model includes a vector pparameters that along with the design matrix

determines the mean outcome for the response \@riatere, both mean parameter
estimates followed similar patterns of precisiomamber of observations increased for
both sample matrices designs but a slight diffezen@ccuracy patterns was observed.
When the number of observations were at their lb@a®unts, the obtained estimates
for both parameters showed a substantial amowradtion that became less
pronounced as the number of observations increasggesting that estimates become
more centered as the number of observations ire(@agure 12 and 13 and Tables 25
through 42). Although, it should be noted thabath cases of the mean parameters a
small amount of variation in the obtained estimatas still present even at the largest

number of observations. In the case of th@arameter the average estimates showed a

systematic positive bias in obtained estimateslibeahme asymptomatically unbiased as
number of observations also increased. Howevesfrind was not as consistent in the
obtained estimates fgf, and in a few cases the average estimate demowis&rategative

bias. Once again, the relative contribution oflties had little effect on the obtained
MSE values, suggesting that estimate precisionma@® responsible for the observed
results than the accuracy of the obtained estimd&ga®lly, the estimates obtained from
rectangular sample matrices, once again seemeduti m less variation in the obtained
estimates when compared to nonrectangular estirbatdhis trend was not necessarily

observed in the case of bias.
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The GE model also contained parameters for theneei of the responses?
and a parameter for the correlation between sulesegesponsesy . For both of these
parameters the trends for precision and accurgegaapd to be similar as number of
observations increased. Both parameters demaossiaadystematic negative bias in
estimates at low number of observations which bedass pronounced as the number of
observations increased (Figures 14 and 15 and §a@bléhrough 42). These
observations suggest that the GE model tends terastimate the variance and
correlation parameters but that they are asymjatibtianbiased as the number of
observations in the sample matrix increases. Bathmeters also demonstrated an
observation dependent decease in the amount @iticariin the obtained estimates and
the obtained estimates essentially became cenbgr880 observations, albeit more
pronounced for the variance parameter. Furthernbaté parameter estimates appear to
be more influence by estimate precision than byatteeiracy of estimates in that bias
values had little effect on the calculated MSE ealuAlso, estimates from
nonrectangular sample matrices demonstrated & stigiease in variation of estimates
when compared to estimates obtained from rectandekigns. However, this was not
observed in every case for the variance paramétimhwnight suggest that there might
be the effect of number of subjects. Finally,rasties obtained from nonrectangular
matrices did not appear to decease or increasantbent of bias seen for either

parameter.
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Included with the overall mean response are thieisian of the parameters that
account for the prior response outcome and theoutime of observation. Here the

parameter g accounts for the effect of the prior response auton the mean response
while the coefficienty accounts for the effect of the current time of obaton on the

mean response. In the case of the prior resparaengter, the obtained estimates
demonstrated a slight negative bias at low numbebservations that was weakly
dependent on the number of observations (Figur@ntieTables 25 through 42). This
weak dependency on changes in number of obsergatigght suggest that the bias in
estimates might be due more to imprecision of gtemates. On the other hand,
variation in the estimates did demonstrate a sto@pgndency on number of
observations, in that as the number of observatimrsased the amount of observed
variation in the estimates decreased. In the abge current time of observation the
obtained estimates demonstrated a systematic\gobias in obtained estimates that was
clearly dependent on the number of observatiorgu(Eil7 and Tables 25 through 42).
The time parameter estimates also demonstratezhadependency on the number of
observations with increased amount of estimatetian being seen at low number of
observations. In both case of prior response petiens) the amount of bias seemed to
have marginal influence on the calculated MSE \@loace again suggesting that
variation or precision is more influential in thietained estimates. Finally, the effects on
estimates obtained from nonrectangular sample cestseemed to be limited to the

variation in the estimates for both prior respopaemeters.
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Finally, the GE model also contained parameterscated with modeling time
of observation which included a constant parametemd a coefficient that maps time
of observationy . For both of these parameters the variationenegtimates obtained
showed a clear dependency on number of observdfiogisre 18 and 19 and Tables 25
through 42). However, the estimates obtainedHerconstant parameter demonstrated a
slight non-directional bias while the mapping caaéint demonstrated a clear systematic
positive bias in estimates. Once again, precisfdhe estimates appeared to be more
influential on the estimation of both parameterghist MSE values were essentially the
same as the variance values. Finally, for bothmpeater estimates obtained from
rectangular sample matrices seemed to have smaliramof variation and bias when

compared to nonrectangular obtained estimates.

GE: Mixed-Effects Comparison
For all number of observations and for both reatdenrgand nonrectangular
designs, the mixed-effects approach showed a sliggptive bias in estimates as

compared to the response paramgefTables 5 and 6). Furthermore, both approaches

demonstrated a decrease in the variation of olsta@s#mates as the number of
observations increased but this effect was moreqanoced in the case of the GE model.
Consequently, with a more pronounced decreaseeiartiount of variation of estimates
and with a slightly less bias, the relative effiag of the GE model parameter was larger

when compared to the mixed-effects model suggestipgoved estimation efficiencies.
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Table 5.

Mixed effect parameter estimates for Gaussian Eeptoal with rectangular data

Gaussian Exponential

Observations Bias Variance MSE R_elf'mve
Efficiency
20 Subjects
100 0.0159 0.0152 0.0154
-0.1997 0.3177 0.3576 23.1508
200 0.0143 0.0097 0.0099
-0.2221 0.1630 0.2124 21.5208
400 0.0013 0.0060 0.0060
-0.2233 0.0921 0.1420 23.5716
50 Subjects
250 0.0080 0.0092 0.0093
-0.2103 0.1128 0.1570 16.9391
500 0.0049 0.0051 0.0051
-0.2052 0.0617 0.1038 20.4493
1000 0.0057 0.0033 0.0033

-0.2073 0.0364 0.0794 23.9598
100 Subjects

0.0006 0.0059 0.0059

500 -0.2023 0.0525 0.0934 15.9413
1000 0.0026 0.0033 0.0033

-0.1997 0.0278 0.0677 20.2368
2000 0.0009 0.0029 0.0029

-0.1989 0.0179 0.0575 20.1704

Note: Italicized results are for Gaussian Exponentiatied.
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Table 6.

Mixed effect parameter estimates for Gaussian Eepta with nonrectangular data

Gaussian Exponential

Observations Bias Variance MSE R_elf'mve
Efficiency
20 Subjects
80 0.0267 0.0178 0.0185
-0.1864 0.3882 0.4230 22.8186
170 0.0164 0.0118 0.0120
-0.2249 0.2035 0.2540 21.1180
340 0.0069 0.0069 0.0070
-0.2408 0.1116 0.1695 24.3489
50 Subjects
200 0.0129 0.0107 0.0109
-0.2088 0.1377 0.1813 16.6695
425 0.0057 0.0064 0.0065
-0.1999 0.0720 0.1120 17.3542
850 0.0027 0.0038 0.0038

-0.2054 0.0384 0.0806 21.3207
100 Subjects

0.0081 0.0075 0.0075

400 -0.2121 0.0654 0.1104 14.6750
850 0.0050 0.0041 0.0041

-0.2018 0.0367 0.0774 18.7685
1700 0.0017 0.0031 0.0031

-0.2042 0.0175 0.0592 18.8589

Note: Italicized results are for Gaussian Exporaémtiodel.
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Discussion

The results obtained from the analysis of bothMA& and GE simulated data
indicate that model parameters can be estimated tise maximum likelihood method.
These obtained estimates generally showed lowdsijascially for larger number of
observations and in most cases approached thpdrameter value as the number of
observations increased. In a few cases the anoblns observed, especially for low
number of observations, demonstrated a systemmatid.t Namely, the estimates for the
two variance components of the VAR model showedewe that the proposed model
underestimates these parameters. However, thisigtdbe case for the estimates of the
covariance parameter in this model. Evidence deuestimation was also seen in the
GE model for the variance and correlation paramseteinderestimation of variance is a
common issue in maximum likelihood estimation eggdgcwhen sample sizes are
relatively small (Fitzmaurice et al. 2004) and tmay be the issue seen in our models.
Furthermore, in a few cases for both VAR and GE ehpdrameter estimates
demonstrated a systematic overestimation. Howéweboth models and for all
parameters the amount of bias observed decreaskd asmber of observations
increased and at larger number of observationsegsentially equal to the true
population parameter.

For both models and all parameters the amountridti@ in estimates was
substantially large at low number of observatioatsas the number of observations
increased the amount of variation in estimatesedsa. Also, for the most part
evaluation of the estimate’s MSE revealed the gaatierns and approximately the same

values as those observed for variation in estimatéss significant dependency on
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variation in the calculation of the MSE values segjghat parameter estimate
performance was largely influenced by the variatbthe estimates and less by the
amount of bias. More precisely, estimates obtafrmtd each model show very little
inaccuracy but have large amount of imprecisidiowtnumber of observations.

When estimates were obtained from nonrectangukigds, the overall patterns
of bias and variation in estimates seen in rect@nglesigns held. However, in many
cases the amount of variation of estimates obtanoed rectangular sample matrices was
slightly decrease when compared to nonrectangatapkes matrices. And in a few cases
this improved performance of estimates obtaineohfrectangular sample matrices was
also seen in bias of obtained estimates. Theségasiggest that rectangular or complete
sample matrices result in more accurate and prestsmates.

Finally, the estimates obtained from both propasedels showed improved
performance when compared to estimates obtainedtiie mixed-effects model. This
improved performance was most obvious in the VARIetan that the bias of the mixed-
effects model was substantially larger. Howevéfaid comparison between the
informative schedule model and the mixed-effect natsstrictly possible since there
were very little overlap in common parameters.haitgh, it should be noted that the
addition of parameters that allow for the estintatid prior response and time of
observation effect on the observed response outcamenly contribute to better

understanding of the process that generated tlae dat
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Table 7.

Parameter estimates for 20 subjects with 100 obsens in a rectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.7722 -0.2278 415787 41.6306
5, 2 1.9708 -0.0292 12.6666 12.6674
B 3 3.1489 0.1489 69.5616 69.5838
B 1 1.0691 0.0691 21.2965 21.3013
oy, 4 3.7972 -0.2028 0.3813 0.4224
oy, 0.1 0.0909 -0.0091 0.0963 0.0964
o 2 1.8961 -0.1039 0.0934 0.1042
b 0.8 07805 -0.0195 0.0051 0.0055
b 03 03172 00172 0.0194 0.0197
b5 0.2 02105 00105 0.0024 0.0025

1/ 0.5 0.4677 -0.0323 0.0093 0.0103




Table 8.
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Parameter estimates for 20 subjects with 200 obsens in a rectangular design.

Vector Autoregressive

Parameter True Value Estimate Bias Variance  MSE
B 4 3.9562 -0.0438 11.7070 11.7089
B 2 1.9818 -0.0182 2.4234 2.4237
B 3 2.9842 -0.0158 22.6441 22.6444
B, 1 0.9833 -0.0167 4.7488 4.7491
o 4 3.9037 -0.0963 0.1725 0.1817
01, 0.1 0.1002 0.0002 0.0436 0.0436
O, 2 1.9490 -0.0510 0.0458 0.0484
&, 0.8 0.7839 -0.0161 0.0021 0.0024
&1 0.3 0.3140 0.0140 0.0080 0.0082
@, 0.2 0.2052 0.0052 0.0011 0.0011
1/ 0.5 0.4808 -0.0192 0.0040 0.0044




Table 9.
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Parameter estimates for 20 subjects with 400 obsens in a rectangular design.

Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE
B 4 3.9481 -0.0519 4.4727 4.4754
B> 2 1.9745 -0.0255 0.9161 0.9168
B 3 3.1034 0.1034 8.9457 8.9564
B, 1 1.0455 0.0455 1.8189 1.8209
o 4 3.9603 -0.0397 0.0779 0.0795
Oy, 0.1 0.1000 0.0000 0.0216 0.0216
O, 2 1.9745 -0.0255 0.0205 0.0212
&, 0.8 0.7915 -0.0085 0.0010 0.0011
&1 0.3 0.3002 0.0002 0.0035 0.0035
@, 0.2 0.2021 0.0021 0.0005 0.0005
1/ 0.5 0.4880 -0.0120 0.0019 0.0021




Table 10.
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Parameter estimates for 50 subjects with 250 obsens in a rectangular design.

Vector Autoregressive

Parameter  True Value Estimate Bias Variance MSE
B 4 41398 0.1398 12.0888 12.1084
B, 2 2.1030 0.1030 4.2328 4.2434
Bs 3 2.8447 -0.1553 24.5113 24.5354
B, 1 0.9310 -0.0690 6.6238 6.6286
O 4 3.9285 -0.0715 0.1609 0.1660
01, 0.1 0.1046 0.0046 0.0397 0.0397
O, 2 1.9636 -0.0364 0.0391 0.0404
&, 0.8 0.7923 -0.0077 0.0018 0.0018
&, 0.3 0.3091 0.0091 0.0069 0.0070
@, 0.2 0.2037 0.0037 0.0009 0.0009
1/ 0.5 0.4894 -0.0106 0.0036 0.0037




Table 11.
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Parameter estimates for 50 subjects with 500 obsens in a rectangular design.

Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE
B 4 3.9788 -0.0212 3.7542  3.7546
B 2 1.9891 -0.0109 0.7946 0.7947
B 3 3.0710 0.0710 7.5976 7.6026
B, 1 1.0334 0.0334 15924 15935
oy, 4 3.9522 -0.0478 0.0682 0.0705
Oy, 0.1 0.0987 -0.0013 0.0167 0.0167
O, 2 1.9818 -0.0182 0.0184 0.0187
&, 0.8 0.7947 -0.0053 0.0008 0.0008
&1 0.3 0.3043 0.0043 0.0030 0.0031
?,1 0.2 0.2023 0.0023 0.0004 0.0004
1/ 0.5 0.4926 -0.0074 0.0015 0.0016
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Table 12.

Parameter estimates for 50 subjects with 1000 wasBens in a rectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9685 -0.0315 1.5550 1.5559
B, 2 1.9829 -0.0171 0.3234 0.3237
Bs 3 29754 -0.0246 3.2904 3.2910
B, 1 0.9912 -0.0088 0.6788 0.6789
O 4 3.9796 -0.0204 0.0352 0.0356
O 0.1 0.0996 -0.0004 0.0086 0.0086
O, 2 1.9933 -0.0067 0.0079 0.0080
" 0.8 0.7965 -0.0035 0.0004 0.0004
&, 0.3 0.3017 0.0017 0.0015 0.0015
@, 0.2 0.2004 0.0004 0.0002 0.0002

1/ 0.5 0.4967 -0.0033 0.0007 0.0007




92

Table 13.

Parameter estimates for 100 subjects with 500 waBens in a rectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9806 -0.0194 49053 4.9056
B, 2 1.9889 -0.0111 0.9978 0.9979
Bs 3 3.0026 0.0026 9.2970 9.2970
B, 1 1.0000 0.0000 1.8722 1.8722
o, 4 3.9638 -0.0362 0.0801 0.0815
O 0.1 0.0972 -0.0028 0.0201 0.0202
O, 2 1.9785 -0.0215 0.0204 0.0209
&, 0.8 0.7959 -0.0041 0.0009 0.0009
&> 0.3 0.3053 0.0053 0.0034 0.0034
@, 0.2 0.2019 0.0019 0.0004 0.0004

b5, 05 04945 -0.0055 0.0017  0.0017
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Table 14.

Parameter estimates for 100 subjects with 1000redsens in a rectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9761 -0.0239 1.7999 1.8005
B, 2 1.9876 -0.0124 0.3706 0.3707
Bs 3 3.0889 0.0889 3.5258 3.5337
B, 1 1.0455 0.0455 0.7260 0.7281
O 4 3.9801 -0.0199 0.0344 0.0348
O 0.1 0.1040 0.0040 0.0084 0.0084
O, 2 1.9905 -0.0095 0.0090 0.0090
" 0.8 0.7985 -0.0015 0.0004 0.0004
&, 0.3 0.3013 0.0013 0.0015 0.0015
@, 0.2 0.2013 0.0013 0.0002 0.0002

1/ 0.5 0.4964 -0.0036 0.0007 0.0007
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Table 15.

Parameter estimates for 100 subjects with 2000redsens in a rectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9877 -0.0123 0.8133 0.8135
B 2 1.9971 -0.0029 0.1676 0.1676
B 3 3.0078 0.0078 1.6703 1.6703
B, 1 1.0014 0.0014 0.3410 0.3410
o1 4 3.9908 -0.0092 0.0165 0.0166
o, 0.1 0.0998 -0.0002 0.0043 0.0043
o, 2 1.9948 -0.0052 0.0043 0.0044
&, 0.8 0.7982 -0.0018 0.0002 0.0002
&1 0.3 0.3007 0.0007 0.0007 0.0007
@, 0.2 0.2006  0.0006 0.0001 0.0001

1/ 0.5 0.4976 -0.0024 0.0004 0.0004
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Table 16.

Parameter estimates for 20 subjects with 80 ob8engin a nonrectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 4.0734 0.0734 50.2752 50.2806
B 2 2.0890 0.0890 17.1728 17.1808
B 3 29918 -0.0082 83.7806 83.7807
B, 1 0.8921 -0.1079 28.2052 28.2168
o1 4 3.7270 -0.2730 0.5056 0.5801
oy, 0.1 0.0906 -0.0094 0.1227 0.1228
o, 2 1.8622 -0.1378 0.1279 0.1468
&, 0.8 0.7769 -0.0231 0.0069 0.0074
&1 0.3 0.3215 0.0215 0.0260 0.0265
P, 0.2 0.2110 0.0110 0.0035 0.0036

1/ 0.5 0.4635 -0.0365 0.0132 0.0145
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Table 17.

Parameter estimates for 20 subjects with 170 obsens in a nonrectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 40144 00144 16.3259 16.3261
B, 2 20223 00223 36316 3.6321
B 3 2.9298 -0.0702 28.4676 28.4726
B 1 0.9600 -0.0400 6.7809 6.7825
o, 4 3.8764 -0.1236 0.1966 0.2119
O, 0.1 0.0893 -0.0107 0.0506 0.0507
o 2 1.9422 -0.0578 0.0520 0.0554
b 0.8 07843 -0.0157 0.0028  0.0031
b 03 03070 0.0070  0.0096  0.0096
b5 0.2 0.2041 0.0041 0.0013 0.0013

1/ 0.5 0.4799 -0.0201 0.0047 0.0051
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Table 18.

Parameter estimates for 20 subjects with 340 ob#iens in a nonrectangular design
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9564 -0.0436 5.0974  5.0993
B 2 1.9803 -0.0197 1.0594 1.0598
Bs 3 3.0439 0.0439 10.4686 10.4705
B, 1 1.0190 0.0190 2.1559  2.1563
011 4 3.9480 -0.0520 0.0943 0.0970
oy, 0.1 0.1017 0.0017 0.0251 0.0251
o, 2 1.9744 -0.0256 0.0245 0.0251
&, 0.8 0.7910 -0.0090 0.0012 0.0013
&1 0.3 0.3010 0.0010 0.0043 0.0043
P, 0.2 0.2023 0.0023 0.0006 0.0006

1/ 0.5 0.4883 -0.0117 0.0023 0.0024
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Table 19.

Parameter estimates for 50 subjects with 200 ob#iens in a nonrectangular design
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 4.0721 0.0721 23.0159 23.0211
B, 2 2.0310 0.0310 4.7024 4.7034
Bs 3 2.9322 -0.0678 36.3688 36.3734
B 1 0.9649 -0.0351 8.3279 8.3292
o, 4 3.8916 -0.1084 0.2075 0.2193
O 0.1 0.0942 -0.0058 0.0508 0.0508
O, 2 1.9547 -0.0453 0.0510 0.0530
&, 0.8 0.7925 -0.0075 0.0026 0.0026
&> 0.3 0.3083 0.0083 0.0094 0.0095
@, 0.2 0.2042 0.0042 0.0012 0.0013

1/ 0.5 0.4885 -0.0115 0.0048 0.0049
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Table 20.

Parameter estimates for 50 subjects with 425 obsens in a nonrectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 4.0147 0.0147 4.9416 4.9418
B, 2 2.0010 0.0010 1.0043 1.0043
Bs 3 3.0113 0.0113 10.0859 10.0861
B, 1 1.0164 0.0164 2.0348 2.0351
O 4 3.9655 -0.0345 0.0805 0.0817
O 0.1 0.0966 -0.0034 0.0208 0.0208
O, 2 1.9773 -0.0227 0.0214 0.0219
" 0.8 0.7933 -0.0067 0.0009 0.0010
&, 0.3 0.3045 0.0045 0.0035 0.0035
@, 0.2 0.2019 0.0019 0.0005 0.0005

1/ 0.5 0.4931 -0.0069 0.0018 0.0019
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Table 21.

Parameter estimates for 50 subjects with 850 obh#iens in a nonrectangular design
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9643 -0.0357 2.0163 2.0176
B, 2 1.9838 -0.0162 0.4176 0.4179
Bs 3 3.0000 0.0000 3.9642 3.9642
B, 1 0.9944 -0.0056 0.8118 0.8118
O 4 3.9797 -0.0203 0.0388 0.0393
O 0.1 0.0992 -0.0008 0.0098 0.0098
O, 2 1.9905 -0.0095 0.0099 0.0100
" 0.8 0.7967 -0.0033 0.0005 0.0005
&, 0.3 0.3019 0.0019 0.0017 0.0017
@, 0.2 0.2008 0.0008 0.0002 0.0002

1/ 0.5 0.4955 -0.0045 0.0008 0.0009
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Table 22.

Parameter estimates for 100 subjects with 400 wasens in a nonrectangular design
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9045 -0.0955 7.3969 7.4061
B, 2 1.9608 -0.0392 1.5213 1.5228
Bs 3 3.0978 0.0978 14.1507 14.1602
B, 1 1.0507 0.0507 3.2248 3.2274
O 4 3.9536 -0.0464 0.1058 0.1080
O 0.1 0.0981 -0.0019 0.0279 0.0279
O, 2 1.9734 -0.0266 0.0279 0.0286
" 0.8 0.7957 -0.0043 0.0012 0.0013
&, 0.3 0.3045 0.0045 0.0044 0.0044
@, 0.2 0.2021 0.0021 0.0006 0.0006

1/ 0.5 0.4944 -0.0056 0.0023 0.0024
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Table 23.

Parameter estimates for 100 subjects with 850 wasens in a nonrectangular design
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 3.9803 -0.0197 2.1595 2.1599
B 2 1.9963 -0.0037 0.4426 0.4427
Bs 3 3.0293 0.0293 4.4227 4.4236
B, 1 1.0062 0.0062 0.9028 0.9028
011 4 3.9769 -0.0231 0.0428 0.0433
oy, 0.1 0.0937 -0.0063 0.0106 0.0106
o, 2 1.9860 -0.0140 0.0105 0.0107
&, 0.8 0.7969 -0.0031 0.0005 0.0005
&1 0.3 0.3022 0.0022 0.0018 0.0018
P, 0.2 0.2014 0.0014 0.0002 0.0002

1/ 0.5 0.4970 -0.0030 0.0009 0.0009
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Table 24.

Parameter estimates for 100 subjects with 1700redsens in a nonrectangular design.
Vector Autoregressive

Parameter True Value Estimate Bias Variance MSE

B 4 4.0063 0.0063 0.9196 0.9196
B 2 2.0032 0.0032 0.1918 0.1918
B 3 29985 -0.0015 1.8004 1.8004
B, 1 0.9958 -0.0042 0.3754 0.3754
2% 4 3.9893 -0.0107 0.0191 0.0192
oy, 0.1 0.0996 -0.0004 0.0049 0.0049
o, 2 1.9933 -0.0067 0.0050 0.0050
&, 0.8 0.7979 -0.0021 0.0002 0.0002
&1 0.3 0.3016 0.0016 0.0008 0.0008
@, 0.2 0.2006 0.0006 0.0001 0.0001

1/ 0.5 0.4971 -0.0029 0.0004 0.0004
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Parameter estimates for 20 subjects with 100 obsens in a rectangular design.

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE
B 0.2 0.2159 0.0159 0.0152 0.0154
B 0.5 0.5077 0.0077 0.0438 0.0438
c? 4 3.9751 -0.0249 0.0603 0.0609
P 0.5 0.4932 -0.0068 0.0168 0.0169
@ 0.2 0.2001 0.0001 0.0090 0.0090
4 0.3 0.5520 0.0520 0.1093 0.1120
a 2 2.0044 0.0044 0.0130 0.0130
o 0.04 0.0688 0.0288 0.0021 0.0029
Table 26.

Parameter estimates for 20 subjects with 200 obsiens in a rectangular design

Gaussian-Exponential

Parameter  True Value Estimate Bias Variance MSE
on 0.2 0.2143 0.0143 0.0097 0.0099
B 0.5 0.5007 0.0007 0.0233 0.0233
o2 4 3.9902 -0.0098 0.0117 0.0118
P 0.5 0.4897 -0.0103 0.0073 0.0074
@ 0.2 0.1966 -0.0034 0.0048 0.0048
v 0.3 0.5165 0.0165 0.0319 0.0322
a 2 2.0027 0.0027 0.0064 0.0064
o 0.04 0.0520 0.0120 0.0011 0.0012
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Table 27.

Parameter estimates for 20 subjects with 400 obsens in a rectangular design.
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2013 0.0013 0.0060  0.0060
By 0.5 0.5031 0.0031 0.0130 0.0131
o2 4 3.9954 -0.0046 0.0092  0.0092
Y 0.5 0.4937 -0.0063 0.0039  0.0039
¢ 0.2 0.1966 -0.0034 0.0024  0.0025
4 0.3 0.5085 0.0085 0.0108 0.0109
a 2 2.0017 0.0017 0.0029  0.0029
) 0.04 0.0450 0.0050 0.0006  0.0007
Table 28.

Parameter estimates for 50 subjects with 250 obsens in a rectangular design.
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

B 0.2 0.2080 0.0080 0.0092  0.0093
B 0.5 0.5017 0.0017 0.0216 0.0216
o2 4 3.9999 -0.0001 0.0309 0.0309
P 0.5 0.4950 -0.0050 0.0072  0.0072
¢ 0.2 0.1990 -0.0010 0.0044  0.0044
v 0.3 0.5167 0.0167 0.0244  0.0247
o 2 1.9989 -0.0011 0.0061 0.0061

o 0.04 0.0504 0.0104 0.0009 0.0010




Table 29.
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Parameter estimates for 50 subjects with 500 obsiens in a rectangular design

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE
B 0.2 0.2049 0.0049 0.0051 0.0051
yo 0.5 0.4945 -0.0055 0.0117 0.0118
o2 4 3.9943 -0.0057 0.0086 0.0086
P 0.5 0.4975 -0.0025 0.0032 0.0033
@ 0.2 0.1988 -0.0012 0.0020 0.0020
v 0.3 0.5043 0.0043 0.0103 0.0103
a 2 2.0015 0.0015 0.0027 0.0027
o 0.04 0.0434 0.0034 0.0005 0.0005
Table 30.

Parameter estimates for 50 subjects with 1000 wasens in a rectangular design

Gaussian-Exponential

Parameter True Value Estimate Bias Variance  MSE
o 0.2 0.2057 0.0057 0.0033 0.0033
oA 0.5 0.4954 -0.0046 0.0065 0.0065
o2 4 3.9999 -0.0001 0.0025 0.0025
P 0.5 0.4989 -0.0011 0.0014 0.0014
¢ 0.2 0.1971 -0.0029 0.0010 0.0010
Y 0.3 0.5037 0.0037 0.0047 0.0047
o 2 2.0008 0.0008 0.0013 0.0013
o 0.04 0.0405 0.0005 0.0003 0.0003
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Table 31.

Parameter estimates for 100 subjects with 500 wasens in a rectangular design
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2006 0.0006 0.0059  0.0059
X 0.5 0.5053 0.0053 0.0115 0.0115
o? 4 3.9929 -0.0071 0.0109  0.0109
P 0.5 0.4948 -0.0052 0.0037  0.0038
¢ 0.2 0.1985 -0.0015 0.0021  0.0021
/4 0.3 0.5071 0.0071 0.0102  0.0102
a 2 1.9994 -0.0006 0.0025 0.0025
o 0.04 0.0445 0.0045 0.0006  0.0006
Table 32.

Parameter estimates for 100 subjects with 1000re@sens in a rectangular design.

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

By 0.2 0.2026  0.0026  0.0033 0.0033
B 0.5 0.5009 0.0009 0.0073 0.0073
o2 4 4.0014 0.0014 0.0059 0.0059
P 0.5 0.4969 -0.0031 0.0015 0.0015
¢ 0.2 0.1970 -0.0030 0.0011 0.0011
/4 0.3 0.4972 -0.0028 0.0027 0.0027
a 2 2.0029 0.0029 0.0013 0.0013

o 0.04 0.0396 -0.0004 0.0003 0.0003
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Table 33.

Parameter estimates for 100 subjects with 2000rebsens in a rectangular design
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2009 0.0009 0.0029  0.0029
X 0.5 0.5005 0.0005 0.0059  0.0059
o? 4 4.0001 0.0001 0.0011 0.0011
P 0.5 0.4976 -0.0024 0.0007  0.0007
¢ 0.2 0.1998 -0.0002 0.0005  0.0005
/4 0.3 0.5010 0.0010 0.0018 0.0018
a 2 2.0008 0.0008 0.0006 0.0006
o 0.04 0.0397 -0.0003 0.0002  0.0002
Table 34.

Parameter estimates for 20 subjects with 80 ob8engin a nonrectangular design.

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

o 0.2 0.2267 0.0267 0.0178 0.0185
B 0.5 0.5106 0.0106 0.0486  0.0487
o2 4 3.9795 -0.0205 0.1369 0.1374
P 0.5 0.4927 -0.0073 0.0224  0.0225
¢ 0.2 0.2009 0.0009 0.0111 0.0111
Y 0.3 0.5632 0.0632 0.1592 0.1632
(04 2 1.9925 -0.0075 0.0193 0.0193

o 0.04 0.0749 0.0349 0.0028 0.0040
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Table 35.

Parameter estimates for 20 subjects with 170 obsens in a nonrectangular design.
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Jin 0.2 0.2164 0.0164 0.0118 0.0120
By 0.5 0.5071 0.0071 0.0267 0.0268
o2 4 3.9884 -0.0116 0.0342 0.0343
Y 0.5 0.4883 -0.0117 0.0096  0.0097
¢ 0.2 0.1944 -0.0056 0.0056 0.0056
4 0.3 0.5193 0.0193 0.0396  0.0400
a 2 1.9994 -0.0006 0.0077 0.0077
) 0.04 0.0555 0.0155 0.0013  0.0015
Table 36.

Parameter estimates for 20 subjects with 340 oh#iens in a nonrectangular design

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

By 0.2 0.2069 0.0069 0.0069 0.0070
B 0.5 0.5074 0.0074 0.0140 0.0141
o’ 4 3.9995 -0.0005 0.0034 0.0034
P 0.5 0.4938 -0.0062 0.0039 0.0040
¢ 0.2 0.1974 -0.0026 0.0026  0.0026
4 0.3 0.5083 0.0083 0.0089 0.0090
o 2 2.0014 0.0014 0.0034 0.0034

o 0.04 0.0471 0.0071 0.0007 0.0008
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Table 37.

Parameter estimates for 50 subjects with 200 ob#iens in a nonrectangular design
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2129 0.0129 0.0107 0.0109
X 0.5 0.5028 0.0028 0.0254 0.0254
o? 4 3.9942 -0.0058 0.0207 0.0208
P 0.5 0.4877 -0.0123 0.0091  0.0093
¢ 0.2 0.1985 -0.0015 0.0056 0.0056
/4 0.3 0.5100 0.0100 0.0210 0.0211
a 2 2.0034 0.0034 0.0073 0.0073
o 0.04 0.0544 0.0144 0.0013 0.0015
Table 38.

Parameter estimates for 50 subjects with 425 obsens in a nonrectangular design.

Gaussian-Exponential

Parameter True Value Estimate Bias VarianceMSE

Lo 0.2 0.2057 0.0057 0.0064 0.0065
B 0.5 0.5055 0.0055 0.0125 0.0125
o’ 4 3.9987 -0.0013 0.0158 0.0158
Y 0.5 0.4957 -0.0043 0.0035 0.0035
¢ 0.2 0.1948 -0.0052 0.0026 0.0026
4 0.3 0.5085 0.0085 0.0147 0.0148
a 2 2.0009 0.0009 0.0028 0.0028

o 0.04 0.0436  0.0036 0.0006 0.0006
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Table 39.

Parameter estimates for 50 subjects with 850 obh#iens in a nonrectangular design
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2027 0.0027 0.0038 0.0038
X 0.5 0.4985 -0.0015 0.0074 0.0074
o? 4 3.9978 -0.0022 0.0057  0.0057
P 0.5 0.4980 -0.0020 0.0017  0.0017
¢ 0.2 0.2002 0.0002 0.0013  0.0013
/4 0.3 0.5021 0.0021 0.0046  0.0046
a 2 2.0001 0.0001 0.0013 0.0013
o 0.04 0.0404 0.0004 0.0004 0.0004
Table 40.

Parameter estimates for 100 subjects with 400 wasens in a nonrectangular design

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

B 0.2 0.2081 0.0081 0.0075 0.0075
B 0.5 0.5004 0.0004 0.0171 0.0171
o? 4 3.9959 -0.0041 0.0154 0.0155
P 0.5 0.4954 -0.0046 0.0047  0.0048
@ 0.2 0.1957 -0.0043 0.0029  0.0029
/4 0.3 0.5078 0.0078 0.0187 0.0188
a 2 1.9977 -0.0023 0.0034  0.0034

o 0.04 0.0489 0.0089 0.0007 0.0008
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Table 41.

Parameter estimates for 100 subjects with 850 waBens in a nonrectangular design.
Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

Lo 0.2 0.2050 0.0050 0.0041  0.0041
X 0.5 0.4966 -0.0034 0.0074 0.0074
o? 4 4.0017 0.0017 0.0052 0.0052
P 0.5 0.4972 -0.0028 0.0016 0.0016
¢ 0.2 0.1984 -0.0016 0.0012 0.0012
/4 0.3 0.5090 0.0090 0.0088  0.0089
a 2 2.0005 0.0005 0.0014 0.0014
o 0.04 0.0404 0.0004 0.0003 0.0003
Table 42.

Parameter estimates for 100 subjects with 1700redsens in a nonrectangular design

Gaussian-Exponential

Parameter True Value Estimate Bias Variance MSE

By 0.2 0.2017 0.0017 0.0031 0.0031
B 0.5 0.5007 0.0007 0.0063 0.0063
o’ 4 3.9968 -0.0032 0.0018 0.0018
P 0.5 0.4980 -0.0020 0.0009 0.0009
¢ 0.2 0.1995 -0.0005 0.0006 0.0006
/4 0.3 0.5003 0.0003 0.0039 0.0039
a 2 2.0002 0.0002 0.0007 0.0007

o 0.04 0.0405 0.0005 0.0002  0.0002
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CHAPTER V

CONCLUSION AND RECOMMENDATION
Conclusion
The primary impetus for this study was the develept of an approach that

could jointly model a longitudinal process withanfative schedule data. In this study
two proposed models were developed that demondttiadé¢ parameter estimates could
be obtained from simulated data exhibiting an imfative schedule structure. For both
the Vector Autoregressive and Gaussian-Exponeminalels, parameter estimates
showed much more bias and variability when obsematumbers were at the lowest
levels which was not surprising. However, in altradscases the amount of bias and
variability in the estimates decreased substaptaien observation numbers increased.
In fact, when observation numbers were at theinést)levels the amount of bias and
variation in estimates for all model parametersenetatively small compared to the
value of the parameter being estimated. In essebogh proposed models demonstrated
large sample consistency and were asymptoticallyased which are two desirable
characteristics of any estimator (Fitzmaurice let2804).

At small observation numbers, one would expectithete would be a certain
amount of non-directional variation in obtainedrestes due to inefficiency in the

optimization algorithm. In fact, for both modelsveral parameters did demonstrate a
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non-directional bias in obtained estimates at sotakrvation numbers. However, this
was not necessarily the case for bias in estinfatdbe variance parameters for both
proposed models and the correlation parameteeiGth model. In these cases, the
estimates obtained demonstrated that the proposddlsmunderestimated the true
parameter values slightly which suggests a comrmssurei in estimation between both
approaches. This underestimation of variance coeus when estimates are obtained
by maximum likelihood estimation is a common problend arises because the error in
estimating the other model parameters are not sogunted for in the estimation of the
variance components (Fitzmaurice et. al., 2004; Bumpertz, & Boos, 2001). To
account for this bias associated with the estimatdiomultiple parameters many different
techniques have been developed with restricted maxi likelihood (REML) estimation
being one of the more common approaches. Hemaasts for the variance components
are determined from the relevant part of the depaate from the part that is used to
estimate the other parameters and can be achiexeedumber of ways (Wu et. al.,
2001). One possible way to obtain the REML wogluire that data be transformed
into a linear combination that does not dependherother parameters and then
maximize a slightly modified log-likelihood equatito obtain estimates for the variance
components (Wu et. al., 2001). Since both propasedmative schedule models
included several parameters that need to be sinadtesly estimated, an alternative
approach to estimating the variance componentstivitiyoal of reducing the amount of
observed bias would be a logical future approdd¢bwever, these variance components
were not the only parameters that showed some ¢tdvweiderestimation. In fact, there

were a few parameters from both models that alswdetrated a systematic



115

overestimation in obtained estimates. Howeveshdauld be noted that in every case the
amount of bias observed for these parameters dmrteabstantially as observation
numbers increased, suggesting that at least ptreaibserved systematic bias may be
due to inefficiency in estimation of the develo@dglorithms at small observation
numbers.

When parameter efficiency was evaluated for ectangular samples, bias
and variation in estimates showed similar trendbragarly similar values as seen in
rectangular samples. In addition, estimates obthfrom nonrectangular sample
matrices also demonstrated large sample consistrtywere asymptotically unbiased.
However, in several cases the amount of variatieestimates and in a few cases the
amount of bias observed was marginally largesstimeates obtained from
nonrectangular sample matrices when compared itaast obtained from rectangular
sample matrices at similar observation numbergehreral, when there are missing data,
there will be a level of loss of information andealuction in the precision of obtained
estimates which could account for this reducediefficy for nonrectangular estimates
(Lin & Stivers, 1975; Fitzmaurice et. al., 2004).

Finally, the comparison of common parameters withrixed-effect approach
demonstrated that both models were, in generale rificient at estimating the true
parameter values. For both models, the amounasfdbserved for the mixed-effects
model estimates was larger than for estimates &ibhner informative schedule model.
This underestimation of the mixed-effects model parad to the informative schedule
model was more obvious in the Vector Autoregressioglel. Also, estimates for both

informative schedule and mixed-effects models teduh a reduction in the observed
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variation of estimates as observation numbers asa@ However, this reduction in the
amount of variation was more pronounced in thermédive schedule models when
compared to the mixed-effects model. Thus, bdibrimative schedule models
demonstrated increased relative efficiency whenpaoed to estimates obtained from the
mixed-effects model. However, it should be remthttethe reader that a single
parameter was compared between the informativedstdenodels and the mixed-effects
model. The efficiency of a particular model oveotner approach can not be ascertained
in the evaluation of a single parameter in moseésa®\lthough, a direct comparison of
all informative schedule model parameters can aqidsformed since the mixed-effects
model does not include estimates for many of tipasameters and, in fact, is where the
potential benefit of the informative schedule madsides. More precisely, the
informative schedule model not only allows for #stimation of mean changes of the
response variable but would also allow for thenagtion of the effect that time intervals
has on the obtained response outcome which wouldenpossible in analysis by
traditional approaches.

This study, in conclusion, demonstrates that theegroposed informative
schedule models were able to estimate parameteys ddta were simulated having
informative schedule stochastic structure. Thenades obtained from informative
schedule models also demonstrated that they ceuéstimated efficiently, especially
when subject or observation numbers where larfgetthermore, this study demonstrated
that efficient estimation can still be achievedrewnen sample matrices are unbalanced
or nonrectangular. Finally, estimates for the infative model were as efficient or more

efficient than estimates obtained by traditionalgibudinal methods.
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Recommendations for Future Researchers

The optimization algorithms developed for thisdstdid well in estimating
the Monte Carlo simulated informative schedule datastructed for each model
approach. Although, there are other optimizatigo@hms available that may give
different patterns in estimates than what was ofeskin this study. Therefore, one
should exercise caution when applying other algor# to the informative schedule
models. Furthermore, optimization routines arespsble to starting values and in
many cases parameter estimates can be drastidéiyedt when other values are
supplied (Cam, 1990; SAS Institute, 2004). Sircsingle set of starting values was
supplied to the subroutines other initial valuegimresult in entirely different estimates
and should therefore be considered when choosamtyngf values. It should also be
noted that the starting values supplied in thiggtuere close to the root of the supplied
function to increase the likelihood of convergen€#her values, especially ones further
from the root of the function or values not withine feasible range may result in
different estimates not to mention changes in drakvariation seen in those estimates.
Also, the utilized algorithm developed dependstenapproximation of the Hessian
matrix for both models and the approximation ofghadient vector in the GE model
which would potentially result in less efficientiesations. Therefore, the determination
of the Hessian matrix and gradient vector of tkellhood equations would potentially
improve overall estimation efficiency. Finallypadel’s utility is best demonstrated by
the analysis of ‘real’ data which was not perfornrethe present study. The analysis of
data that exhibits informative schedule stochastiecture and the subsequent

interpretation of the obtained results would begdal future approach.
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APPENDIX A

GRADIENT DERIVATIVES FOR GAUSSIAN-
EXPONENTIAL INFORMATIVE MODELS
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For the second special case of the informativedideanodel, the Gaussian-
Exponential derivatives are given below. The dene for the eight parameters can be

summarized as:
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APPENDIX B

SAS CODE FOR VECTOR AUTOREGRESSIVE AND GAUSSIAN-
EXPONENTIAL INFORMATIVE MODELS
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Vector Autoregressive Function Call.

start logl(x) global(y, xmatrix, nobs, m;
nn=cusun({ nobs) ;

opt ={ 1};

beta=J(2, 2,.);

beta[ 1, 1] =x[ 1];

beta[ 1, 2] =x[ 2] ;

beta[ 2, 1] =x[ 3] ;

bet a[ 2, 2] =x[ 4] ;

sigm=3(2,2,.);
sigma[ 1, 1] =x[ 5] ;
sigma[ 1, 2] =x[ 6] ;
sigma[ 2, 1] =x[ 6] ;
sigma[ 2, 2] =x[ 7];
ss=det (si gm) ;

Phi=J(2,2,.);
Phi[1, 1] =x[8];
Phi[1,2]=x[9];
Phi [ 2, 1] =x[ 10] ;
Phi[ 2, 2] =x[ 11];

i ndex=1:nn[1];
mu=xmatri x[ 1, ] *bet a;
wl=y[index, 1] -mu[ , 1];
w2=y[i ndex, 2] -mu[ , 2];

W= wl| | w2;
call varmalik(lnl,w phi, ,sigm,,,opt);
fun=Inl[1];

do k=2 to m
[ b=nn[ k- 1] +1;
i ndex=I b: nn[ k] ;
mu=xmat ri x[ k, ] *bet a;
wl=y[index, 1] -mu[ ,1];
w2=y[index, 2] -mu[ , 2];
W= Wi | we;
call varmalik(lnl,w phi, ,sigm,,,opt);
fun=fun+linl[1];
end;

return(fun);
finish logl;

x0=(4, 2, 3, 1, 4, 0.1, 2, 0.8, 0.3, 0.2, 0.5};

optn = {10 . 1. . . 11};

call nlpdd (rc, xres, "logl", x0, optn,,,);
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Gaussian-Exponential Function Call.

start nmaxlike(x) global (y, xmatrix, obsvec);
m=ncol (y)/ 2;
observ=ni 2
=1
fun=0; f un1=0; f un2=0; f un3=0;

do k =1tom
if k <= observ then hal f=obsvec[ 1, 1];
el se hal f =obsvec][ 2, 1];

f1 = -0.5% og(x[1])-0.5%(

( 1,j]1-(xmatrix[1,k]*x[2])-
(xmatrix[1, k+1] *x[ 3

(vl

1))**2)Ix[1]);

funl=funl+f1;

doi =2 to half;

f2=-0.5*1 og(x[1])-0.5*1og(1-(x[4]**2))-0.5*(((y[i,]]-
(y[i,j+1]*x[5])-(y[i-1,j]*x[6])-(xmatrix[1, k]*x[2])-
(xmatrix[1, k+2] *x[3]))**2)/ (x[ 1] *(1-(x[4]**2))));

f3 =(x[7]+(y[i-1,j]1*x[8])-exp(x[7]+(y[i-1,j]1*x[8]))*y[i,]j+1]);
fun2=f un2+f 2;
fun3=f un3+f 3;
end;
= +2;
end;
fun = mtf unl+f un2+f un3;

return(fun);
finish maxlike;

Gaussian-Exponential Gradient Call.

start maxlike(x) global (y, xmatrix, nvector, maxsub);

i=1;tic=0;
fun=0; f un1=0; f un2=0; f un3=0;

do k = 1 to maxsub;

mu=(xmatrix[1,i]*x[2])+(xmatrix[1,i+1]*x[3]);
f1=-0.5*1og(x[1])-0.5*(((y[tic+l, 1] -nu)**2)/x[1]);

funl=funl+f1;

doj =2 to nvector[1,K];



128

f2=-0.5* og(x[1])-0. 5% og(1- (x[ 4] **2))-0.5*(((y[tic+ , 1]-

(y[tic+j,2]*x[6])-(y[ticH -1, 1]*x[5])-mu)**2)/ (x[ 1] *(1-(x[4]**2))));
F3=(x[ 7] +(y[tic+j -1, 1]*x[8])-exp(x[ 7] +y[tic+ -

1, 1] *x[8])*yl[ticH, 2]);

fun2=f un2+f 2;
fun3=f un3+f 3;
end;
i =i +2;tic=tic+nvector[1,Kk];
end;

f un=maxsub+f unl+f un2+f un3;

return(fun);
finish maxlike;

start gradient(x) global (y, xmatrix, nvector, naxsub);

i=1; tic=0;

si gmal=0; si gma2=0; bet ala=0; bet a2a=0; bet ala=0; bet alb=0; bet a2b=0; r ho=0
; ganma=0; phi =0; al pha=0; del t a=0; sumy1=0; sumy2=0; sumi =0; sumi nus=0;

g=j (1,8, .);

do k =1 to maxsub;

sumi =sumi +nvector[ 1, k] ;
sunm nus=summ nus+(nvector[ 1, k]-1);
sumyl=sunyl+y[tic+1, 1];

mu=(xmatrix[1,i]*x[2])+(xmatrix[1,i+1]*x[3]);
yil=y[tic+1, 1];

sigl=((yi1-mu)**2)/(x[ 1] **2);
bet 1=(yi 1-mu) *(xmatri x[1,i+1]/x[1]);
bet 2=(yi L-mu)*(xmatrix[1,i]/x[1]);

si gmal=si gnmal+si gl;
bet ala=bet ala+bet 1;
bet a2a=bet a2a+bet 2;

doj =2 to nvector[1,Kk];

yij=y[tic+j,1];
tij=y[tic+,2];
yijmey[tic+j-1,1];

rij=(yij-(tij*x[6])-(yijntx[5])-m);

sig2=(rij**2)/ ((x[1]**2)*(1-(x[4]**2)));

bet 1b=rij*(xmatrix[1,i+1]/(x[1]*(1-(x[4]**2)))
bet 2b=rij*(xmatrix[1,i]/(x[1]*(1-(x[4]**2))));
rho2=(rij**2)*(x[ 4]/ (x[1]*((1-(x[4]**2))**2)))
gam2=rij*(tij/(x[1]*(1-(x[4]**2))));

phi 2=rij*(yijm (x[1]*(1-(x[4]**2))));

al p2=(exp(x[ 7] +(yijntx[8]))*tij);

del 2=(yij ntexp(x[ 7] +(yijntx[8]))*tij);

)



sumy2=suny2+y[tic+j,1];

si gma2=si gma2+si g2;
bet alb=bet alb+bet 1b
bet a2b=bet a2b+bet 2b
r ho=r ho+r ho2;
gamma=ganmma+t+gant;
phi =phi +phi 2;

al pha=al pha+al p2;
del t a=del t a+del 2;

end;
i =i +2;tic=tic+nvector[1,Kk];

sumy2=sumy2-y[tic, 1];
end;

suny=sumyl+suny?2;

o[ 1] = (0.5*si gmal) +(0. 5*si gma2) - (sumi/ (2*x[1]));
g[ 2] = betala+betalb;
g[ 3] = beta2a+bet a2b;
o[ 4] =((summ nus*x[4])/(1-(x[4]**2)))-rho;
g[5] = phi;
g[ 6] = gamm;
o[ 71 = sunmi nus- al pha;
g[ 8] = suny-delta
return (g);

finish gradient;

x0 = {4, 0.2, 0.5, 0.5, 0.2, 0.5, 1
optn = {10 . 1. . . 11};

con=j (1,8,.0000001)//j(1,8,.);

call nlpdd (rc, xres, "maxlike", xO,

0. 04};

optn,

con) grd=

"gradient";
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APPENDIX C

MAPLE CODE FOR GAUSSIAN-EXPONENTIAL DERIVATIVES



> with(linalg):
> wi t h(codegen, nakeproc):

>p:=2;
>mi=3:
>pi=3:

> beta: =vector[col](p);
B=array(1.2,[1])

> Xo=matrix(mn);

X=array(1.3,1..3,[])
>y = matrix(m,n);

y=array(1.3,1.3,[])
>t := matrix(m, n);

t=array(1.3,1..3,]1])

>
L1 = proc(o, B, p, x5, 0,0,8) -.5- sum[ln(c)
. (y[i,l]—X[i,I]-B[l]—X[i,2]-B[2])2,l.=1"m] .
(¢}
-sum[sum(ln(c) + ln(l - pz) + %((y[i,
o-(1-p7)
J) = dlij)-x = ylij = 11-6 = X[i. 1]-B[1] — X[i,2)-B[2])?),
j =2..nj,i= 1 mJ + sum(sum(o + 8-y[i,j — 1] — exp(o + &
yli,j —11)t[i,jl,j=2.n),i=1.m); end,;
> Ilsigma = makeproc (diff (L1(o,B,p, % 0,0,8),0),[c,B,p, K, 0,
o, 8]);
> lbetal = makeproc (diff (L1(o, B, p, %, 0,0,8),B[1]), [c, B, p, %,
¢,0,8]);
> lbeta2 = makeproc (diff (L1(o, B, p, %, 0,0, 8),B[2]), [c, B, p, %,
¢,0,8]);
> [lrho = makeproc (diff (L1(o, B, p, % 0,0,8),p), [0, B, p, % 0, 0,
3]);
> llother == makeproc (diff (L1(o, B, p,, 0,0, 8),%), [c, B, p, ¥, 0,
o, 8]);

> Uphi == makeproc (diff (L1(o, B, p,*, ¢, ,8),0),[c,B,p, 0, ct,

3]);

> llalpha = makeproc (diff (L1(o,B, p, x,0,0,8), ), [0, B, p, k0,
o, 8]);
> ldelta = makeproc (diﬁ‘(L](G, B, p, %, 0,0, 8), 8), [G, B, p, K, b, o,

3]);
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