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ABSTRACT
Champion, Joseph Keith. The Mathematics Self-Effjcand Calibration of Students in a

Secondary Mathematics Teacher Preparation Prodtablished Doctor of
Philosophy dissertation, University of Northern @aldo, 2010.

Social cognitive research has linked students’gieed academic capabilities, or
self-efficacy, to academic choices, self-regulatemmd performance in diverse contexts
from reading comprehension to mathematical proldeiving. This study addressed a
need to investigate the interactions among pribrea®@ment, self-efficacy, calibration
(the accuracy of self-efficacy beliefs), and math@os performance for students enrolled
in the content courses of a secondary mathema@ching program. The sample
included 195 students in 12 classes ranging frdoultes to second-semester abstract
algebra at a mid-sized U.S. doctoral-granting usitag with a large secondary
mathematics teacher education program. Data iadlbbdckground surveys, self-
efficacy ratings preceding final exams, completedlfexams, and transcripts of
interviews with 10 secondary mathematics majorsa@aalysis utilized structural
equation modeling, analysis of variance, and theneading. Findings from both
guantitative and qualitative analyses suggesteiicjpemts’ perceptions of their prior
math performance, together with strong self-effyjcand slight overconfidence, were
most associated with increased final exam perfoomahnhe discussion includes potential

implications of the study for the content prepanatdf secondary mathematics teachers.

Keywords self-efficacy, calibration, undergraduate matheecsapreservice mathematics

teachers, structural equation modeling, social itivgrtheory
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CHAPTER |

INTRODUCTION

“Whether you think that you can or that you cayot)'re usually right” (Moncur,
2007, p. 1). When it comes to learning and teachathematics, the preceding
statement, attributed to inventor Henry Ford, sstga two-way relationship between
belief in one’s ability to complete a mathematitzak and subsequent performance in the
task. The social cognitive view of learning refershis potential relationship as
perceived self-efficacyr self-evaluations of one’s ability to accomplgiven
performances under specific constraints (Bandi@8y)l In the context of the
mathematics completed by prospective secondaryemettics teachers, Ford’s
seemingly simple axiom about the influence of sfficacy on success is just one part of
the multifaceted relationships between self-beli@aéademic motivation, and
performance that can affect students’ experiencaathematics.

Research into self-efficacy has established tlzahbrs who express high self-
efficacy in an academic domain tend to performedreaih tasks in the domain than peers
who report low self-efficacy (Pajares & Schunk, 2DMore than 1,800 research studies
in education have addressed self-efficacy, andteesuggest moderate-to-strong positive
effects of self-efficacy judgments on performarasks in domains as diverse as reading
comprehension, career choice, and problem-solvimgathematics (Lightsey, 1999).

However, there are documented exceptions to thmlt(e.g., Klassen, 2006), and some



important aspects of mathematics self-efficacyeesgly calibration, or the accuracy of
students’ self-efficacy judgments, have receivdatirely little research attention.

The dissertation study reported here addressedematits self-efficacy by
incorporating three aspects of self-efficacy idiediin the literature as areas for future
research: (1) the self-efficacy of college studémsdvanced mathematics courses, (2)
the calibration of students’ beliefs in their mattaical abilities, and (3) the mathematics
self-efficacy of prospective secondary mathemageshers. The guiding research
guestion was: How do self-efficacy and calibratiaiftuence the exam performance of
students enrolled in the advanced mathematics eswfsa secondary teacher preparation
program at a mid-sized liberal arts university?

The first sections in this chapter outline the aesk problem, purpose, and
conceptual framework informing the study. Then,rherative describes two pilot
studies which provided preliminary findings for tip@iding research question in college
algebra and calculus settings. An overview of #ee=arch design is presented, including
research questions and hypotheses, followed bycaskion of the significance of the
study in terms of research, theory, and practiabs8quent chapters include the review
of literature (Chapter Il), a description of thadf methodology (Chapter 1),
guantitative and qualitative results (Chapter Bf)d a synthesis and discussion of the
findings in the context of related literature arademtial follow-up studies (Chapter V).

Research Problem

In 2008, there were approximately 128,500 secontggghers of mathematics in

the United States, the vast majority of which (87&&ch exclusively mathematics

(Morton, Peltola, Hurwitz, Orlofsky, Strizek, & Guar, 2008). What do these teachers



need to know and be able to do? On the federal, lfheeNo Child Left Behind Act
[NCLB] (2001) mandates all teachers earn “highlgldied” status, which requires
teachers to (1) fulfill state certification requirents, (2) obtain at least a bachelor's
degree, and (3) demonstrate “subject matter exgeerflo many in mathematics
education, subject matter expertise is seen agabelopment of teachers’ mathematical
content knowledge and pedagogical content knowlédde Rowland, & Ball, 2005).
Mathematical content knowledgecludes knowledge of and about mathematics and
dispositions toward mathematics (Kahan, Cooper,ethBa, 2003), whilpedagogical
content knowledgeefers to understandings of mathematics that arcplarly useful for
teaching mathematics (Shulman, 1986).

Prospective secondary mathematics teachers baldahtent knowledge they
need as teachers in large part througiversity mathematics coursework required for a
bachelor’'s degree in mathematics (Philippou & GQhtis1998). Such coursework can
include topics such as calculus, differential eoume, linear algebra, real analysis,
geometry, and abstract algebra, and is hereafliectoely referred to aadvanced
mathematicsMonk’s (1994) survey of the content preparatibsexondary mathematics
teachers found participants completed a mean ofSD% 4.3) advanced mathematics
courses and only a mean of 18D(= 2.3) mathematics education courses in college.
However, advanced mathematics coursework doeseuesssarily translate to “effective
teaching” (Kahan et al., 2003) or strong pedagdgicatent knowledge (Hill et al.,
2005), and possibilities for mathematics courseworikfluence a future teacher’s
practices may be substantively influenced by thehers’ perceptions of their

mathematical abilities.



Monk’s (1994) analysis of mathematics teacherste&oinpreparation suggests the
positive effects of taking additional mathematiosirses on student achievement
diminish after about five courses, and a teactmsipletion of advanced mathematics
coursework in college had only a small positiveetfffon student performance in
advanced secondary mathematics courses such atusaad had no statistical effect on
student performance in remedial mathematics couf$es is, there are research
indications of a somewhat tenuous connection betweenpleting advanced
mathematics coursework as a prospective teachedaredoping the knowledge needed
for teaching mathematics.

One consideration in teacher preparation has imegriry into prospective
teachers’ beliefs and attitudes about mathematasding-DeKam, 2005) within the
context of their preparation in advanced mathema#s Philippou and Christou (1998)
point out, “teachers' formative experiences in reathtics emerge as key players in the
process of teaching since what they do in the ass reflects their own thoughts and
beliefs” (p. 191). In particular, Thompson’s (1984quiry into teachers’ beliefs found
self-beliefs and perceptions of mathematics couoskework in concert with beliefs
about the discipline of mathematics to influen@ehkeers’ instructional choices, and,
ultimately, to impact student achievement. Howesearce research has addressed
prospective secondary teachers’ perceptions of tvain mathematical capabilities,
especially in the context of advanced mathematcsses and research is needed to
investigate prospective teachers’ mathematicsesétfacy toward successfully

completing advanced mathematics.



Purpose Statement

The purpose of this concurrent mixed methods s(Gdgswell, 2003) was to
examine relationships among the strength and acgwfamathematics self-efficacy
beliefs and the subsequent performance of stuéantdled in advanced mathematics
courses required by the secondary mathematics golugaogram at a mid-sized
university in the Rocky Mountain West. Utilizingrestructs and hypothesized
relationships from social cognitive theory, brogatistical relationships derived from in-
class survey and assessment data were supportadkblyased interviews to address the
research problem through seven research questions.

The quantitative purpose of the study was to eséraHiects of participants’ self-
efficacy and calibration on subsequent mathemagckrmance using a social cognitive
model for performance in advanced mathematicsrvateng variables included the
difficulty of exam tasks, the amount of requiredtiheanatics in participants’ chosen
college majors, participants’ gender, and indicatdrparticipants’ high school
mathematics achievement. A parallel qualitativarsdrof the investigation explored
mathematics self-efficacy and calibration througg tich information provided by task-
based interviews. The quantitative and qualitasivands then converged to contrast,
triangulate, and validate findings and provideghs$s which may not have been possible
through an exclusive reliance on either strand.

Conceptual Framework

Social cognitive theory provides a foundationahfeavork for considering

prospective mathematics teachers’ self-beliefieir tmathematical capabilities. When

considered in the complicated context of advancathematics content preparation, a



social cognitive framework can help explain thesleand accuracy of prospective
teachers’ self-perceptions of their abilities ie thathematics courses required by
secondary mathematics teacher preparation programs.

Overview of Social Cognitive Theory and Self-Effica

Albert Bandura’s social cognitive theory first bages a means for explaining
observational learning mechanisms by positing @latusal triadic reciprocalityexists
between individuals’ behavior, environmental stimahd internal cognitive factors
(Simon, 1999). This approach has since developedaimobust theory increasingly
focused on the cognitive and motivational processegorting metacognition (Schraw,
1998), self-efficacy, and self-regulation amongmeas as they acquire knowledge and
skills (Martin, 2004). In particular, perceivedlf-efficacy or judgments of one’s ability
to accomplish given performances in particular ertst (Bandura, 1997), is a particular
focus of social cognitive research in mathematgiscation. Lightsey (1999) identified
over 2500 hundred articles addressing positiveioglships between self-efficacy and
achievement.

Social cognitive research considers self-efficaclge a primary mediating
mechanism in all human cognition because self-fseireability act as a filter between
prior experiences and subsequent development liiegwithin a particular domain. In
contrast to self-concept, which refers to more gldelf-beliefs and personal identity,
Pajares and Schunk (2001) summarize the hypotltedirect role self-efficacy plays in
the choices people make:

Self-efficacy beliefs influence the choices peapkke and the courses of action
they pursue. Individuals tend to engage in taskaiayhich they feel competent

and confident and avoid those in which they do Eéficacy beliefs also help
determine how much effort people will expend oraativity, how long they will



persevere when confronting obstacles, and howessthey will be in the face of
adverse situations. (p. 241)

Attributed in part to individuals’ tendencies tdyréeavily on self-efficacy beliefs
during difficult tasks (Bandura, 1997), self-effiggudgments are often better statistical
predictors of performance in academic domains ghandardized measures of ability or
intelligence (Pajares & Kranzler, 1995). In fadteacontrolling for instructional factors,
path analyses of performance incorporating biogcabl¢e.g., socio-economic status,
gender), motivational, and instructional variabksggest self-efficacy beliefs account
for the largest portion of variation in academicfpenance (Madewell & Shaughnessy,
2003). Though measures of self-efficacy are oftful for predicting performance,
there is evidence that strong self-efficacy belieésnselves do not guarantee success in
difficult domains such as mathematics. In particuli@veloping both strong and accurate
self-efficacy beliefs may be the key to self-eftigg benefits in learning mathematics.
Mathematics Self-Efficacy, and Calibration

Underscoring the complex nature of students’ camfae in their mathematical
abilities and performance on closely matched ma#tiead tasks, Chen and Zimmerman
(2007) found that U.S. seventh graders reportechrhigher mathematics self-efficacy
beliefs than sixth grade Taiwanese students, yetts. students performed significantly
worse than the Taiwanese students on corresponuitigematics tasks. That is, the U.S.
students displayed a larger tendency toward ovéidsarce in their self-efficacy ratings
than the tendency toward more accurate self-efficatings among Taiwanese students.
Linking academic behaviors such as reduced effoot/erconfidence, Chen and

Zimmerman suggest the cross-cultural differencessérconfidence may contribute to



larger trends toward underperformance by U.S. siisda mathematics when compared
to Taiwanese students.

Sometimes referred to as “feeling-of-knowing accytgdSchraw, 1995, p. 326),
students'calibration (Pajares & Miller, 1994) in self-efficacy ratingsa relatively new
area for research in mathematics education withdations in experimental psychology
and reading education (Lin & Zabrucky, 1998). Téedency of students across
educational levels and performance abilities tove@rconfidenceor positively biased
judgments (Schraw), has been reported in studieslt#ge students’ self-efficacy for
reading tasks, in particular. In their review ¢étature addressing the calibration of adult
readers, Lin and Zabrucky refer to this tendencgra$liusion of knowing” effect and
suggest possible detrimental effects of overconfide

There is a tendency for adult students to generatealistic feelings of knowing
when it comes to evaluating outcomes of learningcén be seen in the present
review, overconfidence is a common phenomenon argongg adult students

that may result in inadequate learning due to pteradgermination of cognitive
processing. (p. 384)

Bandura (1997) suggests slight overconfidence @isoself-efficacy can be
psychologically adaptive because overconfidenceheae positive benefits on effort and
persistence. In this view, poor calibration in then of overconfidence can be reframed
as a set of optimistic self-evaluations that mainately support taking-on challenges.
Nonetheless, Bandura and other calibration resees¢b.g., Pajares & Kranzler, 1995)
caution against grossly inflated overconfidencggssting that unrealistic
overconfidence can lead students to engage iraelficapping academic behaviors
(Urdan, 2004) such as reduced studying and inctlgaserastination.

From a quantitative perspective, there is supmortélibration as a measure that

contributes to statistical explanations of variatio achievement beyond the variation



explained by self-efficacy judgments and prior agkment in mathematics (Pajares &
Miller, 1997). Chen (2003) found U.S. middle schstidents at every ability level tend
to show poor calibration in the form of overconfide, but also that self-efficacy and
calibration provide significant and independentxtve value in a path analysis model
for mathematics performance.

One hypothesis regarding calibration is that le@ngay grow to be more accurate
in assessing their abilities through a content$jgadevelopmental process (O’Connor,
1989). In a review of calibration research fromemmental psychology in the 1960s to
1980s, O’Connor identified several factors influ@gccalibration: (1) familiarity with
task requirements (e.g., assigning numbers tonfgelof uncertainty), (2) familiarity with
the topic of interest (subject matter knowledgey €é3) feedback on the accuracy of prior
judgments. O’Connor also describes research thigigeostudents’ self-efficacy to attain
final letter grades in their courses tends to bi-gadibrated, suggesting students may
develop good calibration in predicting general &aid outcomes while simultaneously
demonstrating poor calibration in their self-efigdo complete specific course-related
tasks.

Through mathematics self-efficacy and calibratsogial cognitive theory
provides a foundation for interpreting the mathecahtonfidence and achievement of
prospective secondary mathematics teachers in adganathematics. However, social
cognitive theorists do not subscribe to global ®0dé self-efficacy and performance
(Bandura, 1997), because personal, social andrabttanditions are seen as important
co-determinants of academic confidence, motivatoil, behaviors. Thus, it was

important to develop a hypothesized model of sii¢acy, calibration, and performance
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based on the specific learning context at the rekeste. Two pilot studies informed this
effort.
Two Pilot Studies

In preparation for this study, the researcher cotetlitwo pilot studies at the
research site; the first study focused on the pte@i value of mathematics self-efficacy
and calibration in College Algebfal = 128) during Fall 2007, and the second study
extended and refined the methodology of the fitedysin the context of Calculus N(=
119) during Spring 2008. The first pilot study veas within a larger study of student
achievement and goal structures that incorporaa¢éghbed, random assignment of
students to two instructional conditions, one ofalhincluded a classroom
communication system featuring a network of graglualculators and a classroom
presentation system. Within the college algebrdysttine first pilot study used a
concurrent mixed methods (Creswell, 2003) designuestigate students’ self-efficacy
ratings, calibration, and experiences of coursdldaek in the four college algebra
sections throughout the semester. The secondgpudy utilized a post-test only with
non-equivalent groups design (Creswell, 2003) tthér validate and refine the measures
and statistical model for the effects of self-edfig and calibration on final exam
performance in the population of students enrategidvanced mathematics.

Quantitative results from the first pilot study iomed many of the self-efficacy
research findings that had previously been attedbtad middle and secondary school
students (e.g., Chen, 2003he survey techniques used in the study mirroredgufures
used in earlier social cognitive studies of calilora(e.g., Chen, 2002; Pajares & Miller,

1994) and incorporated two measures of calibratianedracy which is an absolute
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measure, antdias which is a directional measure of calibration—imtpga compare the

predictive utility of each measure. Self-efficaagcuracy, and performance scores were

converted to a five-point ordinal scale (i.e., bwest, 5 = highest), and calibration was

expressed on a 10-point ordinal scale (e.g., -Bderconfident, O = calibrated, +5 =

overconfident). Descriptive statistics for the fooeasures are shown in Table 1 and

suggest participating college algebra studentsei@ ol express self accuracy ratings

which were moderately accurate, but consistentgraanfident. Correlation analysis of

the variables confirmed findings from Chen and Zienman (2007) that self-efficacy,

mathematics performance, and calibration bias andracy are all significantly

intercorrelated at the = 0.01 criterion (see Table 2).

Table 1.

Means and Standard Deviations of Measures in thet Filot Study

(N=91) Performance Self-Efficacy Bias Accuracy
Measure M SD M SD M SD M SD
Exam 1 411 0.62 4.00 0.69 1.07 0.96 2.82 0.67
Exam 2 3.01 0.89 3.54 0.89 1.67 1.08 2.46 0.66
Exam 3 3.70 0.74 3.62 0.84 0.98 1.04 2.82 0.75
Final Exam 4.01 0.75 3.84 0.80 1.07 1.18 2.77 0.78
Combined 3.73 0.55 3.76 0.70 1.18 0.72 2.73 0.49
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Table 2.

Correlations for Composite Measures in the FirdbPStudy

Bias Accuracy Self-Efficacy Performance
Bias - -0.60 0.36 -0.51
Accuracy - 0.36 0.76
Self-Efficacy - 0.54

Performance -

Data analysis in the first pilot study led to a tiplé linear regression model
which included composite measures of self-efficaiegt calibration bias as predictors of
students’ performance on four in-class examinatidinslysis of the model suggested the
data met the four assumptions of linear regressiodeling (Osborne & Waters, 2002),
including (1) linear relationships between the meledent and dependent variables, (2)
independence of errors, (3) normality of variabées] (4) equal variances in errors
(homoscedasticity). The regression model was sagmit & = 265.4,p < 0.001) and
yielded anR? value of .86 $E= .2), suggesting 86% of variance in college algebr
students’ performance could be explained by indéeenlinear effects due to calibration
and self-efficacy. Standardized regression coeffits showed strong and approximately
equal effects of biag (= -.82) and self-efficacyp(= .83). That is, while increasing self-
efficacy judgments was associated with increasatienaatics performance, tendencies
toward overconfidence were approximately equalsoamted with decreased
performance among the college algebra study ppaiidts.

The qualitative inquiry component of the first pitdudy looked at college

algebra students’ experiences of multiple souréésealback in technology-enriched
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instructional settings, including online homewagkaphing calculators, course
management software, and small-group activitieguin sections taught by the two
instructors, of which one was the researcher. @uBan taught by each instructor
utilized a classroom graphing calculator networla@@mmunication and presentation
system during class activities. Using purposefai@ang techniques (Glesne, 2006) in
conjunction with suggestions from the class ingbyche qualitative investigation
included data from interviews of seven studentsdigial artifact analyses (e.g., saved
computer screenshots) as part of a holistic coniparease study (Merriam, 1998) of
students experiences in the two instructional rgsti

Results from the qualitative strand of the firdopstudy suggested students relied
heavily on performance feedback and mastery expazein the form of quizzes, exams,
and online homework as well as social comparisorttassroom peers in forming self-
efficacy evaluations of their content understandiffgese preliminary qualitative
findings pointed to considering Bandura’s (198)r sources of self-efficacymastery
experiences, social persuasions, vicarious expmgerand physical and emotional
states—as a potential qualitative framework forlestpg the relationships among self-
efficacy, calibration, and performance for studemsolled in advanced mathematics
courses.

The Calculus | pilot study yielded similar resutighe quantitative strand of the
college algebra pilot study regarding the corretagiand predictive value of self-efficacy
and calibration toward students’ exam performambtés second pilot research design
collected less data from each student (a singlmesasus four) and was less controlled

than the first pilot study because the cross-seatidesign did not include random
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assignment of students to sections and the paatingp calculus instructors used different
exams and self-efficacy instruments. In additioa tlecrease in statistical power due to
reduced sample size (Frankfort-Nachmias & Nachn2@80), it was expected that any
linear regression models would account for a lggreportion of variation in students’
mathematics performance. However, as in thegitst study, self-efficacy and
calibration bias accounted for large independentiqts of the variation in exam
performance, collectively explainiriRf = 76% of the variation in calculus students’ final
exam performance. However, both students’ perfoomamd calibration bias on final
exams varied greatly across course sections, vauiggested future research might
follow Chen’s (2003) consideration of potentialfdiences in self-efficacy and
calibration by the level of difficulty in test itesn

While the two pilot studies suggested some relahgys between calibration,
self-efficacy, and mathematics performance in adedrcoursework, interpretation of the
data analysis was limited by an assumption in iplglfinear regression that independent
variables do not include measurement error (Fratkfachmais & Nachmias, 2000).
Although observed reliability coefficients of selfficacy and calibration measures are
typically moderate to strong (O’Connor, 1989; Paga& Miller, 1997), the fact that each
measure includes self-reports of latent psycholigiariables suggests that structural
equation modeling is more appropriate, especiallight of the strong theoretical
support for directional relationships among calilorg self-efficacy, and mathematics
performance (Pajares & Kranzler, 1995).

In summary, the pilot studies informed the resedesign in four important

ways. First, the procedures in the pilot studidpdgkrefine the data collection protocol
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and helped to establish the feasibility of the datidection and analysis procedures at the
research site. Second, the regression findings ot studies suggested strong,
approximately equal, and opposite effects of skitacy and calibration on
performance. Third, the qualitative inquiry pointedBandura’s (1997) conception of the
four sources of self-efficacy as a conceptual fooinvestigating relationships between
self-efficacy, calibration, and performance. Fipathethodological considerations
suggested the appropriateness of using structguat®n modeling in future
mathematics self-efficacy research.
Hypothesized Model and Research Questions

A central purpose of the research was to addressetiearch problem by
investigating a social cognitive model for advanoethematics performance that
incorporated self-efficacy, calibration, and thecaimt of mathematics in students’ major
as endogenous variables and high school mathenaatiesvement as a single exogenous
variable. The model, shown in Figure 1, was basedroextensive review of related
literature and was similar to models used by CR&93) and Pajares and Kranzler

(1995) in studies of mathematics self-efficacy aghganeral student populations.
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HS Math
Achievement

Math in Final Exam

Maj_(y *\@rmance
A
R Calibration

Figure 1 Hypothesized path model for performance in advameathematics.

One distinguishing characteristic in the structunaldel was the inclusion of
hypothesized effects of the amount of mathematictudents’ college majors as having
a potential influence on self-efficacy, calibratiamd performance among students
enrolled in advanced college mathematics courdes hypothesized model is a compact
way of representing four quantitative research tioes (Q1-Q4 below) that were
addressed using structural equation modeling. thtiad, two quantitative questions
addressed potential differences in the endogenaables by the intervening variables
corresponding to students’ gender (Q5) and thecdiffy of exam items (Q6), each of
which were addressed through multivariate analysi@riance (MANOVA) procedures.
Finally, a single qualitative research questiotiechfor a holistic description of the
processes relating self-efficacy, calibration, arathematics performance for the

important subpopulation of prospective secondartheraatics teachers.
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Q1 Does high school mathematics achievement havendisant effect on the
amount of mathematics in participants’ college nfajo

Q2 Do high school mathematics achievement and the ahadunathematics
in participants’ college major have significantegffs on participants’
calibration?

Q3 Do high school mathematics achievement, the ammiumiathematics in
participants’ college major, and calibration haigngicant effects on
participants’ self-efficacy?

Q4 Do high school mathematics achievement, the ammiumithematics in
participants’ college major, calibration, and s&fficacy have significant
effects on participants’ performance on exams wraaded mathematics?

Q5 Are there significant differences in self-efficacglibration, the amount of
mathematics in participants’ college major, andeebed mathematics
performance by participants’ gender?

Q6  Are there significant differences in self-efficaayd calibration by item
difficulty?

Q7 Inwhat ways do prospective secondary mathemagdashers’
mathematical problem-solving compare and contrast tve hypothesized

relationships between self-efficacy, calibratiomd gerformance in
advanced mathematics?

A primary purpose of the literature review (Chaptewas to ground the research
guestions within social cognitive theory and radditerature on mathematics self-
efficacy. In addition, the review of literature prded the rationale for directional effects
in the structural model and led to the developnoétitypotheses (listed at the end of
Chapter II) to correspond to each of the reseavestipns.

Brief Overview of the Research Design

The research design incorporated a social cogrgvspective on cognition and
academic achievement that emphasized the medraties) of self-efficacy and
calibration on students’ performance in mathemaifib® methodology used a concurrent

triangulation strategy for mixed-methods (Cresw2003), including a qualitative inquiry
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to cross-validate and contextualize findings frostaistical model of students’ self-
efficacy, calibration, and performance in the caht®urses of a secondary mathematics
teacher education program at a single mid-sizeallement of about 12,000) liberal arts
university in the Rocky Mountain West. Data colientincluded quantitative self-
efficacy surveys and exam performance scores $angle of 195 students in 12
advanced mathematics classes along with qualitislebased interview responses from
10 purposefully sampled participants. Details &f tethodology appear in Chapter Il
Dissemination of Findings

The study findings were disseminated in three whiyst, this dissertation
narrative was completed as part of the researcterctoral degree requirements and
made available to the public through the Univereitilorthern Colorado’s library
system. Second, the study and findings were sumagthin a professional research
presentation at a national conference on mathesnatigcation and through research
presentations in five U.S. mathematics departnsiatisspecialize in the preparation of
secondary mathematics teachers. Finally, the relseaexpects to synthesize the study
and findings into a scholarly article and to subtiné article to a peer-reviewed
mathematics education journal. The intended audiefthe dissertation and research
presentations was primarily faculty responsiblegi@paring future secondary
mathematics teachers, including mathematics professd teacher educators, but also
included educational psychologists, educationaasshers, secondary mathematics
majors, and those interested in the self-beliefstwdients in advanced mathematics

courses.
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Significance of the Study

The aim of this section is to outline some antitgdamplications of the study for
research, theory, and the preparation of secondatigematics teachers; for a more
detailed discussion of the significance of studthie context of study limitations, see
Chapter V. Based on the review of literature anot gtudies, the research study was
expected to (1) add to existing self-efficacy reskedy including an important and often
overlooked population of participants, (2) partidilll a need for mixed methods studies
in social cognitive research, (3) add to researcthe mathematical content knowledge
and self-beliefs of prospective mathematics teagtaerd (4) inform the practice of the
mathematical content preparation of prospectiversgary mathematics teachers.

First, the review of literature identified subsiahheeds for research addressing
the self-efficacy and calibration of college stuidei he research design could lead to
findings regarding the value of using these meastar@redict student performance in
advanced mathematics, as well as describe potamtalening effects of students’ prior
achievement, gender, and college major. Moreolierqualitative inquiry could suggest
new quantitative avenues for evaluating the gerzataility of themes emerging from the
exploratory task-based interviews.

Second, social cognitive theory posits a dynantierplay between learners’
perceptions of their performance, self-assessntérapability, and academic choices
(Pajares & Urdan, 2006), and this approach to legmecessarily admits the effects of
rich constellations of context informed by life @@nce and culture (Bandura, 1997).
However, nearly all existing mathematics self-eftig research has employed

guantitative methods (Usher & Pajares, 2008). $tudy, by blending quantitative and



20

gualitative techniques, was expected to help desthe context and processes through
which self-efficacy and calibration influence perfance among prospective secondary
mathematics teachers. This mixed methods apprdetea both statistical testing of
broad-scale effects and emergent inquiry into nmatties self-efficacy and calibration
among preservice secondary mathematics teachers.

Third, the research design had the potential tlwlmn emerging understandings of
social learning in mathematics as it relates toptiaetice of secondary mathematics
teacher preparation. Future teachers need to krieat mvathematics they understand
well (Ball & McDiarmid, 1989), and the study findja could help describe the qualities
of, and processes supporting, the metacognitivecispf mathematics learning related
to self-efficacy and calibration among studentsngladvanced mathematics courses.
These descriptions, by including the important pafon of prospective secondary
mathematics teachers, can buttress efforts to prdpgh school mathematics teachers
that are realistically confident in their matheroaliskills.

Finally, the research design had the potentiaktp mform educational
interventions to promote adaptive mathematicseféifacy in the content courses of
secondary mathematics teacher preparation progfitngg evidence of overconfidence
in students at every educational level, Pajares\ilidr (1997) highlight the significance
of developing a better understanding of calibratromathematics students because of
the import of affecting students’ calibration:

It may be more important to develop instructiorghiniques and intervention
strategies to improve students' calibration thaattempt to raise their already
overconfident beliefs. Improved calibration shorddult in better understanding
by students of what they know and do not know s titrey more effectively

deploy appropriate cognitive strategies duringgiablem-solving process. (p.
216)
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The quantitative and qualitative findings descrmpmathematical self-efficacy and
calibration among secondary mathematics majorsheyto suggest ways in which
teacher educators and mathematics professors taarghtions in which students can

develop robust and realistic perceptions of thethramatics competencies.
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CHAPTER Il

REVIEW OF LITERATURE

Imagine two friends, Casey and Jesse, preparing fioal exam in their calculus
course. Throughout the semester, the study-budai¢$o do homework a few nights a
week, prepared together for exams, and experiesioatar high marks on exams and
graded assignments. Encouraged by her success amtth other mathematics courses,
Casey is looking forward to the final exam. Sheestp to do about as well on the final
exam as she did on the midterm exams, plans ty siode by rereading her notes, and
will go to the final exam feeling calm and confidedesse, however, is concerned about
the exam. Jesse tells her friend Casey that silevés/s worried about making “stupid
mistakes” on exams, and she is worried that shelraag forgotten much of the content
from early in the semester. Besides, without Cégéaelp her study, Jesse does not like
her chances of doing well on the exam.

The hypothetical situation of Casey and Jessebgfstre the final exam raises
some questions that can be partially answereddsareh into the interplay between
academic experiences, self-efficacy, and performawill Casey’s self-assuredness in
her mathematics abilities be likely to help or l@ntier when it comes to her
performance on the final exam? Do students whe,Jésse, have lower self-efficacy in
an advanced mathematics course, become discouaadestudy less than their more

confident peers, or do they find ways to overcohsrtconcerns to ultimately achieve



23

higher levels of performance? To what extent miggstse and Casey’s performance in
prior mathematics classes, their gender, or eveuifficulty of their upcoming calculus
exam influence their self-efficacy?

This chapter describes a base of scholarly liteeand conceptual framework on
which the dissertation study rests. The first smdidetail a theoretical foundation for
approaching mathematics learning through concepgsdial cognitive theory, including
self-efficacy and the accuracy of confidence judgimeNext, the narrative narrows to
research describing social cognitive views of miatiiics performance, including
empirical and theoretical models for mathematia$opmance that incorporate self-
efficacy and related motivational variables. Tisig¢dllowed by rationale for the
hypothesized model for advanced mathematics pediocemused in the research. With
the base of scholarly research supporting the Masaand theoretical perspective, the
review of literature culminates in research questiand hypotheses.

Overview of Social Cognitive Theory

Social cognitive theory originated in the neo-bebast research program of
Albert Bandura in the 1950s and 1960s (Schunk, R@@ich included the classic 1961
Bobo Doll experiment at Stanford University. ThebBdoll experiment traced increases
in aggressive behaviors in preschool children teeoling peers or cartoons displaying
similar behaviors on film (Bandura, Ross, & Ro$63). Bandura’'s experiments gave
evidence for learned aggressive behaviors in camdithat contained no observable
reinforcements. These and related results conttastarply with Skinner’s operant
conditioning learning theory, which was the dominaarning theory at the time in

psychology (Pajares & Schunk, 2001). To help exptaé Bobo Doll experiment
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findings, Bandura developed a social learning théwait emphasizedbservational (or
vicarious) learningthrough behavioral and cognitive modeling.

Embracing the fact that much human learning ocicusecial contexts, social
cognitive researchers initially focused on procsdkat link observed behaviors, social
comparisons, and personal motivation, such as nsgpcilitation (going along with the
crowd), inhibition (observing others being punishetisinhibition (observing others not
being punished), and the attention, retention andyzction of modeled skills (Schunk,
2004). Research results suggested observatiomairigacan be influenced by (1)
intellectual and physical development, (2) the pexd prestige of models, (3) vicarious
experience of the consequences of modeled behadnsersonal goals and outcome
expectations, and (5) perceived self-efficacy given domain (Schunk, 2004).

Following the emphasis on observational learninthén1960s and 70s, social
cognitive theory evolved to incorporate principleshe social constructivism paradigm
(Simon, 1999), and grew to focus on the causalga®es underlying the effects of self-
beliefs on behavior (Bandura, 1995). In the modeial cognitive view of learning as
anagenticprocess, people rely on self-perceptions to chaosiens that exert influence
and establish control over their environment. Bgsncy results in @iadic reciprocality
between personal factors (i.e., cognitive, affextand biological), behaviors, and
external stimuli (Schunk, 2004). Theorists consitieee broad types of personal
cognition to have mediating effects on the recipto@ture of social learning: self-
efficacy, self-regulation (e.g., Zimmerman & Schuhf89), and outcome expectancies
(Bandura, 1997). Of the three mediating construbtsstudy focused on self-efficacy,

which Bandura (1997) cites as having the strongestiating effect on learning. The
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following section defines self-efficacy and pladas the context of related constructs in
educational psychology.
Self-Efficacy and Related Constructs
Definition of Self-Efficacy
Bandura (1997) definegerceived self-efficacys “beliefs in one’s capabilities to
organize and execute the courses of action reqtorptbduce given attainments” (p. 3).
Together with the social cognitive view of knowledas personally and socially
constructed within cultural milieus (Simon, 1998¢rceived self-efficacy can include
self-confidence in one’s ability to exercise cohtnoa variety of circumstances, such as
self-efficacy to regulate affective (emotional)tetg to change social conditions, or to
achieve a desired performance level on a mathesnatt. According to Bandura (1997):
[Self-efficacy] beliefs influence the courses ofiae people choose to pursue,
how much effort they put forth in given endeavtisyw long they will persevere
in the face of obstacles and failures, their resde to adversity, whether their
thought patterns are self-hindering or self-aidimgyw much stress and depression

they experience in coping with taxing environmen&inands, and the level of
accomplishments they realize. (p. 3)

Thus, self-efficacy is primarily important to edtioaal researchers because of
the effects of self-efficacy on students’ choigestivation, and persistence (Bouffard-
Bouchard, 1990). Although Bandura’s preceding qgetams to ascribe a kind of
universality to the influence of self-efficacy oness life, the meaning and role of self-
efficacy in learning can be better operationaligaonsidering related constructs in the
theory of academic motivation.

Self-Efficacy in the Context of Academic Motivation
Educational psychologists who focus on academicvaikbdn point to a

constellation ofelf-beliefsor set of conceptions one has about oneself (g%
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Schunk, 2002), that combine in complex ways taligriice learning. Thus, one way to
operationalize the meaning of self-efficacy in neatlatics learning is to consider self-
efficacy in the context of other related self-bietienstructs. Table 3 includes examples
of self-belief statements in mathematics that typme constructs in academic
motivation literature that have similarities witklfsefficacy, including self-concept of
ability, self-esteem, outcome expectancies, lo¢u®ntrol, affective confidence, goal
orientations, and social comparisons.

Table 3.

Examples of Self-Belief Statements Related to Medties

Statement Motivational Construct
| can solve this quadratic equation. Self-efficacy
| can earn at least a C in mathematics class ¢hniester. Self-efficacy
| am really good at graphing functions. Self-conadability
| am smart in mathematics. Self-Esteem
| will earn at least a B on my algebra test tometro Outcome expectancy

When | work hard, | tend to do well in mathematics. Locus of control (internal)

My teacher will pass me if I turn in all my homewor Locus of control (external)

| feel like | am ready to learn the quadratic fotaau Affective confidence
| want to earn at least a C on my algebra test toono Performance goal
| want to understand function notation. Masterylgoa

| am better than my friends are at doing mathermsatic Social comparison

One of the oldest terms in modern psychologeié-esteemwhich was defined
by William James (1890) in the 19th century asifem of self-worth that arise from

accomplishing some fraction of what one wishesctienplish. Decades later, a trend



27

emerged out of the humanistic movement in psychothging the 1960s through 1980s
(Pajares & Schunk, 2001) that emphasized promdéielings of self-esteem in school
children with the hopes of providing a foundation &cademic success. The self-esteem
movement was challenged by policy critiques thHtesteem programs in schools
promoted egocentrism and excessive praise (McMiamgh, & Simonetta, 2001).
Among the hundreds of research studies into thebetween self-esteem and
performance, most reported weak associations bategléesteem and performance
(Hansford & Hattie 1982). In their extensive revjddansford and Hattie found the mean
reported correlation between self-esteem and adagmrformance in 128 studies at the
K-12 level to be = 0.21, with reported values ranging from -.77 tor = .96. The
authors interpreted these results as providingtlems-overwhelming evidence for the
value of self-esteem programs, and suggested sommes of self-esteem—what

McMillan and colleagues refer to as unearned sslem—may actually have
detrimental effects on academic functioning.

Widespread dissatisfaction with programs to prornsetéesteem in schools
(Pajares & Schunk, 2001) led to alternative forrtiates of what constitutes helpful self-
perceptions in academics, particularly the consdratself-concept, goal structures,
locus of control, and self-efficacy. Among theself-concepts most closely linked with
self-esteem. Bong and Clark (1999) cite self-coheeg self-efficacy as the two most
researched self-related constructs in academiovatain theory, but also point to
theoretical challenges when comparing self-efficaicg self-concept in academics.

While self-efficacy toward a given task is gengraibed to mean “the conviction

that one can successfully execute the behavioiinemtjto produce the outcomes”
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(Bandura, 1997, p. 79), self-concept has many tipe&d meanings in motivation
literature. Bong and Clark (1999) found self-cqrtamost often refers to “one’s
perception of the self that is continually reinfeddoy evaluative inferences and that it
reflects both cognitive and affective responses’1@®).Self-concept of abilityrefers to
the cognitive component of self-concept, includitegcriptions (e.g., Can | do this task?)
and self-evaluations (e.g., How well can | do thisk?). In contrasself-esteem
encompasses the affective component of self-conaagtincludes feelings of worth and
approval or disapproval in a given learning domaimat is, self-esteem can be domain
specific (e.g., self-esteem in mathematics madifiom self-esteem in reading) and can
flow from one making what Moore and Small (2007 ereéo asnormative comparisons
(e.g., Do | feel smarter after finishing my mathécsghomework?) andocial
comparisonge.g., Am | as good as my mother at doing mathexsali

Some theorists restrict self-esteem to mean ontgige feelings of personal
worth (e.g., Branden, 1994) and refer to relatetirigs that are specific to a domain as
affective confidencfReyes, 1984). In summarizing affective cognitigsearch in
mathematics learning, Reyes identified consist@iotigh moderate, positive associations
between affective confidence in mathematics andvemaatics achievement. Reyes cites
Dowling’s (1978) Mathematics Confidence Scale asliable measure of affective
confidence in mathematics in college students,sameck affective confidence is the
component of self-concept that is easily conceptutiferentiated from self-efficacy,
Pajares and Miller (1994) used a modified versibBawling’s survey as their measure

of self-concept in undergraduate mathematics stsden
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Self-concept and self-efficacy both include cogeitperceptions of one’s
capabilities in a domain, but differ in generabityd scope. A self-efficacy belief is
restricted to “a judgment of one’s capabilitiegi@cute specific behaviors in specific
circumstances” (Pajares & Miller, 1994, p. 194),le/self-concept can include general
assessments of ability, feelings of self-esteem,iaferences about one’s performance in
relation to their peers or perceived norms (Made&&haughnessy, 2003). The more
general scope of self-concept as a construct, alatigthe relative lack of consistent
meaning of self-concept in research, is perhapdypasponsible for weaker and less
consistent associations between self-concept aatkadc performance than those
reported for self-efficacy and academic performgiBmng & Clark, 1999). In a path
analysis of the mathematics performance of 350 ngmndduate students in Georgia,
Pajares and Miller (1994) found strong main effeftself-efficacy on performance and
only moderate indirect effects of self-concept enfgrmance. Moreover, participants’
self-efficacy ratings showed higher internal cotesisy than self-concept ratings, and the
influence of self-concept on performance was largecounted for by a meditational
influence of self-concept on self-efficacy.

While the preceding discussion situates self-effyda the context of self-esteem,
self-concept, and affective confidence, some cantrin academic motivation theory
encompass self-beliefs that do not directly refeeerapabilities, but nonetheless may
influence academic success. In particular, intcitiseories of motivation such as social
cognitive theory view individuals’ actions as prtee efforts to reach desirguersonal
or social goals Achievement Goal Theory (Alderman, 1999) desifve types of

personal goal orientations that influence motivatod achievementnastery
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orientationsandperformance orientationsSStudents with mastery orientations in a
domain aim to learn because they believe learmirtge domain is inherently valuable
and meaningful, whereas students with performaneatations seek and evaluate levels
of attainment by focusing on perceived normativeamial standards (Urdan, 2004).
While mastery goal orientations are typically ass@d with many of the same adaptive
educational choices as self-efficacy, such as gtersie, help-seeking, and taking-on new
challenges (Urdan, Pajares, & Lapin, 1997), peréorce orientations have been
associated with both adaptive and non-adaptivailegichoices (Husman, Brem, and
Duggan, 2005).

Goal theorists generally vieperformance-avoidancgoals (i.e., to avoid
performing below some given level) as having negagiffects on academic functioning
(Elliot & Moller, 2003), but the relative merits performance-approacgoals (i.e., aims
to perform up to some desired level) are disputethe context of self-efficacy, Elliot
and Moller's meta-analysis of performance-approgadis research identified a weakly
positive effect of performance-approach orientation students’ academic achievement
and self-efficacy, but found inconsistent resutigarding the influence of performance-
approach orientations on many other academic betsasuch as help-seeking and
persistence. Midgley and Urdan (2001) found 7tldgnaathematics students with
performance orientations were more likely than siisl with mastery orientations to
engage irself-handicappindpehaviors, including avoiding studying and purppset
trying hard in mathematics classes. Likewise, sitgleith performance-avoidance
orientations engaged in more self-handicapping Wiehathan those with performance-

approach orientations.
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Zimmerman, Bandura, and Martinez-Pons (1992) inyat&d the potential
influences of self-efficacy on middle school sogtldies students’ goal setting
behaviors and academic performance. The authotis’grealyses identified direct effects
of self-efficacy on test performance, grades, aqtessing confidence to set and attain
short-range goals. However, potential relationsbigtsveen self-efficacy, goal
orientations, and achievement among college mattiesrstudents have received little
research attention (Elliot & Moller, 2003).

One notable exception to the lack of unificatiotwsen goals research and self-
efficacy research is the work of Lent, Brown, aratkett (1994), who suggest that self-
efficacy acts as an important mediator on the &ffetprior achievement on outcome
expectations, interests and goals, and futurenatiemts. The authors’ general model (see
Figure 2), though originally intended for adoledoeareer-choice behaviors, is
particularly useful for setting self-efficacy inetltontext of the personal, contextual, and

experiential constructs that affect academic clwmice

Self
Efficacy

HS Math
Achievement

Performance
Attainment

Interests, Goals, &
Activity Selections

Outcome
Expectations

Figure 2 Lent and colleagues’ model of career-choice bielns¢1994, p. 88).
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Self-Efficacy in Mathematics Education

Beginning in the 1980s, studies of mathematicsef@ifacy have linked students’
self-efficacy to complete mathematical tasks t@aety of educational outcomes,
including problem solving performance and persis¢efBouffard-Bouchard, 1990),
choice of college major (Betz & Hackett, 1986), aadeer interests (Lapan,
Shaughnessy, & Boggs, 1996). In fact, Pajares aatidn (1999) explain why social
cognitive theorists have devoted so much studyeseiibing relationships between
mathematics self-efficacy and achievement:

The area of mathematics has received special mtteintself-efficacy research

for a number of reasons. Mathematics holds a vahleszk in the academic

curriculum; it is prominent on high-stakes measufeschievement generally

used for level placement, for entrance into spewiafjrams, and for college

admissions; and it has been called a “criticaéfil for students in pursuit of
scientific and technical careers at the collegellgyp. 125)

Self-efficacy research has contributed potentiglaxations for some puzzling
differences in students’ motivation for and intéséa mathematics and mathematics-
related careers (Madewell & Shaughnessy, 2003)icp&arly in terms of differences in
male and female students. For example, in thelr @aalysis of the mathematics
performance of 415 high school juniors, O’Brienpata, and Martinez-Pons (1999)
identified students’ gender and mathematics séi¢afy as having direct effects on
mathematical career interests, with mathematidse$etacy in turn influenced by
students’ ethnic identity, prior academic achievetnand socio-economic status. In the
post-secondary setting, Hackett and Betz (198%)dauathematics self-efficacy was a
better predictor of choice of a mathematics-relatgtbge major among college students
than indicators of either mathematics problem-sg\performance or high school

mathematics performance. The authors suggest menma@e overconfident than were
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women in their self-efficacy for mathematical preriol solving, but also suggest
participants of both genders tend to be moderatetyconfident in their problem solving
skills.

A four-year longitudinal study by Lapan and colleag (1996) looked at
predictors of college major and interest in mathgreaelated careers among 101 men
and women from Grade 11 through the students’ juyear of college. Findings
suggested mathematics self-efficacy played an itappmediating role on the effect of
high school mathematics experiences on choiceltdggomajor, but also pointed to the
conclusion that students’ interests in mathemagtated careers were relatively stable
over the course of the study. The authors conclggeder differences in mathematics
self-efficacy and differing high school mathematosirsework, but not differences in
mathematics performance, combined in influencingrast in mathematics-related
careers:

The decision to enter a math/science major waargelpart a function of

preexisting efficacy and vocational interest paisett is apparent that these

young women received qualitatively different higihgol experiences, believed
less in their ability to successfully perform matiiénce tasks, and consequently

expressed less vocational interest than young marathematics. (Lapan et al.,
p. 288)

The questions of potential gender or racial diffiees in mathematics self-
efficacy was also considered by Pajares and Kra(¥895), who found no differences
between male and female high school students’ medties performance, self-efficacy,
or general mental ability, but found female studewported higher levels of
mathematics anxiety. The authors give evidenseiggest observed levels of

mathematics anxiety have only weak direct influsnme performance, whereas general
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mental ability and mathematics self-efficacy digm&rong and approximately equal
effects on both anxiety and mathematics performémcstudents of both genders.

Similar to the Hackett and Betz (1989) and PajaresKranzler (1995) studies,
Chen (2003) found no differences in mathematidsesétacy between boys and girls in
middle school, but did find boys expressed nmwrerconfidence-tendencies for self-
efficacy ratings to exceed performance on matchskktthan girls did in making self-
efficacy judgments. Similar overconfidence was ddig Pajares and Kranzler as
differing along both gender and race—high schogkhbeere more overconfident than
girls, and African American high school studentsewaore overconfident than White
high school students. Recently, Chen and Zimmer{@a07) suggested the lower
performance of U.S. middle school students whenpaoed to the performance of
Taiwanese middle school students may be at leasalhaexplained by a greater
tendency for U.S. students (both male and femaleégtoverconfident in reporting self-
efficacy judgments.

Sources of Mathematics Self-Efficacy and Gender

Bandura (1997) proposed that an individual’s s#it&cy in a domain such as
mathematics develops through experience in the ohoamal the individual's perceptions
of four sources of information: (a) authentic magexperiences, (b) vicarious
experiences, (c) verbal or social persuasions{@nemotional and physical states. Both
exploratory factor analyses (Lent, Lopez, BrownG&re, 1996) and experimental
interventions (e.g., Hackett, Betz, O’Halloran, &mRac, 1990) have supported
Bandura’s theory that self-efficacy beliefs aredabsn the four sources (see Usher &

Pajares, 2008 for a synthesis of the literaturendtheless, the relative influences of the
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four sources on the self-efficacy of individualsyntéffer substantially across domains,
across individuals, and even within an individu@len considering self-efficacy for
different areas of competence (Zeldin, 2000).

The ways in which students experience and cometéonalize information from
each of the four sources of self-efficacy in mathgos appears to have measurable
influences on their success and persistence inemattics (Usher & Pajares, 2008).
Students’ reports of their perceptions of eachheffour sources of self-efficacy have
been linked to mathematics performance (Lopez &, £9092), interest in mathematics-
related careers (Lent et al., 1994), and gend#ardiices in mathematics performance
and self-efficacy (Campbell & Hackett, 1986).

Mastery, or performance, experiences are widelgicened to be the most
influential source of self-efficacy for individualls most learning domains:

Authentic mastery of a given task can create angteense of efficacy to

accomplish similar tasks in the future. Alternalyyeepeated failure can lower

efficacy perceptions, especially when such failaesur early in the course of
events and cannot be attributed to lack of effogxdernal circumstances.

Continued success, on the other hand, can creatg &fiicacy beliefs that
occasional failures are unlikely to undermine. el& Pajares, 2000, p. 216)

Lent and colleagues’ (1996) factor analysis ofexpdl students’ responses to a sources of
self-efficacy survey identified mastery experienasso dominant in self-efficacy
formation as to lend some support to utilizing a-fiactor model for sources of self-
efficacy in statistical modeling: Mastery Experiea@nd Other. Showing the potential

for proximal mastery experiences as having alnmostediate effects on self-efficacy,
Hackett and colleagues (1990) documented that grathmate psychology students’
success or failure on mathematics tasks directlyanced their self-efficacy ratings on

subsequent tasks. However, the authors found eoteféf these mastery experiences on
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students’ interests in mathematics-related cam@ensore general academic self-efficacy,
which suggested that experimental manipulatioretifefficacy may have limited lasting
effects.

While mastery experiences have received substaesiearch attention as the
primary source of self-efficacy, little researcts lzadressed students’ use of the three
other sources of self-efficacy, especially learngesceptions of vicarious experiences
and emotional and physical states. Vicarious erpegs are thought to influence self-
efficacy through observational learning mechanisfrane observes others succeed or
fail after attempting a mathematics task, for ex@nip may influence his or her self-
efficacy to complete a similar task successfullgriBura, 1997). The construct of
vicarious experiences as a source of self-efficsgms particularly suited for qualitative
techniques, but the review of literature identifremlqualitative investigations of the role
of vicarious experiences as a source of mathemsgit®fficacy.

One important qualitative inquiry into the souroésnathematics self-efficacy is
Zeldin’s (2000) investigation of men and women iathematics-related careers. Zeldin
interviewed 10 men and 15 women in mathematicsigie technical careers regarding
their career choices and early experiences witthemaatics. To develop a naturalistic,
emergent theory on participants’ experiences ofdbe sources of self-efficacy, Zeldin
never specifically asked participants about sditaty or the four sources. Zeldin’'s
analysis of the participants’ career narrativegested that men relied primarily on
mastery experiences, especially in early collegthematics coursework, in forming the
self-efficacy to pursue a mathematics-related calemen’s mathematics career self-

efficacy was primarily founded on social persuasiand vicarious experiences. That is,
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women developed beliefs in their capabilities todree a mathematician, chemist, or
computer programmer primarily through encouragerfrem friends, family, and
respected others, as well as by internalizing #liebthat other women’s success in
mathematics meant they could succeed too: “Womnlgrorerelational episodes in their
lives to create and buttress the confidence tlegt tan succeed in gender-unfriendly,
male-dominated, domains” (Zeldin, 2000, p. 2). Tdifference may be quantifiable—
Lent, Lopez, and Bieschke (1991) found differennesources of self-efficacy helped
explain gender differences in self-efficacy amoaltjege students.

A secondary aim of the study was to add to Zeldi2@)0) findings into the
sources of self-efficacy in men and women in mathtés-related careers to the specific
arena of performance in advanced mathematics. Thaogen complete approximately
equal numbers of advanced courses in high schadiport, Davison, Kuang, Ding,
Kim, & Kwak, 1998), women undergraduates have bestorically underrepresented in
advanced college mathematics coursework and harereported to be historically
much less likely than men to express interest nsying a graduate mathematics degree
(Mura, 1987). In contrast to Zeldin’s career-levelestigation of the sources of
mathematics self-efficacy, this dissertation stumestigated the self-efficacy and
calibration of men and women enrolled in advanaglibge mathematics coursework
through both quantitative and qualitative methddsough task-based interviews, the
gualitative inquiry also helped to extend Zeldifirglings as well as triangulate the
guantitative findings regarding potential gendéfedences in performance, self-efficacy,

and calibration.
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Calibration

In educational psychology, a propensity toward cesfidence or
underconfidence in one’s self-evaluations indicgiasr calibration, which is defined as
the accuracy of evaluative judgments in relatiopgdormance on similar or identical
tasks (Schraw, Polenza, & Nebelsick-Gullet, 1993)erson has good calibration in a
domain if his or her confidence levels for task$hi@ domain align well with subsequent
performance; poor calibration means substantiverelimncies between confidence
ratings and actual performance (Pajares & Kran2/@95). Calibration is a component of
metacognitior—knowledge about, or efforts to regulate and mandaoe’s thinking
(Schunk, 2004)—in the sense that calibration intd&dhow aware individuals are of
what they do and do not know” (Stone, 2000, p. 437)

Studies of calibration usually address eitediction calibratior—the accuracy
of self-efficacy judgments made prior to attemptantask (e.g., Chen, 2002)—or
postdiction calibrationwhich refers to confidence ratings after complgt task (e.g.,

Lin & Zabrucky, 1998). Though typically studied ngidisparate theoretical perspectives
(Schraw, 1995), a review of research into both iptEsh and postdiction calibration
uncovered four common themes: (1) adults typicdibplay moderately poor calibration
in the form of overconfidence on difficult tasksdasmderconfidence on easier tasks, (2)
calibration is influenced by task difficulty, (3adoration is conceptually and empirically
distinguishable from self-efficacy and outcome etaecies, and (4) calibration is

associated with academic performance, especiallyathematics.
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Prediction and Postdiction Calibration in Cogniti&eience

Calibration research began with experimental stutlighe 1950s which
demonstrated doctors were consistently overconffichejudging the accuracy of their
diagnoses, especially when experimenters provitiésl feedback on the accuracy of
prior diagnoses (Kahneman, Slovic, & Tversky, 198)searchers then contrasted the
calibration of doctors with the calibration of othgofessionals that regularly express
confidence in statements, such as meteorologiststck analysts, and later focused on
adults’ calibration on general knowledge tasksliteastein, Fischoff, & Phillips, 1982).

The cognitive science approach to calibration nesea@ews calibration as a
probabilistic “feeling-of-knowing accuracy” (Schrat95, p. 326). Researchers ask
participants to rate feelings of confidence foiirtla@swers to a series of multiple choice
guestions (e.g., | am 70% confident the answewé&geas correct). These postdiction
confidence ratings are later compared to the pé&agerof correct answers to produce a
calibration curvefor each participant based on the relative difficof the tasks
(Lichtenstein et al., 1982). Figure 3 shows a tgppostdiction calibration curve,
including a tendency toward overconfidence on tffgsult tasks and underconfidence
on more difficult tasks. This method for evalugtpostdiction calibration requires
participants to complete many—sometimes hundredgasks with varying difficulty,
and studies using this method often incorporat@tstintuitive statements (i.e., trick-

guestions) in which adults are typically very pgarélibrated (Stone, 2000).
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Figure 3 Typical adult postdiction calibration curve fagrgeral knowledge tasks
(Adapted from Stone, 2000, p. 441).

O’Connor (1989) conducted an extensive reviewatibcation studies completed
under the (probabilistic) cognitive science appioadnking the results to contingency
models in the behaviorist learning paradigm, O’Gorsuggests adults’ prediction and
postdiction calibration is linked to the contexttioé tasks, the rater’s familiarity with the
task requirements and topic of interest, and tlegjaacy of feedback on the results of
prior similar tasks. In light of the value cognéigcience researchers place on
probabilistic alignment between confidence ratiagd performance, O’Connor cautions
that assigning accurate probability values to fegiof confidence is a skill that few
people develop without practice. However probatidi#ly inaccurate, he notes that
confidence ratings from even inexperienced adutigpants are typically reliable, with
reported test-retest and split-half correlationfioents in adults’ confidence ratings

range fronr = .72 tor = .85 in experimental calibration studies.
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O’Connor’s (1989) review identified several exceps to the often-reported
trend toward overconfidence in difficult calibratitasks, including excellent reported
calibration curves in contexts where participaratd high task familiarity, such as
weather forecasting by meteorologists and prediatiocourse grades by college
students. In the specific situation of college reathtics, however, Mura (1987) found
students often overestimated their final gradderdéstingly, men overestimated their
final grade in college mathematics classes 61%etitne and underestimated only 13%
of the time, while women overestimated their gradi&o of the time and underestimated
23% of the time.

The accuracy of an adult reader’s beliefs in hisey understanding of textual
material, ometacomprehension accurafhhiede & Anderson, 2003), is a calibration
construct that has received substantial attentiorading education research (Zhao &
Linderholm, 2008). This form of calibration has bexperationalized as alignment
between a reader’s confidence in their response=ating comprehension tasks and
their performance on the tasks. Maki, Shields, Wdreand Zacchilli (2005) found that
prediction calibration in reading is strongly céated to postdiction calibratiom € .83,
p < 0.01), and thébtias or the signed difference in confidence ratingsmto taking a
test and subsequent test performance, was thepreattive measure of
metacomprehension accuracy. Moreover, task diffiaipnificantly affected
metacomprehension accuracy—although low-abilitgees were more overconfident
than were high-ability readers, both high- and kility readers were more
overconfident in their understanding of difficuitading passages than in their

understanding of easier passages.
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In their review of reading calibration (i.e., metagprehension accuracy), Zhao
and Linderholm (2008) cite evidence that calilmais influenced primarily by readers’
familiarity with the content of reading passaged parformance expectations,
suggesting aanchor and adjustmerperspective on the self-efficacy judgments of
readers who expect to engage in reading comprejretasks.

[Readers] may anchor their judgments on pre-forpertbrmance expectations

and then adjust their judgments based on expesenitk current tasks.

Adjustments tend to be insufficient, so the finalgment values are biased

toward the anchor. This anchoring and adjustmemhar@sm can be used to

explain how metacomprehension judgments are infleéitoy both experiential

cues and pre-formed performance expectations leat $& be affected by the
latter to a greater extent. (Zhao & Linderholm, 200. 7)

Zhao & Linderholm’s (2008) anchor and adjustmergrapch to
metacomprehension accuracy assumes adult learsesast reading and performance
experiences to form general outcome expectatioead&s then adjust those
expectations based on task-specific cues in formatigefficacy judgments for individual
tasks. This perspective situates calibration &saltr of self-regulatory cognitive
monitoring processes (Thiede & Anderson, 2003) tiigtheavily on prior experiences.
Although this fits into the Lent, Brown, and Hadkgt994) general model of academic
choices discussed earlier (see Figure 2), a soaglitive view of calibration suggests
self-efficacy influences anchor and adjustment gsses by exerting powerful effects on
motivation, effort, and persistence (Bandura, 198@reover, social cognitive theory
provides an alternative view of overconfidenceeh-sfficacy judgments.
Interpretations of Overconfidence

An assumption that overconfidence is maladaptivgpérformance underscores
much of the calibration research. Lichtenstein Bisghhoff (1980), for example,

conducted experiments to improve the calibratioadflts on general knowledge tasks
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using only the rationale that externally adjustmgassessor’s confidence ratings is very
difficult, “so one would like to have probabilitgsessors whose assessments are
unbiased to begin with” (p. 150). In taking thegpactive of people’s use of intuition
during situations of uncertainty, Fischbein (198&¢s probabilistic overconfidence as a
very general tendency to hold unrealistically higélings of confidence: “we are
inclined to admit, with a feeling of absolutenestatements which are objectively only
weakly supported by empirical data or logical argats” (p. 29). In Fischbein’s view,
patterns of probabilistic overconfidence simplyeef internal cognitive tendencies
toward feelings of certainty that do not coincidéwhe probabilistic form of certainty
that is so highly-valued by cognitive science reseers.

Social cognitive theorists suggest slight to motdecaerconfidence is actually a
good thing in many learning situations, becauseligfithat one is capable of
accomplishing a task increases motivation and efiothe task, which in turn expands
the possibilities of what someone can actually agush (Bandura, 1997). Leading
self-efficacy researcher Frank Pajares, in anviger with Madewell & Shaughnessy
(2003), cautions against viewing overconfidencaaslemically maladaptive:

What seems clear, however, is that we should nketiwith overconfidence.

Tailhard de Chardin wrote that “it is our duty asrian beings to proceed as

though the limits of our capabilities do not exXi8tho can ever assess a student’s

full potential with complete accuracy? Studentgpsae us all the time, just as we

surprise ourselves. We should be careful aboutnatiag to “calibrate” a

student’s self-efficacy beliefs. Improving studéwtdibration—the accuracy of

their self-efficacy beliefs—is an enterprise fratigith potential dangers.

Remember that the stronger the self-efficacy, tbeertikely are persons to select

challenging tasks, persist at them, and perforrmtieccessfully. Efforts to lower
students’ efficacy beliefs should be discouragpd397)
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Prediction Calibration in Social Cognitive Theory

Calibration in social cognitive theory refers ttat®onships between self-efficacy
judgments and performance on a relatively narrawgeaof tasks in a specific domain
(Bandura, 1997). Although the postdiction methodgloommon to the probability-
based cognitive science approach to calibratiorbkas used extensively as an
alternative to the social cognitive approach tabecation in social cognitive research
(Bouffard-Bouchard, 1990), recent research has esipéd the latter form of prediction
calibration (e.g., Chen & Zimmerman, 2007; Paj&d&anzler, 1995).

Unless otherwise noted, in the remainder of thiudeentcalibration refers to
the social cognitive view of prediction calibratiaich relates self-efficacy judgments
and performance on similar or identical tasks.

The social cognitive theory method for assessitigredion allows for
distinctions betweeaccuracyandbias (Schraw, 1995). Using common scales for
performance and self-efficacy (e.g., Chen, 2008l gseres from 0 to 5), an individual’s
bias on a task is the signed difference of thegperdnce score and self-efficacy rating on
the task. That is, for a given taskas = self-efficacy- performanceso that a positive
bias score indicates overconfidence on a taskasduore of 0 indicates perfect
calibration, and negative bias indicates underdamite. Accuracy is calculated by
subtracting the magnitude of bias scores from theimum possible performance score
on an item (Pajares & Graham, 199)curacy= maximum performance scorgd bias|.
Thus, accuracy values fall between 0 and the maxiperformance score, with greater

values indicating better calibration on an item.
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The sensitivity of calibration measures to assessfoemats is particularly
important because “if improved calibration is intgafunction of self-efficacy
assessment, then the assessment itself becomeibiniervention to help students with
this metacognitive capability” (Pajares & Miller997, p. 216). Pajares and Miller used a
crossed experimental design to assess the matlesrealti-efficacy and calibration of
327 middle school students assigned to one ofdonditions corresponding to open-
ended vs. multiple-choice self-efficacy measures,(continuous vs. ordinal scales) and
open-ended vs. multiple-choice mathematics tagks.alithors found no differences in
self-efficacy ratings across assessment formatdphad students’ calibration was
significantly poorer on open-ended mathematicsstaBkjares and Miller argue the
poorer calibration exhibited by students on opetiedtasks suggests greater validity in
calibration assessments based on open-ended parfoentasks (i.e., calibration scores
can improve by guessing on multiple-choice tasks).

The Calibration of Self-Efficacy Judgments in Matlagéics

The review of literature identified a number ofdias that incorporated
prediction calibration of self-efficacy judgmentsmathematics, most of which included
students in Grades 5-12. Just two studies of madtiesnself-efficacy and calibration
among college students were found— Bouffard-Bout’sg990) investigation of
mathematics calibration among 64 Canadian collaggests, and Hackett and Betz’'s
(1989) study of mathematics self-efficacy, calitmatand college majors among 262
U.S. college students. (The results of these twdiss were addressed in the prior

section on Self-efficacy in Mathematics Education.)
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Some patrticularly cogent studies of mathematidsesgtacy and calibration at
the middle and secondary levels include: (1) Evaexs Wood's (1993) study of gender
differences among gifted boys and girls in 5th graththematics, (2) Pajares and
Kranzler's (1995) study of general mental abilggnder, and ethnicity among 329
students in an urban high school, (3) Pajares &@&ras (1999) investigation of
academic motivation, gender, anxiety, and giftatiustamong 273 first-year middle
school students, and (4) Chen’s (2002, 2003; Ch&m&merman, 2007) studies of prior
mathematics achievement, effort judgments, andesefuations following mathematics
tests among middle school students in the U.STandan. In particular, path models
tested by Pajares and Kranzler (1995) and CherBj2@avily influenced the design of
the dissertation study reported in subsequent ehapt

Figure 4 illustrates the hierarchical model usebgn (2003) in her path
analysis of mathematics achievement, self-efficaog calibration. Chen found
moderate effects of prior achievement on mathematd-efficacy § = .42) and
calibration 8 = .44), but even stronger effects of mathematdtisesficacy on
performancef{ = .50) and of calibration on mathematics perforoeafi = -.63).
Inclusion of calibration in a linear regression rabgreatly improved the model—self-
efficacy alone explained 25% of the variation intimesnatics performance, while self-
efficacy and calibration combined to explain 65%tw&f variation in mathematics
performance. Self-efficacy had a very large direfitience on students’ post-test self-
evaluations of performancg € .77), suggesting that U.S. middle school stusleyatf-
beliefs in their mathematics capabilities strongluence their self-evaluations of

performance after completing mathematical tasks.
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Figure 4 Chen’s (2003) path diagram (all paths significatrt =.05). Hypothesized
effects of gender on calibration, self-efficacyg anathematics performance were not
supported by the data, so were omitted.

Though Pajares and Kranzler (1995) investigateaatibration of high school
students’ mathematics self-efficacy judgments, tthieynot incorporate calibration
measures into their path diagram for mathematid®peance (see Figure 5). The
authors did note, however, that calibration scarese moderately correlated with
general mental abilityr (= .42) and mathematics performance (67), but were only
very weakly correlated with self-efficacy ratings<.17). This finding echoes Chen’s
(2003) finding that there was only a very weak @ffg calibration on mathematics self-
efficacy (3 = -.01), suggesting that mathematics self-efficaag calibration exhibit

independent effects on mathematics performance.



48

General
Mental Ability
| o Self
Efficacy
A\ 4 V'V
High School \ .| Mathematics
Math Level | Performance
A
Math
Gender Anxiety

Figure 5 Pajares and Kranzler’'s (1995) path diagram p@hs significant at =.01).

It also worth noting that, although Pajares andn&lexr’s (1995) model
incorporates general mental ability, high schoolhramatics level, and gender as
variables influencing mathematics performance 6t of mathematics performance
variance explained by their model is similar to @®% of variance in mathematics
performance explained by Chen’s (2003) model theluded only self-efficacy,
calibration, and prior mathematics performanceasgables influencing mathematics
achievement.

Hypothesized Model for Advanced Mathematics Pertoroe

Informed by the review of literature, the quantitatstrand of the study included
a hypothesized structural model for mathematicsreparformance that incorporates (1)
high school mathematics achievement as an exogefwiable, and (2) the extent of
mathematics in participants’ college major, (3)lmalion, and (4) self-efficacy as
endogenous variables. Formal hypotheses correspptalthe structured path diagram,
shown in Figure 6, appear at the end of this claBienilar to Chen (2003), the study
also included multivariate analysis of variance (NKAVA) tests for potential differences

in endogenous variables by gender and the diffiaaflexam items.



49

HS Math
Achievement

Math in - Final Exam
Maj_(y 7\@rmance
A
R Calibration

Figure 6 Hypothesized structural path model for perfornsaincadvanced mathematics.
Arrows indicate unidirectional effects.

Rationale for the Hypothesized Model

The hypothesized model for advanced mathematiderpggince among college
students represents a blending of constructs ardtitinal influences arising from, and
supported by, related literature. The model is thgwemarily on Chen’s (2003) path
analysis of performance, self-efficacy, calibratiand effort among middle school
students, but also includes the amount of mathematiparticipants’ college major as an
endogenous variable. Moreover, the model omitsdarstructs used in Chen’s study—
post-test self-evaluations of effort and perfornercue to findings from the review of
literature that the two measures add little conealpdr predictive value to the model
beyond effects of pre-test self-efficacy evaluagiand calibration, respectively. The
inclusion of the amount of mathematics in partioiggacollege major reflects the
literature review findings of marked differencesmathematics-related career choices
associated with variation in mathematics self-aeffic That is, students’ choices of

college major indicate a broad form of mathemagel&-efficacy in the sense that college
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students are expected to typically choose a magy believe they are capable of
completing.

In hopes of placing the study in the context ofrélated literature, Table 4
summarizes constructs identified appearing in stuthat have investigated the
relationships between mathematics self-efficacyasatiemic performance, along with

indications of which constructs are addressed byhiipothesized model.



Table 4.

51

Summary of Constructs in Studies of Mathematidse#fetacy and Performance

Construct Example References Included
Self-Efficacy Chen, 2003; X
Hackett & Betz, 1989
Self-Concept Pajares & Miller, 1994
Calibration Chen & Zimmerman, 2007, X
Bouffard-Bouchard, 1990
Math Anxiety Pajares & Graham, 1999
Effort Chen, 2003
Persistence Pajares & Graham, 1999
Posttest Self-Evaluations Chen, 2003; Chen, 2002
. Chen, 2003;
Task Difficulty Maki et al.. 2005 X
Assessment Format Pajares & Miller, 1997
. . Elliot & Moller, 2003;
Goal Orientations Midgley & Urdan, 2001
Math-Related Career Interests Lapan, et al., 1996
College Major Hackett & Betz, 1989 X
Prior Math Achievement O’Brien, et al., 1999 X
General Mental Ability Pajares & Kranzler, 1995
. Ewers & Wood, 1993;
Gifted Status Pajares & Graham, 1999
Pajares & Kranzler, 1995; X

Gender

Socio-Economic Status

Ethnicity

Campbell & Beaudry, 1998

O'Brien, et al., 1999

O’Brien, et al., 1999;
Pajares & Kranzler, 1995
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The purpose of the preceding review of literatues wo summarize self-efficacy
and calibration research with the ultimate goal®feloping a social cognitive model for
advanced mathematics performance among collegerggith the target population. The
hypothesized model was used in both the quantiaind qualitative strands of the
inquiry. Nonetheless, review of literature in qtetive inquiries is often both emergent
and cyclical (Patton, 2002), and additional reviterature supporting the qualitative
inquiry emerged during data collection and intetgtren. Partly because nearly all self-
efficacy research has been conducted within thatgative educational research
paradigm (Bandura, 1997), the qualitative inquigsvexploratory in nature and was
informed by both the quantitative findings and @edse collection of related literature.

Summary of Literature Review

The preceding literature review outlines a concalpnamework supported by
extensive empirical evidence suggesting self-effiand calibration have important
influences on academic motivation and performaaspecially in mathematics. Initial
sections of the literature review described thecephof self-efficacy and distinguished it
from related motivation constructs such as sekast self-concept, outcome
expectancies, and goal orientations. Extensiverelen a variety of educational fields
has documented self-efficacy as an important predaf performance, effort, and
persistence in mathematics. Following a discussfaelf-efficacy research and concepts
related concepts, the review summarized reseatatthia concept of calibration, which
suggested harboring accurate feelings of confidenaa important aspect of

metacognition.
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Following synthesis of theoretical and empiricaldals of mathematics
performance from the social cognitive perspectilve, review of literature ended with a
hypothesized model for performance in advancecegelmathematics. Though the
review of literature in the qualitative strand bétinquiry was emergent and cyclical, the
summary of the research into self-efficacy andocation helped to lay the foundation
for task-based interviews, including rationaledaploring the ways in which sources of
self-efficacy and hypothesized relationships betwssdf-efficacy, calibration, and
mathematics performance may be characterized aprasgective secondary
mathematics teachers enrolled in advanced mathesyaturses.

Research Questions

Recall the guiding research question: How do d#ifacy and calibration
influence the exam performance of students enrafi¢de advanced mathematics
courses of a secondary teacher preparation programmid-sized liberal arts university?

Four quantitative research questions arose diréciy the hypothesized model
(see Figure 6) for mathematics performance, inolgidine question for each of the
endogenous constructs in the model. Moreover, egearch questions addressed
potential differences in the endogenous variabjestervening variables identified in
the review of literature as being especially penirnto the target population: students’
gender and the difficulty of exam items. Finallysiagle qualitative research question
called for a holistic comparison of quantitativéeefs to the processes supporting
relationships between self-efficacy, calibratiomg anathematics performance within the

important subpopulation of prospective secondartheraatics teachers.
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Q1 Does high school mathematics achievement havendisant effect on the
amount of mathematics in participants’ college nfajo

Q2 Do high school mathematics achievement and the ahadunathematics
in participants’ college major have significantegffs on participants’
calibration?

Q3 Do high school mathematics achievement, the amaiumiathematics in
participants’ college major, and calibration haigngicant effects on
participants’ self-efficacy?

Q4 Do high school mathematics achievement, the amafumithematics in
participants’ college major, calibration, and sefficacy have significant
effects on participants’ performance on exams waaded mathematics?

Q5 Are there significant differences in self-efficacglibration, the amount of
mathematics in participants’ college major, andeebed mathematics
performance by participants’ gender?

Q6 Are there significant differences in self-efficaamyd calibration by item
difficulty?

Q7 In what ways do prospective secondary mathemadashers’
mathematical problem-solving compare and contrast tive hypothesized
relationships between self-efficacy, calibratiomd g@erformance in
advanced mathematics?

Based on the pilot study results and findings ftbereview of literature, the
guantitative hypotheses pertaining to the six gtetite questions included:

H1  High school mathematics achievement will have aemaig positive
effect on the amount of mathematics in participacaege major.

H2  Both high school mathematics achievement and theuatof
mathematics in participants’ college major havelspwsitive effects on
participants’ calibration.

H3 High school mathematics achievement and the ana@iunathematics in
participants’ college major will have moderate pwsieffects on self-
efficacy. Calibration will have a small negativéeet on self-efficacy.

H4  High school mathematics achievement and the anafunathematics in
participants’ college major will have small poséieffects on mathematics
performance. Calibration will have a large negagéffect on mathematics
performance. Self-efficacy will have a large pogteffect on
mathematics performance.
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H5  There will be no significant difference in selfieticy, performance, or
calibration by gender. There will be significanffeliences in the amount
of mathematics in participants’ college major bydger, with males on
average choosing college majors with more requinathematics courses.

H6  There will be no significant difference in selfieticy by item difficulty.
There will be a significant difference in calibatiby item difficulty, with
a tendency toward overconfidence on more diffiexdim items.

The qualitative research question, regarding kaiatiips between self-efficacy,
calibration, and performance in the problem sohohgrospective secondary
mathematics teachers, was addressed using tast#t-inéeseriew methods and interpreted
in the context of the conceptual framework derifredh the review of literature. This
included an emergent, naturalistic inquiry desidncl aimed to precludea priori
hypotheses (Patton, 2002) of potential themeswbatd emerge from the data. The aim
of the qualitative research question was to hedpfglthe broad statistical trends
identified in the quantitative research questianthe subset of participants with

intentions of becoming secondary mathematics teache
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CHAPTER III

METHODOLOGY
The purpose of the preceding chapters was to thgldationale and a conceptual
foundation for a study of self-efficacy, calibratjaand exam performance among college
students enrolled in the mathematics courses redjby a secondary mathematics
teacher preparation program. The research prolskswarch questions, and significance
of the study helped established a need for theysilten, a basis for the study was
established through an extensive review of seltatfy and calibration literature and the
development of a social cognitive model for perfanme in advanced mathematics. This
suggested hypotheses regarding expected statistieats among self-efficacy,
calibration, high school mathematics performaneadgr, the amount of mathematics in
students’ college major, the difficulty of testrite, and performance on advanced
mathematics exams.
Research Questions and Model

The focus of the research design was a single mgii@isearch question: How do
self-efficacy and calibration influence the examf@enance of students enrolled in the
advanced mathematics courses of a secondary tga@paration program at a mid-sized
liberal arts university? To further narrow the seap the investigation, seven research
guestions (Q1-Q7) accompanied a hypothesized stalgiath model (Figure 7) in

guiding the research design and methodology.
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Figure 7. Hypothesized structural path model for perfornsaincadvanced mathematics.
Arrows indicate unidirectional effects.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Does high school mathematics achievement havendisant effect on
the amount of mathematics in participants’ colleggor?

Do high school mathematics achievement and the ahafumathematics
in participants’ college major have significantegffs on participants’
calibration?

Do high school mathematics achievement, the amaiumiathematics in
participants’ college major, and calibration haigngicant effects on
participants’ self-efficacy?

Do high school mathematics achievement, the amafumiathematics in
participants’ college major, calibration, and sefficacy have significant
effects on participants’ performance on exams waaded mathematics?

Are there significant differences in self-efficacglibration, the amount
of mathematics in participants’ college major, adgdanced mathematics
performance by participants’ gender?

Are there significant differences in self-efficaayd calibration by item
difficulty?

In what ways do prospective secondary mathemagashers’
mathematical problem-solving compare and contréast tive
hypothesized relationships between self-efficaalibcation, and
performance in advanced mathematics?
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To acknowledge the ways in which the ontological epistemological
orientations of the researcher influenced the rebedesign and methodology, the
following section describes the researcher stafus.is followed by a summary of the
theoretical perspective, the setting, data cothectind analysis procedures, and efforts to
gather evidence in support of reliability, validagpd trustworthiness for the study.

Researcher Stance

One characteristic that distinguished this studynfiother investigations of
mathematics self-efficacy was the ontological apidtemological orientation informing
the research design. Academic self-efficacy reselaas been conducted almost
exclusively within the quantitative research pagadiLightsey, 1999), and the review of
literature is dominated by discussion of crossiseat and quasi-experimental studies of
psychological constructs and mathematics achieverAsrSimon (1999) explains, this
reflects the post-positivist, neo-behaviorist higtof social cognitive theory, but the
theory has increasingly shifted to a social-comsivist orientation toward knowledge
construction which includes concern for the mangnoes of co-constructions of self-
efficacy, such as cultural efficacy and the infloes of social norms and valued practices
(Bandura, 1997). Thus, the research design incatp®many of the methods and
constructs from social cognitive theory while ratag sensitivity toward the provisional
nature of mathematics education research findiflgs.researcher ascribes to a pluralistic
ontological orientation (Schwandt, 2001), which methere may be multiple “true”
interpretations of human behavior depending orctimgext and viewpoint of those who

might observe such behavior.
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The researcher stance was also informed by a ptagangentation (Patton, 2002)
toward educational knowledge claims in the sengediaims about learning and
academic motivation were considered useful by tagswn which they contribute to
practical understandings of teaching, learningicgpband research. As in this study,
pragmatic epistemologies are often evident in mixethods research designs (Creswell,
2003). The research questions drove the choiceettiads, and quantitative and
gualitative viewpoints were seen as complementadypmtentially equally powerful in
helping to answer the research questions. In péaticit is important to stress that the
relatively larger quantitative component in thedstuand commensurate choices in data
analysis and voice, were not intended to indidad the researcher places greater value
in findings derived from statistics than findingsrided from qualitative methods.

The narrative voice in this study follows convensan quantitative research that
include omission of personal pronouns (e.g., “he”, “we”). This is intended to
maintain consistency throughout the manuscriptwaasl not intended to indicate a post-
positivist research orientation. Moreover, the aeseer’s involvement with participants
is probably best characterized as close to theeiwles” dimension of the participant-
observer continuum in qualitative research (Cres\28D7). This means a relative lack
of engagement in the students’ mathematics expergenvhich in turn limits the
potential for in-depth, holistic, accounts of st development of course-specific self-
efficacy and calibration. Nonetheless, the researishsensitive to the calls for increased
reflexivity (Glesne, 2006) in qualitative researstd engaged in the research with

intentions to make researcher biases expliciténdiscussion of findings.



60

Theoretical Perspective

Conceptual Framework

The terms, concepts, and psychological constriggd in this study are primarily
based in Bandura’s (1997) theory of self-efficang aocial cognitive learning theory. In
addition, the cognitive science research into tézh and postdiction calibration,
though approached through a different learningryenforms much of the research. For
example, the distinction between calibration biag ealibration accuracy was developed
by Schraw (1995), whose cognitive information pssteg conceptual framework differs
substantially from that of social cognitive thetsisProminent concepts used in this study
include self-efficacy, calibration, advanced math&os, sources of self-efficacy, college
major, exam performance, high school mathematiceaement, test item difficulty,
gender, and prospective secondary mathematicseesadfach of these concepts was
described in detail in the introduction and revigiiterature, but the operational
definitions are yet to be explicated.
Definitions of Constructs and Indicators

The purpose of this section is to describe opearatidefinitions for the constructs
and indicator variables used in the quantitativanst of the investigation. Some of the
constructs, such as self-efficacy and high schathematics achievement, have
alternative conceptions in educational researcthedollowing definitions were
regarded as local definitions of the constructsdfta collection and analysis purposes
and were not intended to encompass the full rahgetential meanings for the terms.
See the review of literature in Chapter Il for dithial detail on the diverse conceptions

of the constructs.
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High School Math Achievemesta latent construct indicated by three measures
of students’ performance and course taking pri@ttending college. Since college
readiness is one goal of high school educatioherlt.S., students’ score on the
mathematics portion of the ACT college readinessrewas one indicator of high school
mathematics achievement and was dend@d Math If only an SAT score was
available, the score was converted to its approldrA&T equivalent (College Board,
2008). ACT scores were gleaned from institutioeabrds and could range from 11 to
36. High school grade point average, den¢t8dGPA also provided a continuous
indicator of high school achievement, with a théoed range of 0 to 4. Finally{S Self
referred to students’ self-reported assessmeimtenf performance in high school
mathematics courses. Students’ responses to tisi@quéwhich of the following best
describes how well you did in your high school matlarses?” were coded on a Likert-
type scale ranging from 1 = really bad to 7 = ebece!

Self-efficacys a latent construct associated with studentsfidence in their
abilities to correctly complete examination itemghe minutes just prior to taking a
regular exam. Indicators of this construct includeneric records of students’ responses
on seven pre-exam survey items, each recordec imtérval O to 5.

Since the instruments used to attain indicatiorsetitefficacy were different for
each final exam and each course, indicators ofesitfacy were constructed by ranking
survey items by ascending class means. That istetimeon each of surveys that resulted
in the lowest mean self-efficacy rating among stislién a given section corresponded to
the indicator variable SE Level 1. Students’ séfizacy ratings on the item for which

the mean self-efficacy in the class was next higfemed the indicator label SE Level
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2, and so on. This assignment of students’ respansefdicators based on ascending
class means formed seven indicators of exam s&they ranging from a student’s self-
efficacy on the item for which the class was leastfident (SE Level 1) to the student’s
self-efficacy on the item for which the class wasstrconfident (SE Level 7).

Math in Major means the amount of required mathematics conteheistudents’
chosen college major. The total number of requestdester credits with a university
catalog prefix of MATH in a student’s college majoeinge = 3 to 45), labeldlequired
Math, represented the sole indicator of the Math in Magstruct.

Final Exam Performanceyr simplyPerformanceijs the latent construct
associated by a student’s achievement on a regutdass final exam. Performance on
individual exam items was scored on a dichotomaeateg0 = incorrect, 5 = correct ).

As in the indicators of Self Efficacy, Level indtoas of performance were
formed by ranking seven final exam items accordingscending within-class mean
performance during the final exam. For a givenlfexam, seven items were randomly
sampled to be representative of the difficultytemsnotincluded on the self-efficacy
survey. That is, the mean class performance orsebrefficacy items was calculated,
items were stratified into seven quantile groupsedaon the rank-ordering of items, and
a single item was sampled from within each of #nes quantile groups. For example,
Performance Level,Xeferred to students performance on the samplatidxam item
with the lowest mean within-class performance. T§aPerformance Level 1 represented
students’ performance on the “hardest” sampled éram item, while Performance

Level 7 represented students’ performance on tasiést” sampled final exam item.



63

Calibration s the latent construct indicated by the diffeeentstudents’ self-
efficacy rating and performance for the seven taskthe final examination. Calibration
bias scores for an individual task could range frbriunderconfidence) to +5
(overconfidence) for each task. As in the operalliaation of self efficacy and
performance indicators, level indicators of calilma bias, labele®ias Level lthrough
Bias Level 7were constructed by including students’ biasess@n exam items
corresponding to ascending within-class mean clidom bias scores.

Genderis the self-reported sex of participants and wasinally coded 1 =
Female and 2 = Male.

Item Difficultyrefers to the mean class performance of studentiseofinal exam
items presented to students on the self-efficacyeyts. Similar to the procedure used to
order indicators of Final Exam Performance, thmitkfficulty for tasks presented on
self-efficacy surveys were sorted rankings of witblass mean performance scores. For
ease of interpretation, however, the rankings weverse-ordered to represent
descending mean performance. For example, a sueraywith Difficulty Level 1 was
the “easiest” survey item in the sense that highestentage of people correctly
completed the item. Difficulty Level 7, in contrastould be considered the “hardest”
survey item.

Structural Equation Modeling

The study incorporated a path model (Figure 7)yrfathematics achievement that
includes a saturated path diagram which positsipheldirectional effects among several
latentconstructs or unobservable variables. Constructs that adegenous to (predicted

by) one construct are often exogenous to (predicify another construct, and
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measurement of these latent constructs necesparityits the likelihood of measurement
error. This measurement error and nesting of maltiependent variables in directional
relationships violates assumptions of standardipteltinear regression techniques
(Snedecor & Cochran, 1989) and suggests struatgradtion modeling techniques.
Structural equation modeling allows for simultangestimation of directional effects
and measurement error among observed variablésd cadicators and latent constructs
using through a blending of regression and comraotof analysis of observed
correlation structures (Schrieber, 2008). Stru¢tegaation modeling is thus a technique
to analyze multiple directional effects among savkatent variables, or constructs, in
cases where each such construct can be approxithategdyh one or more ordered
indicator variables (Loehlin, 1987).

In structural equation modeling, there are threeartant types of diagrams used
to explain the constructs and indicators in the eho8| structuralpath model
encapsulates the hypothesized “paths” or directieffiacts between latent variables, and
must be supported by theory and prior researchr(lAaderson, Tatham, & Black,

1998). The path model for this study is shown iguiré 7 and is supported by the review
of literature in Chapter Il. The second kind ofgtam is called atructuralmeasurement
model(Byrne, 1998) and includes specification of thter& constructs which serve as
common factors influencing the observed indicatotables in the model. While there is
no fixed requirement for the number of indicatori@ales that “load onto” a construct in
the measurement model, Hair and colleagues (12@f)est validity of structural
equation modeling is typically best when most carcds have 3 to 7 indicators. Finally,

thestructural modebiagram specifies all the hypothesized relatigoshiy including
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both the effects between latent constructs (pattiety@nd the effects of latent constructs
on indicator variables (measurement model).

A diagram of the hypothesized structural modehis study is shown in Figure 8.
For convenience, measurement errors are sometimigégd from drawings of the
structural model diagram, and the structural patkdehis sometimes referred to simply
as the structural model. The convention of dendatent variables as ovals and indicator

variables as rectangles (Schrieber, 2008) is redatihroughout the report.
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Figure 8 Diagram of hypothesized structural model. Arrda@dveen latent constructs —
drawn as ovals — form the path model. Arrows fraterit constructs to (observed)
indicator variables — drawn as rectangles — forentieasurement model. Measurement
errors are indicated as small bidirectional arrows.
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Research Setting

The potential significance of this study was paddyived from the atypical
mixture of students’ college majors at the researth In relation to national norms, the
mathematics department at the research site seowagaratively large numbers of
preservice teachers, and many of the mathematiggsrtzave chosen a secondary
mathematics education. Before going into detaggrding the population of students
enrolled in advanced mathematics courses at tleargs site, it is informative to
consider the national context concerning enrollneiidvanced mathematics courses.
The National Context

According to the American Mathematics Society’s 280rvey of mathematics
departments, advanced mathematics courses suelcakis, differential equations, and
linear algebra accounted for 43% (699,000) of tleenthan 1.6 million total student
enrollments in college mathematics courses (LuRedi, Kirkman, & Maxwell, 2007).
However, the vast majority of this national enraimh comes from students majoring in
engineering, computer science, and the physicahses. Lutzer (2002), for example,
found that only a tiny proportion (0.6%) of U.Scaming college freshman plan to major
in mathematics, while about one-fourth (25-30%Jreshmen intend to major in a
science or engineering field. Interestingly, thegartion of mathematics majors actually
increases from freshman to senior student-populsitiwith 1% (12,363 of 1,199,579) of
all U.S. bachelor’'s degrees going to mathematigeman 1998.

Even among the relatively few students majoringnathematics, there are
considerable differences in students’ interestspangoses in taking advanced

mathematics courses. For example, mathematicstdegas report many more students
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majoring in applied mathematics and liberal artsh@anatics in U.S. universities than
students majoring in mathematics education (LuRedi, Kirkman, & Maxwell, 2007).
Lutzer and colleagues found 14,610 U.S. collegdesits had declared applied or liberal
arts mathematics as their major in 2005, compargaist 3,369 students majoring in
mathematics education. Moreover, about 40% of bh&hematics majors are female
compared to 60% of mathematics education majorzériet al.). The resulting diverse
composition of interests and purposes in advancgtiematics courses poses a challenge
to mathematics instructors and has the potentiaffetting preservice secondary
teachers’ performance through mediating motivatfitecors.

Advanced Mathematics in the Research Site

The secondary mathematics teacher preparationgroigr the research site
requires 12 mathematics content courses includadgutus I-1ll, Linear Algebra,
Discrete Mathematics, Abstract Algebra | & II, Modé&seometry | & 1l, Mathematical
Modeling, Elementary Probability Theory, and Higtof Mathematics. While the
required mathematics content courses reflect toadit content in the preparation of
secondary mathematics teachers, there are someattypparacteristics of student
enrollment and instructional strategies in the reatatics content courses.

Partly due to the university’s liberal arts compiosi of student majors and
special focus on preparing school teachers, a ihagfrstudents enrolled in the
mathematics content core classes intended to nmjoathematics or a related teaching
field. Institutional records from the spring seneestof 2007 and 2008 indicated that
approximately 42% of all students enrolled in mathgcs content courses had declared

a major in mathematics, a rather large percentagight of the previously mentioned
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national surveys indicating students majoring irthmaenatics constitute a small minority
of advanced mathematics courses (Lutzer et al.7)20@&ble 5 summarizes average
spring enrollment by major in selected mathematmsses at the local university.
Table 5.

Enroliment by Major in Selected Mathematics Coutethe Research Site

Elementary
Calculus Calculus Probability  Discrete Other

I I Theory  Mathematics Courses Total

Mathematics 15.0 19.0 26.5 24.5 103.5 188.5
Elem. Teaching 8.5 3.0 0.0 17.5 19.0 48.0
Biology 28.5 1.0 0.0 0.0 1.0 30.5
Chemistry 13.5 7.5 0.0 1.0 6.5 28.5
Physics 5.0 8.5 1.0 15 11.0 27.0
Earth Sciences 7.5 7.0 2.0 0.0 55 22.0
Undeclared 10.0 3.5 0.5 15 15 17.0
Pre-Profess. 8.0 35 0.0 0.5 1.0 13.0
Business 6.5 1.0 0.5 0.5 3.0 11.5
All Others 35.0 9.5 15 4.5 13.0 63.5
Total 137.5 63.5 32.0 515 165.0 449.5

Note Enrollment counts are averages from the springeséers of 2007 and 2008.

In addition to the composition of students’ majoreidvanced mathematics
courses, the distribution of emphases for studehtshave declared a major in
mathematics was also atypical at the researchAsstef Fall 2008, there were 180
students at the research site who had declaredgoa manathematics (see Table 6). Of

those, 125 (69%) declared an emphasis in secomaityematics education, and 99 were
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female (55%). Moreover, female secondary mathesati@ors outnumbered male
secondary mathematics majors almost 2 to 1 (83}oiddicating that gender differences
in self-efficacy, calibration, or performance migalate to potential differences in
students’ choice of college major emphasis atuhisersity

Table 6.

Distribution of Emphases among Mathematics Majgr§&Slender, Fall 2008

Emphasis Male Female Total
Applied Mathematics 18 4 22
Liberal Arts Mathematics 20 13 33
Secondary Mathematics Education 43 82 125
Total 81 99 180

The unusual composition of students’ majors in aded mathematics courses at
the research site afforded a unique opportunitgtestigate (1) relationships between
the extent of mathematics in students’ choice dége major and their subsequent self-
efficacy, calibration, and performance in advaneedhematics coursework and (2)
hypothesized roles of self-efficacy and calibratiothe mathematics performance of
prospective secondary mathematics teachers. Comsiguhe task-based qualitative
interview protocol was specifically designed to edd calibration, self-efficacy, and
problem-solving performance within the subpopulatd prospective secondary

mathematics teachers.
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Research Sample
Sampling Procedures

With consent of instructors, all students enroltechathematics courses required
for the secondary mathematics education majoreatabearch site were invited to
participate in the study; exceptions included dahbyfour sections in which instructors
did not administer an in-class final exam. In mzees, students were invited to
participate in the quantitative strand of the itigggion during a brief visit by the
researcher to their classroom between the 6th @tidwleek of the semester with
informed consent (Appendix A) procedures approvwethke Institutional Review Board
at the research site. Follow-up letters invitingdgints to participate were sent by the
researcher to students who were not present éintleeof the in-class visit and included
informed consent documentation.

Expectations of participating instructors includéd): reviewing self-efficacy
surveys tailored to final exam items for represewveaess and face validity, (2)
providing exams to the researcher several daysdafiministration, (3) allowing
consenting students’ work on exams to be photodgmi®r to grading, (4) working
collaboratively with the researcher to construsksabased interview prompts for
students in their mathematics classes.

The qualitative sampling procedure was a form wéon-based stratified
purposive sampling (Mertens, 2005), with the gdadroviding maximum variation in
participants’ self-efficacy and calibration. Contieg students enrolled in seven sections,
encompassing Calculus I, Calculus Il, and ElemgrRaobability Theory, and were

asked to complete self-efficacy instruments dutivegr midterm examination in or
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around the 8 week of the academic semester. Following anabfsise self-efficacy and
performance data, those participants who reportedjar in secondary mathematics
education were ranked based on composite measisel-efficacy and calibration and
ultimately sorted into four efficacy-by-calibratigmoups: High Self-Efficacy/Good
Calibration, High Self-Efficacy/Poor CalibrationpW Self-Efficacy/Good Calibration,
Low Self-Efficacy/Poor Calibration. Up to four semts from within each of these
criterion-based groups were purposely sampled mswitation with the participating
instructors with the goal of seeking maximum vaomaiPatton, 2002).

Frankfort-Nachmias and Nachmias (2000) suggestctitation-based sampling
can introduce a regression effect that may threteinternal validity of findings
because of potential erroneous classificationsadi@pants based on the initial criterion.
However, the purposive nature of the qualitativa@ang technique, together with the
consultations with instructors, was designed tagaie this threat.
Sample Size

There were 309 students enrolled in the 12 pa#itig sections of advanced
mathematics coursebi(= 25.8,SD= 6.9). Of the enrolled students, 17 (6%) did noetak
a final exam and 40 (17%) were enrolled in two orenof the classes, yielding a
potential sample of 252 unique students who firdghe classes. Of these, 210 (83%)
consented to participate; complete final exam atidedficacy data were available for
195 students. This sample size means that thesasatgluded data from 77% (195/252)
of the students who completed at least one of Zhgatticipating mathematics classes.

Most (36 of 40) students who were enrolled in nmben one participating section

were enrolled in two sections, and 4 students warelled in three sections. Students
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enrolled in more than one section were invitedampglete self-efficacy surveys and final
exams in each of their classes, but only the data the highest-numbered class in
which they were enrolled were included in the asialy

Table 7 summarizes the distribution of study pgréints by the class in which
the students’ self-efficacy and final exam perfonceawere included in the study.
Approximate course numbers are also included ineTalas indicators of the academic
level associated with participating sections. Tieal00-level courses are typically taken
by Freshman, 200-level courses are typically tdieBophomores, and so on. While the
study includes data from students completing seléerent course titles, about half
(49%) of the data comes from students’ performamégalculus | or Il.
Table 7.

Distribution of Study Participants by Class

Section Instructor Course Title Course No. n Subtotal %
1 A Calculus | 130 20 28
2 B Calculus | 16
3 B Calculus | 18
4 A Calculus I 140 18 21
5 A Calculus I 23
6 C Linear Algebra 220 8 4
7 D Discrete Math 230 21 16
8 D Discrete Math 10
9 E Calculus Il 240 11 11
10 E Calculus Il 11
11 F Abstract Algebra 320 22 11
12 G Probability 360 17 9

Total 195 100
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Instructors

As shown in Table 8, the 12 participating matheosatiasses were taught by a
total of seven instructors. One instructor taupheé of the 12 sections, three instructors
taught two sections each, and the remaining thrgteuictors each taught a single section.
Five of the seven instructors were tenure or tetnaek mathematics professors, and the
remaining two instructors were long-time lecturatrshe research site; none of the
sections were taught by graduate students, adjacalty, or part-time instructors. The
instructors averaged 19.0 years of college mathesaching experienc8D= 11.5,
range = 4 to 35).

Participants

Enroliment data available through the researchirstleded several variables
which were used to describe the study participdrtsse included age, academic level,
gender, ethnicity, and participants’ declared galenajors. The paragraphs that follow
summarize these characteristics in the contextetindergraduate student population at
the research site.
Age

Participants ranged in age from 18 to ¥9< 21.2,SD= 4.2). Most of the
students (81%) were 18-22 years old, some of tiaests (11%) were 23-25 years old,
or over 25 years old (7%). The fact that studyipigsdnts were primarily traditionally-
aged undergraduate students was reflective ofridergraduate population at the
research site, where enrollment records indicagz 80% of new students to the
university are under 25 years old (L. Sappingt@rspnal communication, 2009).

Academic Level
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The percentages of study participants classifieerashman, Sophomore, Junior,
and Senior were 28%, 28%, 25%, and 18%, respegtiVhis distribution differs
significantly from the proportions of Freshman, Bomore, Junior, and Senior levels at
the research sitg (3, N = 195) =16.43p < .001), which were 24%, 21%, 23%, and
32%, respectively. In particular, this suggestbginsto moderate under-representation of
Seniors in the sample, possibly due to the faetsah of the participating classes were
numbered 300 or below and many Seniors are invalvetudent teaching during the
spring semester.

Gender

Study participants were almost exactly equallyrthisted by gender (97 female,
98 male). While the observed proportion (50%) ofide students enrolled in advanced
mathematics courses is substantially higher théanmel averages (Lutzer et al., 2007),
the proportion of female students in the sample less than the overall proportion
(60%) of female undergraduate students at the messite ¢°(1, N = 195) = 9.13p <
.01).

Ethnicity

As summarized in Table 8, most of the participaet&identified as Caucasian
(83%), while some students self-identified as, ritheo of prevalence, Asian American,
Hispanic American, Native American, or African Anoan. The distribution of
ethnicities among study participants was not sigaiitly different from the distribution

of ethnicities of undergraduates at the reseatety$i(5, N = 195) = 2.68p = .75.
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Table 8.

Ethnicity of Study Participants and Students atRlesearch Site

Ethnicity 0Partic_ipants Rese_arch Site
Yo (N = 195) % (N =12,475)
Caucasian 83 78
Asian American 5 3
Hispanic American 5 7
Native American 1 1
African American 1 3
Other/Did Not Report 5 8

College Major

Though, all study participants were enrolled iteast one mathematics courses
required for the secondary mathematics teacheapapn program at the research site,
not all students were mathematics majors. Partitgoaad declared a variety of college
majors, most of which were related to scienceghieg, or both. Table 9 summarizes the
distribution of declared college majors among stpdsticipants. Approximately half
(49%) of study participants declared their primaagjor in mathematics or mathematics
education, including 12% of all students indicatengajor in Elementary Education with
a concentration in Mathematics and 37% indicatimgggor in Mathematics. About79%
(34/43) of the female mathematics majors chossdicendary teaching concentration,
while just 37% (19/30) of the male mathematics msaghose the secondary teaching
concentration. Other common majors included ChewiBtarth Sciences, Physics,

Biology, Pre-Program (e.g., pre-medicine, pre-dgnt), and Undeclared.
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Table 9.

Declared Primary College Majors of Study ParticipaufN =195)

Category Major Frequency Subtotal
% %
Math Education Elementary Education — Mathematics 12 35
Mathematics — Secondary Teaching 23
Mathematics Mathematics — Liberal Arts 6 14
Mathematics — Applied Mathematics 4
Mathematics — Statistics 4
Science Chemistry 10 28
Earth Sciences 7
Physics 6
Biology 5
Other Pre-Program 5 23
Undeclared 5
All Others 13

Interview Participants

As outlined in the procedures section, qualitatnterview participants were
purposely sampled based on the students’ rankirgaliloration and performance
measures for midterm examinations in seven of #mgqgpating classes, including
sections of Calculus I, Calculus 11, Calculus #hd Probability. Of the 117 consenting
students who completed the selected midterm exaohself-efficacy surveys, 22
students had declared a secondary mathematicsriganhjor. Twelve of these
prospective students scored above the medianindhss on the midterm exam (High
Performance). Similarly, 12 of the secondary mates majors scored above their
respective within-class medians on the calibratias measures (High Calibration Bias).

Using the self-efficacy and calibration classifioas, a stratified purposeful

sample of 12 students was selected from the 2rra® af the Low and High levels of
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Performance and Calibration Bias. From this ingiamnple, two students declined to
participate in an interview, leaving 10 interviearficipants. The task-based interviews
took place in the latter half of the semester (VeeEX-13 of a 16-week semester), lasted
between 29 and 65 minutéd € 46.7,SD= 10.3), and produced data in the form of
students’ work on interview tasks and transcribedi@recordings.

As shown in Table 10, the interview participantsevgpread approximately
equally across Calculus I, Calculus Il, and Proliglilasses, with 3, 3, and 4 students
enrolled in the respective courses. Most (8 ofidf®rview participants were female.
Four interview participants were classified as HRgrformance and Low Calibration
Bias, five were classified as Low Performance arghkCalibration Bias, and one was
classified as Low Performance and Low CalibratiaesBAt the time of the interviews,
five of the participants had attained the acaddeviel of Sophomore, four were Juniors,

and one was a Freshman. All interview participavese between the ages of 19 and 23.
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Table 10.

Task-Based Interview Participants by Course ande©Selected Variables

Participant  Course  Age Gender Level PerformanceCalibration Bias
Heather Calculus1 20 F Junior High Low
Matthew Calculus| 23 M Sophomore High Low
Megan Calculus 19 F Freshman Low High
Justin Calculus Il 23 M Junior High Low
Jackie Calculus Il 20 F Sophomore  High Low
Nicole Calculus Il 20 F Sophomore  Low High
Sarah Probability 20 F Sophomore  Low High
Jennifer Probability 21 F Junior Low Low
Emily Probability 19 F Sophomore  Low High
Elizabeth Probability 21 F Junior Low High

Note ®Names are pseudonyms.

Overview of Research Design

Quantitative Strand

The quantitative strand of the study was typicad structural equation modeling
study in education, because it blends simultansoligions to multiple linear regression
models with analysis of covariance across crosseset measures of self-beliefs (Hair
et al., 1998). Data collection procedures includdxhckground survey (Appendix B),
self-efficacy surveys (Appendix C) in the few miesijust before in-class exams, and
photocopies of students’ work on final exam taSedf-efficacy scales and calibration
bias scores followed procedures that have beempocated in several mathematics self-

efficacy studies (e.g., Chen, 2003, Pajares & V|ill®94).



79

One important early question regarding data calecivas whether to use a
common self-efficacy and mathematics performancasone across all sections of
participants in the study. Such a control measweldveliminate variation in item
difficulty and academic content due to differenaemnations in the various courses.
However, self-efficacy theorists stress the impareaof domain and context specificity
when asking learners to assess their mathemaspabdities (Bandura, 1997; Pajares &
Miller, 1994). That is, a students’ self-efficacylinear algebra is best measured by
asking the student to rate their confidence to detagspecific tasks related to their
current linear algebra course. Moreover, evidehaegelf-efficacy ratings may be more
reliable when students expect to complete taskadf educational requirements (Chen
& Zimmerman, 2007) supports the value of providaughentic mastery experiences,
such as regular in-class exams, as part of datectioh procedures. Thus, self-efficacy
surveys and mathematical performance tasks wegetedlfrom among the tasks chosen
by instructors for in-class exams.

Qualitative Strand

The qualitative inquiry component of the investigatused purposive criterion-
based stratified sampling (Mertens, 2005) and stractured task-based interview
methods (Seidman, 1998) that mirror the quantieasielf-efficacy and calibration
procedures. See Appendix D for the initial intewwierotocol. The criteria for interview
sampling were partially derived from students’ pariance on the quantitative measures
in an initial midterm examination. Secondary math#@os education majors were ranked
based on composite measures of self-efficacy alifatation and purposely sampled in

an effort to seek maximum variation (Patton, 2062je interview data. The 45-60
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minute task-based interview protocol (Appendix Bljed for participants to rate their
self-efficacy to complete 5 to 7 tasks relatechigirtcourse, after which participants were
asked to complete three tasks ranging in difficlétyel. Analysis of the task-based
interview data included thematic coding (PattorQ2Qusing the hypothesized model for
performance and the four sources of self-efficacindial codes, with revised codes
emerging during data analysis.
Model of the Mixed Methods Design

The research design included what Creswell (20&f@)s to as theoncurrent
triangulation strategyfor mixed methods research. This strategy “isctetbas the model
when a researcher uses two different methods tliregreross-validate, or corroborate
findings within a single study” (Creswell, p. 21The concurrent triangulation strategy
is a traditional way to incorporate quantitiativelaqualitative data sources, benefits from
the potential to off-set limitations inherent irchaapproach, and involves integration of
results from each method during the interpretaploase. Figure 9 summarizes this
strategy in Creswell’s diagram form. The capitadifetters in the quantitative strand,
“*QUAN?", indicates the relative emphasis on the duative strand of the inquiry in
relation to the qualitative strand, the “+” indieatconcurrent data collection in the two

strands, and the vertical arrows indicate passatggrporal order in the design.
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QUAN -+ qual
Data Collection Data Collection
» Background surveys » Task-based interviews
» Self efficacy surveys » Transcripts and documents

* Regular Exams

| .

Analysis Analysis
» Descriptive statistics * Thematic coding

» Structural modeling Interpretatio » Compare/contrast with model
* MANOVA of Results

Figure 9 Model of the mixed methods design, concurreangulation strategy.

Assumptions of the Research Design
In addition to assumptions inherent in the theoattperspective and social
cognitive view of learning described earlier, sed@oteworthy suppositions are implicit
in the research design:
1) Advanced mathematics students can assign numeuess/to feelings of
confidence toward specific tasks in their courses.
2) Latent psychological variables such as self-efficaad calibration can be
approximated by observable data (underlies thetsiral model).
3) Participating students’ processes for evaluatintheraatics self-efficacy
on final exams are similar to those they repod task-based interview.
4) Final examinations have face validity and contealithty (Creswell,

2003) as measures of performance in advanced matiosmourses.
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Data Collection and Analysis

The research design included data collection praesdmeant to minimize
interruptions to the research setting while sollecting valid data on students’ self-
efficacy and mathematics performance in proxinotyegularly scheduled examinations.
Table 11 summarizes the data collection timelingctvbegan during the 8th week of
classes and ended the week after final exams dtheng6th week of the semester.
Important phases of the data collection timelirguded administering informed consent
procedures, collecting background data from alligipants, administering self-efficacy
surveys to participants during midterm exams iresastasses, recruiting and
interviewing 10 participants, and working with insttors to develop and administer final
exam self-efficacy surveys in a dozen mathemagcsans during the final week of the

semester.
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Table 11.

Timeline for Quantitative and Qualitative Data Cadtion

Quantitative Strand Qualitative Strand During

* Informed consent in 7 classes Weeks 8-9
» Background surveys in 7 classes
» Self-efficacy surveys during

midterm exams in 7 classes

* Preliminary analyses of  Select stratified sample for ~ Weeks 8-11
guantitative surveys and task-based interviews
performance on midterms * Recruit interview participants

* Informed consent and Weeks 11-13
background surveys in remaining
classes

» Conduct task-based interviewsWeeks 12-13

* Create final exam survey Weeks 14-15
instruments with instructors

* Administer final exam surveys to Week 16
all sections and copy student
work

Instruments

Self-efficacy instruments were developed in conjiamcwith the participating
instructors during the week prior to the regulamadstration of exams. Once provided
with an advance copy of an upcoming exam with utdor ratings of item difficulty, the
researcher selected seven tasks from the exammstraot a self-efficacy survey that was
representative of the content and difficulty of gd@m. The instructor then checked the
survey for face validity, and the potentially rexdssurvey was administered to students

in the few minutes just prior to the exam. See Aplpe C for the self-efficacy surveys.
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In addition to the construction and administratodiself-efficacy surveys, the
guantitative strand included data collection regaydtudents’ subsequent performance
on mathematics exams. Performance on exam itemswasured primarily through the
researchers’ dichotomous ordinal scoring of eagtiesits’ response (0 = incorrect, 5 =
correct) using answer keys provided by the instrudEstimates of the percentage of
inter-rater agreement between the researchersgsaéind the instructors’ ratings on a
randomly selected sample of students’ exams hetpetlicate reliability in the
performance scores.

Though the study included 12 sections of advancaith@matics courses, there
were eight essentially different final exams adsteried by instructors. That is, four pairs
of sections were taught by the same instructorraceived very similar final exams. The
eight unique exams included between 14 and 49 draeims(M = 25.5,SD= 11.1)
each, and study participants were evaluated byaamm£23.5 $D = 9.3) final exam
items. Instructors administered final exams durtingersity-scheduled 2 ¥z hour time
periods. Some instructors allowed students to naetivorking for up to an additional 30
minutes, but no instructors reported a large nurobstudents failing to finish the final
exam in the time period allotted. All of the exaemis had an open-response format and
the instructors subsequently graded the examsafitiapcredit as part of regular
assessment in the classes. Photocopies of thadtmt’ graded final exams were
collected for 7 of the 8 final exams (all excepstahct algebra).

Although both the quantitative research questionsthe qualitative research
guestion aimed to provide insight into the relasioips between self-efficacy, calibration,

and performance in advanced mathematics examantigsis of data differed



85

substantially by the type of research questionthadature of data. The six quantitative
research questions split into two basic types—thelsging to the hypothesized model
for performance in advanced mathematics (Q1-Q4) those pertaining to potential
differences in endogenous variables by genderestdtem difficulty (Q5 & Q6). Task-
based interview data served as the resource foessidg the qualitative research
guestion (Q7). The researcher analyzed the interdegta using thematic coding and
descriptive vignettes (Patton, 2002).

Analysis of Quantitative Data

The first four research questions (Q1- Q4) addcesffects posited by the
structural path model of performance in advancethematics. Structural modeling was
conducted usin&, the open source implementation of S-Plus, andddleavily upon
structural model fitting routines in the packagan(Fox, 2009). Theemimplementation
of structural equation modeling used similar speatfon conventions and produced
similar statistical reports as the structural modgprogramLISREL(Joreskog &
Sorbom, 2008). Consequently, the modeling procediaiowed guidelines developed
by Mels (2006) and Byrne (1998) and reporting aictural modeling results followed
guidelines by Schrieber (2008).

While structural equation modeling can be usedafeariety of purposes,
including confirmatory factor analysis and simpdgnession analyses, the data analysis
procedures followed a seven stage process outtipéthir and colleagues (1998, p. 592-
616). The initial three of Hair and colleagues’ estages have been described in the
review of literature and theoretical perspectivg:developing a theoretically based

model, (2) constructing a path diagram correspantbrcausal relationships, and (3)
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converting the path diagram into structural and suesment models. The remaining four
stages are reported in the structural modelingtseatithe end of Chapter IV, including
(4) choosing the input matrix type and estimatimg proposed model, (5) assessing the
identification of the structural model, (6) evalngtgoodness-of-fit criteria, and (7)
interpreting and modifying the model.

The final of the preceding stages suggests thalplitysof analyzing alternative
specifications of models for the data. Howevery‘application of structural equation
modeling should have a steadfast reliance on adhieally based foundation for the
proposed model and any modifications” (Hair et 998, p. 616). For this reason, the
structural modeling procedures did not include abersition of alternate constructs, but
rather focused on the removal of hypothesized tioeal effects of indicators or
constructs not supported by the correlation m&8uxhr, 2008).

The reporting of findings followed Stage, Cartaergdaora’s (2004) suggestions
for path analytic research designs: (1) explicidelaonstruction based on literature, (2)
discussion of all preliminary analyses, (3) remdrfit indices for all examined models,
(4) illustration of final model, (5) discussionfofidings in the context of previous
research.

Research questions Q5 and Q6 relate to potentfatehces in endogenous
variables in the structural diagram (e.g., selfeaffy, calibration, mathematics
performance) by gender and item difficulty, respety. Because of the inter-correlated
nature of the endogenous variables, and the fatbtth gender and item difficulty are
considered to be categorical, multivariate analgsigariance (MANOVA) procedures

were appropriate (Stevens, 1996). Reporting o$ testsignificant differences by gender
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and item difficulty was expected to follow Chen @3}, including Wilk’si-values ang-
values of the MANOVA tests, as well as means aaddsird deviations of the
endogenous variables at each level of the catejaaciables and post-hoc tests for
differences by level of the categorical variablengsTukey’s honestly significant
differences criterion. Moreover, the MANOVA analysncluded checks for violations of
the statistical assumptions of multivariate regmgsncluding independence of
observations, multidimensional normality of the elegent variables, and approximately
equal covariance matrices of groups within eachabée. In particular, Box’$/ test
(Stevens, 1996) was used to test for approximaiglyal covariance structures across
levels of the categorical variables (gender anu idéficulty).

Two quantitative analyses served as indicatiorrelability in participants’ self-
efficacy ratings. First, the internal consisten€gtoidents’ responses was assessed using
the Cronbach’s alpha statistic. Second, a portidheoself-efficacy surveys included a
single pair of parallel items so that, with a sti#fnt number of such one-point
measurements of split-half reliability in the stot responses, a bivariate correlation
between students self-efficacy on parallel taskddcgive additional indications of
reliability. Finally, the qualitative analysis diuslents’ responses triangulated indications
of reliability derived from the quantitative anadgs

In addition to the data analysis specifically dasig to address the research
guestion, it was also important to develop a riadgcriptive account of the participants
and the observed data. This included measuresapkeskeentral tendency, and spread for
all biographical, exogenous, and endogenous vasabicluding counts, means, standard

deviations, tests for skewness and normality, Hotspand histograms to describe the
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distribution of responses in each variable. Moreobasic bivariate associations were
investigated, including correlations and crossieaat split-plots.

Following the advice of Dr. Susan Hutchinson (20@&;sonal Communication),
an expert on structural equation modeling, theareteer followed some initial steps to
verify the viability of the level-based indicatdws the structural modeling. These
included inspection of measures of internal coesisg within the three constructs with a
criteria of least Cronbachts= 0.6, significant inter-item correlations withimdicators,
and factor analysis of the indicators within a ¢ong for significant factor loadings of at
leastp = 0.4 in a single factor principal component asglylf the observed correlations
met these criteria, the statistics served as evaglémsupport inclusion of the indicators
and associated constructs in future structural inestenates.

Analysis of Qualitative Data

Analysis of the qualitative task-based interviewadacluded thematic coding
(Patton, 2002) of interview transcripts and artisgfcom the participants’ problem-
solving efforts. In addition, quantitative caliimat, self-efficacy, and performance
results of interview participants on the midternd &#inal exams were integrated into the
gualitative coding procedures, both as a crosslatbén technique (Creswell, 2003) and
as a form of data triangulation (Guion, 2002).

The qualitative data analysis process also inclddeter review of literature as
themes emerged from the data. That is, the quaétdata analysis and review of
relevant literature were viewed as a cyclical pss¢evith results from both efforts
informing the other. After data analysis was cortgzlen each of the two research

strands—quantitative and qualitative—results wemagared and contrasted in the
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interpretation of findings. It is in this data ireetation phase that the power of mixed
methods research is most widely accepted (Cres2@3), and the goal was that the
gualitative findings would help clarify, contextird, and extend the statistical trends
identified through the structural equation modelmgl MANOVA techniques.
Reliability and Validity in the Quantitative Strand

In the post-positivist perspective on the qualitgoantitative data collection and
analysis, it is important to consider the relidipiand validity of measures, procedures,
and constructs in the research design. Many ofi#te collection procedures were
designed to support claims of validity, includiig the use of self-efficacy and
calibration protocols that mirrored procedures usaelated literature and two pilot
studies at the research site, (2) repeated measiuseHf-efficacy, calibration, and
performance for students in 7 of 12 class secti@®)s;hecks for response bias on self-
efficacy surveys, (4) a background survey desigetd@n analysis of registration data at
the research site in the two previous spring searesand (5) analysis procedures that
help to evaluate the statistical power of findifrgen structural equation models and
MANOVA techniques. Nonetheless, all research desigalude trade-offs, and the
cross-sectional nature of the research designrashgsion of authentic assessment tasks
introduces variation in students’ responses byuiegdr and class section which may
threaten the reliability of self-efficacy, calibi@t, and performance measures.

As summarized in the review of literature, selfiegty and calibration are
domain and task-specific psychological construnty & the case of advanced
mathematics performance, are likely multi-dimenalan nature. As a result, standard

measures of internal consistency, such as Cronbatpha and Kuder-Richardson
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formulae (Mertens, 2005), may provide limited imf@tion on the reliability of self-
efficacy and calibration data. However, O’Conn@f989) review of calibration research
suggests test-retest reliability of self-efficacylacalibration measures is typically
relatively high, with reported test-retest religyicoefficients ranging from .72 to .85.
Chen (2003) reports parallel-task internal conaistecoefficients to be .89 among her
sample of middle school students, and compositesunes of self-efficacy have been
reported to be highly reliable, with Cronbach’shepvalues ranging from .86 to .92
(Pajares & Graham, 1999). Thus, three procedegarding students’ self-efficacy
ratings—measures of internal consistency, anabfgimrallel-item reliability, and
gualitative coding of self-efficacy ratings duritagk-based interviews—converged to
provide complimentary information on the holistaiability of self-efficacy ratings.
Trustworthiness in the Qualitative Strand

Interpretations of qualitative findings are oftemsidered in light of descriptions
of research choices that affect credibility, tranability, dependability, authenticity, and
confirmability (Mertens, 2005) in the research. @ity is akin to internal validity in
guantitative research and can be supported thrprgonged engagement in the research
field, peer debriefing, member checks, and triaatoh measures (Guion, 2002). The
research design specifically addressed credilthityugh the cross-validating prospects
of mixed methods, multiple forms of data, and gdata@uantitative survey and qualitative
task-based interview protocols. Moreover, credipilvas supported by theoretical
triangulation (Patton, 2002) in the form of conveggperspectives offered by the social

cognitive and cognitive information processing véeo¥ calibration.
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Several choices in the research design were aitn&deagthening the
transferability and dependability of qualitativadings. In particular, purposive sampling
of participants to using stratified groups, togetivéh rich, thick descriptions (Glesne,
2006) of the research setting and participantsi@gghes to problem-solving tasks was
used to help readers evaluate the potential utfitgny findings in contexts outside of
the research site. Moreover, a confirmability agiliertens, 2005) is provided in the
report, including a thorough description of allgea of data collection and analysis that
led to findings in the qualitative strand of thguiry and a full list of the codes used in
the thematic analysis of interviews (Appendix F).

Authenticity, or presenting a balanced view ofpatspectives, values and beliefs
of participants in a research setting, is a clié@ament of qualitative reporting. This was
partly addressed in the research design througbgbe-ended, think-aloud, task-based
interview protocol, but was also addressed thrapgdlitative inquiry strategies that
emphasized the variety of students’ experiencesathematics self-efficacy, calibration,
and exam performance while avoiding tendenciespont general quantitative and
gualitative trends as universalities or hard-ared-fales. The aim of the qualitative strand
of the inquiry was to include a sense of the widespnal variation that was more
difficult to get from the statistical findings, af@rness to the multiple perspectives of
participants was an important value informing tlesign, analysis, and reporting.

Limitations and Delimitations in the Research Dasig
While adding to limited educational research ifite mathematics self-efficacy
and calibration of college students in general, pregervice mathematics teachers’ in

particular, the research design reflected many ouetlogical choices regarding scope,
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procedures, and criteria for drawing conclusiorigese choices have narrowing
consequences, delimitations(Creswell, 2003), on the research value of finging
flowing from the research design. One such delitoitewas the choice of restricting data
collection and analysis of participating studemtsithematics performance to traditional
in-class examinations. Alternative measures of aded mathematics achievement such
as writing assignments, projects, take-home tasts|aboratory reports have been
advocated by a number of mathematicians (Roserit@h) and were used by some
instructors at the research site, but the measidfireathematics self-efficacy and
performance focused only on traditional in-clasarexations.

Additional delimitations in the research desigrnuded restricting qualitative
inquiry to a relatively small number (10) of inteaws in seven mathematics classes at a
single university. The trustworthiness of the néweain the qualitative strand could have
benefited from additional data sources such asiam observations or interviews with
faculty or member-checking of results with the matew participants. While the limited
qualitative data flowed from the comparatively mguantitative component in the
research, they also limited the potential geneabllity of findings from the qualitative
inquiry. However, generalization of characterisfreen a sample to a target population is
not necessarily an aim of qualitative inquiry (Baft2002), and the ultimate value of the
gualitative strand derived from the transferabidityd trustworthiness (Mertens, 2005) of
the holistic descriptions and thematic analysiscwlsupported, contrasted, and added
context to the broad statistical trends identifirethe quantitative strand.

The quantitative strand of the design focused lmiged number of potentially

significant intervening variables (i.e., gendegmtdifficulty, high school mathematics
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achievement, and item difficulty). Some intervenuagiables identified in mathematics
self-efficacy research were not included in theagsh design, including general
intelligence, math anxiety, academic level, goaldtres, self-concept, learning
disability, and socio-economic status (see Pajargsdan, 2006). Moreover, potential
classroom-level effects of instruction on studemathematics self-efficacy were not
included in the research design, largely becausleedimited sample size and small
number of participating instructors in the desigmally, while the literature review
suggested that mathematics self-efficacy develops time with experience in the
domain, the cross-sectional nature of the resadestgn did not allow for inferences into
the longitudinal development of mathematics sditaty.

Several elements of the research design introdirogdtions (Creswell, 2003), or
potential weaknesses, in the study. First, thesesestional survey design did not include
experimental control, time order, or manipulatiathof which are required to make
claims about causality (Frankfort-Nachmias & Nacksn2000). That is, any statistical
effects identified in the quantitative componentted design can only be used to explain
relationships among variables and cannot provid#eeee of causation. The lack of
measures to control intervening variables suclmstsuction, while supporting the
naturalistic case-study inquiry, also introducemats to the internal validity of the
research design, described by Colosi (1997) aartf@int of evidence to support
directional effects. For instance, there was paéfdr history effects (Frankfort-
Nachmias & Nachmias, 2000) in the form of variatioinstructional practices across
classes at the research site, and instrumentdtieetin the form of differences in item

difficulty and self-efficacy prompts presented &rfripants in different courses. The
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research design included a snapshot (Creswell,)2iiG%tudents’ academic behaviors
and beliefs at a single point in time, and the teaistudy duration permits the possibility
that observed relationships may have changed ower t

There were also threats to the external validitthefresearch design in terms of
generalizing findings and themes to populationsidetof the participants at the local
research site. While all students taking mathemaintent courses at the research site
which offer traditional in-class examinations hlhd bpportunity to participate in the
study, the study was limited to a single universitpne academic semester and thus only
included students and instructors involved in tlehamatics courses for prospective
secondary mathematics teachers in a narrow tinmeefi@and specific context.

Enrolled students were not randomly assigned tdvemastics courses. The
instructors and research site were not randomlypgahirom the larger population of
faculty members and universities that prepare sgarymmathematics teachers in the
United States. Readers of this report are encodrtmgeonsider any findings and
implications in light of these limitations and draw the description of the research
setting, participants, and methodology to evaltia¢etransferability of any findings to
other settings containing secondary mathematiché&ra and other students enrolled in
advanced mathematics courses.

Research Timeline
Table 12 outlines the research timeline for thewtincluding the completed pilot

studies and phases for data collection, analysiparrative summary of findings.
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Summary of the Research Timeline, Fall 2007- S0P

Research Phase

Progress Completion

Pilot Study (College Algebra)

Pilot Study (Calculus I)

Dissertation Proposal

Data Collection

Data Analysis

Dissertation Completion

Defense

Development of survey Fall 2007
instruments, data analysis
methods, initial findings.
Exploratory qualitative
investigation.

Refinement of survey Spring 2007-
instruments, data analysis. sSummer 2007
Informed consent and
survey methods.

Literature review, Fall 2008
conceptual framework,
research design, methods,
post-hoc analysis of pilot
study data.

Inform consent, Spring 2009
administration of surveys,
observation of classrooms,
task-based interviews.

Statistical modeling, Summer 2009
transcription and coding of
interviews, analysis of
observation data

Results, findings and Fall 2009
discussion

Completion of dissertation,Early Spring 2010
dissemination of findings,
dissertation defense
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CHAPTER IV

RESULTS

The purpose of this chapter is to summarize thaltsesf the cross-sectional study

described in the previous chapter. Building ondascriptive accounts of the participants

and sample in the methodology chapter, the resulsde descriptive and inferential

statistics arising from the process of addressiegseven research questions and five

hypotheses. Results pertaining to the six quaivi#aesearch questions, given below as

Q1 - Q6, arose from structural equation modelindyamalysis of variance techniques.

These quantitative findings were contextualizedigings regarding the single

gualitative research question (Q7).

Q1

Q2

Q3

Q4

Q5

Does high school mathematics achievement havendisant effect on
the amount of mathematics in participants’ colleggor?

Do high school mathematics achievement and the ahafumathematics
in participants’ college major have significantezffs on participants’
calibration?

Do high school mathematics achievement, the amafumiathematics in
participants’ college major, and calibration haign#icant effects on
participants’ self-efficacy?

Do high school mathematics achievement, the amaiumiathematics in
participants’ college major, calibration, and seflicacy have significant
effects on participants’ performance on exams waaded mathematics?

Are there significant differences in self-efficacglibration, the amount
of mathematics in participants’ college major, adganced mathematics
performance by participants’ gender?
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Q6  Are there significant differences in self-efficaayd calibration by item
difficulty?

Q7 Inwhat ways do prospective secondary mathemagdashers’
mathematical problem-solving compare and contrétst the
hypothesized relationships between self-efficaalibcation, and
performance in advanced mathematics?

Inherent in the first four research questions esatlpriori structural model

relating a single exogenous latent construct (Bigiool mathematics achievement) to
four endogenous latent variables (Figure 10). Tieeretical rationale for the directional

effects, which is central to the validity of the deding procedures, is described in the

review of literature in Chapter .

HS Math
Achievement

<&

Math in

Maj_or/

Final Exam

"\ Performance

A

Calibration
Bias

Figure 10 Hypothesized structural path model for advancathematics performance.

Forthcoming sections in this chapter detail resoiltstatistical analyses aimed at
addressing the quantitative research questionsigmatheses. Initially, the findings
focus on descriptive summaries of contextual arkdpr@und information on the
participants. Then, the narrative presents resfiénalyses of the statistical evidence

regarding potential differences in the variablemitfied in research questions Q5 and Q6
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associated with participants’ gender and the difficof exam items. Next, the summary
includes results of the structural modeling of tietaships among the amount of
mathematics in participants’ college major, highaa mathematics achievement, self-
efficacy, calibration, and mathematical performarkieally, the narrative addresses
evidence supporting five qualitative themes surding the mathematics self-efficacy,
performance and calibration of secondary mathemat@jors.
Quantitative Data

In cross-sectional research, inferential statistiod modeling results are better
understood in the context of the distributionalreleteristics of study data (Schrieber,
2008). Consequently, initial steps in the analg$ithe quantitative data included
descriptive summaries of indicator variables usethé structural modeling and
composite measures of self-efficacy, calibratiord inal exam performance.
Continuous Indicators of Latent Constructs

Table 13 includes descriptive statistics of thadatbr variables for the latent
constructs High School Math, Math in Major, Selfi€dcy, and Calibration Bias. Some
highlights of the indicator distributions include) @scending means for indicators of self-
efficacy and calibration by “level” with some neigaty skewed self-efficacy indicators,
(2) moderate-to-high ACT Math scores and self-asseats of high school mathematics
performance, (3) skewed-left high school GPA scariéls an apparent ceiling effect at
4.0, and (4) bimodal distribution of required matiagics credits associated with
students’ college majors. The following brief sen8 summarize each of these

distributional characteristics.
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Table 13.

Descriptive Summary of Indicators for High Scho@tMAchievement, Math in Major,
Self-Efficacy, and Calibration Bias

Construct Indicatdr n M SD Scale
HS Math Achievement ACT Math 132 24.9 3.9 14 to 36

HS GPA 133 3.4 0.6 Oto4

HS Self 195 4.6 1.1 Oto7
Math in Major Required Math 197  23.0 15.2 3to 45
Self-Efficacy SE Level 1 195 29 1.3 Oto5

SE Level 2 3.2 1.2

SE Level 3 3.5 1.1

SE Level 4 3.7 1.1

SE Level 5 4.0 1.0

SE Level 6 4.2 1.0

SE Level 7 4.5 0.9
Calibration Bias Bias Level 1 195 -0.4 1.8 -5to5

Bias Level 2 0.2 2.2

Bias Level 3 0.4 2.2

Bias Level 4 0.9 2.3

Bias Level 5 1.2 2.4

Bias Level 6 15 2.4

Bias Level 7 1.9 2.4

Note *Level” indicator were formed by ascending withilass meansMissing values

for Required Math correspond to ambiguous majags,(&undeclared”, “pre-program”).
SE = self-efficacy rating, HS GPA = high schooldgaoint average (capped at 4.0); HS
Self = self-assessment of high school mathematd®pnance, Required Math =
number of semester mathematics credits requiretkblared college major.

Indicators of Self-Efficacy and Calibration Bias

As described in the methodology and evidenced biel'a3, means of the
indicators for self-efficacy and calibration bias ascending by “level.” For example, a
student’s SE Level 1 rating indicates belief inngeable to complete the mathematical
tasks in which his or her classmates expresseldwest collective rating. The indicators

of self-efficacy suggested students’ mean seltaffy ranged frorM = 2.9 toM = 4.5
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on a scale of 0 to 5 on the sample of exam itemsamted during the pre-final exam
surveys, with similar observed variation (standaesiations ranged from 0.9 to 1.3) at
each level. Calibration indicators ranged from Uevévl = -0.4,SD= 1.8), which
indicated significant overall underconfident€194) = 3.1p < .01) to Level 7, which
indicated significant overall overconfidendd € 1.9,SD= 2.4,t (194) = 11.1p < .001).
However, observed calibration means were signiflggositive in 5 of 7 indicators at
thea = .01 criterion, suggesting general tendenciesitdwverconfidence in the
calibration indicators.

There was some evidence that self-efficacy ratimgie negatively skewed for
higher-level indicators. For example, on the higiegel indicator of self-efficacy, Level
7, 89% (173/195) of students marked their configendeing able to complete the
indicated task successfully as either 4 or 5 (6&) 0Of the seven indicators of self-
efficacy, Levels 3 - 7 were all significantly negaty skewed at the = .01 criterion
(skew =-0.5, -0.9, -0.9, -1.2, -1.9, kurtosis #;®.5, 0.3, 1.6, 5.1, respectively).
However, the primary purpose of the level indicatof self-efficacy was for structural
modeling, which typically produces estimates wihust standard errors when the
absolute values of skewness are below 2.0 anddianparameters are below 7.0
(Schreiber, 2008). Having met these criteria,raigators of self-efficacy and calibration
bias were retained for the structural modeling.

The norm-referenced definition of the indicatorsnpiés the theoretical possibility
that within-class means may differ from the commsieans. However, observed

deviations of within-class means from the overadlams of indicators were less than 0.2
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and were inconsistently related to class sectlams providing empirical support to the
use of level indicators of self-efficacy and cadition based on within-class means.
Indicators of High School Mathematics Achievement

The data suggested study participants achievetivediahigh ACT Math scores.
The average ACT Math score ldf= 24.9 corresponds to approximately the 79th
percentile of U.S. college-bound students (ACT,ZJ0Based on a large sample of data
on new students at the research site (Fitchetg,kKdnChampion, in press), the students
enrolled in the 12 participating sections entergltege with an average ACT Math score
about one standard deviation above their peeteeairiversity, a difference which is
statistically significantiy = 21.6,SD= 3.7,1(1,236) = 11.3d = .9,p < .001). Graphical
checks for normality (i.e., Q-Q-plots) suggestdadireng the assumption that ACT Math
scores were normally distributed.

Participants’ self-assessments of their high schwthematics performance were
in line with the relatively high mathematics acleewent indicated by the distribution of
ACT Math scores. Figure 11 shows the distributibthe participants’ ratings for the
guestion, “Which of the following best describesvhweell you did in your high school
math courses?” Most students chose one of theigessr*OK” (27%), “Good” (39%),
or “Very Good” (21%), indicating moderate-to-strasgjf-assessments of high school
mathematics performance. Graphical checks for niiignsiggested retaining the

assumption that students’ self-assessments weneafigrdistributed.
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Self-Assessments of High School Math Performance
Figure 11 Distribution of students’ self-assessments oif thigh school
mathematics performance\ € 195). 1 = really bad, 2 = bad, 3 = not-so-gaebd,

ok, 5 = good, 6 = very good, 7 = excellent. Foerehce, the dashed curve indicates
a normal curve with the sample mean and standasidtc.

Study participants’ high school grade point avesagere significantly skewed-
left (n=133,M = 3.4,mdn= 3.6, skew = -0.7, kurtosis = -0®< .001). This is
potentially attributed to an admissions policyre tesearch site that caps high school
grade point averages at 4.0 (many secondary schothle state award “honors” points
for some classes that may lead to grade point gesrabove 4.0). This apparent ceiling
effect is evidenced by the fact that 17% of theoregal high school grade point averages
were exactly 4.0. In contrast, Fitchett et al.drass) found an approximately normal
distribution of high school GPA$ = 3.2,SD=0.4,n = 1029, skew = -0.1) among new
students at the research site, with only 7% equél@. This suggests the high proportion

of 4.0 GPAs in the sample may be atypical of theemgraduate population at the
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research site. Figure 12 shows a histogram ofitjiedcthool grade point averages of

study participants, including a noticeable spiké.at

1.5

>
= =}
(] — 7
c
(]
[a)
o | ”-" -.‘-M
o - N
- r
- ~
- -~
.-’ \-—.
5 ,_,—I_
S
I | 1 I 1
20 2.5 3.0 3.5 4.0

High School Grade Point Average
Figure 12 Distribution of students’ high school grade pameragesn= 133) . Grade
point averages are capped at 4.0 by university s&laris procedures. For reference, the

dashed curve indicates a normal distribution witngample mean and standard
deviation.

Required Math as an Indicator of Math in Major

The distribution of required semester mathematiedits in participants’ primary
college majors (Required Math) is derived fromdistributions of students’ majors in
Table 5. The most common majors declared by stadycpants were Elementary
Education — Mathematics (26%), Mathematics — Seagn@leaching (9%), a non-
teaching Mathematics concentration (14%), and Csieyn(10%). The result of these
proportions is the bimodal distribution of Requiiddth credits shown in Figure 13. The
large proportion of Mathematics majors in the sapbduced a large singular departure

from normality near 40 required credits; the renmgmon-mathematics-only majors
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formed a separate approximately normal distributientered near 10 required

mathematics credits.
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Required Math in Students’ Primary College Major
Figure 13 Distribution of the number of semester creditswvarefix MATH required

by students’ primary declared college major(177). Dashed curve indicates a
normal distribution with the sample mean and stasthdaviation.

Indicators of Final Exam Performance

Collectively, the seven dichotomous indicatorsinéf exam performance
represent students’ performance on exam itemsavange of difficulties. Table 14
gives the distributions of students’ work which veasred as “correct” or “incorrect” for
the sampled final exam items corresponding to évers “level” indicators. Since final
exam items were sampled for level indicators basedithin-class item difficulty, the
level indicators are ordered so that higher leaet¢sassociated with a higher percentage
of correct student responses. Performance Level Example, represents students’
performance on a difficult final exam item — onlyoait one in four students (25%)

correctly solved the task corresponding to thist findicator. In contrast, 83% of
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participants correctly solved the final exam iteonresponding to the Performance Level
7 indicator. Three indicators come from final ex@sks which were correctly solved by
fewer than half of students; the remaining foutigatbrs include greater than 50%
correct responses.

Table 14.

Distributions of Indicators for Final Exam Performee

Construct Indicator % Incorrect % Correct

Final Exam Performance  Perf. Level 1 75 25
Perf. Level 2 63 37
Perf. Level 3 56 44
Perf. Level 4 42 58
Perf. Level 5 33 67
Perf. Level 6 27 73
Perf. Level 7 17 83

Note Table entries indicate the proportion of studéNts 195) who correctly solved the
corresponding final exam items. Items were randasalypled from seven-level quantile
groups based on item difficulty.

As in the analysis of self-efficacy and calibratiadicators, the analysis of level
indicators included checks for variation in perfamue across the sampled exam items
that composed each indicator. These observed wathss distributions of performance
indicators differed from composite distributionsugyto 4%, but differences were
inconsistent by section and supported retainingaseimption that indicators held
similar distributions across sections.

Composite Scales of Self-Efficacy, Calibration, &mthl Exam Performance
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While self-efficacy, calibration bias, and finalaar performance were each
considered to be latent constructs measured bysedeators, the research question
which considered potential differences in thesestrocts (along with Math in Major) by
participants’ gender (Q5) called for a composi@edor each construct. Table 15 gives a
descriptive summary of the scales constructed anhsef the seven level indicators
within each construct and includes the observecikaoh’sa values corresponding to
the scales.

Table 15.

Descriptive Summary of Self-Efficacy, Calibratiaa®® and Final Exam Performance

Composite Scale M SD Range Cronbach's®
Self-Efficacy 3.7 0.7 Oto5 g7
Calibration Bias 0.8 11 -5to5 .53
Final Exam Performance 2.9 1.3 Oto5 .65

Note Composite scales represent means of the sevelineNcators of each construct.
®Alpha values indicate the expected correlatioaf $cales constructed by sampling
seven items from within each construct (Bland &wdhn, 1997)°Final exam indicators
were dichotomous, sowas calculated as the Kruder-Richardson KR-20fiwbexft.

The mean composite self-efficacy ratidg € 3.7) was significantly larger than
the mean performance scoh €2.9,t (388) = 8.5d = 1.0,p < .001), with the 95%
confidence interval for the difference being 0.7 tb. This suggested a significant
overall trend toward calibration bias in the forfrowerconfidence. Interestingly, the
observed calibration bias meawvi £0.8) fell within the 95% confidence intervaltbke
difference between self-efficacy and performanespde the fact that the final exam
performance indicators were not matched to thd &ram items used in the self-efficacy

and calibration measures.



107

Cronbach’sy values given in Table 15 were interpreted direstlthat each
value gives the expected correlation between tiservkd scale and a second theoretical
scale constructed by random sampling seven iteons fhe sample space of items which
could be used to measure the latent construct BaAltman, 1997). For example, had
seven different final exam items been chosen ferstif-efficacy surveys, and a separate
calibration bias score calculated, the correlatietween this new calibration measure
and the observed calibration measure would be ¢sgéc be moderate £.53).

However, the correlation between the second cortgsslf-efficacy scale and the
observed self-efficacy scale would be expectecethigh ¢ =.77).
Reliability and Validity of Self-Efficacy and FinBkam Performance Indicators

One of the strengths of structural modeling isabtmation of measurement
error, so that assessing the extent to which inolisaf a construct reflect consistent
measurement of a single construct was built ingoatialysis of the measurement model
and is consequently reported in the structural nmogleesults. In addition to this factor-
analytic approach, several efforts were taken tionase the reliability of self-efficacy
ratings and final exam performance scores. Thededa internal consistency, parallel-
task reliability for a sample of self-efficacy segvratings, and inter-rater reliability of
final exam performance scoring.

As a measure of internal consistency among rati@gmbach’sy is often used
indirectly to assess the reliability of an instrurneshich contains multiple items
designed to measure a single construct (Hair €1298). From this perspective, the
composite measures of calibration bias(.53) and final exam performanaee= .65)

fail to meet the traditional benchmark for adequatbility of a unidimensional
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construct (Cronbach's >.7, Bland & Altman, 1997). Since calibration biagalculated

as the difference of self-efficacy ratings and pemiance scores, one possible source for
the relatively low reliability of the calibrationds scale is the cumulative variation due to
measurement errors from both final exam performamceself-efficacy. Moreover, the
value of Cronbach’s as an indirect measure of reliability is reduceddme extent by

the relatively small sampl@& E7) of items contributing to the scales becausmBach’s

a is an increasing function of the number of iterasprising a scale (Revelle, 2009).

A more direct measure of reliability in the selfigdicy ratings was the students’
ratings on parallel tasks included on each of dieedficacy surveys administered no=
131 students in the minutes just before the midvtexams in seven of the participating
sections. Each of these midterm self-efficacy syg\entained a single pair of parallel
tasks, and reliability would be strengthened ifistuts’ self-efficacy ratings on the
separate tasks were similar. This was confirmeddayly identical mean ratings on the
first and second of the parallel tasks presentetiudentsil = 4.08,SD= .90, andV =
4.06,SD= .91, respectively). In 73% (96/131) of the casésdents’ ratings on the two
tasks were identical, and in 95% (125/131) of thees the two ratings were within 1.The
split-half correlation between the two ratings vaggh = .71).

Students likely completed the self-efficacy survagder the belief that the
correctness of their final exam solutions woulddetermined by their instructors. Thus,
the validity of the final exam indicators would Wweakened by potential differences
between the instructors’ scoring of final exams tredresearchers’ dichotomous scoring

of the exams. If the observed differences betwhkendsearcher scores and the
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instructors’ grades were proportionally small, gwd strengthen the validity of the final
exam scoring and would also indicate reliabilityhe scoring of final exam data.
Instructors’ graded final exams were available/af the 8 final exams (all
except abstract algebra), and from this pool, dosamsample of = 70 students’ final
exams were selected for inter-rater comparison.seingple size of 70 was chosen so that
the statistical power to detect significant agreenhbetween ratings with 95% confidence
was approximately 90% (Sim & Wright, 2005). Colleety, the sample yielded 1,655
ratings which are summarized in Table 16. To acghmmparable scales, instructors’
partial-credit scorings of items were converted ttichotomous scale using an “all-or-
nothing” rule—if the instructor scored a studemsiformance on an item as anything
less than full credit, the item was entered asricd.
Table 16.

Percentages of Final Exam Item Scores by Instrgcamd the Researcher

Instructor Rating

% Incorrect % Correct Total

Researcher Rating % Incorrect 40 4 45
% Correct 7 49 56
Total 47 53 100

Note Entries are percentages of the 1,655 total ratiragn a random sample of 70 final
exams.

The inter-rater agreement comparison in Table bevstagreement in 89%
(1473/1655) of the sampled ratings. The distribubbratings correspond to an inter-
rater reliability coefficient ok = .83 kmax = .92), which suggests “almost perfect”

agreement (Sim & Wright, 2005, p. 264). Though giisament between instructor and
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researcher ratings was relatively rare, the obsgpeecentage of ratings in which the
researcher scored students’ work “correct” whike itistructors’ grade was classified as
“incorrect” was slightly larger than the revers&y¢ompared to 4%). This may have
been due to the strict “all-or-nothing” criterioor fconverting instructors’ partial credit
grading schemes to dichotomous scores. If instra¢halependently graded items on a
dichotomous scale, their ratings may have diffeleghtly from the post-hoc “all-or-
nothing” classifications.
Differences by Gender

The fifth research question (Q5), given below, dskleout potential differences
in the composite indicators of self-efficacy, cedition, math in major, and final exam
performance associated with gender. The hypotliE&sincluded an expectation that
there would be no differences in self-efficacyjlmation, or final exam performance by
students’ gender, but that males would have mayeired mathematics credits in their
majors than females.

Q5 Are there significant differences in self-efficacglibration, the amount

of mathematics in participants’ college major, adgdanced mathematics
performance by participants’ gender?

H5  There will be no significant difference in selfieticy, performance, or
calibration by gender. There will be significanffeliences in the amount
of mathematics in participants’ college major bydger, with males on
average choosing college majors with more requinathematics courses.

Since the explanatory variable (gender) is dichaasrand the response variables
are intercorrelated continuous scales, the appteptest for differences by gender was a
one-factor, between subjects, multivariate analysisariance (MANOVA) (Grice &
Iwasaki, 2007). The MANOVA analysis included (1ecks on the assumptions of

MANOVA, (2) an omnibus test for differences betwdla male and female groups on
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linear combinations of the responses variables(8ndvaluation of alternative and
trimmed models.
Checks on Assumptions of MANOVA

Interpretations of MANOVA results can be limited égpartures of the data from
the statistical assumptions underlying the techesgGarson (2006) identifies several
assumptions which can affect the statistical pasWdMANOVA analyses, including (1)
independent observations, (2) approximately equalgsizes, (3) adequate sample size,
(4) randomly distributed residuals, (5) homogeneftyariance and covariance matrices
(homoscedasticity), and (6) multivariate normalitie first three assumptions were met
by the research design, so the checks on the aisasipnderlying the MANOVA tests
focused on evaluating model residuals, homosceagstind multivariate normality.

Evaluation of whether the data met the assumptdMANOVA was
particularly important in the case of the omnibest for differences by gender. Graphical
inspection of model residuals suggested no subigtaepartures from normally
distributed errors. Bartlett’s* and Brown-Forsyth’§ tests for homogeneity of variances
across the gender groups supported retaining tthéypothesis of approximately equal
variances in the response variables. Bd4'test for approximately equal covariances in
the response variables (Stevens, 1996) faileddweige evidence of unequal covariances
(F (10, 144321) = 1.3 = .20). Finally, a graphical check of multivariatermality using
a Q-Q-plot of the generalized distance (De Maesskhdouan-Rimbaud, & Massart,
2000) of the data points from the observed censafported retaining the assumption of
multivariate normality. In summary, the analysipported the assumptions underlying

the omnibus MANOVA test for differences by gender.
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Omnibus Test for Differences

The composite one-factor model for differences égired Math or the
composite scales of math in major, self-effica@fibration, and final exam performance
by gender was not significant (Wilks = .97,F (4, 172) = 1.3p = .27), suggesting
insufficient evidence to support differences in teégponse variables by gender. A post-
hoc analysis suggested the mean Required Matlefoales M = 25.2,SD= 14.7) was
significantly higher than that of maled & 20.6,SD= 15.4,t (54) =5.4d=.29,p<
.01). The statistical power of this observed défere is potentially weakened by
departure of the Required Math distribution frormmality (i.e., both marginal
distributions were bimodal). Nonetheless, histografithe male and female
distributions, given in Figure 14 supported sméfiedences in the number of required
mathematics credits in favor of female studentss ©hserved difference was likely due
to a small difference in the percentage of mathmmatajors by gendeg{(1, N = 195)
= 3.9,p <.05). That is, while 44% (43/97) of female papants were mathematics

majors, just 31% (30/98) of male participants waethematics majors.
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Figure 14 Marginal distributions of Required Math by gend@&he histograms suggest
females chose majors with more Required Math thalesn

Evaluation of Alternative and Trimmed Models

The analysis of potential differences by gendeluihed consideration of several
alternative models for effects of gender on matmajor, self-efficacy, calibration, and
final exam performance. The alternative specifaagiincluded replacing the measure of
calibration bias by calibration accuracy, repladingl exam performance by composite
scales from alternate samples of exam items, atithgeall 16 possible trimmed subsets
of response variables (e.g., dropping final exanfop@mance). With the exception of the
highly restricted model positing direct effectsgeinder on math in major (equivalent to
the reported post-hdetest), none of the alternative models reachedfsignce.
Especially in light of the relatively large numlzdrdegrees of freedom which made

MANOVA sensitive to small differences due to gendee results suggested very limited
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support for any potential differences in self-&dfig, calibration, or final exam
performance attributable to participants’ gender.
Differences by Item Difficulty

The sixth research question, given below, lookedlfibferences in self-efficacy
ratings and calibration scores associated itétin difficulty— the mean student-
performance on final exam items matched to selé&fly survey items. Based on the
literature review, the expectation (H6) was tharéhwould be no difference in self-
efficacy ratings associated with the difficultytb® items, but there would be a tendency
toward overconfidence on survey items with incrdasam difficulty.

Q6  Are there significant differences in self-efficaayd calibration by item
difficulty?

H6  There will be no significant difference in selfieticy by item difficulty.

There will be a significant difference in calibtiby item difficulty, with
a tendency toward overconfidence on more diffiexlim items.

Similar to the indicators of final exam performanites difficulty of the final
exam items given in the self-efficacy surveys waternined by the reverse rank-
ordering of students’ final exam performance onitbes. For example, a self-efficacy
survey item with an item difficulty rank of “1” cogsponded to the “easiest” item on the
survey because the highest percentage of studettis section correctly completed the
matched final exam item. Likewise, a self-efficacyvey item with difficulty “7” would
be considered the “hardest” mathematical task ers#if-efficacy survey because the
lowest percentage of students in the class coyreothpleted the corresponding final
exam item.

The seven measurements of students’ self-efficadycalibration bias,

respectively, across varying item difficulties ctitude a type of within-subjects (repeated
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measures) design. That is, the goal of the analyasdo test for effects of a single
categorical variable, item difficulty, on two camious dependent variables — self-
efficacy and calibration bias — while adjusting ¥athin-subject means. The omnibus
test, a one-way repeated measures MANOVA, idedtsignificant differences among
self-efficacy ratings and calibration bias scoresoaiated with item difficulty levels
(Wilk's A = 0.11,F (13, 182) = 109.09 < .001). As in the MANOVA tests for
differences associated with gender, checks on #drgimal distributions and covariance
structures suggested the data met the assumpfidh&NMOVA. Importantly, though,
there was limited evidence to support intercorietabetween self-efficacy and
calibration biasr(= .10,p = .16), so subsequent analyses were conducted sisparate
one-way repeated measures analysis of variance (A @ethods.

The data supported the hypothesis of significaffiti@inces in calibration bias
associated with item difficulty§ (6, 1164) = 14.9 < .001, but the observed differences
did not support the hypothesis that students’ catiibn bias tended toward
overconfidence with increasing item difficulty. tead, as evidenced in Table 17, means
of calibration bias scores generally decreased fyeaenconfidence on the least difficult
items (e.g., mean bias = +1.6 for Level 1 diffighlioward near perfect calibration on the
most difficult items (e.g., mean bias = 0.0 for kY difficulty). Moreover, in contrast to
the hypothesis, there were significant differerioeself-efficacy ratings associated with
item difficulty, F (6,1164) = 36.6p < .001, with increasing item difficulty typically

associated with decreasing self-efficacy ratings.
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Table 17.

Self-Efficacy and Calibration Bias by Item DiffigulLevel

Self-Efficacy Rating Calibration Bias Scores
Item Difficulty M SD M SD
Level 1 4.3 1.0 1.6 2.4
Level 2 4.3 11 1.3 2.4
Level 3 3.% 1.2 1.9 2.1
Level 4 3.64 11 0.5¢ 2.3
Level 5 3.8cd 1.2 1.Qcq 2.3
Level 6 3.3 1.2 0.2¢ 2.2
Level 7 3.0 1.3 0.Qe 2.0

Note N = 195. Within categories, means with the sameauiiddo not differ
significantly by the Tukey honestly significantféifence test ai = .05. Increasing
difficulty “Level” indicates lower success rates corresponding final exam items.

Post-hoc comparisons of means by item difficultyelaising Tukey’s honestly
significant difference (HSD) criterion suggestedtttifferences in self-efficacy means
were typically found for items separated by tworare difficulty levels. For example,
the observed self-efficacy on items of moderateigh difficulty (Levels 3-7) differed
significantly from self-efficacy on the least ddtilt exam item (Level 1), although the
difference between means of Level 1 and Level Ref@tacy ratings was not significant
(p = .05). In fact, the analysis identified signifitalifferences in self-efficacy means for
items separated by at least two levels of difficult87% (13/15) of the possible cases.

Table 17 also reports Tukey HSD comparisons obcatiion bias means, which
indicated overall tendencies toward decreasindpicion bias associated with increasing

item difficulty. Though mean calibration bias dretleast-difficult exam items (Levels 1
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& 2) were significantly greater than calibratiom&ion the most-difficult exam items
(Levels 6 and 7), differences in means across natelelifficulty levels were
inconsistent. That is, there was a general trersltesgard reduced overconfidence on
more difficult exam items, but calibration bias mgavere statistically similar for
moderately difficult exam items (Levels 3-5).

In the lexicon of structural modeling, the restttshis point have addressed
manifestobserved) variables in the study. Following acdesive account of the data,
the analysis found no significant differences impaosite self-efficacy, calibration bias,
or final exam performance associated with partitipgender (Q5), but did identify
slightly greater required mathematics requiremassociated with the declared majors of
female participants. Then, differences were idettifn self-efficacy and calibration bias
by the difficulty of exam items (Q6), including tr@s toward decreased self-efficacy and
reduced overconfidence on more difficult exam itelnghe next sections, the focus
shifts from manifest variables to structural redlaghips among latent constructs,
including effects among high school mathematicseagment, self-efficacy, calibration
bias, and final exam performance.

Structural Equation Modeling
Multiple Imputation of Missing Data

Of the 25 indicator variables used in the strudtomadel, complete observed data
were collected for 23 indicators. However, appraatiaty 30% of the data for students’
ACT Math and High School GPAs were missing fromrbgistration data. In addition,
though a declared college major was available lfqraaticipants, the corresponding

Required Math indicator was labeled “NA” for 9%pmrticipants because of
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“undeclared” or other majors whose required mathEsaredits were ambiguous.
Though the reasons for the missing data were unknome possible source of missing
ACT Math and High School GPA data was non-traddicaadmission to the university,
such as transferring to the university from anotir@versity or community college.
Several strategies for handling the missing date wensidered and are described below.

A first step in choosing a missing data strateghésclassification of missing data
as one omissing completely at randofiICAR), missing at randoniMAR), or missing
not at randon{MNAR) (Collins, Schafer, & Kam, 2001). Under the MCAR w@asgtion,
students with missing data could be deleted casefnos the data without introducing
bias. However, casewise deletion would reducessizl power and would involve the
assumption that students with missing data do fifier drom those with full data. The
less restrictive assumption MAR would simply reguinat the missing ACT Math and
High School GPA data were not missimgcausef other variables in the structural
model. For example, if students with low final exparformance were embarrassed and
thus subsequently chose not to report their HigloSLGPA, then the MAR assumption
would be violated. Since the missing data wereectdld by the universityrior to the
collection of the other variables during the stuaywever, the MAR assumption was
retained as plausible.

Under the MAR assumption, there are several comyrapplied strategies for
handling missing data, including casewise delefoairwise deletion, substitution of
means, regression predictions, full information imraxn likelihood estimation, and
multiple imputation (Collins et al., 2001). Thougbmputationally less-intensive, the ad

hoc techniques of casewise deletion, pairwise ibalesubstitution of means, and
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regression predictions have “been shown conclusieeperform poorly except under
very restrictive or special conditions” (Collinsadt, p. 330). That is, simulation studies
have demonstrated these techniques produce sttistiased estimates of variation
within and between variables. Of the remaining strategies, multiple imputation was
chosen because of better average performance mvih @ < 1000) data sets (Schafer &
Olsen, 1998).

The multiple imputation strategy used for analyzinigsing data in the study
applied an iterative stochastic algorithm callegh&otation-Maximization (EM). First
developed by Dempster, Laird, and Rubin (1977), dévierates several imputed data
sets based on the portion of the data set with teimpata. In the technique used for this
study (Gelman, Hill, Yajima, Su, & Pittau, 2009)etincomplete data set was “imputed”
by replacing missing values by vectors of randoatjisted means. Then, using the
structural model as a base, each iteration apphiedsteps: (E-step) compute the
expectation of the log-likelihood of the currentiesited data set, (M-step) compute the
parameters which maximize the log-likelihood frdm E-step.

When the estimated data in an EM algorithm conwetgevithin some small
tolerance, the last completed data set is callathpated data setmputed data sets are
computed to replace missing data without introdgatatistical bias into observed
statistical power, variance, and associations amangbles (Collins et al., 2001).
Usually, 3-5 imputed data sets are constructedigwray (Schafer & Olsen, 1998), and
subsequent statistical analyses are conductedatelyaon the imputed data sets. If

results of statistical analyses are similar achogaited data sets, results are simply
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reported as the averages of results obtained fnerséparate analyses (Collins et al.,
2001).

In the application of multiple imputation used Imststudy, the EM algorithm
converged for three imputed data sets in 38 it@matiEach of the imputed data sets
contained 60 (31%) imputes of missing ACT Math sspb9 (30%) imputes of High
School GPA, and 18 (9%) imputes of Required MathlleCtively, these imputes
represented just 1.5% (137/8,970) of the entrigberdata sets. The small proportion of
imputed data led to nearly correlation structuhed tvere identical to the hundred-
thousandths place, so the results reported indonting sections are means of results
from the three imputed data sets.

Correlations between Indicators in the Structurabdél

Following suggestions for the reporting of struatiequation modeling (Bentler,
2007), this section reports on the correlationcstme of the indicator variables in the
study. As a standardized measure of joint variatibich quantifies “closeness of linear
relationship between two variables” (Snedecor &l@an, 1989, p.177), the correlations
are not meant to indicate the extent to which &b “causes” or “predicts” another
variable in the sense that might be inferred froqmegimental designs. Instead, since the
model for directional effects between latent cands was justified by the review of
literature in Chapter lll, correlations reporteaédnsimply quantify the extent to which
observed indicators of the constructs are lineassociated.

Structural equation modeling was initially desigrasda technique for analyzing
the covariation structure of continuous indicatariables, but techniques have been

developed to extend the structural modeling tdyaks of ordinal indicator variables
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(Fox, 2006). That is, if one (or both) of two indiors is ordered but discrete, alternate
estimates of correlation can be obtained undeagisemption that the dichotomous and
categorical variables reflect discrete levels alentying continuous variables.

For example, it would not be possible to estimateatation between gender
(dichotomous) and ethnicity (categorical) becabsefact that neither variable is ordered
makes interpretation nonsensical. In contrastctneelation between performance on a
final exam item (dichotomous) and students’ sdiicaty to complete the exam item
(categorical) can be estimated by a polychoricetation coefficient (Hair et al., 1998).
Table 18 summarizes the types of correlations uséte analysis of indicator variables
in the structural model.

Table 18.

Types of Correlation Used in the Structural Model

Type of Correlation XxY Example
Product-moment continuous x continuous HS GPA x AGIh
Biserial dichotomous x continuous Perf. Level 18 GPA
Tetrachoric dichotomous x dichotomous  Perf. LevelRerf. Level 2
Polychoric categorical x categorical

dichotomous x categorical > Level 1 x Calib. Bias 1

Polyserial categorical x continuous SE Level 1 xTA@ath

The complete table of correlations between allr2hcators is given in Appendix
E. Probably due to the relatively large sample fize 195), many pairs of indicator
variables were significantly correlated. In fact% (214/300) of the possible correlations

were significant a& = .01. Consequently, the magnitude and sign ottmeslation
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coefficients were of primary concern. Table 19 swariees the observed correlations
between the composite measures of constructs.
Table 19.

Correlations between Indicators of High School MAtthievement, Math in Major, and
Composites of Self-Efficacy, Calibration Bias, &molal Exam Performance

Measure 1 2 3 4 5 6 7
1. ACT Math — 15 31 19" 28 -37 33"
2. HS GPA - 52" .05 18 -2 25
3. HS Self -~ 27 23 -25 347
4. Req. Math - .07 -.05 .04
5. Self-Efficacy - .10 39
6. Calib. Bias —~ -45
7. Final Perf. -

Note Self-efficacy, Calibration Bias, and Final Penfiance scales are each composite
scales of seven indicators. HS GPA = high schaad@point average (capped at 4.0);
HS Self = self-assessment of high school math paedace, Req. Math = semester math
credits required by declared college majqu.< .01.

As is common in this type of research (e.g., Paj&&ranzler, 1995),
magnitudes of correlations between indicators vgeally betweenr| = .1 and .5. The
signs of significant correlations were, without egtion, in line with expectations from
the review of literature, including positive assditins among indicators of high school
mathematics performance, self-efficacy, RequiredhMand final exam performance and
negative associations between calibration biaglaadther constructs. For example,
increased calibration bias (tendency toward ovdidence) was associated with lower

values on the high school mathematics performamtieators ( = -.45).
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Correlation statistics are sensitive to departtn@s underlying assumptions of
joint normal distributions, and are especially s#resto outliers (Snedecor & Cochran,
1989). These bivariate normality assumptions wesessed graphically using scatter
plots overlaid with contour ellipses correspondimgheoretical regions containing 30%,
60%, and 90% of data points under a normal joistridiution with the observed
correlation. Figure 15 shows a typical such scatiat; indicating the moderate negative
correlation = -.32) between ACT Math and calibration bias. Tigare suggests the
bivariate association does not differ substantifabyn assumptions of correlation. For
example, 16 (8%) of the data points are outside®®0% contour and 76 (39%) of the
data points are outside of the 60% contour. Notanltial violations of the bivariate
normality assumption were identified in the anayand (due to the restricted scales) no

outliers were identified.
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Figure 15 Scatter plot of composite Calibration Bias vs.TAKBath (N = 195). Plot
shows contour ellipses corresponding to 30%, 60%,9%9% of data points under the
assumptions af = -.32 and the two variables have a normal joistridbution.
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Although Required Math was weakly correlated witGTAMath scoresr(=.19)
and self-evaluations of high school mathematicfopmance K =.22), Required Math
was not significantly correlated witiny of the self-efficacy, calibration bias, or final
exam performance indicators or composite scales, Tmbined with the bimodal
observed distribution, suggested the Required Math were inappropriate for inclusion
in the structural model.

Table 20 gives the correlations among the sevenatats of each of the self-
efficacy, calibration bias, and final exam perfonoa constructs. As in the composite
measures, all correlations were positive. Thistjgariation among indicators of each
construct indicated, for instance that a tendeoaatd reporting high self-efficacy for a
survey item was moderately associated with incikasH-efficacy to complete other

survey items.
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Table 20.

Correlations between Indicators of Self-Efficacglifration, and Final Performance

Indicator 1 2 3 4 5 6 7

Self-Efficacy

1. SE Level 1 - 38 35 37 28 16 297
2. SE Level 2 - 33 300 26 14 .16
3. SE Level 3 - 35 .36 .39 .38
4. SE Level 4 - 33 37 4ar
5. SE Level 5 — 38 34
6. SE Level 6 - A8
7. SE Level 7 —
Calibration Bias
1. Bias Level 1 - .05 15 .00 .04 .07 .08
2. Bias Level 2 - 200 .18 .06 .07 14
3. Bias Level 3 - 14 217 13" 27
4. Bias Level 4 - 26 .13 ar
5. Bias Level 5 - 170 23
6. Bias Level 6 - 21
7. Bias Level 7 —
Final Exam Performance

1. Perf. Level 1 - 23 14 277 2587 28 23
2. Perf. Level 2 - 32 47 40" 2107 507
3. Perf. Level 3 - 35 317 41 57
4. Perf. Level 4 - 29 35 61
5. Perf. Level 5 - 38 47
6. Perf. Level 6 - 49
7. Perf. Level 7 —

Note Heterogeneous correlations obtained accordivariable type (see Table 21)p
<.05, "p<.01.

The correlations among indicators of calibratioasbivere relatively weak in
comparison to the indicators of self-efficacy am@f exam performance. For example,
the mean inter-item correlation between indicatdrsalibration biasrgye= .14,SD=
.07) was substantially lower than the mean intmitorrelations of the self-efficac e

=.32,SD=.09) and final exam performanag,(= .35,SD= .12) indicators. As
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mentioned in the reliability discussion, this maywé been due in part to the cumulative
effects of measurement error associated with thie8eacy ratings and final exam
performance scores whose differences determinechalitgation bias scores. An
alternate possibility is that the calibration iratimrs may have been considerably
multidimensional in nature, so that, for exampl@sB_evel 1 would be better thought of
as an indicator of a different construct than thestruct associated with Bias Level 7.
This possibility is considered in the following §ea on the analysis of the measurement
model associated with the constructs high schothemaatics, self-efficacy, calibration,
and final exam performance.
Measurement Model

The hypothesized model assumed indicators of ebittedive latent constructs
satisfied a single-factor solution. Though the Ergdicator specification of math in
major made verification of the assumption of uniéirsionality impossible (Hair et al.,
1998), the analysis included evaluation of unidisienality of the remaining latent
constructs by fitting the measurement model (Mcw&aHo, 2002). A measurement
model is the same as the structural model, exceptpaths between latent constructs
(represented by ovals) omitted. Fitting the measere model allowed for confirmatory
common factor analyses of the assumptions to varificators of the four latent
constucts were unidimensional.

Table 21 gives the standardized loadings of thieatdr variables under the
measurement model. Nearly all of the factor loasliwgre statistically significant, with
the sole exception of Bias Leveld£.12). Among the significant loadings, however,

uniquenesses (the proportion of variation in tltecator variables unexplained by the
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single-factor models), were generally modest ttvhiganging from .14 to .94 = .74,
SD=.19). The proportions of common indicator vacemexplained by the one-factor
models were significant in the models for High SalHdath ¢*(6, N = 195) = 24.7p <
.001) and Self-Efficacyyf (14, N = 195) = 34.0p < .01). However, the proportion of
variance explained by the single-factor models wertesignificant in the cases of

Calibration Biasy? (14,N = 195) = 11.4p = .62) and Final Exam Performangé(@, N

= 195) = 7.6p = .91).
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Table 21.

Factor Loadings and Uniqueness for Single Factoid®le of Self-Efficacy, Calibration
Bias, and Final Exam Performance

Construct and Indicator Standardized Uniqueness  Proportion of
Factor Loading Variancé
High School Math Achievement 46
HS Self 99" .01
HS GPA 50 73
ACT Math 29 .90
Self-Efficacy 33
SE Level 1 51" 74
SE Level 2 43" .82
SE Level 3 63" 61
SE Level 4 63" .60
SE Level 5 56" .68
SE Level 6 59" .65
SE Level 7 63 .60
Calibration Bias .15
Bias Level 1 .16 .98
Bias Level 2 .29 .92
Bias Level 3 46 .79
Bias Level 4 .38 .86
Bias Level 5 48 77
Bias Level 6 35 .88
Bias Level 7 A7 .78
Final Exam Performance 21
Perf. Level 1 24 .94
Perf. Level 2 44 .80
Perf. Level 3 44 81
Perf. Level 4 54 71
Perf. Level 5 47 .82
Perf. Level 6 44 81
Perf. Level 7 59 .65

Note ®Standardized factor loading = correlation betwewlicator and the latent factor.
PUniqueness = proportion of the indicator varianoeexplained by the latent factor.
“Proportion of Variance = proportion of total vaitat in the indicators explained by the
latent factorp < .05,  p < .01.

Alternate specifications of the models, includiegoval of indicators with the

lowest standardized factor loadings and two- angetiiactor solutions were fit to the
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data, but none of the alternative specificationdared a significant portion of the
variance in calibration bias or final exam perfonoa Collectively, the factor analyses
provided marginal evidence in support of the sirigt#or assumptions for calibration
and final exam performance, but also provided Vigltg support for altering the
structural model to incorporate additional latesgtructs or sub-constructs.

Measurement models are commonly used to contexéufdiindices of structural
models because fit indices from the baseline measemt model can be compared to fit
indices associated with subsequent models which mdationships among latent
constructs (Fornell & Larcker, 1981). Though thare dozens of fit indices available for
structural models that provide information regagdabsolute fit, comparative fit, and
parsimonious fit, Schreiber (2008) recommends tapp(1) overall chi-square, (2)
comparative fit index (CFl), (3) the Tucker-Lewismnormed fit index (NNFI), (4)
standardized root mean square residual (SRMR)(®8n@ot mean square error of
approximation (RMSEA).

CFl and NNFI are each standardized goodness-ofefites — values fall between
0 and 1 and generally indicate “good fit” if thexceed 0.9 (McDonald & Ho, 2002). In
contrast, the overall chi-square, SRMR, and RMSt#igtics each measure the extent to
which a model does not fit the data, so lower \&liethese indices suggest better model
fit. The overall chi-square indicates divergencéhef model from exact fit and is used
primarily to compare nested models through likedithoatio tests oy or the change in
overall chi-square (Schrieber, 2008). RMSEA valtypscally fall between 0 and 1;
RMSEA below .05 indicates “good fit” and greateani0.10 indicates “poor fit”

(Schrieber). Finally, SRMR can be interpreted dlyeas the mean error of the model in
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reproducing correlations between indicators. Famgple, SRMR = .05 indicates the
correlation matrix was reproduced to within ab@% on average (Schrieber, p. 828).

The overall measurement model chi-square y%é252) = 754.7, substantially
lower than the chi-square of the independence)(mddel ¢ (276) = 1492.8).
Additional fit indices for the measurement modeluded CFI = .59, NNFI = .55, SRMR
= .15, and RMSEA = .10. Though these fit valuesenstained primary for comparative
purposes, all the indices indicate an “inadequtitéig model (Schreiber, 2008). That is,
the measurement model, which assumes independetwedn latent constructs, is a
poor model for the observed correlation structdréhe indicator variables.
Specification of the Structural Model

An important obstacle to fitting the full hypothesd structural model was the
inclusion of Required Math as an indicator of mathg&cs in major. As discussed in the
earlier analysis of this indicator, (1) RequiredtMwas severely non-normal with a
bimodal shape and a large spike corresponding tbemaatics majors, and (2) Required
Math was not significantly correlated with any bétself-efficacy, calibration bias, and
final exam performance scales. Inclusion of ReguMgath in the structural model led to
consistent estimation of negative variances imtleel, a practical impossibility referred
to as Heywood cases (Hair et al., 1998). The Heyhwases persisted through attempts
to transform the Required Math indicator to a ndrdastribution using arcsine and
logistic transformations. Having failed two impartassumptions of structural modeling
— covariation with other indicators and normalitiRequired Math was omitted from the

model specification along with its correspondinigie construct Math in Major.
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After removing Required Math from the structuraldebspecification, the
estimation procedure for the restricted structaratiel based on the hypothesis
converged in 210 iterations. All directional efiead the model were significant at the
= .05 criterion with the exception of the positegedt effect of the latent variable High
School Math Achievement on the latent variable Fiham Performancel(= -.19,p =
.40). Model fit indices included an overall chi-sge ofy?(246) = 608.0, CFI = .70,
NNFI = .67, SRMR = .08, and RMSEA = .09. The conap&e fit indices (CFI and
NNFI) were both below the .9 threshold for goodditd the SRMR and RMSEA indices
suggested marginal model fit. A likelihood-ratistteonfirmed the structural model
provided a significantly better fit than the measnent modelAy*(6) = 146.7p < .001).

Several steps were taken to consider alternate Impdeifications, including
model “trimming” to achieve improved parsimony ahd inclusion of additional model
paths. However, structural equation modeling igwetgally a confirmatory statistical
approach (Hair et al., 1998), so the analysis oheila conservative approach to model
re-specification. Inclusion of additional modellpatvas approached by inspection of
Wald’'s W statistics associated with modification indicexnald & Ho, 2002), but the
largest modification indices were relatively sreaalld were not theoretically supported.
For example, the largest modification index wa®eissed with estimation of correlated
errors between Performance Level 6 and Bias Ley&l2 16.8), but the two indicators
referred to entirely different exam items.

In contrast, there was some evidence to suggestviag some effects from the
hypothesized model. For example, the measuremetélrsaggested an insignificant

loading of Bias Level 1 onto the Calibration Biastbr. However, the structural model
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which included the Bias Level 1 indicator foundiglg but significant loadingfy( = .21,
p < .05) and removal of the indicator did not proglitmproved model fit. Ultimately, the
only specification changes retained in the finahested model were (1) removal of
Required Math and its associated latent constrathih Major, and (2) removal of the
non-significant path positing direct effects of Hi§chool Math Achievement on Final
Exam Performance.
Estimation of the Structural Model

Figure 16 shows the final structural equation med#i the estimated
standardized directional effects; the estimatesedsurement errors are omitted from the
diagram for readability, but are presented alonty Wie standardized coefficients in
Table 22. Standardized parameter estimates fastthetural model were all significant
at theo = .05 criterion, and values ranged fr@m .21 (the loading of Bias Level 1 on

Calibration Bias) t@ = .78 (the loading of HS Self on HS Math Achieve)e
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Figure 16 Standardized coefficients of directional effaotthe final estimated structural
equation model.
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Table 22.

Standardized Parameter Estimates for Effects odéhta€onstructs on Indicators

Construct and Indicator Loading)t Measurement ErrBr
High School Math Achievement
HS Self 78" .38
HS GPA 62" 62
ACT Math 427 .83
Self-Efficacy
SE Level 1 527 73
SE Level 2 437 81
SE Level 3 63" .60
SE Level 4 62" 61
SE Level 5 55" .70
SE Level 6 59" .66
SE Level 7 .65 .58
Calibration Bias .79
Bias Level 1 21 .96
Bias Level 2 47 .82
Bias Level 3 .39 .85
Bias Level 4 .36 .87
Bias Level 5 44 .80
Bias Level 6 43 .82
Bias Level 7 40 .84
Final Exam Performance
Perf. Level 1 37 .86
Perf. Level 2 .59 .65
Perf. Level 3 .63 61
Perf. Level 4 .69 52
Perf. Level 5 57 .68
Perf. Level 6 .59 .66
Perf. Level 7 77 40

Note % = estimated standardized effect of the latentfash the indicator.
PMeasurement error = proportion of the indicatoiiaraze unexplained by combined
latent effects.p < .05, p<.01.

Effectsbetweeratent constructs in the fitted structural modelevinterpreted as
estimates of the sign and relative magnitude afot$f posited by the model. For example,

the review of literature supported direct effedtsalibration bias on both final exam
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performance and self-efficacy, and the estimatedficeents suggested the negative
effect of calibration biag(= -.75) on final exam performance was comparatilagiger
than the positive effect of calibration bias orf-edlicacy (3 = .39).

Since the standardized path coefficients are nligéifive, the estimated indirect
effect of calibration bias on final exam performartiesrough its positive effect on self-
efficacy was3 = .39(.62) = .24, meaning the large direct negagiffect of calibration
bias on final exam performance was mediated somewhtne indirect positive effect
coming from the effect of bias on self-efficacym8arly, though the modeling did not
identify a direct effect of high school math acl@ment on final exam performance, high
school math achievement did have indirect effentfral exam performance through the
separate effects of high school mathematics achiemeon self-efficacy and calibration
bias. Table 23 summarizes the direct, indirect, tatal effects identified in the fitted
structural model.

Table 23.

Standardized Direct, Indirect, and Total Effectdvmen Latent Constructs

Effect of... on... Direct Indirect Total

HS Math Achievement

Calibration Bias - 46** -.46

Self-Efficacy 54x* -.18 .36

Final Exam Performance 57 57
Calibration Bias

Self-Efficacy .39* .39

Final Exam Performance -.75** .24 -51
Self-Efficacy

Final Exam Performance 62 .62

Note 'p< .05, p<.0l.
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Though the estimated effects between latent cortstmere of primary concern,
the coefficients from latent constructs (ovalsinicator variables (rectangles) given in
Figure 16 and Table 23 can be used to develop ldajive understanding of the
constructs labeled by high school mathematics sement, calibration bias, self-
efficacy, and final exam performance. For examiple,descending order of effects of
high school math achievement on High School $eif (78), High School GPA3(=
.62), and ACT Mathf{ = .42) suggested that the latent construct wascaura of
cognitive commonalities among the three indicateit) perhaps greater focus on
participants’ self-perception of their performamedrigh school mathematics classes.
Similary, the final exam performance construct ddag considered more related to
students’ performance on the “easiest” sampled &ram item (Perf. Level B =.77)
than the students’ performance on the “hardest’pdaafinal exam item (Perf. Level ,
= .37). Indicators loaded onto the self-efficacy aalibration bias constructs
approximately equally, though the comparatively endoadings of calibration bias
indicators were further evidence of relatively Ergniqueness components among the
calibration indicators.

The structural model contained three endogenoastlabnstructs — calibration
bias, self-efficacy, and final exam performancend the model fit included estimates of
the proportion of unexplained variation in eachhaf constructs. The model accounted
for an estimated 21% of the variation in calibratidas and 25% of the variation in self-
efficacy. This relatively high proportion of uneagpied variation in self-efficacy and
calibration bias reflects the relatively few exoges variables in the model. For example,

the only construct posited to have an effect oibcaion bias was high school
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mathematics achievement, which included only timdesators. In contrast, the model
accounted for 83% of the variation in the final mxgerformance construct.

As in the measurement model and initial structaratlel specification, the final
structural model results should be consideredyjint lof indices of model fit. The overall
model chi-square of 609.0 on 247 degrees of freeddinated the model differed
significantly from the exact (saturated) solutiovd@omparative fit indices (CFI = .70,
NNFI = .67) indicated less than adequate modeHfitwvever, a likelihood-ratio test
confirmed the structural model provided a signifittha better fit than the measurement
model (\x?(6) = 146.7p < .001) and the observed RMSEA value (0.086)detiveen
the thresholds for good fit and acceptable fite Tiost easily interpreted index of model
residuals, SRMR = 0.075, indicated the fitted madplroduced correlations among
indicator variables to within an average of .08tl@f 276 correlations in the final
structural model, correlations ranged from -.3%tb (.= .09,SD=.19), so the average
error of .08 in the predicted correlations was atgred marginally acceptable. In
summary, the model fit indices indicated the suadtmodel explained a substantial
portion of the correlation structure of the indaratariables, but there was also
substantial unexplained variation in the data thay lower the statistical power of
findings.

The structural modeling results suggest partialvans to the following four
research questions and corresponding hypotheses.

Q1 Does high school mathematics achievement havendisant effect on
the amount of mathematics in participants’ colleggor?

Q2 Do high school mathematics achievement and the ahafunathematics
in participants’ college major have significantezffs on participants’
calibration?
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Q3 Do high school mathematics achievement, the amaiumiathematics in
participants’ college major, and calibration haigngicant effects of
participants’ self-efficacy?

Q4 Do high school mathematics achievement, the ammfumithematics in
participants’ college major, calibration, and sefficacy have significant
effects on participants’ performance on exams waaded mathematics?

H1  High school mathematics achievement will have aemaig positive
effect on the amount of mathematics in participacaiege major.

H2  Both high school mathematics achievement and theuatof
mathematics in participants’ college major havelspwsitive effects on
participants’ calibration.

H3 High school mathematics achievement and the an@iunathematics in
participants’ college major will have moderate piwsieffects on self-
efficacy. Calibration will have a small negativéeet on self-efficacy.

H4  High school mathematics achievement and the anafunathematics in
participants’ college major will have small poséieffects on mathematics
performance. Calibration will have a large negagéffect on mathematics
performance. Self-efficacy will have a large pogteffect on
mathematics performance.

As in the structural modeling, the results are misegarding the hypothesized
effects associated with math in major. The analySworrelations among indicator
variables provided some evidence that student$ sotpool mathematics achievement
may have a small positive effect on the amount athematics in students’ declared
college major; Required Math was weakly correlatgti both students ACT Math
scores(=.19,p < .01) and students’ self-assessments of theiopeance in high school
mathematics classes#£.22,p < .01). In contrast, correlations suggested &nhit
evidence in support of associations between RedjlWi&th and calibration, self-efficacy,
or final exam performance indicators.

The limited associations between Required Maththadther indicator variables,

together with distributional characteristics whinhhde Required Math poorly-suited for
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structural modeling, led to the removal of Requikésth and its associated construct,
math in major, from the structural model. While gesting no effects of math in major
on the other constructs (Q2), the removal of matmajor from the structural model
necessarily resulted in inconclusive findings relgay possible effects of high school
mathematics achievement on math in major (Q1).

The table of estimated direct and indirect efféCble 23) from the structural
model provides much of the evidence regarding ffpothesized effects among high
school mathematics achievement, calibration bel&efficacy, and final exam
performance. High school mathematics achievemeahnbalirect effect on final exam
performance, but evidenced approximately equalogppdsite moderate effects on
calibration biasf{ = -.46) and self-efficacy(= .54). Accounting for both direct and
indirect effects, high school mathematics achievegrhad a moderate negative effect on
calibration biasff = -.46), a slightly smaller positive effect onfsefficacy (3 = .36), and
a moderate positive effect on final exam performneafic= .57). These findings support
the direction and significance of hypothesizeda#febut differ to some extent from the
expected magnitudes. For example, the hypothesmelkrate effect of high school
mathematics achievement on self-efficacy was dseckhy the indirect effect mediated
by the relationship between high school mathemaiibéevement and calibration bias.

Calibration bias had a relatively small positiveedt effect on self-efficacy(=
.39) and a relatively large direct negative effattinal exam performanc € -.75).
However, including the indirect effect of calibiatibias on final exam performance
through self-efficacy, the total effect of calibcet bias on final exam performance was

moderately negatived (= -.51). Interestingly, the observed positive efffen self-efficacy
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was the opposite of the hypothesized relationshiggesting that less-calibrated students
tended to benoreconfident in their abilities to complete the saetpfinal exam items
correctly. Finally, self-efficacy had a relativéfrge positive effect on final exam
performanceff = .62). This substantiated the hypothesized etieself-efficacy on
exam performance.
Themes from Qualitative Interviews

The concurrent mixed methods research design iadltask-based interviews of
10 prospective secondary mathematics teacherseThiesviews, constructed with the
help of the participants’ instructors, included hehatical tasks similar to midterm exam
items and discussion of students’ understandingiseofelated mathematical concepts.
The interviews focused on the participants’ (1)orépd self-efficacy to complete tasks in
their mathematics classes correctly, (2) reasoftinghoosing self-efficacy ratings, and
(3) experiences in prior college mathematics ckaggdach may have affected the
participants’ self-efficacy to complete universibathematics. Special emphasis was
placed on the variety of mathematical competensigsé.efficacy, and college
mathematics experiences observed across the emesvBuilding on the description of
interview participants provided in the methodolaipapter, the following narrative
includes descriptions of the themes which emergad the qualitative data analysis
along with vignettes and quotations that illustrate support the qualitative claims.
Overview of Themes from Task-Based Interviews

The focus of the thematic coding and synthesiask-based interview data was
on developing an understanding of the variety cbadary mathematics majors’

experiences to inform interpretations of the strtadtmodeling results. Several themes
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emerged from analysis of the task-based intervieawd,the themes were framed in the
conceptual framework of social cognitive theory &melreview of literature. Alignment
between the themes and the structural model suggporangulation of findings between
the quantitative and qualitative data sources aossevalidation of the measures.

Five qualitative themes were identified from thektdased interviews of 10
secondary mathematics majors. These includedid)gtigh school mathematics
performance, (2) lowered self-efficacy associatétl perceived low exam performance,
(3) content-specific evaluations of self-efficaoy interview tasks, (4) tendency toward
slight overconfidence with improved calibration low self-efficacy items, and (5)
increased self-efficacy to complete a mathematcsse after initially not passing a
course.

Theme #1: Strong High School Mathematics Performanc

The interview participants generally reported sgstid experiences in their high
school mathematics classes. All but one of thagjaints enrolled in mathematics
during all four years of high school. The exceptidlegan, took Advanced Placement
Calculus as a high school junior, but chose noake mathematics during her senior
year. Justin began taking high school mathemalasses in middle school, and all of the
interview participants completed at least pre-dakmathematics in high school. In fact,
8 of the 10 participants (all except Heather andtiMav) completed mathematics classes
in high school that included opportunities for egk credit. Four participants completed
college algebra, four completed calculus, and gellgtatistics and trigonometry were
each completed by one student. Sarah and Jackiebotpleted two college-level

mathematics classes in high school.
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Justin’s positive self-evaluation of his mathem&performance and self-efficacy
in high school was typical of the participantstiibught | was pretty good at math in
high school. On a scale of 1 to 10, I'd give it aban 8. With some time, | felt like |
could figure things out.” In particular, severaltbé interview participants described
perceived benefits from high school mathematicpamagion in subsequent college
mathematics classes. Jennifer believed her suotéssear Algebra was due in part to
her high school mathematics preparation, sayinthdught Linear Algebra was kind of
easy. | think because | did a lot of algebra irhrgghool. Like the matrices — | did a lot
of that in high school.” Besides experience withege-level content, some students
(Emily, Jackie, and Heather) pointed to study Isahitd problem-solving skills
developed in high school mathematics as sourcesfdidence in their college
mathematics coursework.

The four students who completed calculus in hidiostall chose to begin with
first-semester calculus in college, and all citegirthigh school calculus experience as
beneficial to their performance in college mathecsaElizabeth drew on her high
school calculus experience when she enrolled innggs Calculus as a freshman, a
choice that ultimately led to her decision to beearhigh school mathematics teacher:

I had taken calculus in high school, so | felt fyrebnfident and | was actually

tutoring some of the seniors in my Business Cakulass. | really liked that

class. It wasn't just that | was learning, but tuadly wanted to do my homework.

I'd usually do it like an hour after class. That® only class where that's
happened. That’s the class that made me want &skeondary math major.

There were few exceptions to the general themé&ahg performance in high
school mathematics among the interview participaMitsole was the only participant
who failed a mathematics class prior to colleggingp“l did fine [in high school math],

but | started to slack because | was a teenage, tiought school didn’t matter, and |
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had to take Pre-Calc twice. | understood it anaubd do the homework, but | wouldn’t
turn it in, and my grade just dropped.” BesidesdNits experience in Pre-Calculus, the
only other participant who described any kind of jgerformance in high school
mathematics was Elizabeth, who said she experiesm®e difficulties in college
calculus because she was “never really good aintifiggh school.”

Theme #2: Effects of Perceived Low Exam Performanceelf-Efficacy

The interview transcripts were coded for instarafd8andura’s (1997) four
sources of self-efficacy, which include masteryerignces, social persuasions, vicarious
experiences, and physical and emotional stateseexicerpts supported each of the
four sources, but the participants’ descriptiontheir college mathematics self-efficacy
supported mastery experiences and vicarious exppeseas the primary sources of
mathematics self-efficacy. In particular, perceieadm performance — both personal
exam scores (mastery experiences) and the pergeeréatmance of peers (vicarious
experiences) — appeared to have primary effecfgadicipants’ mathematics self-
efficacy. However, participants’ personal feelimdpout their instructors, especially
perceptions of approachability, appeared to medieelegree to which low exam
performance affected mathematics self-efficacy.

The variety of students’ interpretations of thedamn performance in college
mathematics classes is exemplified in the desoriptdf Calculus Il offered by Sarah,
Emily, Jennifer, and Elizabeth. The four studen¢senall enrolled in the same section of
Calculus Il about a year prior to the interviedsnnifer, Emily and Elizabeth passed the
class with grades of B, B, and C, respectively, 8achh earned an F. Despite the variety

of grades, the students described very similairfgelof surprise and disappointment in
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their exam scores, and their perceptions of thatregerformance seemed to have
qualitatively different effects on their mathematgelf-efficacy.

For Jennifer, low perceived performance on Calcllusxams appeared to have
little lasting effects on her mathematics selfety. Jennifer recalled feeling
encouraged to become a math major because of kagh scores in classes like College
Algebra and Trigonometry, saying “I think [thosas$es] helped me decide, ‘Hey, I'm
good at math. Like, I'm better than most of thedstuts in my class.” Having earned an
A in four college mathematics classes prior to Glals Ill, Jennifer expressed surprise
when she scored below 70% on 3 of the 4 examslicul®a Ill. Though she earned a B
in the class, Jennifer struggled to explain hexpeetedly low exam performance,
ultimately attributing her lack of understandinghe instructor’s teaching style:

| didn’t hardly understand Calc lll. | don’t knowhat it was. | tried and

everything, and I'm a good studier... It could haeeib the professor’s teaching

style. You know how it is with math, it kind of deqds on the teacher who's
teaching it, how well you do. | kind of would sdat was the main thing.

Sarah’s description of her performance in Calclilusas even more closely tied
to her personal feelings about the teacher thaniféeis description of the class. Like
Jennifer, Sarah had grown accustomed to high pedioce in college mathematics
classes prior to Calculus Il and had earned an Boith Calculus | and Calculus II.
Asked about her exam performance in Calculus HraB said all her exam scores were
below 70% and explained the low performance alragslusively in terms of feelings
about the instructor:

I understood Calculus lll, but | really don't likke instructor. So, at the end of

the semester, | was just like | am willing to jeBbot myself in the foot to not do

any more work for you. And that was basically whdid. | really, | was not

happy... Actually, my Calc Ill teacher was the onlgtinteacher I've had that |
didn't like.
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Sarah took Discrete Math and Calculus Il during $ame semester, and she
perceived her exam scores to be low in both clagsgdhe exams in the two classes
seemed to have disparate effects on her mathersatfesfficacy. When Sarah scored
about 50% on her first Discrete Math exam, she datidifficult to understand the letter
grade of B posted next to what she thought wasfasirag score. She said, “[The
Discrete Math Instructor] told us it was normalttbaeryone failed, but it made me feel
really bad about it. | did decently, but | feltdilk was doing really, really, bad.” Despite
this disappointment, Sarah said she understoogdrtting system and she found the
instructor approachable, “[The instructor] was Isebard, but | felt like | could talk to
him.” In contrast, Sarah did not feel comfortalaiking to the Calculus lll instructor, and
the first exam was much more disappointing:

| think our first test in Calc Ill, I think like gipeople passed it out of both classes.

[The instructor] didn’t say he would curve or arigth He was like, I'll drop the

lowest test grade, but it just kind of puts in yaund, this is how you're going to
do on all the tests. | was one of the people wiedat, like everyone else.

Sarah’s perceptions of her exam performance anditheious experience of
similarly low perceived performance of her peemnsed to convince her that she would
continue to perform poorly in Calculus lll. At tkame time, she described a continuing
calibration bias toward overconfidence on the exangalculus IlIl. Prior to the first
exam, she believed she could probably earn a Bhbught the test was unfair: “[the
instructor] threw in a lot of tricks and things finovay back when, like 8th grade
algebra.” By the end of the semester, Sarah s&distided to give-up on trying to pass
the class:

In Calc Ill, toward the end, my grades were notrioving, and | felt like | knew

[the material]. | don’t know why | didn’t know ibecause | should have been able

to do it... Then there were only a few assignmeritsde | was like, the highest
grade | can get is a C minus, so there’s no retsetress about it. | was just like,
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I'll take an F and not worry about it. | still wetd class, | still did the homework.
Our last lab, | was like “eh.” And the final, | did even study for it. | knew |
couldn’t get anything higher, so | just went andKdt.

Sarah’s low exam performance and high calibratias bn exams seemed to
contribute to self-handicapping behavior and arfgigrade in Calculus Ill. The low
performance also resulted in social consequeneelsiding questions from family
members about her choice to become a mathemadicisee As Sarah described it,

Calc Il was definitely a downer. | have a lot @&gple in my family who make

fun of me for that. | was like, “Yeah, I'm not dgmeally well in Calc I1.” And

they’re like, “And you’re going to be a math teacteand | just say, “Well, the
good thing is I'm never going to be teaching anygithat high.”

Emily, a junior who decided to become a mathemaéasher at the age of 16,
experienced similar disappointment in her Calclllusxam scores. When talking about
Calculus Ill, she remembered questioning the chimdecome a mathematics major:

I had problems. Failed the tests. It was horribleat was when | was like, "l don't

know if | should stay a math major. If | can't urgtand this, I'm going to get into

higher math, and it's just not going to click.just scared me. That was not a
good semester. Those were not happy nights.

Though Emily earned a B in the Calculus Il clagd® said the class was a turning point
for her exam performance. In four classes she bagpleted since Calculus 11, Emily
had come to expect exam scores between 50% and“80#:thing I'm learning to
accept right now is | don't do as well on tests ased to.”

Emily described her experience in Calculus Il essgstence through confusion
and disappointment. She described taking notesgllegcture, reading the textbook,
completing all the homework exercises in the b@wk] working with classmates on the
study guides provided by the instructor for exa8tee found it difficult to connect the

drawings and equations from her notes with the n@die the textbook, but thought she
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understood the homework and study guides. Whegasti® exams, however, Emily
described disappointment and surprise:
The first test, well over half the people failedtthest, and | think the next test as
well. I think the highest test score | got in CHlavas a C. The lowest was a
39%. It was so bad. But somehow | got a B. | d&ntdw how. [The instructor]
might have curved the tests, but | don't know. Heork | did well on, because

when the book presented it, | could get it. Thebpgms on the test, though, I just
couldn't see a relationship between them... So, Ignadlems. Failed the tests.

Though they earned very different final gradeshm¢lass, Emily and Sarah
described some common mechanisms that influenesds#lf-efficacy, including (1)
vicarious experiences as a source for loweredestfacy on exams, (2) calibration bias
in the form of overconfidence in the ability to fzem well on exams, (3) calibration bias
in the form of underconfidence to earn the graeg thanted from the class, (4) emotions
associated with the fear of being able to do higéeel mathematics, and (5) lowered
self-efficacy to complete a mathematics major.

While Jennifer and Sarah focused on their dislikine teacher or teaching style,
Emily’s description of her low performance alsolutzd her strategies for overcoming
the low exam scores she was experiencing. Emilgldped several new strategies to
improve her performance in Calculus I, includifig learning to use the textbook when
she could not understand the instructor, (2) waykuith a study group on homework and
study guides, and (3) asking questions in classwghe knew she was not the only
person who was confused. She also described adastange in how she viewed grades,
saying “I think | could get a C and be proud offit, know that | worked hard enough.
Not to blame the professor, but if the class iswaifprofessor that | didn't learn well with,
but I still know that | tried, then I'd be happytiva C.” While Emily’s exam grades in

Calculus Il did not improve during the semestée found benefits in the studying
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strategies she developed and reported using #uegies in subsequent mathematics
classes.

Yet another view of the role of exam performancenathematics self-efficacy
can be found in Elizabeth’s experience of Calclilluglizabeth initially experienced
success in the class, earning 98% on the first e attributed her early success to
taking Calculus Il from the same instructor as vaslito almost daily meetings with a
study group — later joined by Emily — which carrieeer from the Calculus Il class.
Nonetheless, Elizabeth said she earned a C in [Dalduand disliked the instructor from
that prior experience, so she expected to earima3alculus Ill. Elizabeth earned “really
low” scores on the remaining exams in the clasd,sli@ remembered inconsistent
performance and attendance. Elizabeth relied ostthey group meetings to complete
homework and learn the content, and she descrilgealdaal decline in her self-efficacy
to learn new content in the class, “At the begigrlifelt like | could learn the math, but
by the end it was just overwhelming.”

As suggested by the four participants’ experiemeé3alculus Ill, students’
descriptions of the trajectory of their mathemasiel-efficacy through college
mathematics classes pointed to low exam performandeomparisons to perceived
performance of peers as primary sources of mathesrelf-efficacy. Interview
participants also described a close link betweeogmtions of exam performance and
their personal feelings about teachers. In padicihe participants said they had more
positive views of low exam performance when th&gdi the instructor on a personal
level or felt the instructor was approachable mmidly. Emily described feeling

encouraged to work past her confusion in Discres¢hNbecause she liked the instructor
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and thought he was personable and interested stuldents, and Sarah described a
willingness to accept low performance in Probapitiecause she liked the instructor: “I
like my Probability teacher, she’s nice. It's adhalass, but | can still talk to her if | have
guestions. It makes me feel better about my Cgheals actually nice.”
Elizabeth’s description of her Geometry instrugtorrored Sarah’s view on
Probability:
Right now, I'm in Geometry. | don’t know anythingaut the instructor, but |
really like her. Maybe it’s just that she’s morefdly. | don’t know. | find that
the teachers | care about as people, | also cang alhat they have to say. The
teachers | don't think highly of, | really don’t wato listen to them in class. And
it's not because, well, this person gives too muaimework, so | don't like them.
Because, like, my Geometry teacher, her homewarailly intense, but | really

like her. But my Calc Il teacher, his homework vilsiense too, but | don't like
him. | think it's the personality.

Theme #3: Content-Specific Reasoning for Selfddfyidudgments

Each of the task-based interviews included a géfaey survey similar to those
used in the quantitative strand of the study. Bigdnts completed the surveys, which
included self-efficacy ratings of 7 to 11 taskse&leped in conjunction with instructors to
be similar in difficulty and content to exam iteniSee Table 24 for composite ratings.)
While there was some evidence of response styles@uthe participants, students’
explanations of their self-efficacy ratings genlgratipported the validity of the ratings as
representing content-specific self-efficacy beliefs

The patrticipants typically described the reasoangheir self-efficacy ratings in
very content-specific terms, referring to prior ekpnce with the tasks, anticipations of
the number of steps required to complete the tasksmiliarity with the content. For
example, Megan and Heather both described a tepdemive lower ratings on calculus

problems that involved trigonometric functions besmof past difficulties differentiating
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functions that contained sine or cosine. Jenndt¥d one item as a “2” out of 6 because
she recalled not being able to solve a similar lgrlon a recent exam. Referring to a
Calculus Il problem asking for the volume of a dalf revolution formed by rotating a
region bound by a parabola about ytexis, Jackie said, “l would put a 4 because | tlion’
know what the question is asking, but I think | argfand it. So, I'd graph it, and try to
see what they're asking.” Each of these pattermeadoning is consistent with the social
cognitive view of self-efficacy as a content-spiecassessment of one’s ability to
complete a performance task (Bandura, 1997).

There was evidence that some participants hadianert responding with the
highest rating (6) or lowest rating (1) listed te self-efficacy surveys. For instance,
none of the respondents rated their self-efficatyhe survey tasks with the lowest
available rating. Heather’s explanation of hercestt to choose the lowest rating
reflected the common response that there is al@aymnce of solving an exam problem:
“To put a 1, you'd have to put something I've cogtply never seen before, for me to
believe there’s no possible way for me to get #.Iéng as I've seen that kind of math
before, | figure there’s at least a possibilityahayet it.” Consequently, Heather’s ratings
were effectively limited to the range of 2 to 6.

Several respondents (Jennifer, Megan, Emily, Sanath Nicole) described a
belief that they would rarely, if ever, rate an mx@aroblem in their class with the highest
possible rating (6). Sarah summarized her reasdoingpt using the highest self-
efficacy rating as reflecting a general belief thegre is always a chance of making a
mistake in a mathematics problem:

| just usually don’t feel that way during a teste&lly don’t. I'm always like, |
can probably miss a couple points on that. Evédaf get it completely right. |
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got a few of the problems right on my last test, lbmouldn’t put a 6 next to
them.

Emily said her reticence to report the highest-e#fl€acy was linked to a general
mistrust of her feelings of confidence. Asked whg glid not rate any of the 10 problems
on the self-efficacy survey with a 6, Emily said:
That's me. That's just how | always am. | do hapeohlem with trusting myself.
Even if | know I'm doing it right, there's alwaysnsething in me saying... | guess
it's kind of like trusting your instincts. I'm jusbt good at that. It's why | have

problems with multiple choice, because | just dom'$t myself. If this problem
were on a test, though, I'd leave it at that. lalenon.

Theme #4: Calibration Bias toward Slight Overcoafide on Interview Tasks

To explore calibration bias in the interview sadtiparticipants in each of the
task-based interviews completed at least two taslexted from those on their self-
efficacy survey. In particular, the participant®sé at least one task to complete from
among the survey items in which the participanvjgled low self-efficacy ratings (1 or
2) and at least one task from among the tasks vatachigh self-efficacy ratings (5 or
6). Table 24 outlines the performance of the inenparticipants on the sampled tasks
along with qualitative descriptors of the particifs= observed calibration and mean self-
efficacy ratings on the survey items. Collectivgdgticipants seemed to be more
calibrated on items for which they expressed loliveféicacy. Nine of the 10
participants incorrectly solved the problems foiiahithey expressed low-efficacy, while
only 5 of the 10 participants correctly solved gineblems for which they expressed high

self-efficacy.
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Table 24.

Performance of Interview Participants on Tasks witlv and High Self-Efficacy Ratings

Performance Tasks

Participant Mean SE Low SE High SE Calibration
Heather 3.9 0 0 moderately overconfident
Matthew 3.6 0 0 moderately overconfident
Megan 29 0 0 slightly overconfident
Justin 3.6 0 5 calibrated

Jackie 3.9 0 5 slightly overconfident
Nicole 2.3 0 0 calibrated

Sarah 2.7 0 0 slightly overconfident
Jennifer 3.4 0 5 calibrated

Emily 2.9 5 5 moderately underconfident
Elizabeth 3.1 0 5 calibrated

Note *Mean SE ratings are on a scale of 0 to 5 and tefléx 11 ratings. Calibration
descriptors are holistic qualitative assessmettis: Self-Efficacy. On performance
tasks, O = incorrect, 5 = correct.

The qualitative assessments of calibration predent&able 24 were based on
the students’ performance on interview tasks, s#itacy ratings, and their descriptions
of the reasoning for self-efficacy ratings. Fouttwé participants appeared to be well-
calibrated, one participant (Emily) demonstratediarate underconfidence, three
participants showed slight overconfidence, and students demonstrated moderate
overconfidence.

Since every reported self-efficacy rating during ihterviews was above the

lowest available value (2 or above) and performavm&® scored on a dichotomous
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(correct/incorrect) scale, any incorrect attempagrerformance task would numerically
corresponded to a positive calibration bias saehéch was operationally defined as
overconfidence. To understand the qualitative nmeaof the numerical calibration
scores, the inquiry included analysis of conceptumnalerstandings and procedural skills
that contributed to incorrect attempts. Nearlyoalihe attempts recorded as incorrect
were identified as inability to set-up the solut{&of 14), misinterpretation of the task
requirements (5 of 14), or inaccurate applicatiba procedure (3 of 14). Only 1 of the
14 incorrect attempts was the result of an aritioreatalgebraic error.

Megan'’s attempt to sketch the graph of a functromfa graph of the derivative
of the function was a typical example of performamndich indicated potential
calibration bias. Megan chose the task as an exaai@ problem she felt very confident
to complete correctly and provided her highests#itacy rating (5 out of 6) on the
task. When asked to complete the task, howeveraWegplied a procedure to graph the
derivative of a function from the graph of the ftian (the inverse procedure). Megan
quickly applied the incorrect procedure accuratsligcessfully producing an
approximate graph for the second derivative offitimetion. When the researcher
explained this error, Megan was able, with some hajjarding the role of maxima and
minima, to complete the initial task correctly. $iperformance, together with Megan’s
self-efficacy ratings on the other tasks and exgtians about her reasoning for selecting
self-efficacy ratings, contributed to the choicetw qualitative descriptor “slightly
overconfident” for her calibration in Calculus Itae time of the interview.

Interestingly, the four students enrolled in Praligtcollectively demonstrated

very little calibration bias during the interviewad the three students enrolled in
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Calculus | each appeared to be overconfident im #ssessments of self-efficacy. Some
plausible sources for this observation includer&dructional differences between the
two classes, (2) improved calibration as a redudidalitional college mathematics
experience, (3) differences in the relative diffigwf the self-efficacy items, and (4)
chance (due to the small sample).
Theme #5: Effects of Failing College MathematicasSés on Self-Efficacy

Table 25 summarizes the enrollment history of titerview participants in
mathematics classes since beginning their undasgtasducation. Of the 10 interviews,
two students (Heather and Matthew) were enrolletiéir first college mathematics class
at the time of the interview. Of the remaining ¢igtudents, five had failed at least one
mathematics class in college, accounting for d ttaine failed college mathematics

classes.
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Table 25.

Mathematics Enrollment History of Task-Based InmParticipants

Calculus Calculus Calculus Discrete Linear Probab-

Participant | I i Math  Algebra. ility
Heather In
Matthew In
Megan Fail, In
Justin Fail, Pass Fail, In Fail, Pass Fail, In
Jackie Pass In Pass
Nicole Fail, Fail, In

Pass
Sarah Pass Pass Fail, Pass Pass In In
Jennifer Pass Pass Pass Pass In In
Emily Pass Pass Pass Pass Pass In
Elizabeth Pass Pass Pass Fail, Pass Pass In

Note In addition, Megan, Jennifer, and Jackie had gadsed College Algebra and
Sarah, Elizabeth, and Emily were each enrolledanr@etry at the time of the study;
Jennifer had passed Trigonometry and Geometry.dnrslled in the class at the time of
the study; Fail = earned grade of D or F in a psemester; Pass = earned grade of A, B,
or C in a prior semester.

When asked to describe the classes in which theepati pass, participants referred to (1)
dislike of the instructor or teaching style, (2)ygaved personal learning styles, and (3)
insufficient preparation in prior mathematics cas:SOf particular interest were the
participants’ perceptions of these experiencesein self-efficacy to succeed in college
mathematics.

In contrast to the pattern of lowered self-efficiaiowing low exam

performance, the participants typically describeteased self-efficacy after not passing
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college mathematics classes. Elizabeth, a juniar @drned an F in Discrete Math during
her sophomore year, said she performed much hetRiscrete Math the second time
because of increased familiarity with the contertt a perception that the second
instructor was more approachable: “What | had sfiedywith the first time seemed so
much easier with the new instructor. | think it vessier because | knew what was
coming a little bit more, but | also think it wasdause the teacher was less scary.”
Nicole, who failed to pass Calculus | twice priomgassing the class during her
sophomore year, was explicit about the benefiteheeived from her history of
difficulties in calculus. Nicole attributed her dleages to poor algebra skills dating back
to an ineffective eighth grade algebra teachershatemphasized what she learned about
herself as a student. In particular, she had |e&time shortened format of a summer
mathematics class was not useful and that she de¢edalk to instructors when she got
confused. She said the calculus was easier thietthie because of the previous
“multiple go-rounds” and because she liked theruttor. Overall, she expected the
struggles in Calculus | would help her as a futarddle school mathematics teacher:
| figure, I have all this struggling history, sd ifan make it, | can relate to the
students more... They will be like, “I'm sure you walways good at math”, and
I'll be like, “Actually, | had to take Calculus 81es.” | took it my freshman year,

| took it during the summer, and | took it last sster. So, | wasn't really that
good, and | did it.

Among the participants, Justin, a junior enrollecilculus II, had the most
positive outlook on not passing college mathematiasses. Prior to the interview, Justin
had earned an F in every college mathematics ttiasfarst time he enrolled, including
Calculus I, Calculus Il, Discrete Math, and ProligbiHe described “checking-out” of
Calculus Il when there seemed like there was toohmwork, feeling unprepared for

Probability, and falling behind after missing clessn Discrete Math and Calculus 1.
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Referring to his second attempt at Calculus Ilfidusaid, “When | miss class, it causes a
lot of problems. Like, a couple weeks ago | jushted to go hang out with my friends.
So, | left on a Monday, and by the time | came biheknext week, I'd missed Chapter
7

Despite his history of poor performance, and trer yie which he took no
mathematics classes while he was on academic jpoaksttthe university, Justin
expressed very high mathematics self-efficacy. & lieen advanced in mathematics
coursework since elementary school, had takend$ggbol mathematics classes while in
middle school, and rated his self-efficacy in math&cs upon graduating high school as
8 out of 10 (on a scale of 1 to 10). Justin ratiecbhierall self-efficacy to learn a new
mathematics topic as a 10 out of 10 and rateddtiisefficacy on eight tasks in Calculus
Il with ratings between 3 and 6 (out of 6).

In second attempts at Calculus | and Discrete Mhathtin passed both classes
with a letter grade of C. He said he was “in noryiuto graduate and that he planned to
continue taking mathematics classes more than asmoeeded. He described his low
grades in college mathematics classes as beingplyrthe result of a personal learning
style that benefited from taking classes more thase:

When I'm learning math, | feel like it takes metjadittle time to start absorbing

the information. | feel like, now [in Calculus Ii};s starting to sink in..it just

takes me a couple times. | guess | need to prethiewlass before | can get it. It's
not that | can’t learn it, it's just that | needlie shown what I'm doing first.

The “preview effect” described by Justin, Nicoladé&lizabeth appeared to
increase the participants’ self-efficacy to compligte mathematics classes in subsequent
attempts. Sarah, whose experience earning in Rlcudis Il is described in the theme

regarding exam performance, also expressed aymosigw of the familiarity she gained
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with the Calculus Ill content when she describeddeeond attempt at Calculus lIl.
Though Sarah, Nicole, and Elizabeth each expredisagpointment in their initial
performance, their prior experience appeared tel#aem (as well as Justin) with
increased self-efficacy to pass the classes inesutent attempts. Though the possibility
of failing to pass a college mathematics classrithe effect of lowering students’ self-
efficacy in other mathematics classes seemed pleusom a social cognitive theory
perspective, there was limited evidence in theruntev data to support specific negative
effects of not passing college mathematics classdke participants’ mathematics self-
efficacy.

Though the quantitative results and qualitativertee have been presented in this
chapter separately, the secondary mathematics snajtie qualitative interviews can be
viewed as an important subset of the participantbe quantitative strand of the inquiry.
In addition, the use of a common conceptual franmkwothe quantitative strands,
together with the contextual data collected in &tthnds of the inquiry, allowed for
convergence of the quantitative and qualitativdifigs. In the next chapter, the
gualitative themes and quantitative findings amglsgsized, compared, and contrasted. In
addition, the discussion of results includes furtiscussion of limitations in the study,

connections to related literature, and potentigdlications of the study.
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CHAPTER V

DISCUSSION

The social cognitive approach to learning restghencore idea that “people are at
least partial architects of their own destiny” (Bara, 1997, p.8) in the sense that they
work to shape their environment based on percedpgrtunities for success. Self-
beliefs are central to this view, because seltatfy and related beliefs act in concert
with knowledge and competencies to affect acadgeiformance (Pajares & Urdan,
2006). A large body of self-efficacy research hstalglished its prominent role in
academic behavior: “Students who are confidenh@irtacademic abilities monitor their
work time more effectively, are more efficient piein solvers, and show more
persistence than do equally able peers with lowesBtacy” (Usher & Pajares, 2008, p.
751). However, self-efficacy and its impact on parfance are heavily influenced by
context, and important questions remain unanswierde literature about the nature and
sources of self-efficacy among students in advancatthematics courses.

The goal of this study was to add to the body afaa@ognitive research in
mathematics education by helping to clarify thesdelf-efficacy and calibration play in
the mathematical performance of students in a slxgrmathematics teacher
preparation program. This spurred a thorough rewaerelated literature, development of
a model for advanced mathematics performance las#ae social cognitive learning

theory, and a mixed methods research design teatet broad statistical trends with
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gualitative themes from task-based interviews. Basecross-sectional survey and exam

performance data for 195 students enrolled in &8sds ranging from Calculus | to

Probability, analysis of variance and structuralagpn modeling converged with

thematic coding of interviews with 10 prospectiee@dary mathematics teachers to

suggest answers to seven research questions, lggpl@mn:

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Does high school mathematics achievement havendisant effect on
the amount of mathematics in participants’ colleggor?

Do high school mathematics achievement and the ahafumathematics
in participants’ college major have significantezffs on participants’
calibration?

Do high school mathematics achievement, the amafumiathematics in
participants’ college major, and calibration haign#icant effects on
participants’ self-efficacy?

Do high school mathematics achievement, the amaiumiathematics in
participants’ college major, calibration, and seflicacy have significant
effects on participants’ performance on exams waaded mathematics?

Are there significant differences in self-efficacglibration, the amount
of mathematics in participants’ college major, adgdanced mathematics
performance by participants’ gender?

Are there significant differences in self-efficaayd calibration by item
difficulty?

In what ways do prospective secondary mathemagashers’
mathematical problem-solving compare and contréast tive
hypothesized relationships between self-efficaalibcation, and
performance in advanced mathematics?

This chapter contains a summary of the study, sgicial emphasis on situating

the research in the context of related literatooasideration of the scope and limitations

of the findings, and recommendations for futureeaesh. The narrative initially focuses

on the research design and methodology before mawia summary of the quantitative

and qualitative findings, which is then followed dyliscussion of some implications of
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the study, limitations of the research, and suggestor follow-up investigations to
extend and clarify the results.
Summary of the Study

The cross-sectional study described in this diggert employed a mixed
methods research design in which task-based iet@swith 10 secondary mathematics
majors were used to contextualize and triangulatéirfgs gleaned from the quantitative
data sources — background surveys, registratian dalf-efficacy surveys in the minutes
just before final exams, and photocopies of finaras for 195 participants. The setting
was the mathematics department at a single midt$iz8. doctoral granting university in
the Mountain West which specialized in the prepamnabf secondary mathematics
teachers. Data were collected in the last eighkaeéthe Spring 2009 semester, and
participants were enrolled in at least one of 18cded mathematics classes offered as
part of the requirements to obtain a secondary emagtics major at the research site.
Classes included Calculus I, Calculus Il, LineageXra, Discrete Mathematics, Calculus
[, Abstract Algebra Il, and Probability.

The conceptual framework supporting the researsigdeand data analysis was
built primarily from the constructs of social cotiné theory, especially self-efficacy and
calibration, with connections to a cognitive scieperspective on calibration as well as
path models of mathematics performance developdeaigres and Kranzler (1995) and
Chen (2002). Two pilot studies (detailed in Chajhtend the review of literature
suggested rationale for a structural equation nieg@pproach to investigating
mathematics self-efficacy and calibration amondeg@ students, along with a need for a

mixed methods inquiry of self-efficacy and examfgenance to consider the varied
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sources of self-efficacy for students who compéeteanced undergraduate mathematics.
Much of the literature review and research questr@sted on the development of a
hypothesized structural path model for undergrasloethematics performance, given as
Figure 17, which posited potential direct and iadireffects among high school
mathematics achievement, the amount of mathematgtsidents’ college major,

mathematics self-efficacy. calibration bias, am@fiexam performance.

HS Math
Achievement

Final Exam

Maj_ty 7\{rfmmance

A

Calibration
Bias

Figure 17 Hypothesized structural path model for advancathematics performance.

The data analysis methods employed analysis chnegitechniques to test for
differences in the measures of the endogenousrcoistself-efficacy, math in major,
calibration bias, and final exam performance bydger{Q5) and to test for differences in
self-efficacy, calibration bias, and final examfpemance by item difficulty (Q6). The
first four quantitative research questions (Q1-@éje addressed through structural
equation modeling, which included the decompositibobserved correlations among
indicators of high school mathematics achievemieait celf-assessment of high school

mathematics performance, high school grade poiertaaye, ACT mathematics score) and
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indicators of self-efficacy, calibration bias, dimthl exam performance from pre-exam
surveys and copies of students’ work on final exafrglly, transcripts and artifacts
from the 10 task-based interviews were coded usiagonceptual framework, with a
special emphasis on the context surrounding andtyasf secondary mathematics
majors’ performance, self-efficacy, and calibratiormathematics. This led to five
gualitative themes, which were supported by inevexcerpts, vignettes, and examples
of student reasoning.

Summary of Findings

In the preceding chapter, the narrative includaditkel descriptions of the
statistical and qualitative evidence supportingnaars to the seven research questions.
The aims of this section are to synthesize thos#irfgs and to serve as a reference point
for further discussion of the meaning, scope, anddtions of the findings.

The primary quantitative findings arose from a ctwwal equation modeling
approach to the first four research questionstiStafrom the hypothesized structural
path diagram (Figure 17), the structural equatiadehinitially included five latent
constructs: high school mathematics achievemertty manajor, calibration bias, self-
efficacy, and final exam performance. However,ribmber of required mathematics
credits associated with students’ college majolicivserved as the single indicator of
math in major, was removed from the model becatisgidence the data failed several
correlation and distribution assumptions of streadtequation modeling. Consequently,
the final estimated structural model incorporataar latent constructs.

Participants’ ACT Mathematics scores, high schoatlg point average, and self-

assessment of their high school mathematics pediocemserved as three indicators of
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the single exogenous construct, high school mattiesnachievement. The two latent
constructs from social cognitive theory, self-edfig and calibration, were each indicated
by seven measures based on self-efficacy ratingsioeys just prior to final exams and
performance on matched final exam items. Stud@eigbrmance on seven other final
exam items were used as indicators of final exarfopeance and were randomly
selected from quantile-groups of within-class mdangpresent students’ performance
on final exam items from a range of difficultiell@ctively, the final estimated
structural equation model included 24 indicatorgag across four latent constructs.
The estimated structural equation model suggebtgcetch of the indicators
loaded significantly onto its specified construicthee .05 criterion. Standardized direct
effects among the latent constructs, shown in Eid& along with the estimated
percentage of variation in the latent construcfdaared by the model, suggested the
largest direct effect was that of calibration asfinal exam performancg € -.75).
Calibration bias had a small positive effect orf-sfficacy (3 = .39), suggesting a
tendency toward overconfidence was more prevalaong students with high self-
efficacy than among those with lower self-efficagg. expected by the review of
literature, self-efficacy had a positive effectforal exam performanced (= .62). Though
high school mathematics achievement had a pogffeet on self-efficacy = .54), it
had an almost equal negative effect on calibrdtias ¢ = -.46), suggesting increased
high school mathematics performance was assoamtadoth increased self-efficacy in

college mathematics and a reduction in the tendtwsird overconfidence.
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HS Math
Achievement
.54

-.4€

Calibration

Final Exam
Performance

Figure 18 Standardized direct effects in the final estirdat®uctural path model.
Indirect effects can be found by multiplying coeiiints along multiple-edge paths.

The model did not identify a significant directesft of high school mathematics
achievement on final exam performance, but theceffef high school mathematics
achievement on self-efficacy and calibration biaggested indirect influences on final
exam performance. Similarly, the small positiveeetfof calibration bias on self-efficacy
resulted in an indirect effect of calibration b@asfinal exam performancg € .24), thus
mitigating the large negative direct effect of bedition bias on final exam performance
so that the total effect of calibration bias orafiexam performance was moderately
negative § = -.51) . After combining direct and indirect effe, high school mathematics
achievement had a weak positive effect on seltatly ¢ = .36), a moderate negative
effect on calibration biag (= -.46), and a moderate indirect positive effecfinal exam
performanceff = .57).

The fifth research question (Q5), was addressedudtiple analysis of variance
(MANOVA) tests for potential differences by gendethe composite measures of self-
efficacy, calibration bias, math in major, and fiagam performance. While the
statistical evidence supported the claim that &te dhet the assumptions of MANOVA,

the omnibus test for differences by gender in thramosite scales of math in major, self-
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efficacy, calibration, and final exam performangeglender was not significant (Wilk’s
A=.97,F (4,172) = 1.3p=.27). That is, there was insufficient evidenzsupport
differences in any of the composite measures byeren

A post-hoc analysis of the required mathematicgtudents’ majors pointed to
possible differences by gender in the percentagtuoients in advanced mathematics
who were mathematics majors. This was evidencdtidpbservation that 79% (34/43)
of female mathematics majors chose the secondachiteg emphasis compared to just
37% (11/30) of the male mathematics majors. Thesgqgptions were significantly
different ¢ (1, N = 195) = 13.4p <.001) and may have contributed to an overall
difference in the proportion of mathematics ma}nysgender;(z(l, N=195)=3.9p
<.05) in which 44% (43/97) of female participantsresmathematics majors compared to
31% (30/98) of male participants.

The final quantitative research question (Q6) askld the extent to which study
participants’ self-efficacy ratings and calibratseores differed according to the
difficulty of the exam items represented on thefpral exam surveys. To allow for
comparison across sections, the seven tasks pedsamteach survey were reverse rank-
ordered by the percentage of students who sucdlgssblved each task. For example, a
“Level 1” difficulty rating indicated the “easiessurvey task in the sense that it was
correctly solved by the highest percentage of sttedé@\pplying one-way repeated
measures analysis of variance (ANOVA), there wageificant main effects of item
difficulty on both self-efficacy ratingd=((6,1164) = 36.6p < .001) and calibration bias
scoresf (6, 1164) = 14.9 < .001). That is, both self-efficacy ratings amaditration

bias scores tended to decrease with item difficulty
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Post-hoc comparisons of means by item difficulipgd ukey’s honestly
significant differences (HSD) criterion indicateonsistently lower self-efficacy ratings
on increasingly difficult items, with self-efficacyeans for items separated by at least
two levels of difficulty differing in 13 of the 1possible cases. The mean self-efficacy
rating on Level 1 items, for example, was 4.3 @), while the mean self-efficacy
rating on Level 4 items was 3.6 and the mean $étfaey on Level 7 was 3.0. A similar
tendency toward decreased mean calibration bidsiméteased item difficulty was less
consistent than the trend in self-efficacy meam&ubh the mean calibration bias on the
least-difficult items (Levels 1 & 2) were significtly greater than calibration bias on the
most-difficult items (Levels 6 and 7), calibratibras means of moderately difficult items
(Levels 3-5) were not statistically different.

The final research question (Q7) called for a dagie inquiry into processes and
experiences surrounding the hypothesized relatippsgmong calibration bias, self-
efficacy, and performance in college-level mathérsafAnalysis of data from task-based
interviews with secondary mathematics majors irc@ak | (3 participants), Calculus Il
(3 participants), and Probability (4 participaries) to five qualitative themes. These
included (1) strong perceived high school mathersgierformance, (2) lowered self-
efficacy following perceived low exam performan{®), content-specific evaluations of
self-efficacy for interview tasks, (4) tendency o slight overconfidence with
improved calibration on low self-efficacy itemsdafd) increased self-efficacy to
complete a mathematics course after initially radging the course.

As evidenced by the first qualitative theme, thterview participants generally

reported positive perceptions of their high schnathematics performance and



168

preparation for college-level mathematics. Of thariterview participants, eight
completed classes in high school in which theyiueckcollege mathematics credit. The
two remaining interview participants, Heather anattilew, each took four years of high
school mathematics and began college-level mathesriatCalculus I. With the
exception of Nicole, who failed pre-calculus inigchool and attributed the poor
performance to a lack of effort, the interview papants described high performance in
high school mathematics and high mathematics $&they upon high school
graduation.

The second interview theme emerged from thematilmgoof the interview data
using Bandura’s (1997) four sources of self-efficd€ach of the four sources of
mathematics self-efficacy were supported by theruieéws, but perceived exam
performance, especially personal exam scores (nyastperiences) and the perceived
exam scores of peers (vicarious experiences), apgéatake a primary role in the
development of mathematics self-efficacy. While jogvceived exam performance
typically led to lowered self-efficacy, participahfeelings about their instructors,
especially their approachability, appeared to ntedparceptions of exam performance.
In particular, students who reported disliking thestructor on a personal level
described self-handicapping behavior that led woperformance, while students who
liked their instructor described increased perssteand a willingness to accept low
exam performance.

The evidence in support of the second theme wastdvel by vignettes of four
Probability students’ experiences in Calculus Hegear prior to the study. Each of the

students, Jennifer, Elizabeth, Emily, and Saratependently described similarly low



169

perceived exam scores, but reported a range oalbweurse grades (B, C, B, and F,
respectively). The students’ varying reactiondh®disappointing exam performance,
together with apparent differences in how the exenfisenced their self-efficacy,
suggested wide-ranging potential for low exam sstweffect secondary mathematics
majors’ self-efficacy to complete advanced math&@saSarah and Emily, for example,
both reported doubting their choice to major inmeatatics after earning several exam
scores below 70% in Calculus IlI.

The third and fourth qualitative themes, which diésal students’ self-efficacy
and calibration on mathematics tasks in an intergetting, served primarily to
triangulate and contextualize the larger-scale tiaive findings. When asked to
describe their reasoning for selecting self-effyceatings on the scale implemented in the
study, the participants gave content-specific reegp especially recollections of prior
attempts at similar problems, familiarity with cent, and the perceived number of steps
required to solve the problems. Interestingly, nohthe participants rated any of the
interview tasks with the lowest available self-edity rating (1 on a scale of 1 to 6),
effectively limiting self-efficacy ratings to a 4mt scale and eliminating the possibility
of obtaining a 0O calibration bias score on incdiyesolved items. In addition, five
participants expressed aversion to the highestablaiself-efficacy rating. Taken
together, the tendencies to avoid the two extresnede five-point self-efficacy scale
suggested a limitation in the validity of self-eHcy ratings associated with the
possibility of response styles.

Qualitative analysis of the interview participantalibration on interview tasks

suggested participants ranged from moderately eodédent (Emily in Probability) to
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essentially calibrated (Elizabeth and JenniferrwbRbility, Nicole and Justin in Calculus
), slightly overconfident (Sarah in Probabilitiackie in Calculus Il, Megan in Calculus
1), and moderately overconfident (Heather and Mattin Calculus I). The observed
tendency in the interviews toward increased cdiitnebias of students in the lower-level
mathematics course (Calculus I) suggested sevianadiple explanations, including (1)
instructional differences, (2) improved calibrat@s a result of additional mathematics
experience, (3) differences in the relative diffigwf items on the self-efficacy surveys,
and (4) chance.

The final qualitative theme considered participapésceptions of how failing to
pass college mathematics classes affected thelremattics self-efficacy. Of the eight
participants who had completed at least one colleg#ematics class prior to the study,
five participants had earned an F in at least atlege mathematics class. Nicole had
failed Calculus | twice, Megan failed Calculus r&h failed Calculus lll, Elizabeth
failed Discrete Math, and Justin failed Calculu€d#lculus Il, Discrete Math, and
Probability. Nonetheless, each participant hadigtexd toward his or her goal to earn a
secondary mathematics major, and was enrolleccollege mathematics class at the
time of the study.

The analysis of the interview participants’ peroams of failing a college
mathematics class suggested, though often initthdgppointed in their poor
performance, the participants perceived increas#seir mathematics self-efficacy after
not passing the classes. All five participants séiempts at mathematics classes were
easier after the first attempt because of familiaxith course content and a preference

for the new instructors. Justin, who had failedrfoollege mathematics classes, reported
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high overall mathematics self-efficacy and attrdzlihis pattern of failing to pass
mathematics classes on the first attempt to a teegaeview” classes. In addition,
Nicole believed her history of struggling in Calaslll was going to be an asset as a
middle school mathematics teacher. Though the sagptocedure necessarily excluded
students who did not choose to persist in thelegel mathematics coursework after
failing to pass one or more classes, for the ppeits who did persist, the evidence
suggested they considered themselves more pregadeadhore likely to succeed in
subsequent attempts at the courses after thaalifmbn-passing) experience.
Synthesis of Quantitative and Qualitative Findings

The quantitative and qualitative strands of thaling while incorporating
differing data sources and analysis technique$), éuiployed a conceptual framework
that focused on high school mathematics performasedkefficacy, calibration, and
exam performance in advanced mathematics. Thisriapoaspect of the mixed methods
research design afforded opportunities for qualgathemes to triangulate and
contextualize the broad scale quantitative findiAgee upcoming narrative compares and
contrasts the quantitative and qualitative regtltsugh the constructs in the structural
path model, including comparisons of indicatiormrfreach strand of the inquiry
regarding high school mathematics achievementesitfacy, calibration bias, and exam
performance.
High School Mathematics Achievement

Both the qualitative and quantitative strands efitivestigation suggested
students in advanced mathematics classes perfomsiédh high school mathematics. As

described in the quantitative results, the parictp typically had moderate-to-high
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scores on each of the three indicators of highaamathematics achievement, including
ACT Math scores, high school grade point average s&lf-assessment of high school
performance on a 7-point ordinal scale. Study padnts’ average ACT Math sconé (
= 24.9,SD= 3.9) was about one standard deviation aboveofttae population of
incoming students at the university, and 17% ofip@ants’ recorded high school grade
point averages were 4.0, compared to just 7% afimieg students at the university.
Interestingly, only 1 of the participants ratedittiegh school performance as
“Excellent”, while 87% (168/ 195) chose one of thescriptors “Very Good”, “Good”, or
“Okay.” The qualitative interviews revealed thatf@he 10 secondary mathematics
majors had completed a college mathematics clage marhigh school, and all described
entering college feeling prepared for (at least@as |. Participants reported high self-
efficacy in mathematics upon high school graduatzomd several participants (e.qg.,
Jennifer, Elizabeth, Jackie) said their collegeelemathematics was made easier because
of their strong high school mathematics preparation
Self-Efficacy

The qualitative interview data supported the validif the self-efficacy survey
protocol, with interview participants typically deging task- and content-specific
reasoning for choosing self-efficacy ratings betw&eand 6, especially familiarity with
content, prior experiences with similar tasks, patteptions of the number of steps
required to complete the tasks. Analysis of respsstyles suggested that several
participants had an aversion to using the highestable rating, and none of the
participants chose the lowest available self-effycating. This introduced possible

limitations in the effective range of self-efficasyrvey data due to the chance that some
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individuals may have avoided the extremes of tifee$icacy scale. The quantitative
analysis of differences in self-efficacy ratingsitgm difficulty, however, suggested a
pronounced pattern of reduced self-efficacy mease@ated with increased item
difficulty, further supporting the validity of theelf-efficacy ratings. The estimated
structural measurement model also supported thigdafivee evidence that self-efficacy
ratings reflect task-specific cognitive judgmeras ¢pposed to generalized feelings of
confidence), with 69% of the total variation in theven indicators of self-efficacy left
unexplained by a one-factor model.

The structural equation modeling results pointed primary role of self-efficacy
both as a direct influence on exam performanceaarah intermediate influence on
effects of high school mathematics achievementcatiiration on exam performance.
Though calibration bias had the largest directatffm final exam performancp € -
.75), self-efficacy had the largest total effgtt(.62) on final exam performance,
exceeding the total effects of both calibratiorskfga= -.51) and high school mathematics
achievementf{ = .57). The weak estimated positive effect oftraliion bias on self-
efficacy (3 = .39) substantiated indications in the pilot s#adand review of literature
(see Chapter I) that self-efficacy and calibratitas exhibit essentially independent
effects on exam performance in mathematics.

The structural equation model incorporated onhhtgghool mathematics
achievement and calibration bias as sources chtiamiin mathematics self-efficacy.
However, the qualitative interview data helpeddatextualize the sources of
mathematics self-efficacy through mastery expegensocial persuasions, vicarious

experiences, and physical reactions. The intergasicipants’ descriptions of factors
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which influenced their mathematics self-efficacgueed primarily on mastery and
vicarious experiences, with perceived exam scoagdj the greatest apparent impact on
mathematics self-efficacy. Summaries of four stuslesxperiences coping with low
perceived exam performance in Calculus Il helgedtitline the processes supporting
exam scores as a source for mathematics self-efficacluding mediating factors such

as social comparisons, the perceived approachabilinstructors, and personal like or
dislike of instructors.

While the quantitative investigation of mathemate#f-efficacy focused on
individual tasks representative of exams in theigipants’ courses, the qualitative
inquiry included discussion of more general selieaty to pass college mathematics
classes (with a C or better). Since 5 of the 8asttglwho completed at least one college
mathematics class prior to the study had earnd€liarat least one such class, one
gualitative theme described the participants’ pgtioas of how failing to pass a college
mathematics class affected their mathematics sigdhey. The interview participants
reported higher mathematics self-efficacy aftdirfgia college mathematics class. The
sources for this increased self-efficacy gleanethfthe qualitative analysis included (1)
increased familiarity with course content, (2) ageéved improvement in the chances for
success with a new instructor, and (3) increaseat@vess of the personal choices needed
to succeed in mathematics.

Calibration Bias

The primary quantitative findings regarding calitiva bias included (1) a general

tendency toward overconfidence with better calibraassociated with more difficult

tasks, (2) no significant differences in calibratlmas by gender, (3) a large direct
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negative effect of calibration bias on final exaenfprmance which was mitigated
somewhat by a small indirect positive effect orafiexam performance through self-
efficacy, and (4) high variability in calibrationds scores across exam items. The task-
based interview data largely supported the first farth of these quantitative findings,
while contextualizing the processes that suppdithredion bias through illustrative
examples and providing tentative indications thatdalibration bias of secondary
mathematics majors may differ by courses.

Calibration bias was operationally defined as tifieicetnce between a
participant’s self-efficacy rating and performarscere on a mathematical task, so that
positive calibration bias scores were meant toce@ overconfidence. However, the
interview data suggested positive calibration béspecially small positive scores, may
be associated with essentially calibrated studé&amisexample, none of the interview
participants selected the lowest available seltadly rating (1 out of 6), so that every
incorrectly solved task in the interviews corresgeoh to a positive calibration bias score.
When asked to attempt two tasks from among thoelawv or high self-efficacy
ratings, only one interview participant correctbnapleted the low self-efficacy task and
half (5 of 10) correctly completed the high selfiegcy task. This meant that 14 of the 20
completed tasks resulted in a positive calibraticore and that 9 of the 10 participants
obtained a positive combined calibration scorehantivo items. However, the qualitative
analysis of interview participants’ reasoning felegting self-efficacy ratings and
subsequent performance suggested four of the dgideme calibrated. That is, the
observed statistical tendency of study participémisbtain positive calibration scores on

all but the most difficult tasks, may have, in paeen related to an aversion to choosing
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the lowest available self-efficacy rating. Follow-studies could mitigate this threat to
the validity of calibration scores by broadening tange of self-efficacy values.

Another connection between the qualitative and ttzive findings about
calibration bias arose from the observation thatkinee interview participants enrolled
in Calculus | seemed to be considerably more ovdigent than the participants in
Calculus Il and Probability. Though this could heedo chance, the qualitative finding
added context to the observation in the quantiadivand that calibration bias scores
showed high variability across items, and suggettegbossibility that calibration bias
may be influenced by developmental or course-samibcesses. In particular, two
plausible sources for variation in calibration biaimstructional differences in the
respective mathematics classes of the interviewiggaants and development of
calibration bias with increased exposure to advameathematics classes — were not
addressed by the research design.
Final Exam Performance

The research methodology included analysis of #xalm performance for 195
students in 12 classes ranging from Calculus rtb&bility. In each of the eight separate
final exams, seven final exam items were seleaiedtlusion on self-efficacy surveys
and seven items were randomly selected by itericdify as indicators for final exam
performance. This means the analysis included stadeerformance on a total of 392
authentic final exam tasks. This necessarily intoedl variation into the performance
data, some of which was accounted for by a vaoétyeasures ranging from estimates
of inter-rater reliability, to estimates of uniq@ss among the performance indicators in

the structural measurement model, to quantile-baasgpling of items to ensure
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representativeness. Nonetheless, the structuratiegumodel explained a remarkably
high proportion (83%) of the total variation in tla¢ent construct associated with the
final exam performance indicators.

The performance scores earned by participantseaxm items selected as the
indicators of final exam performance suggesteditia exams included items with a
wide range of item difficulty. For example, just®2®f students correctly completed the
task selected as the “Level 1” indicator of finaam performance, 58% of students
correctly completed the “Level 4” task, and 83%stifdents correctly completed the
“Level 7” task. Using the dichotomous scoring scatadents’ correctly completed a
mean of 4.1 of 7 item$SO = 1.8), or about 59% of the sampled tasks.

The qualitative inquiry focused primarily on proses surrounding mathematics
self-efficacy and calibration in a task-based sgttHowever, the talk-aloud
methodology provided some insight into the validifya dichotomous scoring
(correct/incorrect) scheme for assessing exam paédoce as well as some potential
consequences for the ways in which self-efficaay @alibration bias related to exam
performance. As discussed earlier, one consequ#rthe dichotomous scoring
technigue (together with the tendency to avoiddkeest available rating on the self-
efficacy surveys) was that all incorrect attemptsrt the interviews corresponded
numerically to positive calibration bias scores. @& other hand, the analysis of the
interview participants’ performance suggested 13abf the 14 attempts marked
incorrect were the result of substantive conceptualrs (as opposed to numerical or
algebraic errors), which supported the validityhe dichotomous scoring system to

discern incorrect attempts from essentially coragt@mpts.
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Implications

The purpose of this study was to better understiamdoles self-efficacy and
calibration play in the mathematical experiences$ exam performance of students
taking the content courses of a secondary mathesmajor. Building on the review of
literature and two pilot studies, the study waseetged to (1) add to existing self-efficacy
research by including an important and often owdal population of participants, (2)
partially fulfill a need for mixed methods studiessocial cognitive research, (3) add to
research on the mathematical content knowledgeselfidbeliefs of prospective
mathematics teachers, and (4) inform the practitkeomathematical content preparation
of prospective secondary mathematics teachers evitigl findings are limited in scope
by the research design, setting, and data, thg stattes substantive contributions
toward each of the four goals. In the followingtsats, the study findings are considered
in terms of implications for educational researod the content preparation of preservice
secondary mathematics teachers.
Implications for Research

This study adds to existing literature on matheosagelf-efficacy and calibration
bias in the context of college mathematics, inalgdindings on potential differences in
self-efficacy and calibration associated with geraded the difficulty of mathematical
tasks. In addition, the mixed methods methodolagy structural equation modeling
approach to estimating the relative influencesigh lschool mathematics achievement,
self-efficacy, and calibration on exam performaraftsred opportunities for

contextualized findings. The findings helped tolbstibstantiate results from related
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literature and suggest additional processes thadctrself-efficacy, calibration, and exam
performance among secondary mathematics majors.

The research design and model for mathematics noesfice used in this study
were based on models of mathematical performancamgmiddle school (Chen, 2003)
and high school students (e.g., Pajares & Krant@95) along with analysis of
differences in calibration and self-efficacy asat&il with gender and item difficulty
(e.g., Chen & Zimmerman, 2007). A limitation in theor path analysis studies that
incorporated mathematics self-efficacy and calibratvas identified through the
assumption in path analysis that predictor varmhble perfectly measured by a single
measure. This study extended the path analysisitpes to structural equation
modeling, which allowed for multiple indicatorsthie latent constructs (e.g., self-
efficacy) in the path model and estimates of th&atan both unique to individual
indicators and common across indicators of eacltaact. The concomitant increases in
the validity of estimates of directional effectslie structural equation model, together
with the incorporation of qualitative data souraepresented the methodological
contributions of this study to the literature onth@eamatics self-efficacy and calibration.

The study findings, along with those of the twapgtudies, supported
educational research evidence suggesting thaeBel&cy and calibration exhibit
approximately equal and opposite effects on matkiesyperformance. In particular,
Chen’s (2003) findings that calibration has a weti&ct on self-efficacy and that both
self-efficacy and calibration have moderate torggreffects on mathematics performance
is supported by this study and the two pilot stediéhe magnitude and sign of the

standardized coefficients in the structural patldetocand even the proportion of total
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variation in self-efficacy, calibration, and finetam performance explained by the
model, were similar to Chen’s path analysis resiilt® similarities between estimates of
directional effects, taken in the context of diffier settings and measures of mathematics
performance, suggested robustness for findingssei&efficacy and calibration have
mediating influences on the effect of prior achreeat on future performance in
mathematics.

This study’s findings regarding differences in sxfficacy, calibration bias, and
exam performance by gender and item difficulty barcontrasted with Chen and
Zimmerman'’s (2007) cross-national study of selfeaify and calibration among middle
school mathematics students. The results of thdystupport Chen and Zimmerman'’s
findings that there were no differences by gendestuidents’ calibration bias, self-
efficacy, or performance. Similarly, this study popgs Chen and Zimmerman'’s findings
that “as items became more difficult, students l@deheir self-efficacy beliefs.” (p.
230), and both Chen and Zimmerman’s study andsthidy identified a main effect of
item difficulty on calibration bias. However, Chand Zimmerman found that middle
school students’ calibration bias increased on mddfieult items, while the study
reported here found students’ calibration biasegsed on more difficult items. These
contrasting results are likely related to the diffg procedures, setting, and measures of
self-efficacy and mathematics performance, bubgheosite nature of the observed
effects suggests reason for further study.

Besides adding to the research on mathematice8l&cy, calibration bias, and
potential differences in each associated with geadd item difficulty, the qualitative

strand of this study contributes to the literatomesources of mathematics self-efficacy.
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In their comprehensive review of research on thecas of academic self-efficacy,
Usher and Pajares (2008) point to the promise afitgtive methods to describe the
techniques students use to select among and apphaisnany sources of information
available to them about their mathematical compeésn
Qualitative inquiry provides a phenomenologicaklémough which the
development of efficacy beliefs can be viewed, &wedn capture the personal,

social, situational, and temporal conditions unaleich students cognitively
process and appraise their beliefs and experie(zes34)

Through five qualitative themes, supported by quatg and descriptive accounts of
students’ mathematical experiences and self-effitacomplete mathematical tasks, the
gualitative strand of the inquiry suggested sevaratesses that can have primary effects
on the mathematics self-efficacy of prospectiveoadary mathematics teachers.

The qualitative themes identified in this studysahntiate the primary role of
students’ perceptions of their mastery experieircéise formation of self-efficacy
(Usher & Pajares, 2008). Among the interview pgstints, perceptions of low exam
scores, in particular, was tied to reduced mathiesiaelf-efficacy. However, as
evidenced by the descriptions of four students experienced low perceived exam
performance in Calculus lll, the repercussionsxaine scores on personal self-efficacy
appeared to be affected by social comparisonstpéhceived performance of peers and
personal feelings about the instructor. The matgrmetations of similar exam scores
suggested a powerful role of interpersonal relstigos between students and their
instructors, and the evidence supported Zeldir0®@2 contention that successful
mathematics professionals developed self-efficanyarily through performance
attainments (e,g., grades, exam scores) and vitsaexperiences of peers and family

members.
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In addition to the implications of the study fosearch into the sources of self-
efficacy of students in advanced mathematics csythe qualitative inquiry suggested
that secondary mathematics majors perceived inetdeasthematics self-efficacy after
earning an F in a college mathematics class. Freotil cognitive perspective, failing
to pass a college mathematics class introducesaeairces for lowered mathematics
self-efficacy, including instances of poor perforro@ during mastery experiences such
as exams and social comparisons to higher perfogrpeers. Thus, it was somewhat
surprising to find that the five participants whadhailed a college mathematics class
framed those experiences as leading to increas#itience in their abilities to pass the
classes in subsequent attempts. This finding waigeld by the small number of interview
participants, the selection bias introduced byck & participants who may have
disengaged from mathematics after not passing onece courses, and the
retrospective nature of the participants’ accoontheir mathematics self-efficacy.
Consequently, the themes in which participants riesd increased familiarity with
course content and beliefs that multiple attemptoarses improved their chances of
success, though supported by the data, are probabtycharacterized as exploratory and
preliminary.

Implications for Secondary Mathematics Teacher Brafion

One rationale for the study was the need for holgscription of the
mathematical self-efficacy and calibration of presprze secondary mathematics
teachers. While educational researchers have bated robust descriptions of the self-
beliefs prospective elementary teachers hold alatihematics (e.g., Harding-DeKam,

2005), little research was identified regardingiethematics self-efficacy of
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prospective secondary teachers. This study, watfotus on the mathematics self-
efficacy, calibration and performance of secondaaghematics majors, offered a holistic
and contextualized description of the strengthaswiracy of secondary mathematics
majors’ beliefs in their mathematical competencid® findings, though preliminary,
suggested secondary mathematics majors tendefl égférience strong performance in
their high school mathematics preparation, (2) doaveontent-specific information
when evaluating their self-efficacy to complete neabatical tasks, (3) express slight
calibration bias in the form of overconfidence tonplete exam items, (4) rely on their
perceived exam performance and social comparisotietperformance of peers as
primary sources of mathematics self-efficacy, &)d€port increased mathematics self-
efficacy to complete a college mathematics clates afitially not passing the class.

The study findings can be used to inform the deaighinstruction of content
courses in secondary mathematics teacher prepagabgrams. In particular, the
findings suggested several areas of strength attmengopulation of students enrolled in
advanced mathematics courses, including prior ssdcemathematics and moderate to
high self-efficacy to learn mathematics. Instrustoan draw on this perceived record of
accomplishment and self-efficacy by communicatmgttidents that, just as they were
able to learn earlier mathematics, the student®gpact to succeed in learning new
mathematics through persistence and the recogrhetrincreasingly complex content
requires increasingly adaptive learning technigBesed on the review of literature,
students’ calibration may improve with frequent teagexperiences with moderately
difficult tasks, and prompt and clear feedbackl@dutcomes of performance attempts

(O’Connor, 1989). Educational interventions couldude “calibration quizzes,”
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whereby students would rate their self-efficacgamplete tasks on a regular quiz,
attempt the quiz, and subsequently compare thed=rde ratings with their
performance on the items, and the effectivenessic a calibration training
(Lichtenstein & Fischoff, 1980) approach could balaated through future research.
Nonetheless, the review of literature and stru¢tegaation modeling findings
collectively suggest that improved calibration liasld help secondary mathematics
majors develop more accurate perceptions of thathematical competencies, which in
turn is linked to higher self-efficacy and examfpenance.

Since the interview participants described a stratignce on perceived exam
performance as a source for overall mathemati¢seffetacy, instructors of the content
courses for secondary mathematics majors may hdreefi clearly communicating their
intentions and expectations surrounding exam scofresinterview participants seemed
to perceive exam scores below 70% to represeimdastcores, so if an instructor has
differing perceptions of such scores, the studemght benefit from the instructor
describing the relative meaning of exam scoresiasdicator of understanding or
performance. Sarah, who perceived failing examescor both Discrete Math and
Calculus IlI, for example, described a higher sfficacy in Discrete Math because the
instructor included a letter grade next to theltstare on exams. Especially considering
the evidence that students’ with lowered self-efficin advanced mathematics classes
sometimes engaged in self-handicapping behaviowuttimmately decreased their chances
of passing the classes, students might particubshefit from clear communication

about levels of exam performance that the instrymoceives to be passing or failing.
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One indication of overall mathematics self-efficdicym the qualitative strand of
the investigation seemed particularly cogent ingieparation of prospective secondary
mathematics teachers. Of the eight interview paditts who completed at least one
mathematics class prior to the study, five paréini reported failing to pass a total of
nine college mathematics classes. This seemingly incidence of failed classes within
the students’ secondary mathematics core contemtbioed with the perceived benefits
the interview participants described for their neatfatics self-efficacy, suggests a need
for future study. In particular, how often do sedary mathematics majors fail to pass
college mathematics classes, and what short-techtoaig-term effects do such
experiences have on their mathematics self-effieenxci/career trajectory? These
guestions are outside the scope of this studycdid prove meaningful in the
implementation of secondary mathematics teachgrapatgion programs, including
course sequencing, tracking of students’ performaacd advising.

Finally, the interview data suggested instructday@d a large role in the
interview participants’ perceptions of their matlatics self-efficacy. When asked to
describe specific qualities of instruction that malkdem feel more or less confident in
their mathematical skills, the students tendeatmi$ on interpersonal skills such as
approachability and the apparently intuitive qyadit whether the student liked an
instructor on a personal level. This exploratonding suggested future investigation of
the ways in which instructional practices are asded with the mathematics self-
efficacy of prospective secondary mathematics eaclespecially the qualities of
instruction most associated with perceived and meskincreases in self-efficacy among

mathematics teachers.
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Limitations of Study Findings

Considerations of the quality of the research dgsigcluding measures to
mitigate threats to the internal and external vlidf the quantitative dat, as well as
efforts to ensure the trustworthiness of qualimafindings, are detailed in the
methodology chapter. In addition, consideratiothefscope and transferability of
findings to other settings and populations wasudised in the methodology chapter
along with special emphasis on rich descriptiothefstudy participants, data collection
and analysis strategies. In particular, as a csestional study which focused on
students’ performance on regular classroom exdraggssearch design lacked
procedures to establish causality among any ofdhiables. Instead, directional effects
among latent variables, together with observecbfices by gender and item difficulty,
could only describe statistical associations anindgator variables in the context of the
review of literature. In the following paragrapesme additional limitations in the study
findings are considered to help contextualize ttuge and transferability of the results.

Many of the study findings relate to the structwaliation modeling of indicators
of high school mathematics achievement, self-efffcaalibration bias, and final exam
performance among data gathered from studentsvemnaed mathematics courses.
Although the validity of these findings was strerggied by adequate sample size and
application of recommended procedures for modaiipation and handling of missing
data (Schrieber, 2008), the fit indices for thefiestimated model suggested only
marginal model fit. This, combined with some indiicas of multidimensionality among
indicators in the estimated measurement modebdnotred a possibility the estimates of

standardized effects among the four latent varginiehe model may be vulnerable to
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Type | error. One source for these limitations rigé non-estimated effects of
confounding variables not included in the studghsas participants’ academic level,
differences in the difficulty of exams, and coulseel or instructor effects.

The qualitative and quantitative strands of thalingproduced largely
complimentary findings, and the convergence of ttenegarding high school
mathematics performance, self-efficacy, calibrgtemmd exam performance had the effect
of strengthening the trustworthiness of findingsrrboth strands. However, some
limitations were identified during the analysistbé interview data that weakened the
quality of the emergent qualitative themes. Inipaléar, the task-based interview data did
not include data from sources that may have haipedntextualize the participants’
perceptions of their mathematical experiencesiddaaints described instructional
practices, grading policies, and performance af {peers on exams, for instance, but no
datum was collected regarding their instructorstpptions of exam performance or
grading policies. These additional data could hedaed a counter-narrative (Milner,
2007) to the students’ descriptions of their exgrares which would likely have further
contextualized findings and suggested additiorsgs into the processes supporting
mathematics self-efficacy. Classroom observatiaasyell as interview participants’
high school and college mathematics transcriptslidcalso have helped to triangulate
and contextualize the qualitative themes.

Moreover, the discussion of the study findings inakided reference to several
limitations of the results that emerged from thamntgulation of qualitative and
guantitative findings. These included (1) the omis®f data regarding instructional

practices, (2) the possibility of differing rolermathematics self-efficacy and calibration
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on mathematical performance tasks other than ex@nsdications that some
participants may be averse to reporting self-effyaatings at the two ends of the self-
efficacy scale, (4) potential variation in the aledifficulty of exams, and (5) the
possibility of longitudinal changes in calibratiand self-efficacy during college. In
addition, the qualitative strand identified a thetimat mathematics self-efficacy can be
influenced by failing to pass college mathematlasses, while the quantitative strand
did not include any data on students’ prior perfange in college mathematics classes.
Recommendations for Future Research

The design and interpretations of data in thisystuere based on decades of
educational research into self-efficacy, calibmatiand performance, much of which took
place in arenas outside of mathematics learnings€guently, a natural consideration
for future research would be the adaptation ofstihdy design and modeling approach to
other educational settings. For example, the liveeareview included Zhao and
Linderholm’s (2008) review of research into metapoemension accuracy, a topic that
closely aligns with calibration bias, and futureearch into reading comprehension
performance might consider incorporating a soaginitive model like the one used in
this study. Besides applications of the concegdtaahework or methodology to other
educational arenas, the research findings anddiiioits have suggested several avenues
for follow-up research in mathematics education.

In the paragraphs that follow, five follow-up stesliare outlined with the goals of
inspiring future self-efficacy research in mathesgéeducation and adding to the body of
research on how self-efficacy, calibration, andqrenance interact among students

enrolled in advanced mathematics courses. Theestultlude (1) a larger-scale study of
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self-efficacy, calibration, and advanced mathemgterformance with a single
performance measure, (2) a longitudinal inquiry itite trajectories of self-efficacy,
calibration bias, and performance of freshman s@agnmathematics majors, (3) a
cross-sectional investigation of associations betwastructional practices and self-
efficacy, calibration bias, and exam performanoel, @) a mixed methods inquiry into
the effects of failing college mathematics coumeself-efficacy among secondary
mathematics majors, and (5) a cross-sectional siticdyathematics self-efficacy,
calibration bias, and performance across variod®peance formats.

Though strengthening the transferability of finding a variety of mathematics
content courses, one potentially large source ekplained variation in the study was the
differing exams that served as the basis for détfaey, calibration, and performance
indicators. A larger-scale study that includes iplétresearch sites might be able to
focus on a single mathematics content course affarenany universities that prepare
secondary mathematics teachers, such as Abstrgebrd. The multiple research sites
would naturally introduce variation due to the maayiations in content across
universities, but may also allow for the adminigtna of a single standardized
mathematics measure and common self-efficacy saraegoss participating sections.
Measures would need to be taken to ensure thetyadidsuch a common exam, and
much descriptive information would need to be gatien the students and instructors
at the many research sites in order to accountfevant contextual variables. However,
the structural equation modeling results could gleadditional insights into the
generalizability of relationships among self-eftigacalibration bias, and mathematics

performance across research settings under a sireglsure of performance.
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Self-efficacy tends to change with experience domain (Bandura, 1997), and
characterizing the longitudinal trajectories andgeisses supporting changes in
mathematics self-efficacy throughout college matitgre would represent a substantial
addition to mathematics self-efficacy researchwihat ways do secondary mathematics
majors’ self-efficacy, calibration, and performam®lve throughout the students’
content preparation? A researcher could addresgjtiastion using qualitative or mixed
methods, starting with interviews of secondary reathtics majors when they first
declare their major. With the context of self-edity surveys and task-based interviews in
successive mathematics courses, the researcheradeelop case studies to illustrate the
variety of participants’ mathematical experienced tne perceived effects of these
experiences on mathematics self-efficacy. These daild also be collected as part of
efforts to evaluate retention and recruitment s@eondary mathematics program, and the
findings could help to identify mathematics clasaed experiences which serve to
support or diminish participants’ self-efficacy afudure performance.

Self-efficacy, calibration bias, and mathematicdgrenance may well be affected
by both individual’s self-beliefs and the instractal practices they experience in college
mathematics. Toward that end, future research daaldde a cross-sectional study of
associations among instructional practices ancestisdself-efficacy, calibration and
performance on exams. Using classroom observatitay delf-reported descriptions of
teaching practices from instructors, course docusamd surveys of students about their
perceptions of instruction, a researcher couldegatlata on instructional practices such
as assessment formats, exam difficulty, learnirtiyiies, and sources of performance

feedback. Statistical techniques could then be tsésst for associations between
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instructional practices and students’ self-efficazgfibration, and exam performance.
Though such findings would be preliminary, and mpigtresearch cycles might be
necessary to explore the nature of any associabetvgeen instruction and mathematics
self-efficacy, such research could help to identigys in which both students and
instructors can improve their chances of succeettiwgrd their goals in the classroom.

One unanticipated, and particularly tentative, ifigdn the qualitative strand of
the inquiry involved secondary mathematics majpesteptions of failing to pass college
mathematics classes. A recommended follow-up stodid address the phenomenon of
earning an F in one or more of the content coursassecondary mathematics
preparation program from a mixed methods pointiedvw To what extent do secondary
mathematics majors who fail one or more mathematasses persist toward completing
their degree? Answers to these questions could patemtial implications for advising
secondary mathematics majors and could add teeearch on sources of mathematics
self-efficacy, especially regarding the relativieets of earning failing grades on the one
hand, and perceiving increased familiarity with teorh on the other. As in the suggested
study regarding trajectories of mathematics sdit&ty throughout college, a study on
the effects of not passing college mathematicseksould provide a wealth of
information through the use of case studies.

Finally, future research could address the potefatiacontrasting relationships
among self-efficacy, calibration, and performantassessment formats other than
regular in-class exams. Two of the mathematics@ecbffered at the research site
during the time of the study chose not to offeditianal open-response timed in-class

exams, and it is intriguing to consider the podigyhihat students’ self-efficacy and
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calibration might take-on a different role in diffeg performance tasks. A cross-
sectional study could address the nature of mattiesrself-efficacy in project-based or
portfolio assessments, for instance, through metisadilar to those employed in the
reported study. Instead of completing a self-effycaurvey in the minutes just prior to
taking an exam, students might rate their confiddhat they can attain the highest mark
on a learning outcome listed on a project assignmging the project rubric. If the
sample of participants in classes which do nottegitional exams is particularly small,
the data collection and analysis could focus oreligmg emerging understandings

through task-based interviews, artifacts, and otess observation.
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Informed Consent for Participation in Research

Project Title: The Mathematics Self-Efficacy andliGration of Students in a Secondary
Mathematics Teacher Preparation Program

Lead Researcher: Joe Champion, School of Matheah&wences, 970-351-2229
Research Advisor: Robert Powers, Mathematical $eig70-351-1157

I am researching the self-confidence and perfoomari students in advanced mathematics
courses. Much of the data | plan to use will cdroen photocopies of your regular in-class
exams. However, | will ask you to complete a baokgd survey and one or more 3-5 minute
surveys throughout the semester. In addition, yay atso be invited to participate in a 45-60
minute interview where you'll explain your thinkimghile attempting problems related to the
mathematics in your class.

The main questions I'll ask you are about your pption of whether you can complete certain
mathematics problems related to your class. Thasegs will be administered in the few
minutes just prior to your major exams, includirmgig/final exam. Any surveys and interviews
you complete will take no more than a total of 9@utes. If you decide to participate in an
interview, your work on math tasks and responsaéstéoview questions will be recorded, and the
digital audio recordings will be disposed of witl#iryears of the date of the interview.

The risks of participation in the study are likeky greater than those associated with taking a
college mathematics course, completing backgroungegs, and working on math problems in a
one-on-one interview setting. However, you may exnee some anxiety from completing a
short survey just prior to a major exam, and if yoe concerned about this anxiety you may
decline participating in the study at any pointydfs choose to participate, you may improve in
your ability to estimate your understanding in meutidl may experience increased awareness of
how your beliefs about your math skills are reldtegiour performance in advanced math
courses.

Nonparticipation or withdrawal from the study wilbt affect your grade in the course. Your
teacher will not know who in the class is partitipg. If you do choose to participate, you will
not be identifiable in the final report of the syud

Participation is voluntary. You may decide not sotigipate in this study and if you begin
participation you may still decide to stop and itw at any time. Your decision will be
respected and will not result in loss of benefitsvhich you are otherwise entitled. Having read
the above and having had an opportunity to aslgaegtions, please sign below if you would
like to participate in this research. A copy oktForm will be given to you to retain for future
reference. If you have any concerns about youcBeteor treatment as a research participant,
please contact the Sponsored Programs and Acaékasa&arch Center, Kepner Hall, University
of Northern Colorado Greeley, CO 80639; 970-350719

Participant’'s Name (please print) Participant'graiure Date

Qﬂ &— 3/9/2009

{Resedrcher’s Signature Date
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Name (Print); Bear #: [ (don't
remember)

1. What is your primary college MAJOR? (Circle One)

Biology Mathematic

Business Physics

Chemistry Pre-Professional, specify:

Computer Science Elementary Teaching (IDLA), emphasis:
Earth Sciences Undeclared, leaning towards:

Other, specify.

2. What is your academic level at UNC?
Freshman Sophomore Junior Senior Graduate

3. Does your major include an emphasis in education?
Yes No

If Yes which grade band are you MOST interested in tieg@h(Circle One)

Early Childhood Elementary Middle Secondary K-12

4. What is your gender?
Male Female

5. Complete ALL of the following. On a scale from O#néure) to 100% (completely sure),
how confident are you that you can earn the follmnaverall grades in this class?

lam ___ % sure | can earn a D or better in tlaisscthis semester.
lam __ % sure | can earn a C or better in fhisschis semester.
lam __ % sure | can earn a B or better in tlaisscthis semester.
lam % sure | can earn an A in this classsimester.

6. How many semesters of mathematics did you compidiggh school?
semesters

7. Which of the following best describes how well yatid in your high school math courses?

(Circle One)
Excellent Very Good Good OK NotSo Good Bad Regkd

8. Circle the listings that best correspond to thetneaurses you completed in high school.
General Math/Consumer Math  Integrated Mathematics 1 Calculus
Basic Math 1, 2, 3, or 4 Integrated Mathematics 2 AP Calculus
Pre-Algebra Integrated Mathematics 3 Differential Equations
Informal Geometry Trigonometry College Algebra
Geometry Trigonometry & Geometry Linear Algebra
Algebra 1 Trigonometry & Algebra Statistics
Algebra 2 Analysis Probability

Algebra 3 Pre-Calculus Probability & Statistics
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PRE FINAL EXAM SURVEY — SECTION 1
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):

1. If f(x) =+Vx + 3, find the equation of the tangent linexat 1.

Rating (1-6):

2. If x2 + xy + y? = 19, find the value Of% at the pointZ,3).

3. The position function of a particle moving in aagght line is Rating (1-6):
s(t) = —16t% + 48t + 100, wheres(t) is measured in feet ands
measured in seconds. Find the velocity at 2.

4. A rectangular storage container with an open tdp fgve a volume Rating (1-6):
of 10 cubic meters. The length of its base is twim=width. Material ating (1-6):
for the base costs $10 per square meter. The @idi@rihe sides
costs $6 per square meter. Find the cost of therak for the
cheapest container.

5. Evaluate the following limit Rating (1-6):

" x% —4
*2% X2 + 3x — 10
Rating (1-6):

6. Differentiatey = 5e* - sin (3x + 2).

Rating (1-6):

7. If f(x) =+Vx + 1, find the equation of the tangent linexat 3.

8. The altitude of a triangle is increasing at a @dt& cm/min while the  Rating (1-6):
area of the triangle is increasing at a rate ah2min. At what rate is
the base of the triangle changing when the altitad® cm and the
area is 100 cf?
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PRE FINAL EXAM SURVEY- SECTIONS 2 & 3
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. Differentiateh(x) = (x — 2)(2x + 3).
4 Rating (1-6):
2. If x* + xy +y* = 19, find the value of> at the point%,3).
3. Differentiate the following: Rating (1-6):
y = 5e* -sin(3x + 2)
4. If F(x) = f(g(x)), wheref(—2) = 8, f'(~2) = 4, f'(5) = 3, Rating (1-6):
g(5) = —2,andg’'(5) = 6, find F'(5).
5. Find the limit; Rating (1-6):
. Xx+tanx
11m_—
x-0 SIhXx
Rating (1-6):
6. On what interval is the functiofi(x) = x3e* increasing.
Rating (1-6):
7. Differentiateg(x) = (x —5)(3x + 1).
Rating (1-6):
8. Find the intervals on whicfi(x) = x® — 12x + 1 is increasing or
decreasing.
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PRE FINAL EXAM SURVEY — SECTIONS 4 & 5
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. Find the Taylor polynomial of degree 4ok x ata :g
Rating (1-6):
2. Find [ x2(x® + 5)*dx.
3. Determine whether the following sequence conveogebverges
@ = Vn Rating (1-6):
" 144n
© (qn Rating (1-6):
4. Determine if the serie§ %converges or diverges
m D
5. Find th_e rz':ldlus of convergence and the intervaboivergence for Rating (1-6):
the series:
o (x + 2)"
n- 4n
n=1
Rating (1-6):
x—1 . . .
6. Integrate [ = dx using partial fractions.
Rating (1-6):
7. Find the Taylor polynomial of degree 4gf x ata = g
Rating (1-6):
8. Integrate[ x - In x dx.
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PRE FINAL EXAM SURVEY- SECTION 6
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. LetA, B, C andD be invertiblen x nmatrices. Solve
AB(X + C)D™ = I, for X.
2. Compute the determinant of the following matrixcmfact(;r - Rating (1-6):
expansion (without using your calculator). Showadrk. [9 5 8]
3 2 7
3. Find the standard matrix of the transformatibirR — R that reflects Rating (1-6):
points about the-axis followed by a rotation oft /2 radians in the
clockwise direction. Show your work.
1 -3 2 10 . _
4. Letv, = [ 2 ] v, = —4], V3 = [1] andb = [10]. Isb a linear Rating (1-6):
-3 1 6 10
combination of the vectons, v,, andv;? Explain why or why not.
5 -8 1 " Rating (1-6):
5. Letd = [_7 ) —6] and letu = | 2 |. Define a transformation ating (1-6):
-2
T:R™ - R" by T(x) = Ax. FindT (u), the image ot under the
transformatiorf'.
Rating (1-6):
6. Without using your calculator, find the eigenvale¢she matrix
I3 3
A= [_2 _4]. Show all work.
Rating (1-6):
7. LetA, B, C andF be invertiblen x nmatrices. Solve
AC(X + B)F™1 = [, for X.
a+ 3b
4b Rating (1-6):

wherea andb

8. LetW be the set of all vectors of the foym °~

—a
are arbitrary real numbers.W is a vector space, find a set of vecto
that spans it. Otherwise explain wiis not a vector space.
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PRE FINAL EXAM SURVEY — SECTIONS 7 & 8
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. Write the coefficient of!® for the expression
(x +2)3% + x6(x + 5)?7
2. Find the exact value of3 + 20 + 27434 + _+ 7286. Show all Rating (1-6):
steps.
3. Suppose that = {1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15} and Rating (1-6):
B = {a, b, c,d}. How many functions are there frabno A that are
NOT one to one?
Rating (1-6):
. 27 341
4. Find the exact value df6 + 12 + I+ +. .+ 5 Show all steps.
Rating (1-6):
5. Write the contrapositive of the following statemdht day has the
largest amount of daylight for the year, then that occurs in June.
Rating (1-6):
6. How many bit strings of length 25 and weight 12 NOT start with
the sequence 111 or end with the sequence 101?
Rating (1-6):
7. Write the coefficient ok?! for the expression 9(1-6)
(x +3)37 + x8(x + 2)3°
8. State whether the following function is one-to-@m&l/or onto, and Rating (1-6):
explain:f: B* - B* by f(ay, ay, az, ay) = (ay, as, a4, a,).
For examplef (1001) = 0010.
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PRE FINAL EXAM SURVEY- SECTIONS 9 & 10
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. Letf(x,y) =sin(2x + y).Find f, (n, g)
2. Letw =17 —] + 2k, andi = 27 — aj + 3k. Find the value of Rating (1-6):
makingw andiu perpendicular.
3. Letz = e*siny and letx andy be functions of andt with )
ox ay Rating (1-6):
x(0,0) = 0,y(0,0) = 0, = = 3 and=* = 4 at(s, t) = (0,0).
Find 22 when(s, £) = (0,0).
4. Letf(x,v,z) =x*y+vy3z+xz3andletP = (2,1,—1). What is the Rating (1-6):
maximum rate of change ¢fat P?
5. Sketch the region of integration and evaluate : Rating (1-6):
9 r3
f f sin(mx3) dxdy
0 Vy
6. Convert the following integral to polar coordinatend evaluate it: Rating (1-6):
2 r0
f f _ Y dydx
0 Jva—xZ\[x2 + y?
Rating (1-6):
7. Letg(x,y) = cos(2x +y).Find g, (n,g).
Rating (1-6):
8. Forf(x,y) =2x3+ y? — 6x + 4y, find and classify the local
extrema off.
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PRE FINAL EXAM SURVEY — SECTION 11
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):
Rating (1-6):
1. Show that—% + ?i is an algebraic number.
2. LetS be the subsgD, 2,4} of the ringZ,. Make the addition and Rating (1-6):
multiplication tables fos.
Rating (1-6):
3. Find all the roots ir€ of the polynomialy(x) = 2x3 + x? + x — 1.
4. Is the polynomiafj(x) = 2x3 + x? + x — 1 € Q[x] reducible or Rating (1-6):
irreducible. Justify your answer.
Rating (1-6):
5. Give definitions of an integral domain and of adeyed integral
domain.
Rating (1-6):
6. LetT consist of all real numbers of the form+ bv2 + ¢v3 + dV6
with a, b, c, andd rational. Show thdr is a subfield in the field of
real numbers.
7 Rating (1-6):
7. Show that—% — 731' is an algebraic number.
Rating (1-6):
8. IsZg an ordered integral domain? Justify your answer.




218

PRE FINAL EXAM SURVEY — SECTION 12
DO NOT ATTEMPT the following problems. Instead,gdtow confident you are that

you can correcthcomplete the items by choosing any number betvesmd 6:

1 2 3 4 5 6
(not sure) (completely sure)
Name (Print):

Rating (1-6):
1. If you roll two 10-sided dice, what is the prob#lithe sum is 6?
2. LetX~b(50,.8). EstimateP(X = 40) using a Poisson Rating (1-6):
approximation.
3. SAT scores are approximately normally distributethwnean500 Rating (1-6):
and variancd 002. If X is the SAT score of a randomly chosen
student, findP(525 < X < 600).
4. LetXjy, ..., X, be arandom sample fronT410, 8) distribution (so Rating (1-6):
a is known to be 10, bt is unknown). Find the maximum
likelihood estimator fof.
Rating (1-6):
5. AssumeXj, ..., X,s is a random sample from a standard normal
distribution and¥ = X2 + --- + X2<. What is the distribution d¥/?

6. A recent poll aske 450 American adults, chosen by random dialindhefy Rating (1-6):
would be willing to pay up to 10% more for eledtydf that electricity '
would be generated by wind instead of coal. Ofétmgveyed, 285 said
yes. Give a 95% confidence interval for the praparof all American
adults that would be willing to pay more for windrgerated electricity.

Rating (1-6):

7. If you roll two 10-sided dice, what is the probdlithe sum is 5?

Rating (1-6):

8. LetXj,..,Xs be arandom sample from Arp(2) distribution, and
letyY = Y%, X;. Find the moment generating function far
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Interview Protocol
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Task-based Interview Protocol

Thank you for agreeing to participate in this iatew. The goal of this interview is to
talk to you about what you think about when yows&ed about what you can do in a
mathematics class. The interview is expectedke eetween 45 and 60 minutes.

Is it OK if | record our discussior# yes, turn on microphone and repeat the quession
it is recorded]When | write about this interview I'd like to giw®u a fake name. What
pseudonym would you prefer that | use?

[Take out a 7-question self-efficacy survey baseth@current course materialThis is

a quick survey asking you to estimate how configent are that you can solve certain
problems related to your class. There are no aghtwrong answers, so just write
numbers you feel match how confident you are youamanplete the problems correctly.

| see that on statemefselect one of the items with the highest ratipgll wrote
on the survey, can you tell me why youd#econ that numbefRepeat for a
lowest rated task and a middle-rated task.]

Can you give me an example of a challenging proliteyour class that you would say
you arecompletely sureyou can solve correctly? [Follow-u@Zhy did you choose this
problem?] [Repeat for a problem in which the student wouldehpw self-efficacy]

Now I'd like you to try completing some sample perhs from your class. It's ok if you
can’'t do the problems right now, so please jusytuyr best.

1. [Choose a task the student marked with high sétfasdy.]

2. Can you work through the following problem and te# what you're thinking as you
work?

3. [As the student works, ask them about any similablems they've done in class or
in previous semesters. E.g., Do you recall doimpgablem like this on your test?]
4. Do you think you solved the problem correctly? Winywhy not?

[Repeat steps 1-4 for items marked with mediuml@andself-efficacy.]

Thank you for working through those problems wita.mNow I'd like to talk a little more
generally about your class this semester. Howa<lass going for you?

Can you think of anything about your class this aster that has helped you feel more
confident about what you can do in the class?

Similar question. Can you tell me about anythingonr class this semester that might
have made you feel less confident about what youloan the class?

What about any other college math classes youde Nehich of the classes do you
think left you thinking you were better able torlea new math topic? In which were you
less confident?

That's all I have for now. Do you have any questifor me? Is it all right if | follow up
with you if I have any questions about what weedllabout today? Thank you for taking
the time to talk with me, and good luck in yourssa
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Correlations among Indicators in the Structural &mun Model
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1 2 3 4 5 6 7 8
1. HS Self
2. HS GPA 0.15
3. ACT Math 0.31 0.52
4. SE Level 1 0.15 0.21 0.19
5. SE Level 2 0.15 0.03 0.13 0.38
6. SE Level 3 0.22 0.09 024 035 0.33
7. SE Level 4 0.21 010 0.17 037 030 0.35
8. SE Level 5 0.16 0.02 0.08 028 026 036 0.33
9. SE Level 6 023 013 011 0.6 014 039 0.37 0.38
10. SE Level 7 019 023 013 029 016 038 0.42 0.34
11. Bias Level 1 -0.12 0.06 -0.11 005 0.01 0.10 0.08 0.15
12. Bias Level 2 -0.18 -0.27 -0.18 -0.03 0.06 0.12 0.05 0.13
13. Bias Level 3 -0.23 -0.01 -0.09 0.10 0.10 0.07 0.12 0.01
14. Bias Level 4 -0.17 -0.16 -0.16 0.02 -0.05 -0.05 -0.03 -0.06
15. Bias Level 5 -0.24 -0.19 -0.16 0.08 0.02 0.01 -0.05 0.01
16. Bias Level 6 -0.08 -0.03 -0.12 0.04 -0.07 0.06 0.17 0.10
17. Bias Level 7 -0.12 -0.16 -0.09 -0.01 0.05 0.07 -0.08 0.08
18. Perf. Level 1 032 0.12 008 -0.09 0.03 0.09 0.05 0.17
19. Perf. Level 2 028 0.05 026 012 017 0.26 021 0.11
20. Perf. Level 3 020 025 0.21 0.8 0.10 0.3 0.15 0.09
21. Perf. Level 4 0.20 026 0.27 014 011 0.27 0.22 0.20
22. Perf. Level 5 023 011 025 018 029 031 014 0.15
23. Perf. Level 6 0.18 023 029 015 025 025 019 0.19
24. Perf. Level 7 026 025 034 027 018 012 0.26 0.14
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9 10 11 12 13 14 15 16
1. HS Self
2. HS GPA
3. ACT Math
4, SE Level 1
5. SE Level 2
6. SE Level 3
7. SE Level 4
8. SE Level5
9. SE Level 6
10. SE Level 7 0.48
11. Bias Level 1 0.07 0.14
12. Bias Level 2 0.04 0.00 0.05
13. Bias Level 3 0.04 0.12 0.15 0.20
14. Bias Level 4 -0.17 -0.08 0.00 0.18 0.14
15. Bias Level 5 0.02 -0.06 0.04 0.06 021 0.26
16. Bias Level 6 0.17 0.07r 0.07r 0.07 013 013 0.17
17. Bias Level 7 0.03 -0.07 0.08 014 0.22 011 023 021
18. Perf. Level 1 0.32 0.26 -0.21 -0.16 -0.08 -0.13 -0.23 -0.17
19. Perf. Level 2 0.19 0.21 0.10 -0.10 -0.25 -0.14 -0.21 -0.09
20. Perf. Level 3 0.24 0.33 -0.06 -0.25 -0.19 -0.15 -0.28 -0.35
21. Perf. Level 4 0.18 0.29 -0.08 -0.17 -0.14 -0.25 -0.27 -0.12
22. Perf. Level 5 0.24 0.25 -0.14 -0.17 -0.17 -0.21 -0.14 -0.15
23. Perf. Level 6 0.21 029 0.00 0.05 0.02 -0.16 -0.26 -0.37
24. Perf. Level 7 0.11 0.26 -0.08 -0.39 -0.02 -0.25 -0.13 -0.14
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17

18

19

20

21

22

23

wp e

HS Self
HS GPA
ACT Math

SE Level 1
SE Level 2
SE Level 3
SE Level 4
SE Level 5
SE Level 6

. SE Level 7

. Bias Level 1

Bias Level 2

. Perf.
. Perf.
. Perf.
. Perf.
. Perf.
. Perf.
Perf.

. Bias Level 3
. Bias Level 4
. Bias Level 5
. Bias Level 6
. Bias Level 7

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

-0.08
-0.12
-0.27
-0.29
-0.25
-0.05
-0.10

0.23
0.14
0.27
0.25
0.28
0.23

0.32
0.47
0.40
0.21
0.50

0.35
0.31
0.41
0.52

0.29
0.35
0.61

0.38
0.42

0.49
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Final Code List for Qualitative Analysis of Inteew Data
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Code Coded when Participant Referred to: Frequency

High School Math high school mathematics perforneamrc 7
achievement

College in High School  College-level calculus, egh algebra, or 13
statistics while in high school

Like/Dislike Teacher Personal feelings about atrirtsor (separate 10
from pedagogy)

Trauma Strong negative reaction to the actionsiof a 3
instructor.

Personality Approachability, friendliness, “cantatk to”, 9
funny, nice, etc.

Pedagogy Pedagogical behavior of a math instructor 15

Work Harder Perceived increased effort in a classabse 2

of feelings about an instructor

Sources of SE Perceived reason for mathematicéideoce 1
Physiological/Emotional Emotions, fear, nervousnassiety 7
Social Persuasions Comments from peers, instrydtasds, or 12

family on math competency

Mastery Experiences Results of attempts to solvhenaatical 15
problems, especially exams and homework

Good Performance Perceived high math performance 8
Poor Performance Perceived low math performance 18
Vicarious Experiences Perceptions of others’ siecoesailure in 10
mathematics, especially peers or family
members

Why/When Became Reasons for becoming a math teacher, reasons 13

Math Teacher for choosing a grade band

Meaning of SE Scale reasoning for choosing seit®¢ly ratings 11
on surveys

Afraid to put SE= 6 Aversion to the highest possitating on the 7

self-efficacy scale (6)



Optimism

Expect Minor Errors

SE = Understanding

Cut Off For Correct

Familiarity

Number of Steps

SE -> Performance

Checking Out

Retaking Classes

Role of Teacher

Math SE Trajectory

Failing Effect

Preview Effect

Math Identity

Calibration
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Reported tendency to prefer higher self- 2
efficacy scores because of personal optimism

Possibility of minor errors sitibnot affect 6
self-efficacy

Task- or content-specific evadna of self- 5
efficacy

Cut-off for SE ratings if askiedrate SE as 4
YES or NO
specific experiences with content ansar 15
tasks

Evaluating self-efficacy basedhen t 6

perceived number of steps needed to complete
the problem (more steps = lower SE)

Direct belief that strong sdficaty 2
increased chances of success
Reduced effort or attendance basetistike 8
of a class or low self-efficacy
Experiences during second (al) thitempt 6
at a class
Preference for new instructor wieeaking a 6
class
Perceived change in self-effjcaiter 12
completing a college math class
Lowered SE after perceived low exsgores 8
Increased SE after failing a md#is€ (not an 7
exam)
Self-beliefs about math skills, pneésl 17

learning style, personal work ethic in math.

Alignment or misalignment between sfate 15
math SE and math performance
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