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ABSTRACT 
 
Champion, Joseph Keith. The Mathematics Self-Efficacy and Calibration of Students in a 

Secondary Mathematics Teacher Preparation Program. Published Doctor of 
Philosophy dissertation, University of Northern Colorado, 2010. 

Social cognitive research has linked students’ perceived academic capabilities, or 

self-efficacy, to academic choices, self-regulation, and performance in diverse contexts 

from reading comprehension to mathematical problem solving. This study addressed a 

need to investigate the interactions among prior achievement, self-efficacy, calibration 

(the accuracy of self-efficacy beliefs), and mathematics performance for students enrolled 

in the content courses of a secondary mathematics teaching program. The sample 

included 195 students in 12 classes ranging from calculus to second-semester abstract 

algebra at a mid-sized U.S. doctoral-granting university with a large secondary 

mathematics teacher education program.  Data included background surveys, self-

efficacy ratings preceding final exams, completed final exams, and transcripts of 

interviews with 10 secondary mathematics majors. Data analysis utilized structural 

equation modeling, analysis of variance, and thematic coding. Findings from both 

quantitative and qualitative analyses suggested participants’ perceptions of their prior 

math performance, together with strong self-efficacy and slight overconfidence, were 

most associated with increased final exam performance. The discussion includes potential 

implications of the study for the content preparation of secondary mathematics teachers. 

Keywords: self-efficacy, calibration, undergraduate mathematics, preservice mathematics 

teachers, structural equation modeling, social cognitive theory 
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CHAPTER I 

INTRODUCTION 

 “Whether you think that you can or that you can't, you're usually right” (Moncur, 

2007, p. 1). When it comes to learning and teaching mathematics, the preceding 

statement, attributed to inventor Henry Ford, suggests a two-way relationship between 

belief in one’s ability to complete a mathematical task and subsequent performance in the 

task. The social cognitive view of learning refers to this potential relationship as 

perceived self-efficacy, or self-evaluations of one’s ability to accomplish given 

performances under specific constraints (Bandura, 1997). In the context of the 

mathematics completed by prospective secondary mathematics teachers, Ford’s 

seemingly simple axiom about the influence of self-efficacy on success is just one part of 

the multifaceted relationships between self-beliefs, academic motivation, and 

performance that can affect students’ experience of mathematics. 

Research into self-efficacy has established that learners who express high self-

efficacy in an academic domain tend to perform better on tasks in the domain than peers 

who report low self-efficacy (Pajares & Schunk, 2001). More than 1,800 research studies 

in education have addressed self-efficacy, and results suggest moderate-to-strong positive 

effects of self-efficacy judgments on performance tasks in domains as diverse as reading 

comprehension, career choice, and problem-solving in mathematics (Lightsey, 1999). 

However, there are documented exceptions to this trend (e.g., Klassen, 2006), and some 



2 
 

 

important aspects of mathematics self-efficacy, especially calibration, or the accuracy of 

students’ self-efficacy judgments, have received relatively little research attention. 

The dissertation study reported here addressed mathematics self-efficacy by 

incorporating three aspects of self-efficacy identified in the literature as areas for future 

research: (1) the self-efficacy of college students in advanced mathematics courses, (2) 

the calibration of students’ beliefs in their mathematical abilities, and (3) the mathematics 

self-efficacy of prospective secondary mathematics teachers. The guiding research 

question was: How do self-efficacy and calibration influence the exam performance of 

students enrolled in the advanced mathematics courses of a secondary teacher preparation 

program at a mid-sized liberal arts university? 

The first sections in this chapter outline the research problem, purpose, and 

conceptual framework informing the study. Then, the narrative describes two pilot 

studies which provided preliminary findings for the guiding research question in college 

algebra and calculus settings. An overview of the research design is presented, including 

research questions and hypotheses, followed by a discussion of the significance of the 

study in terms of research, theory, and practice. Subsequent chapters include the review 

of literature (Chapter II), a description of the study methodology (Chapter III), 

quantitative and qualitative results (Chapter IV), and a synthesis and discussion of the 

findings in the context of related literature and potential follow-up studies (Chapter V). 

Research Problem 

In 2008, there were approximately 128,500 secondary teachers of mathematics in 

the United States, the vast majority of which (87%) teach exclusively mathematics 

(Morton, Peltola, Hurwitz, Orlofsky, Strizek, & Gruber, 2008). What do these teachers 
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need to know and be able to do? On the federal level, the No Child Left Behind Act 

[NCLB] (2001) mandates all teachers earn “highly qualified” status, which requires 

teachers to (1) fulfill state certification requirements, (2) obtain at least a bachelor's 

degree, and (3) demonstrate “subject matter expertise.” To many in mathematics 

education, subject matter expertise is seen as the development of teachers’ mathematical 

content knowledge and pedagogical content knowledge (Hill, Rowland, & Ball, 2005). 

Mathematical content knowledge includes knowledge of and about mathematics and 

dispositions toward mathematics (Kahan, Cooper, & Bethea, 2003), while pedagogical 

content knowledge refers to understandings of mathematics that are particularly useful for 

teaching mathematics (Shulman, 1986).  

Prospective secondary mathematics teachers build the content knowledge they 

need as teachers in large part through university mathematics coursework required for a 

bachelor’s degree in mathematics (Philippou & Christou, 1998). Such coursework can 

include topics such as calculus, differential equations, linear algebra, real analysis, 

geometry, and abstract algebra, and is hereafter collectively referred to as advanced 

mathematics. Monk’s (1994) survey of the content preparation of secondary mathematics 

teachers found participants completed a mean of 7.7 (SD = 4.3) advanced mathematics 

courses and only a mean of 1.9 (SD = 2.3) mathematics education courses in college. 

However, advanced mathematics coursework does not necessarily translate to “effective 

teaching” (Kahan et al., 2003) or strong pedagogical content knowledge (Hill et al., 

2005), and possibilities for mathematics coursework to influence a future teacher’s 

practices may be substantively influenced by the teachers’ perceptions of their 

mathematical abilities. 
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Monk’s (1994) analysis of mathematics teachers’ content preparation suggests the 

positive effects of taking additional mathematics courses on student achievement 

diminish after about five courses, and a teachers’ completion of advanced mathematics 

coursework in college had only a small positive effect on student performance in 

advanced secondary mathematics courses such as calculus and had no statistical effect on 

student performance in remedial mathematics courses. That is, there are research 

indications of a somewhat tenuous connection between completing advanced 

mathematics coursework as a prospective teacher and developing the knowledge needed 

for teaching mathematics. 

 One consideration in teacher preparation has been inquiry into prospective 

teachers’ beliefs and attitudes about mathematics (Harding-DeKam, 2005) within the 

context of their preparation in advanced mathematics. As Philippou and Christou (1998) 

point out, “teachers' formative experiences in mathematics emerge as key players in the 

process of teaching since what they do in the classroom reflects their own thoughts and 

beliefs” (p. 191). In particular, Thompson’s (1984) inquiry into teachers’ beliefs found 

self-beliefs and perceptions of mathematics coursework work in concert with beliefs 

about the discipline of mathematics to influence teachers’ instructional choices, and, 

ultimately, to impact student achievement. However, scarce research has addressed 

prospective secondary teachers’ perceptions of their own mathematical capabilities, 

especially in the context of advanced mathematics courses and research is needed to 

investigate prospective teachers’ mathematics self-efficacy toward successfully 

completing advanced mathematics. 
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Purpose Statement 

The purpose of this concurrent mixed methods study (Creswell, 2003) was to 

examine relationships among the strength and accuracy of mathematics self-efficacy 

beliefs and the subsequent performance of students enrolled in advanced mathematics 

courses required by the secondary mathematics education program at a mid-sized 

university in the Rocky Mountain West. Utilizing constructs and hypothesized 

relationships from social cognitive theory, broad statistical relationships derived from in-

class survey and assessment data were supported by task-based interviews to address the 

research problem through seven research questions. 

The quantitative purpose of the study was to estimate effects of participants’ self-

efficacy and calibration on subsequent mathematics performance using a social cognitive 

model for performance in advanced mathematics. Intervening variables included the 

difficulty of exam tasks, the amount of required mathematics in participants’ chosen 

college majors, participants’ gender, and indicators of participants’ high school 

mathematics achievement. A parallel qualitative strand of the investigation explored 

mathematics self-efficacy and calibration through the rich information provided by task-

based interviews. The quantitative and qualitative strands then converged to contrast, 

triangulate, and validate findings and provide insights which may not have been possible 

through an exclusive reliance on either strand. 

Conceptual Framework 

Social cognitive theory provides a foundational framework for considering 

prospective mathematics teachers’ self-beliefs of their mathematical capabilities. When 

considered in the complicated context of advanced mathematics content preparation, a 
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social cognitive framework can help explain the level and accuracy of prospective 

teachers’ self-perceptions of their abilities in the mathematics courses required by 

secondary mathematics teacher preparation programs.  

Overview of Social Cognitive Theory and Self-Efficacy 

Albert Bandura’s social cognitive theory first began as a means for explaining 

observational learning mechanisms by positing that a causal triadic reciprocality exists 

between individuals’ behavior, environmental stimuli, and internal cognitive factors 

(Simon, 1999). This approach has since developed into a robust theory increasingly 

focused on the cognitive and motivational processes supporting metacognition (Schraw, 

1998), self-efficacy, and self-regulation among learners as they acquire knowledge and 

skills (Martin, 2004). In particular, perceived self-efficacy, or judgments of one’s ability 

to accomplish given performances in particular contexts (Bandura, 1997), is a particular 

focus of social cognitive research in mathematics education. Lightsey (1999) identified 

over 2500 hundred articles addressing positive relationships between self-efficacy and 

achievement.  

Social cognitive research considers self-efficacy to be a primary mediating 

mechanism in all human cognition because self-beliefs in ability act as a filter between 

prior experiences and subsequent development of abilities within a particular domain. In 

contrast to self-concept, which refers to more global self-beliefs and personal identity, 

Pajares and Schunk (2001) summarize the hypothesized direct role self-efficacy plays in 

the choices people make: 

Self-efficacy beliefs influence the choices people make and the courses of action 
they pursue. Individuals tend to engage in tasks about which they feel competent 
and confident and avoid those in which they do not. Efficacy beliefs also help 
determine how much effort people will expend on an activity, how long they will 
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persevere when confronting obstacles, and how resilient they will be in the face of 
adverse situations. (p. 241) 

Attributed in part to individuals’ tendencies to rely heavily on self-efficacy beliefs 

during difficult tasks (Bandura, 1997), self-efficacy judgments are often better statistical 

predictors of performance in academic domains than standardized measures of ability or 

intelligence (Pajares & Kranzler, 1995). In fact, after controlling for instructional factors, 

path analyses of performance incorporating biographical (e.g., socio-economic status, 

gender), motivational, and instructional variables, suggest self-efficacy beliefs account 

for the largest portion of variation in academic performance (Madewell & Shaughnessy, 

2003). Though measures of self-efficacy are often useful for predicting performance, 

there is evidence that strong self-efficacy beliefs themselves do not guarantee success in 

difficult domains such as mathematics. In particular, developing both strong and accurate 

self-efficacy beliefs may be the key to self-efficacy’s benefits in learning mathematics. 

Mathematics Self-Efficacy, and Calibration 

Underscoring the complex nature of students’ confidence in their mathematical 

abilities and performance on closely matched mathematical tasks, Chen and Zimmerman 

(2007) found that U.S. seventh graders reported much higher mathematics self-efficacy 

beliefs than sixth grade Taiwanese students, yet the U.S. students performed significantly 

worse than the Taiwanese students on corresponding mathematics tasks. That is, the U.S. 

students displayed a larger tendency toward overconfidence in their self-efficacy ratings 

than the tendency toward more accurate self-efficacy ratings among Taiwanese students. 

Linking academic behaviors such as reduced effort to overconfidence, Chen and 

Zimmerman suggest the cross-cultural differences in overconfidence may contribute to 
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larger trends toward underperformance by U.S. students in mathematics when compared 

to Taiwanese students. 

Sometimes referred to as “feeling-of-knowing accuracy” (Schraw, 1995, p. 326), 

students’ calibration (Pajares & Miller, 1994) in self-efficacy ratings is a relatively new 

area for research in mathematics education with foundations in experimental psychology 

and reading education (Lin & Zabrucky, 1998). The tendency of students across 

educational levels and performance abilities toward overconfidence, or positively biased 

judgments (Schraw), has been reported in studies of college students’ self-efficacy for 

reading tasks, in particular. In their review of literature addressing the calibration of adult 

readers, Lin and Zabrucky refer to this tendency as an “illusion of knowing” effect and 

suggest possible detrimental effects of overconfidence: 

There is a tendency for adult students to generate unrealistic feelings of knowing 
when it comes to evaluating outcomes of learning. As can be seen in the present 
review, overconfidence is a common phenomenon among young adult students 
that may result in inadequate learning due to premature termination of cognitive 
processing. (p. 384) 

Bandura (1997) suggests slight overconfidence in one’s self-efficacy can be 

psychologically adaptive because overconfidence can have positive benefits on effort and 

persistence. In this view, poor calibration in the form of overconfidence can be reframed 

as a set of optimistic self-evaluations that may ultimately support taking-on challenges. 

Nonetheless, Bandura and other calibration researchers (e.g., Pajares & Kranzler, 1995) 

caution against grossly inflated overconfidence, suggesting that unrealistic 

overconfidence can lead students to engage in self-handicapping academic behaviors 

(Urdan, 2004) such as reduced studying and increased procrastination. 

From a quantitative perspective, there is support for calibration as a measure that 

contributes to statistical explanations of variation in achievement beyond the variation 
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explained by self-efficacy judgments and prior achievement in mathematics (Pajares & 

Miller, 1997). Chen (2003) found U.S. middle school students at every ability level tend 

to show poor calibration in the form of overconfidence, but also that self-efficacy and 

calibration provide significant and independent predictive value in a path analysis model 

for mathematics performance.  

One hypothesis regarding calibration is that learners may grow to be more accurate 

in assessing their abilities through a content-specific developmental process (O’Connor, 

1989). In a review of calibration research from experimental psychology in the 1960s to 

1980s, O’Connor identified several factors influencing calibration: (1) familiarity with 

task requirements (e.g., assigning numbers to feelings of uncertainty), (2) familiarity with 

the topic of interest (subject matter knowledge), and (3) feedback on the accuracy of prior 

judgments. O’Connor also describes research that college students’ self-efficacy to attain 

final letter grades in their courses tends to be well-calibrated, suggesting students may 

develop good calibration in predicting general academic outcomes while simultaneously 

demonstrating poor calibration in their self-efficacy to complete specific course-related 

tasks.  

Through mathematics self-efficacy and calibration, social cognitive theory 

provides a foundation for interpreting the mathematical confidence and achievement of 

prospective secondary mathematics teachers in advanced mathematics. However, social 

cognitive theorists do not subscribe to global models of self-efficacy and performance 

(Bandura, 1997), because personal, social and cultural conditions are seen as important 

co-determinants of academic confidence, motivation, and behaviors. Thus, it was 

important to develop a hypothesized model of self-efficacy, calibration, and performance 
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based on the specific learning context at the research site. Two pilot studies informed this 

effort. 

Two Pilot Studies 

In preparation for this study, the researcher conducted two pilot studies at the 

research site; the first study focused on the predictive value of mathematics self-efficacy 

and calibration in College Algebra (N = 128) during Fall 2007, and the second study 

extended and refined the methodology of the first study in the context of Calculus I (N = 

119) during Spring 2008. The first pilot study was set within a larger study of student 

achievement and goal structures that incorporated balanced, random assignment of 

students to two instructional conditions, one of which included a classroom 

communication system featuring a network of graphing calculators and a classroom 

presentation system. Within the college algebra study, the first pilot study used a 

concurrent mixed methods (Creswell, 2003) design to investigate students’ self-efficacy 

ratings, calibration, and experiences of course feedback in the four college algebra 

sections throughout the semester. The second pilot study utilized a post-test only with 

non-equivalent groups design (Creswell, 2003) to further validate and refine the measures 

and statistical model for the effects of self-efficacy and calibration on final exam 

performance in the population of students enrolled in advanced mathematics. 

Quantitative results from the first pilot study confirmed many of the self-efficacy 

research findings that had previously been attributed to middle and secondary school 

students (e.g., Chen, 2003). The survey techniques used in the study mirrored procedures 

used in earlier social cognitive studies of calibration (e.g., Chen, 2002; Pajares & Miller, 

1994) and incorporated two measures of calibration—accuracy, which is an absolute 
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measure, and bias, which is a directional measure of calibration—in part to compare the 

predictive utility of each measure. Self-efficacy, accuracy, and performance scores were 

converted to a five-point ordinal scale (i.e., 0 = lowest, 5 = highest), and calibration was 

expressed on a 10-point ordinal scale (e.g., -5 = underconfident, 0 = calibrated, +5 = 

overconfident). Descriptive statistics for the four measures are shown in Table 1 and 

suggest participating college algebra students tended to express self accuracy ratings 

which were moderately accurate, but consistently overconfident. Correlation analysis of 

the variables confirmed findings from Chen and Zimmerman (2007) that self-efficacy, 

mathematics performance, and calibration bias and accuracy are all significantly 

intercorrelated at the α = 0.01 criterion (see Table 2). 

Table 1. 

Means and Standard Deviations of Measures in the First Pilot Study 

(N = 91)  Performance Self-Efficacy Bias Accuracy 

Measure  M SD M SD M SD M SD 

Exam 1  4.11 0.62 4.00 0.69 1.07 0.96 2.82 0.67 

Exam 2  3.01 0.89 3.54 0.89 1.67 1.08 2.46 0.66 

Exam 3  3.70 0.74 3.62 0.84 0.98 1.04 2.82 0.75 

Final Exam  4.01 0.75 3.84 0.80 1.07 1.18 2.77 0.78 

Combined  3.73 0.55 3.76 0.70 1.18 0.72 2.73 0.49 
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Table 2. 

Correlations for Composite Measures in the First Pilot Study 

 
Bias Accuracy Self-Efficacy Performance 

Bias  – -0.60 0.36 -0.51 

Accuracy  
 

– 0.36 0.76 

Self-Efficacy  
  

– 0.54 

Performance  
   

– 

Data analysis in the first pilot study led to a multiple linear regression model 

which included composite measures of self-efficacy and calibration bias as predictors of 

students’ performance on four in-class examinations. Analysis of the model suggested the 

data met the four assumptions of linear regression modeling (Osborne & Waters, 2002), 

including (1) linear relationships between the independent and dependent variables, (2) 

independence of errors, (3) normality of variables, and (4) equal variances in errors 

(homoscedasticity). The regression model was significant (F = 265.4, p < 0.001) and 

yielded an R2 value of .86 (SE = .2), suggesting 86% of variance in college algebra 

students’ performance could be explained by independent linear effects due to calibration 

and self-efficacy. Standardized regression coefficients showed strong and approximately 

equal effects of bias (β = -.82) and self-efficacy (β = .83). That is, while increasing self-

efficacy judgments was associated with increased mathematics performance, tendencies 

toward overconfidence were approximately equally associated with decreased 

performance among the college algebra study participants. 

The qualitative inquiry component of the first pilot study looked at college 

algebra students’ experiences of multiple sources of feedback in technology-enriched 
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instructional settings, including online homework, graphing calculators, course 

management software, and small-group activities, in four sections taught by the two 

instructors, of which one was the researcher. One section taught by each instructor 

utilized a classroom graphing calculator network as a communication and presentation 

system during class activities. Using purposeful sampling techniques (Glesne, 2006) in 

conjunction with suggestions from the class instructor, the qualitative investigation 

included data from interviews of seven students and digital artifact analyses (e.g., saved 

computer screenshots) as part of a holistic comparative case study (Merriam, 1998) of 

students experiences in the two instructional settings.  

Results from the qualitative strand of the first pilot study suggested students relied 

heavily on performance feedback and mastery experiences in the form of quizzes, exams, 

and online homework as well as social comparisons to classroom peers in forming self-

efficacy evaluations of their content understanding. These preliminary qualitative 

findings pointed to considering Bandura’s (1997) four sources of self-efficacy—mastery 

experiences, social persuasions, vicarious experiences, and physical and emotional 

states—as a potential qualitative framework for exploring the relationships among self-

efficacy, calibration, and performance for students enrolled in advanced mathematics 

courses. 

The Calculus I pilot study yielded similar results to the quantitative strand of the 

college algebra pilot study regarding the correlations and predictive value of self-efficacy 

and calibration toward students’ exam performance. This second pilot research design 

collected less data from each student (a single exam versus four) and was less controlled 

than the first pilot study because the cross-sectional design did not include random 
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assignment of students to sections and the participating calculus instructors used different 

exams and self-efficacy instruments. In addition to a decrease in statistical power due to 

reduced sample size (Frankfort-Nachmias & Nachmias, 2000), it was expected that any 

linear regression models would account for a lower proportion of variation in students’ 

mathematics performance.  However, as in the first pilot study, self-efficacy and 

calibration bias accounted for large independent portions of the variation in exam 

performance, collectively explaining R2 = 76% of the variation in calculus students’ final 

exam performance. However, both students’ performance and calibration bias on final 

exams varied greatly across course sections, which suggested future research might 

follow Chen’s (2003) consideration of potential differences in self-efficacy and 

calibration by the level of difficulty in test items. 

While the two pilot studies suggested some relationships between calibration, 

self-efficacy, and mathematics performance in advanced coursework, interpretation of the 

data analysis was limited by an assumption in multiple linear regression that independent 

variables do not include measurement error (Frankfort-Nachmais & Nachmias, 2000). 

Although observed reliability coefficients of self-efficacy and calibration measures are 

typically moderate to strong (O’Connor, 1989; Pajares & Miller, 1997), the fact that each 

measure includes self-reports of latent psychological variables suggests that structural 

equation modeling is more appropriate, especially in light of the strong theoretical 

support for directional relationships among calibration, self-efficacy, and mathematics 

performance (Pajares & Kranzler, 1995). 

In summary, the pilot studies informed the research design in four important 

ways. First, the procedures in the pilot studies helped refine the data collection protocol 



15 
 

 

and helped to establish the feasibility of the data collection and analysis procedures at the 

research site. Second, the regression findings from both studies suggested strong, 

approximately equal, and opposite effects of self-efficacy and calibration on 

performance. Third, the qualitative inquiry pointed to Bandura’s (1997) conception of the 

four sources of self-efficacy as a conceptual tool for investigating relationships between 

self-efficacy, calibration, and performance. Finally, methodological considerations 

suggested the appropriateness of using structural equation modeling in future 

mathematics self-efficacy research.  

Hypothesized Model and Research Questions 

A central purpose of the research was to address the research problem by 

investigating a social cognitive model for advanced mathematics performance that 

incorporated self-efficacy, calibration, and the amount of mathematics in students’ major 

as endogenous variables and high school mathematics achievement as a single exogenous 

variable. The model, shown in Figure 1, was based on an extensive review of related 

literature and was similar to models used by Chen (2003) and Pajares and Kranzler 

(1995) in studies of mathematics self-efficacy among general student populations. 
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Figure 1. Hypothesized path model for performance in advanced mathematics.  

One distinguishing characteristic in the structural model was the inclusion of 

hypothesized effects of the amount of mathematics in students’ college majors as having 

a potential influence on self-efficacy, calibration and performance among students 

enrolled in advanced college mathematics courses. The hypothesized model is a compact 

way of representing four quantitative research questions (Q1-Q4 below) that were 

addressed using structural equation modeling. In addition, two quantitative questions 

addressed potential differences in the endogenous variables by the intervening variables 

corresponding to students’ gender (Q5) and the difficulty of exam items (Q6), each of 

which were addressed through multivariate analysis of variance (MANOVA) procedures. 

Finally, a single qualitative research question called for a holistic description of the 

processes relating self-efficacy, calibration, and mathematics performance for the 

important subpopulation of prospective secondary mathematics teachers. 
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Q1 Does high school mathematics achievement have a significant effect on the 
amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

Q5 Are there significant differences in self-efficacy, calibration, the amount of 
mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 

Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

Q7 In what ways do prospective secondary mathematics teachers’ 
mathematical problem-solving compare and contrast with the hypothesized 
relationships between self-efficacy, calibration, and performance in 
advanced mathematics?  

A primary purpose of the literature review (Chapter II) was to ground the research 

questions within social cognitive theory and related literature on mathematics self-

efficacy. In addition, the review of literature provided the rationale for directional effects 

in the structural model and led to the development of hypotheses (listed at the end of 

Chapter II) to correspond to each of the research questions. 

Brief Overview of the Research Design 

The research design incorporated a social cognitive perspective on cognition and 

academic achievement that emphasized the mediating roles of self-efficacy and 

calibration on students’ performance in mathematics. The methodology used a concurrent 

triangulation strategy for mixed-methods (Creswell, 2003), including a qualitative inquiry 
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to cross-validate and contextualize findings from a statistical model of students’ self-

efficacy, calibration, and performance in the content courses of a secondary mathematics 

teacher education program at a single mid-sized (enrollment of about 12,000) liberal arts 

university in the Rocky Mountain West. Data collection included quantitative self-

efficacy surveys and exam performance scores for a sample of 195 students in 12 

advanced mathematics classes along with qualitative task-based interview responses from 

10 purposefully sampled participants. Details of the methodology appear in Chapter III. 

Dissemination of Findings 

The study findings were disseminated in three ways. First, this dissertation 

narrative was completed as part of the researchers’ doctoral degree requirements and 

made available to the public through the University of Northern Colorado’s library 

system. Second, the study and findings were summarized in a professional research 

presentation at a national conference on mathematics education and through research 

presentations in five U.S. mathematics departments that specialize in the preparation of 

secondary mathematics teachers. Finally, the researcher expects to synthesize the study 

and findings into a scholarly article and to submit the article to a peer-reviewed 

mathematics education journal. The intended audience of the dissertation and research 

presentations was primarily faculty responsible for preparing future secondary 

mathematics teachers, including mathematics professors and teacher educators, but also 

included educational psychologists, educational researchers, secondary mathematics 

majors, and those interested in the self-beliefs of students in advanced mathematics 

courses. 
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Significance of the Study 

The aim of this section is to outline some anticipated implications of the study for 

research, theory, and the preparation of secondary mathematics teachers; for a more 

detailed discussion of the significance of study in the context of study limitations, see 

Chapter V. Based on the review of literature and pilot studies, the research study was 

expected to (1) add to existing self-efficacy research by including an important and often 

overlooked population of participants, (2) partially fill a need for mixed methods studies 

in social cognitive research, (3) add to research on the mathematical content knowledge 

and self-beliefs of prospective mathematics teachers, and (4) inform the practice of the 

mathematical content preparation of prospective secondary mathematics teachers. 

First, the review of literature identified substantial needs for research addressing 

the self-efficacy and calibration of college students. The research design could lead to 

findings regarding the value of using these measures to predict student performance in 

advanced mathematics, as well as describe potential intervening effects of students’ prior 

achievement, gender, and college major. Moreover, the qualitative inquiry could suggest 

new quantitative avenues for evaluating the generalizability of themes emerging from the 

exploratory task-based interviews. 

Second, social cognitive theory posits a dynamic interplay between learners’ 

perceptions of their performance, self-assessments of capability, and academic choices 

(Pajares & Urdan, 2006), and this approach to learning necessarily admits the effects of 

rich constellations of context informed by life experience and culture (Bandura, 1997). 

However, nearly all existing mathematics self-efficacy research has employed 

quantitative methods (Usher & Pajares, 2008). This study, by blending quantitative and 
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qualitative techniques, was expected to help describe the context and processes through 

which self-efficacy and calibration influence performance among prospective secondary 

mathematics teachers. This mixed methods approach allowed both statistical testing of 

broad-scale effects and emergent inquiry into mathematics self-efficacy and calibration 

among preservice secondary mathematics teachers. 

Third, the research design had the potential to build on emerging understandings of 

social learning in mathematics as it relates to the practice of secondary mathematics 

teacher preparation. Future teachers need to know what mathematics they understand 

well (Ball & McDiarmid, 1989), and the study findings could help describe the qualities 

of, and processes supporting, the metacognitive aspects of mathematics learning related 

to self-efficacy and calibration among students taking advanced mathematics courses. 

These descriptions, by including the important population of prospective secondary 

mathematics teachers, can buttress efforts to prepare high school mathematics teachers 

that are realistically confident in their mathematical skills. 

Finally, the research design had the potential to help inform educational 

interventions to promote adaptive mathematics self-efficacy in the content courses of 

secondary mathematics teacher preparation programs. Citing evidence of overconfidence 

in students at every educational level, Pajares and Miller (1997) highlight the significance 

of developing a better understanding of calibration in mathematics students because of 

the import of affecting students’ calibration:  

It may be more important to develop instructional techniques and intervention 
strategies to improve students' calibration than to attempt to raise their already 
overconfident beliefs. Improved calibration should result in better understanding 
by students of what they know and do not know so that they more effectively 
deploy appropriate cognitive strategies during the problem-solving process. (p. 
216) 
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The quantitative and qualitative findings describing mathematical self-efficacy and 

calibration among secondary mathematics majors may help to suggest ways in which 

teacher educators and mathematics professors can set conditions in which students can 

develop robust and realistic perceptions of their mathematics competencies.  



22 
 

 

CHAPTER II 

REVIEW OF LITERATURE 

Imagine two friends, Casey and Jesse, preparing for a final exam in their calculus 

course. Throughout the semester, the study-buddies met to do homework a few nights a 

week, prepared together for exams, and experienced similar high marks on exams and 

graded assignments. Encouraged by her success in this and other mathematics courses, 

Casey is looking forward to the final exam. She expects to do about as well on the final 

exam as she did on the midterm exams, plans to study alone by rereading her notes, and 

will go to the final exam feeling calm and confident. Jesse, however, is concerned about 

the exam. Jesse tells her friend Casey that she is always worried about making “stupid 

mistakes” on exams, and she is worried that she may have forgotten much of the content 

from early in the semester. Besides, without Casey to help her study, Jesse does not like 

her chances of doing well on the exam. 

The hypothetical situation of Casey and Jesse just before the final exam raises 

some questions that can be partially answered by research into the interplay between 

academic experiences, self-efficacy, and performance. Will Casey’s self-assuredness in 

her mathematics abilities be likely to help or hinder her when it comes to her 

performance on the final exam? Do students who, like Jesse, have lower self-efficacy in 

an advanced mathematics course, become discouraged and study less than their more 

confident peers, or do they find ways to overcome their concerns to ultimately achieve 



23 
 

 

higher levels of performance? To what extent might Jesse and Casey’s performance in 

prior mathematics classes, their gender, or even the difficulty of their upcoming calculus 

exam influence their self-efficacy? 

This chapter describes a base of scholarly literature and conceptual framework on 

which the dissertation study rests. The first sections detail a theoretical foundation for 

approaching mathematics learning through concepts in social cognitive theory, including 

self-efficacy and the accuracy of confidence judgments. Next, the narrative narrows to 

research describing social cognitive views of mathematics performance, including 

empirical and theoretical models for mathematics performance that incorporate self-

efficacy and related motivational variables. This is followed by rationale for the 

hypothesized model for advanced mathematics performance used in the research. With 

the base of scholarly research supporting the variables and theoretical perspective, the 

review of literature culminates in research questions and hypotheses. 

Overview of Social Cognitive Theory 

Social cognitive theory originated in the neo-behaviorist research program of 

Albert Bandura in the 1950s and 1960s (Schunk, 2004), which included the classic 1961 

Bobo Doll experiment at Stanford University. The Bobo Doll experiment traced increases 

in aggressive behaviors in preschool children to observing peers or cartoons displaying 

similar behaviors on film (Bandura, Ross, & Ross, 1963). Bandura’s experiments gave 

evidence for learned aggressive behaviors in conditions that contained no observable 

reinforcements. These and related results contrasted sharply with Skinner’s operant 

conditioning learning theory, which was the dominant learning theory at the time in 

psychology (Pajares & Schunk, 2001). To help explain the Bobo Doll experiment 



24 
 

 

findings, Bandura developed a social learning theory that emphasized observational (or 

vicarious) learning through behavioral and cognitive modeling.  

Embracing the fact that much human learning occurs in social contexts, social 

cognitive researchers initially focused on processes that link observed behaviors, social 

comparisons, and personal motivation, such as response facilitation (going along with the 

crowd), inhibition (observing others being punished), disinhibition (observing others not 

being punished), and the attention, retention and production of modeled skills (Schunk, 

2004). Research results suggested observational learning can be influenced by (1) 

intellectual and physical development, (2) the perceived prestige of models, (3) vicarious 

experience of the consequences of modeled behaviors, (4) personal goals and outcome 

expectations, and (5) perceived self-efficacy in a given domain (Schunk, 2004).  

Following the emphasis on observational learning in the 1960s and 70s, social 

cognitive theory evolved to incorporate principles in the social constructivism paradigm 

(Simon, 1999), and grew to focus on the causal processes underlying the effects of self-

beliefs on behavior (Bandura, 1995). In the modern social cognitive view of learning as 

an agentic process, people rely on self-perceptions to choose actions that exert influence 

and establish control over their environment. This agency results in a triadic reciprocality 

between personal factors (i.e., cognitive, affective, and biological), behaviors, and 

external stimuli (Schunk, 2004). Theorists consider three broad types of personal 

cognition to have mediating effects on the reciprocal nature of social learning: self-

efficacy, self-regulation (e.g., Zimmerman & Schunk, 1989), and outcome expectancies 

(Bandura, 1997). Of the three mediating constructs, the study focused on self-efficacy, 

which Bandura (1997) cites as having the strongest mediating effect on learning. The 
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following section defines self-efficacy and places it in the context of related constructs in 

educational psychology. 

Self-Efficacy and Related Constructs 

Definition of Self-Efficacy 

Bandura (1997) defined perceived self-efficacy as “beliefs in one’s capabilities to 

organize and execute the courses of action required to produce given attainments” (p. 3). 

Together with the social cognitive view of knowledge as personally and socially 

constructed within cultural milieus (Simon, 1999), perceived self-efficacy can include 

self-confidence in one’s ability to exercise control in a variety of circumstances, such as 

self-efficacy to regulate affective (emotional) states, to change social conditions, or to 

achieve a desired performance level on a mathematics test. According to Bandura (1997): 

[Self-efficacy] beliefs influence the courses of action people choose to pursue, 
how much effort they put forth in given endeavors, how long they will persevere 
in the face of obstacles and failures, their resilience to adversity, whether their 
thought patterns are self-hindering or self-aiding, how much stress and depression 
they experience in coping with taxing environmental demands, and the level of 
accomplishments they realize. (p. 3) 

Thus, self-efficacy is primarily important to educational researchers because of 

the effects of self-efficacy on students’ choices, motivation, and persistence (Bouffard-

Bouchard, 1990). Although Bandura’s preceding quote seems to ascribe a kind of 

universality to the influence of self-efficacy on one’s life, the meaning and role of self-

efficacy in learning can be better operationalized by considering related constructs in the 

theory of academic motivation. 

Self-Efficacy in the Context of Academic Motivation 

Educational psychologists who focus on academic motivation point to a 

constellation of self-beliefs, or set of conceptions one has about oneself (Pajares & 
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Schunk, 2002), that combine in complex ways to influence learning. Thus, one way to 

operationalize the meaning of self-efficacy in mathematics learning is to consider self-

efficacy in the context of other related self-belief constructs. Table 3 includes examples 

of self-belief statements in mathematics that typify some constructs in academic 

motivation literature that have similarities with self-efficacy, including self-concept of 

ability, self-esteem, outcome expectancies, locus of control, affective confidence, goal 

orientations, and social comparisons.  

Table 3.  

Examples of Self-Belief Statements Related to Mathematics 

Statement Motivational Construct 

I can solve this quadratic equation. Self-efficacy 

I can earn at least a C in mathematics class this semester. Self-efficacy 

I am really good at graphing functions. Self-concept of ability 

I am smart in mathematics. Self-Esteem 

I will earn at least a B on my algebra test tomorrow. Outcome expectancy 

When I work hard, I tend to do well in mathematics. Locus of control (internal) 

My teacher will pass me if I turn in all my homework. Locus of control (external) 

I feel like I am ready to learn the quadratic formula. Affective confidence 

I want to earn at least a C on my algebra test tomorrow. Performance goal 

I want to understand function notation. Mastery goal 

I am better than my friends are at doing mathematics. Social comparison 

One of the oldest terms in modern psychology is self-esteem, which was defined 

by William James (1890) in the 19th century as feelings of self-worth that arise from 

accomplishing some fraction of what one wishes to accomplish. Decades later, a trend 
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emerged out of the humanistic movement in psychology during the 1960s through 1980s 

(Pajares & Schunk, 2001) that emphasized promoting feelings of self-esteem in school 

children with the hopes of providing a foundation for academic success. The self-esteem 

movement was challenged by policy critiques that self-esteem programs in schools 

promoted egocentrism and excessive praise (McMillan, Singh, & Simonetta, 2001). 

Among the hundreds of research studies into the link between self-esteem and 

performance, most reported weak associations between self-esteem and performance 

(Hansford & Hattie 1982). In their extensive review, Hansford and Hattie found the mean 

reported correlation between self-esteem and academic performance in 128 studies at the 

K-12 level to be r = 0.21, with reported values ranging from r = -.77 to r = .96. The 

authors interpreted these results as providing less-than-overwhelming evidence for the 

value of self-esteem programs, and suggested some forms of self-esteem—what 

McMillan and colleagues refer to as unearned self-esteem—may actually have 

detrimental effects on academic functioning.  

Widespread dissatisfaction with programs to promote self-esteem in schools 

(Pajares & Schunk, 2001) led to alternative formulations of what constitutes helpful self-

perceptions in academics, particularly the constructs of self-concept, goal structures, 

locus of control, and self-efficacy.  Among these, self-concept is most closely linked with 

self-esteem. Bong and Clark (1999) cite self-concept and self-efficacy as the two most 

researched self-related constructs in academic motivation theory, but also point to 

theoretical challenges when comparing self-efficacy and self-concept in academics.  

While self-efficacy toward a given task is generally used to mean “the conviction 

that one can successfully execute the behavior required to produce the outcomes” 
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(Bandura, 1997, p. 79), self-concept has many operational meanings in motivation 

literature.  Bong and Clark (1999) found self-concept most often refers to “one’s 

perception of the self that is continually reinforced by evaluative inferences and that it 

reflects both cognitive and affective responses” (p. 140). Self-concept of ability, refers to 

the cognitive component of self-concept, including descriptions (e.g., Can I do this task?) 

and self-evaluations (e.g., How well can I do this task?). In contrast, self-esteem 

encompasses the affective component of self-concept, and includes feelings of worth and 

approval or disapproval in a given learning domain. That is, self-esteem can be domain 

specific (e.g., self-esteem in mathematics may differ from self-esteem in reading) and can 

flow from one making what Moore and Small (2007) refer to as normative comparisons 

(e.g., Do I feel smarter after finishing my mathematics homework?) and social 

comparisons (e.g., Am I as good as my mother at doing mathematics?).  

Some theorists restrict self-esteem to mean only general feelings of personal 

worth (e.g., Branden, 1994) and refer to related feelings that are specific to a domain as 

affective confidence (Reyes, 1984). In summarizing affective cognitive research in 

mathematics learning, Reyes identified consistent, though moderate, positive associations 

between affective confidence in mathematics and mathematics achievement. Reyes cites 

Dowling’s (1978) Mathematics Confidence Scale as a reliable measure of affective 

confidence in mathematics in college students, and since affective confidence is the 

component of self-concept that is easily conceptually differentiated from self-efficacy, 

Pajares and Miller (1994) used a modified version of Dowling’s survey as their measure 

of self-concept in undergraduate mathematics students. 
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Self-concept and self-efficacy both include cognitive perceptions of one’s 

capabilities in a domain, but differ in generality and scope. A self-efficacy belief is 

restricted to “a judgment of one’s capabilities to execute specific behaviors in specific 

circumstances” (Pajares & Miller, 1994, p. 194), while self-concept can include general 

assessments of ability, feelings of self-esteem, and inferences about one’s performance in 

relation to their peers or perceived norms (Madewell & Shaughnessy, 2003). The more 

general scope of self-concept as a construct, along with the relative lack of consistent 

meaning of self-concept in research, is perhaps partly responsible for weaker and less 

consistent associations between self-concept and academic performance than those 

reported for self-efficacy and academic performance (Bong & Clark, 1999). In a path 

analysis of the mathematics performance of 350 undergraduate students in Georgia, 

Pajares and Miller (1994) found strong main effects of self-efficacy on performance and 

only moderate indirect effects of self-concept on performance. Moreover, participants’ 

self-efficacy ratings showed higher internal consistency than self-concept ratings, and the 

influence of self-concept on performance was largely accounted for by a meditational 

influence of self-concept on self-efficacy. 

While the preceding discussion situates self-efficacy in the context of self-esteem, 

self-concept, and affective confidence, some constructs in academic motivation theory 

encompass self-beliefs that do not directly reference capabilities, but nonetheless may 

influence academic success. In particular, intrinsic theories of motivation such as social 

cognitive theory view individuals’ actions as proactive efforts to reach desired personal 

or social goals. Achievement Goal Theory (Alderman, 1999) describes two types of 

personal goal orientations that influence motivation and achievement: mastery 
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orientations and performance orientations. Students with mastery orientations in a 

domain aim to learn because they believe learning in the domain is inherently valuable 

and meaningful, whereas students with performance orientations seek and evaluate levels 

of attainment by focusing on perceived normative or social standards (Urdan, 2004). 

While mastery goal orientations are typically associated with many of the same adaptive 

educational choices as self-efficacy, such as persistence, help-seeking, and taking-on new 

challenges (Urdan, Pajares, & Lapin, 1997), performance orientations have been 

associated with both adaptive and non-adaptive learning choices (Husman, Brem, and 

Duggan, 2005).  

Goal theorists generally view performance-avoidance goals (i.e., to avoid 

performing below some given level) as having negative effects on academic functioning 

(Elliot & Moller, 2003), but the relative merits of performance-approach goals (i.e., aims 

to perform up to some desired level) are disputed. In the context of self-efficacy, Elliot 

and Moller’s meta-analysis of performance-approach goals research identified a weakly 

positive effect of performance-approach orientations on students’ academic achievement 

and self-efficacy, but found inconsistent results regarding the influence of performance-

approach orientations on many other academic behaviors such as help-seeking and 

persistence. Midgley and Urdan (2001) found 7th grade mathematics students with 

performance orientations were more likely than students with mastery orientations to 

engage in self-handicapping behaviors, including avoiding studying and purposely not 

trying hard in mathematics classes. Likewise, students with performance-avoidance 

orientations engaged in more self-handicapping behaviors than those with performance-

approach orientations.  
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Zimmerman, Bandura, and Martinez-Pons (1992) investigated the potential 

influences of self-efficacy on middle school social studies students’ goal setting 

behaviors and academic performance. The authors’ path analyses identified direct effects 

of self-efficacy on test performance, grades, and expressing confidence to set and attain 

short-range goals. However, potential relationships between self-efficacy, goal 

orientations, and achievement among college mathematics students have received little 

research attention (Elliot & Moller, 2003).  

One notable exception to the lack of unification between goals research and self-

efficacy research is the work of Lent, Brown, and Hackett (1994), who suggest that self-

efficacy acts as an important mediator on the effects of prior achievement on outcome 

expectations, interests and goals, and future attainments. The authors’ general model (see 

Figure 2), though originally intended for adolescent career-choice behaviors, is 

particularly useful for setting self-efficacy in the context of the personal, contextual, and 

experiential constructs that affect academic choices. 

 

Figure 2. Lent and colleagues’ model of career-choice behaviors (1994, p. 88). 
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Self-Efficacy in Mathematics Education 

Beginning in the 1980s, studies of mathematics self-efficacy have linked students’ 

self-efficacy to complete mathematical tasks to a variety of educational outcomes, 

including problem solving performance and persistence (Bouffard-Bouchard, 1990), 

choice of college major (Betz & Hackett, 1986), and career interests (Lapan, 

Shaughnessy, & Boggs, 1996). In fact, Pajares and Graham (1999) explain why social 

cognitive theorists have devoted so much study to describing relationships between 

mathematics self-efficacy and achievement: 

The area of mathematics has received special attention in self-efficacy research 
for a number of reasons. Mathematics holds a valued place in the academic 
curriculum; it is prominent on high-stakes measures of achievement generally 
used for level placement, for entrance into special programs, and for college 
admissions; and it has been called a ‘‘critical filter’’ for students in pursuit of 
scientific and technical careers at the college level. (p. 125) 

Self-efficacy research has contributed potential explanations for some puzzling 

differences in students’ motivation for and interests in mathematics and mathematics-

related careers (Madewell & Shaughnessy, 2003), particularly in terms of differences in 

male and female students. For example, in their path analysis of the mathematics 

performance of 415 high school juniors, O’Brien, Kopala, and Martinez-Pons (1999) 

identified students’ gender and mathematics self-efficacy as having direct effects on 

mathematical career interests, with mathematics self-efficacy in turn influenced by 

students’ ethnic identity, prior academic achievement, and socio-economic status. In the 

post-secondary setting, Hackett and Betz (1989) found mathematics self-efficacy was a 

better predictor of choice of a mathematics-related college major among college students 

than indicators of either mathematics problem-solving performance or high school 

mathematics performance. The authors suggest men were more overconfident than were 
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women in their self-efficacy for mathematical problem solving, but also suggest 

participants of both genders tend to be moderately overconfident in their problem solving 

skills.   

A four-year longitudinal study by Lapan and colleagues (1996) looked at 

predictors of college major and interest in mathematics-related careers among 101 men 

and women from Grade 11 through the students’ junior year of college. Findings 

suggested mathematics self-efficacy played an important mediating role on the effect of 

high school mathematics experiences on choice of college major, but also pointed to the 

conclusion that students’ interests in mathematics-related careers were relatively stable 

over the course of the study. The authors concluded gender differences in mathematics 

self-efficacy and differing high school mathematics coursework, but not differences in 

mathematics performance, combined in influencing interest in mathematics-related 

careers: 

The decision to enter a math/science major was in large part a function of 
preexisting efficacy and vocational interest patterns. It is apparent that these 
young women received qualitatively different high school experiences, believed 
less in their ability to successfully perform math/science tasks, and consequently 
expressed less vocational interest than young men in mathematics. (Lapan et al., 
p. 288) 

The questions of potential gender or racial differences in mathematics self-

efficacy was also considered by Pajares and Kranzler (1995), who found no differences 

between male and female high school students’ mathematics performance, self-efficacy, 

or general mental ability, but found female students reported higher levels of 

mathematics anxiety.  The authors give evidence to suggest observed levels of 

mathematics anxiety have only weak direct influences on performance, whereas general 
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mental ability and mathematics self-efficacy display strong and approximately equal 

effects on both anxiety and mathematics performance for students of both genders.  

Similar to the Hackett and Betz (1989) and Pajares and Kranzler (1995) studies, 

Chen (2003) found no differences in mathematics self-efficacy between boys and girls in 

middle school, but did find boys expressed more overconfidence—tendencies for self-

efficacy ratings to exceed performance on matched tasks than girls did in making self-

efficacy judgments. Similar overconfidence was noted by Pajares and Kranzler as 

differing along both gender and race—high school boys were more overconfident than 

girls, and African American high school students were more overconfident than White 

high school students. Recently, Chen and Zimmerman (2007) suggested the lower 

performance of U.S. middle school students when compared to the performance of 

Taiwanese middle school students may be at least partially explained by a greater 

tendency for U.S. students (both male and female) to be overconfident in reporting self-

efficacy judgments. 

Sources of Mathematics Self-Efficacy and Gender 

Bandura (1997) proposed that an individual’s self-efficacy in a domain such as 

mathematics develops through experience in the domain and the individual’s perceptions 

of four sources of information: (a) authentic mastery experiences, (b) vicarious 

experiences, (c) verbal or social persuasions, and (d) emotional and physical states. Both 

exploratory factor analyses (Lent, Lopez, Brown, & Gore, 1996) and experimental 

interventions (e.g., Hackett, Betz, O’Halloran, & Romac, 1990) have supported 

Bandura’s theory that self-efficacy beliefs are based on the four sources (see Usher & 

Pajares, 2008 for a synthesis of the literature). Nonetheless, the relative influences of the 
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four sources on the self-efficacy of individuals may differ substantially across domains, 

across individuals, and even within an individual when considering self-efficacy for 

different areas of competence (Zeldin, 2000).  

The ways in which students experience and come to internalize information from 

each of the four sources of self-efficacy in mathematics appears to have measurable 

influences on their success and persistence in mathematics (Usher & Pajares, 2008). 

Students’ reports of their perceptions of each of the four sources of self-efficacy have 

been linked to mathematics performance (Lopez & Lent, 1992), interest in mathematics-

related careers (Lent et al., 1994), and gender differences in mathematics performance 

and self-efficacy (Campbell & Hackett, 1986). 

Mastery, or performance, experiences are widely considered to be the most 

influential source of self-efficacy for individuals in most learning domains:  

Authentic mastery of a given task can create a strong sense of efficacy to 
accomplish similar tasks in the future. Alternatively, repeated failure can lower 
efficacy perceptions, especially when such failures occur early in the course of 
events and cannot be attributed to lack of effort or external circumstances. 
Continued success, on the other hand, can create hardy efficacy beliefs that 
occasional failures are unlikely to undermine. (Zeldin & Pajares, 2000, p. 216) 

Lent and colleagues’ (1996) factor analysis of college students’ responses to a sources of 

self-efficacy survey identified mastery experiences as so dominant in self-efficacy 

formation as to lend some support to utilizing a two-factor model for sources of self-

efficacy in statistical modeling: Mastery Experiences and Other. Showing the potential 

for proximal mastery experiences as having almost immediate effects on self-efficacy, 

Hackett and colleagues (1990) documented that undergraduate psychology students’ 

success or failure on mathematics tasks directly influenced their self-efficacy ratings on 

subsequent tasks. However, the authors found no effects of these mastery experiences on 
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students’ interests in mathematics-related careers or more general academic self-efficacy, 

which suggested that experimental manipulation of self-efficacy may have limited lasting 

effects.     

 While mastery experiences have received substantial research attention as the 

primary source of self-efficacy, little research has addressed students’ use of the three 

other sources of self-efficacy, especially learners’ perceptions of vicarious experiences 

and emotional and physical states. Vicarious experiences are thought to influence self-

efficacy through observational learning mechanisms: if one observes others succeed or 

fail after attempting a mathematics task, for example, it may influence his or her self-

efficacy to complete a similar task successfully (Bandura, 1997). The construct of 

vicarious experiences as a source of self-efficacy seems particularly suited for qualitative 

techniques, but the review of literature identified no qualitative investigations of the role 

of vicarious experiences as a source of mathematics self-efficacy. 

One important qualitative inquiry into the sources of mathematics self-efficacy is 

Zeldin’s (2000) investigation of men and women in mathematics-related careers. Zeldin 

interviewed 10 men and 15 women in mathematics-intensive technical careers regarding 

their career choices and early experiences with mathematics. To develop a naturalistic, 

emergent theory on participants’ experiences of the four sources of self-efficacy, Zeldin 

never specifically asked participants about self-efficacy or the four sources. Zeldin’s 

analysis of the participants’ career narratives suggested that men relied primarily on 

mastery experiences, especially in early college mathematics coursework, in forming the 

self-efficacy to pursue a mathematics-related career. Women’s mathematics career self-

efficacy was primarily founded on social persuasions and vicarious experiences. That is, 
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women developed beliefs in their capabilities to become a mathematician, chemist, or 

computer programmer primarily through encouragement from friends, family, and 

respected others, as well as by internalizing the belief that other women’s success in 

mathematics meant they could succeed too: “Women rely on relational episodes in their 

lives to create and buttress the confidence that they can succeed in gender-unfriendly, 

male-dominated, domains” (Zeldin, 2000, p. 2). This difference may be quantifiable—

Lent, Lopez, and Bieschke (1991) found differences in sources of self-efficacy helped 

explain gender differences in self-efficacy among college students.  

A secondary aim of the study was to add to Zeldin’s (2000) findings into the 

sources of self-efficacy in men and women in mathematics-related careers to the specific 

arena of performance in advanced mathematics. Though women complete approximately 

equal numbers of advanced courses in high school (Davenport, Davison, Kuang, Ding, 

Kim, & Kwak, 1998), women undergraduates have been historically underrepresented in 

advanced college mathematics coursework and have been reported to be historically 

much less likely than men to express interest in pursuing a graduate mathematics degree 

(Mura, 1987). In contrast to Zeldin’s career-level investigation of the sources of 

mathematics self-efficacy, this dissertation study investigated the self-efficacy and 

calibration of men and women enrolled in advanced college mathematics coursework 

through both quantitative and qualitative methods. Through task-based interviews, the 

qualitative inquiry also helped to extend Zeldin’s findings as well as triangulate the 

quantitative findings regarding potential gender differences in performance, self-efficacy, 

and calibration.
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Calibration 

In educational psychology, a propensity toward overconfidence or 

underconfidence in one’s self-evaluations indicates poor calibration, which is defined as 

the accuracy of evaluative judgments in relation to performance on similar or identical 

tasks (Schraw, Polenza, & Nebelsick-Gullet, 1993). A person has good calibration in a 

domain if his or her confidence levels for tasks in the domain align well with subsequent 

performance; poor calibration means substantive discrepancies between confidence 

ratings and actual performance (Pajares & Kranzler, 1995). Calibration is a component of 

metacognition—knowledge about, or efforts to regulate and monitor, one’s thinking 

(Schunk, 2004)—in the sense that calibration indicates “how aware individuals are of 

what they do and do not know” (Stone, 2000, p. 437).   

Studies of calibration usually address either prediction calibration—the accuracy 

of self-efficacy judgments made prior to attempting a task (e.g., Chen, 2002)—or 

postdiction calibration, which refers to confidence ratings after completing a task (e.g., 

Lin & Zabrucky, 1998). Though typically studied using disparate theoretical perspectives 

(Schraw, 1995), a review of research into both prediction and postdiction calibration 

uncovered four common themes: (1) adults typically display moderately poor calibration 

in the form of overconfidence on difficult tasks and underconfidence on easier tasks, (2) 

calibration is influenced by task difficulty, (3) calibration is conceptually and empirically 

distinguishable from self-efficacy and outcome expectancies, and (4) calibration is 

associated with academic performance, especially in mathematics. 
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Prediction and Postdiction Calibration in Cognitive Science 

Calibration research began with experimental studies in the 1950s which 

demonstrated doctors were consistently overconfident in judging the accuracy of their 

diagnoses, especially when experimenters provided little feedback on the accuracy of 

prior diagnoses (Kahneman, Slovic, & Tversky, 1982). Researchers then contrasted the 

calibration of doctors with the calibration of other professionals that regularly express 

confidence in statements, such as meteorologists and stock analysts, and later focused on 

adults’ calibration on general knowledge tasks (Lichtenstein, Fischoff, & Phillips, 1982).  

The cognitive science approach to calibration research views calibration as a 

probabilistic “feeling-of-knowing accuracy” (Schraw, 1995, p. 326). Researchers ask 

participants to rate feelings of confidence for their answers to a series of multiple choice 

questions (e.g., I am 70% confident the answer I gave was correct). These postdiction 

confidence ratings are later compared to the percentage of correct answers to produce a 

calibration curve for each participant based on the relative difficulty of the tasks 

(Lichtenstein et al., 1982). Figure 3 shows a typical postdiction calibration curve, 

including a tendency toward overconfidence on less-difficult tasks and underconfidence 

on more difficult tasks.  This method for evaluating postdiction calibration requires 

participants to complete many—sometimes hundreds of—tasks with varying difficulty, 

and studies using this method often incorporate counter-intuitive statements (i.e., trick-

questions) in which adults are typically very poorly calibrated (Stone, 2000). 
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Figure 3. Typical adult postdiction calibration curve for general knowledge tasks 
(Adapted from Stone, 2000, p. 441). 

 O’Connor (1989) conducted an extensive review of calibration studies completed 

under the (probabilistic) cognitive science approach. Linking the results to contingency 

models in the behaviorist learning paradigm, O’Connor suggests adults’ prediction and 

postdiction calibration is linked to the context of the tasks, the rater’s familiarity with the 

task requirements and topic of interest, and the adequacy of feedback on the results of 

prior similar tasks. In light of the value cognitive science researchers place on 

probabilistic alignment between confidence ratings and performance, O’Connor cautions 

that assigning accurate probability values to feelings of confidence is a skill that few 

people develop without practice. However probabilistically inaccurate, he notes that 

confidence ratings from even inexperienced adult participants are typically reliable, with 

reported test-retest and split-half correlation coefficients in adults’ confidence ratings 

range from r = .72 to r = .85 in experimental calibration studies.  
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O’Connor’s (1989) review identified several exceptions to the often-reported 

trend toward overconfidence in difficult calibration tasks, including excellent reported 

calibration curves in contexts where participants had high task familiarity, such as 

weather forecasting by meteorologists and prediction of course grades by college 

students. In the specific situation of college mathematics, however, Mura (1987) found 

students often overestimated their final grades. Interestingly, men overestimated their 

final grade in college mathematics classes 61% of the time and underestimated only 13% 

of the time, while women overestimated their grade 51% of the time and underestimated 

23% of the time.  

 The accuracy of an adult reader’s beliefs in his or her understanding of textual 

material, or metacomprehension accuracy (Thiede & Anderson, 2003), is a calibration 

construct that has received substantial attention in reading education research (Zhao & 

Linderholm, 2008). This form of calibration has been operationalized as alignment 

between a reader’s confidence in their responses to reading comprehension tasks and 

their performance on the tasks. Maki, Shields, Wheeler, and Zacchilli (2005) found that 

prediction calibration in reading is strongly correlated to postdiction calibration (r = .83, 

p < 0.01), and that bias, or the signed difference in confidence ratings prior to taking a 

test and subsequent test performance, was the most predictive measure of 

metacomprehension accuracy. Moreover, task difficulty significantly affected 

metacomprehension accuracy—although low-ability readers were more overconfident 

than were high-ability readers, both high- and low-ability readers were more 

overconfident in their understanding of difficult reading passages than in their 

understanding of easier passages.  
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In their review of reading calibration (i.e., metacomprehension accuracy), Zhao 

and Linderholm (2008)  cite evidence that calibration is influenced primarily by readers’ 

familiarity with the content of reading passages and performance expectations, 

suggesting an anchor and adjustment perspective on the self-efficacy judgments of 

readers who expect to engage in reading comprehension tasks.   

[Readers] may anchor their judgments on pre-formed performance expectations 
and then adjust their judgments based on experiences with current tasks. 
Adjustments tend to be insufficient, so the final judgment values are biased 
toward the anchor. This anchoring and adjustment mechanism can be used to 
explain how metacomprehension judgments are influenced by both experiential 
cues and pre-formed performance expectations but seem to be affected by the 
latter to a greater extent. (Zhao & Linderholm, 2008, p. 7) 

Zhao & Linderholm’s (2008) anchor and adjustment approach to 

metacomprehension accuracy assumes adult learners use past reading and performance 

experiences to form general outcome expectations. Readers then adjust those 

expectations based on task-specific cues in forming self-efficacy judgments for individual 

tasks. This perspective situates calibration as a result of self-regulatory cognitive 

monitoring processes (Thiede & Anderson, 2003) that rely heavily on prior experiences. 

Although this fits into the Lent, Brown, and Hackett (1994) general model of academic 

choices discussed earlier (see Figure 2), a social cognitive view of calibration suggests 

self-efficacy influences anchor and adjustment processes by exerting powerful effects on 

motivation, effort, and persistence (Bandura, 1997). Moreover, social cognitive theory 

provides an alternative view of overconfidence in self-efficacy judgments. 

Interpretations of Overconfidence 

An assumption that overconfidence is maladaptive for performance underscores 

much of the calibration research.  Lichtenstein and Fischhoff (1980), for example, 

conducted experiments to improve the calibration of adults on general knowledge tasks 



43 
 

 

using only the rationale that externally adjusting an assessor’s confidence ratings is very 

difficult, “so one would like to have probability assessors whose assessments are 

unbiased to begin with” (p. 150). In taking the perspective of people’s use of intuition 

during situations of uncertainty, Fischbein (1987) sees probabilistic overconfidence as a 

very general tendency to hold unrealistically high feelings of confidence: “we are 

inclined to admit, with a feeling of absoluteness, statements which are objectively only 

weakly supported by empirical data or logical arguments” (p. 29). In Fischbein’s view, 

patterns of probabilistic overconfidence simply reflect internal cognitive tendencies 

toward feelings of certainty that do not coincide with the probabilistic form of certainty 

that is so highly-valued by cognitive science researchers. 

Social cognitive theorists suggest slight to moderate overconfidence is actually a 

good thing in many learning situations, because a belief that one is capable of 

accomplishing a task increases motivation and effort on the task, which in turn expands 

the possibilities of what someone can actually accomplish (Bandura, 1997).  Leading 

self-efficacy researcher Frank Pajares, in an interview with Madewell & Shaughnessy 

(2003), cautions against viewing overconfidence as academically maladaptive: 

What seems clear, however, is that we should not tinker with overconfidence. 
Tailhard de Chardin wrote that “it is our duty as human beings to proceed as 
though the limits of our capabilities do not exist.” Who can ever assess a student’s 
full potential with complete accuracy? Students surprise us all the time, just as we 
surprise ourselves. We should be careful about attempting to “calibrate” a 
student’s self-efficacy beliefs. Improving students’ calibration—the accuracy of 
their self-efficacy beliefs—is an enterprise fraught with potential dangers. 
Remember that the stronger the self-efficacy, the more likely are persons to select 
challenging tasks, persist at them, and perform them successfully. Efforts to lower 
students’ efficacy beliefs should be discouraged. (p. 397)  
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Prediction Calibration in Social Cognitive Theory 

Calibration in social cognitive theory refers to relationships between self-efficacy 

judgments and performance on a relatively narrow range of tasks in a specific domain 

(Bandura, 1997). Although the postdiction methodology common to the probability-

based cognitive science approach to calibration has been used extensively as an 

alternative to the social cognitive approach to calibration in social cognitive research 

(Bouffard-Bouchard, 1990), recent research has emphasized the latter form of prediction 

calibration (e.g., Chen & Zimmerman, 2007; Pajares & Kranzler, 1995).  

Unless otherwise noted, in the remainder of this document calibration refers to 

the social cognitive view of prediction calibration which relates self-efficacy judgments 

and performance on similar or identical tasks.  

The social cognitive theory method for assessing calibration allows for 

distinctions between accuracy and bias (Schraw, 1995). Using common scales for 

performance and self-efficacy (e.g., Chen, 2003 used scores from 0 to 5), an individual’s 

bias on a task is the signed difference of the performance score and self-efficacy rating on 

the task. That is, for a given task, bias = self-efficacy – performance, so that a positive 

bias score indicates overconfidence on a task, a bias score of 0 indicates perfect 

calibration, and negative bias indicates underconfidence. Accuracy is calculated by 

subtracting the magnitude of bias scores from the maximum possible performance score 

on an item (Pajares & Graham, 1999): accuracy = maximum performance score – | bias |. 

Thus, accuracy values fall between 0 and the maximum performance score, with greater 

values indicating better calibration on an item.  
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The sensitivity of calibration measures to assessment formats is particularly 

important because “if improved calibration is in part a function of self-efficacy 

assessment, then the assessment itself becomes a useful intervention to help students with 

this metacognitive capability” (Pajares & Miller, 1997, p. 216). Pajares and Miller used a 

crossed experimental design to assess the mathematics self-efficacy and calibration of 

327 middle school students assigned to one of four conditions corresponding to open-

ended vs. multiple-choice self-efficacy measures (i.e., continuous vs. ordinal scales) and 

open-ended vs. multiple-choice mathematics tasks. The authors found no differences in 

self-efficacy ratings across assessment formats, but found students’ calibration was 

significantly poorer on open-ended mathematics tasks. Pajares and Miller argue the 

poorer calibration exhibited by students on open-ended tasks suggests greater validity in 

calibration assessments based on open-ended performance tasks (i.e., calibration scores 

can improve by guessing on multiple-choice tasks).  

The Calibration of Self-Efficacy Judgments in Mathematics 

The review of literature identified a number of studies that incorporated 

prediction calibration of self-efficacy judgments in mathematics, most of which included 

students in Grades 5-12. Just two studies of mathematics self-efficacy and calibration 

among college students were found— Bouffard-Bouchard’s (1990) investigation of 

mathematics calibration among 64 Canadian college students, and Hackett and Betz’s 

(1989) study of mathematics self-efficacy, calibration, and college majors among 262 

U.S. college students. (The results of these two studies were addressed in the prior 

section on Self-efficacy in Mathematics Education.) 
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Some particularly cogent studies of mathematics self-efficacy and calibration at 

the middle and secondary levels include: (1) Ewers and Wood’s (1993) study of gender 

differences among gifted boys and girls in 5th grade mathematics, (2) Pajares and 

Kranzler’s (1995) study of general mental ability, gender, and ethnicity among 329 

students in an urban high school, (3) Pajares & Graham’s (1999) investigation of 

academic motivation, gender, anxiety, and gifted status among 273 first-year middle 

school students, and (4) Chen’s (2002, 2003; Chen & Zimmerman, 2007) studies of prior 

mathematics achievement, effort judgments, and self-evaluations following mathematics 

tests among middle school students in the U.S. and Taiwan. In particular, path models 

tested by Pajares and Kranzler (1995) and Chen (2003) heavily influenced the design of 

the dissertation study reported in subsequent chapters. 

Figure 4 illustrates the hierarchical model used by Chen (2003) in her path 

analysis of mathematics achievement, self-efficacy, and calibration. Chen found 

moderate effects of prior achievement on mathematics self-efficacy (β = .42) and 

calibration (β = .44), but even stronger effects of mathematics self-efficacy on 

performance (β = .50) and of calibration on mathematics performance (β = -.63). 

Inclusion of calibration in a linear regression model greatly improved the model—self-

efficacy alone explained 25% of the variation in mathematics performance, while self-

efficacy and calibration combined to explain 65% of the variation in mathematics 

performance. Self-efficacy had a very large direct influence on students’ post-test self-

evaluations of performance (β = .77), suggesting that U.S. middle school students’ self-

beliefs in their mathematics capabilities strongly influence their self-evaluations of 

performance after completing mathematical tasks.  
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Figure 4. Chen’s (2003) path diagram (all paths significant at α =.05). Hypothesized 
effects of gender on calibration, self-efficacy, and mathematics performance were not 
supported by the data, so were omitted.  

Though Pajares and Kranzler (1995) investigated the calibration of high school 

students’ mathematics self-efficacy judgments, they did not incorporate calibration 

measures into their path diagram for mathematics performance (see Figure 5). The 

authors did note, however, that calibration scores were moderately correlated with 

general mental ability (r = .42) and mathematics performance (r = .67), but were only 

very weakly correlated with self-efficacy ratings (r = .17). This finding echoes Chen’s 

(2003) finding that there was only a very weak effect of calibration on mathematics self-

efficacy (β = -.01), suggesting that mathematics self-efficacy and calibration exhibit 

independent effects on mathematics performance.  
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Figure 5. Pajares and Kranzler’s (1995) path diagram  (all paths significant at α =.01).  

It also worth noting that, although Pajares and Kranzler’s (1995) model 

incorporates general mental ability, high school mathematics level, and gender as 

variables influencing mathematics performance, the 61% of mathematics performance 

variance explained by their model is similar to the 69% of variance in mathematics 

performance explained by Chen’s (2003) model that included only self-efficacy, 

calibration, and prior mathematics performance as variables influencing mathematics 

achievement. 

Hypothesized Model for Advanced Mathematics Performance 

Informed by the review of literature, the quantitative strand of the study included 

a hypothesized structural model for mathematics exam performance that incorporates (1) 

high school mathematics achievement as an exogenous variable, and (2) the extent of 

mathematics in participants’ college major, (3) calibration, and (4) self-efficacy as 

endogenous variables. Formal hypotheses corresponding to the structured path diagram, 

shown in Figure 6, appear at the end of this chapter. Similar to Chen (2003), the study 

also included multivariate analysis of variance (MANOVA) tests for potential differences 

in endogenous variables by gender and the difficulty of exam items. 
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Figure 6. Hypothesized structural path model for performance in advanced mathematics.  
Arrows indicate unidirectional effects. 

Rationale for the Hypothesized Model 

The hypothesized model for advanced mathematics performance among college 

students represents a blending of constructs and directional influences arising from, and 

supported by, related literature. The model is based primarily on Chen’s (2003) path 

analysis of performance, self-efficacy, calibration, and effort among middle school 

students, but also includes the amount of mathematics in participants’ college major as an 

endogenous variable. Moreover, the model omits two constructs used in Chen’s study—

post-test self-evaluations of effort and performance—due to findings from the review of 

literature that the two measures add little conceptual or predictive value to the model 

beyond effects of pre-test self-efficacy evaluations and calibration, respectively. The 

inclusion of the amount of mathematics in participants’ college major reflects the 

literature review findings of marked differences in mathematics-related career choices 

associated with variation in mathematics self-efficacy. That is, students’ choices of 

college major indicate a broad form of mathematics self-efficacy in the sense that college 
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students are expected to typically choose a major they believe they are capable of 

completing. 

In hopes of placing the study in the context of the related literature, Table 4 

summarizes constructs identified appearing in studies that have investigated the 

relationships between mathematics self-efficacy and academic performance, along with 

indications of which constructs are addressed by the hypothesized model. 
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Table 4.  

Summary of Constructs in Studies of Mathematics Self-efficacy and Performance  

Construct Example References Included 

Self-Efficacy Chen, 2003;  
Hackett & Betz, 1989 

X 

Self-Concept Pajares & Miller, 1994  

Calibration 
Chen & Zimmerman, 2007; 
Bouffard-Bouchard, 1990 

X 

Math Anxiety Pajares & Graham, 1999  

Effort Chen, 2003  

Persistence Pajares & Graham, 1999  

Posttest Self-Evaluations Chen, 2003; Chen, 2002  

Task Difficulty 
Chen, 2003; 

Maki et al., 2005 
X 

Assessment Format Pajares & Miller, 1997  

Goal Orientations 
Elliot & Moller, 2003;  

Midgley & Urdan, 2001 
 

Math-Related Career Interests Lapan, et al., 1996  

College Major Hackett & Betz, 1989 X 

Prior Math Achievement O’Brien, et al., 1999 X 

General Mental Ability Pajares & Kranzler, 1995  

Gifted Status 
Ewers & Wood, 1993; 

Pajares & Graham, 1999 
 

Gender 
Pajares & Kranzler, 1995; 

Campbell & Beaudry, 1998 
X 

Socio-Economic Status O’Brien, et al., 1999  

Ethnicity 
O’Brien, et al., 1999;  

Pajares & Kranzler, 1995 
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The purpose of the preceding review of literature was to summarize self-efficacy 

and calibration research with the ultimate goal of developing a social cognitive model for 

advanced mathematics performance among college students in the target population. The 

hypothesized model was used in both the quantitative and qualitative strands of the 

inquiry. Nonetheless, review of literature in qualitative inquiries is often both emergent 

and cyclical (Patton, 2002), and additional review of literature supporting the qualitative 

inquiry emerged during data collection and interpretation. Partly because nearly all self-

efficacy research has been conducted within the quantitative educational research 

paradigm (Bandura, 1997), the qualitative inquiry was exploratory in nature and was 

informed by both the quantitative findings and a diverse collection of related literature.

Summary of Literature Review 

The preceding literature review outlines a conceptual framework supported by 

extensive empirical evidence suggesting self-efficacy and calibration have important 

influences on academic motivation and performance, especially in mathematics. Initial 

sections of the literature review described the concept of self-efficacy and distinguished it 

from related motivation constructs such as self-esteem, self-concept, outcome 

expectancies, and goal orientations. Extensive research in a variety of educational fields 

has documented self-efficacy as an important predictor of performance, effort, and 

persistence in mathematics. Following a discussion of self-efficacy research and concepts 

related concepts, the review summarized research into the concept of calibration, which 

suggested harboring accurate feelings of confidence is an important aspect of 

metacognition. 
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Following synthesis of theoretical and empirical models of mathematics 

performance from the social cognitive perspective, the review of literature ended with a 

hypothesized model for performance in advanced college mathematics. Though the 

review of literature in the qualitative strand of the inquiry was emergent and cyclical, the 

summary of the research into self-efficacy and calibration helped to lay the foundation 

for task-based interviews, including rationale for exploring the ways in which sources of 

self-efficacy and hypothesized relationships between self-efficacy, calibration, and 

mathematics performance may be characterized among prospective secondary 

mathematics teachers enrolled in advanced mathematics courses. 

Research Questions 

Recall the guiding research question: How do self-efficacy and calibration 

influence the exam performance of students enrolled in the advanced mathematics 

courses of a secondary teacher preparation program at a mid-sized liberal arts university? 

Four quantitative research questions arose directly from the hypothesized model 

(see Figure 6) for mathematics performance, including one question for each of the 

endogenous constructs in the model. Moreover, two research questions addressed 

potential differences in the endogenous variables by intervening variables identified in 

the review of literature as being especially pertinent to the target population: students’ 

gender and the difficulty of exam items. Finally, a single qualitative research question 

called for a holistic comparison of quantitative effects to the processes supporting 

relationships between self-efficacy, calibration, and mathematics performance within the 

important subpopulation of prospective secondary mathematics teachers.  
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Q1 Does high school mathematics achievement have a significant effect on the 
amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

Q5 Are there significant differences in self-efficacy, calibration, the amount of 
mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 

Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

Q7 In what ways do prospective secondary mathematics teachers’ 
mathematical problem-solving compare and contrast with the hypothesized 
relationships between self-efficacy, calibration, and performance in 
advanced mathematics?  

Based on the pilot study results and findings from the review of literature, the 

quantitative hypotheses pertaining to the six quantitative questions included: 

H1 High school mathematics achievement will have a moderate positive 
effect on the amount of mathematics in participants’ college major. 

H2 Both high school mathematics achievement and the amount of 
mathematics in participants’ college major have small positive effects on 
participants’ calibration. 

H3 High school mathematics achievement and the amount of mathematics in 
participants’ college major will have moderate positive effects on self-
efficacy. Calibration will have a small negative effect on self-efficacy. 

H4 High school mathematics achievement and the amount of mathematics in 
participants’ college major will have small positive effects on mathematics 
performance. Calibration will have a large negative effect on mathematics 
performance. Self-efficacy will have a large positive effect on 
mathematics performance. 
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H5 There will be no significant difference in self-efficacy, performance, or 
calibration by gender. There will be significant differences in the amount 
of mathematics in participants’ college major by gender, with males on 
average choosing college majors with more required mathematics courses. 

H6 There will be no significant difference in self-efficacy by item difficulty. 
There will be a significant difference in calibration by item difficulty, with 
a tendency toward overconfidence on more difficult exam items. 

The qualitative research question, regarding relationships between self-efficacy, 

calibration, and performance in the problem solving of prospective secondary 

mathematics teachers, was addressed using task-based interview methods and interpreted 

in the context of the conceptual framework derived from the review of literature. This 

included an emergent, naturalistic inquiry design which aimed to preclude a priori 

hypotheses (Patton, 2002) of potential themes that would emerge from the data. The aim 

of the qualitative research question was to help clarify the broad statistical trends 

identified in the quantitative research questions in the subset of participants with 

intentions of becoming secondary mathematics teachers. 
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CHAPTER III 

METHODOLOGY 

The purpose of the preceding chapters was to build the rationale and a conceptual 

foundation for a study of self-efficacy, calibration, and exam performance among college 

students enrolled in the mathematics courses required by a secondary mathematics 

teacher preparation program. The research problem, research questions, and significance 

of the study helped established a need for the study. Then, a basis for the study was 

established through an extensive review of self-efficacy and calibration literature and the 

development of a social cognitive model for performance in advanced mathematics. This 

suggested hypotheses regarding expected statistical effects among self-efficacy, 

calibration, high school mathematics performance, gender, the amount of mathematics in 

students’ college major, the difficulty of test items, and performance on advanced 

mathematics exams. 

Research Questions and Model 

The focus of the research design was a single guiding research question: How do 

self-efficacy and calibration influence the exam performance of students enrolled in the 

advanced mathematics courses of a secondary teacher preparation program at a mid-sized 

liberal arts university? To further narrow the scope of the investigation, seven research 

questions (Q1-Q7) accompanied a hypothesized structural path model (Figure 7) in 

guiding the research design and methodology. 
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Figure 7. Hypothesized structural path model for performance in advanced mathematics.  
Arrows indicate unidirectional effects. 

Q1 Does high school mathematics achievement have a significant effect on 
the amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

Q5 Are there significant differences in self-efficacy, calibration, the amount 
of mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 

Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

Q7 In what ways do prospective secondary mathematics teachers’ 
mathematical problem-solving compare and contrast with the 
hypothesized relationships between self-efficacy, calibration, and 
performance in advanced mathematics?
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To acknowledge the ways in which the ontological and epistemological 

orientations of the researcher influenced the research design and methodology, the 

following section describes the researcher stance. This is followed by a summary of the 

theoretical perspective, the setting, data collection and analysis procedures, and efforts to 

gather evidence in support of reliability, validity and trustworthiness for the study. 

Researcher Stance 

One characteristic that distinguished this study from other investigations of 

mathematics self-efficacy was the ontological and epistemological orientation informing 

the research design. Academic self-efficacy research has been conducted almost 

exclusively within the quantitative research paradigm (Lightsey, 1999), and the review of 

literature is dominated by discussion of cross-sectional and quasi-experimental studies of 

psychological constructs and mathematics achievement. As Simon (1999) explains, this 

reflects the post-positivist, neo-behaviorist history of social cognitive theory, but the 

theory has increasingly shifted to a social-constructivist orientation toward knowledge 

construction which includes concern for the many nuances of co-constructions of self-

efficacy, such as cultural efficacy and the influences of social norms and valued practices 

(Bandura, 1997). Thus, the research design incorporates many of the methods and 

constructs from social cognitive theory while retaining sensitivity toward the provisional 

nature of mathematics education research findings. The researcher ascribes to a pluralistic 

ontological orientation (Schwandt, 2001), which means there may be multiple “true” 

interpretations of human behavior depending on the context and viewpoint of those who 

might observe such behavior. 
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The researcher stance was also informed by a pragmatic orientation (Patton, 2002) 

toward educational knowledge claims in the sense that claims about learning and 

academic motivation were considered useful by the ways in which they contribute to 

practical understandings of teaching, learning, policy, and research. As in this study, 

pragmatic epistemologies are often evident in mixed methods research designs (Creswell, 

2003). The research questions drove the choice of methods, and quantitative and 

qualitative viewpoints were seen as complementary and potentially equally powerful in 

helping to answer the research questions. In particular, it is important to stress that the 

relatively larger quantitative component in the study, and commensurate choices in data 

analysis and voice, were not intended to indicate that the researcher places greater value 

in findings derived from statistics than findings derived from qualitative methods. 

The narrative voice in this study follows conventions in quantitative research that 

include omission of personal pronouns (e.g., “I”, “me”, “we”). This is intended to 

maintain consistency throughout the manuscript and was not intended to indicate a post-

positivist research orientation. Moreover, the researcher’s involvement with participants 

is probably best characterized as close to the “observer” dimension of the participant-

observer continuum in qualitative research (Creswell, 2007). This means a relative lack 

of engagement in the students’ mathematics experiences, which in turn limits the 

potential for in-depth, holistic, accounts of students’ development of course-specific self-

efficacy and calibration. Nonetheless, the researcher is sensitive to the calls for increased 

reflexivity (Glesne, 2006) in qualitative research and engaged in the research with 

intentions to make researcher biases explicit in the discussion of findings.  
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Theoretical Perspective 

Conceptual Framework 

The terms, concepts, and psychological constructs used in this study are primarily 

based in Bandura’s (1997) theory of self-efficacy and social cognitive learning theory. In 

addition, the cognitive science research into prediction and postdiction calibration, 

though approached through a different learning theory, informs much of the research. For 

example, the distinction between calibration bias and calibration accuracy was developed 

by Schraw (1995), whose cognitive information processing conceptual framework differs 

substantially from that of social cognitive theorists. Prominent concepts used in this study 

include self-efficacy, calibration, advanced mathematics, sources of self-efficacy, college 

major, exam performance, high school mathematics achievement, test item difficulty, 

gender, and prospective secondary mathematics teachers. Each of these concepts was 

described in detail in the introduction and review of literature, but the operational 

definitions are yet to be explicated. 

Definitions of Constructs and Indicators 

The purpose of this section is to describe operational definitions for the constructs 

and indicator variables used in the quantitative strand of the investigation. Some of the 

constructs, such as self-efficacy and high school mathematics achievement, have 

alternative conceptions in educational research, so the following definitions were 

regarded as local definitions of the constructs for data collection and analysis purposes 

and were not intended to encompass the full range of potential meanings for the terms. 

See the review of literature in Chapter II for additional detail on the diverse conceptions 

of the constructs. 
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High School Math Achievement is a latent construct indicated by three measures 

of students’ performance and course taking prior to attending college. Since college 

readiness is one goal of high school education in the U.S., students’ score on the 

mathematics portion of the ACT college readiness exam was one indicator of high school 

mathematics achievement and was denoted ACT Math. If only an SAT score was 

available, the score was converted to its approximate ACT equivalent (College Board, 

2008). ACT scores were gleaned from institutional records and could range from 11 to 

36. High school grade point average, denoted HS GPA, also provided a continuous 

indicator of high school achievement, with a theoretical range of 0 to 4. Finally, HS Self 

referred to students’ self-reported assessment of their performance in high school 

mathematics courses. Students’ responses to the question “Which of the following best 

describes how well you did in your high school math courses?” were coded on a Likert-

type scale ranging from 1 = really bad to 7 = excellent. 

Self-efficacy is a latent construct associated with students’ confidence in their 

abilities to correctly complete examination items in the minutes just prior to taking a 

regular exam. Indicators of this construct include numeric records of students’ responses 

on seven pre-exam survey items, each recorded in the interval 0 to 5. 

Since the instruments used to attain indications of self-efficacy were different for 

each final exam and each course, indicators of self-efficacy were constructed by ranking 

survey items by ascending class means. That is, the item on each of surveys that resulted 

in the lowest mean self-efficacy rating among students in a given section corresponded to 

the indicator variable SE Level 1. Students’ self-efficacy ratings on the item for which 

the mean self-efficacy in the class was next highest formed the indicator label SE Level 
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2, and so on. This assignment of students’ responses into indicators based on ascending 

class means formed seven indicators of exam self-efficacy ranging from a student’s self-

efficacy on the item for which the class was least confident (SE Level 1) to the student’s 

self-efficacy on the item for which the class was most confident (SE Level 7).  

Math in Major means the amount of required mathematics content in the students’ 

chosen college major. The total number of required semester credits with a university 

catalog prefix of MATH in a student’s college major (range = 3 to 45), labeled Required 

Math, represented the sole indicator of the Math in Major construct. 

Final Exam Performance, or simply Performance, is the latent construct 

associated by a student’s achievement on a regular in-class final exam. Performance on 

individual exam items was scored on a dichotomous scale (0 =  incorrect, 5 = correct ).  

As in the indicators of Self Efficacy, Level indicators of performance were 

formed by ranking seven final exam items according to ascending within-class mean 

performance during the final exam. For a given final exam, seven items were randomly 

sampled to be representative of the difficulty of items not included on the self-efficacy 

survey. That is, the mean class performance on non-self-efficacy items was calculated, 

items were stratified into seven quantile groups based on the rank-ordering of items, and 

a single item was sampled from within each of the seven quantile groups. For example, 

Performance Level 1, referred to students performance on the sampled final exam item 

with the lowest mean within-class performance. That is, Performance Level 1 represented 

students’ performance on the “hardest” sampled final exam item, while Performance 

Level 7 represented students’ performance on the “easiest” sampled final exam item. 
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Calibration is the latent construct indicated by the difference in students’ self-

efficacy rating and performance for the seven tasks on the final examination. Calibration 

bias scores for an individual task could range from -5 (underconfidence) to +5 

(overconfidence) for each task. As in the operationalization of self efficacy and 

performance indicators, level indicators of calibration bias, labeled Bias Level 1 through 

Bias Level 7, were constructed by including students’ bias scores on exam items 

corresponding to ascending within-class mean calibration bias scores. 

Gender is the self-reported sex of participants and was nominally coded 1 = 

Female and 2 = Male. 

Item Difficulty refers to the mean class performance of students on the final exam 

items presented to students on the self-efficacy surveys. Similar to the procedure used to 

order indicators of Final Exam Performance, the item difficulty for tasks presented on 

self-efficacy surveys were sorted rankings of within-class mean performance scores. For 

ease of interpretation, however, the rankings were reverse-ordered to represent 

descending mean performance. For example, a survey item with Difficulty Level 1 was 

the “easiest” survey item in the sense that highest percentage of people correctly 

completed the item. Difficulty Level 7, in contrast, would be considered the “hardest” 

survey item. 

Structural Equation Modeling 

The study incorporated a path model (Figure 7) for mathematics achievement that 

includes a saturated path diagram which posits multiple directional effects among several 

latent constructs, or unobservable variables. Constructs that are endogenous to (predicted 

by) one construct are often exogenous to (predictive of) another construct, and 
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measurement of these latent constructs necessarily permits the likelihood of measurement 

error. This measurement error and nesting of multiple dependent variables in directional 

relationships violates assumptions of standard multiple linear regression techniques 

(Snedecor & Cochran, 1989) and suggests structural equation modeling techniques. 

Structural equation modeling allows for simultaneous estimation of directional effects 

and measurement error among observed variables, called indicators, and latent constructs 

using through a blending of regression and common factor analysis of observed 

correlation structures (Schrieber, 2008). Structural equation modeling is thus a technique 

to analyze multiple directional effects among several latent variables, or constructs, in 

cases where each such construct can be approximated through one or more ordered 

indicator variables (Loehlin, 1987).  

In structural equation modeling, there are three important types of diagrams used 

to explain the constructs and indicators in the model. A structural path model 

encapsulates the hypothesized “paths” or directional effects between latent variables, and 

must be supported by theory and prior research (Hair, Anderson, Tatham, & Black, 

1998). The path model for this study is shown in Figure 7 and is supported by the review 

of literature in Chapter II. The second kind of diagram is called a structural measurement 

model (Byrne, 1998) and includes specification of the latent constructs which serve as 

common factors influencing the observed indicator variables in the model. While there is 

no fixed requirement for the number of indicator variables that “load onto” a construct in 

the measurement model, Hair and colleagues (1998) suggest validity of structural 

equation modeling is typically best when most constructs have 3 to 7 indicators. Finally, 

the structural model diagram specifies all the hypothesized relationships by including 
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both the effects between latent constructs (path model) and the effects of latent constructs 

on indicator variables (measurement model).  

A diagram of the hypothesized structural model in this study is shown in Figure 8. 

For convenience, measurement errors are sometimes omitted from drawings of the 

structural model diagram, and the structural path model is sometimes referred to simply 

as the structural model. The convention of denoting latent variables as ovals and indicator 

variables as rectangles (Schrieber, 2008) is retained throughout the report. 

 
Figure 8. Diagram of hypothesized structural model. Arrows between latent constructs – 
drawn as ovals – form the path model. Arrows from latent constructs to (observed) 
indicator variables – drawn as rectangles – form the measurement model. Measurement 
errors are indicated as small bidirectional arrows. 
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Research Setting 

The potential significance of this study was partly derived from the atypical 

mixture of students’ college majors at the research site. In relation to national norms, the 

mathematics department at the research site serves comparatively large numbers of 

preservice teachers, and many of the mathematics majors have chosen a secondary 

mathematics education. Before going into details regarding the population of students 

enrolled in advanced mathematics courses at the research site, it is informative to 

consider the national context concerning enrollment in advanced mathematics courses. 

The National Context 

According to the American Mathematics Society’s 2005 survey of mathematics 

departments, advanced mathematics courses such as calculus, differential equations, and 

linear algebra accounted for 43% (699,000) of the more than 1.6 million total student 

enrollments in college mathematics courses (Lutzer, Rodi, Kirkman, & Maxwell, 2007). 

However, the vast majority of this national enrollment comes from students majoring in 

engineering, computer science, and the physical sciences.  Lutzer (2002), for example, 

found that only a tiny proportion (0.6%) of U.S. incoming college freshman plan to major 

in mathematics, while about one-fourth (25-30%) of freshmen intend to major in a 

science or engineering field. Interestingly, the proportion of mathematics majors actually 

increases from freshman to senior student-populations, with 1% (12,363 of 1,199,579) of 

all U.S. bachelor’s degrees going to mathematics majors in 1998. 

Even among the relatively few students majoring in mathematics, there are 

considerable differences in students’ interests and purposes in taking advanced 

mathematics courses. For example, mathematics departments report many more students 
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majoring in applied mathematics and liberal arts mathematics in U.S. universities than 

students majoring in mathematics education (Lutzer, Rodi, Kirkman, & Maxwell, 2007). 

Lutzer and colleagues found 14,610 U.S. college students had declared applied or liberal 

arts mathematics as their major in 2005, compared to just 3,369 students majoring in 

mathematics education. Moreover, about 40% of U.S. mathematics majors are female 

compared to 60% of mathematics education majors (Lutzer et al.). The resulting diverse 

composition of interests and purposes in advanced mathematics courses poses a challenge 

to mathematics instructors and has the potential of affecting preservice secondary 

teachers’ performance through mediating motivational factors.  

Advanced Mathematics in the Research Site 

The secondary mathematics teacher preparation program in the research site 

requires 12 mathematics content courses including Calculus I-III, Linear Algebra, 

Discrete Mathematics, Abstract Algebra I & II, Modern Geometry I & II, Mathematical 

Modeling, Elementary Probability Theory, and History of Mathematics. While the 

required mathematics content courses reflect traditional content in the preparation of 

secondary mathematics teachers, there are some atypical characteristics of student 

enrollment and instructional strategies in the mathematics content courses.  

Partly due to the university’s liberal arts composition of student majors and 

special focus on preparing school teachers, a majority of students enrolled in the 

mathematics content core classes intended to major in mathematics or a related teaching 

field. Institutional records from the spring semesters of 2007 and 2008 indicated that 

approximately 42% of all students enrolled in mathematics content courses had declared 

a major in mathematics, a rather large percentage in light of the previously mentioned 
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national surveys indicating students majoring in mathematics constitute a small minority 

of advanced mathematics courses (Lutzer et al., 2007). Table 5 summarizes average 

spring enrollment by major in selected mathematics courses at the local university. 

Table 5.  

Enrollment by Major in Selected Mathematics Courses at the Research Site 

 
Calculus 

I 
Calculus 

II 

Elementary 
Probability 

Theory 
Discrete 

Mathematics 
Other 

Courses 
Total 

Mathematics 15.0 19.0 26.5 24.5 103.5 188.5 

Elem. Teaching 8.5 3.0 0.0 17.5 19.0 48.0 

Biology 28.5 1.0 0.0 0.0 1.0 30.5 

Chemistry 13.5 7.5 0.0 1.0 6.5 28.5 

Physics 5.0 8.5 1.0 1.5 11.0 27.0 

Earth Sciences 7.5 7.0 2.0 0.0 5.5 22.0 

Undeclared 10.0 3.5 0.5 1.5 1.5 17.0 

Pre-Profess. 8.0 3.5 0.0 0.5 1.0 13.0 

Business 6.5 1.0 0.5 0.5 3.0 11.5 

All Others 35.0 9.5 1.5 4.5 13.0 63.5 

Total 137.5 63.5 32.0 51.5 165.0 449.5 

Note. Enrollment counts are averages from the spring semesters of 2007 and 2008. 

In addition to the composition of students’ majors in advanced mathematics 

courses, the distribution of emphases for students who have declared a major in 

mathematics was also atypical at the research site. As of Fall 2008, there were 180 

students at the research site who had declared a major in mathematics (see Table 6). Of 

those, 125 (69%) declared an emphasis in secondary mathematics education, and 99 were 
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female (55%). Moreover, female secondary mathematics majors outnumbered male 

secondary mathematics majors almost 2 to 1 (82 to 43), indicating that gender differences 

in self-efficacy, calibration, or performance might relate to potential differences in 

students’ choice of college major emphasis at this university 

Table 6.  

Distribution of Emphases among Mathematics Majors by Gender, Fall 2008 

Emphasis Male Female Total 

Applied Mathematics 18 4 22 

Liberal Arts Mathematics 20 13 33 

Secondary Mathematics Education 43 82 125 

Total 81 99 180 

The unusual composition of students’ majors in advanced mathematics courses at 

the research site afforded a unique opportunity to investigate (1) relationships between 

the extent of mathematics in students’ choice of college major and their subsequent self-

efficacy, calibration, and performance in advanced mathematics coursework and (2) 

hypothesized roles of self-efficacy and calibration in the mathematics performance of 

prospective secondary mathematics teachers. Consequently, the task-based qualitative 

interview protocol was specifically designed to address calibration, self-efficacy, and 

problem-solving performance within the subpopulation of prospective secondary 

mathematics teachers.
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Research Sample  

Sampling Procedures 

With consent of instructors, all students enrolled in mathematics courses required 

for the secondary mathematics education major at the research site were invited to 

participate in the study; exceptions included only the four sections in which instructors 

did not administer an in-class final exam. In most cases, students were invited to 

participate in the quantitative strand of the investigation during a brief visit by the 

researcher to their classroom between the 6th and 10th week of the semester with 

informed consent (Appendix A) procedures approved by the Institutional Review Board 

at the research site. Follow-up letters inviting students to participate were sent by the 

researcher to students who were not present at the time of the in-class visit and included 

informed consent documentation.  

Expectations of participating instructors included: (1) reviewing self-efficacy 

surveys tailored to final exam items for representativeness and face validity, (2) 

providing exams to the researcher several days before administration, (3) allowing 

consenting students’ work on exams to be photocopied prior to grading, (4) working 

collaboratively with the researcher to construct tasks-based interview prompts for 

students in their mathematics classes.  

The qualitative sampling procedure was a form of criterion-based stratified 

purposive sampling (Mertens, 2005), with the goal of providing maximum variation in 

participants’ self-efficacy and calibration. Consenting students enrolled in seven sections, 

encompassing Calculus I, Calculus II, and Elementary Probability Theory, and were 

asked to complete self-efficacy instruments during their midterm examination in or 
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around the 8th week of the academic semester. Following analysis of the self-efficacy and 

performance data, those participants who reported a major in secondary mathematics 

education were ranked based on composite measures of self-efficacy and calibration and 

ultimately sorted into four efficacy-by-calibration groups: High Self-Efficacy/Good 

Calibration, High Self-Efficacy/Poor Calibration, Low Self-Efficacy/Good Calibration, 

Low Self-Efficacy/Poor Calibration. Up to four students from within each of these 

criterion-based groups were purposely sampled in consultation with the participating 

instructors with the goal of seeking maximum variation (Patton, 2002). 

Frankfort-Nachmias and Nachmias (2000) suggest that criterion-based sampling 

can introduce a regression effect that may threaten the internal validity of findings 

because of potential erroneous classifications of participants based on the initial criterion. 

However, the purposive nature of the qualitative sampling technique, together with the 

consultations with instructors, was designed to mitigate this threat. 

Sample Size 

There were 309 students enrolled in the 12 participating sections of advanced 

mathematics courses (M = 25.8, SD = 6.9). Of the enrolled students, 17 (6%) did not take 

a final exam and 40 (17%) were enrolled in two or more of the classes, yielding a 

potential sample of 252 unique students who finished the classes. Of these, 210 (83%) 

consented to participate; complete final exam and self-efficacy data were available for 

195 students. This sample size means that the analysis included data from 77% (195/252) 

of the students who completed at least one of the 12 participating mathematics classes. 

Most (36 of 40) students who were enrolled in more than one participating section 

were enrolled in two sections, and 4 students were enrolled in three sections. Students 
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enrolled in more than one section were invited to complete self-efficacy surveys and final 

exams in each of their classes, but only the data from the highest-numbered class in 

which they were enrolled were included in the analysis. 

 Table 7 summarizes the distribution of study participants by the class in which 

the students’ self-efficacy and final exam performance were included in the study. 

Approximate course numbers are also included in Table 7 as indicators of the academic 

level associated with participating sections. That is, 100-level courses are typically taken 

by Freshman, 200-level courses are typically taken by Sophomores, and so on. While the 

study includes data from students completing seven different course titles, about half 

(49%) of the data comes from students’ performance in Calculus I or II. 

Table 7. 

Distribution of Study Participants by Class 

Section Instructor Course Title Course No. n Subtotal % 

1 A Calculus I 130 20 28 
2 B Calculus I  16  
3 B Calculus I  18  

4 A Calculus II 140 18 21 
5 A Calculus II  23  

6 C Linear Algebra 220 8 4 

7 D Discrete Math 230 21 16 
8 D Discrete Math  10  

9 E Calculus III 240 11 11 
10 E Calculus III  11  

11 F Abstract Algebra II 320 22 11 

12 G Probability 360 17 9 

   Total 195 100 
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Instructors 

As shown in Table 8, the 12 participating mathematics classes were taught by a 

total of seven instructors. One instructor taught three of the 12 sections, three instructors 

taught two sections each, and the remaining three instructors each taught a single section. 

Five of the seven instructors were tenure or tenure-track mathematics professors, and the 

remaining two instructors were long-time lecturers at the research site; none of the 

sections were taught by graduate students, adjunct faculty, or part-time instructors. The 

instructors averaged 19.0 years of college mathematics teaching experience (SD = 11.5, 

range = 4 to 35). 

Participants 

Enrollment data available through the research site included several variables 

which were used to describe the study participants. These included age, academic level, 

gender, ethnicity, and participants’ declared college majors.  The paragraphs that follow 

summarize these characteristics in the context of the undergraduate student population at 

the research site.  

Age  

Participants ranged in age from 18 to 49 (M = 21.2, SD = 4.2). Most of the 

students (81%) were 18-22 years old, some of the students (11%) were 23-25 years old, 

or over 25 years old (7%). The fact that study participants were primarily traditionally-

aged undergraduate students was reflective of the undergraduate population at the 

research site, where enrollment records indicate over 90% of new students to the 

university are under 25 years old (L. Sappington, personal communication, 2009). 

Academic Level  
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The percentages of study participants classified as Freshman, Sophomore, Junior, 

and Senior were 28%, 28%, 25%, and 18%, respectively. This distribution differs 

significantly from the proportions of Freshman, Sophomore, Junior, and Senior levels at 

the research site (χ2 (3, N = 195) =16.43, p < .001), which were 24%, 21%, 23%, and 

32%, respectively. In particular, this suggests a slight to moderate under-representation of 

Seniors in the sample, possibly due to the facts that all of the participating classes were 

numbered 300 or below and many Seniors are involved in student teaching during the 

spring semester. 

Gender  

Study participants were almost exactly equally-distributed by gender (97 female, 

98 male). While the observed proportion (50%) of female students enrolled in advanced 

mathematics courses is substantially higher than national averages (Lutzer et al., 2007), 

the proportion of female students in the sample was less than the overall proportion 

(60%) of female undergraduate students at the research site (χ2 (1, N = 195) = 9.13, p < 

.01). 

Ethnicity 

As summarized in Table 8, most of the participants self-identified as Caucasian 

(83%), while some students self-identified as, in order of prevalence, Asian American, 

Hispanic American, Native American, or African American. The distribution of 

ethnicities among study participants was not significantly different from the distribution 

of ethnicities of undergraduates at the research site, χ2 (5, N = 195) = 2.68, p = .75. 
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Table 8. 

Ethnicity of Study Participants and Students at the Research Site 

Ethnicity 
Participants  
% (N = 195) 

Research Site  
% (N = 12,475) 

Caucasian 83 78 

Asian American 5 3 

Hispanic American 5 7 

Native American 1 1 

African American 1 3 

Other/Did Not Report 5 8 

 
College Major 

Though, all study participants were enrolled in at least one mathematics courses 

required for the secondary mathematics teacher preparation program at the research site, 

not all students were mathematics majors. Participants had declared a variety of college 

majors, most of which were related to sciences, teaching, or both. Table 9 summarizes the 

distribution of declared college majors among study participants. Approximately half 

(49%) of study participants declared their primary major in mathematics or mathematics 

education, including 12% of all students indicating a major in Elementary Education with 

a concentration in Mathematics and 37% indicating a major in Mathematics. About79% 

(34/43) of the female mathematics majors chose the secondary teaching concentration, 

while just 37% (19/30) of the male mathematics majors chose the secondary teaching 

concentration. Other common majors included Chemistry, Earth Sciences, Physics, 

Biology, Pre-Program (e.g., pre-medicine, pre-dentistry), and Undeclared.  
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Table 9. 

Declared Primary College Majors of Study Participants (N =195)  

Category Major Frequency 
%  

Subtotal 
% 

Math Education Elementary Education –  Mathematics  12 35 
Mathematics – Secondary Teaching 23 

Mathematics Mathematics – Liberal Arts 6 14 
Mathematics – Applied Mathematics 4 
Mathematics – Statistics  4 

Science Chemistry 10 28 
Earth Sciences 7 
Physics 6 
Biology 5 

Other Pre-Program 5 23 
Undeclared 5 
All Others 13 

 
Interview Participants 

As outlined in the procedures section, qualitative interview participants were 

purposely sampled based on the students’ ranking on calibration and performance 

measures for midterm examinations in seven of the participating classes, including 

sections of Calculus I, Calculus II, Calculus III, and Probability. Of the 117 consenting 

students who completed the selected midterm exams and self-efficacy surveys, 22 

students had declared a secondary mathematics teaching major. Twelve of these 

prospective students scored above the median in their class on the midterm exam (High 

Performance). Similarly, 12 of the secondary mathematics majors scored above their 

respective within-class medians on the calibration bias measures (High Calibration Bias).  

Using the self-efficacy and calibration classifications, a stratified purposeful 

sample of 12 students was selected from the 2 × 2 array of the Low and High levels of 
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Performance and Calibration Bias. From this initial sample, two students declined to 

participate in an interview, leaving 10 interview participants. The task-based interviews 

took place in the latter half of the semester (Weeks 12-13 of a 16-week semester), lasted 

between 29 and 65 minutes (M = 46.7, SD = 10.3), and produced data in the form of 

students’ work on interview tasks and transcribed audio-recordings.  

As shown in Table 10, the interview participants were spread approximately 

equally across Calculus I, Calculus II, and Probability classes, with 3, 3, and 4 students 

enrolled in the respective courses. Most (8 of 10) interview participants were female. 

Four interview participants were classified as High Performance and Low Calibration 

Bias, five were classified as Low Performance and High Calibration Bias, and one was 

classified as Low Performance and Low Calibration Bias. At the time of the interviews, 

five of the participants had attained the academic level of Sophomore, four were Juniors, 

and one was a Freshman. All interview participants were between the ages of 19 and 23. 
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Table 10. 

 Task-Based Interview Participants by Course and Other Selected Variables 

Participanta Course Age Gender Level Performance Calibration Bias 

Heather Calculus I 20 F Junior High Low 

Matthew Calculus I 23 M Sophomore High Low 

Megan Calculus I 19 F Freshman Low High 

Justin Calculus II 23 M Junior High Low 

Jackie Calculus II 20 F Sophomore High Low 

Nicole Calculus II 20 F Sophomore Low High 

Sarah Probability 20 F Sophomore Low High 

Jennifer Probability 21 F Junior Low Low 

Emily Probability 19 F Sophomore Low High 

Elizabeth Probability 21 F Junior Low High 

Note. aNames are pseudonyms. 

Overview of Research Design 

Quantitative Strand 

The quantitative strand of the study was typical of a structural equation modeling 

study in education, because it blends simultaneous solutions to multiple linear regression 

models with analysis of covariance across cross-sectional measures of self-beliefs (Hair 

et al., 1998). Data collection procedures included a background survey (Appendix B), 

self-efficacy surveys (Appendix C) in the few minutes just before in-class exams, and 

photocopies of students’ work on final exam tasks. Self-efficacy scales and calibration 

bias scores followed procedures that have been incorporated in several mathematics self-

efficacy studies (e.g., Chen, 2003, Pajares & Miller, 1994).  
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One important early question regarding data collection was whether to use a 

common self-efficacy and mathematics performance measure across all sections of 

participants in the study. Such a control measure would eliminate variation in item 

difficulty and academic content due to different examinations in the various courses. 

However, self-efficacy theorists stress the importance of domain and context specificity 

when asking learners to assess their mathematical capabilities (Bandura, 1997; Pajares & 

Miller, 1994). That is, a students’ self-efficacy in linear algebra is best measured by 

asking the student to rate their confidence to complete specific tasks related to their 

current linear algebra course. Moreover, evidence that self-efficacy ratings may be more 

reliable when students expect to complete tasks as part of educational requirements (Chen 

& Zimmerman, 2007) supports the value of providing authentic mastery experiences, 

such as regular in-class exams, as part of data collection procedures. Thus, self-efficacy 

surveys and mathematical performance tasks were selected from among the tasks chosen 

by instructors for in-class exams. 

Qualitative Strand 

The qualitative inquiry component of the investigation used purposive criterion-

based stratified sampling (Mertens, 2005) and semi-structured task-based interview 

methods (Seidman, 1998) that mirror the quantitative self-efficacy and calibration 

procedures. See Appendix D for the initial interview protocol. The criteria for interview 

sampling were partially derived from students’ performance on the quantitative measures 

in an initial midterm examination. Secondary mathematics education majors were ranked 

based on composite measures of self-efficacy and calibration and purposely sampled in 

an effort to seek maximum variation (Patton, 2002) in the interview data. The 45-60 



80 
 

 

minute task-based interview protocol (Appendix D) called for participants to rate their 

self-efficacy to complete 5 to 7 tasks related to their course, after which participants were 

asked to complete three tasks ranging in difficulty level. Analysis of the task-based 

interview data included thematic coding (Patton, 2002) using the hypothesized model for 

performance and the four sources of self-efficacy as initial codes, with revised codes 

emerging during data analysis. 

Model of the Mixed Methods Design 

The research design included what Creswell (2003) refers to as the concurrent 

triangulation strategy for mixed methods research. This strategy “is selected as the model 

when a researcher uses two different methods to confirm, cross-validate, or corroborate 

findings within a single study” (Creswell, p. 217). The concurrent triangulation strategy 

is a traditional way to incorporate quantitiative and qualitative data sources, benefits from 

the potential to off-set limitations inherent in each approach, and involves integration of 

results from each method during the interpretation phase. Figure 9 summarizes this 

strategy in Creswell’s diagram form. The capitalized letters in the quantitative strand, 

“QUAN”, indicates the relative emphasis on the quantitative strand of the inquiry in 

relation to the qualitative strand, the “+” indicates concurrent data collection in the two 

strands, and the vertical arrows indicate passage of temporal order in the design. 
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Figure 9. Model of the mixed methods design, concurrent triangulation strategy.  

Assumptions of the Research Design 

In addition to assumptions inherent in the theoretical perspective and social 

cognitive view of learning described earlier, several noteworthy suppositions are implicit 

in the research design: 

1) Advanced mathematics students can assign numeric values to feelings of 

confidence toward specific tasks in their courses. 

2) Latent psychological variables such as self-efficacy and calibration can be 

approximated by observable data (underlies the structural model). 

3) Participating students’ processes for evaluating mathematics self-efficacy 

on final exams are similar to those they report in a task-based interview.  

4) Final examinations have face validity and content validity (Creswell, 

2003) as measures of performance in advanced mathematics courses. 

  

Interpretation 
of Results 

QUAN 

Data Collection 
• Background surveys 
• Self efficacy surveys 
• Regular Exams 

Analysis 
• Descriptive statistics 
• Structural modeling 
• MANOVA 

qual 

Data Collection 
• Task-based interviews 
• Transcripts and documents 

Analysis 
• Thematic coding 
• Compare/contrast with model 
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Data Collection and Analysis 

The research design included data collection procedures meant to minimize 

interruptions to the research setting while still collecting valid data on students’ self-

efficacy and mathematics performance in proximity to regularly scheduled examinations. 

Table 11 summarizes the data collection timeline, which began during the 8th week of 

classes and ended the week after final exams during the 16th week of the semester. 

Important phases of the data collection timeline included administering informed consent 

procedures, collecting background data from all participants, administering self-efficacy 

surveys to participants during midterm exams in seven classes, recruiting and 

interviewing 10 participants, and working with instructors to develop and administer final 

exam self-efficacy surveys in a dozen mathematics sections during the final week of the 

semester. 
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Table 11.  

Timeline for Quantitative and Qualitative Data Collection 

Quantitative Strand Qualitative Strand During 

• Informed consent in 7 classes 
• Background surveys in 7 classes 
• Self-efficacy surveys during 

midterm exams in 7 classes 

 Weeks 8-9 

• Preliminary analyses of 
quantitative surveys and 
performance on midterms 

• Select stratified sample for 
task-based interviews 

• Recruit interview participants 

Weeks 8-11 

• Informed consent and 
background surveys in remaining 
classes 

 Weeks 11-13 

 • Conduct task-based interviews Weeks 12-13 

• Create final exam survey 
instruments with instructors 

 Weeks 14-15 

• Administer final exam surveys to 
all sections and copy student 
work 

 Week 16 

 

Instruments 

Self-efficacy instruments were developed in conjunction with the participating 

instructors during the week prior to the regular administration of exams. Once provided 

with an advance copy of an upcoming exam with instructor ratings of item difficulty, the 

researcher selected seven tasks from the exam to construct a self-efficacy survey that was 

representative of the content and difficulty of the exam. The instructor then checked the 

survey for face validity, and the potentially revised survey was administered to students 

in the few minutes just prior to the exam. See Appendix C for the self-efficacy surveys. 
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In addition to the construction and administration of self-efficacy surveys, the 

quantitative strand included data collection regarding students’ subsequent performance 

on mathematics exams. Performance on exam items was measured primarily through the 

researchers’ dichotomous ordinal scoring of each students’ response (0 = incorrect, 5 = 

correct) using answer keys provided by the instructor. Estimates of the percentage of 

inter-rater agreement between the researchers’ ratings and the instructors’ ratings on a 

randomly selected sample of students’ exams helped to indicate reliability in the 

performance scores. 

Though the study included 12 sections of advanced mathematics courses, there 

were eight essentially different final exams administered by instructors. That is, four pairs 

of sections were taught by the same instructor and received very similar final exams. The 

eight unique exams included between 14 and 49 graded items (M = 25.5, SD = 11.1) 

each, and study participants were evaluated by a mean of 23.5 (SD = 9.3) final exam 

items. Instructors administered final exams during university-scheduled 2 ½ hour time 

periods. Some instructors allowed students to continue working for up to an additional 30 

minutes, but no instructors reported a large number of students failing to finish the final 

exam in the time period allotted. All of the exam items had an open-response format and 

the instructors subsequently graded the exams for partial-credit as part of regular 

assessment in the classes. Photocopies of the instructors’ graded final exams were 

collected for 7 of the 8 final exams (all except abstract algebra). 

Although both the quantitative research questions and the qualitative research 

question aimed to provide insight into the relationships between self-efficacy, calibration, 

and performance in advanced mathematics exams, the analysis of data differed 
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substantially by the type of research question and the nature of data. The six quantitative 

research questions split into two basic types—those relating to the hypothesized model 

for performance in advanced mathematics (Q1-Q4), and those pertaining to potential 

differences in endogenous variables by gender and test-item difficulty (Q5 & Q6). Task-

based interview data served as the resource for addressing the qualitative research 

question (Q7). The researcher analyzed the interview data using thematic coding and 

descriptive vignettes (Patton, 2002). 

Analysis of Quantitative Data 

The first four research questions (Q1- Q4) addressed effects posited by the 

structural path model of performance in advanced mathematics. Structural modeling was 

conducted using R, the open source implementation of S-Plus, and relied heavily upon 

structural model fitting routines in the package sem (Fox, 2009). The sem implementation 

of structural equation modeling used similar specification conventions and produced 

similar statistical reports as the structural modeling program LISREL (Joreskog & 

Sorbom, 2008). Consequently, the modeling procedures followed guidelines developed 

by Mels (2006) and Byrne (1998) and reporting of structural modeling results followed 

guidelines by Schrieber (2008). 

While structural equation modeling can be used for a variety of purposes, 

including confirmatory factor analysis and simple regression analyses, the data analysis 

procedures followed a seven stage process outlined by Hair and colleagues (1998, p. 592-

616). The initial three of Hair and colleagues’ seven stages have been described in the 

review of literature and theoretical perspective: (1) developing a theoretically based 

model, (2) constructing a path diagram corresponding to causal relationships, and (3) 
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converting the path diagram into structural and measurement models. The remaining four 

stages are reported in the structural modeling results at the end of Chapter IV, including 

(4) choosing the input matrix type and estimating the proposed model, (5) assessing the 

identification of the structural model, (6) evaluating goodness-of-fit criteria, and (7) 

interpreting and modifying the model. 

The final of the preceding stages suggests the possibility of analyzing alternative 

specifications of models for the data. However, “any application of structural equation 

modeling should have a steadfast reliance on a theoretically based foundation for the 

proposed model and any modifications” (Hair et al., 1998, p. 616). For this reason, the 

structural modeling procedures did not include consideration of alternate constructs, but 

rather focused on the removal of hypothesized directional effects of indicators or 

constructs not supported by the correlation matrix (Suhr, 2008). 

The reporting of findings followed Stage, Carter, and Nora’s (2004) suggestions 

for path analytic research designs: (1) explicit model construction based on literature, (2) 

discussion of all preliminary analyses, (3) report of fit indices for all examined models, 

(4) illustration of final model, (5) discussion of findings in the context of previous 

research.  

Research questions Q5 and Q6 relate to potential differences in endogenous 

variables in the structural diagram (e.g., self-efficacy, calibration, mathematics 

performance) by gender and item difficulty, respectively. Because of the inter-correlated 

nature of the endogenous variables, and the fact that both gender and item difficulty are 

considered to be categorical, multivariate analysis of variance (MANOVA) procedures 

were appropriate (Stevens, 1996). Reporting of tests for significant differences by gender 
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and item difficulty was expected to follow Chen (2003), including Wilk’s λ-values and p-

values of the MANOVA tests, as well as means and standard deviations of the 

endogenous variables at each level of the categorical variables and post-hoc tests for 

differences by level of the categorical variable using Tukey’s honestly significant 

differences criterion. Moreover, the MANOVA analysis included checks for violations of 

the statistical assumptions of multivariate regression, including independence of 

observations, multidimensional normality of the dependent variables, and approximately 

equal covariance matrices of groups within each variable. In particular, Box’s M test 

(Stevens, 1996) was used to test for approximately equal covariance structures across 

levels of the categorical variables (gender and item difficulty). 

Two quantitative analyses served as indications of reliability in participants’ self-

efficacy ratings. First, the internal consistency of students’ responses was assessed using 

the Cronbach’s alpha statistic. Second, a portion of the self-efficacy surveys included a 

single pair of parallel items so that, with a sufficient number of such one-point 

measurements of split-half reliability in the students’ responses, a bivariate correlation 

between students self-efficacy on parallel tasks could give additional indications of 

reliability. Finally, the qualitative analysis of students’ responses triangulated indications 

of reliability derived from the quantitative analyses.  

In addition to the data analysis specifically designed to address the research 

question, it was also important to develop a richly descriptive account of the participants 

and the observed data. This included measures of shape, central tendency, and spread for 

all biographical, exogenous, and endogenous variables, including counts, means, standard 

deviations, tests for skewness and normality, box plots, and histograms to describe the 
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distribution of responses in each variable. Moreover, basic bivariate associations were 

investigated, including correlations and cross-sectional split-plots. 

Following the advice of Dr. Susan Hutchinson (2009, Personal Communication), 

an expert on structural equation modeling, the researcher followed some initial steps to 

verify the viability of the level-based indicators for the structural modeling. These 

included inspection of measures of internal consistency within the three constructs with a 

criteria of least Cronbach’s α = 0.6, significant inter-item correlations within indicators, 

and factor analysis of the indicators within a construct for significant factor loadings of at 

least β = 0.4 in a single factor principal component analysis. If the observed correlations 

met these criteria, the statistics served as evidence to support inclusion of the indicators 

and associated constructs in future structural model estimates. 

Analysis of Qualitative Data 

Analysis of the qualitative task-based interview data included thematic coding 

(Patton, 2002) of interview transcripts and artifacts from the participants’ problem-

solving efforts. In addition, quantitative calibration, self-efficacy, and performance 

results of interview participants on the midterm and final exams were integrated into the 

qualitative coding procedures, both as a cross-validation technique (Creswell, 2003) and 

as a form of data triangulation (Guion, 2002). 

The qualitative data analysis process also included further review of literature as 

themes emerged from the data. That is, the qualitative data analysis and review of 

relevant literature were viewed as a cyclical process, with results from both efforts 

informing the other. After data analysis was completed in each of the two research 

strands—quantitative and qualitative—results were compared and contrasted in the 
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interpretation of findings. It is in this data interpretation phase that the power of mixed 

methods research is most widely accepted (Creswell, 2003), and the goal was that the 

qualitative findings would help clarify, contextualize, and extend the statistical trends 

identified through the structural equation modeling and MANOVA techniques. 

Reliability and Validity in the Quantitative Strand 

In the post-positivist perspective on the quality of quantitative data collection and 

analysis, it is important to consider the reliability and validity of measures, procedures, 

and constructs in the research design. Many of the data collection procedures were 

designed to support claims of validity, including (1) the use of self-efficacy and 

calibration protocols that mirrored procedures used in related literature and two pilot 

studies at the research site, (2) repeated measures of self-efficacy, calibration, and 

performance for students in 7 of 12 class sections, (3) checks for response bias on self-

efficacy surveys, (4) a background survey design based on analysis of registration data at 

the research site in the two previous spring semesters, and (5) analysis procedures that 

help to evaluate the statistical power of findings from structural equation models and 

MANOVA techniques. Nonetheless, all research designs include trade-offs, and the 

cross-sectional nature of the research design and inclusion of authentic assessment tasks 

introduces variation in students’ responses by instructor and class section which may 

threaten the reliability of self-efficacy, calibration, and performance measures. 

As summarized in the review of literature, self-efficacy and calibration are 

domain and task-specific psychological constructs and, in the case of advanced 

mathematics performance, are likely multi-dimensional in nature. As a result, standard 

measures of internal consistency, such as Cronbach’s alpha and Kuder-Richardson 
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formulae (Mertens, 2005), may provide limited information on the reliability of self-

efficacy and calibration data. However, O’Connor’s (1989) review of calibration research 

suggests test-retest reliability of self-efficacy and calibration measures is typically 

relatively high, with reported test-retest reliability coefficients ranging from .72 to .85. 

Chen (2003) reports parallel-task internal consistency coefficients to be .89 among her 

sample of middle school students, and composite measures of self-efficacy have been 

reported to be highly reliable, with Cronbach’s alpha values ranging from .86 to .92 

(Pajares & Graham, 1999).  Thus, three procedures regarding students’ self-efficacy 

ratings—measures of internal consistency, analysis of parallel-item reliability, and 

qualitative coding of self-efficacy ratings during task-based interviews—converged to 

provide complimentary information on the holistic reliability of self-efficacy ratings. 

Trustworthiness in the Qualitative Strand

Interpretations of qualitative findings are often considered in light of descriptions 

of research choices that affect credibility, transferability, dependability, authenticity, and 

confirmability (Mertens, 2005) in the research. Credibility is akin to internal validity in 

quantitative research and can be supported through prolonged engagement in the research 

field, peer debriefing, member checks, and triangulation measures (Guion, 2002). The 

research design specifically addressed credibility through the cross-validating prospects 

of mixed methods, multiple forms of data, and parallel quantitative survey and qualitative 

task-based interview protocols. Moreover, credibility was supported by theoretical 

triangulation (Patton, 2002) in the form of converging perspectives offered by the social 

cognitive and cognitive information processing views of calibration. 
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Several choices in the research design were aimed at strengthening the 

transferability and dependability of qualitative findings. In particular, purposive sampling 

of participants to using stratified groups, together with rich, thick descriptions (Glesne, 

2006) of the research setting and participants’ approaches to problem-solving tasks was 

used to help readers evaluate the potential utility of any findings in contexts outside of 

the research site. Moreover, a confirmability audit (Mertens, 2005) is provided in the 

report, including a thorough description of all stages of data collection and analysis that 

led to findings in the qualitative strand of the inquiry and a full list of the codes used in 

the thematic analysis of interviews (Appendix F). 

Authenticity, or presenting a balanced view of all perspectives, values and beliefs 

of participants in a research setting, is a critical element of qualitative reporting. This was 

partly addressed in the research design through the open-ended, think-aloud, task-based 

interview protocol, but was also addressed through qualitative inquiry strategies that 

emphasized the variety of students’ experiences of mathematics self-efficacy, calibration, 

and exam performance while avoiding tendencies to report general quantitative and 

qualitative trends as universalities or hard-and-fast rules. The aim of the qualitative strand 

of the inquiry was to include a sense of the wide personal variation that was more 

difficult to get from the statistical findings, and fairness to the multiple perspectives of 

participants was an important value informing the design, analysis, and reporting. 

Limitations and Delimitations in the Research Design 

While adding to limited educational research into the mathematics self-efficacy 

and calibration of college students in general, and preservice mathematics teachers’ in 

particular, the research design reflected many methodological choices regarding scope, 
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procedures, and criteria for drawing conclusions. These choices have narrowing 

consequences, or delimitations (Creswell, 2003), on the research value of findings 

flowing from the research design. One such delimitation was the choice of restricting data 

collection and analysis of participating students’ mathematics performance to traditional 

in-class examinations. Alternative measures of advanced mathematics achievement such 

as writing assignments, projects, take-home tests, and laboratory reports have been 

advocated by a number of mathematicians (Rosenthal, 1995) and were used by some 

instructors at the research site, but the measures of mathematics self-efficacy and 

performance focused only on traditional in-class examinations.  

Additional delimitations in the research design included restricting qualitative 

inquiry to a relatively small number (10) of interviews in seven mathematics classes at a 

single university. The trustworthiness of the narrative in the qualitative strand could have 

benefited from additional data sources such as classroom observations or interviews with 

faculty or member-checking of results with the interview participants. While the limited 

qualitative data flowed from the comparatively large quantitative component in the 

research, they also limited the potential generalizability of findings from the qualitative 

inquiry. However, generalization of characteristics from a sample to a target population is 

not necessarily an aim of qualitative inquiry (Patton, 2002), and the ultimate value of the 

qualitative strand derived from the transferability and trustworthiness (Mertens, 2005) of 

the holistic descriptions and thematic analysis which supported, contrasted, and added 

context to the broad statistical trends identified in the quantitative strand.  

The quantitative strand of the design focused on a limited number of potentially 

significant intervening variables (i.e., gender, item difficulty, high school mathematics 
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achievement, and item difficulty). Some intervening variables identified in mathematics 

self-efficacy research were not included in the research design, including general 

intelligence, math anxiety, academic level, goal structures, self-concept, learning 

disability, and socio-economic status (see Pajares & Urdan, 2006). Moreover, potential 

classroom-level effects of instruction on students’ mathematics self-efficacy were not 

included in the research design, largely because of the limited sample size and small 

number of participating instructors in the design. Finally, while the literature review 

suggested that mathematics self-efficacy develops over time with experience in the 

domain, the cross-sectional nature of the research design did not allow for inferences into 

the longitudinal development of mathematics self-efficacy. 

Several elements of the research design introduced limitations (Creswell, 2003), or 

potential weaknesses, in the study. First, the cross-sectional survey design did not include 

experimental control, time order, or manipulation, all of which are required to make 

claims about causality (Frankfort-Nachmias & Nachmias, 2000). That is, any statistical 

effects identified in the quantitative component of the design can only be used to explain 

relationships among variables and cannot provide evidence of causation. The lack of 

measures to control intervening variables such as instruction, while supporting the 

naturalistic case-study inquiry, also introduced threats to the internal validity of the 

research design, described by Colosi (1997) as the amount of evidence to support 

directional effects. For instance, there was potential for history effects (Frankfort-

Nachmias & Nachmias, 2000) in the form of variation in instructional practices across 

classes at the research site, and instrumentation effects in the form of differences in item 

difficulty and self-efficacy prompts presented to participants in different courses. The 
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research design included a snapshot (Creswell, 2007) of students’ academic behaviors 

and beliefs at a single point in time, and the limited study duration permits the possibility 

that observed relationships may have changed over time. 

There were also threats to the external validity of the research design in terms of 

generalizing findings and themes to populations outside of the participants at the local 

research site. While all students taking mathematics content courses at the research site 

which offer traditional in-class examinations had the opportunity to participate in the 

study, the study was limited to a single university in one academic semester and thus only 

included students and instructors involved in the mathematics courses for prospective 

secondary mathematics teachers in a narrow time-frame and specific context.  

Enrolled students were not randomly assigned to mathematics courses. The 

instructors and research site were not randomly sampled from the larger population of 

faculty members and universities that prepare secondary mathematics teachers in the 

United States. Readers of this report are encouraged to consider any findings and 

implications in light of these limitations and draw on the description of the research 

setting, participants, and methodology to evaluate the transferability of any findings to 

other settings containing secondary mathematics teachers and other students enrolled in 

advanced mathematics courses. 

Research Timeline 

Table 12 outlines the research timeline for the study, including the completed pilot 

studies and phases for data collection, analysis, and narrative summary of findings. 
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Table 12. 

Summary of the Research Timeline, Fall 2007- Spring 2010 

Research Phase Progress Completion 

Pilot Study (College Algebra) Development of survey 
instruments, data analysis 
methods, initial findings. 
Exploratory qualitative 
investigation. 

Fall 2007 

Pilot Study (Calculus I) Refinement of survey 
instruments, data analysis. 
Informed consent and 
survey methods. 

Spring 2007- 

Summer 2007 

Dissertation Proposal Literature review, 
conceptual framework, 
research design, methods, 
post-hoc analysis of pilot 
study data. 

Fall 2008 

Data Collection Inform consent, 
administration of surveys, 
observation of classrooms, 
task-based interviews. 

Spring 2009 

Data Analysis Statistical modeling, 
transcription and coding of 
interviews, analysis of 
observation data 

Summer 2009 

Dissertation  Completion Results, findings and 
discussion 

Fall 2009 

Defense Completion of dissertation, 
dissemination of findings, 
dissertation defense  

Early Spring 2010 
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CHAPTER IV 

RESULTS 

The purpose of this chapter is to summarize the results of the cross-sectional study 

described in the previous chapter. Building on the descriptive accounts of the participants 

and sample in the methodology chapter, the results include descriptive and inferential 

statistics arising from the process of addressing the seven research questions and five 

hypotheses. Results pertaining to the six quantitative research questions, given below as 

Q1 – Q6, arose from structural equation modeling and analysis of variance techniques. 

These quantitative findings were contextualized by findings regarding the single 

qualitative research question (Q7). 

Q1 Does high school mathematics achievement have a significant effect on 
the amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

Q5 Are there significant differences in self-efficacy, calibration, the amount 
of mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 
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Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

Q7 In what ways do prospective secondary mathematics teachers’ 
mathematical problem-solving compare and contrast with the 
hypothesized relationships between self-efficacy, calibration, and 
performance in advanced mathematics? 

Inherent in the first four research questions is the a priori structural model 

relating a single exogenous latent construct (high school mathematics achievement) to 

four endogenous latent variables (Figure 10). The theoretical rationale for the directional 

effects, which is central to the validity of the modeling procedures, is described in the 

review of literature in Chapter II. 

 

Figure 10. Hypothesized structural path model for advanced mathematics performance.  

Forthcoming sections in this chapter detail results of statistical analyses aimed at 

addressing the quantitative research questions and hypotheses. Initially, the findings 

focus on descriptive summaries of contextual and background information on the 

participants. Then, the narrative presents results of analyses of the statistical evidence 

regarding potential differences in the variables identified in research questions Q5 and Q6 

Final Exam 
Performance 

Math in 
Major 

HS Math 
Achievement 

Calibration 
Bias 

Self 
Efficacy 
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associated with participants’ gender and the difficulty of exam items. Next, the summary 

includes results of the structural modeling of relationships among the amount of 

mathematics in participants’ college major, high school mathematics achievement, self-

efficacy, calibration, and mathematical performance. Finally, the narrative addresses 

evidence supporting five qualitative themes surrounding the mathematics self-efficacy, 

performance and calibration of secondary mathematics majors.

Quantitative Data 

In cross-sectional research, inferential statistics and modeling results are better 

understood in the context of the distributional characteristics of study data (Schrieber, 

2008). Consequently, initial steps in the analysis of the quantitative data included 

descriptive summaries of indicator variables used in the structural modeling and 

composite measures of self-efficacy, calibration, and final exam performance. 

Continuous Indicators of Latent Constructs 

Table 13 includes descriptive statistics of the indicator variables for the latent 

constructs High School Math, Math in Major, Self-Efficacy, and Calibration Bias.  Some 

highlights of the indicator distributions include (1) ascending means for indicators of self-

efficacy and calibration by “level” with some negatively skewed self-efficacy indicators, 

(2) moderate-to-high ACT Math scores and self-assessments of high school mathematics 

performance, (3) skewed-left high school GPA scores with an apparent ceiling effect at 

4.0, and (4) bimodal distribution of required mathematics credits associated with 

students’ college majors. The following brief sections summarize each of these 

distributional characteristics. 
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Table 13. 

Descriptive Summary of Indicators for High School Math Achievement, Math in Major, 
Self-Efficacy, and Calibration Bias 

Construct Indicatora n M SD Scale 

HS Math Achievement ACT Math 132 24.9 3.9 14 to 36 
HS GPA 133 3.4 0.6 0 to 4 
HS Self 195 4.6 1.1 0 to 7 

Math in Major Required Math 177b 23.0 15.2 3 to 45 

Self-Efficacy SE Level 1 195 2.9 1.3 0 to 5 
SE Level 2 3.2 1.2 
SE Level 3 3.5 1.1 
SE Level 4 3.7 1.1 
SE Level 5 4.0 1.0 
SE Level 6 4.2 1.0 
SE Level 7 4.5 0.9 

Calibration Bias Bias Level 1 195 -0.4 1.8 -5 to 5 
Bias Level 2 0.2 2.2 
Bias Level 3 0.4 2.2 
Bias Level 4 0.9 2.3 
Bias Level 5 1.2 2.4 
Bias Level 6 1.5 2.4 
Bias Level 7 1.9 2.4 

Note. a“Level” indicator were formed by ascending within-class means. bMissing values 
for Required Math correspond to ambiguous majors (e.g., “undeclared”, “pre-program”). 
SE = self-efficacy rating, HS GPA = high school grade point average (capped at 4.0); HS 
Self = self-assessment of high school mathematics performance, Required Math = 
number of semester mathematics credits required by declared college major.  

Indicators of Self-Efficacy and Calibration Bias 

As described in the methodology and evidenced in Table 13, means of the 

indicators for self-efficacy and calibration bias are ascending by “level.” For example, a 

student’s SE Level 1 rating indicates belief in being able to complete the mathematical 

tasks in which his or her classmates expressed the lowest collective rating. The indicators 

of self-efficacy suggested students’ mean self-efficacy ranged from M = 2.9 to M = 4.5 
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on a scale of 0 to 5 on the sample of exam items presented during the pre-final exam 

surveys, with similar observed variation (standard deviations ranged from 0.9 to 1.3) at 

each level. Calibration indicators ranged from Level 1 (M = -0.4, SD = 1.8), which 

indicated significant overall underconfidence (t (194) = 3.1, p < .01) to Level 7, which 

indicated significant overall overconfidence (M = 1.9, SD = 2.4, t (194) = 11.1, p < .001). 

However, observed calibration means were significantly positive in 5 of 7 indicators at 

the α = .01 criterion, suggesting general tendencies toward overconfidence in the 

calibration indicators. 

There was some evidence that self-efficacy ratings were negatively skewed for 

higher-level indicators. For example, on the highest level indicator of self-efficacy, Level 

7, 89% (173/195) of students marked their confidence in being able to complete the 

indicated task successfully as either 4 or 5 (out of 5). Of the seven indicators of self-

efficacy, Levels 3 - 7 were all significantly negatively skewed at the α = .01 criterion 

(skew = -0.5, -0.9, -0.9, -1.2, -1.9, kurtosis = -0.4, 0.5, 0.3, 1.6, 5.1, respectively). 

However, the primary purpose of the level indicators of self-efficacy was for structural 

modeling, which typically produces estimates with robust standard errors when the 

absolute values of skewness are below 2.0 and kurtosis parameters are below 7.0 

(Schreiber, 2008). Having met these criteria, all indicators of self-efficacy and calibration 

bias were retained for the structural modeling. 

The norm-referenced definition of the indicators permits the theoretical possibility 

that within-class means may differ from the composite means. However, observed 

deviations of within-class means from the overall means of indicators were less than 0.2 
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and were inconsistently related to class section, thus providing empirical support to the 

use of level indicators of self-efficacy and calibration based on within-class means. 

Indicators of High School Mathematics Achievement 

The data suggested study participants achieved relatively high ACT Math scores. 

The average ACT Math score of M = 24.9 corresponds to approximately the 79th 

percentile of U.S. college-bound students (ACT, 2007). Based on a large sample of data 

on new students at the research site (Fitchett, King, & Champion, in press), the students 

enrolled in the 12 participating sections entered college with an average ACT Math score 

about one standard deviation above their peers at the university, a difference which is 

statistically significant (M = 21.6, SD = 3.7, t(1,236) = 11.3, d = .9, p < .001). Graphical 

checks for normality (i.e., Q-Q-plots) suggested retaining the assumption that ACT Math 

scores were normally distributed. 

Participants’ self-assessments of their high school mathematics performance were 

in line with the relatively high mathematics achievement indicated by the distribution of 

ACT Math scores. Figure 11 shows the distribution of the participants’ ratings for the 

question, “Which of the following best describes how well you did in your high school 

math courses?” Most students chose one of the descriptors “OK” (27%), “Good” (39%), 

or “Very Good” (21%), indicating moderate-to-strong self-assessments of high school 

mathematics performance. Graphical checks for normality suggested retaining the 

assumption that students’ self-assessments were normally distributed.  
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Figure 11. Distribution of students’ self-assessments of their high school 
mathematics performance  (N = 195). 1 = really bad, 2 = bad, 3 = not-so-good, 4 = 
ok, 5 = good, 6 = very good, 7 = excellent. For reference, the dashed curve indicates 
a normal curve with the sample mean and standard deviation. 

Study participants’ high school grade point averages were significantly skewed-

left (n = 133, M = 3.4, mdn = 3.6, skew = -0.7, kurtosis = -0.6, p < .001). This is 

potentially attributed to an admissions policy at the research site that caps high school 

grade point averages at 4.0 (many secondary schools in the state award “honors” points 

for some classes that may lead to grade point averages above 4.0). This apparent ceiling 

effect is evidenced by the fact that 17% of the reported high school grade point averages 

were exactly 4.0. In contrast, Fitchett et al. (in press) found an approximately normal 

distribution of high school GPAs (M = 3.2, SD =0.4, n = 1029, skew = -0.1) among new 

students at the research site, with only 7% equal to 4.0. This suggests the high proportion 

of 4.0 GPAs in the sample may be atypical of the undergraduate population at the 
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research site. Figure 12 shows a histogram of the high school grade point averages of 

study participants, including a noticeable spike at 4.0. 

 

 
Figure 12. Distribution of students’ high school grade point averages (n = 133) . Grade 
point averages are capped at 4.0 by university admissions procedures. For reference, the 
dashed curve indicates a normal distribution with the sample mean and standard 
deviation. 

Required Math as an Indicator of Math in Major 

The distribution of required semester mathematics credits in participants’ primary 

college majors (Required Math) is derived from the distributions of students’ majors in 

Table 5. The most common majors declared by study participants were Elementary 

Education – Mathematics (26%), Mathematics – Secondary Teaching (9%), a non-

teaching Mathematics concentration (14%), and Chemistry (10%).  The result of these 

proportions is the bimodal distribution of Required Math credits shown in Figure 13. The 

large proportion of Mathematics majors in the sample produced a large singular departure 

from normality near 40 required credits; the remaining non-mathematics-only majors 
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formed a separate approximately normal distribution centered near 10 required 

mathematics credits. 

 
Figure 13. Distribution of the number of semester credits with prefix MATH required 
by students’ primary declared college major (n = 177). Dashed curve indicates a 
normal distribution with the sample mean and standard deviation. 

Indicators of Final Exam Performance 

Collectively, the seven dichotomous indicators of final exam performance 

represent students’ performance on exam items over a range of difficulties. Table 14 

gives the distributions of students’ work which was scored as “correct” or “incorrect” for 

the sampled final exam items corresponding to the seven “level” indicators. Since final 

exam items were sampled for level indicators based on within-class item difficulty, the 

level indicators are ordered so that higher levels are associated with a higher percentage 

of correct student responses.  Performance Level 1, for example, represents students’ 

performance on a difficult final exam item – only about one in four students (25%) 

correctly solved the task corresponding to this first indicator. In contrast, 83% of 
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participants correctly solved the final exam item corresponding to the Performance Level 

7 indicator. Three indicators come from final exam tasks which were correctly solved by 

fewer than half of students; the remaining four indicators include greater than 50% 

correct responses. 

Table 14. 

Distributions of Indicators for Final Exam Performance 

Construct Indicator % Incorrect % Correct 

Final Exam Performance Perf. Level 1 75 25 

Perf. Level 2 63 37 

Perf. Level 3 56 44 

Perf. Level 4 42 58 

Perf. Level 5 33 67 

Perf. Level 6 27 73 

Perf. Level 7 17 83 

Note. Table entries indicate the proportion of students (N = 195) who correctly solved the 
corresponding final exam items. Items were randomly sampled from seven-level quantile 
groups based on item difficulty.  

As in the analysis of self-efficacy and calibration indicators, the analysis of level 

indicators included checks for variation in performance across the sampled exam items 

that composed each indicator. These observed within-class distributions of performance 

indicators differed from composite distributions by up to 4%, but differences were 

inconsistent by section and supported retaining the assumption that indicators held 

similar distributions across sections. 

Composite Scales of Self-Efficacy, Calibration, and Final Exam Performance 
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While self-efficacy, calibration bias, and final exam performance were each 

considered to be latent constructs measured by seven indicators, the research question 

which considered potential differences in these constructs (along with Math in Major) by 

participants’ gender (Q5) called for a composite scale for each construct. Table 15 gives a 

descriptive summary of the scales constructed as means of the seven level indicators 

within each construct and includes the observed Cronbach’s α values corresponding to 

the scales. 

Table 15. 

Descriptive Summary of Self-Efficacy, Calibration Bias, and Final Exam Performance 

Composite Scale M SD Range Cronbach’s αa 

Self-Efficacy 3.7 0.7 0 to 5 .77 

Calibration Bias 0.8 1.1 -5 to 5 .53 

Final Exam Performance 2.9 1.3 0 to 5 .65b 

Note. Composite scales represent means of the seven level indicators of each construct. 
aAlpha values indicate the expected correlation of two scales constructed by sampling 
seven items from within each construct (Bland & Altman, 1997). bFinal exam indicators 
were dichotomous, so α was calculated as the Kruder-Richardson KR-20 coefficient. 

The mean composite self-efficacy rating (M = 3.7) was significantly larger than 

the mean performance score (M =2.9, t (388) = 8.5, d = 1.0, p < .001), with the 95% 

confidence interval for the difference being 0.7 to 1.1. This suggested a significant 

overall trend toward calibration bias in the form of overconfidence. Interestingly, the 

observed calibration bias mean (M =0.8) fell within the  95% confidence interval of the 

difference between self-efficacy and performance, despite the fact that the final exam 

performance indicators were not matched to the final exam items used in the self-efficacy 

and calibration measures. 
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Cronbach’s α values given in Table 15 were interpreted directly so that each α 

value gives the expected correlation between the observed scale and a second theoretical 

scale constructed by random sampling seven items from the sample space of items which 

could be used to measure the latent construct (Bland & Altman, 1997). For example, had 

seven different final exam items been chosen for the self-efficacy surveys, and a separate 

calibration bias score calculated, the correlation between this new calibration measure 

and the observed calibration measure would be expected to be moderate (α =.53). 

However, the correlation between the second composite self-efficacy scale and the 

observed self-efficacy scale would be expected to be high (α =.77). 

Reliability and Validity of Self-Efficacy and Final Exam Performance Indicators 

One of the strengths of structural modeling is the estimation of measurement 

error, so that assessing the extent to which indicators of a construct reflect consistent 

measurement of a single construct was built into the analysis of the measurement model 

and is consequently reported in the structural modeling results. In addition to this factor-

analytic approach, several efforts were taken to estimate the reliability of self-efficacy 

ratings and final exam performance scores. These include internal consistency, parallel-

task reliability for a sample of self-efficacy survey ratings, and inter-rater reliability of 

final exam performance scoring. 

As a measure of internal consistency among ratings, Cronbach’s α is often used 

indirectly to assess the reliability of an instrument which contains multiple items 

designed to measure a single construct (Hair et al., 1998). From this perspective, the 

composite measures of calibration bias (α = .53) and final exam performance (α = .65) 

fail to meet the traditional benchmark for adequate reliability of a unidimensional 
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construct (Cronbach’s α >.7, Bland & Altman, 1997). Since calibration bias is calculated 

as the difference of self-efficacy ratings and performance scores, one possible source for 

the relatively low reliability of the calibration bias scale is the cumulative variation due to 

measurement errors from both final exam performance and self-efficacy. Moreover, the 

value of Cronbach’s α as an indirect measure of reliability is reduced to some extent by 

the relatively small sample (n =7) of items contributing to the scales because Cronbach’s 

α is an increasing function of the number of items comprising a scale (Revelle, 2009). 

A more direct measure of reliability in the self-efficacy ratings was the students’ 

ratings on parallel tasks included on each of the self-efficacy surveys administered to n = 

131 students in the minutes just before the mid-term exams in seven of the participating 

sections. Each of these midterm self-efficacy surveys contained a single pair of parallel 

tasks, and reliability would be strengthened if students’ self-efficacy ratings on the 

separate tasks were similar. This was confirmed by nearly identical mean ratings on the 

first and second of the parallel tasks presented to students (M = 4.08, SD = .90, and M = 

4.06, SD = .91, respectively). In 73% (96/131) of the cases, students’ ratings on the two 

tasks were identical, and in 95% (125/131) of the cases the two ratings were within 1.The 

split-half correlation between the two ratings was high (r = .71). 

Students likely completed the self-efficacy surveys under the belief that the 

correctness of their final exam solutions would be determined by their instructors. Thus, 

the validity of the final exam indicators would be weakened by potential differences 

between the instructors’ scoring of final exams and the researchers’ dichotomous scoring 

of the exams. If the observed differences between the researcher scores and the 
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instructors’ grades were proportionally small, it would strengthen the validity of the final 

exam scoring and would also indicate reliability in the scoring of final exam data. 

Instructors’ graded final exams were available for 7 of the 8 final exams (all 

except abstract algebra), and from this pool, a random sample of n = 70 students’ final 

exams were selected for inter-rater comparison. The sample size of 70 was chosen so that 

the statistical power to detect significant agreement between ratings with 95% confidence 

was approximately 90% (Sim & Wright, 2005). Collectively, the sample yielded 1,655 

ratings which are summarized in Table 16. To achieve comparable scales, instructors’ 

partial-credit scorings of items were converted to a dichotomous scale using an “all-or-

nothing” rule—if the instructor scored a students’ performance on an item as anything 

less than full credit, the item was entered as incorrect. 

Table 16. 

Percentages of Final Exam Item Scores by Instructors and the Researcher 

  Instructor Rating  

  % Incorrect % Correct Total 

Researcher Rating % Incorrect 40 4 45 

% Correct 7 49 56 

 Total 47 53 100 

Note. Entries are percentages of the 1,655 total ratings from a random sample of 70 final 
exams.   

The inter-rater agreement comparison in Table 16 shows agreement in 89% 

(1473/1655) of the sampled ratings. The distribution of ratings correspond to an inter-

rater reliability coefficient of κ = .83 (κmax = .92), which suggests “almost perfect” 

agreement (Sim & Wright, 2005, p. 264). Though disagreement between instructor and 
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researcher ratings was relatively rare, the observed percentage of ratings in which the 

researcher scored students’ work “correct” while the instructors’ grade was classified as 

“incorrect” was slightly larger than the reverse (7% compared to 4%). This may have 

been due to the strict “all-or-nothing” criterion for converting instructors’ partial credit 

grading schemes to dichotomous scores. If instructors independently graded items on a 

dichotomous scale, their ratings may have differed slightly from the post-hoc “all-or-

nothing” classifications. 

Differences by Gender 

The fifth research question (Q5), given below, asked about potential differences 

in the composite indicators of self-efficacy, calibration, math in major, and final exam 

performance associated with gender. The hypothesis (H5) included an expectation that 

there would be no differences in self-efficacy, calibration, or final exam performance by 

students’ gender, but that males would have more required mathematics credits in their 

majors than females. 

Q5 Are there significant differences in self-efficacy, calibration, the amount 
of mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 

H5 There will be no significant difference in self-efficacy, performance, or 
calibration by gender. There will be significant differences in the amount 
of mathematics in participants’ college major by gender, with males on 
average choosing college majors with more required mathematics courses. 

Since the explanatory variable (gender) is dichotomous and the response variables 

are intercorrelated continuous scales, the appropriate test for differences by gender was a 

one-factor, between subjects, multivariate analysis of variance (MANOVA) (Grice & 

Iwasaki, 2007). The MANOVA analysis included (1) checks on the assumptions of 

MANOVA, (2) an omnibus test for differences between the male and female groups on 
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linear combinations of the responses variables, and (3) evaluation of alternative and 

trimmed models. 

Checks on Assumptions of MANOVA 

Interpretations of MANOVA results can be limited by departures of the data from 

the statistical assumptions underlying the techniques. Garson (2006) identifies several 

assumptions which can affect the statistical power of MANOVA analyses, including (1) 

independent observations, (2) approximately equal group sizes, (3) adequate sample size, 

(4) randomly distributed residuals, (5) homogeneity of variance and covariance matrices 

(homoscedasticity), and (6) multivariate normality. The first three assumptions were met 

by the research design, so the checks on the assumptions underlying the MANOVA tests 

focused on evaluating model residuals, homoscedasticity, and multivariate normality.  

Evaluation of whether the data met the assumptions of MANOVA was 

particularly important in the case of the omnibus test for differences by gender. Graphical 

inspection of model residuals suggested no substantial departures from normally 

distributed errors. Bartlett’s K2 and Brown-Forsyth’s F tests for homogeneity of variances 

across the gender groups supported retaining the null hypothesis of approximately equal 

variances in the response variables. Box’s M test for approximately equal covariances in 

the response variables (Stevens, 1996) failed to provide evidence of unequal covariances 

(F (10, 144321) = 1.3, p = .20). Finally, a graphical check of multivariate normality using 

a Q-Q-plot of the generalized distance (De Maesschalck, Jouan-Rimbaud, & Massart, 

2000) of the data points from the observed centroid supported retaining the assumption of 

multivariate normality. In summary, the analysis supported the assumptions underlying 

the omnibus MANOVA test for differences by gender. 
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Omnibus Test for Differences 

The composite one-factor model for differences in Required Math or the 

composite scales of math in major, self-efficacy, calibration, and final exam performance 

by gender was not significant (Wilk’s Λ = .97, F (4, 172) = 1.3, p = .27), suggesting 

insufficient evidence to support differences in the response variables by gender. A post-

hoc analysis suggested the mean Required Math for females (M = 25.2, SD = 14.7) was 

significantly higher than that of males (M = 20.6, SD = 15.4, t (54) = 5.4, d = .29, p < 

.01). The statistical power of this observed difference is potentially weakened by 

departure of the Required Math distribution from normality (i.e., both marginal 

distributions were bimodal). Nonetheless, histograms of the male and female 

distributions, given in Figure 14 supported small differences in the number of required 

mathematics credits in favor of female students. This observed difference was likely due 

to a small difference in the percentage of mathematics majors by gender (χ2 (1, N = 195) 

= 3.9, p <.05). That is, while 44% (43/97) of female participants were mathematics 

majors, just 31% (30/98) of male participants were mathematics majors.  
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Figure 14. Marginal distributions of Required Math by gender.  The histograms suggest 
females chose majors with more Required Math than males. 

Evaluation of Alternative and Trimmed Models 

The analysis of potential differences by gender included consideration of several 

alternative models for effects of gender on math in major, self-efficacy, calibration, and 

final exam performance. The alternative specifications included replacing the measure of 

calibration bias by calibration accuracy, replacing final exam performance by composite 

scales from alternate samples of exam items, and testing all 16 possible trimmed subsets 

of response variables (e.g., dropping final exam performance). With the exception of the 

highly restricted model positing direct effects of gender on math in major (equivalent to 

the reported post-hoc t-test), none of the alternative models reached significance. 

Especially in light of the relatively large number of degrees of freedom which made 

MANOVA sensitive to small differences due to gender, the results suggested very limited 
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support for any potential differences in self-efficacy, calibration, or final exam 

performance attributable to participants’ gender. 

Differences by Item Difficulty 

The sixth research question, given below, looked for differences in self-efficacy 

ratings and calibration scores associated with item difficulty – the mean student-

performance on final exam items matched to self-efficacy survey items. Based on the 

literature review, the expectation (H6) was that there would be no difference in self-

efficacy ratings associated with the difficulty of the items, but there would be a tendency 

toward overconfidence on survey items with increased item difficulty.  

Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

H6 There will be no significant difference in self-efficacy by item difficulty. 
There will be a significant difference in calibration by item difficulty, with 
a tendency toward overconfidence on more difficult exam items. 

Similar to the indicators of final exam performance, the difficulty of the final 

exam items given in the self-efficacy surveys was determined by the reverse rank-

ordering of students’ final exam performance on the items. For example, a self-efficacy 

survey item with an item difficulty rank of “1” corresponded to the “easiest” item on the 

survey because the highest percentage of students in the section correctly completed the 

matched final exam item. Likewise, a self-efficacy survey item with difficulty “7” would 

be considered the “hardest” mathematical task on the self-efficacy survey because the 

lowest percentage of students in the class correctly completed the corresponding final 

exam item. 

The seven measurements of students’ self-efficacy and calibration bias, 

respectively, across varying item difficulties constitute a type of within-subjects (repeated 
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measures) design. That is, the goal of the analyses was to test for effects of a single 

categorical variable, item difficulty, on two continuous dependent variables – self-

efficacy and calibration bias – while adjusting for within-subject means. The omnibus 

test, a one-way repeated measures MANOVA, identified significant differences among 

self-efficacy ratings and calibration bias scores associated with item difficulty levels 

(Wilk’s Λ = 0.11, F (13, 182) = 109.0, p < .001). As in the MANOVA tests for 

differences associated with gender, checks on the marginal distributions and covariance 

structures suggested the data met the assumptions of MANOVA. Importantly, though, 

there was limited evidence to support intercorrelation between self-efficacy and 

calibration bias (r = .10, p = .16), so subsequent analyses were conducted using separate 

one-way repeated measures analysis of variance (ANOVA) methods.  

The data supported the hypothesis of significant differences in calibration bias 

associated with item difficulty, F (6, 1164) = 14.9, p < .001, but the observed differences 

did not support the hypothesis that students’ calibration bias tended toward 

overconfidence with increasing item difficulty. Instead, as evidenced in Table 17, means 

of calibration bias scores generally decreased from overconfidence on the least difficult 

items (e.g., mean bias = +1.6 for Level 1 difficulty) toward near perfect calibration on the 

most difficult items (e.g., mean bias = 0.0 for Level 7 difficulty). Moreover, in contrast to 

the hypothesis, there were significant differences in self-efficacy ratings associated with 

item difficulty, F (6,1164) = 36.6, p < .001, with increasing item difficulty typically 

associated with decreasing self-efficacy ratings.  
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Table 17. 

Self-Efficacy and Calibration Bias by Item Difficulty Level 

 
Self-Efficacy Rating Calibration Bias Scores 

Item Difficulty M SD M SD 

Level 1 4.3ab 1.0 1.6a 2.4 

Level 2 4.1b 1.1 1.3ab 2.4 

Level 3 3.7c 1.2 1.0b 2.1 

Level 4 3.6cd 1.1 0.5bc 2.3 

Level 5 3.8bcd 1.2 1.0bcd 2.3 

Level 6 3.3e 1.2 0.2ce 2.2 

Level 7 3.0f 1.3 0.0ce 2.0 

Note. N = 195. Within categories, means with the same subscript do not differ 
significantly by the Tukey honestly significant difference test at α = .05. Increasing 
difficulty “Level” indicates lower success rates on corresponding final exam items. 

Post-hoc comparisons of means by item difficulty level using Tukey’s honestly 

significant difference (HSD) criterion suggested that differences in self-efficacy means 

were typically found for items separated by two or more difficulty levels. For example, 

the observed self-efficacy on items of moderate to high difficulty (Levels 3-7) differed 

significantly from self-efficacy on the least difficult exam item (Level 1), although the 

difference between means of Level 1 and Level 2 self-efficacy ratings was not significant 

(p = .05). In fact, the analysis identified significant differences in self-efficacy means for 

items separated by at least two levels of difficulty in 87% (13/15) of the possible cases. 

Table 17 also reports Tukey HSD comparisons of calibration bias means, which 

indicated overall tendencies toward decreasing calibration bias associated with increasing 

item difficulty.  Though mean calibration bias on the least-difficult exam items (Levels 1 



  117 

 

& 2) were significantly greater than calibration bias on the most-difficult exam items 

(Levels 6 and 7), differences in means across moderate difficulty levels were 

inconsistent. That is, there was a general trend was toward reduced overconfidence on 

more difficult exam items, but calibration bias means were statistically similar for 

moderately difficult exam items (Levels 3-5). 

In the lexicon of structural modeling, the results to this point have addressed 

manifest (observed) variables in the study. Following a descriptive account of the data, 

the analysis found no significant differences in composite self-efficacy, calibration bias, 

or final exam performance associated with participants gender (Q5), but did identify 

slightly greater required mathematics requirements associated with the declared majors of 

female participants. Then, differences were identified in self-efficacy and calibration bias 

by the difficulty of exam items (Q6), including trends toward decreased self-efficacy and 

reduced overconfidence on more difficult exam items. In the next sections, the focus 

shifts from manifest variables to structural relationships among latent constructs, 

including effects among high school mathematics achievement, self-efficacy, calibration 

bias, and final exam performance. 

Structural Equation Modeling 

Multiple Imputation of Missing Data 

Of the 25 indicator variables used in the structural model, complete observed data 

were collected for 23 indicators. However, approximately 30% of the data for students’ 

ACT Math and High School GPAs were missing from the registration data.  In addition, 

though a declared college major was available for all participants, the corresponding 

Required Math indicator was labeled “NA” for 9% of participants because of 
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“undeclared” or other majors whose required mathematics credits were ambiguous. 

Though the reasons for the missing data were unknown, one possible source of missing 

ACT Math and High School GPA data was non-traditional admission to the university, 

such as transferring to the university from another university or community college. 

Several strategies for handling the missing data were considered and are described below. 

A first step in choosing a missing data strategy is the classification of missing data 

as one of missing completely at random (MCAR), missing at random (MAR), or missing 

not at random (MNAR) (Collins, Schafer, & Kam, 2001). Under the MCAR assumption, 

students with missing data could be deleted casewise from the data without introducing 

bias. However, casewise deletion would reduce statistical power and would involve the 

assumption that students with missing data do not differ from those with full data. The 

less restrictive assumption MAR would simply require that the missing ACT Math and 

High School GPA data were not missing because of other variables in the structural 

model. For example, if students with low final exam performance were embarrassed and 

thus subsequently chose not to report their High School GPA, then the MAR assumption 

would be violated. Since the missing data were collected by the university prior to the 

collection of the other variables during the study, however, the MAR assumption was 

retained as plausible.  

Under the MAR assumption, there are several commonly-applied strategies for 

handling missing data, including casewise deletion, pairwise deletion, substitution of 

means, regression predictions, full information maximum likelihood estimation, and 

multiple imputation (Collins et al., 2001). Though computationally less-intensive, the ad 

hoc techniques of casewise deletion, pairwise deletion, substitution of means, and 
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regression predictions have “been shown conclusively to perform poorly except under 

very restrictive or special conditions” (Collins et al., p. 330). That is, simulation studies 

have demonstrated these techniques produce statistically biased estimates of variation 

within and between variables. Of the remaining two strategies, multiple imputation was 

chosen because of better average performance with small (N < 1000) data sets (Schafer & 

Olsen, 1998).  

The multiple imputation strategy used for analyzing missing data in the study 

applied an iterative stochastic algorithm called Expectation-Maximization (EM). First 

developed by Dempster, Laird, and Rubin (1977), EM generates several imputed data 

sets based on the portion of the data set with complete data. In the technique used for this 

study (Gelman, Hill, Yajima, Su, & Pittau, 2009), the incomplete data set was “imputed” 

by replacing missing values by vectors of randomly adjusted means. Then, using the 

structural model as a base, each iteration applied two steps: (E-step) compute the 

expectation of the log-likelihood of the current estimated data set, (M-step) compute the 

parameters which maximize the log-likelihood from the E-step.  

When the estimated data in an EM algorithm converges to within some small 

tolerance, the last completed data set is called an imputed data set. Imputed data sets are 

computed to replace missing data without introducing statistical bias into observed 

statistical power, variance, and associations among variables (Collins et al., 2001). 

Usually, 3-5 imputed data sets are constructed in this way (Schafer & Olsen, 1998), and 

subsequent statistical analyses are conducted separately on the imputed data sets. If 

results of statistical analyses are similar across imputed data sets, results are simply 
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reported as the averages of results obtained from the separate analyses (Collins et al., 

2001). 

In the application of multiple imputation used in this study, the EM algorithm 

converged for three imputed data sets in 38 iterations. Each of the imputed data sets 

contained 60 (31%) imputes of missing ACT Math scores, 59 (30%) imputes of High 

School GPA, and 18 (9%) imputes of Required Math. Collectively, these imputes 

represented just 1.5% (137/8,970) of the entries in the data sets. The small proportion of 

imputed data led to nearly correlation structures that were identical to the hundred-

thousandths place, so the results reported in forthcoming sections are means of results 

from the three imputed data sets.  

Correlations between Indicators in the Structural Model 

Following suggestions for the reporting of structural equation modeling (Bentler, 

2007), this section reports on the correlation structure of the indicator variables in the 

study. As a standardized measure of joint variation which quantifies “closeness of linear 

relationship between two variables” (Snedecor & Cochran, 1989, p.177), the correlations 

are not meant to indicate the extent to which a variable “causes” or “predicts” another 

variable in the sense that might be inferred from experimental designs. Instead, since the 

model for directional effects between latent constructs was justified by the review of 

literature in Chapter III, correlations reported here simply quantify the extent to which 

observed indicators of the constructs are linearly associated. 

Structural equation modeling was initially designed as a technique for analyzing 

the covariation structure of continuous indicator variables, but techniques have been 

developed to extend the structural modeling to all types of ordinal indicator variables 
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(Fox, 2006). That is, if one (or both) of two indicators is ordered but discrete, alternate 

estimates of correlation can be obtained under the assumption that the dichotomous and 

categorical variables reflect discrete levels of underlying continuous variables. 

For example, it would not be possible to estimate correlation between gender 

(dichotomous) and ethnicity (categorical) because the fact that neither variable is ordered 

makes interpretation nonsensical. In contrast, the correlation between performance on a 

final exam item (dichotomous) and students’ self-efficacy to complete the exam item 

(categorical) can be estimated by a polychoric correlation coefficient (Hair et al., 1998). 

Table 18 summarizes the types of correlations used in the analysis of indicator variables 

in the structural model. 

Table 18. 

Types of Correlation Used in the Structural Model 

Type of Correlation X × Y Example 

Product-moment continuous × continuous HS GPA × ACT Math 

Biserial dichotomous × continuous Perf. Level 1 × HS GPA 

Tetrachoric dichotomous × dichotomous Perf. Level 1 × Perf. Level 2 

Polychoric categorical × categorical 
dichotomous × categorical  

SE Level 1 × Calib. Bias 1 

Polyserial categorical × continuous SE Level 1 × ACT Math 

 

The complete table of correlations between all 25 indicators is given in Appendix 

E. Probably due to the relatively large sample size (N = 195), many pairs of indicator 

variables were significantly correlated. In fact, 71% (214/300) of the possible correlations 

were significant at α = .01. Consequently, the magnitude and sign of the correlation 
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coefficients were of primary concern. Table 19 summarizes the observed correlations 

between the composite measures of constructs. 

Table 19. 

Correlations between Indicators of High School Math Achievement, Math in Major, and 
Composites of Self-Efficacy, Calibration Bias, and Final Exam Performance  

Measure 1 2 3 4 5 6 7 

1. ACT Math – .15**  .31**  .19**  .28**  -.32**  .33**  

2. HS GPA 
 

– .52**  .05 .18**  -.22**  .25**  

3. HS Self 
 

 – .22**  .23**  -.25**  .34**  

4. Req. Math 
 

  – .07 -.05 .04 

5. Self-Efficacy 
 

   – .10 .39**  

6. Calib. Bias  
 

    – -.45**  

7. Final Perf. 
 

    
 

– 

Note. Self-efficacy, Calibration Bias, and Final Performance scales are each composite 
scales of seven indicators. HS GPA = high school grade point average (capped at 4.0); 
HS Self = self-assessment of high school math performance, Req. Math = semester math 
credits required by declared college major. ** p < .01. 

As is common in this type of research (e.g., Pajares & Kranzler, 1995), 

magnitudes of correlations between indicators were typically between |r| = .1 and .5. The 

signs of significant correlations were, without exception, in line with expectations from 

the review of literature, including positive associations among indicators of high school 

mathematics performance, self-efficacy, Required Math, and final exam performance and 

negative associations between calibration bias and the other constructs. For example, 

increased calibration bias (tendency toward overconfidence) was associated with lower 

values on the high school mathematics performance indicators (r = -.45). 
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Correlation statistics are sensitive to departures from underlying assumptions of 

joint normal distributions, and are especially sensitive to outliers (Snedecor & Cochran, 

1989). These bivariate normality assumptions were assessed graphically using scatter 

plots overlaid with contour ellipses corresponding to theoretical regions containing 30%, 

60%, and 90% of data points under a normal joint-distribution with the observed 

correlation. Figure 15 shows a typical such scatter plot, indicating the moderate negative 

correlation (r = -.32) between ACT Math and calibration bias. The figure suggests the 

bivariate association does not differ substantially from assumptions of correlation. For 

example, 16 (8%) of the data points are outside of the 90% contour and 76 (39%) of the 

data points are outside of the 60% contour. No substantial violations of the bivariate 

normality assumption were identified in the analysis and (due to the restricted scales) no 

outliers were identified. 

 
Figure 15. Scatter plot of composite Calibration Bias vs. ACT Math  (N = 195). Plot 
shows contour ellipses corresponding to 30%, 60%, and 90% of data points under the 
assumptions of r = -.32 and the two variables have a normal joint-distribution.  
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Although Required Math was weakly correlated with ACT Math scores (r =.19) 

and self-evaluations of high school mathematics performance (r =.22), Required Math 

was not significantly correlated with any of the self-efficacy, calibration bias, or final 

exam performance indicators or composite scales. This, combined with the bimodal 

observed distribution, suggested the Required Math data were inappropriate for inclusion 

in the structural model. 

Table 20 gives the correlations among the seven indicators of each of the self-

efficacy, calibration bias, and final exam performance constructs. As in the composite 

measures, all correlations were positive.  This joint variation among indicators of each 

construct indicated, for instance that a tendency toward reporting high self-efficacy for a 

survey item was moderately associated with increased self-efficacy to complete other 

survey items.  
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Table 20. 

Correlations between Indicators of Self-Efficacy, Calibration, and Final Performance 

Indicator 1 2 3 4 5 6 7 

Self-Efficacy 

1. SE Level 1 – .38**  .35**  .37**  .28**  .16**  .29**  
2. SE Level 2 – .33**  .30**  .26**  .14**  .16**  
3. SE Level 3  – .35**  .36**  .39**  .38**  
4. SE Level 4   – .33**  .37**  .42**  
5. SE Level 5    – .38**  .34**  
6. SE Level 6    – .48**  
7. SE Level 7     – 

Calibration Bias 

1. Bias Level 1 – .05 .15**  .00 .04 .07 .08 
2. Bias Level 2 

 
– .20**  .18**  .06 .07 .14**  

3. Bias Level 3 
 

 – .14**  .21**  .13**  .22**  
4. Bias Level 4  

  – .26**  .13**  .11* 
5. Bias Level 5  

   – .17* * .23**  
6. Bias Level 6  

   
 

– .21**  
7. Bias Level 7 

 
   

 
 – 

Final Exam Performance 

1. Perf. Level 1 – .23**  .14**  .27**  .25**  .28**  .23**  
2. Perf. Level 2 – .32**  .47**  .40**  .21**  .50**  
3. Perf. Level 3  – .35**  .31**  .41**  .52**  
4. Perf. Level 4   – .29**  .35**  .61**  
5. Perf. Level 5    – .38**  .42**  
6. Perf. Level 6    – .49**  
7. Perf. Level 7     – 

Note. Heterogeneous correlations obtained according to variable type (see Table 21).  * p 
< .05, ** p < .01. 

The correlations among indicators of calibration bias were relatively weak in 

comparison to the indicators of self-efficacy and final exam performance. For example, 

the mean inter-item correlation between indicators of calibration bias (rave = .14, SD = 

.07) was substantially lower than the mean inter-item correlations of the self-efficacy (rave 

= .32, SD = .09) and final exam performance (rave = .35, SD = .12) indicators. As 
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mentioned in the reliability discussion, this may have been due in part to the cumulative 

effects of measurement error associated with the self-efficacy ratings and final exam 

performance scores whose differences determined the calibration bias scores. An 

alternate possibility is that the calibration indicators may have been considerably 

multidimensional in nature, so that, for example, Bias Level 1 would be better thought of 

as an indicator of a different construct than the construct associated with Bias Level 7. 

This possibility is considered in the following section on the analysis of the measurement 

model associated with the constructs high school mathematics, self-efficacy, calibration, 

and final exam performance. 

Measurement Model 

The hypothesized model assumed indicators of each of the five latent constructs 

satisfied a single-factor solution. Though the single-indicator specification of math in 

major made verification of the assumption of unidimensionality impossible (Hair et al., 

1998), the analysis included evaluation of unidimensionality of the remaining latent 

constructs by fitting the measurement model (McDonald & Ho, 2002). A measurement 

model is the same as the structural model, except with paths between latent constructs 

(represented by ovals) omitted. Fitting the measurement model allowed for confirmatory 

common factor analyses of the assumptions to verify indicators of the four latent 

constucts were unidimensional.  

Table 21 gives the standardized loadings of the indicator variables under the 

measurement model. Nearly all of the factor loadings were statistically significant, with 

the sole exception of Bias Level 1 (p =.12). Among the significant loadings, however, 

uniquenesses (the proportion of variation in the indicator variables unexplained by the 
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single-factor models), were generally modest to high—ranging from .14 to .94 (M = .74, 

SD = .19). The proportions of common indicator variance explained by the one-factor 

models were significant in the models for High School Math (χ2 (6, N = 195) = 24.7, p < 

.001) and Self-Efficacy (χ2 (14, N = 195) = 34.0, p < .01). However, the proportion of 

variance explained by the single-factor models were not significant in the cases of 

Calibration Bias (χ2 (14, N = 195) = 11.4, p = .62) and Final Exam Performance (χ
2 (2, N 

= 195) = 7.6, p = .91). 
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Table 21. 

Factor Loadings and Uniqueness for Single Factor Models of Self-Efficacy, Calibration 
Bias, and Final Exam Performance 

Construct and Indicator Standardized 
Factor Loadinga 

Uniquenessb Proportion of 
Variancec 

High School Math Achievement  .46**  
HS Self .99**  .01  
HS GPA .50* .73  
ACT Math .29* .90  

Self-Efficacy  .33**  
SE Level 1 .51**  .74  
SE Level 2 .43**  .82  
SE Level 3 .63**  .61  
SE Level 4 .63**  .60  
SE Level 5 .56**  .68  
SE Level 6 .59**  .65  
SE Level 7 .63**  .60  

Calibration Bias  .15 
Bias Level 1 .16 .98  
Bias Level 2 .29* .92  
Bias Level 3 .46**  .79  
Bias Level 4 .38**  .86  
Bias Level 5 .48**  .77  
Bias Level 6 .35**  .88  
Bias Level 7 .47**  .78  

Final Exam Performance  .21 
Perf. Level 1 .24**  .94  
Perf. Level 2 .44**  .80  
Perf. Level 3 .44**  .81  
Perf. Level 4 .54**  .71  
Perf. Level 5 .42**  .82  
Perf. Level 6 .44**  .81  
Perf. Level 7 .59**  .65  

Note. aStandardized factor loading = correlation between indicator and the latent factor. 
bUniqueness = proportion of the indicator variance not explained by the latent factor. 
cProportion of Variance = proportion of total variation in the indicators explained by the 
latent factor.*p < .05, ** p < .01. 

Alternate specifications of the models, including removal of indicators with the 

lowest standardized factor loadings and two- and three-factor solutions were fit to the 
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data, but none of the alternative specifications explained a significant portion of the 

variance in calibration bias or final exam performance. Collectively, the factor analyses 

provided marginal evidence in support of the single factor assumptions for calibration 

and final exam performance, but also provided very little support for altering the 

structural model to incorporate additional latent constructs or sub-constructs. 

Measurement models are commonly used to contextualize fit indices of structural 

models because fit indices from the baseline measurement model can be compared to fit 

indices associated with subsequent models which posit relationships among latent 

constructs (Fornell & Larcker, 1981). Though there are dozens of fit indices available for 

structural models that provide information regarding absolute fit, comparative fit, and 

parsimonious fit, Schreiber (2008) recommends reporting (1) overall chi-square, (2) 

comparative fit index (CFI), (3) the Tucker-Lewis non-normed fit index (NNFI), (4) 

standardized root mean square residual (SRMR), and (5) root mean square error of 

approximation (RMSEA).  

CFI and NNFI are each standardized goodness-of-fit indices – values fall between 

0 and 1 and generally indicate “good fit” if they exceed 0.9 (McDonald & Ho, 2002). In 

contrast, the overall chi-square, SRMR, and RMSEA statistics each measure the extent to 

which a model does not fit the data, so lower values of these indices suggest better model 

fit. The overall chi-square indicates divergence of the model from exact fit and is used 

primarily to compare nested models through likelihood ratio tests of ∆χ2, or the change in 

overall chi-square (Schrieber, 2008). RMSEA values typically fall between 0 and 1; 

RMSEA below .05 indicates “good fit” and greater than 0.10 indicates “poor fit” 

(Schrieber). Finally, SRMR can be interpreted directly as the mean error of the model in 
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reproducing correlations between indicators. For example, SRMR = .05 indicates the 

correlation matrix was reproduced to within about .05 on average (Schrieber, p. 828). 

The overall measurement model chi-square was χ2 (252) = 754.7, substantially 

lower than the chi-square of the independence (null) model (χ2 (276) = 1492.8). 

Additional fit indices for the measurement model included CFI = .59, NNFI = .55, SRMR 

= .15, and RMSEA = .10. Though these fit values were obtained primary for comparative 

purposes, all the indices indicate an “inadequate” fitting model (Schreiber, 2008). That is, 

the measurement model, which assumes independence between latent constructs, is a 

poor model for the observed correlation structure of the indicator variables. 

Specification of the Structural Model 

An important obstacle to fitting the full hypothesized structural model was the 

inclusion of Required Math as an indicator of mathematics in major. As discussed in the 

earlier analysis of this indicator, (1) Required Math was severely non-normal with a 

bimodal shape and a large spike corresponding to mathematics majors, and (2) Required 

Math was not significantly correlated with any of the self-efficacy, calibration bias, and 

final exam performance scales. Inclusion of Required Math in the structural model led to 

consistent estimation of negative variances in the model, a practical impossibility referred 

to as Heywood cases (Hair et al., 1998). The Heywood cases persisted through attempts 

to transform the Required Math indicator to a normal distribution using arcsine and 

logistic transformations. Having failed two important assumptions of structural modeling 

– covariation with other indicators and normality – Required Math was omitted from the 

model specification along with its corresponding latent construct Math in Major. 
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After removing Required Math from the structural model specification, the 

estimation procedure for the restricted structural model based on the hypothesis 

converged in 210 iterations. All directional effects in the model were significant at the α 

= .05 criterion with the exception of the posited direct effect of the latent variable High 

School Math Achievement on the latent variable Final Exam Performance (β = -.19, p = 

.40). Model fit indices included an overall chi-square of χ2 (246) = 608.0, CFI = .70, 

NNFI = .67, SRMR = .08, and RMSEA = .09. The comparative fit indices (CFI and 

NNFI) were both below the .9 threshold for good fit, and the SRMR and RMSEA indices 

suggested marginal model fit. A likelihood-ratio test confirmed the structural model 

provided a significantly better fit than the measurement model (∆χ2 (6) = 146.7, p < .001). 

Several steps were taken to consider alternate model specifications, including 

model “trimming” to achieve improved parsimony and the inclusion of additional model 

paths. However, structural equation modeling is essentially a confirmatory statistical 

approach (Hair et al., 1998), so the analysis included a conservative approach to model 

re-specification. Inclusion of additional model paths was approached by inspection of 

Wald’s W statistics associated with modification indices (McDonald & Ho, 2002), but the 

largest modification indices were relatively small and were not theoretically supported. 

For example, the largest modification index was associated with estimation of correlated 

errors between Performance Level 6 and Bias Level 2 (W = 16.8), but the two indicators 

referred to entirely different exam items. 

 In contrast, there was some evidence to suggest removing some effects from the 

hypothesized model. For example, the measurement model suggested an insignificant 

loading of Bias Level 1 onto the Calibration Bias factor. However, the structural model 



  132 

 

which included the Bias Level 1 indicator found a slight but significant loading (β = .21, 

p < .05) and removal of the indicator did not produce improved model fit. Ultimately, the 

only specification changes retained in the final estimated model were (1) removal of 

Required Math and its associated latent construct Math in Major, and (2) removal of the 

non-significant path positing direct effects of High School Math Achievement on Final 

Exam Performance. 

Estimation of the Structural Model 

Figure 16 shows the final structural equation model with the estimated 

standardized directional effects; the estimates of measurement errors are omitted from the 

diagram for readability, but are presented along with the standardized coefficients in 

Table 22. Standardized parameter estimates for the structural model were all significant 

at the α = .05 criterion, and values ranged from β = .21 (the loading of Bias Level 1 on 

Calibration Bias) to β = .78 (the loading of HS Self on HS Math Achievement).   
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Figure 16. Standardized coefficients of directional effects in the final estimated structural 
equation model.  
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Table 22. 

Standardized Parameter Estimates for Effects of Latent Constructs on Indicators 

Construct and Indicator Loading (β)a Measurement Errorb 

High School Math Achievement  
HS Self .78**  .38 
HS GPA .62**  .62 
ACT Math .42**  .83 

Self-Efficacy  
SE Level 1 .52**  .73 
SE Level 2 .43**  .81 
SE Level 3 .63**  .60 
SE Level 4 .62**  .61 
SE Level 5 .55**  .70 
SE Level 6 .59**  .66 
SE Level 7 .65**  .58 

Calibration Bias .79 
Bias Level 1 .21* .96 
Bias Level 2 .42* * .82 
Bias Level 3 .39**  .85 
Bias Level 4 .36**  .87 
Bias Level 5 .44**  .80 
Bias Level 6 .43**  .82 
Bias Level 7 .40**  .84 

Final Exam Performance  
Perf. Level 1 .37**  .86 
Perf. Level 2 .59**  .65 
Perf. Level 3 .63**  .61 
Perf. Level 4 .69**  .52 
Perf. Level 5 .57**  .68 
Perf. Level 6 .59**  .66 
Perf. Level 7 .77**  .40 

Note. aβ = estimated standardized effect of the latent factor on the indicator. 
bMeasurement error = proportion of the indicator variance unexplained by combined 
latent effects. *p < .05, ** p < .01. 

Effects between latent constructs in the fitted structural model were interpreted as 

estimates of the sign and relative magnitude of effects posited by the model. For example, 

the review of literature supported direct effects of calibration bias on both final exam 
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performance and self-efficacy, and the estimated coefficients suggested the negative 

effect of calibration bias (β = -.75) on final exam performance was comparatively larger 

than the positive effect of calibration bias on self-efficacy (β = .39).  

Since the standardized path coefficients are multiplicative, the estimated indirect 

effect of calibration bias on final exam performance through its positive effect on self-

efficacy was β = .39(.62) = .24, meaning the large direct negative effect of calibration 

bias on final exam performance was mediated somewhat by the indirect positive effect 

coming from the effect of bias on self-efficacy. Similarly, though the modeling did not 

identify a direct effect of high school math achievement on final exam performance, high 

school math achievement did have indirect effects on final exam performance through the 

separate effects of high school mathematics achievement on self-efficacy and calibration 

bias. Table 23 summarizes the direct, indirect, and total effects identified in the fitted 

structural model. 

Table 23. 

Standardized Direct, Indirect, and Total Effects between Latent Constructs 

Effect of… on… Direct Indirect Total 

HS Math Achievement   

 Calibration Bias -.46**   -.46 
 Self-Efficacy .54** -.18 .36 
 Final Exam Performance .57 .57 

Calibration Bias   

 Self-Efficacy .39*  .39 
 Final Exam Performance -.75** .24 -.51 

Self-Efficacy    

 Final Exam Performance .62**  .62 

Note. *p < .05, ** p < .01. 
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Though the estimated effects between latent constructs were of primary concern, 

the coefficients from latent constructs (ovals) to indicator variables (rectangles) given in 

Figure 16 and Table 23 can be used to develop a qualitative understanding of the 

constructs labeled by high school mathematics achievement, calibration bias, self-

efficacy, and final exam performance. For example, the descending order of effects of 

high school math achievement on High School Self (β = .78), High School GPA (β = 

.62), and ACT Math (β = .42) suggested that the latent construct was a mixture of 

cognitive commonalities among the three indicators, with perhaps greater focus on 

participants’ self-perception of their performance in high school mathematics classes. 

Similary, the final exam performance construct could be considered more related to 

students’ performance on the “easiest” sampled final exam item (Perf. Level 7, β = .77)  

than the students’ performance on the “hardest” sampled final exam item (Perf. Level 1, β 

= .37). Indicators loaded onto the self-efficacy and calibration bias constructs 

approximately equally, though the comparatively smaller loadings of calibration bias 

indicators were further evidence of relatively larger uniqueness components among the 

calibration indicators. 

The structural model contained three endogenous latent constructs – calibration 

bias, self-efficacy, and final exam performance – and the model fit included estimates of 

the proportion of unexplained variation in each of the constructs. The model accounted 

for an estimated 21% of the variation in calibration bias and 25% of the variation in self-

efficacy. This relatively high proportion of unexplained variation in self-efficacy and 

calibration bias reflects the relatively few exogenous variables in the model. For example, 

the only construct posited to have an effect on calibration bias was high school 
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mathematics achievement, which included only three indicators. In contrast, the model 

accounted for 83% of the variation in the final exam performance construct. 

As in the measurement model and initial structural model specification, the final 

structural model results should be considered in light of indices of model fit. The overall 

model chi-square of 609.0 on 247 degrees of freedom indicated the model differed 

significantly from the exact (saturated) solution and comparative fit indices (CFI = .70, 

NNFI = .67) indicated less than adequate model fit. However, a likelihood-ratio test 

confirmed the structural model provided a significantly better fit than the measurement 

model (∆χ2 (6) = 146.7, p < .001) and the observed RMSEA value (0.086) fell between 

the thresholds for good fit and acceptable fit.  The most easily interpreted index of model 

residuals, SRMR = 0.075, indicated the fitted model reproduced correlations among 

indicator variables to within an average of .08. Of the 276 correlations in the final 

structural model, correlations ranged from -.39 to .61 (rave = .09, SD = .19), so the average 

error of .08 in the predicted correlations was considered marginally acceptable. In 

summary, the model fit indices indicated the structural model explained a substantial 

portion of the correlation structure of the indicator variables, but there was also 

substantial unexplained variation in the data that may lower the statistical power of 

findings. 

The structural modeling results suggest partial answers to the following four 

research questions and corresponding hypotheses. 

Q1 Does high school mathematics achievement have a significant effect on 
the amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 
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Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects of 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

H1 High school mathematics achievement will have a moderate positive 
effect on the amount of mathematics in participants’ college major. 

H2 Both high school mathematics achievement and the amount of 
mathematics in participants’ college major have small positive effects on 
participants’ calibration. 

H3 High school mathematics achievement and the amount of mathematics in 
participants’ college major will have moderate positive effects on self-
efficacy. Calibration will have a small negative effect on self-efficacy. 

H4 High school mathematics achievement and the amount of mathematics in 
participants’ college major will have small positive effects on mathematics 
performance. Calibration will have a large negative effect on mathematics 
performance. Self-efficacy will have a large positive effect on 
mathematics performance. 

As in the structural modeling, the results are mixed regarding the hypothesized 

effects associated with math in major. The analysis of correlations among indicator 

variables provided some evidence that students’ high school mathematics achievement 

may have a small positive effect on the amount of mathematics in students’ declared 

college major; Required Math was weakly correlated with both students ACT Math 

scores (r =.19, p < .01) and students’ self-assessments of their performance in high school 

mathematics classes (r =.22, p < .01).  In contrast, correlations suggested limited 

evidence in support of associations between Required Math and calibration, self-efficacy, 

or final exam performance indicators. 

The limited associations between Required Math and the other indicator variables, 

together with distributional characteristics which made Required Math poorly-suited for 



  139 

 

structural modeling, led to the removal of Required Math and its associated construct, 

math in major, from the structural model. While suggesting no effects of math in major 

on the other constructs (Q2), the removal of math in major from the structural model 

necessarily resulted in inconclusive findings regarding possible effects of high school 

mathematics achievement on math in major (Q1). 

The table of estimated direct and indirect effects (Table 23) from the structural 

model provides much of the evidence regarding the hypothesized effects among high 

school mathematics achievement, calibration bias, self-efficacy, and final exam 

performance. High school mathematics achievement had no direct effect on final exam 

performance, but evidenced approximately equal and opposite moderate effects on 

calibration bias (β = -.46) and self-efficacy (β = .54). Accounting for both direct and 

indirect effects, high school mathematics achievement had a moderate negative effect on 

calibration bias (β = -.46), a slightly smaller positive effect on self-efficacy (β = .36), and 

a moderate positive effect on final exam performance (β = .57). These findings support 

the direction and significance of hypothesized effects, but differ to some extent from the 

expected magnitudes. For example, the hypothesized moderate effect of high school 

mathematics achievement on self-efficacy was decreased by the indirect effect mediated 

by the relationship between high school mathematics achievement and calibration bias.   

Calibration bias had a relatively small positive direct effect on self-efficacy (β = 

.39) and a relatively large direct negative effect on final exam performance (β = -.75). 

However, including the indirect effect of calibration bias on final exam performance 

through self-efficacy, the total effect of calibration bias on final exam performance was 

moderately negative (β = -.51). Interestingly, the observed positive effect on self-efficacy 
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was the opposite of the hypothesized relationship, suggesting that less-calibrated students 

tended to be more confident in their abilities to complete the sampled final exam items 

correctly. Finally, self-efficacy had a relatively large positive effect on final exam 

performance (β = .62). This substantiated the hypothesized effect of self-efficacy on 

exam performance. 

Themes from Qualitative Interviews 

The concurrent mixed methods research design included task-based interviews of 

10 prospective secondary mathematics teachers. These interviews, constructed with the 

help of the participants’ instructors, included mathematical tasks similar to midterm exam 

items and discussion of students’ understandings of the related mathematical concepts. 

The interviews focused on the participants’ (1) reported self-efficacy to complete tasks in 

their mathematics classes correctly, (2) reasoning for choosing self-efficacy ratings, and 

(3) experiences in prior college mathematics classes which may have affected the 

participants’ self-efficacy to complete university mathematics. Special emphasis was 

placed on the variety of mathematical competencies, self-efficacy, and college 

mathematics experiences observed across the interviews. Building on the description of 

interview participants provided in the methodology chapter, the following narrative 

includes descriptions of the themes which emerged from the qualitative data analysis 

along with vignettes and quotations that illustrate and support the qualitative claims.  

Overview of Themes from Task-Based Interviews 

The focus of the thematic coding and synthesis of task-based interview data was 

on developing an understanding of the variety of secondary mathematics majors’ 

experiences to inform interpretations of the structural modeling results. Several themes 
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emerged from analysis of the task-based interviews, and the themes were framed in the 

conceptual framework of social cognitive theory and the review of literature. Alignment 

between the themes and the structural model supported triangulation of findings between 

the quantitative and qualitative data sources and cross-validation of the measures.  

Five qualitative themes were identified from the task-based interviews of 10 

secondary mathematics majors. These included (1) strong high school mathematics 

performance, (2) lowered self-efficacy associated with perceived low exam performance, 

(3) content-specific evaluations of self-efficacy for interview tasks, (4) tendency toward 

slight overconfidence with improved calibration on low self-efficacy items, and (5) 

increased self-efficacy to complete a mathematics course after initially not passing a 

course. 

Theme #1: Strong High School Mathematics Performance 

The interview participants generally reported successful experiences in their high 

school mathematics classes. All but one of the participants enrolled in mathematics 

during all four years of high school. The exception, Megan, took Advanced Placement 

Calculus as a high school junior, but chose not to take mathematics during her senior 

year. Justin began taking high school mathematics classes in middle school, and all of the 

interview participants completed at least pre-calculus mathematics in high school. In fact, 

8 of the 10 participants (all except Heather and Matthew) completed mathematics classes 

in high school that included opportunities for college credit. Four participants completed 

college algebra, four completed calculus, and college statistics and trigonometry were 

each completed by one student. Sarah and Jackie both completed two college-level 

mathematics classes in high school.  
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 Justin’s positive self-evaluation of his mathematics performance and self-efficacy 

in high school was typical of the participants: “I thought I was pretty good at math in 

high school. On a scale of 1 to 10, I’d give it about an 8. With some time, I felt like I 

could figure things out.” In particular, several of the interview participants described 

perceived benefits from high school mathematics preparation in subsequent college 

mathematics classes. Jennifer believed her success in Linear Algebra was due in part to 

her high school mathematics preparation, saying, “I thought Linear Algebra was kind of 

easy. I think because I did a lot of algebra in high school. Like the matrices – I did a lot 

of that in high school.” Besides experience with college-level content, some students 

(Emily, Jackie, and Heather) pointed to study habits and problem-solving skills 

developed in high school mathematics as sources for confidence in their college 

mathematics coursework.  

The four students who completed calculus in high school all chose to begin with 

first-semester calculus in college, and all cited their high school calculus experience as 

beneficial to their performance in college mathematics. Elizabeth drew on her high 

school calculus experience when she enrolled in Business Calculus as a freshman, a 

choice that ultimately led to her decision to become a high school mathematics teacher: 

I had taken calculus in high school, so I felt pretty confident and I was actually 
tutoring some of the seniors in my Business Calculus class. I really liked that 
class. It wasn’t just that I was learning, but I actually wanted to do my homework. 
I’d usually do it like an hour after class. That’s the only class where that’s 
happened. That’s the class that made me want to be a secondary math major. 

There were few exceptions to the general theme of strong performance in high 

school mathematics among the interview participants. Nicole was the only participant 

who failed a mathematics class prior to college, saying “I did fine [in high school math], 

but I started to slack because I was a teenager, and I thought school didn’t matter, and I 
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had to take Pre-Calc twice. I understood it and I would do the homework, but I wouldn’t 

turn it in, and my grade just dropped.” Besides Nicole’s experience in Pre-Calculus, the 

only other participant who described any kind of low performance in high school 

mathematics was Elizabeth, who said she experienced some difficulties in college 

calculus because she was “never really good at trig in high school.” 

Theme #2: Effects of Perceived Low Exam Performance on Self-Efficacy 

The interview transcripts were coded for instances of Bandura’s (1997) four 

sources of self-efficacy, which include mastery experiences, social persuasions, vicarious 

experiences, and physical and emotional states. Coded excerpts supported each of the 

four sources, but the participants’ descriptions of their college mathematics self-efficacy 

supported mastery experiences and vicarious experiences as the primary sources of 

mathematics self-efficacy. In particular, perceived exam performance – both personal 

exam scores (mastery experiences) and the perceived performance of peers (vicarious 

experiences) – appeared to have primary effects on participants’ mathematics self-

efficacy. However, participants’ personal feelings about their instructors, especially 

perceptions of approachability, appeared to mediate the degree to which low exam 

performance affected mathematics self-efficacy. 

The variety of students’ interpretations of their exam performance in college 

mathematics classes is exemplified in the descriptions of Calculus III offered by Sarah, 

Emily, Jennifer, and Elizabeth. The four students were all enrolled in the same section of 

Calculus III about a year prior to the interviews. Jennifer, Emily and Elizabeth passed the 

class with grades of B, B, and C, respectively, and Sarah earned an F. Despite the variety 

of grades, the students described very similar feelings of surprise and disappointment in 
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their exam scores, and their perceptions of that exam performance seemed to have 

qualitatively different effects on their mathematics self-efficacy. 

For Jennifer, low perceived performance on Calculus III exams appeared to have 

little lasting effects on her mathematics self-efficacy. Jennifer recalled feeling 

encouraged to become a math major because of high exam scores in classes like College 

Algebra and Trigonometry, saying “I think [those classes] helped me decide, ‘Hey, I’m 

good at math. Like, I’m better than most of the students in my class.’” Having earned an 

A in four college mathematics classes prior to Calculus III, Jennifer expressed surprise 

when she scored below 70% on 3 of the 4 exams in Calculus III. Though she earned a B 

in the class, Jennifer struggled to explain her unexpectedly low exam performance, 

ultimately attributing her lack of understanding to the instructor’s teaching style: 

I didn’t hardly understand Calc III. I don’t know what it was. I tried and 
everything, and I’m a good studier… It could have been the professor’s teaching 
style. You know how it is with math, it kind of depends on the teacher who’s 
teaching it, how well you do. I kind of would say that was the main thing. 

Sarah’s description of her performance in Calculus III was even more closely tied 

to her personal feelings about the teacher than Jennifer’s description of the class. Like 

Jennifer, Sarah had grown accustomed to high performance in college mathematics 

classes prior to Calculus III and had earned an A in both Calculus I and Calculus II. 

Asked about her exam performance in Calculus III, Sarah said all her exam scores were 

below 70% and explained the low performance almost exclusively in terms of feelings 

about the instructor:  

I understood Calculus III, but I really don’t like the instructor. So, at the end of 
the semester, I was just like I am willing to just shoot myself in the foot to not do 
any more work for you. And that was basically what I did. I really, I was not 
happy… Actually, my Calc III teacher was the only math teacher I’ve had that I 
didn’t like.  
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Sarah took Discrete Math and Calculus III during the same semester, and she 

perceived her exam scores to be low in both classes, but the exams in the two classes 

seemed to have disparate effects on her mathematics self-efficacy. When Sarah scored 

about 50% on her first Discrete Math exam, she found it difficult to understand the letter 

grade of B posted next to what she thought was as a failing score. She said, “[The 

Discrete Math Instructor] told us it was normal that everyone failed, but it made me feel 

really bad about it. I did decently, but I felt like I was doing really, really, bad.” Despite 

this disappointment, Sarah said she understood the grading system and she found the 

instructor approachable, “[The instructor] was really hard, but I felt like I could talk to 

him.” In contrast, Sarah did not feel comfortable talking to the Calculus III instructor, and 

the first exam was much more disappointing: 

I think our first test in Calc III, I think like six people passed it out of both classes. 
[The instructor] didn’t say he would curve or anything. He was like, I’ll drop the 
lowest test grade, but it just kind of puts in your mind, this is how you’re going to 
do on all the tests. I was one of the people who failed it, like everyone else. 

Sarah’s perceptions of her exam performance and the vicarious experience of 

similarly low perceived performance of her peers seemed to convince her that she would 

continue to perform poorly in Calculus III. At the same time, she described a continuing 

calibration bias toward overconfidence on the exams in Calculus III. Prior to the first 

exam, she believed she could probably earn a B, but thought the test was unfair: “[the 

instructor] threw in a lot of tricks and things from way back when, like 8th grade 

algebra.” By the end of the semester, Sarah said she decided to give-up on trying to pass 

the class: 

In Calc III, toward the end, my grades were not improving, and I felt like I knew 
[the material]. I don’t know why I didn’t know it, because I should have been able 
to do it… Then there were only a few assignments left, so I was like, the highest 
grade I can get is a C minus, so there’s no reason to stress about it. I was just like, 
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I’ll take an F and not worry about it. I still went to class, I still did the homework. 
Our last lab, I was like “eh.” And the final, I didn’t even study for it. I knew I 
couldn’t get anything higher, so I just went and took it. 

Sarah’s low exam performance and high calibration bias on exams seemed to 

contribute to self-handicapping behavior and a failing grade in Calculus III. The low 

performance also resulted in social consequences, including questions from family 

members about her choice to become a mathematics teacher. As Sarah described it,  

Calc III was definitely a downer. I have a lot of people in my family who make 
fun of me for that. I was like, “Yeah, I’m not doing really well in Calc III.” And 
they’re like, “And you’re going to be a math teacher?” and I just say, “Well, the 
good thing is I’m never going to be teaching anything that high.” 

Emily, a junior who decided to become a mathematics teacher at the age of 16, 

experienced similar disappointment in her Calculus III exam scores. When talking about 

Calculus III, she remembered questioning the choice to become a mathematics major: 

I had problems. Failed the tests. It was horrible. That was when I was like, "I don't 
know if I should stay a math major. If I can't understand this, I'm going to get into 
higher math, and it's just not going to click.” It just scared me. That was not a 
good semester. Those were not happy nights. 

Though Emily earned a B in the Calculus III class, she said the class was a turning point 

for her exam performance. In four classes she had completed since Calculus III, Emily 

had come to expect exam scores between 50% and 80%: “One thing I'm learning to 

accept right now is I don't do as well on tests as I used to.”  

Emily described her experience in Calculus III as persistence through confusion 

and disappointment. She described taking notes during lecture, reading the textbook, 

completing all the homework exercises in the book, and working with classmates on the 

study guides provided by the instructor for exams. She found it difficult to connect the 

drawings and equations from her notes with the material in the textbook, but thought she 
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understood the homework and study guides. When she got to exams, however, Emily 

described disappointment and surprise:  

The first test, well over half the people failed that test, and I think the next test as 
well. I think the highest test score I got in Calc III was a C. The lowest was a 
39%. It was so bad. But somehow I got a B. I don’t know how. [The instructor] 
might have curved the tests, but I don't know. Homework I did well on, because 
when the book presented it, I could get it. The problems on the test, though, I just 
couldn't see a relationship between them… So, I had problems. Failed the tests.  

Though they earned very different final grades in the class, Emily and Sarah 

described some common mechanisms that influenced their self-efficacy, including (1) 

vicarious experiences as a source for lowered self-efficacy on exams, (2) calibration bias 

in the form of overconfidence in the ability to perform well on exams, (3) calibration bias 

in the form of underconfidence to earn the grade they wanted from the class, (4) emotions 

associated with the fear of being able to do higher-level mathematics, and (5) lowered 

self-efficacy to complete a mathematics major. 

While Jennifer and Sarah focused on their dislike of the teacher or teaching style, 

Emily’s description of her low performance also included her strategies for overcoming 

the low exam scores she was experiencing. Emily developed several new strategies to 

improve her performance in Calculus III, including (1) learning to use the textbook when 

she could not understand the instructor, (2) working with a study group on homework and 

study guides, and (3) asking questions in class when she knew she was not the only 

person who was confused. She also described a lasting change in how she viewed grades, 

saying “I think I could get a C and be proud of it, if I know that I worked hard enough. 

Not to blame the professor, but if the class is with a professor that I didn't learn well with, 

but I still know that I tried, then I'd be happy with a C.” While Emily’s exam grades in 

Calculus III did not improve during the semester, she found benefits in the studying 
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strategies she developed and reported using the strategies in subsequent mathematics 

classes.  

Yet another view of the role of exam performance in mathematics self-efficacy 

can be found in Elizabeth’s experience of Calculus III. Elizabeth initially experienced 

success in the class, earning 98% on the first exam. She attributed her early success to 

taking Calculus II from the same instructor as well as to almost daily meetings with a 

study group – later joined by Emily – which carried-over from the Calculus II class. 

Nonetheless, Elizabeth said she earned a C in Calculus II and disliked the instructor from 

that prior experience, so she expected to earn a C in Calculus III. Elizabeth earned “really 

low” scores on the remaining exams in the class, and she remembered inconsistent 

performance and attendance. Elizabeth relied on the study group meetings to complete 

homework and learn the content, and she described a gradual decline in her self-efficacy 

to learn new content in the class, “At the beginning I felt like I could learn the math, but 

by the end it was just overwhelming.” 

As suggested by the four participants’ experiences in Calculus III, students’ 

descriptions of the trajectory of their mathematics self-efficacy through college 

mathematics classes pointed to low exam performance and comparisons to perceived 

performance of peers as primary sources of mathematics self-efficacy. Interview 

participants also described a close link between perceptions of exam performance and 

their personal feelings about teachers. In particular, the participants said they had more 

positive views of low exam performance when they liked the instructor on a personal 

level or felt the instructor was approachable or friendly. Emily described feeling 

encouraged to work past her confusion in Discrete Math because she liked the instructor 
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and thought he was personable and interested in the students, and Sarah described a 

willingness to accept low performance in Probability because she liked the instructor: “I 

like my Probability teacher, she’s nice. It’s a hard class, but I can still talk to her if I have 

questions. It makes me feel better about my C that she’s actually nice.” 

Elizabeth’s description of her Geometry instructor mirrored Sarah’s view on 

Probability: 

Right now, I’m in Geometry. I don’t know anything about the instructor, but I 
really like her. Maybe it’s just that she’s more friendly. I don’t know. I find that 
the teachers I care about as people, I also care about what they have to say. The 
teachers I don’t think highly of, I really don’t want to listen to them in class. And 
it’s not because, well, this person gives too much homework, so I don’t like them. 
Because, like, my Geometry teacher, her homework is really intense, but I really 
like her. But my Calc III teacher, his homework was intense too, but I don’t like 
him. I think it’s the personality. 

Theme #3: Content-Specific Reasoning for Self-Efficacy Judgments 

Each of the task-based interviews included a self-efficacy survey similar to those 

used in the quantitative strand of the study. Participants completed the surveys, which 

included self-efficacy ratings of 7 to 11 tasks developed in conjunction with instructors to 

be similar in difficulty and content to exam items. (See Table 24 for composite ratings.) 

While there was some evidence of response styles among the participants, students’ 

explanations of their self-efficacy ratings generally supported the validity of the ratings as 

representing content-specific self-efficacy beliefs. 

The participants typically described the reasoning for their self-efficacy ratings in 

very content-specific terms, referring to prior experience with the tasks, anticipations of 

the number of steps required to complete the tasks, or familiarity with the content. For 

example, Megan and Heather both described a tendency to give lower ratings on calculus 

problems that involved trigonometric functions because of past difficulties differentiating 
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functions that contained sine or cosine. Jennifer rated one item as a “2” out of 6 because 

she recalled not being able to solve a similar problem on a recent exam. Referring to a 

Calculus II problem asking for the volume of a solid of revolution formed by rotating a 

region bound by a parabola about the y axis, Jackie said, “I would put a 4 because I don’t 

know what the question is asking, but I think I understand it. So, I’d graph it, and try to 

see what they’re asking.” Each of these patterns of reasoning is consistent with the social 

cognitive view of self-efficacy as a content-specific assessment of one’s ability to 

complete a performance task (Bandura, 1997). 

There was evidence that some participants had aversions to responding with the 

highest rating (6) or lowest rating (1) listed on the self-efficacy surveys. For instance, 

none of the respondents rated their self-efficacy on the survey tasks with the lowest 

available rating. Heather’s explanation of her reticent to choose the lowest rating 

reflected the common response that there is always a chance of solving an exam problem: 

“To put a 1, you’d have to put something I’ve completely never seen before, for me to 

believe there’s no possible way for me to get it. As long as I’ve seen that kind of math 

before, I figure there’s at least a possibility I can get it.” Consequently, Heather’s ratings 

were effectively limited to the range of 2 to 6.  

Several respondents (Jennifer, Megan, Emily, Sarah, and Nicole) described a 

belief that they would rarely, if ever, rate an exam problem in their class with the highest 

possible rating (6). Sarah summarized her reasoning for not using the highest self-

efficacy rating as reflecting a general belief that there is always a chance of making a 

mistake in a mathematics problem: 

I just usually don’t feel that way during a test. I really don’t. I’m always like, I 
can probably miss a couple points on that. Even if I do get it completely right. I 
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got a few of the problems right on my last test, but I wouldn’t put a 6 next to 
them. 

Emily said her reticence to report the highest self-efficacy was linked to a general 

mistrust of her feelings of confidence. Asked why she did not rate any of the 10 problems 

on the self-efficacy survey with a 6, Emily said: 

That's me. That's just how I always am. I do have a problem with trusting myself. 
Even if I know I'm doing it right, there's always something in me saying... I guess 
it's kind of like trusting your instincts. I'm just not good at that. It's why I have 
problems with multiple choice, because I just don't trust myself. If this problem 
were on a test, though, I'd leave it at that. I'd move on. 

Theme #4: Calibration Bias toward Slight Overconfidence on Interview Tasks 

To explore calibration bias in the interview setting, participants in each of the 

task-based interviews completed at least two tasks selected from those on their self-

efficacy survey. In particular, the participants chose at least one task to complete from 

among the survey items in which the participant provided low self-efficacy ratings (1 or 

2) and at least one task from among the tasks rated with high self-efficacy ratings (5 or 

6). Table 24 outlines the performance of the interview participants on the sampled tasks 

along with qualitative descriptors of the participants’ observed calibration and mean self-

efficacy ratings on the survey items. Collectively, participants seemed to be more 

calibrated on items for which they expressed low self-efficacy. Nine of the 10 

participants incorrectly solved the problems for which they expressed low-efficacy, while 

only 5 of the 10 participants correctly solved the problems for which they expressed high 

self-efficacy.   
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Table 24. 

Performance of Interview Participants on Tasks with Low and High Self-Efficacy Ratings 

 
 Performance Tasks  

Participant Mean SEa Low SE High SE Calibration 

Heather 3.9 0 0 moderately overconfident 

Matthew 3.6 0 0 moderately overconfident 

Megan 2.9 0 0 slightly overconfident 

Justin 3.6 0 5 calibrated 

Jackie 3.9 0 5 slightly overconfident 

Nicole 2.3 0 0 calibrated 

Sarah 2.7 0 0 slightly overconfident 

Jennifer 3.4 0 5 calibrated 

Emily 2.9 5 5 moderately underconfident 

Elizabeth 3.1 0 5 calibrated 

Note. a Mean SE ratings are on a scale of 0 to 5 and reflect 7 to 11 ratings. Calibration 
descriptors are holistic qualitative assessments. SE = Self-Efficacy. On performance 
tasks, 0 = incorrect, 5 = correct. 

The qualitative assessments of calibration presented in Table 24 were based on 

the students’ performance on interview tasks, self-efficacy ratings, and their descriptions 

of the reasoning for self-efficacy ratings. Four of the participants appeared to be well-

calibrated, one participant (Emily) demonstrated moderate underconfidence, three 

participants showed slight overconfidence, and two students demonstrated moderate 

overconfidence.  

Since every reported self-efficacy rating during the interviews was above the 

lowest available value (2 or above) and performance was scored on a dichotomous 
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(correct/incorrect) scale, any incorrect attempt on a performance task would numerically 

corresponded to a positive calibration bias score, which was operationally defined as 

overconfidence. To understand the qualitative meaning of the numerical calibration 

scores, the inquiry included analysis of conceptual understandings and procedural skills 

that contributed to incorrect attempts.  Nearly all of the attempts recorded as incorrect 

were identified as inability to set-up the solution (5 of 14), misinterpretation of the task 

requirements (5 of 14), or inaccurate application of a procedure (3 of 14). Only 1 of the 

14 incorrect attempts was the result of an arithmetic or algebraic error.  

Megan’s attempt to sketch the graph of a function from a graph of the derivative 

of the function was a typical example of performance which indicated potential 

calibration bias. Megan chose the task as an example of a problem she felt very confident 

to complete correctly and provided her highest self-efficacy rating (5 out of 6) on the 

task. When asked to complete the task, however, Megan applied a procedure to graph the 

derivative of a function from the graph of the function (the inverse procedure). Megan 

quickly applied the incorrect procedure accurately, successfully producing an 

approximate graph for the second derivative of the function. When the researcher 

explained this error, Megan was able, with some help regarding the role of maxima and 

minima, to complete the initial task correctly. This performance, together with Megan’s 

self-efficacy ratings on the other tasks and explanations about her reasoning for selecting 

self-efficacy ratings, contributed to the choice of the qualitative descriptor “slightly 

overconfident” for her calibration in Calculus I at the time of the interview. 

Interestingly, the four students enrolled in Probability collectively demonstrated 

very little calibration bias during the interviews and the three students enrolled in 
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Calculus I each appeared to be overconfident in their assessments of self-efficacy. Some 

plausible sources for this observation include (1) instructional differences between the 

two classes, (2) improved calibration as a result of additional college mathematics 

experience, (3) differences in the relative difficulty of the self-efficacy items, and (4) 

chance (due to the small sample).  

Theme #5: Effects of Failing College Mathematics Classes on Self-Efficacy 

Table 25 summarizes the enrollment history of the interview participants in 

mathematics classes since beginning their undergraduate education. Of the 10 interviews, 

two students (Heather and Matthew) were enrolled in their first college mathematics class 

at the time of the interview. Of the remaining eight students, five had failed at least one 

mathematics class in college, accounting for a total of nine failed college mathematics 

classes.  
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Table 25. 

Mathematics Enrollment History of Task-Based Interview Participants 

Participant 
Calculus  

I 
Calculus 

II 
Calculus 

III 
Discrete 

Math 
Linear 

Algebra. 
Probab- 

ility 

Heather In 
  

   

Matthew In 
  

   

Megan Fail, In 
  

   

Justin Fail, Pass Fail, In 
 

Fail, Pass  Fail, In 

Jackie Pass In 
 

Pass   

Nicole 
Fail, Fail, 

Pass 
In 

 
   

Sarah Pass Pass Fail, Pass Pass In In 

Jennifer Pass Pass Pass Pass In In 

Emily Pass Pass Pass Pass Pass In 

Elizabeth Pass Pass Pass Fail, Pass Pass In 

Note. In addition, Megan, Jennifer, and Jackie had each passed College Algebra and 
Sarah, Elizabeth, and Emily were each enrolled in Geometry at the time of the study; 
Jennifer had passed Trigonometry and Geometry. In = enrolled in the class at the time of 
the study; Fail = earned grade of D or F in a prior semester; Pass = earned grade of A, B, 
or C in a prior semester.  

When asked to describe the classes in which they did not pass, participants referred to (1) 

dislike of the instructor or teaching style, (2) perceived personal learning styles, and (3) 

insufficient preparation in prior mathematics courses. Of particular interest were the 

participants’ perceptions of these experiences on their self-efficacy to succeed in college 

mathematics.  

In contrast to the pattern of lowered self-efficacy following low exam 

performance, the participants typically described increased self-efficacy after not passing 
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college mathematics classes. Elizabeth, a junior who earned an F in Discrete Math during 

her sophomore year, said she performed much better in Discrete Math the second time 

because of increased familiarity with the content and a perception that the second 

instructor was more approachable: “What I had struggled with the first time seemed so 

much easier with the new instructor. I think it was easier because I knew what was 

coming a little bit more, but I also think it was because the teacher was less scary.” 

Nicole, who failed to pass Calculus I twice prior to passing the class during her 

sophomore year, was explicit about the benefits she perceived from her history of 

difficulties in calculus. Nicole attributed her challenges to poor algebra skills dating back 

to an ineffective eighth grade algebra teacher, but she emphasized what she learned about 

herself as a student. In particular, she had learned the shortened format of a summer 

mathematics class was not useful and that she needed to talk to instructors when she got 

confused. She said the calculus was easier the third time because of the previous 

“multiple go-rounds” and because she liked the instructor. Overall, she expected the 

struggles in Calculus I would help her as a future middle school mathematics teacher: 

I figure, I have all this struggling history, so if I can make it, I can relate to the 
students more… They will be like, “I’m sure you were always good at math”, and 
I’ll be like, “Actually, I had to take Calculus 3 times.” I took it my freshman year, 
I took it during the summer, and I took it last semester. So, I wasn’t really that 
good, and I did it. 

Among the participants, Justin, a junior enrolled in Calculus II, had the most 

positive outlook on not passing college mathematics classes. Prior to the interview, Justin 

had earned an F in every college mathematics class the first time he enrolled, including 

Calculus I, Calculus II, Discrete Math, and Probability. He described “checking-out” of 

Calculus II when there seemed like there was too much work, feeling unprepared for 

Probability, and falling behind after missing classes in Discrete Math and Calculus I1. 
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Referring to his second attempt at Calculus II, Justin said, “When I miss class, it causes a 

lot of problems. Like, a couple weeks ago I just wanted to go hang out with my friends. 

So, I left on a Monday, and by the time I came back the next week, I’d missed Chapter 

7.” 

Despite his history of poor performance, and the year in which he took no 

mathematics classes while he was on academic probation at the university, Justin 

expressed very high mathematics self-efficacy. He had been advanced in mathematics 

coursework since elementary school, had taken high school mathematics classes while in 

middle school, and rated his self-efficacy in mathematics upon graduating high school as 

8 out of 10 (on a scale of 1 to 10). Justin rated his overall self-efficacy to learn a new 

mathematics topic as a 10 out of 10 and rated his self-efficacy on eight tasks in Calculus 

II with ratings between 3 and 6 (out of 6).  

In second attempts at Calculus I and Discrete Math, Justin passed both classes 

with a letter grade of C. He said he was “in no hurry” to graduate and that he planned to 

continue taking mathematics classes more than once as needed. He described his low 

grades in college mathematics classes as being primarily the result of a personal learning 

style that benefited from taking classes more than once: 

When I’m learning math, I feel like it takes me just a little time to start absorbing 
the information. I feel like, now [in Calculus II], it’s starting to sink in… it just 
takes me a couple times. I guess I need to preview the class before I can get it. It’s 
not that I can’t learn it, it’s just that I need to be shown what I’m doing first. 

The “preview effect” described by Justin, Nicole, and Elizabeth appeared to 

increase the participants’ self-efficacy to complete the mathematics classes in subsequent 

attempts. Sarah, whose experience earning in F in Calculus III is described in the theme 

regarding exam performance, also expressed a positive view of the familiarity she gained 
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with the Calculus III content when she described her second attempt at Calculus III. 

Though Sarah, Nicole, and Elizabeth each expressed disappointment in their initial 

performance, their prior experience appeared to leave them (as well as Justin) with 

increased self-efficacy to pass the classes in subsequent attempts. Though the possibility 

of failing to pass a college mathematics class having the effect of lowering students’ self-

efficacy in other mathematics classes seemed plausible from a social cognitive theory 

perspective, there was limited evidence in the interview data to support specific negative 

effects of not passing college mathematics classes on the participants’ mathematics self-

efficacy. 

Though the quantitative results and qualitative themes have been presented in this 

chapter separately, the secondary mathematics majors in the qualitative interviews can be 

viewed as an important subset of the participants in the quantitative strand of the inquiry. 

In addition, the use of a common conceptual framework in the quantitative strands, 

together with the contextual data collected in both strands of the inquiry, allowed for 

convergence of the quantitative and qualitative findings. In the next chapter, the 

qualitative themes and quantitative findings are synthesized, compared, and contrasted. In 

addition, the discussion of results includes further discussion of limitations in the study, 

connections to related literature, and potential implications of the study.
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CHAPTER V 

DISCUSSION 

The social cognitive approach to learning rests on the core idea that “people are at 

least partial architects of their own destiny” (Bandura, 1997, p.8) in the sense that they 

work to shape their environment based on perceived opportunities for success. Self-

beliefs are central to this view, because self-efficacy and related beliefs act in concert 

with knowledge and competencies to affect academic performance (Pajares & Urdan, 

2006). A large body of self-efficacy research has established its prominent role in 

academic behavior: “Students who are confident in their academic abilities monitor their 

work time more effectively, are more efficient problem solvers, and show more 

persistence than do equally able peers with low self-efficacy” (Usher & Pajares, 2008, p. 

751). However, self-efficacy and its impact on performance are heavily influenced by 

context, and important questions remain unanswered in the literature about the nature and 

sources of self-efficacy among students in advanced mathematics courses. 

The goal of this study was to add to the body of social cognitive research in 

mathematics education by helping to clarify the roles self-efficacy and calibration play in 

the mathematical performance of students in a secondary mathematics teacher 

preparation program. This spurred a thorough review of related literature, development of 

a model for advanced mathematics performance based on the social cognitive learning 

theory, and a mixed methods research design that blended broad statistical trends with 
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qualitative themes from task-based interviews. Based on cross-sectional survey and exam 

performance data for 195 students enrolled in 12 classes ranging from Calculus I to 

Probability, analysis of variance and structural equation modeling converged with 

thematic coding of interviews with 10 prospective secondary mathematics teachers to 

suggest answers to seven research questions, given below: 

Q1 Does high school mathematics achievement have a significant effect on 
the amount of mathematics in participants’ college major? 

Q2 Do high school mathematics achievement and the amount of mathematics 
in participants’ college major have significant effects on participants’ 
calibration? 

Q3 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, and calibration have significant effects on 
participants’ self-efficacy?  

Q4 Do high school mathematics achievement, the amount of mathematics in 
participants’ college major, calibration, and self-efficacy have significant 
effects on participants’ performance on exams in advanced mathematics? 

Q5 Are there significant differences in self-efficacy, calibration, the amount 
of mathematics in participants’ college major, and advanced mathematics 
performance by participants’ gender? 

Q6 Are there significant differences in self-efficacy and calibration by item 
difficulty? 

Q7 In what ways do prospective secondary mathematics teachers’ 
mathematical problem-solving compare and contrast with the 
hypothesized relationships between self-efficacy, calibration, and 
performance in advanced mathematics? 

This chapter contains a summary of the study, with special emphasis on situating 

the research in the context of related literature, consideration of the scope and limitations 

of the findings, and recommendations for future research. The narrative initially focuses 

on the research design and methodology before moving to a summary of the quantitative 

and qualitative findings, which is then followed by a discussion of some implications of 



  161 

 

the study, limitations of the research, and suggestions for follow-up investigations to 

extend and clarify the results. 

Summary of the Study 

The cross-sectional study described in this dissertation employed a mixed 

methods research design in which task-based interviews with 10 secondary mathematics 

majors were used to contextualize and triangulate findings gleaned from the quantitative 

data sources – background surveys, registration data, self-efficacy surveys in the minutes 

just before final exams, and photocopies of final exams for 195 participants. The setting 

was the mathematics department at a single mid-sized U.S. doctoral granting university in 

the Mountain West which specialized in the preparation of secondary mathematics 

teachers. Data were collected in the last eight weeks of the Spring 2009 semester, and 

participants were enrolled in at least one of 12 selected mathematics classes offered as 

part of the requirements to obtain a secondary mathematics major at the research site. 

Classes included Calculus I, Calculus II, Linear Algebra, Discrete Mathematics, Calculus 

III, Abstract Algebra II, and Probability. 

The conceptual framework supporting the research design and data analysis was 

built primarily from the constructs of social cognitive theory, especially self-efficacy and 

calibration, with connections to a cognitive science perspective on calibration as well as 

path models of mathematics performance developed by Pajares and Kranzler (1995) and 

Chen (2002). Two pilot studies (detailed in Chapter I) and the review of literature 

suggested rationale for a structural equation modeling approach to investigating 

mathematics self-efficacy and calibration among college students, along with a need for a 

mixed methods inquiry of self-efficacy and exam performance to consider the varied 
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sources of self-efficacy for students who complete advanced undergraduate mathematics. 

Much of the literature review and research questions rested on the development of a 

hypothesized structural path model for undergraduate mathematics performance, given as 

Figure 17, which posited potential direct and indirect effects among high school 

mathematics achievement, the amount of mathematics in students’ college major, 

mathematics self-efficacy. calibration bias, and final exam performance. 

 

Figure 17. Hypothesized structural path model for advanced mathematics performance.  

The data analysis methods employed analysis of variance techniques to test for 

differences in the measures of the endogenous constructs, self-efficacy, math in major, 

calibration bias, and final exam performance by gender (Q5) and to test for differences in 

self-efficacy, calibration bias, and final exam performance by item difficulty (Q6). The 

first four quantitative research questions (Q1-Q4) were addressed through structural 

equation modeling, which included the decomposition of observed correlations among 

indicators of high school mathematics achievement (i.e., self-assessment of high school 

mathematics performance, high school grade point average, ACT mathematics score) and 
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indicators of self-efficacy, calibration bias, and final exam performance from pre-exam 

surveys and copies of students’ work on final exams. Finally, transcripts and artifacts 

from the 10 task-based interviews were coded using the conceptual framework, with a 

special emphasis on the context surrounding and variety of secondary mathematics 

majors’ performance, self-efficacy, and calibration in mathematics. This led to five 

qualitative themes, which were supported by interview excerpts, vignettes, and examples 

of student reasoning. 

Summary of Findings 

In the preceding chapter, the narrative included detailed descriptions of the 

statistical and qualitative evidence supporting answers to the seven research questions. 

The aims of this section are to synthesize those findings and to serve as a reference point 

for further discussion of the meaning, scope, and limitations of the findings. 

The primary quantitative findings arose from a structural equation modeling 

approach to the first four research questions. Starting from the hypothesized structural 

path diagram (Figure 17), the structural equation model initially included five latent 

constructs: high school mathematics achievement, math in major, calibration bias, self-

efficacy, and final exam performance. However, the number of required mathematics 

credits associated with students’ college major, which served as the single indicator of 

math in major, was removed from the model because of evidence the data failed several 

correlation and distribution assumptions of structural equation modeling. Consequently, 

the final estimated structural model incorporated four latent constructs.  

Participants’ ACT Mathematics scores, high school grade point average, and self-

assessment of their high school mathematics performance served as three indicators of 
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the single exogenous construct, high school mathematics achievement. The two latent 

constructs from social cognitive theory, self-efficacy and calibration, were each indicated 

by seven measures based on self-efficacy ratings on surveys just prior to final exams and 

performance on matched final exam items. Students’ performance on seven other final 

exam items were used as indicators of final exam performance and were randomly 

selected from quantile-groups of within-class means to represent students’ performance 

on final exam items from a range of difficulties. Collectively, the final estimated 

structural equation model included 24 indicators spread across four latent constructs. 

The estimated structural equation model suggested that each of the indicators 

loaded significantly onto its specified construct at the .05 criterion. Standardized direct 

effects among the latent constructs, shown in Figure 18 along with the estimated 

percentage of variation in the latent constructs explained by the model, suggested the 

largest direct effect was that of calibration bias on final exam performance (β = -.75). 

Calibration bias had a small positive effect on self-efficacy (β = .39), suggesting a 

tendency toward overconfidence was more prevalent among students with high self-

efficacy than among those with lower self-efficacy. As expected by the review of 

literature, self-efficacy had a positive effect on final exam performance (β = .62). Though 

high school mathematics achievement had a positive effect on self-efficacy (β = .54), it 

had an almost equal negative effect on calibration bias (β = -.46), suggesting increased 

high school mathematics performance was associated with both increased self-efficacy in 

college mathematics and a reduction in the tendency toward overconfidence.  
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Figure 18. Standardized direct effects in the final estimated structural path model.  
Indirect effects can be found by multiplying coefficients along multiple-edge paths.  

The model did not identify a significant direct effect of high school mathematics 

achievement on final exam performance, but the effects of high school mathematics 

achievement on self-efficacy and calibration bias suggested indirect influences on final 

exam performance. Similarly, the small positive effect of calibration bias on self-efficacy 

resulted in an indirect effect of calibration bias on final exam performance (β = .24), thus 

mitigating the large negative direct effect of calibration bias on final exam performance 

so that the total effect of calibration bias on final exam performance was moderately 

negative (β = -.51) . After combining direct and indirect effects, high school mathematics 

achievement had a weak positive effect on self-efficacy (β = .36), a moderate negative 

effect on calibration bias (β = -.46), and a moderate indirect positive effect on final exam 

performance (β = .57).  

The fifth research question (Q5), was addressed by multiple analysis of variance 

(MANOVA) tests for potential differences by gender in the composite measures of self-

efficacy, calibration bias, math in major, and final exam performance. While the 

statistical evidence supported the claim that the data met the assumptions of MANOVA, 

the omnibus test for differences by gender in the composite scales of math in major, self-
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efficacy, calibration, and final exam performance by gender was not significant (Wilk’s 

Λ = .97, F (4, 172) = 1.3, p = .27). That is, there was insufficient evidence to support 

differences in any of the composite measures by gender.  

A post-hoc analysis of the required mathematics in students’ majors pointed to 

possible differences by gender in the percentage of students in advanced mathematics 

who were mathematics majors. This was evidenced by the observation that 79% (34/43) 

of female mathematics majors chose the secondary teaching emphasis compared to just 

37% (11/30) of the male mathematics majors. These proportions were significantly 

different (χ2 (1, N = 195) = 13.4, p <.001) and may have contributed to an overall 

difference in the proportion of mathematics majors by gender (χ2 (1, N = 195) = 3.9, p 

<.05) in which 44% (43/97) of female participants were mathematics majors compared to 

31% (30/98) of male participants.  

The final quantitative research question (Q6) addressed the extent to which study 

participants’ self-efficacy ratings and calibration scores differed according to the 

difficulty of the exam items represented on the pre-final exam surveys. To allow for 

comparison across sections, the seven tasks presented on each survey were reverse rank-

ordered by the percentage of students who successfully solved each task. For example, a 

“Level 1” difficulty rating indicated the “easiest” survey task in the sense that it was 

correctly solved by the highest percentage of students. Applying one-way repeated 

measures analysis of variance (ANOVA), there were significant main effects of item 

difficulty on both self-efficacy ratings (F (6,1164) = 36.6, p < .001) and calibration bias 

scores (F (6, 1164) = 14.9, p < .001). That is, both self-efficacy ratings and calibration 

bias scores tended to decrease with item difficulty.  
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Post-hoc comparisons of means by item difficulty using Tukey’s honestly 

significant differences (HSD) criterion indicated consistently lower self-efficacy ratings 

on increasingly difficult items, with self-efficacy means for items separated by at least 

two levels of difficulty differing in 13 of the 15 possible cases. The mean self-efficacy 

rating on Level 1 items, for example, was 4.3 (out of 5), while the mean self-efficacy 

rating on Level 4 items was 3.6 and the mean self-efficacy on Level 7 was 3.0. A similar 

tendency toward decreased mean calibration bias with increased item difficulty was less 

consistent than the trend in self-efficacy means. Though the mean calibration bias on the 

least-difficult items (Levels 1 & 2) were significantly greater than calibration bias on the 

most-difficult items (Levels 6 and 7), calibration bias means of moderately difficult items 

(Levels 3-5) were not statistically different. 

The final research question (Q7) called for a qualitative inquiry into processes and 

experiences surrounding the hypothesized relationships among calibration bias, self-

efficacy, and performance in college-level mathematics. Analysis of data from task-based 

interviews with secondary mathematics majors in Calculus I (3 participants), Calculus II 

(3 participants), and Probability (4 participants) led to five qualitative themes. These 

included (1) strong perceived high school mathematics performance, (2) lowered self-

efficacy following perceived low exam performance, (3) content-specific evaluations of 

self-efficacy for interview tasks, (4) tendency toward slight overconfidence with 

improved calibration on low self-efficacy items, and (5) increased self-efficacy to 

complete a mathematics course after initially not passing the course. 

As evidenced by the first qualitative theme, the interview participants generally 

reported positive perceptions of their high school mathematics performance and 
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preparation for college-level mathematics. Of the 10 interview participants, eight 

completed classes in high school in which they received college mathematics credit. The 

two remaining interview participants, Heather and Matthew, each took four years of high 

school mathematics and began college-level mathematics in Calculus I. With the 

exception of Nicole, who failed pre-calculus in high school and attributed the poor 

performance to a lack of effort, the interview participants described high performance in 

high school mathematics and high mathematics self-efficacy upon high school 

graduation. 

The second interview theme emerged from thematic coding of the interview data 

using Bandura’s (1997) four sources of self-efficacy. Each of the four sources of 

mathematics self-efficacy were supported by the interviews, but perceived exam 

performance, especially personal exam scores (mastery experiences) and the perceived 

exam scores of peers (vicarious experiences), appeared to take a primary role in the 

development of mathematics self-efficacy. While low perceived exam performance 

typically led to lowered self-efficacy, participants’ feelings about their instructors, 

especially their approachability, appeared to mediate perceptions of exam performance. 

In particular, students who reported disliking their instructor on a personal level 

described self-handicapping behavior that led to low performance, while students who 

liked their instructor described increased persistence and a willingness to accept low 

exam performance. 

The evidence in support of the second theme was bolstered by vignettes of four 

Probability students’ experiences in Calculus III one year prior to the study. Each of the 

students, Jennifer, Elizabeth, Emily, and Sarah, independently described similarly low 
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perceived exam scores, but reported a range of overall course grades (B, C, B, and F, 

respectively). The students’ varying reactions to the disappointing exam performance, 

together with apparent differences in how the exams influenced their self-efficacy, 

suggested wide-ranging potential for low exam scores to affect secondary mathematics 

majors’ self-efficacy to complete advanced mathematics. Sarah and Emily, for example, 

both reported doubting their choice to major in mathematics after earning several exam 

scores below 70% in Calculus III.  

The third and fourth qualitative themes, which described students’ self-efficacy 

and calibration on mathematics tasks in an interview setting, served primarily to 

triangulate and contextualize the larger-scale quantitative findings. When asked to 

describe their reasoning for selecting self-efficacy ratings on the scale implemented in the 

study, the participants gave content-specific reasoning, especially recollections of prior 

attempts at similar problems, familiarity with content, and the perceived number of steps 

required to solve the problems. Interestingly, none of the participants rated any of the 

interview tasks with the lowest available self-efficacy rating (1 on a scale of 1 to 6), 

effectively limiting self-efficacy ratings to a 4 point scale and eliminating the possibility 

of obtaining a 0 calibration bias score on incorrectly solved items. In addition, five 

participants expressed aversion to the highest available self-efficacy rating. Taken 

together, the tendencies to avoid the two extremes on the five-point self-efficacy scale 

suggested a limitation in the validity of self-efficacy ratings associated with the 

possibility of response styles.  

Qualitative analysis of the interview participants’ calibration on interview tasks 

suggested participants ranged from moderately underconfident (Emily in Probability) to 
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essentially calibrated (Elizabeth and Jennifer in Probability, Nicole and Justin in Calculus 

II), slightly overconfident (Sarah in Probability, Jackie in Calculus II, Megan in Calculus 

I), and moderately overconfident (Heather and Matthew in Calculus I). The observed 

tendency in the interviews toward increased calibration bias of students in the lower-level 

mathematics course (Calculus I) suggested several plausible explanations, including (1) 

instructional differences, (2) improved calibration as a result of additional mathematics 

experience, (3) differences in the relative difficulty of items on the self-efficacy surveys, 

and (4) chance. 

The final qualitative theme considered participants’ perceptions of how failing to 

pass college mathematics classes affected their mathematics self-efficacy. Of the eight 

participants who had completed at least one college mathematics class prior to the study, 

five participants had earned an F in at least one college mathematics class. Nicole had 

failed Calculus I twice, Megan failed Calculus I, Sarah failed Calculus III, Elizabeth 

failed Discrete Math, and Justin failed Calculus I, Calculus II, Discrete Math, and 

Probability. Nonetheless, each participant had persisted toward his or her goal to earn a 

secondary mathematics major, and was enrolled in a college mathematics class at the 

time of the study.  

The analysis of the interview participants’ perceptions of failing a college 

mathematics class suggested, though often initially disappointed in their poor 

performance, the participants perceived increases in their mathematics self-efficacy after 

not passing the classes. All five participants said attempts at mathematics classes were 

easier after the first attempt because of familiarity with course content and a preference 

for the new instructors. Justin, who had failed four college mathematics classes, reported 
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high overall mathematics self-efficacy and attributed his pattern of failing to pass 

mathematics classes on the first attempt to a need to “preview” classes. In addition, 

Nicole believed her history of struggling in Calculus I was going to be an asset as a 

middle school mathematics teacher. Though the sampling procedure necessarily excluded 

students who did not choose to persist in their college mathematics coursework after 

failing to pass one or more classes, for the participants who did persist, the evidence 

suggested they considered themselves more prepared and more likely to succeed in 

subsequent attempts at the courses after their initial (non-passing) experience. 

Synthesis of Quantitative and Qualitative Findings 

The quantitative and qualitative strands of the inquiry, while incorporating 

differing data sources and analysis techniques, both employed a conceptual framework 

that focused on high school mathematics performance, self-efficacy, calibration, and 

exam performance in advanced mathematics. This important aspect of the mixed methods 

research design afforded opportunities for qualitative themes to triangulate and 

contextualize the broad scale quantitative findings. The upcoming narrative compares and 

contrasts the quantitative and qualitative results through the constructs in the structural 

path model, including comparisons of indications from each strand of the inquiry 

regarding high school mathematics achievement, self-efficacy, calibration bias, and exam 

performance.  

High School Mathematics Achievement 

Both the qualitative and quantitative strands of the investigation suggested 

students in advanced mathematics classes performed well in high school mathematics. As 

described in the quantitative results, the participants typically had moderate-to-high 
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scores on each of the three indicators of high school mathematics achievement, including 

ACT Math scores, high school grade point average, and self-assessment of high school 

performance on a 7-point ordinal scale. Study participants’ average ACT Math score (M 

= 24.9, SD = 3.9) was about one standard deviation above that of the population of 

incoming students at the university, and 17% of participants’ recorded high school grade 

point averages were 4.0, compared to just 7% of incoming students at the university. 

Interestingly, only 1 of the participants rated their high school performance as 

“Excellent”, while 87% (168/ 195) chose one of the descriptors “Very Good”, “Good”, or 

“Okay.” The qualitative interviews revealed that 8 of the 10 secondary mathematics 

majors had completed a college mathematics class while in high school, and all described 

entering college feeling prepared for (at least) Calculus I. Participants reported high self-

efficacy in mathematics upon high school graduation, and several participants (e.g., 

Jennifer, Elizabeth, Jackie) said their college level mathematics was made easier because 

of their strong high school mathematics preparation. 

Self-Efficacy 

The qualitative interview data supported the validity of the self-efficacy survey 

protocol, with interview participants typically describing task- and content-specific 

reasoning for choosing self-efficacy ratings between 1 and 6, especially familiarity with 

content, prior experiences with similar tasks, and perceptions of the number of steps 

required to complete the tasks. Analysis of responses styles suggested that several 

participants had an aversion to using the highest available rating, and none of the 

participants chose the lowest available self-efficacy rating. This introduced possible 

limitations in the effective range of self-efficacy survey data due to the chance that some 
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individuals may have avoided the extremes of the self-efficacy scale. The quantitative 

analysis of differences in self-efficacy ratings by item difficulty, however, suggested a 

pronounced pattern of reduced self-efficacy means associated with increased item 

difficulty, further supporting the validity of the self-efficacy ratings. The estimated 

structural measurement model also supported the qualitative evidence that self-efficacy 

ratings reflect task-specific cognitive judgments (as opposed to generalized feelings of 

confidence), with 69% of the total variation in the seven indicators of self-efficacy left 

unexplained by a one-factor model. 

The structural equation modeling results pointed to a primary role of self-efficacy 

both as a direct influence on exam performance and as an intermediate influence on 

effects of high school mathematics achievement and calibration on exam performance. 

Though calibration bias had the largest direct effect on final exam performance (β = -

.75), self-efficacy had the largest total effect (β = .62) on final exam performance, 

exceeding the total effects of both calibration bias (β = -.51) and high school mathematics 

achievement (β = .57). The weak estimated positive effect of calibration bias on self-

efficacy (β = .39) substantiated indications in the pilot studies and review of literature 

(see Chapter I) that self-efficacy and calibration bias exhibit essentially independent 

effects on exam performance in mathematics. 

The structural equation model incorporated only high school mathematics 

achievement and calibration bias as sources of variation in mathematics self-efficacy. 

However, the qualitative interview data helped to contextualize the sources of 

mathematics self-efficacy through mastery experiences, social persuasions, vicarious 

experiences, and physical reactions. The interview participants’ descriptions of factors 
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which influenced their mathematics self-efficacy focused primarily on mastery and 

vicarious experiences, with perceived exam scores having the greatest apparent impact on 

mathematics self-efficacy. Summaries of four students’ experiences coping with low 

perceived exam performance in Calculus III helped to outline the processes supporting 

exam scores as a source for mathematics self-efficacy, including mediating factors such 

as social comparisons, the perceived approachability of instructors, and personal like or 

dislike of instructors. 

While the quantitative investigation of mathematics self-efficacy focused on 

individual tasks representative of exams in the participants’ courses, the qualitative 

inquiry included discussion of more general self-efficacy to pass college mathematics 

classes (with a C or better). Since 5 of the 8 students who completed at least one college 

mathematics class prior to the study had earned an F in at least one such class, one 

qualitative theme described the participants’ perceptions of how failing to pass a college 

mathematics class affected their mathematics self-efficacy. The interview participants 

reported higher mathematics self-efficacy after failing a college mathematics class. The 

sources for this increased self-efficacy gleaned from the qualitative analysis included (1) 

increased familiarity with course content, (2) a perceived improvement in the chances for 

success with a new instructor, and (3) increased awareness of the personal choices needed 

to succeed in mathematics.  

Calibration Bias 

The primary quantitative findings regarding calibration bias included (1) a general 

tendency toward overconfidence with better calibration associated with more difficult 

tasks, (2) no significant differences in calibration bias by gender, (3) a large direct 
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negative effect of calibration bias on final exam performance which was mitigated 

somewhat by a small indirect positive effect on final exam performance through self-

efficacy, and (4) high variability in calibration bias scores across exam items. The task-

based interview data largely supported the first and fourth of these quantitative findings, 

while contextualizing the processes that support calibration bias through illustrative 

examples and providing tentative indications that the calibration bias of secondary 

mathematics majors may differ by courses. 

Calibration bias was operationally defined as the difference between a 

participant’s self-efficacy rating and performance score on a mathematical task, so that 

positive calibration bias scores were meant to indicate overconfidence. However, the 

interview data suggested positive calibration bias, especially small positive scores, may 

be associated with essentially calibrated students. For example, none of the interview 

participants selected the lowest available self-efficacy rating (1 out of 6), so that every 

incorrectly solved task in the interviews corresponded to a positive calibration bias score. 

When asked to attempt two tasks from among those with low or high self-efficacy 

ratings, only one interview participant correctly completed the low self-efficacy task and 

half (5 of 10) correctly completed the high self-efficacy task. This meant that 14 of the 20 

completed tasks resulted in a positive calibration score and that 9 of the 10 participants 

obtained a positive combined calibration score on the two items. However, the qualitative 

analysis of interview participants’ reasoning for selecting self-efficacy ratings and 

subsequent performance suggested four of the students were calibrated. That is, the 

observed statistical tendency of study participants to obtain positive calibration scores on 

all but the most difficult tasks, may have, in part, been related to an aversion to choosing 
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the lowest available self-efficacy rating. Follow-up studies could mitigate this threat to 

the validity of calibration scores by broadening the range of self-efficacy values. 

Another connection between the qualitative and quantitative findings about 

calibration bias arose from the observation that the three interview participants enrolled 

in Calculus I seemed to be considerably more overconfident than the participants in 

Calculus II and Probability. Though this could be due to chance, the qualitative finding 

added context to the observation in the quantitative strand that calibration bias scores 

showed high variability across items, and suggested the possibility that calibration bias 

may be influenced by developmental or course-specific processes. In particular, two 

plausible sources for variation in calibration bias – instructional differences in the 

respective mathematics classes of the interview participants and development of 

calibration bias with increased exposure to advanced mathematics classes – were not 

addressed by the research design. 

Final Exam Performance 

The research methodology included analysis of final exam performance for 195 

students in 12 classes ranging from Calculus I to Probability. In each of the eight separate 

final exams, seven final exam items were selected for inclusion on self-efficacy surveys 

and seven items were randomly selected by item difficulty as indicators for final exam 

performance. This means the analysis included students’ performance on a total of 392 

authentic final exam tasks. This necessarily introduced variation into the performance 

data, some of which was accounted for by a variety of measures ranging from estimates 

of inter-rater reliability, to estimates of uniqueness among the performance indicators in 

the structural measurement model, to quantile-based sampling of items to ensure 
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representativeness. Nonetheless, the structural equation model explained a remarkably 

high proportion (83%) of the total variation in the latent construct associated with the 

final exam performance indicators. 

The performance scores earned by participants on the exam items selected as the 

indicators of final exam performance suggested the final exams included items with a 

wide range of item difficulty. For example, just 25% of students correctly completed the 

task selected as the “Level 1” indicator of final exam performance, 58% of students 

correctly completed the “Level 4” task, and 83% of students correctly completed the 

“Level 7” task. Using the dichotomous scoring scale, students’ correctly completed a 

mean of 4.1 of 7 items (SD = 1.8), or about 59% of the sampled tasks. 

The qualitative inquiry focused primarily on processes surrounding mathematics 

self-efficacy and calibration in a task-based setting. However, the talk-aloud 

methodology provided some insight into the validity of a dichotomous scoring 

(correct/incorrect) scheme for assessing exam performance as well as some potential 

consequences for the ways in which self-efficacy and calibration bias related to exam 

performance. As discussed earlier, one consequence of the dichotomous scoring 

technique (together with the tendency to avoid the lowest available rating on the self-

efficacy surveys) was that all incorrect attempts during the interviews corresponded 

numerically to positive calibration bias scores. On the other hand, the analysis of the 

interview participants’ performance suggested that 13 of the 14 attempts marked 

incorrect were the result of substantive conceptual errors (as opposed to numerical or 

algebraic errors), which supported the validity of the dichotomous scoring system to 

discern incorrect attempts from essentially correct attempts.  
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Implications 

The purpose of this study was to better understand the roles self-efficacy and 

calibration play in the mathematical experiences and exam performance of students 

taking the content courses of a secondary mathematics major. Building on the review of 

literature and two pilot studies, the study was expected to (1) add to existing self-efficacy 

research by including an important and often overlooked population of participants, (2) 

partially fulfill a need for mixed methods studies in social cognitive research, (3) add to 

research on the mathematical content knowledge and self-beliefs of prospective 

mathematics teachers, and (4) inform the practice of the mathematical content preparation 

of prospective secondary mathematics teachers. While the findings are limited in scope 

by the research design, setting, and data, the study makes substantive contributions 

toward each of the four goals. In the following sections, the study findings are considered 

in terms of implications for educational research and the content preparation of preservice 

secondary mathematics teachers. 

Implications for Research 

This study adds to existing literature on mathematics self-efficacy and calibration 

bias in the context of college mathematics, including findings on potential differences in 

self-efficacy and calibration associated with gender and the difficulty of mathematical 

tasks. In addition, the mixed methods methodology and structural equation modeling 

approach to estimating the relative influences of high school mathematics achievement, 

self-efficacy, and calibration on exam performance, offered opportunities for 

contextualized findings. The findings helped to both substantiate results from related 
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literature and suggest additional processes that impact self-efficacy, calibration, and exam 

performance among secondary mathematics majors. 

The research design and model for mathematics performance used in this study 

were based on models of mathematical performance among middle school (Chen, 2003) 

and high school students (e.g., Pajares & Kranzler, 1995) along with analysis of 

differences in calibration and self-efficacy associated with gender and item difficulty 

(e.g., Chen & Zimmerman, 2007). A limitation in the prior path analysis studies that 

incorporated mathematics self-efficacy and calibration was identified through the 

assumption in path analysis that predictor variables are perfectly measured by a single 

measure. This study extended the path analysis techniques to structural equation 

modeling, which allowed for multiple indicators of the latent constructs (e.g., self-

efficacy) in the path model and estimates of the variation both unique to individual 

indicators and common across indicators of each construct. The concomitant increases in 

the validity of estimates of directional effects in the structural equation model, together 

with the incorporation of qualitative data sources, represented the methodological 

contributions of this study to the literature on mathematics self-efficacy and calibration. 

The study findings, along with those of the two pilot studies, supported 

educational research evidence suggesting that self-efficacy and calibration exhibit 

approximately equal and opposite effects on mathematics performance. In particular, 

Chen’s (2003) findings that calibration has a weak effect on self-efficacy and that both 

self-efficacy and calibration have moderate to strong effects on mathematics performance 

is supported by this study and the two pilot studies. The magnitude and sign of the 

standardized coefficients in the structural path model, and even the proportion of total 
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variation in self-efficacy, calibration, and final exam performance explained by the 

model, were similar to Chen’s path analysis results. The similarities between estimates of 

directional effects, taken in the context of differing settings and measures of mathematics 

performance, suggested robustness for findings that self-efficacy and calibration have 

mediating influences on the effect of prior achievement on future performance in 

mathematics.  

This study’s findings regarding differences in self-efficacy, calibration bias, and 

exam performance by gender and item difficulty can be contrasted with Chen and 

Zimmerman’s (2007) cross-national study of self-efficacy and calibration among middle 

school mathematics students. The results of this study support Chen and Zimmerman’s 

findings that there were no differences by gender in students’ calibration bias, self-

efficacy, or performance. Similarly, this study supports Chen and Zimmerman’s findings 

that “as items became more difficult, students lowered their self-efficacy beliefs.” (p. 

230), and both Chen and Zimmerman’s study and this study identified a main effect of 

item difficulty on calibration bias. However, Chen and Zimmerman found that middle 

school students’ calibration bias increased on more difficult items, while the study 

reported here found students’ calibration bias decreased on more difficult items. These 

contrasting results are likely related to the differing procedures, setting, and measures of 

self-efficacy and mathematics performance, but the opposite nature of the observed 

effects suggests reason for further study. 

Besides adding to the research on mathematics self-efficacy, calibration bias, and 

potential differences in each associated with gender and item difficulty, the qualitative 

strand of this study contributes to the literature on sources of mathematics self-efficacy. 
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In their comprehensive review of research on the sources of academic self-efficacy, 

Usher and Pajares (2008) point to the promise of qualitative methods to describe the 

techniques students use to select among and appraise the many sources of information 

available to them about their mathematical competencies: 

Qualitative inquiry provides a phenomenological lens through which the 
development of efficacy beliefs can be viewed, and it can capture the personal, 
social, situational, and temporal conditions under which students cognitively 
process and appraise their beliefs and experiences. (p. 784) 

Through five qualitative themes, supported by quotations and descriptive accounts of 

students’ mathematical experiences and self-efficacy to complete mathematical tasks, the 

qualitative strand of the inquiry suggested several processes that can have primary effects 

on the mathematics self-efficacy of prospective secondary mathematics teachers. 

The qualitative themes identified in this study substantiate the primary role of 

students’ perceptions of their mastery experiences in the formation of self-efficacy 

(Usher & Pajares, 2008). Among the interview participants, perceptions of low exam 

scores, in particular, was tied to reduced mathematics self-efficacy. However, as 

evidenced by the descriptions of four students who experienced low perceived exam 

performance in Calculus III, the repercussions of exam scores on personal self-efficacy 

appeared to be affected by social comparisons to the perceived performance of peers and 

personal feelings about the instructor. The many interpretations of similar exam scores 

suggested a powerful role of interpersonal relationships between students and their 

instructors, and the evidence supported Zeldin’s (2000) contention that successful 

mathematics professionals developed self-efficacy primarily through performance 

attainments (e,g., grades, exam scores) and vicarious experiences of peers and family 

members.  
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In addition to the implications of the study for research into the sources of self-

efficacy of students in advanced mathematics courses, the qualitative inquiry suggested 

that secondary mathematics majors perceived increased mathematics self-efficacy after 

earning an F in a college mathematics class. From a social cognitive perspective, failing 

to pass a college mathematics class introduces several sources for lowered mathematics 

self-efficacy, including instances of poor performance during mastery experiences such 

as exams and social comparisons to higher performing peers. Thus, it was somewhat 

surprising to find that the five participants who had failed a college mathematics class 

framed those experiences as leading to increased confidence in their abilities to pass the 

classes in subsequent attempts. This finding was limited by the small number of interview 

participants, the selection bias introduced by a lack of participants who may have 

disengaged from mathematics after not passing one or more courses, and the 

retrospective nature of the participants’ accounts of their mathematics self-efficacy. 

Consequently, the themes in which participants described increased familiarity with 

course content and beliefs that multiple attempts at courses improved their chances of 

success, though supported by the data, are probably best characterized as exploratory and 

preliminary. 

Implications for Secondary Mathematics Teacher Preparation 

One rationale for the study was the need for holistic description of the 

mathematical self-efficacy and calibration of prospective secondary mathematics 

teachers. While educational researchers have contributed robust descriptions of the self-

beliefs prospective elementary teachers hold about mathematics (e.g., Harding-DeKam, 

2005), little research was identified regarding the mathematics self-efficacy of 
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prospective secondary teachers. This study, with its focus on the mathematics self-

efficacy, calibration and performance of secondary mathematics majors, offered a holistic 

and contextualized description of the strength and accuracy of secondary mathematics 

majors’ beliefs in their mathematical competencies. The findings, though preliminary, 

suggested secondary mathematics majors tended to (1) experience strong performance in 

their high school mathematics preparation, (2) draw on content-specific information 

when evaluating their self-efficacy to complete mathematical tasks, (3) express slight 

calibration bias in the form of overconfidence to complete exam items, (4) rely on their 

perceived exam performance and social comparisons to the performance of peers as 

primary sources of mathematics self-efficacy, and (5) report increased mathematics self-

efficacy to complete a college mathematics class after initially not passing the class. 

The study findings can be used to inform the design and instruction of content 

courses in secondary mathematics teacher preparation programs. In particular, the 

findings suggested several areas of strength among the population of students enrolled in 

advanced mathematics courses, including prior success in mathematics and moderate to 

high self-efficacy to learn mathematics. Instructors can draw on this perceived record of 

accomplishment and self-efficacy by communicating to students that, just as they were 

able to learn earlier mathematics, the students can expect to succeed in learning new 

mathematics through persistence and the recognition that increasingly complex content 

requires increasingly adaptive learning techniques. Based on the review of literature, 

students’ calibration may improve with frequent mastery experiences with moderately 

difficult tasks, and prompt and clear feedback on the outcomes of performance attempts 

(O’Connor, 1989). Educational interventions could include “calibration quizzes,” 
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whereby students would rate their self-efficacy to complete tasks on a regular quiz, 

attempt the quiz, and subsequently compare the confidence ratings with their 

performance on the items, and the effectiveness of such a calibration training 

(Lichtenstein & Fischoff, 1980) approach could be evaluated through future research. 

Nonetheless, the review of literature and structural equation modeling findings 

collectively suggest that improved calibration bias could help secondary mathematics 

majors develop more accurate perceptions of their mathematical competencies, which in 

turn is linked to higher self-efficacy and exam performance.  

Since the interview participants described a strong reliance on perceived exam 

performance as a source for overall mathematics self-efficacy, instructors of the content 

courses for secondary mathematics majors may benefit from clearly communicating their 

intentions and expectations surrounding exam scores. The interview participants seemed 

to perceive exam scores below 70% to represent failing scores, so if an instructor has 

differing perceptions of such scores, the students might benefit from the instructor 

describing the relative meaning of exam scores as an indicator of understanding or 

performance. Sarah, who perceived failing exam scores in both Discrete Math and 

Calculus III, for example, described a higher self-efficacy in Discrete Math because the 

instructor included a letter grade next to the total score on exams. Especially considering 

the evidence that students’ with lowered self-efficacy in advanced mathematics classes 

sometimes engaged in self-handicapping behavior that ultimately decreased their chances 

of passing the classes, students might particularly benefit from clear communication 

about levels of exam performance that the instructor perceives to be passing or failing. 



  185 

 

One indication of overall mathematics self-efficacy from the qualitative strand of 

the investigation seemed particularly cogent in the preparation of prospective secondary 

mathematics teachers. Of the eight interview participants who completed at least one 

mathematics class prior to the study, five participants reported failing to pass a total of 

nine college mathematics classes. This seemingly high incidence of failed classes within 

the students’ secondary mathematics core content, combined with the perceived benefits 

the interview participants described for their mathematics self-efficacy, suggests a need 

for future study. In particular, how often do secondary mathematics majors fail to pass 

college mathematics classes, and what short-term and long-term effects do such 

experiences have on their mathematics self-efficacy and career trajectory? These 

questions are outside the scope of this study, but could prove meaningful in the 

implementation of secondary mathematics teacher preparation programs, including 

course sequencing, tracking of students’ performance, and advising. 

Finally, the interview data suggested instructors played a large role in the 

interview participants’ perceptions of their mathematics self-efficacy. When asked to 

describe specific qualities of instruction that made them feel more or less confident in 

their mathematical skills, the students tended to focus on interpersonal skills such as 

approachability and the apparently intuitive quality of whether the student liked an 

instructor on a personal level. This exploratory finding suggested future investigation of 

the ways in which instructional practices are associated with the mathematics self-

efficacy of prospective secondary mathematics teachers, especially the qualities of 

instruction most associated with perceived and observed increases in self-efficacy among 

mathematics teachers.  
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Limitations of Study Findings 

Considerations of the quality of the research design, including measures to 

mitigate threats to the internal and external validity of the quantitative dat, as well as 

efforts to ensure the trustworthiness of qualitative findings, are detailed in the 

methodology chapter. In addition, consideration of the scope and transferability of 

findings to other settings and populations was discussed in the methodology chapter 

along with special emphasis on rich description of the study participants, data collection 

and analysis strategies. In particular, as a cross-sectional study which focused on 

students’ performance on regular classroom exams, the research design lacked 

procedures to establish causality among any of the variables. Instead, directional effects 

among latent variables, together with observed differences by gender and item difficulty, 

could only describe statistical associations among indicator variables in the context of the 

review of literature. In the following paragraphs, some additional limitations in the study 

findings are considered to help contextualize the scope and transferability of the results. 

Many of the study findings relate to the structural equation modeling of indicators 

of high school mathematics achievement, self-efficacy, calibration bias, and final exam 

performance among data gathered from students in advanced mathematics courses. 

Although the validity of these findings was strengthened by adequate sample size and 

application of recommended procedures for model specification and handling of missing 

data (Schrieber, 2008), the fit indices for the final estimated model suggested only 

marginal model fit. This, combined with some indications of multidimensionality among 

indicators in the estimated measurement model, introduced a possibility the estimates of 

standardized effects among the four latent variables in the model may be vulnerable to 



  187 

 

Type I error. One source for these limitations might be non-estimated effects of 

confounding variables not included in the study, such as participants’ academic level, 

differences in the difficulty of exams, and course-level or instructor effects. 

The qualitative and quantitative strands of the inquiry produced largely 

complimentary findings, and the convergence of themes regarding high school 

mathematics performance, self-efficacy, calibration, and exam performance had the effect 

of strengthening the trustworthiness of findings from both strands. However, some 

limitations were identified during the analysis of the interview data that weakened the 

quality of the emergent qualitative themes. In particular, the task-based interview data did 

not include data from sources that may have helped to contextualize the participants’ 

perceptions of their mathematical experiences. Participants described instructional 

practices, grading policies, and performance of their peers on exams, for instance, but no 

datum was collected regarding their instructors’ perceptions of exam performance or 

grading policies. These additional data could have added a counter-narrative (Milner, 

2007) to the students’ descriptions of their experiences which would likely have further 

contextualized findings and suggested additional insights into the processes supporting 

mathematics self-efficacy. Classroom observations, as well as interview participants’ 

high school and college mathematics transcripts, could also have helped to triangulate 

and contextualize the qualitative themes. 

Moreover, the discussion of the study findings has included reference to several 

limitations of the results that emerged from the triangulation of qualitative and 

quantitative findings. These included (1) the omission of data regarding instructional 

practices, (2) the possibility of differing roles of mathematics self-efficacy and calibration 
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on mathematical performance tasks other than exams, (3) indications that some 

participants may be averse to reporting self-efficacy ratings at the two ends of the self-

efficacy scale, (4) potential variation in the overall difficulty of exams, and (5) the 

possibility of longitudinal changes in calibration and self-efficacy during college. In 

addition, the qualitative strand identified a theme that mathematics self-efficacy can be 

influenced by failing to pass college mathematics classes, while the quantitative strand 

did not include any data on students’ prior performance in college mathematics classes. 

Recommendations for Future Research 

The design and interpretations of data in this study were based on decades of 

educational research into self-efficacy, calibration, and performance, much of which took 

place in arenas outside of mathematics learning. Consequently, a natural consideration 

for future research would be the adaptation of the study design and modeling approach to 

other educational settings. For example, the literature review included Zhao and 

Linderholm’s (2008) review of research into metacomprehension accuracy, a topic that 

closely aligns with calibration bias, and future research into reading comprehension 

performance might consider incorporating a social cognitive model like the one used in 

this study. Besides applications of the conceptual framework or methodology to other 

educational arenas, the research findings and limitations have suggested several avenues 

for follow-up research in mathematics education.  

In the paragraphs that follow, five follow-up studies are outlined with the goals of 

inspiring future self-efficacy research in mathematics education and adding to the body of 

research on how self-efficacy, calibration, and performance interact among students 

enrolled in advanced mathematics courses. The studies include (1) a larger-scale study of 
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self-efficacy, calibration, and advanced mathematics performance with a single 

performance measure, (2) a longitudinal inquiry into the trajectories of self-efficacy, 

calibration bias, and performance of freshman secondary mathematics majors, (3) a 

cross-sectional investigation of associations between instructional practices and self-

efficacy, calibration bias, and exam performance, and (4) a mixed methods inquiry into 

the effects of failing college mathematics courses on self-efficacy among secondary 

mathematics majors, and (5) a cross-sectional study of mathematics self-efficacy, 

calibration bias, and performance across various performance formats. 

Though strengthening the transferability of findings to a variety of mathematics 

content courses, one potentially large source of unexplained variation in the study was the 

differing exams that served as the basis for self-efficacy, calibration, and performance 

indicators. A larger-scale study that includes multiple research sites might be able to 

focus on a single mathematics content course offered at many universities that prepare 

secondary mathematics teachers, such as Abstract Algebra. The multiple research sites 

would naturally introduce variation due to the many variations in content across 

universities, but may also allow for the administration of a single standardized 

mathematics measure and common self-efficacy surveys across participating sections. 

Measures would need to be taken to ensure the validity of such a common exam, and 

much descriptive information would need to be gathered on the students and instructors 

at the many research sites in order to account for relevant contextual variables. However, 

the structural equation modeling results could provide additional insights into the 

generalizability of relationships among self-efficacy, calibration bias, and mathematics 

performance across research settings under a single measure of performance. 
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Self-efficacy tends to change with experience in a domain (Bandura, 1997), and 

characterizing the longitudinal trajectories and processes supporting changes in 

mathematics self-efficacy throughout college mathematics would represent a substantial 

addition to mathematics self-efficacy research. In what ways do secondary mathematics 

majors’ self-efficacy, calibration, and performance evolve throughout the students’ 

content preparation? A researcher could address this question using qualitative or mixed 

methods, starting with interviews of secondary mathematics majors when they first 

declare their major. With the context of self-efficacy surveys and task-based interviews in 

successive mathematics courses, the researcher could develop case studies to illustrate the 

variety of participants’ mathematical experiences and the perceived effects of these 

experiences on mathematics self-efficacy. These data could also be collected as part of 

efforts to evaluate retention and recruitment in a secondary mathematics program, and the 

findings could help to identify mathematics classes and experiences which serve to 

support or diminish participants’ self-efficacy and future performance. 

Self-efficacy, calibration bias, and mathematics performance may well be affected 

by both individual’s self-beliefs and the instructional practices they experience in college 

mathematics. Toward that end, future research could include a cross-sectional study of 

associations among instructional practices and students’ self-efficacy, calibration and 

performance on exams. Using classroom observation data, self-reported descriptions of 

teaching practices from instructors, course documents, and surveys of students about their 

perceptions of instruction, a researcher could gather data on instructional practices such 

as assessment formats, exam difficulty, learning activities, and sources of performance 

feedback. Statistical techniques could then be used to test for associations between 
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instructional practices and students’ self-efficacy, calibration, and exam performance. 

Though such findings would be preliminary, and multiple research cycles might be 

necessary to explore the nature of any associations between instruction and mathematics 

self-efficacy, such research could help to identify ways in which both students and 

instructors can improve their chances of succeeding toward their goals in the classroom. 

One unanticipated, and particularly tentative, finding in the qualitative strand of 

the inquiry involved secondary mathematics majors’ perceptions of failing to pass college 

mathematics classes. A recommended follow-up study could address the phenomenon of 

earning an F in one or more of the content courses in a secondary mathematics 

preparation program from a mixed methods point of view. To what extent do secondary 

mathematics majors who fail one or more mathematics classes persist toward completing 

their degree? Answers to these questions could have potential implications for advising 

secondary mathematics majors and could add to the research on sources of mathematics 

self-efficacy, especially regarding the relative effects of earning failing grades on the one 

hand, and perceiving increased familiarity with content on the other. As in the suggested 

study regarding trajectories of mathematics self-efficacy throughout college, a study on 

the effects of not passing college mathematics classes could provide a wealth of 

information through the use of case studies. 

Finally, future research could address the potential for contrasting relationships 

among self-efficacy, calibration, and performance in assessment formats other than 

regular in-class exams. Two of the mathematics sections offered at the research site 

during the time of the study chose not to offer traditional open-response timed in-class 

exams, and it is intriguing to consider the possibility that students’ self-efficacy and 
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calibration might take-on a different role in differing performance tasks. A cross-

sectional study could address the nature of mathematics self-efficacy in project-based or 

portfolio assessments, for instance, through methods similar to those employed in the 

reported study. Instead of completing a self-efficacy survey in the minutes just prior to 

taking an exam, students might rate their confidence that they can attain the highest mark 

on a learning outcome listed on a project assignment using the project rubric. If the 

sample of participants in classes which do not use traditional exams is particularly small, 

the data collection and analysis could focus on developing emerging understandings 

through task-based interviews, artifacts, and classroom observation.
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Informed Consent for Participation in Research 

Project Title:  The Mathematics Self-Efficacy and Calibration of Students in a Secondary 
Mathematics Teacher Preparation Program 

Lead Researcher: Joe Champion, School of Mathematical Sciences, 970-351-2229 
Research Advisor: Robert Powers, Mathematical Sciences, 970-351-1157 
 
I am  researching the self-confidence and performance of students in advanced mathematics 
courses.  Much of the data I plan to use will come from photocopies of your regular in-class 
exams. However, I will ask you to complete a background survey and one or more 3-5 minute 
surveys throughout the semester. In addition, you may also be invited to participate in a 45-60 
minute interview where you’ll explain your thinking while attempting problems related to the 
mathematics in your class. 

The main questions I’ll ask you are about your perception of whether you can complete certain 
mathematics problems related to your class. These surveys will be administered in the few 
minutes just prior to your major exams, including your final exam. Any surveys and interviews 
you complete will take no more than a total of 90 minutes. If you decide to participate in an 
interview, your work on math tasks and responses to interview questions will be recorded, and the 
digital audio recordings will be disposed of within 2 years of the date of the interview. 

The risks of participation in the study are likely no greater than those associated with taking a 
college mathematics course, completing background surveys, and working on math problems in a 
one-on-one interview setting. However, you may experience some anxiety from completing a 
short survey just prior to a major exam, and if you are concerned about this anxiety you may 
decline participating in the study at any point. If you choose to participate, you may improve in 
your ability to estimate your understanding in math and may experience increased awareness of 
how your beliefs about your math skills are related to your performance in advanced math 
courses.  

Nonparticipation or withdrawal from the study will not affect your grade in the course. Your 
teacher will not know who in the class is participating. If you do choose to participate, you will 
not be identifiable in the final report of the study.  

Participation is voluntary. You may decide not to participate in this study and if you begin 
participation you may still decide to stop and withdraw at any time. Your decision will be 
respected and will not result in loss of benefits to which you are otherwise entitled. Having read 
the above and having had an opportunity to ask any questions, please sign below if you would 
like to participate in this research. A copy of this form will be given to you to retain for future 
reference. If you have any concerns about your selection or treatment as a research participant, 
please contact the Sponsored Programs and Academic Research Center, Kepner Hall, University 
of Northern Colorado Greeley, CO  80639; 970-351-1907. 

 
      

Participant’s Name (please print)  Participant’s Signature     Date 

     3/9/2009  
Researcher’s Signature             Date 
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Name (Print):   Bear #:      (don’t 
remember) 

1. What is your primary college MAJOR? (Circle One) 
Biology 
Business  
Chemistry 
Computer Science 
Earth Sciences 

Mathematics 
Physics  
Pre-Professional, specify:   
Elementary Teaching (IDLA), emphasis:   
Undeclared, leaning towards:   
Other, specify:    

2. What is your academic level at UNC? 
 Freshman Sophomore Junior Senior Graduate  

3. Does your major include an emphasis in education? 
 Yes No 

 If Yes, which grade band are you MOST interested in teaching? (Circle One) 

 Early Childhood Elementary Middle Secondary K-12  

4. What is your gender? 
 Male  Female 

5. Complete ALL of the following. On a scale from 0% (unsure) to 100% (completely sure), 
how confident are you that you can earn the following overall grades in this class? 

I am ____ % sure I can earn a D or better in this class this semester.  

I am ____ % sure I can earn a C or better in this class this semester.  

I am ____ % sure I can earn a B or better in this class this semester.  

I am ____ % sure I can earn an A in this class this semester.  

6. How many semesters of mathematics did you complete in high school?   
semesters 

7. Which of the following best describes how well you did in your high school math courses? 
(Circle One) 

  Excellent Very Good Good OK Not So Good Bad Really Bad  

8. Circle the listings that best correspond to the math courses you completed in high school. 

General Math/Consumer Math 

Basic Math 1, 2, 3, or 4 

Pre-Algebra  

Informal Geometry 

Geometry 

Algebra 1 

Algebra 2  

Algebra 3 

Integrated Mathematics 1 

Integrated Mathematics 2 

Integrated Mathematics 3 

Trigonometry 

Trigonometry & Geometry  

Trigonometry & Algebra 

Analysis  

Pre-Calculus 

Calculus 

AP Calculus 

Differential Equations 

College Algebra 

Linear Algebra  

Statistics  

Probability  

Probability & Statistics  
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 Name (Print):  

1.  If ���� = √� + 3, find the equation of the tangent line at � = 1. 

 

2. If �
 + �� + �
 = 19, find the value of  

�
� at the point (2,3�.  

 

3. The position function of a particle moving in a straight line is ���� = −16�
 + 48� + 100, where ���� is measured in feet and � is 
measured in seconds. Find the velocity at � = 2. 

 
4. A rectangular storage container with an open top is to have a volume 

of 10 cubic meters. The length of its base is twice the width. Material 
for the base costs $10 per square meter. The material for the sides 
costs $6 per square meter. Find the cost of the materials for the 
cheapest container.  

lim�→

�
 − 4 x
 + 3x − 10 

5. Evaluate the following limit 

 

6. Differentiate � = 5 � ∙ sin �3� + 2�. 

 

7. If ���� = √� + 1, find the equation of the tangent line at � = 3. 

 
8. The altitude of a triangle is increasing at a rate of 1 cm/min while the 

area of the triangle is increasing at a rate of 2 cm2/min. At what rate is 
the base of the triangle changing when the altitude is 10 cm and the 
area is 100 cm2?  

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY – SECTION 1 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print): 
 

1.   Differentiate ℎ��� = �� − 2��2� + 3�. 

 

2. If �
 + �� + �
 = 19, find the value of  

�
� at the point (2,3�. 

 

� = 5 � ∙ sin�3� + 2�
 

3. Differentiate the following:
 

 
 

4. If %��� = ��&����, where ��−2� = 8, �'�−2� = 4, �'�5� = 3, &�5� = −2, and &'�5� = 6, find %'�5�. 

 

lim�→(
� + tan �sin �  

5. Find the limit: 

 

6. On what interval is the function ���� = �+ � increasing. 

 

7. Differentiate &��� = �� − 5��3� + 1�. 

 

8. Find the intervals on which ���� = �+ − 12� + 1 is increasing or 
decreasing. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY- SECTIONS 2 & 3 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print):  

1.   Find the Taylor polynomial of degree 4 of cos � at a = 
.+ 

 

2. Find / �
��+ + 5�01�. 

 

23 = √41 + √4 

3. Determine whether the following sequence converges or diverges 

 
  

4. Determine if the series 
1

1 5

)3(
−

∞

=
∑ n

n

n

converges or diverges 

 

5 �� + 2�34 ∙ 43
6

378  

5. Find the radius of convergence and the interval of convergence for 
the series: 

 

6. Integrate  / �98�:;+�;
 1� using partial fractions. 

 

7. Find the Taylor polynomial of degree 4 of sin � at a = 
.+. 

 

8. Integrate / � ∙ ln � 1�. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY – SECTIONS 4 & 5 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print):  

1. Let <, =, > and ? be invertible n x n matrices. Solve  <=�@ +  >�?98  =  A3 for X. 
 

2. Compute the determinant of the following matrix by cofactor 

expansion (without using your calculator). Show all work. B8 2 29 5 83 2 7D 
 

3. Find the standard matrix of the transformation E: G → G that reflects 
points about the �-axis followed by a rotation of  H/2 radians in the 
clockwise direction. Show your work. 

 

4. Let J8 = B 12−3D, J
 = B−3−41 D, J+ = B216D, and K = B101010D. Is K a linear 

combination of the vectors J8, J
, and J+? Explain why or why not. 
 

5. Let < = L 5 −8 1−7 2 −6M and let N = B 82−2D. Define a transformation 

E: GO → G3 by E�P� = <P. Find E�N�, the image of N under the 
transformation E.  

6. Without using your calculator, find the eigenvalues of the matrix < = L 3 3−2 −4M. Show all work. 
 

7. Let <, =, > and % be invertible n x n matrices. Solve  <>�@ +  =�%98 =  A3 for X. 

 

8. Let Q be the set of all vectors of the form R2 + 3K4K52 − K−2 S where 2 and K 

are arbitrary real numbers. If Q is a vector space, find a set of vectors 
that spans it. Otherwise explain why Q is not a vector space.  

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY- SECTION 6 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print):  

�� + 2�+( + �T�� + 5�
U 
1. Write the coefficient of �8T for the expression 

 

2. Find the exact value of  13 + 20 + 27+34 +…+ 7286. Show all 
steps. 

 

3. Suppose that < = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} and = = {2, K, Y, 1}. How many functions are there from = to < that are 
NOT one to one? 

 

4. Find the exact value of 16 + 12 + 9+ 
U0 +…+ +Z[
0\]. Show all steps. 

 

5. Write the contrapositive of the following statement: If a day has the 
largest amount of daylight for the year, then that day occurs in June. 

 

6. How many bit strings of length 25 and weight 12 DO NOT start with 
the sequence 111 or end with the sequence 101? 

 

�� + 3�+U + �^�� + 2�+( 
7. Write the coefficient of �
8 for the expression 

 

8. State whether the following function is one-to-one and/or onto, and 
explain: �: =0 → =0 by ��28, 2
, 2+, 20� = �2
, 2+, 20, 2
�.  
For example, ��1001� = 0010. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY – SECTIONS 7 & 8 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print): 
 

1.  Let ���, �� = sin�2� + ��. Find ��� `H, .
a. 

 

2. Let bccd = ed − fd + 2gcd, and hcd = 2ed − 2fd + 3gcd. Find the value of 2 
making bccd and hcd perpendicular. 

 
3. Let i =  � sin � and let � and � be functions of � and � with ��0,0� = 0, ��0,0� = 0,  j�jk = 3 and j�jk = 4 at ��, �� = �0,0�.   

Find  jljk when ��, �� = �0,0�. 
 

4. Let ���, �, i� = �
� + �+i + �i+ and let m = �2, 1, −1�. What is the 
maximum rate of change of � at m? 

 

n n sin�H�+�+
√�

o
( 1�1� 

5. Sketch the region of integration and evaluate : 

 

n n ��p�
 + �

(

9√09�:



( 1�1� 

6. Convert the following integral  to polar coordinates and evaluate it: 

  

7. Let &��, �� = cos�2� + ��. Find &�� `H, .
a. 

 

8. For ���, �� = 2�+ + �
 − 6� + 4�, find and classify the local 
extrema of �. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY- SECTIONS 9 & 10 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print):  

1. Show that − 8
 + √+
 q is an algebraic number. 

 

2. Let r be the subset {0s, 2s, 4s} of the ring ℤT. Make the addition and 
multiplication tables for r. 

 

3. Find all the roots in ℂ of the polynomial v��� = 2�+ + �
 + � − 1. 

 

4. Is the polynomial v��� = 2�+ + �
 + � − 1 ∈ ℚ[�] reducible or 
irreducible. Justify your answer. 

 

5. Give definitions of an integral domain and of an ordered integral 
domain.   

 

6. Let E consist of all real numbers of the form 2 + K√2 + Y√3 + 1√6 
with 2, K, Y, and 1 rational. Show that E is a subfield in the field of 
real numbers.  

7. Show that − 8
 − √+
 q is an algebraic number. 

 

8. Is ℤT an ordered integral domain? Justify your answer. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY – SECTION 11 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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 Name (Print): 
 

1. If you roll two 10-sided dice, what is the probability the sum is 6? 

 

2. Let @~K�50, .8�. Estimate m�@ = 40� using a Poisson 
approximation. 

 

3. SAT scores are approximately normally distributed with mean 500 
and variance 100
. If @ is the SAT score of a randomly chosen 
student, find m�525 <  @ <  600�. 

 

4. Let @8, … , @3 be a random sample from a }�10, ~� distribution (so � is known to be 10, but ~ is unknown). Find the maximum 
likelihood estimator for ~. 

 

5. Assume @8, … , @
� is a random sample from a standard normal 
distribution and Q = @8
 + ⋯ + @
�
 . What is the distribution of Q? 

 
6. A recent poll asked 450 American adults, chosen by random dialing, if they 

would be willing to pay up to 10% more for electricity if that electricity 
would be generated by wind instead of coal. Of those surveyed, 285 said 
yes. Give a 95% confidence interval for the proportion of all American 
adults that would be willing to pay more for wind-generated electricity.  

7. If you roll two 10-sided dice, what is the probability the sum is 5? 

 

8. Let @8, … , @T be a random sample from an ����2� distribution, and 
let � =  ∑ @�T�78 . Find the moment generating function for �. 

 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

Rating (1-6): 
 

PRE FINAL EXAM SURVEY – SECTION 12 
DO NOT ATTEMPT the following problems. Instead, rate how confident you are that 
 you can correctly complete the items by choosing any number between 1 and 6: 
 

1 2 3 4 5  6 
 (not sure) (completely sure) 
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APPENDIX D 

Interview Protocol
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Task-based Interview Protocol 

Thank you for agreeing to participate in this interview. The goal of this interview is to 
talk to you about what you think about when you’re asked about what you can do in a 
mathematics class.  The interview is expected to take between 45 and 60 minutes.  

Is it OK if I record our discussion? [If yes, turn on microphone and repeat the question so 
it is recorded] When I write about this interview I’d like to give you a fake name. What 
pseudonym would you prefer that I use? 

[Take out a 7-question self-efficacy survey based on the current course material.] This is 
a quick survey asking you to estimate how confident you are that you can solve certain 
problems related to your class. There are no right and wrong answers, so just write 
numbers you feel match how confident you are you can complete the problems correctly.  

I see that on statement [select one of the items with the highest rating] you wrote 
________ on the survey, can you tell me why you decided on that number? [Repeat for a 
lowest rated task and a middle-rated task.] 

Can you give me an example of a challenging problem in your class that you would say 
you are completely sure you can solve correctly? [Follow-up: Why did you choose this 
problem?] [Repeat for a problem in which the student would have low self-efficacy] 

Now I’d like you to try completing some sample problems from your class. It’s ok if you 
can’t do the problems right now, so please just try your best.  

1. [Choose a task the student marked with high self-efficacy.] 
2. Can you work through the following problem and tell me what you’re thinking as you 

work? 
3. [As the student works, ask them about any similar problems they’ve done in class or 

in previous semesters. E.g., Do you recall doing a problem like this on your test?] 
4. Do you think you solved the problem correctly? Why or why not? 

[Repeat steps 1-4 for items marked with medium and low self-efficacy.] 

Thank you for working through those problems with me. Now I’d like to talk a little more 
generally about your class this semester. How is the class going for you? 

Can you think of anything about your class this semester that has helped you feel more 
confident about what you can do in the class? 

Similar question. Can you tell me about anything in your class this semester that might 
have made you feel less confident about what you can do in the class? 

What about any other college math classes you’ve had? Which of the classes do you 
think left you thinking you were better able to learn a new math topic? In which were you 
less confident? 

That’s all I have for now. Do you have any questions for me? Is it all right if I follow up 
with you if I have any questions about what we talked about today? Thank you for taking 
the time to talk with me, and good luck in your class.
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APPENDIX E 

Correlations among Indicators in the Structural Equation Model 
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Correlations among Indicators in the Structural Equation Model 

1 2 3 4 5 6 7 8 

1. HS Self       
2. HS GPA 0.15     
3. ACT Math 0.31 0.52   

4. SE Level 1 0.15 0.21 0.19 
5. SE Level 2 0.15 0.03 0.13 0.38 
6. SE Level 3 0.22 0.09 0.24 0.35 0.33 
7. SE Level 4 0.21 0.10 0.17 0.37 0.30 0.35 
8. SE Level 5 0.16 0.02 0.08 0.28 0.26 0.36 0.33 
9. SE Level 6 0.23 0.13 0.11 0.16 0.14 0.39 0.37 0.38 
10. SE Level 7 0.19 0.23 0.13 0.29 0.16 0.38 0.42 0.34 

11. Bias Level 1 -0.12 0.06 -0.11 0.05 0.01 0.10 0.08 0.15 
12. Bias Level 2 -0.18 -0.27 -0.18 -0.03 0.06 0.12 0.05 0.13 
13. Bias Level 3 -0.23 -0.01 -0.09 0.10 0.10 0.07 0.12 0.01 
14. Bias Level 4 -0.17 -0.16 -0.16 0.02 -0.05 -0.05 -0.03 -0.06 
15. Bias Level 5 -0.24 -0.19 -0.16 0.08 0.02 0.01 -0.05 0.01 
16. Bias Level 6 -0.08 -0.03 -0.12 0.04 -0.07 0.06 0.17 0.10 
17. Bias Level 7 -0.12 -0.16 -0.09 -0.01 0.05 0.07 -0.08 0.08 

18. Perf. Level 1 0.32 0.12 0.08 -0.09 0.03 0.09 0.05 0.17 
19. Perf. Level 2 0.28 0.05 0.26 0.12 0.17 0.26 0.21 0.11 
20. Perf. Level 3 0.20 0.25 0.21 0.18 0.10 0.13 0.15 0.09 
21. Perf. Level 4 0.20 0.26 0.27 0.14 0.11 0.27 0.22 0.20 
22. Perf. Level 5 0.23 0.11 0.25 0.18 0.29 0.31 0.14 0.15 
23. Perf. Level 6 0.18 0.23 0.29 0.15 0.25 0.25 0.19 0.19 
24. Perf. Level 7 0.26 0.25 0.34 0.27 0.18 0.12 0.26 0.14 
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Correlations among Indicators in the Structural Equation Model (continued) 

9 10 11 12 13 14 15 16 

1. HS Self 
2. HS GPA 
3. ACT Math 

4. SE Level 1 
5. SE Level 2 
6. SE Level 3 
7. SE Level 4 
8. SE Level 5 
9. SE Level 6 
10. SE Level 7 0.48 

11. Bias Level 1 0.07 0.14 
12. Bias Level 2 0.04 0.00 0.05 
13. Bias Level 3 0.04 0.12 0.15 0.20 
14. Bias Level 4 -0.17 -0.08 0.00 0.18 0.14 
15. Bias Level 5 0.02 -0.06 0.04 0.06 0.21 0.26 
16. Bias Level 6 0.17 0.07 0.07 0.07 0.13 0.13 0.17 
17. Bias Level 7 0.03 -0.07 0.08 0.14 0.22 0.11 0.23 0.21 

18. Perf. Level 1 0.32 0.26 -0.21 -0.16 -0.08 -0.13 -0.23 -0.17 
19. Perf. Level 2 0.19 0.21 0.10 -0.10 -0.25 -0.14 -0.21 -0.09 
20. Perf. Level 3 0.24 0.33 -0.06 -0.25 -0.19 -0.15 -0.28 -0.35 
21. Perf. Level 4 0.18 0.29 -0.08 -0.17 -0.14 -0.25 -0.27 -0.12 
22. Perf. Level 5 0.24 0.25 -0.14 -0.17 -0.17 -0.21 -0.14 -0.15 
23. Perf. Level 6 0.21 0.29 0.00 0.05 0.02 -0.16 -0.26 -0.37 
24. Perf. Level 7 0.11 0.26 -0.08 -0.39 -0.02 -0.25 -0.13 -0.14 
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Correlations among Indicators in the Structural Equation Model (continued) 

17 18 19 20 21 22 23 

1. HS Self 
2. HS GPA 
3. ACT Math 

4. SE Level 1 
5. SE Level 2 
6. SE Level 3 
7. SE Level 4 
8. SE Level 5 
9. SE Level 6 
10. SE Level 7 

11. Bias Level 1 
12. Bias Level 2 
13. Bias Level 3 
14. Bias Level 4 
15. Bias Level 5 
16. Bias Level 6 
17. Bias Level 7 

18. Perf. Level 1 -0.08 
19. Perf. Level 2 -0.12 0.23 
20. Perf. Level 3 -0.27 0.14 0.32 
21. Perf. Level 4 -0.29 0.27 0.47 0.35 
22. Perf. Level 5 -0.25 0.25 0.40 0.31 0.29 
23. Perf. Level 6 -0.05 0.28 0.21 0.41 0.35 0.38 
24. Perf. Level 7 -0.10 0.23 0.50 0.52 0.61 0.42 0.49 
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APPENDIX F 

Final Code List for Qualitative Analysis of Interview Data 
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Code Coded when Participant Referred to: Frequency 

High School Math high school mathematics performance or 
achievement 

7 

College in High School College-level calculus, college algebra, or 
statistics while in high school 

13 

Like/Dislike Teacher Personal feelings about an instructor (separate 
from pedagogy) 

10 

Trauma Strong negative reaction to the actions of an 
instructor. 

3 

Personality Approachability, friendliness, “can to talk to”, 
funny, nice, etc. 

9 

Pedagogy Pedagogical behavior of a math instructor 15 

Work Harder Perceived increased effort in a class because 
of feelings about an instructor 

2 

Sources of SE Perceived reason for mathematical confidence 1 

Physiological/Emotional Emotions, fear, nervousness, anxiety 7 

Social Persuasions Comments from peers, instructors, friends, or 
family on math competency 

12 

Mastery Experiences Results of attempts to solve mathematical 
problems, especially exams and homework 

15 

Good Performance Perceived high math performance 8 

Poor Performance Perceived low math performance 18 

Vicarious Experiences Perceptions of others’ success or failure in 
mathematics, especially peers or family 
members 

10 

Why/When Became 
Math Teacher 

Reasons for becoming a math teacher, reasons 
for choosing a grade band  

13 

Meaning of SE Scale reasoning for choosing self-efficacy ratings 
on surveys 

11 

Afraid to put SE= 6 Aversion to the highest possible rating on the 
self-efficacy scale (6) 

7 
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Optimism Reported tendency to prefer higher self-
efficacy scores because of personal optimism 

2 

Expect Minor Errors Possibility of minor errors should not affect 
self-efficacy 

6 

SE = Understanding Task- or content-specific evaluations of self-
efficacy 

5 

Cut Off For Correct Cut-off for SE ratings if asked to rate SE as 
YES or NO 

4 

Familiarity specific experiences with content or similar 
tasks 

15 

Number of Steps Evaluating self-efficacy based on the 
perceived number of steps needed to complete 
the problem (more steps = lower SE) 

6 

SE -> Performance Direct belief that strong self-efficacy 
increased chances of success 

2 

Checking Out Reduced effort or attendance based on dislike 
of a class or low self-efficacy 

8 

Retaking Classes Experiences during second (or third) attempt 
at a class 

6 

Role of Teacher Preference for new instructor when retaking a 
class 

6 

Math SE Trajectory Perceived change in self-efficacy after 
completing a college math class 

12 

Failing Effect  Lowered SE after perceived low exam scores 8 

Preview Effect  Increased SE after failing a math class (not an 
exam) 

7 

Math Identity Self-beliefs about math skills, preferred 
learning style, personal work ethic in math. 

17 

Calibration Alignment or misalignment between stated 
math SE and math performance 

15 
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