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Face-wise Chromatic Number 

Cat Myrant, Mathematics 

Mentor: Oscar Levin, Ph.D., Mathematical Sciences 
 

Abstract: The chromatic number is a well-studied graph invariant. This is the smallest number of colors 

necessary to color all the vertices such that no two vertices adjacent to the same edge are the same color. It has a 

myriad of applications from scheduling problems to cartography. Here we consider what happens when we color 

vertices with respect to faces instead of edges. That is, two vertices adjacent to the same face must not be the 

same color. We call this invariant the face-wise chromatic number (fwcn). We will see how to compute the fwcn 

for a variety of graphs and look at connections between the fwcn and the classical chromatic number. 
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1 INTRODUCTION 

The origins of Graph Theory can be traced 

back to August 26th, 1735 when Leonhard Euler 

presented the Königsberg bridge problem to his 

colleagues (see Figure 1). The Königsberg bridge 

problem asks whether or not it is possible to cross 

each of the seven bridges of the town Königsberg 

exactly once. Euler was certain it was impossible, 

but there wasn't a valid proof until 1873 when 

Carl Hierholzer proved it impossible using 

diagram-tracing puzzles. These puzzles have been 

around for hundreds of years, some of which 

involve finding a way to trace a diagram such that 

one's pencil never leaves the paper or backtracks. 

It wasn't until the end of the 19th century that 

Euler's bridge problem was drawn in the form of a 

graph by W. W. Rouse Ball. Ball represented each 

area of land as a dot or vertex as we have come to 

call it and each bridge as a line or edge. 

 

 

Figure 1. The Königsberg bridges. 

In the mid 1800s, Francis Guthrie wondered 

whether any map could be colored using at most 

four colors so that no two territories sharing a 

border were the same color. His brother, Fredrick 

Guthrie, asked Augustus De Morgan, mathematics 

professor at University College in London, if he 

could prove this (which is now known as the Four 

Color Theorem). De Morgan quickly found 

himself intrigued and wrote to all of his 

mathematician colleagues to ask if they could 

come up with a proof. No proof was found before 

De Morgan's death in 1871. Alfred Kempe 

produced a proof in 1879 that was widely 

accepted but was shown to be incorrect 11 years 

later by Percy Heawood. While his proof [1] was 

incorrect, Kempe (1879) did make the important 

observation: 

If we lay a sheet of tracing paper over a map 

and mark a point on it over each district and 

connect the points corresponding to districts 

which have a common boundary, we have on 

the tracing paper a diagram of a “linkage,” and 

we have as the exact analogue of the question 

we have been considering, that of lettering 

points in the linkage with as few letters as 

possible, so that no two directly connected 

points shall be lettered with the same letter.  

(p. 200) 

The Königsberg bridge problem and the four-

color problem at first seem to be two completely 

different problems with very little in common, but 

they both belong to the area of mathematics called 

Graph Theory (for a more complete history of the 

subject see [2].) We can translate both of these 

problems into graphs and apply what we know 
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about graphs to help us solve them. To do that we 

must first understand what a graph is. 

Definition 1. A graph G is a pair of sets (V,E) 

where V is the set of all the vertices in G and 

E is a set of 2-element subsets of V also 

known as the edges in G. 

Definition 2. Two vertices are said to be 

adjacent if they are connected by an edge and 

edges are said to be adjacent if they meet at 

the same vertex. 

Definition 3. The degree of a vertex is the 

number of edges adjacent to that vertex. 

Definition 4. A path is a sequence of adjacent 

edges that connect a sequence of vertices. 

There are different classes of graphs some of 

the most important being simple, planar, and 

connected (see Figure 2). 

 

     (a) Simple vs Complex         (b) Planar vs Non-planar 

 
     (c) Connected vs Disconnected 

Figure 2. Some important classes of graphs. 

 

Definition 5. Simple graphs have at most one 

edge between any two vertices and no vertex 

is adjacent to itself. 

Definition 6. Planar graphs can be drawn in 

the plane in such a way that no edges overlap 

or cross each other. 

Definition 7. The region enclosed by a planar 

graph's edges is called a face. 

Definition 8. Connected graphs are those 

which have paths that allow you to start at any 

vertex and end at any other vertex. 

By drawing the Königsberg bridges as a graph 

(see figure 3), we can prove the problem has no 

solution because all of the vertices in a graph need 

to have an even degree for there to be a path that 

uses all of the edges exactly once (see [3] for a 

proof). 

 

 

Figure 3. The Königsberg bridge problem drawn as a 

graph. The vertices represent the land and the edges 

represent the seven bridges. 

 

 What Kempe referred to as a linkage we call a 

graph today, and while his "proof" was found to 

be incorrect, Kempe's observation let us look at 

the four color problem in terms of what is now 

known as graph coloring. In this paper we will 

consider a variation of coloring problems for 

graphs. There are many different ways to color a 

graph. The most common way to color a graph is 

to find the smallest number necessary given 

certain parameters. 

Definition 9. The chromatic number is the 

smallest number such that no two vertices 

adjacent to the same edge are the same color. 

Many different classes of graphs have been 

studied with respect to the chromatic number. 

Kenneth Appel and Wolfgang Haken finally 

proved the four-color problem in 1976 with the 

aid of a computer [4]. Thanks to them we know 

that while some graphs can have very large 

chromatic numbers, all planar graphs have a 

chromatic number no greater than 4. 

We refer to these problems as coloring 

problems for historical reasons, but there are 

plenty of non-coloring related applications here. 

For example, one application of vertex coloring is 

to find a way to store chemicals in a chemistry 
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lab. There are some chemicals that will react 

poorly if stored in the same cabinet. We can make 

a graph to help us figure out how many cabinets 

we'll need and what chemicals can be stored 

together. The vertices will represent the chemicals 

and an edge will be drawn between two vertices if 

those chemicals cannot be stored together. Then 

we find a chromatic coloring of our graph. Each 

color represents a cabinet and each chemical with 

that color should be stored in that cabinet. 

Another way to color the vertices is to find the 

domatic number. A graph's domatic number is the 

largest number of colors that can be used to color 

the vertices so that every vertex is adjacent to 

every color including itself. There are of course 

many more ways to color the vertices of a graph, 

and we don't have to just color the vertices. 

Edge coloring is coloring the edges of a graph 

so that no edges meeting at the same vertex are 

the same color. There are many different types of 

edge colorings just as there are many vertex 

colorings. In 1964, Vadim G. Vizing developed a 

theorem for the edge chromatic number, that is, 

the smallest number of colors required to color 

every edge such that no two edges attached to the 

same vertex are the same color. Vizing's theorem 

sates that the edge chromatic number is at most 

the maximum degree plus one. 

One application of edge coloring is 

scheduling. Let's say there is a career fair where 

15 companies are holding interviews and dozens 

of people need to interview with one or more of 

the companies. Let the vertices represent the 

companies and the people. We will draw an edge 

between a company and a person if that person 

wants to interview with that company. By finding 

the edge chromatic number we can know the 

fewest number of time slots needed so that 

everyone gets a chance to interview for every 

company they wish to. The different colors will 

represent the different time slots. 

Other types of coloring include: greedy 

coloring, road coloring, weak coloring, strong 

coloring, exact coloring, complete coloring, 

harmonious coloring, and so many more (for more 

ways to color a graph see [5]). Still there are ways 

of coloring a graph that no one has yet looked at. 

One such way is to color the vertices so that 

no two vertices adjacent to the same face are the 

same color. We will call the smallest such number 

necessary to accomplish this the face-wise 

chromatic number of a graph. 

Definition 10. The face-wise chromatic 

number (fwcn) of a graph is the smallest 

number necessary to color all the vertices of a 

graph such that no two vertices adjacent to the 

same face are the same color. 

We will only be looking at planar graphs since 

they are the only type of graphs that have faces. 

As is usually done with planar graphs, we will 

consider the surrounding area of the graph a face 

as well. Our goal is to find a way to easily 

determine the face-wise chromatic number of any 

given planar graph. Figure 4 shows a few 

examples of graphs with various face-wise 

chromatic numbers. 

As you can see in figure 4 c and d, a graph can 

have many edges and another graph can have very 

few, but they both can have the same face-wise 

chromatic number. Classical vertex coloring has 

always been related to edges, but when we focus 

on the faces, the number of edges don't seem to 

matter which makes our research particularly 

interesting. 

 

   (a) Four Colors  (b) Five Colors  (c) Six Colors

 

  (d) Six Colors 

Figure 4. Graphs with face-wise chromatic colorings. 
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Our goal in this paper is to investigate the 

fwcn and look for connections to the chromatic 

number. In section 2 we consider how drawing a 

graph differently may affect the fwcn. In section 3 

we will look to the chromatic number to help us 

find the fwcn. In section 4 we will mention some 

interesting questions about the fwcn that needs 

further research. 

2 DIFFERENT DRAWINGS 

A graph can be drawn differently and still be 

the same graph. The number of edges and vertices 

will remain the same and all the vertices will be 

connected to the same vertices they were before. 

The only thing that might be affected is what 

vertices are adjacent to what faces. What does this 

mean for the fwcn? As you can see in figure 5, the 

fwcn depends on the drawing. 

What is the largest difference of fwcn for 

different drawings of the same graph we can 

make? 

 

(a) fwcn five         (b) fwcn six 

Figure 5. Different drawings of the same graph. 

 

Proposition 2.1. The difference between two 

fwcn of the same graph can be arbitrarily 

large. 

Proof. Let G be a graph with n vertices. Let v2i 

be adjacent to v2i+1 and both be adjacent to v0 

forming a triangular face. If G is drawn such that 

it is planar and all of the vertices are fanned out 

around v0 (see figure 6), then all vertices are 

adjacent to the outside face making the fwcn n. If, 

instead, G is drawn such that it is planar and the 

face created by v0, v1, and v2 is inside the face 

created by v0, v3, and v4 which is inside the face 

created by v0, v5, and v6 ... inside the face created 

by v0, vn-2, and vn-1, then v1, v2, v3, and v4 can be 

colored the same as v4k+1, v4k+2, v4k+3, and v4k 

respectively. v0 will have to be a completely 

different color giving a fwcn of 5 for this drawing. 

G has a difference in two of its fwcns of n-5 and 

since n can be arbitrarily large, the difference can 

be arbitrarily large. 

 

 

Figure 6. 

 

This result shows that the fwcn depends on the 

particular drawing of the planar graph, at least for 

some graphs. Do graphs exist that have the same 

fwcn for all drawings? Obviously any graph with 

only one face has the same fwcn no matter how it 

is drawn, but are there graphs with more than one 

face that have the same fwcn for all possible 

drawing? 

Proposition 2.2. Graphs with two or three 

faces and no vertices of degree one have the 

same fwcn for all drawings. 

Proof. If a graph has only two faces and no 

vertices of degree one, then it must be a cycle. A 

graph that is simply a cycle has all its vertices 

adjacent to both of its faces resulting in a fwcn 

equal to the number of vertices in the graph. Let 

graph G be a graph with three faces and no 

vertices of degree one (see figure 7). This means 

G has exactly two vertices with degree three, call 

them v1 and v2, and the rest of its vertices must be 

degree two. This creates three paths from v1 to v2. 

Paths 1 and 2 create a face A and paths 2 and 3 

create a face B. There is also the outside face C 

bordered by paths 1 and 3.  

Take any two vertices in G. If they are on the 

same path, they are obviously adjacent to the 
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same face and must be colored differently. If they 

are on paths 1 and 2, they are both adjacent to A. 

If they are on paths 2 and 3, they are both adjacent 

to B. If they are on paths 1 and 3, they are both 

adjacent to C. Thus, no two vertices can be 

colored the same so the fwcn must be equal to the 

total number of vertices in G. 

  

Figure 7. Graph G. 

 

3 USING CHROMATIC NUMBER TO FIND 

FWCN 

Because we know more about the chromatic 

number, it might help for us to relate the fwcn to 

the chromatic number. Since we can only have a 

chromatic number less than five for planar graphs 

and we can have fwcn as high as we want (a path 

for instance), we know that two graphs with the 

same chromatic number won't necessarily have 

the same fwcn. Do graphs with the same fwcn 

have to have the same chromatic number? In 

figure 8 two graphs are colored with respect to 

their faces and both have fwcn 4. In figure 9 the 

same two graphs are chromatically colored yet 

graph a has chromatic number 2 and graph b has 

chromatic number 4. So we can conclude there is 

no direct correlation between a graph's chromatic 

number and its fwcn. 

However, that doesn't mean that we can't use 

the chromatic number to help us find the fwcn. 

Let G be a planar graph. Now add edges to 

connect all the vertices adjacent to a face to all the 

other vertices adjacent to that same face (see 

figure 10). Let G’ be the resulting simple graph. 

 

(a) fwcn = 4  (b) fwcn = 4 

Figure 8. Face-wise coloring. 

 

 

(a) chromatic = 2  (b) chromatic = 4 

Figure 9. Chromatic colorings. 

 

 

(a) G (b) G’ 

Figure 10. 

 

Proposition 3.1. The chromatic number of G’ 

is equal to the fwcn of G. 

Proof. We will show that any proper 

chromatic coloring of G' is also a proper face-

wise chromatic coloring of G, and visa-versa. If 

two vertices are colored the same in G’, they must 

not be adjacent by an edge which means they are 

not adjacent to the same face in G and thus must 

also be colored same in G. If two vertices are 

colored the same in G, they must not be adjacent 

to the same face, which mean they are not 

adjacent by an edge in G’ and thus must also be 

colored the same in G’. Therefore, the chromatic 

number of G’ must be equal to the fwcn of G. 
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Proposition 3.1 is useful because we can use 

what we already know about vertex coloring to 

help us find the fwcn. 

Definition 11. A clique in a graph is a subset 

of vertices such that every vertex is adjacent 

to every other vertex in the subset. 

Definition 12. A perfect graph is a graph in 

which the chromatic number of every induced 

subgraph of G is equal to the size of the 

largest clique (see Figure 11). 

 

Figure 11. A clique highlighted in green in a perfect 

graph.  
 

Definition 13. A chordal graph is a graph in 

which every cycle of length for or more has a 

chord, that is an edge that is not part of the 

cycle. If a graph is chordal, it is perfect [3]. 

If G’ is chordal, all we need to do to find the 

fwcn of G is find the largest clique of G’’. Finding 

the largest clique isn't easy (in fact, it is NP-

complete) but at least we have a start on finding 

the fwcn. 

Unfortunately, adding the edges doesn't 

always produce a perfect graph. Figure 12 is a 

graph that is not perfect but has no more vertices 

adjacent to the same face that aren't already 

adjacent to one another. Highlighted in red is a 

cycle of length four with no chord meaning the 

graph is not perfect. We will have to find some 

other way to figure out the fwcn. 

 

Figure 12. 

 

4 FURTHER QUESTIONS 

Even though we answered several questions 

here, there are still many things we'd like to know. 

In proposition 2.2 we showed that the fwcn is the 

same for all graphs with at most three faces and 

no vertices of degree one. There is an obvious 

question to consider here - what happens when 

there are more than 3 faces? Will there always be 

ways to draw such graphs giving different fwcn, 

or do some graphs with 4 (or more) faces have 

fwcn invariant under different drawings? Note 

also that to prove proposition 2.2, we showed that 

the fwcn was the same as the number of vertices 

(in all drawings). So we ask, are there graphs with 

fwcn less than n but which have the same fwcn 

for all drawings? 

In proposition 3.1 we showed that the fwcn of 

G is equal to the chromatic number of G’. This 

was particularly useful when G’ turned out to be 

chordal, but that wasn't always the case. What 

subclasses of graphs don't give a chordal graph 

when we add the edges? Is there another way we 

can use finding the chromatic number to finding 

the fwcn or will we have to try something else 

altogether? One way to investigate fwcn further 

would be to write a computer program to find the 

fwcn for a large collection of graphs, but that 

approach would only work if there were efficient 

algorithms for finding the fwcn. In computer 

science language, we need to know the 

complexity of finding the fwcn. Proposition 3.1 

suggests that finding the fwcn will be difficult, 

probably NP-complete. 
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There are two more questions we'd really like 

to know the answers to. The first being can we 

find non-trivial bounds on fwcn? Obviously the 

fwcn can't be larger than the total number of 

vertices and it can't be any smaller than the degree 

of the largest face but can we make those bounds 

tighter? The second question is one that troubles 

most math research. Does this have any real-

world applications? We saw earlier that the 

chromatic number can be used for many things 

such as coloring maps and making schedules. 

What could we use the fwcn for, if anything? 
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