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ABSTRACT 

Chen, Chen-Yueh. The Bayesian Estimation of the Fractal Dimension Index of Fractional 
Brownian Motion. Published Doctor of Philosophy dissertation, University of 
Northern Colorado, 2013.  

 
 

The primary purpose of this study was to find Bayesian estimates for the Hurst 

dimension of a fBm with a Beta prior when the process is observed at both discrete and 

continuous times. Additionally, this study sought to examine how sensitive is the Bayesian 

analysis with Beta prior to the choice of parameters of Beta prior. Finally, this study 

attempted to develop R codes for the research questions. 

Using Metropolis-Hastings algorithm of MCMC as well as the assumed proposal 

distribution of Beta distribution, the Bayesian estimate for the Hurst dimension of a fBm 

with a Beta prior when the process is observed at discrete times was obtained. For the 

continuous case, however, the probability measures generated by two different Hurst 

dimension processes are singular with respect to each other, so it follows that there is no 

likelihood function for the continuous case.  

Overall, the estimated H appears to be greater than the real H. Overestimation is 

observed though the overestimation is less severe as real H goes up. In addition, the 

estimated H decreases as Beta parameters go up given an Alpha value. In contrast, the 

estimated H increases as Alpha parameters go up given a Beta value. For the real-world 

data, the 2011 daily Taiwan Stock Index was used and the estimated Hurst index was 

0.21. Finally, the R codes were successfully developed to implement the simulation in 

this study using a variety of packages such as “dvfBm,” “mnormt,” and “mcmcse.” 
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CHAPTER I 

INTRODUCTION 

Dimension is not an easy concept to understand. In the early 1900’s, it was one of 

the major problems in mathematics to determine its properties and meanings, resulting in 

various forms of dimensions (Peitgen, Jurgens, & Saupe, 1992). Among the various 

dimensions, fractal dimension has been widely used for real-world problems. In 

geography, fractal dimension is used to facilitate the estimation of the length of coast of 

Britain; in physiology and biology, fractal dimension is utilized to discuss the metabolic 

rates of various animals (e.g., rats, dogs, and horses) and relates them to their respective 

body masses; in financial engineering, fractal dimension is employed to estimate the S&P 

index; in image analysis, fractal dimension is exploited to quantify texture. The following 

will briefly describe some of the applications of fractal dimension in the real-world 

contexts. 

One of the salient examples regarding fractal dimension is to measure the length 

of the coast of Britain in which the question of length is ill-posed. This causes ordinary 

measurements to become meaningless due to its complexity. Fractal dimension is one 

way to measure the degree of complexity by evaluating how fast length increases if we 

measure with respect to smaller and smaller scale. Box-counting dimension (one form of 

fractal dimension) reveals that the fractal dimension for measuring the length of the coast 

of Britain is 1.31 (Peitgen et al., 1992).
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Fractal dimension has been widely used in financial engineering as well. Much of 

financial theory relies on the assumption that markets adjust prices rapidly to exclude 

arbitrage opportunities, i.e., buying an asset at a low price then immediately selling it for 

a higher price. However, it is well-known that models based on fractional Brownian 

motion (fBm) allow arbitrage opportunities (Cheridito, 2003; Rogers, 1997). 

Nevertheless, realization of arbitrage based on this kind of model can be hindered by 

transaction costs and the minimal amount of time between two consecutive transactions. 

Even though practical arbitrage application of the fBm in the financial market seems 

plausible, its possible applications in financial context have been proposed. 

In fractal geometry, the fractal dimension, D, is a quantity that gives an indication 

of how completely a fractal appears to fill space, as one zooms down to finer and finer 

scales (“Fractal Dimension”, 2010). The following examples can help elaborate the idea 

of fractal dimension. Let us consider the Koch curve. We begin with a straight line of 

length 1, called the initiator. We then remove the middle third of the line, and replace it 

with two lines that each have the same length (1/3) as the remaining lines on each side. 

This new form is called the generator, because it specifies a rule that is used to generate a 

new form (“Fractals and the Fractal Dimension”, 2010). Iterations of such rules 

constructs the so-called Koch curve (see Figure 1) with fractal dimension D = 

log(N)/log(r) = log(4)/log(3) = 1.26. Another example is the Sierpinski triangle. One 

starts with an equilateral triangle, then connect the mid-points of the three sides and 

remove the resulting inner triangle. Such iterations construct the Sierpinski triangle (see 

Figure 1) with fractal dimension D = log(N)/log(r) = log(3)/log(2) = 1.585 (“Fractal 

Dimension”, 2010). 



 

 

3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Koch Curve. Source: http://www.vanderbilt.edu/AnS/psychology/cogsci/ 
chaos/workshop/Fractals.html 
 
 
 
 
 
 
 
 
Figure 2. Sierpinski Triangle. Source: http://en.wikipedia.org/wiki/Fractal_dimension 
 
 

The primary task of Bayesian inference is to develop the model p(θ, x) and perform 

the necessary computations to summarize the posterior distribution p(θ|x) in appropriate 

ways. To begin with, we must start with a model providing a joint probability distribution 

for θ and y. The joint probability density function can be written as a product of two 

densities that are referred to as the prior distribution p(θ) and the sampling distribution 

p(x|θ) respectively: p(θ,x)=p(θ)p(x|θ). The posterior density:  

 

p�θ|x� � p�θ, x�p�x� � p�θ�p�x|θ�p�x�  
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where p(x)=∫p(θ)p(x|θ)dθ. Since p(x) does not depend on θ, it yields the 

unnormalized posterior density: p(θ|x) is proportional to p(θ)p(x|θ) (Gelman, Carlin, 

Stern, & Rubin, 2004). The primary difference between classical statistical theory and the 

Bayesian approach is that the latter consider the parameters as random variables that are 

characterized by a prior distribution (Ntzoufras, 2009). 

Although fractal dimension is not easy to understand and estimate, various domains 

have benefited from studying fractal dimension. Among previous studies regarding 

fractal dimension, most of them are highly theoretical. Therefore, the current study 

attempts to estimate fractal dimension from an applied perspective. 

Purpose of the Study 

The primary purpose of this study is to find Bayesian estimates for the Hurst 

dimension (the parameter to be estimated) of a fractional Brownian motion (fBm) with a 

Beta distribution as a prior distribution when the process is observed at both continuous 

and discrete times. Since there are two parameters (alpha and beta) associated with the 

Beta distribution, this study will investigate the impact of the parameters on the Hurst 

dimension estimation. Furthermore, the study attempts to develop a R code for computing 

Bayesian estimates for the Hurst dimension of a fBm with a Beta prior when the process 

is observed at both continuous and discrete times. 

Research Questions 

Q1 Can we find a Bayesian estimate for the Hurst dimension of a fBm with a 
Beta prior when the process is observed at discrete times? 

 
Q2 Can we find a Bayesian estimate for the Hurst dimension of a fBm with a 

Beta prior when the process is observed at continuous times? 
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Q3 Will the Bayesian estimate for the Hurst dimension of a fBm vary when 
the parameters of the Beta prior change? 

 
Q4 Can we develop a R code for questions 1 through 3? 

 
Rationale for the Study 

The fBm has become widely popular in a theoretical context as well as in a 

practical context for modeling self-similar process since the pioneering work of 

Mandelbrot and Van Ness in 1968 (Achard & Coeurjolly, 2010). A number of previous 

studies have been dedicated to the estimation of fractal dimension using various 

approaches such as the maximum likelihood method (Bishwal, 2003; Breton, 1998; 

Dahlhaus, 1989; Es-Sebaiy, Ouassou, & Ouknine, 2009; Lundahl, Ohley, Kay, & Siffert, 

1986; Praskasa Rao, 2004), wavelet analysis (Bayraktar, Poor, & Sicar, 2004), and 

discrete variations (Achard & Coeurjolly, 2010). Although much work has been done to 

the estimation of the Hurst dimension of the fBm, limited studies of this kind focus on the 

Bayesian estimation. Therefore, the current study is to estimate the Hurst dimension from 

a perspective of the Bayesian framework. 

Rossi, Allenby, and McCulloch (2006) argued that there are really no other 

approaches (except the Bayesian approach) which can provide a unified treatment of 

inference and decision as well as properly accounting for parameter and model 

uncertainty. Namely, flexibility and the generality of the Bayesian approach allow 

researchers to cope with complex problems. However, somewhat controversial is the 

view that Bayesian approach delivers the answer to the question in the sense that the 

Bayesian inference provides answers conditional on the observed data rather than based 

on distribution of test statistics over imaginary samples not observed. Even though the 

Bayesian approach has decent benefits, it has some trivial costs including formulation of 
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prior, requirement of a likelihood function, and computation of various integrals required 

in Bayesian paradigm (Rossi et al.). Development of various simulation-based methods in 

recent years has dramatically alleviated the computational costs of the Bayesian 

approach, leading to the increased adoption of Bayesian models in marketing and other 

fields. The increased adoption of the Bayesian approach implies that the benefits 

outweigh the costs for many problems of interest (Rossi et al.). The advancement of 

computation make complicated integrals become possible. However, choosing an 

appropriate or objective prior has been an issue in the Bayesian approach (Gelman et al., 

2004). Ross and his colleagues argued that investigators are facing a practical problem 

with little information in the real-world situations and should not neglect sources of 

information outside of the current data set. 

According to the definition of fBm (please see the definition in page 8) proposed 

by Mandelbrot and Van Ness (1968), the domain of Hurst parameter ranges between 0 

and 1. From the non-Bayesian perspective, the Hurst parameter is viewed as a fixed 

quantity; from the Bayesian perspective, however, the Hurst parameter is regarded as a 

random variable. With the definition of fBm with 0<H<1, it is reasonable to use Beta 

distribution as the prior distribution in order to estimate the Hurst parameter by means of 

Bayesian approach. As a result, Beta distribution was utilized as the prior distribution in 

the present study. 

Most of the previous studies regarding the estimation of the fractal dimension of 

fBm involved highly theoretical derivation of the estimator. Limited studies provided 

practical programming for such problems. Furthermore, Bayesian approach involves 

complex computation. Winbugs, R, C, and other software are the common tools for 
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Bayesian computation. Therefore, the current study is to develop R code to the Bayesian 

estimation of the fractal dimension of fBm using Beta distribution as the prior 

distribution. 

Delimitations of the Study 

In these questions I assume there is no other parameter. Namely, the Hurst 

parameter is the only parameter to be estimated. Additionally, Beta prior for Hurst 

dimension of a fBm is the only prior distribution for estimation of the Hurst parameter 

due to the fact that Hurst dimension ranges from 0 to 1, which coincides with the domain 

of Beta distribution.  

Definition of Terms 

Bayesian data analysis: involves setting up a joint probability distribution (full 

probability model) for all observable and unobservable quantities in a problem and 

calculating and interpreting the conditional probability distribution (posterior 

distribution) of the unobserved quantities of ultimate interest, given the observed data 

(Gelman et al., 2004). 

Fractal dimension: it is a statistical quantity that gives an indication of how 

completely a fractal appears to fill space, as one zooms down to finer and finer scales 

(“Fractal Dimension," 2010). 

 Fractional Brownian motion: the definition of fractional Brownian motion was 

proposed by Mendelbrot and Van Ness (1968). Let H be a constant belonging to (0,1). A 

fractional Brownian motion (B(H)(t))t>0 of Hurst index H is a continuous and centered 

Gaussian process with covariance function E[B(H)(t) B(H)(s)]=1/2(t2H+s2H-|t-s|2H). For 
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H=1/2, the fBm is a standard Brownian motion. A standard fbm B(H) has the following 

properties: 

1. B(H) (0)=0 and E[B(H) (t)]=0 for all t>0 

2. B(H) has homogeneous increments, i.e., B(H) (t+s)- B(H) (s) has the same 

law of B(H) (t) for s,t >0 

3. B(H) is a Gaussian process and E[B(H) (t)2]=t2H, t>0, for all H(0,1) 

The fBm is divided into three different families corresponding to 0<H<1/2 (the 

process is negatively correlated), H=1/2 (the process is a Brownian motion), 1/2<H<1 

(the process is positively correlated), respectively. 

Gaussian process: A stochastic process is a collection of time indexed random 

variables where the set of time points could be continuous or discrete. A stochastic  

process is called strictly stationary if the joint distributions of  X�t��,… , X�t
�, only 

depend on the intervals between  t�, t�… t
 and are not affected by the shift of the time 

origin. i.e., the joint distribution of  X�t��,… , X�t
� and the joint distribution of 

X�t����, … , X�t
��� are the same. To illustrate, when  k = 1, then for all t, the distribution 

of X�t� is the same with μ�t� � μ and σ��t� � σ�. When k=2, the joint distribution of  

X�t�� and  X�t�� depends only on the interval between  t� − t�, which is often called the 

lag τ. As a result, the autocovariance function between t1 and t2 depends on τ only. i.e., 

γ�t�, t�� � γ�τ� � Cov[X�t�, X�t + τ�]. In contrast, a less restricted stationarity is called 

weakly stationarity when there is no specification on moments higher than second order. 

That is, if a process’ mean is constant, i.e., E[X�t�] � μ and its autocovariance function 

depends only on the lag, it is said to be second-order stationary. The weakly stationarity 

is particularly useful in practice since it is less cumbersome to just check with the first 
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two moments. More specifically, when the joint distribution of  X�t��, … , X�t
� is 

distributed as multivariate normal, the process is called the Gaussian process (Chatfield, 

2004; Wei, 2006). Thus, Gaussian process can be conceptualized as a generalization of 

the Normal distribution. It should be noted that since the multivariate normality is 

uniquely characterized by its first and second moments, a Gaussian process is also strictly 

stationary. That is, a Gaussian process is possessed of both the strictly stationary and 

weakly stationary. With these desired properties, a Gaussian process is often used in 

Bayesian modeling due to its characteristics in the ease of computational tasks. 

(Chatfield, 2004; Wei, 2006). 

Hurst index: it was Mendelbrot that named the parameter H of B(H) after the 

name of the hydrologist Hurst (Biagini, Hu, Øksendal, & Zhang, 2010). 

Posterior distribution: refers to the conditional probability distribution of the 

unobserved quantities of ultimate interest, given the observed data (Gelman et al., 2004, 

p. 3). 

Prior distribution: refers to a probability distribution that treats parameter as a 

random variable, which may reflect prior information or belief as to what the true value 

of the parameter may be (Bain & Engelhardt, 1992). 

Summary 

Fractional Brownian motion has been applied in various fields since Mendelbrot 

and Van Ness (1968). Estimation of the Hurst parameter has been of interest for 

researchers. Various estimation methods have been proposed in order to solve practical 

problems and enrich the theoretical bases as well. However, Bayesian estimation of the 

Hurst parameter is limited. Bayesian estimation warrants applied statisticians’ efforts due 
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to its flexibility of incorporating prior information of parameters of interest. Hurst 

parameter ranges from 0 to 1, making Beta distribution be a reasonable prior. Therefore, 

the above reasoning motivates the current study. 
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CHAPTER II 

REVIEW OF LITERATURE 

Chapter II is organized around five major topics. The first section includes 

Bayesian data analysis. The second section contains fractal dimension. The third section 

describes Brownian motion. The fourth section discusses fractional Brownian motion. 

Additionally, estimations of fractal dimension in fractional Brownian motion are 

provided, followed by the summary of this chapter. 

Bayesian Data Analysis 

The main difference between classical statistical theory and Bayesian thinking is 

that the latter views parameters as random variables that are characterized by a prior 

distribution (Ntzoufras, 2009). The prior distribution represents the information available 

to the researcher before any data are involved in the statistical analysis. Three steps are 

summarized for Bayesian data analysis: the first step is to set up a full probability model; 

that is, consistent with knowledge about the underlying scientific problem, a joint 

probability distribution for all quantities is set up. The second step is to condition on 

observed data; by doing this, the appropriate posterior distribution is calculated. The  

posterior distribution refers to the conditional probability distribution of the unobserved 

quantities of interest, given the observed data. The third step is to evaluate the model fit; 

more specifically, researchers would like to know if the model fits the data (Gelman et 

al., 2004). 



 

 

12

Researchers usually are more interested in calculation of the posterior distribution 

of the parameters given the observed data. The posterior distribution contains both prior 

and observed data information. The primary reason for believing Bayesian thinking is 

that it provides a common-sense interpretation of statistical conclusions. More 

specifically, a Bayesian interval for an unknown quantity of interest can be directly 

regarded as having a high probability of containing the unknown quantity, in contrast to 

confidence interval, which may strictly be interpreted in relation to a sequence of similar 

inferences that might be made in repeated practice (Gelman et al., 2004). Additionally, 

flexibility and generality of Bayesian approach allow researchers to cope with complex 

problems. 

In Bayesian data analysis, various numerical summaries of the posterior 

distribution are desirable. For example, summaries of location such as mean, median, and 

mode are commonly used; summaries of variation including standard deviation, the 

interquartile range and other quartiles are often used. Besides, point summaries, it is 

important to report posterior uncertainty. Probability is particularly used as a fundamental 

measure for uncertainty in Bayesian data analysis. 

Bayesian data analysis depends heavily on simulation because of its relative ease 

with which samples can often be generated from a probability distribution, even when the 

density function cannot be explicitly integrated (Gelman et al., 2004). Among the 

computation techniques, Markov chain Monte Carlo (MCMC) methods are the most 

helpful. Using MCMC, researchers can set up and estimate complicated models that solve 

problems that could not be solved with traditional methods (Ntzoufras, 2009). 
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General guidelines for computation strategy in Bayesian data analysis begin with 

fitting many models and increase the complexity gradually. We prefer to fit each model 

relatively quickly, using inferences from the previously-fitted simpler models as starting 

values, and displaying inferences and comparing to data before continuing (Gelman et al., 

2004). 

In summary, posterior distribution is the desired product in Bayesian data analysis 

derived from the specified model and appropriate prior information. Additionally, more 

common-sense interpretation of statistical conclusions is the primary reason for 

considering the Bayesian approach. However, Bayesian data analysis relies heavily on 

computations. 

Fractal Dimension 

Idea of Fractal Dimension 

Fractals, derived from the Latin word frangere meaning to break, are unusual 

imperfectly defined, mathematical objects that observe self-similarity, that the parts are 

somehow self-similar to the whole (Peitgen et al., 1992). A structure is said to be strictly 

self-similar if it can be broken down into arbitrarily small pieces, each of which is a small 

replica of the entire structure (Peitgen et al.). The self-similarity process implies that 

fractals are scale-invariant, meaning that you cannot distinguish a small part from the 

larger structure (see Figure 3, Scrumerati, 2009). 
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Figure 3. Illustration of Self-Similarity (Excerpted from http://scrumerati.com/ 
2009/05/scrum-fractals.html#tp) 
 
 

The fractal dimension measures cannot be derived exactly but must be estimated 

(“Fractal Dimension”, 2010). One of the most common examples for fractal dimension is 

the estimation of the length of the coastline of Britain or in other cases in which area or 

volume may be ill-posed (see Figure 4). The unit of interest (curve, surface, area or 

volume) can be so complex that ordinary measurements become meaningless. However, 

scientists came up with an alternative way to measure the complexity by evaluating how 

fast the unit of interest increases if we measure with respect to smaller and smaller scales. 

The idea is that the unit of interest and the scale do not vary arbitrarily, but instead are 

regulated by a power law. The power law allows researchers to compute one quantity 

from the other (Peitgen et al., 1992). 
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Figure 4. Example of Measurement of Coastline Length of Britain. (Excerpted from 
http://computationallegalstudies.com/page/3/) 
 
 

Consider the following case for further understanding of fractal dimension.  

For instance, the length of a coastline may be determined by placing a 1 km ruler 
end-to-end along the shore line. If a 0.5 km ruler is used for the same coast, then 
the measured length will be longer. If the increase in length follows a consistent 
rule over a range of elemental rules, then it may be called a measure of the 
coastline’s geometrical properties. The functional relationship between ruler size 
and length is L = λε1-D, where L refers to total length, εmeans elemental ruler 
length, D stands for fractal dimension, and λ indicates scaling constant. In 
practice, D has been shown to be correlated with the function’s intuitive 
roughness. For D = 1.0, the curve is a smooth line, while for D = 1.99, the line is 
extremely rough. (Lundahl et al., 1986, p. 152) 

 
Type of Fractal Dimension 

Mathematicians have dedicated themselves to come up with various notions of 

dimension. They include topological dimension, fractal dimension, self-similarity 

dimension, box-counting dimension, Hausdorff dimension, capacity dimension, 

information dimension, compass dimension, Euclidean and more (Peitgen et al., 1992). 

Among the various dimensions, I will briefly introduce the following dimensions for 
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clarification including self-similarity dimension, compass dimension, and box-counting 

dimension, each of which is a special form of Mandelbrot’s fractal dimension. 

Self-similarity dimension. Given a self-similar structure, a relation exists between 

the reduction factor s and the number of pieces a into which the structure can be divided. 

The relation is shown as follows: a=1/sD, or equivalently, D=(log a)/(log(1/s)), where D is 

called the self-similarity dimension (Peitgen et al., 1992). Let us take the Koch curve 

(refer to Figure 1) as an example, assuming a=4, s=1/3 and a=16, s=1/9, respectively. By 

looking at the both conditions, an identical self-similar dimension of the Koch curve D 

was derived, where D=(log4)/(log3)=(log16)/(log9)=1.2619. This example implies that 

the power law relation between the number of pieces and the reduction factor results in 

identical self-similarity dimension, regardless of the scale used for evaluation (Peitgen et 

al.). 

Compass dimension. Compass dimension (also called divider or ruler dimension) 

is defined as D=1+d, where d is the slope in the log/log-diagram of the measured length u 

versus precision 1/s (Peitgen et al., 1992). For example, d for the coast of Britain is 

approximately 0.36, meaning that the coast has a compass (fractal) dimension of around 

1.36. Another example is the 3/2 curve in which d=0.5 makes the compass dimension 

D=1+0.5=1.5 (Peitgen et al.).  

Box-counting dimension. When structures have certain special properties such as 

self-similar or structures like a coastline, self-similarity dimension and compass 

dimension can be used to deal with such problems. However, what can be done if the 

structures are not of special properties? The box-counting dimension has been developed 

to deal with structures of no special properties. The idea of box-counting dimension is 
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related to coastline measurements (Peitgen et al., 1992). More specifically, the structure 

is put onto a regular mesh with mesh size s and then the number of grid boxes that 

contain some of the structure, say N are counted. The relationship between s and N is 

demonstrated to be N(s) due to the dependence of N on the choice of s. Then, s is 

changed progressively to smaller and smaller sizes and the corresponding number N(s) is 

counted. Finally, the measurements in a log(N(s))/log(1/s) diagram is made to fit a 

straight line to the plotted points of the diagram and calculate its slope D, which is the 

box-counting dimension (Peitgen et al). The box-counting dimension is one of the most 

used dimensions in measurements and in all the sciences due to the following reasons. 

First, the box-counting dimension proposes a systematic way to measure any structure in 

the plane or even in the space. Additionally, it is straightforward to calculate the 

dimension by counting boxes and maintain statistics. Finally, the structure can be the 

form of either self-similar or wild (Peitgen et al).  

In summary, fractal dimension may not be an easy concept to understand. Various 

types of fractal dimension have been proposed in a variety of research areas. Fractal 

dimension can not be derived exactly but has to be estimated. Due to its potential for 

applications, many studies have been dedicated to the estimation of the fractal dimension. 

Brownian Motion 

Brownian motion is named after Robert Brown, who observed the motion in 1827 

(Mazo, 2008). The definition of Brownian motion is as follows (Chiang, 2006; Mörters & 

Peres, 2008). A real-valued stochastic process {B(t): t≥0} is called a linear Brownian 

motion with start in x belongs to R if the following holds: 
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1. B(t) is Gaussian, 

2. B(0) = x, 

3. B(t) has independent increments, i.e., for all times 0<t1<t2<...<tn, the 

increments B(tn) - B(tn-1), B(tn-1) – B(tn-2), …, B(t2) - B(t1) are independent variables; 

4. for all t>0 and h>0, the increments B(t + h) – B(t) are normally distributed 

with expectation zero and variance h; 

5. E[B(t)-B(s)]=0, and 

6. Var[B(t)-B(s)]=σ2(t-s) for s < t. 

Brownian motion has been well established in finance. However, classical 

mathematical models of financial assets are far from perfect. There are two problems 

associated with classical mathematical models of financial assets; namely, financial 

processes are not wholly Gaussian and Markovian in distribution. For decades, 

researchers have argued that it is reasonable to assume all information contained within 

current asset price to be Markovian process. Nevertheless, technical traders have 

consistently beaten the market. Similarly, Mandelbrot (1997) pointed out a list of 

discrepancies between Brownian motion and the facts. They include non-stationarity of 

the underlying rules, repeated instances of discontinuous change, and long-term 

dependence and so on. This resulted in academic efforts in purporting the existence of 

non-Markovian market. Fractional Brownian motion deals with the long-ranged 

dependence problem while still assuming a Gaussian process. It has the advantage of 

giving simple and tractable solutions as opposed to the stochastic volatility models 

(Daye, 2003). The following section deals with fractional Brownian motion. 
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Fractional Brownian Motion 

The fractional Brownian motion was named as fractional Brownian motion by 

Mandelbrot and Van Ness. The fractional Brownian motion, which provides a suitable 

generalization of the Brownian motion, is one of the simplest stochastic processes 

exhibiting long-range dependence (Bishwal, 2003; Breton, 1998). It has been used as a 

modeling tool. The following demonstrates the stochastic integral representation of 

fractional Brownian motion (Biagini et al., 2010, p.6). The process 

��t� � 1Γ"H＋1 2% &'(�t − s�*+� �⁄ − �−s�*+� �% - dB�s� 

� 1Γ"H＋1 2% &0' (�t − s�*+� �⁄ − �−s�*+� �% -1
+2 dB�s� + ' �t − s�*+� �⁄3

1 dB�s�4 

where B(t) is a standard Brownian motion and Γrefers to the gamma function, is a fBm 

with 0< Hurst index <1. The constant 1/Γ(H+1/2) in the following computation is 

dropped for the sake of simplicity. Let            , ds=tdu
53 � u 

E[Z��t�] � 8 9�t − s��*+� �⁄ − �−s��*+� �% :� ds = 8[t*+;< (1 − 53-*+
;< − t*+;<�− 53�*+;<]� ds 

� 't�*+� =(1 − st-
*+�� − (− st-

*+��>� ds � ' t�*+� 9�1 − u�*+�� − �−u�*+��:� tdu 

� t�*'9�1 − u��*+� �⁄ − �−u��*+� �% :� du	 � C�H�t�* 

Where  C�H� � 8 9�1 − u��*+� �⁄ − �−u��*+� �% :� du. 

Analogously, we have that 

E[|Z�t� − Z�s�|�] � ' 9�t − u��*+� �⁄ − �s − u��*+� �% :� ds 



 

 

20

� t�*'9�t − s − u��*+� �⁄ − �−u��*+� �% :� du	 � C�H�|t − s|�* 

Now 

E[Z�t�Z�s�] � −12 @E[|Z�t� − Z�s�|]� − E[Z�t��] − E[Z�s��]A 
� 12 �t�* + s�* − |t − s|�*� 

According to the definition of fractional Brownian motion fBm proposed by 

Mendelbrot and Van Ness (1968), a fractional Brownian motion (B(H)(t))t>0 of Hurst index 

H is a continuous and centered Gaussian process with covariance function E[B(H)(t) 

B(H)(s)]=1/2(t2H+s2H-|t-s|2H). Therefore, Z(t) is a fBm of Hurst index H.  

The fBm is divided into three different families corresponding to 0<H<1/2, 

H=1/2, 1/2<H<1, respectively. It was Mandelbrot that named the parameter H of B(H) 

after the name of the hydrologist Hurst, who made a statistical study of yearly water run-

offs of the Nile river. Hurst found that the water run-offs in Nile River could not be 

modeled by using a process with independent increments, but rather the increments could 

be viewed as the increments of a fBm. Due to Hurst’ study, Mandelbrot introduced the 

name Hurst index. The basic feature of fBm is that the span of independence between 

their increments can be infinite (Mandelbrot & Van Ness, 1968). As the Hurst parameter 

H governs the fractal dimension of the fractional Brownian motion, its regularity and the 

long-memory behavior of its increments, the estimation of H is an important but difficult 

task which has led to very vast literature (Achard & Coeurjolly, 2010). The following 

section describes estimation of fractal dimension in fractional Brownian motion. 

  



 

 

21

Estimation of Fractal Dimension for 
the Fractional Brownian Motion 

 
Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is often considered to be the best 

obtainable estimator. In addition, the estimate is asymptotically unbiased (unbiased as the 

sample size becomes large), asymptotically efficient (it obtains the Cramer-Rao bound) 

and is asymptotically Normally distributed (Lundahl et al., 1986). In most cases, it is 

impossible to obtain an explicit form for the estimate as a function of the data. Instead, 

numerical methods are used to find the maximum of the likelihood function (Lundahl et 

al.). 

The Bishwal (2003) studies show the properties of the MLE of a parameter 

appearing linearly in drift coefficient of a nonlinear stochastic differential equation driven 

by fBm when the signal process is a nonlinear diffusion process. They proved the strong 

consistency and asymptotic normality of the MLE, and verified that the MLE can be 

explicitly calculated. This satisfies the asymptotic properties mentioned in their work. 

Lundahl and his colleagues (1986) extended the basic theory of fractional 

Brownian motion to the discrete case. More specifically, an asymptotic Cramer-Rao 

bound is derived for the variance of an estimate of H; a maximum likelihood estimator is 

developed to estimate H. Results reveal that the variance of the estimator nearly achieves 

the minimum bound. A generation algorithm for discrete fractional motion is presented 

and used to demonstrate the capabilities of the MLE when the discrete fractional 

Brownian process is contaminated with additive Gaussian noise. The results indicate that 

it has strong potential for quantifying texture. Furthermore, Dahlhaus (1989) proved the 
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asymptotic normality of the maximum likelihood estimator for the parameters of a long 

range dependent Gaussian process.  

In spite of the fact that maximum likelihood estimators are consistent and 

asymptotically normal and also asymptotically efficient in general, they have the 

following shortcomings. First, the calculations are often cumbersome since the 

expression for the MLE involves stochastic integrals which need appropriate 

approximations for computational purposes. Additionally, the MLE are not robust in the 

sense that a slight perturbation in the noise component will change the properties of the 

MLE substantially. Therefore, other estimation methods were proposed in order to 

circumvent such problems (Rao, 2004). 

Other Estimation Methods of 
Fractal Dimension in fBm 
 

Bayraktar et al. (2004) used Wavelet analysis to estimate the fractal dimension of 

the S&P 500 index. They sampled and analyzed S&P 500 data at one-minute intervals 

over the course of 11.5 years (January 1989-May 2000). Specifically, they developed a 

method to investigate long range dependence, quantified by the Hurst parameter in a high 

frequency financial time series. They found the Hurst parameter to be around the 0.6 

level for most of the 1990s, but dropped to the level of 0.5 in the period 1997-2000, 

which coincides with growth in Internet trading among small investors. 

Achard and Coeurjolly (2010) reviewed different estimation procedures of Hurst 

parameter of fractional Brownian motion and tried to provide estimators that were 

quickly computable. They described four methods of estimation of the Hurst parameter: 

(a) the standard procedure based on the log-linearity of the variogram of dilated time 

series (ST), (b) robust alternatives to outliers using sample quantiles (Q) or trimmed 
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means (TM), (c) robust alternative Gaussian white noise or to additive Brownian motion 

(methods B0 and B1), and (d) robust alternatives to outliers and additive noise by 

combining these methods. Additionally, three different models of contamination were 

used in this study: (a) a model of additive outlier (AO), (b) a model of additive Gaussian 

white noise to the fBm (B0), and (c) a model of additive Gaussian white noise to the fGn 

(B1). They further recommended, from a practical perspective, that one should first 

observe the data for the presence of outliers, and the estimator based on trimmed means 

(TM) should be used. Moreover, they recommended use the standard method if the 

differences |HST-HB0-ST|and |HST-HB1-ST| are close to zero. 

Chiang (2006) utilized the method of Embedded Branching Process (EBP) 

proposed by Jones and Shen (2004) to estimate the Hurst parameter, which builds a tree 

of crossings that encodes the sample path. The estimator is as follows: Ĥ=
BCD�BCDE  

where µ =  
∑ GHI�∑ GHIJ;�⋯�∑ GHLM�L�HN;M�IJ;�HN;M�I�HN; O�P��O�P����⋯�O�Q� BCD�BCDE, N(.)is the total number of  

crossings, and Z is the number of subcrossings. 

Berzin and Leon (2007) consider the second order increments of a fBm using 

variation techniques. Based on an almost-sure convergence theorem for general 

functions, they construct certain regression models for the parameter H. The regression 

based estimator for H turns out to be asymptotically unbiased, consistent and that it 

satisfies the Central Limit Theorem. 

Constantine and Hall (1994) proposed simple methods for estimating fractal 

dimension based on variogram along with log linear regression. The estimator for fractal 

dimension presented in their work as D� 2 − ��α , where 
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α � S∑ �xT−U+�wTlog�gTPTY� �Z@∑ �xT−U+�wTPTY� A+�. wj denotes the positive weight; the  

integer m plays the role of a smoothing parameter, describing the distance away from the 

origin; log (gj) refers to the heteroscedasticity of the variables. 

Moreover, Dieker (2004) proposed an aggregate variance method, which is based 

on the self-similarity of the sample. The idea is that the sequence {xk} is divided into 

blocks of size m, and then the aggregated process is defined as 

 xk
(m)=m-1(xkm+…+x(k+1)m-1), and Var(xk

(m))=m2H-2N-2H. An estimator for Var(xk
(m)) is 

M+�∑ �x\�P�−	]̂ �I���_+�\Y�  , where M=integer part of N/m and 	U+�P� � M+�∑ x\�P�_+�\Y� . 

The estimator of Hurst dimension is obtained by plotting the estimated variance of xk
(m) 

against m on a log-log scale. 

Higuchi (1988) estimated Hurst dimension by plotting L(m) in a log-log plot 

versus m and adding 2 to the fitted line, where 

L(m)� O+�P` ∑ �_a
P\Y� ∑ |∑ xT\�
PTY\��
+��P�� |_a
Y� , and Mi is the integer part of (N-i)/m. 

Summary 

The estimation of fractal dimension in fractional Brownian motion has attracted 

much attention for decades. Many efforts were made in using maximum likelihood 

estimators. However, cumbersome calculations involving stochastic integrals which need 

appropriate approximations for computational purposes and the robustness issue 

associated with the MLE led to other estimation methods. Bayesian estimation for fractal 

dimension in fractional Brownian motion along with the prior of Beta distribution is 

limited. Therefore, the current study attempts to estimate the fractal dimension in 

fractional Brownian motion using the Bayesian approach. 
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CHAPTER III 

METHODOLOGY 

Various methods of the estimation of the Hurst parameter have been proposed. 

There are, however, limited studies focusing on Bayesian data analysis along with Beta 

distribution as the prior information for the estimation of the Hurst parameter for the 

fractional Brownian motion. Thus, we will focus on the Bayesian approach to estimate 

the Hurst parameter for the fractional Brownian motion. In the following sections, the 

Markov Chain Monte Carlo (MCMC) method will be specified in order to obtain the 

Bayesian estimators. Additionally, model descriptions along with the likelihood, prior 

and posterior functions will be discussed. The final section describes information 

associated with data simulations including different choices of the parameters of the Beta 

prior in order to examine if the Bayesian estimators are sensitive to the parameters of the 

Beta prior as well as number of replications. 

Markov Chain Monte Carlo Method 

Direct simulation cannot be applied in all cases when posterior distributions of 

interest involve multidimensional integrals. Simulation techniques based on Markov 

chains overcome such problem due to their generality and flexibility. Markov Chain 

Monte Carlo (MCMC) techniques have become popular since the early 1990s due to the 

massive development of computing facilities. The MCMC techniques enable quantitative 

researchers to use highly complicated models and estimate the corresponding posterior 

distributions with accuracy. These MCMC techniques are based on the construction of a 
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Markov chain that eventually converges to the target distribution or so-called posterior 

distribution f(θ|x). This characteristic distinguishes MCMC algorithms from direct 

simulation methods, which provide samples directly from the posterior distribution. 

Furthermore, the MCMC output is a dependent sample because it is generated from a 

Markov chain, in contrast to the output of direct methods, which is an independent 

sample. Finally, MCMC methods, frequently called iterative methods, involve the notion 

of an iterative procedure since in every step they produce values based on the previous 

one (Ntzoufras, 2009). The following sections include (a) definitions and terminology 

associated with the MCMC method, (b) Markov chain--the algorithm of MCMC, (c) how 

to describe the target distribution using MCMC output, (d) Monte Carlo error, and (e) 

two popular MCMC algorithms, Metropolis-Hastings algorithm and the Gibbs sampling. 

Definitions and Terminology 

In this section, definitions and terminology associated with MCMC are presented 

as follows. They include equilibrium distribution, convergence of the algorithm, iteration 

and total number of iterations T, initial values of the chain θ(0), burnin period, thinning 

interval or sampling lag, iterations kept T’, MCMC output, and output analysis 

(Ntzoufras, 2009).  

Equilibrium distribution. This is also known as the stationary or target distribution 

of the MCMC algorithm. The notion of the equilibrium distribution is related to the 

Markov chain used to construct the MCMC algorithm, such that the chain stabilizes to 

the equilibrium/stationary distribution after a number of time sequences t ＞ B. 

Therefore, in a Markov chain, the distribution of θ�3� and θ�3��� will be identical and 

equal to the equilibrium/stationary distribution. Equivalently, once it reaches its 
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equilibrium (distribution), an MCMC scheme generates dependent random values from 

the corresponding stationary distribution (Ntzoufras, 2009, p. 38). 

Convergence of the algorithm. An MCMC algorithm converges when the 

algorithm has reached its equilibrium and generates values from the desired target 

distribution. Generally it is unclear how much we must run an algorithm to obtain 

samples from the correct target distributions. Several diagnostic tests have been 

developed to monitor the convergence of the algorithm, including monitoring the Monte 

Carlo error, monitoring the trace plots (the plots of iterations versus generated values), 

examining the ergodic mean (the mean value until the current iterations), and other 

statistical diagnostics. Small values of Monte Carlo error indicate quantity of interest 

with precision. Moreover, convergence is ensured if all values are within a zone without 

strong periodicities. Additionally, an indication of the convergence of the algorithm is 

achieved if the ergodic mean stabilizes after some iterations. However, it is recommended 

that all diagnostics must be applied to ensure that convergence has been reached 

(Ntzoufras, 2009, p. 38, 41). 

Iteration. Iteration refers to a cycle of the algorithm that generates a full set of 

parameter values from the posterior distribution. For example, θ�b� and θ�3� , respectively, 

denote the values of random vector θ generated at the 7th and t th iterations of the 

algorithm. Additionally, total number of iterations Ｔ refers to the total number of the 

iterations of the MCMC algorithm (Ntzoufras, 2009). 

Initial values of the chain c�1�. The initial values refer to the starting values used 

to initialize the chain. These initial values may influence the posterior summaries if they 

are far away from the highest posterior probability areas. Solutions to mitigating or 
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avoiding the influence of the initial values include removing the first iterations of the 

algorithm or letting the algorithm run for a large number of iterations or obtain different 

samples with different starting points (Ntzoufras, 2009).  

Burnin period. In the burnin period the first Ｂ iterations are eliminated from the 

sample in order to avoid the influence of the initial values. If the generated sample is 

large enough, the effect of this period on the calculation of posterior summaries is 

minimal (Ntzoufras, 2009, p. 38). 

Thinning interval or sampling lag. As has already been mentioned, the final 

MCMC generated sample is not independent. For this reason, we need to monitor the 

autocorrelations of the generated values and select a sampling lag L> 1 after which the 

corresponding autocorrelation are low. Then, we can produce an independent sample by 

keeping the first generated values in every batch of L iterations. Hence, if we consider a 

lag (or thin interval) of three iterations, then we keep the first of every three iterations 

(i.e., we keep observations 1, 4, 7, etc.). This tactic is also followed to save storage space 

or computational speed in high-dimensional problems (Ntzoufras, 2009, p. 38). 

Iterations kept T’. These are the number of the iterations retained after discarding 

the initial burnin iterations (i.e., T’=T-B). If we also consider a sampling lag L>1, then 

the total number of iterations kept refers to the final independent sample used for 

posterior analysis (Ntzoufras, 2009, p. 38). 

Markov Chain Monte Carlo (MCMC) output. This refers to the MCMC generated 

sample. We often refer to the MCMC output as the sample after removing the initial 

iterations (produced during the burnin period) and considering the appropriate lag 

(Ntzoufras, 2009, p. 38). 
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Output analysis. This refers to analysis of the MCMC output sample. It includes 

both the monitoring procedure of the algorithm’s convergence and analysis of the sample 

used for the description of the posterior distribution and inference about the parameters of 

interest (Ntzoufras, 2009, p. 38). 

Markov Chain. The algorithm of MCMC is primarily based on the Markov chain. 

A Markov chain is a stochastic process {θ(1),θ(2),…,θ(T)} such that 

f(θ(t+1)|θ(t),…,θ(1)) = f(θ(t+1)| θ(t))               (3.1); 

From equation 3.1, we know that the distribution of θ at time t+1 given all the 

preceding θ values (from times t, t-1, …, 1) depends only on the value θ(t) of the previous 

step t. Moreover, f(θ(t+1)| θ(t)) is independent of time t and the initial values of the chain 

θ(0). In order to generate a sample from, f(θ|x), we must construct a Markov chain with 

two desired properties: (a) f(θ(t+1)| θ(t)) should be easy to generate from, and (b) the 

equilibrium distribution of the selected Markov chain must be the posterior distribution of 

interest f(θ| x) (Ntzoufras, 2009). The following steps are recommended to construct a 

Markov chain. 

1. Select an initial value θ(0). 
2. Generate T values until the equilibrium distribution is reached. 
3. Monitor the convergence of the algorithm using convergence diagnostics. 

We generate more observations if convergence diagnostics fail. 
4. Cut off the first B observations. 
5. Consider {θ(B+1),θ(B+2),…,θ(T)} as the sample for the posterior analysis. 
6. Plot the posterior distribution; specifically the univariate marginal 

distributions 
7. Finally, obtain summaries of the posterior distribution including mean, 

median, standard deviation, quantiles, and correlations etc. (Ntzoufras, 
2009, pp. 36-37)  
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Describing the Target Distribution 
Using MCMC Output 
 

The MCMC output provides us with a random sample of the type 

θ���,		θ���,…, 	θ�3�,…θ�Ｔd�. 
From this sample, for any function G�θ� of the parameters of interest	θ, Ntzoufras 

(2009, p. 39) suggested the following procedures to describe the target distribution using 

MCMC output. 

1. Obtain a sample of the desired parameter G	�θ� by simply considering 

G"θ���&, G"θ���&, …, G"θ�3�&, …, G(θ"Ｔd&-. 

2. Obtain any posterior summary of G(    θ) from the sample using traditional 

sample estimates. For example, we can estimate the posterior mean by 

                             Ｅe�Ｇ	�θ�|y� ＝ Ｇ�θ�ggggggg ＝ 
�

Ｔd ∑ ＧＴd3Y� "θ�3�&                       (3.2) 

and the posterior standard deviation by 

                 ＳＤh"Ｇ�θ|x�& ＝ 
�

Ｔd+�∑ iＧ"θ�3�& − Ｅe�Ｇ	�θ�|x�j�Ｔd3Y�                 (3.3) 

3. Calculate and monitor correlations between parameters. 

4. Produce plots of the marginal posterior distributions. 

Monte Carlo Error 

The Monte Carlo error (MC error), an important measure that must be reported 

and monitored in the analysis of the MCMC output, measures the variability of each 

estimate due to the simulation. Low MC error indicates the parameter of interest with 

increased precision. It is proportional to the inverse of the generated sample size that can 

be controlled by the user. Therefore, for a sufficient number of iterations T, the quantity 

of interest can be estimated with increased precision. Batch mean method and the 
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window estimator method are the two most common ways to estimate MC error 

(Ntzoufras, 2009, p. 39).  

In order to calculate the MC error using the batch means method, we simply 

partition the resulting output sample in K batches (usually K = 30 or K = 50). Both the 

number of batches K and the sample size of each batch ν＝Ｔk/K must be sufficiently 

large in order to enable us to estimate the variance consistently and also eliminate 

autocorrelations (Ntzoufras, 2009, p. 39).  

The following procedures deal with the calculation of the Monte Carlo error of 

the posterior mean of  Ｇ�θ� (Ntzoufras, 2009, p. 40). First, calculate each batch mean 

Ｇ�θ�lggggggggg by: 

Ｇ�θ�mggggggggg ＝ 
�n∑ G"θ�3�&ln3Y�l+��n��  

for each batch p ＝ 1, …, Ｋ, and the overall sample mean by 

Ｇ�θ�ggggggg  ＝ 
�

Ｔ
d ∑ Ｇ

Ｔ
d

3Y� "θ�3�& ＝ 
�
Ｋ

 ∑ Ｇ�θ�mgggggggggＫm＝�  , 

assuming that we keep θ���, …, θ"Ｔd& observations. Then an estimate of the MC error is 

simply given by the standard deviation of the batch means estimates Ｇ�θ�mggggggggg 
MCEiＧ�θ�j ＝ SEe rＧ�θ�gggggggs ＝ t �

Ｋ
SDe rＧ�θ�mgggggggggs 

＝ t �
Ｋ"Ｋ+�&∑ (Ｇ�θ�mggggggggg − Ｇ�θ�ggggggg-�Ｋm＝�                (3.4) 

The procedure for calculating the MC error for any other posterior quantity of 

interest Ｕe ＝ Ｕ(θ���, … , θ"Ｔd&- is equivalent. To estimate the corresponding Monte 
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Carlo error, we calculate Ｕme  ＝ Ｕ"θ"�m+��n��&, … , θ�mn�& from each batch p ＝ 1,…, Ｋ 

and then the MC error by 

MCE(Ｕe- ＝ v �
Ｋ"Ｋ+�&∑ (Ｕem − Ｕe-�Ｋm＝�               (3.5) 

The second method (window estimator) is based on the expression of the variance 

in auto correlated samples given by Ntzoufras (2009) 

MCEiＧ�θ�j ＝ 
wxe 	iＧ�y�j

tＴ
d t1 + 2∑ ρ{
iＧ�y�j2

ｋY�  , 

where ρ{
iＧ�y�j is the estimated autocorrelation of lag ｋ, that is, the correlation between 

parameters Ｇ"θ�3�& andＧ (θ"3�ｋ&-. Thus, it is obvious that for large k the 

autocorrelations will not be estimated reliably from the sample because of the small 

number of remaining observations. Moreover, in practice the autocorrelation will be close 

to zero for a sufficiently large ｋ. For this reason, we identify a window | after which 

autocorrelations are considerably low isay, ＜0.1	�Carlin	and	Louis, 2000�j and 

discard ρ{
 with k ＞ | from the preceding MC error estimate. Hence, this window based 

modified MC error estimate is given by 

MCEiＧ�θ�j ＝ 
wxe 	iＧ�y�j

tＴ
d t1 + 2∑ ρ{
iＧ�y�j|

ｋY�                (3.6) 

Popular MCMC Algorithm 

f�θ�The following section briefly introduces the concept of the two most popular 

MCMC methods: the Metropolis-Hastings algorithm and the Gibbs sampling. Since we 

have just one parameter, H, to estimate, we will not focus on the Gibbs sampling. 
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θ�1�θ�3�The Metropolis-Hastings algorithm. Assume a target distribution           

from which we wish to generate a sample of size T. The Metropolis-Hastings algorithm 

can be described by the following iterative steps (Ntzoufras, 2009, p. 43); where         is 

the vector of generated values in t iteration of the algorithm: 

1. Set initial values θ�1�. 
2. For t＝ 1,…, T repeat the following steps 

    a. Set θ ＝ θ�ｔ+�� 
    b. Generate new candidate values θk from a proposal distribution q 

(θ → θk	) 
   ＝ q �θk|θ�). 
   c. Calculate  

α＝min (1, �"yd&�"y�yd&��y���yd|y� - . 

    d. Update θ�ｔ�＝ θk with probability α and θ�ｔ� ＝ θ ＝ θ�ｔ+��  
     with probability 1-α 

The Metropolis-Hastings algorithm will converge to its equilibrium distribution 

regardless of whatever proposal distribution q is selected. Nevertheless, in practice, the 

choice of the proposal is important since poor choices will considerably delay 

convergence towards the equilibrium distribution. 

The algorithm outlined above can be directly implemented in Bayesian 

framework by substituting the target distribution f�θ� by the posterior distribution f�θ|x�. 
Thus, in Bayesian inference, the algorithm is summarized as follows: 
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1. Set initial values  θ�1�f�θ�. 
2. For t ＝ 1,…, T repeat the following steps 

a. Set θ＝θ�3+�� 
b. Generate new candidate parameter values θk from a proposal 

distribution q �θk|θ� 
c. Calculate 

α＝min (1, �"yd�U&�"y�yd&��y|U���yd|y� -               (3.7) 

d. Update θ�3� ＝ θk with probability α; otherwise set θ�3�＝θ. 

Model Descriptions 

The likelihood function for fractional Brownian motion, the distribution of Beta 

prior, and the posterior distribution are as follows. 

The likelihood function for fractional Brownian motion for the discrete case is as 

follows (Lundahl et al., 1986, p. 155): 

���|H� � �
����L<|�|;< exp	@− �� ���+��A   (3.8) 

where H is the Hurst parameter, x=(	��, ��,…, ��) follows a standard fBm and 

Rij=1/2(i2h+j2h-|i-j|2h). 

The Beta prior distribution for H is as follows: 

P�h� � �������������� h�+��1 − h��+�                 (3.9) 
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The full probability model is derived from the product of (3-5) and (3-6): 

g��; h� � �
����L<|�|;< exp	@− �� ���+��A ∙ �������������� h�+��1 − h��+�       (3.10) 

Then we get the posterior distribution k�h|	��, ��, … , ���	for Q1 as follows: 

k�h|	��, ��, … , ��� � D��;��P���               (3-8) 

k�h|x�…xQ� � D�U;��P�U� �
;

�<��L<|�|;<�U�	@+
;<���^;�A	 ���J������������^;��+���^;

8 ;
�<��L<|�|;<�U�	@+

;<���^;�A ���J������������^;��+���^; �;¡ 		         (3.11) 

For the continuous case, however, the probability measures generated by two 

different Hurst dimension processes are singular with respect to each other (Praskasa 

Rao, 2008), so it follows that there is no likelihood function for the continuous case. The 

theorem proposed by Praskasa Rao (2008, p. 23) is as follows. 

Theorem: Let {WHi (t), t ≥ 0}, i = 1, 2, be two standard fBms with Hurst indices 

H1≠H2. Let Pi be the probability measure generated by the process {WHi (t, t ≥ 0} for i = 1, 

2. Then the probability measures P1 and P2 are singular with respect to each other. 

Before moving on to the proof of theorem regarding singularity of fBms for 

different Hurst indices, the theorem proposed by Kurchenko (2003) needs to be addressed 

to facilitate the proof of theorem regarding singularity of fBms for different Hurst 

indices. Let {WH (t), t ≥ 0} be standard fBm with Hurst index H € (0, 1). Then, with 

probability one, limQ→2 �Q∑ [W*�m� − 2W* (m + ��- +W*�m + 1�]�Q+�PY1 = V�(0, H) for 

any standard fBm with Hurst index H ∈ (0, 1). 

Proof: Using the theorem proposed by Kurchenko (2003),  

limQ→2 �Q∑ [W*\�m� − 2W*\ (m + ��- +W*\�m + 1�]�Q+�PY1 = V�(0, Hi), i=1, 2. 
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Since V2(0,H1) ≠ V2(0,H2) if H1 ≠ H2, and since the convergence stated above is 

convergence under the corresponding probability measures, it follows that the measures 

P1 and P2 are singular with respect to each other. Due to the theorem of singularity of 

fBms for different Hurst indices proposed by Praskasa Rao (2008), the continuous case 

was not included in this study. 

Data Analysis 

In this research, both estimation of the Hurst dimension using simulations and real 

data will be implemented. Descriptions of both parts are presented as follows. 

Estimation of the Hurst Dimension 
Using Simulations 
 

In this research, estimation of the Hurst dimension using simulations was 

implemented. The details with respect to computations were described. In order to answer 

the Research Question 1, we obtained the posterior distribution up to a normalizing 

constant and then using MCMC method we obtained the Bayesian estimate (posterior 

mean). Since there is no likelihood function for the continuous case, therefore, it is not 

possible to obtain the Hurst estimate for Research Question 2 in this research. For 

Research Question 3, different beta priors were utilized to investigate how sensitive the 

Hurst estimates would be. As for setting parameters of the Beta prior, the scenarios 

considered in this research were presented in Table 1. Furthermore, the Hurst dimension 

in the simulation program will include 0.1 up to 0.9 by the increment of 0.1. 
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Table 1 
 
Parameters of Beta Distribution α and β in the Current Study 

Scenario α β Scenario α β Scenario α β 

  1 0.1 0.1 11 1 0.1 21 3 0.1 

  2 0.1 0.5 12 1 0.5 22 3 0.5 

  3 0.1 1 13 1 1 22 3 1 

  4 0.1 2 14 1 2 24 3 2 

  5 0.1 3 15 1 3 25 3 3 

  6 0.5 0.1 16 2 0.1    

  7 0.5 0.5 17 2 0.5    

  8 0.5 1 18 2 1    

  9 0.5 2 19 2 2    

10 0.5 3 20 2 3    

 
 

Since the Metropolis-Hastings algorithm of MCMC was used for computation in 

this study, formula (3.7) was utilized. It is assumed that the proposal distribution is the 

Beta distribution. Applying formula (3.7) in this research,  

¥f�hk|x�q�h|hk�f�h|x�q�hk|h� §

�

1
�2π�Q�|�|�� exp	@−

12 ���+��A	 Γ�α + β�Γ�α�Γ�β� �h′��+��1 − h′��+�
8 1

�2π�Q�|�|�� exp	@−
12 ���+��A Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�dh�1

1
�2π�Q�|�|�� exp	@−

12 ���+��A	 Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�
8 1

�2π�Q�|�|�� exp	@−
12 ���+��A Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�dh�1

．

Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�
Γ�α + β�Γ�α�Γ�β� �h′��+��1 − h′��+� 

Where Rij=1/2(i2h+j2h-|i-j|2h). 
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Therefore, the formula was used for computation in the simulation for this 

research. Metropolis-Hasting algorithm was used for computation with a starting value of 

0.1. The number of iterations was set to be 10,000. Monte Carlo Error was used to 

examine the convergence. 

Estimation of the Hurst Dimension  
Using Real Data 
 

The data used in this research include the daily Taiwan Stock Index in the year of 

2011. The dataset comprises of 247 data points. It is reasonable to use this dataset since 

only the discrete case will be considered in this research. For the estimation of the Hurst 

dimension using real data, it is necessary to estimate the mean and the variance. 

According to Lundahl et al. (1986), the variance is estimated by 2«̂  � U�­^;UQ . Besides, the 

mean is estimated by �Ê 3d­^;®3d­^;3 (Hu, Nualart, Xiao, & Zhang, 2011). Metropolis-Hasting 

algorithm was used for computation with a starting value of 0.1. The number of iterations 

was set to be 10,000. Monte Carlo Error was used to examine the convergence.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

The purpose of this study was to estimate the Hurst dimension of a fBm using the 

Bayesian approach with Beta distribution as a prior. Additionally, this study was to 

examine how the choice of parameters of a Beta prior would affect the estimation. In 

order to achieve the goals, the following research questions were studied: 

Q1 Can we find a Bayesian estimate for the Hurst dimension of a fBm with a 
Beta prior when the process is observed at discrete times? 

 
Q2 Can we find a Bayesian estimate for the Hurst dimension of a fBm with a 

Beta prior when the process is observed at continuous times? 
 

Q3 Will the Bayesian estimate for the Hurst dimension of a fBm vary when 
the parameters of the Beta prior change? 

 
Q4 Can we develop a R code for questions 1 through 3? 
 
To answer these research questions, this chapter is organized in the following 

manners. First, a Bayesian estimate for the Hurst dimension of a fBm with a Beta prior 

when the process is observed at discrete times is discussed. Second, the difficulty in 

finding a Bayesian estimate for the Hurst dimension of a fBm with a Beta prior when the 

process is observed at continuous times is suggested. Third, the Bayesian analysis with 

different parameters of Beta priors is illustrated. Finally, the R codes for Research 

Questions 1 and 3 are presented.  

The likelihood function for fractional Brownian motion for the discrete case is as 

follows (Lundahl et al., 1986, p.155):



 

 

40

���|H� � 1
�2π�Q�|�|�� exp	@−

12 ���+��A 
where H is the Hurst parameter, x=(	��, ��,…, ��) and Rij=1/2(i2h+j2h-|i-j|2h). 

The distribution of Beta prior: 

P�h� � Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+� 
The full probability model is derived from the product of (3-5) and (3-6): 

g��; h� � �
����L<|�|;< exp	@− �� ���+��A ∙ �������������� h�+��1 − h��+� 

Therefore, the posterior distribution k�h|	��, ��, … , ���	for research question 1 is shown 

as follows: 

k�h|	��, ��, … , ��� � g��; h�m���  

k�h|x�…xQ� � D�U;��P�U� �
;

�<��L<|�|;<�U�	@+
;<���^;�A	 ���J������������^;��+���^;

8 ;
�<��L<|�|;<�U�	@+

;<���^;�A ���J������������^;��+���^; �;¡ 		. 
Using Metropolis-Hastings algorithm of MCMC as well as the assumed proposal 

distribution of Beta distribution, the following equation was used for estimating the Hurst 

dimension of a fBm in this study. 

¥f�hk|x�q�h|hk�f�h|x�q�hk|h� §

�

1
�2π�Q�|�|�� exp	@−

12 ���+��A	 Γ�α + β�Γ�α�Γ�β� �h′��+��1 − h′��+�
8 1

�2π�Q�|�|�� exp	@−
12 ���+��A Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�dh�1

1
�2π�Q�|�|�� exp	@−

12 ���+��A	 Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�
8 1

�2π�Q�|�|�� exp	@−
12 ���+��A Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�dh�1

．

Γ�α + β�Γ�α�Γ�β� h�+��1 − h��+�
Γ�α + β�Γ�α�Γ�β� �h′��+��1 − h′��+� 
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For the continuous case, however, the probability measures generated by two 

different Hurst dimension processes are singular with respect to each other (Praskasa 

Rao, 2008), so it follows that there is no likelihood function for the continuous case. 

Using the theorem proposed by Kurchenko (2003),  

limQ→2 �Q∑ [W*\�m� − 2W*\ (m + ��- +W*\�m + 1�]�Q+�PY1 = V�(0, Hi), i=1, 2. 

Since V2(0,H1) ≠ V2(0,H2) if H1 ≠ H2, and since the convergence stated above is 

convergence under the corresponding probability measures, it follows that the measures 

P1 and P2 are singular with respect to each other. As a result, the continuous case was not 

discussed in this study. 

Simulation results are presented in the appendix (see Appendix A). Overall, the 

estimated H appears to be greater than the real H. Take Table 2 example, the real H is 0.1 

while the estimated H appears to be greater than 0.1. Let us take Table 3 with real H of 

0.5 and Table 4 with real H of 0.9 for instance, overestimation is observed though the 

overestimation is less severe as real H goes up. Due to the ease of readability, please see 

the rest of the scenarios in Appendix A. 
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Table 2 
 
Simulation Results: True H=0.1 

 
Real H 

 
Alpha 

 
Beta 

Estimated 
H 

Monte Carlo 
Error 

0.1 0.1 0.1 0.834 0.0038 

0.1 0.1 0.5 0.536 0.0069 

0.1 0.1 1 0.403 0.0074 

0.1 0.1 2 0.218 0.0052 

0.1 0.1 3 0.248 0.0055 

0.1 0.5 0.1 0.879 0.0024 

0.1 0.5 0.5 0.622 0.0031 

0.1 0.5 1 0.470 0.0033 

0.1 0.5 2 0.333 0.0029 

0.1 0.5 3 0.272 0.0024 

0.1 1 0.1 0.918 0.0018 

0.1 1 0.5 0.700 0.0027 

0.1 1 1 0.546 0.0029 

0.1 1 2 0.399 0.0023 

0.1 1 3 0.321 0.0021 

0.1 2 0.1 0.954 0.0011 

0.1 2 0.5 0.800 0.0021 

0.1 2 1 0.670 0.0023 

0.1 2 2 0.511 0.0021 

0.1 2 3 0.417 0.0020 

0.1 3 0.1 0.966 0.0008 

0.1 3 0.5 0.856 0.0017 

0.1 3 1 0.751 0.0018 

0.1 3 2 0.600 0.0020 

0.1 3 3 0.504 0.0016 
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Table 3 
 
Simulation Results: True H=0.5 

 
Real H 

 
Alpha 

 
Beta 

Estimated 
H 

Monte Carlo 
Error 

0.5 0.1 0.1 0.938 0.0015 

0.5 0.1 0.5 0.786 0.0059 

0.5 0.1 1 0.716 0.0077 

0.5 0.1 2 0.638 0.0085 

0.5 0.1 3 0.575 0.0088 

0.5 0.5 0.1 0.944 0.0012 

0.5 0.5 0.5 0.810 0.0025 

0.5 0.5 1 0.720 0.0030 

0.5 0.5 2 0.640 0.0045 

0.5 0.5 3 0.600 0.0057 

0.5 1 0.1 0.950 0.0010 

0.5 1 0.5 0.830 0.0020 

0.5 1 1 0.743 0.0027 

0.5 1 2 0.651 0.0030 

0.5 1 3 0.610 0.0040 

0.5 2 0.1 0.964 0.0009 

0.5 2 0.5 0.857 0.0016 

0.5 2 1 0.769 0.0017 

0.5 2 2 0.677 0.0021 

0.5 2 3 0.630 0.0025 

0.5 3 0.1 0.972 0.0006 

0.5 3 0.5 0.880 0.0014 

0.5 3 1 0.800 0.0015 

0.5 3 2 0.699 0.0016 

0.5 3 3 0.646 0.0019 
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Table 4 
 
Simulation Results: True H=0.9 

 
Real H 

 
Alpha 

 
Beta 

Estimated 
H 

Monte Carlo 
Error 

0.9 0.1 0.1 0.800 0.0044 

0.9 0.1 0.5 0.938 0.0027 

0.9 0.1 1 0.909 0.0061 

0.9 0.1 2 0.855 0.0130 

0.9 0.1 3 0.822 0.0151 

0.9 0.5 0.1 0.984 0.0004 

0.9 0.5 0.5 0.943 0.0012 

0.9 0.5 1 0.909 0.0033 

0.9 0.5 2 0.858 0.0091 

0.9 0.5 3 0.762 0.0202 

0.9 1 0.1 0.985 0.0004 

0.9 1 0.5 0.943 0.0010 

0.9 1 1 0.913 0.0021 

0.9 1 2 0.851 0.0118 

0.9 1 3 0.816 0.0115 

0.9 2 0.1 0.986 0.0003 

0.9 2 0.5 0.947 0.0080 

0.9 2 1 0.913 0.0013 

0.9 2 2 0.876 0.0032 

0.9 2 3 0.836 0.0083 

0.9 3 0.1 0.980 0.0030 

0.9 3 0.5 0.951 0.0007 

0.9 3 1 0.919 0.0014 

0.9 3 2 0.880 0.0033 

0.9 3 3 0.830 0.0070 
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In addition, the estimated H decreases as Beta parameters go up given an Alpha 

value (see Appendix B). Take Figure 5 for example, given the true Hurst dimension of 

0.1 and the assumed alpha parameter of the Beta prior distribution of 0.1, the estimated 

values of the Hurst dimension were 0.834, 0.536, 0.403, 0.218, and 0.248 when the 

values of beta parameter were assumed to be 0.1, 0.5,1, 2, and 3, respectively. This 

finding revealed that the estimated value of H decreases as Beta parameters increase 

given a fixed Alpha value. Similar patterns were found in Figure 6 through Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Changes in H Hat as β Increases Given True H=0.1, α = 0.1 
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Figure 6. Changes in H Hat as β Increases Given True H=0.2, α = 0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Changes in H Hat as β Increases Given True H=0.3, α = 0.1 
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Figure 8. Changes in H Hat as β Increases Given True H=0.4, α = 0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Changes in H Hat as β Increases Given True H=0.5, α = 0.1 
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Figure 10. Changes in H Hat as β Increases Given True H=0.6, α = 0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Changes in H Hat as β Increases Given True H=0.7, α = 0.1 
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Figure 12. Changes in H Hat as β Increases Given True H=0.8, α = 0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Changes in H Hat as β Increases Given True H=0.9, α = 0.1 
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In contrast, the estimated H increases as Alpha parameters go up given a Beta 

value (see Appendix B). Take Figure 14 for example, given the true Hurst dimension of 

0.1 and the assumed beta parameter of the Beta prior distribution of 0.1, the estimated 

values of the Hurst dimension were 0.834, 0.879, 0.918, 0.954, and 0.966 when the 

values of alpha parameter were assumed to be 0.1, 0.5,1, 2, and 3, respectively. This 

finding revealed that the estimated value of H increases when alpha parameters increase 

given a fixed beta value. Similar patterns were found in Figure 14 through Figure 22. 

Research Question 3 was answered since the estimation results vary as Alpha and Beta 

parameters change. All the Monte Carlo errors appear to be close to 0, implying that 

results are precise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Change in H hat as α Increases Given True H= 0.1, β=0.1 
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Figure 15. Change in H hat as α Increases Given True H=0.2, β=0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Change in H hat as α Increases Given True H=0.3, β=0.1 
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Figure 17. Change in H hat as α Increases Given True H=0.4, β=0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. Change in H hat as α Increases Given True H=0.5, β=0.1 
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Figure 19. Change in H hat as α Increases Given True H=0.6, β=0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Change in H hat as α Increases Given True H=0.7, β=0.1 
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Figure 21. Change in H hat as α Increases Given True H=0.8, β=0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Change in H hat as α Increases Given True H=0.9, β=0.1 
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This study also sought to estimate the Hurst index for the real-world dataset 

obtained from the daily Taiwan Stock Index in the year of 2011. For the real-data case, 

the estimations of the variance and the mean of the process were necessary, which 

requires computation of the Rij. In order to compute Rij, the value of less than 0.5 for the 

Hurst index was assumed due to its down trend (see Figure B73). Specifically, 0.3 of the 

Hurst index was assumed for this study. Additionally, the values of Alpha and Beta of the 

Beta prior distribution were assumed to be 0.1 and 3 respectively since the estimated 

Hurst index from the simulation appeared to be close to the true Hurst index. The results 

revealed that the estimated Hurst index was 0.21 with a Monte Carlo error of 0.0025.  

The R codes were successfully developed to implement the simulation in this 

study using a variety of packages such as “dvfBm,” “mnormt,” and “mcmcse.” The 

package of “dvfBm” referring to discrete variations of a fractional Brownian motion was 

developed by Coeurjolly (2009) to deal with the estimation of Hurst dimension of a 

fractional Brownian motion by using discrete variations methods in presence of outliers 

and/or an additive noise. In the package of “dvfBm,” simulation of a fractional Brownian 

motion by using the circulant matrix method known as “circFBM” was utilized to 

generate a discretized sample path of a fBm with Hurst parameter H in (0,1) by using the 

circulant matrix method. 

The package of ‘mnormt’ standing for the multivariate normal and t distributions 

was developed by Azzalini (2012) to provide functions for computing the density and the 

distribution function of multivariate normal and multivariate ‘‘t’’ variates, and for 

generating random vectors sampled from these distributions. In the package of ‘mnormt,’ 
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multivariate normal distribution known as “dmnorm” was used to generate observations 

from the multivariate normal (Gaussian) probability distribution.  

The package of ‘mcmcse’ representing Monte Carlo Standard Errors for MCMC 

was developed by Flegal and Hughes (2012) to provide tools for computing Monte Carlo 

standard errors (MCSE) in Markov chain Monte Carlo (MCMC) settings. In the package 

of ‘mcmcse,’ the function of “mcse” was utilized to compute Monte Carlo standard errors 

for expectations. The whole R code programming is listed in Appendix C and Appendix 

D. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The primary focus of this study was the estimation of the Hurst dimension of a 

fBm with a Beta prior when the process is observed at both discrete and continuous 

times. Furthermore, this study sought to investigate how sensitive the estimation would 

be to the choice of the parameters in the Beta distribution. Finally, developing the R 

codes for these research questions was another purpose. The conclusions of this study can 

be summarized as follows. The Bayesian estimate of Hurst dimension of a fBm with a 

Beta prior when the process is observed at discrete times was successfully developed. For 

the continuous case, however, the probability measures generated by two different Hurst 

dimension processes are singular with respect to each other (Praskasa Rao, 2008), so it 

follows that there is no likelihood function for the continuous case. It implies that we are 

unable to develop a Bayesian estimate of a fBm with a Beta prior when the process is 

observed at continuous times unless we find another dominating probability measure. As 

in Chapter IV, the estimated H appears to be greater than the real H. Overestimation is 

observed though the overestimation is less severe as real H increases. In addition, the 

estimated H decreases as Beta parameters increase given an Alpha value. In contrast, the 

estimated H increases as Alpha parameters increase given a Beta value. All the Monte 

Carlo errors appear to be close to 0, implying that results are precise. Moreover, the 

estimate of the Hurst index for the real-world dataset obtained from the daily Taiwan 



 

 

58

Stock Index in the year of 2011 appeared to be 0.21. Meanwhile, the R codes were 

successfully developed to implement the simulation in this study using a variety of 

packages such as “dvfBm,” “mnormt,” and “mcmcse.”  

Recommendations 

In this study, the researcher has assumed that the proposal distribution is Beta 

distribution. In such a case, the assumption of the Beta proposal distribution led to the 

following formula   

(�"�d�U&�"���d&���|U����d|�� - �
;

�<��L<|�|;<¯]°	@^
;<���^;�A	 ���J�����������±d��^;�;^±d��^;

8 ;
�<��L<|�|;<¯]°	@^

;<���^;�A ���J����������±�^;�;^±��^;²±;¡
;

�<��L<|�|;<¯]°	@^
;<���^;�A	 ���J����������±�^;�;^±��^;

8 ;
�<��L<|�|;<¯]°	@^

;<���^;�A ���J����������±�^;�;^±��^;²±;¡

．

���J������������^;��+���^;���J������������k��^;��+�k��^;. 

Future studies may consider a different type of proposal distribution. Moreover, 

the researcher utilized Beta distribution to be the prior distribution. Future studies may 

choose a different prior distribution such as uniform distribution to see if interesting 

estimation outcomes occur. One thing needs to be noted is that the estimation of the Hurst 

dimension tends to be over estimated. Future studies may consider different algorithm in 

computing the MCMC process. Overall, all the research questions have been successfully 

answered except for the continuous case. Future studies may consider overcoming such 

an issue. Finally, this study focused on the simulated data. Future studies may consider 

estimating the Hurst dimension using different types of real-world data. 
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APPENDIX A 

TABLES 
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Table 5 
 
Simulation Results: True H=0.2 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.2 0.1 0.1 0.874 0.0040 

0.2 0.1 0.5 0.635 0.0079 

0.2 0.1 1 0.504 0.0790 

0.2 0.1 2 0.407 0.0086 

0.2 0.1 3 0.363 0.0077 

0.2 0.5 0.1 0.898 0.0019 

0.2 0.5 0.5 0.678 0.0038 

0.2 0.5 1 0.543 0.0037 

0.2 0.5 2 0.428 0.0032 

0.2 0.5 3 0.371 0.0037 

0.2 1 0.1 0.927 0.0017 

0.2 1 0.5 0.733 0.0025 

0.2 1 1 0.598 0.0026 

0.2 1 2 0.455 0.0026 

0.2 1 3 0.399 0.0023 

0.2 2 0.1 0.952 0.0011 

0.2 2 0.5 0.811 0.0021 

0.2 2 1 0.686 0.0022 

0.2 2 2 0.539 0.0019 

0.2 2 3 0.455 0.0022 

0.2 3 0.1 0.968 0.0008 

0.2 3 0.5 0.859 0.0016 

0.2 3 1 0.756 0.0019 

0.2 3 2 0.610 0.0019 

0.2 3 3 0.520 0.0019 

  



 

 

66

Table 6 
 
Simulation Results: True H=0.3 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.3 0.1 0.1 0.904 0.0030 

0.3 0.1 0.5 0.697 0.0058 

0.3 0.1 1 0.580 0.0076 

0.3 0.1 2 0.481 0.0091 

0.3 0.1 3 0.448 0.0080 

0.3 0.5 0.1 0.922 0.0018 

0.3 0.5 0.5 0.728 0.0034 

0.3 0.5 1 0.611 0.0032 

0.3 0.5 2 0.502 0.0039 

0.3 0.5 3 0.459 0.0040 

0.3 1 0.1 0.936 0.0013 

0.3 1 0.5 0.767 0.0022 

0.3 1 1 0.646 0.0027 

0.3 1 2 0.529 0.0027 

0.3 1 3 0.468 0.0028 

0.3 2 0.1 0.957 0.0011 

0.3 2 0.5 0.824 0.0017 

0.3 2 1 0.711 0.0018 

0.3 2 2 0.584 0.0023 

0.3 2 3 0.507 0.0020 

0.3 3 0.1 0.968 0.0007 

0.3 3 0.5 0.861 0.0014 

0.3 3 1 0.765 0.0017 

0.3 3 2 0.637 0.0019 

0.3 3 3 0.550 0.0017 
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Table 7 
 
Simulation Results: True H=0.4 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.4 0.1 0.1 0.920 0.0029 

0.4 0.1 0.5 0.749 0.0067 

0.4 0.1 1 0.645 0.0076 

0.4 0.1 2 0.570 0.0083 

0.4 0.1 3 0.512 0.0090 

0.4 0.5 0.1 0.933 0.0014 

0.4 0.5 0.5 0.772 0.0026 

0.4 0.5 1 0.669 0.0037 

0.4 0.5 2 0.577 0.0041 

0.4 0.5 3 0.534 0.0040 

0.4 1 0.1 0.945 0.0014 

0.4 1 0.5 0.791 0.0024 

0.4 1 1 0.692 0.0026 

0.4 1 2 0.592 0.0028 

0.4 1 3 0.533 0.0031 

0.4 2 0.1 0.960 0.0009 

0.4 2 0.5 0.838 0.0015 

0.4 2 1 0.736 0.0020 

0.4 2 2 0.625 0.0018 

0.4 2 3 0.567 0.0020 

0.4 3 0.1 0.970 0.0008 

0.4 3 0.5 0.867 0.0014 

0.4 3 1 0.777 0.0015 

0.4 3 2 0.664 0.0018 

0.4 3 3 0.594 0.0018 
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Table 8 
 
Simulation Results: True H=0.6 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.6 0.1 0.1 0.950 0.0020 

0.6 0.1 0.5 0.831 0.0052 

0.6 0.1 1 0.767 0.0077 

0.6 0.1 2 0.694 0.0101 

0.6 0.1 3 0.668 0.0093 

0.6 0.5 0.1 0.955 0.0009 

0.6 0.5 0.5 0.847 0.0022 

0.6 0.5 1 0.769 0.0029 

0.6 0.5 2 0.702 0.0049 

0.6 0.5 3 0.665 0.0063 

0.6 1 0.1 0.961 0.0008 

0.6 1 0.5 0.857 0.0019 

0.6 1 1 0.784 0.0021 

0.6 1 2 0.712 0.0031 

0.6 1 3 0.680 0.0041 

0.6 2 0.1 0.969 0.0007 

0.6 2 0.5 0.876 0.0014 

0.6 2 1 0.804 0.0019 

0.6 2 2 0.729 0.0018 

0.6 2 3 0.683 0.0025 

0.6 3 0.1 0.974 0.0006 

0.6 3 0.5 0.893 0.0014 

0.6 3 1 0.821 0.0015 

0.6 3 2 0.741 0.0018 

0.6 3 3 0.695 0.0018 
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Table 9 
 
Simulation Results: True H=0.7 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.7 0.1 0.1 0.963 0.0013 

0.7 0.1 0.5 0.869 0.0045 

0.7 0.1 1 0.820 0.0060 

0.7 0.1 2 0.757 0.0080 

0.7 0.1 3 0.716 0.0168 

0.7 0.5 0.1 0.967 0.0007 

0.7 0.5 0.5 0.878 0.0020 

0.7 0.5 1 0.822 0.0035 

0.7 0.5 2 0.772 0.0052 

0.7 0.5 3 0.724 0.0047 

0.7 1 0.1 0.967 0.0008 

0.7 1 0.5 0.887 0.0015 

0.7 1 1 0.825 0.0024 

0.7 1 2 0.768 0.0032 

0.7 1 3 0.739 0.0056 

0.7 2 0.1 0.972 0.0006 

0.7 2 0.5 0.898 0.0009 

0.7 2 1 0.841 0.0017 

0.7 2 2 0.780 0.0021 

0.7 2 3 0.743 0.0027 

0.7 3 0.1 0.976 0.0006 

0.7 3 0.5 0.911 0.0010 

0.7 3 1 0.852 0.0012 

0.7 3 2 0.786 0.0016 

0.7 3 3 0.754 0.0021 
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Table 10 
 
Simulation Results: True H=0.8 

Real H Alpha Beta Estimated H Monte Carlo Error 

0.8 0.1 0.1 0.973 0.0010 

0.8 0.1 0.5 0.900 0.0032 

0.8 0.1 1 0.857 0.0061 

0.8 0.1 2 0.789 0.0119 

0.8 0.1 3 0.794 0.0095 

0.8 0.5 0.1 0.871 0.0027 

0.8 0.5 0.5 0.908 0.0019 

0.8 0.5 1 0.866 0.0031 

0.8 0.5 2 0.812 0.0056 

0.8 0.5 3 0.784 0.0103 

0.8 1 0.1 0.977 0.0005 

0.8 1 0.5 0.916 0.0013 

0.8 1 1 0.873 0.0018 

0.8 1 2 0.815 0.0036 

0.8 1 3 0.780 0.0084 

0.8 2 0.1 0.979 0.0004 

0.8 2 0.5 0.920 0.0010 

0.8 2 1 0.878 0.0014 

0.8 2 2 0.826 0.0028 

0.8 2 3 0.787 0.0041 

0.8 3 0.1 0.981 0.0004 

0.8 3 0.5 0.928 0.0010 

0.8 3 1 0.883 0.0012 

0.8 3 2 0.833 0.0018 

0.8 3 3 0.805 0.0028 
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APPENDIX B 

FIGURES 
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Figure 23. Changes in H Hat as β Increases Given True H=0.1, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure24. Changes in H Hat as β Increases Given True H=0.1, α = 1 
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Figure 25. Changes in H Hat as β Increases Given True H=0.1, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Changes in H Hat as β Increases Given True H=0.1, α = 3 
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Figure 27. Changes in H Hat as β Increases Given True H=0.2, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Changes in H Hat as β Increases Given True H=0.2, α = 1 
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Figure 29. Changes in H Hat as β Increases Given True H=0.2, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 30. Changes in H Hat as β Increases Given True H=0.2, α = 3 
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Figure 31. Changes in H Hat as β Increases Given True H=0.3, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Changes in H Hat as β Increases Given True H=0.3, α = 1 
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Figure 33. Changes in H Hat as β Increases Given True H=0.3, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34. Changes in H Hat as β Increases Given True H=0.3, α = 3 
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Figure 35. Changes in H Hat as β Increases Given True H=0.4, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36. Changes in H Hat as β Increases Given True H=0.4, α = 1 
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Figure 37. Changes in H Hat as β Increases Given True H=0.4, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Changes in H Hat as β Increases Given True H=0.4, α = 3 
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Figure 39. Changes in H Hat as β Increases Given True H=0.5, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40. Changes in H Hat as β Increases Given True H=0.5, α = 1 
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Figure 41. Changes in H Hat as β Increases Given True H=0.5, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42. Changes in H Hat as β Increases Given True H=0.5, α = 3 
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Figure 43. Changes in H Hat as β Increases Given True H=0.6, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 44. Changes in H Hat as β Increases Given True H=0.6, α = 1 
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Figure 45. Changes in H Hat as β Increases Given True H=0.6, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 46. Changes in H Hat as β Increases Given True H=0.6, α = 3 
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Figure 47. Changes in H Hat as β Increases Given True H=0.7, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 48. Changes in H Hat as β Increases Given True H=0.7, α = 1 
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Figure 49. Changes in H Hat as β Increases Given True H=0.7, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50. Changes in H Hat as β Increases Given True H=0.7, α = 3 
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Figure 51. Changes in H Hat as β Increases Given True H=0.8, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 52. Changes in H Hat as β Increases Given True H=0.8, α = 1 
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Figure 53. Changes in H Hat as β Increases Given True H=0.8, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 54. Changes in H Hat as β Increases Given True H=0.8, α = 3 
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Figure 55. Changes in H Hat as β Increases Given True H=0.9, α = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 56. Changes in H Hat as β Increases Given True H=0.9, α = 1. 
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Figure 57. Changes in H Hat as β Increases Given True H=0.9, α = 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 58. Changes in H Hat as β Increases Given True H=0.9, α = 3 
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Figure 59. Change in H hat as α Increases Given True H=0.1, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 60. Change in H hat as α Increases Given True H=0.1, β=1 
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Figure 61. Change in H hat as α Increases Given True H=0.1, β=2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 62. Change in H hat as α Increases Given True H=0.1, β=3. 
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Figure 63. Change in H hat as α Increases Given True H=0.2, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 64. Change in H hat as α Increases Given True H=0.2, β=1 
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Figure 65. Change in H hat as α Increases Given True H=0.2, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 66. Change in H hat as α Increases Given True H=0.2, β=3 
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Figure 67. Change in H hat as α Increases Given True H=0.3, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 68. Change in H hat as α Increases Given True H=0.3, β=1 
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Figure 69. Change in H hat as α Increases Given True H=0.3, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 70. Change in H hat as α Increases Given True H=0.3, β=3 
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Figure 71. Change in H hat as α Increases Given True H=0.4, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 72. Change in H hat as α Increases Given True H=0.4, β=1 
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Figure 73. Change in H hat as α Increases Given True H=0.4, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 74. Change in H hat as α Increases Given True H=0.4, β=3 
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Figure 75. Change in H hat as α Increases Given True H=0.5, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 76. Change in H hat as α Increases Given True H=0.5, β=1 
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Figure 77. Change in H hat as α Increases Given True H=0.5, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 78. Change in H hat as α Increases Given True H=0.5, β=3 
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Figure 79. Change in H hat as α Increases Given True H=0.6 β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 80. Change in H hat as α Increases Given True H=0.6, β=1 
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Figure 81. Change in H hat as α Increases Given True H=0.6, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 82. Change in H hat as α Increases Given True H=0.6, β=3 
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Figure 83. Change in H hat as α Increases Given True H=0.7, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 84. Change in H hat as α Increases Given True H=0.7, β=1 
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Figure 85. Change in H hat as α Increases Given True H=0.7, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 86. Change in H hat as α Increases Given True H=0.7, β=3 
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Figure 87. Change in H hat as α Increases Given True H=0.8, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 88. Change in H hat as α Increases Given True H=0.8, β=1 
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Figure 89. Change in H hat as α Increases Given True H=0.8, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 90. Change in H hat as α Increases Given True H=0.8, β=3 
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Figure 91. Change in H hat as α Increases Given True H=0.9, β=0.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 92. Change in H hat as α Increases Given True H=0.9, β=1 
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Figure 93. Change in H hat as α Increases Given True H=0.9, β=2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 94. Change in H hat as α Increases Given True H=0.9, β=3 
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Figure 95. The Scatter Plot of 2011 Daily Taiwan Stock Index. 
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APPENDIX C 

R CODE FOR SIMULATION 
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##### Simulation ##### 

library(mnormt) 

library(dvfBm) 

library(coda) 

library(mcmcse) 

            ############# Defining the Likelihood Function ################## 

R=function(n,h){ 

R=matrix(0,n-1,n-1) 

    for( i in 1:(n-1)){ 

    for( j in 1:(n-1)){ 

    R[i,j]=( i^(2*h)+j^(2*h)-abs(i-j)^(2*h))/(2*n^(2*h)) 

    } } 

return(R)} 

  L=function(x,h){ 

  n=length(x) 

  m=rep(0,n-1) 

  R=R(n,h) 

x=x[2:n] 
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sigma2=as.numeric(t(x)%*%solve(R)%*%x/n) 

  L=dmnorm(x/sqrt(sigma2),m ,R) 

L= ifelse(L==0, exp(-700), L) 

return(L)  } 

  ###########  Defining a Function for Metroplis-Hasting Algorithm   ############ 

 

  mh<-function(x, alpha, beta,h0, N)         

##### Metroplis-Hasting Algorithm with Proposal Distribution of Beta Distribution 

##### 

              {                    

                 vec<- vector("numeric", N) 

                 vec[1]<- h0 

                 for (i in 2:N) 

                 { 

                    can<- rbeta(1, alpha, beta) 

                    aprob<- min(1, L(x, can)/L(x, h)) 

                    u<- runif(1) 

                    vec[i]<- ifelse (u< aprob, can, vec[i-1])                       
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                 } 

                 vec 

               } 

##########  Setting Number of Alpha, Beta, H and nsim, n,   ########### 

h0=.1 

h1=.9 

nh=9 

nsim=10000 

n=100 

Alpha=c(.1,.5, 1, 2, 3) 

Beta<-Alpha 

for(i in 1:nh){ 

print(L(x,H[i])) } 

H=seq(h0,h1,length.out=nh) 

I=length(H) 

J=length(Alpha) 

K=length(Beta) 

record = matrix(0,I*J*K,5) 
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for(i in 1:I) 

{  

   for(j in 1:J) 

   { 

       for(k in 1:K) 

       { 

print(c(i,j,k)) 

 

          h = H[i]               ##### Setting Hurst Dimesion #### 

          alpha=Alpha[j] 

          beta=Beta[k]                                                 

        x = circFBM(n, h,plotfBm = FALSE)    

                                                                              

          vec<-mh (x, alpha , beta, h0, nsim)       

##### Computing Hurst dimension using different alpha, beta, and number of iterations 

##### 

          mean.hurst= mean(vec)  
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          hhh<-mcmc(data=vec, start=1, end=nsim, thin=1) 

          remc = mcse(hhh, size="sqroot", g=NULL, method="bm", warn=FALSE)      

##### Computing Monte Carlo Error ##### 

          record[J*K*(i-1)+J*(j-1)+k,1] = H[i] 

          record[J*K*(i-1)+J*(j-1)+k,2] = alpha  

          record[J*K*(i-1)+J*(j-1)+k,3] = beta  

          record[J*K*(i-1)+J*(j-1)+k,4] = mean.hurst 

          record[J*K*(i-1)+J*(j-1)+k,5] = remc$se 

      } 

   } 

 } 

write.table(record,"temp.csv",append = TRUE,sep =" , ",row.name =FALSE,col.name 

=FALSE) 
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APPENDIX D 

R CODE FOR REAL DATA 
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##### For Real Data ##### 

library(mnormt) 

library(dvfBm) 

library(coda) 

library(mcmcse) 

n=247 

N=10000 

h0=0.1 

h=0.3 

 x <-c(9039.63, 9045.11, 9014.32, 8866.23, 8905.25, 8798.05, 8810.77, 8992.01, 
9034.17, 8985.34, 8998.89, 8889.84, 9023.30, 9059.80, 8935.29, 8983.59, 9001.74, 
9010.41, 9093.54, 9122.16, 9220.69, 9107.96, 8962.07, 8842.41, 8666.61, 8679.12, 
8740.32, 8738.71, 8763.69, 8867.16, 8744.81, 8604.32, 8561.16, 8597.87, 8611.79, 
8675.37, 8661.63, 8815.52, 8769.87, 8692.10, 8810.35, 8754.41, 8566.91, 8616.29, 
8493.83, 8317.38, 8190.50, 8343.79, 8421.66, 8523.27, 8529.93, 8589.71, 8645.37, 
8587.99, 8538.44, 8605.83, 8683.69, 8697.84, 8772.13, 8884.84, 8904.44, 8922.75, 
8839.22, 8727.95, 8787.75, 8828.63, 8752.56, 8643.40, 8704.48, 8893.07, 8980.43, 
9015.91, 8894.01, 9012.28, 9088.97, 9050.49, 9014.33, 8937.30, 8930.24, 8997.73, 
9001.80, 9048.25, 9073.88, 8977.77, 9039.55, 8996.70, 8917.25, 8885.40, 8952.25, 
8944.38, 8767.30, 8730.23, 8732.30, 8797.29, 8806.29, 8757.66, 8860.58, 8999.84, 
8981.71, 9024.54, 9025.21, 9044.85, 9020.60, 9042.35, 8791.67, 8737.24, 8833.86, 
8739.84, 8671.45, 8679.15, 8571.93, 8663.86, 8601.15, 8567.46, 8456.36, 8536.13, 
8540.35, 8582.08, 8684.39, 8801.51, 8777.22, 8790.94, 8795.00, 8782.72, 8749.55, 
8581.43, 8480.26, 8495.51, 8494.70, 8550.16, 8528.20, 8612.53, 8705.84, 8770.95, 
8764.68, 8700.59, 8775.18, 8739.83, 8737.72, 8629.97, 8629.09, 8466.35, 8472.37, 
7962.87, 7769.60, 7261.54, 7717.58, 7566.39, 7825.80, 7769.17, 7886.93, 7807.67, 
7721.19, 7414.36, 7348.71, 7369.43, 7592.51, 7559.47, 7438.52, 7482.92, 7654.37, 
7665.22, 7799.18, 7801.28, 7637.90, 7496.24, 7468.29, 7601.29, 7568.22, 7530.00, 
7455.50, 7374.58, 7494.29, 7572.83, 7485.60, 7515.66, 7419.49, 7101.34, 7026.49, 
7031.13, 7148.38, 7090.12, 7222.16, 7128.66, 6937.24, 7061.17, 7094.61, 7210.92, 
7348.86, 7390.06, 7423.18, 7430.50, 7412.88, 7352.12, 7393.73, 7347.93, 7272.51, 
7352.43, 7506.08, 7437.77, 7548.36, 7693.24, 7637.48, 7547.24, 7500.54, 7603.45, 
7581.61, 7623.16, 7652.47, 7646.12, 7431.26, 7369.73, 7472.16, 7515.50, 7520.95, 
7333.57, 7296.09, 7166.26, 7064.61, 6967.66, 6748.92, 6906.34, 6844.30, 6966.58, 
7001.59, 7132.41, 7164.00, 7149.58, 7075.84, 7004.18, 7018.64, 6891.47, 6975.62, 
6883.08, 6912.54, 6874.18, 6783.02, 6780.64, 6654.67, 6878.63, 6968.22, 7035.10, 
7125.04, 7085.50, 7086.10, 7026.86, 7109.85) 
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time=numeric(n) 

 

  for( i in 1:n){ 

  { 

  time[i]=i 

  } } 

  time 

   

            ############# defining the likelihood function ################## 

 

R=function(n,h){ 

R=matrix(0,n-1,n-1) 

   

  for( i in 1:(n-1)){ 

    for( j in 1:(n-1)){ 

   

  R[i,j]=( i^(2*h)+j^(2*h)-abs(i-j)^(2*h))/(2*n^(2*h)) 

   

  } } 

 

return(R)} 

 

  L=function(x,h){ 
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  n=length(x) 

  R=R(n,h) 

x=x[2:n] 

time=time[2:n] 

R1=R+diag(0.1, n-1) 

 

sigma2=as.numeric(t(x)%*%solve(R1)%*%x/n) 

est.mean=as.numeric((t(time)%*%solve(R1)%*%x)/(t(time)%*%solve(R1)%*%time)) 

m=rep(est.mean,n-1) 

   

 

L=dmnorm(x/sqrt(sigma2),m ,R1) 

 

   

L= ifelse(L==0, exp(-700), L) 

return(L)  } 

 

###############  defining a function for Metroplis-Hasting algorithm   ############ 

##### Metroplis-Hasting algorithm with proposal distribution of beta distribution ##### 

 

  mh<-function(x, alpha, beta, N)         

              {     
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                 vec<- vector("numeric", N) 

                 vec[1]<- h0 

                 for (i in 2:N) 

                 { 

                    can<- rbeta(1, alpha, beta) 

                    aprob<- min(1, L(x, can)/L(x, h)) 

                    u<- runif(1) 

                    vec[i]<- ifelse (u< aprob, can, vec[i-1]) 

                       

                 } 

                 vec 

               } 

  vec<-mh (x, 0.1, 3, 10000)                                        

##### Computing Hurst dimension using different alpha, beta, and number of iterations 

##### 

  mean.hurst=mean(vec) 

   

  library(coda)                

  hhh<-mcmc(data=vec, start=1, end=10000, thin=1) 

      

  summary(hhh)        ##### Give summary statistics ##### 

 mcse(hhh, size="sqroot", g=NULL, method="bm", warn=FALSE)       

##### Computing Monte Carlo Error ##### 
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