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ABSTRACT
Chen, Chen-YuelThe Bayesian Estimation of the Fractal Dimensiaebnof Fractional

Brownian Motion.Published Doctor of Philosophy dissertation, Ursitgrof
Northern Colorado, 2013.

The primary purpose dhis study was to find Bayesian estimates for the Hurst
dimension of a fBm with a Beta prior when the pgxis observed at both discrete and
continuous times. Additionally, this study soughtkamine how sensitive is the Bayesian
analysis with Beta prior to the choice of paranset#rBeta prior. Finally, this study
attempted to develop R codes for the researchiqasst

Using Metropolis-Hastings algorithm of MCMC as wadl the assumed proposal
distribution of Beta distribution, thgayesian estimate for the Hurst dimension of a fBm
with a Beta prior when the process is observedsatete times was obtaindeor the
continuous case, however, the probability measyeasrated by two different Hurst
dimension processes are singular with respectdio ether, so it follows that there is no
likelihood function for the continuous case.

Overall, the estimated H appears to be greaterttieareal H. Overestimation is
observed though the overestimation is less seweread H goes up. In addition, the
estimated H decreases as Beta parameters go upagiwklpha value. In contrast, the
estimated H increases as Alpha parameters go ep giBeta value. For the real-world
data, the 2011 daily Taiwan Stock Index was useltlam estimated Hurst index was
0.21. Finally, the R codes were successfully dgyadao implement the simulation in

this study using a variety of packages such asBant “mnormt,” and “mcmcse.”
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CHAPTERI
INTRODUCTION

Dimension is not an easy concept to understanithelearly 1900'’s, it was one of
the major problems in mathematics to determinpritperties and meanings, resulting in
various forms of dimensions (Peitgen, Jurgens, 8p8a1992). Among the various
dimensions, fractal dimension has been widely dseckal-world problems. In
geography, fractal dimension is used to facilitageestimation of the length of coast of
Britain; in physiology and biology, fractal dimeaniis utilized to discuss the metabolic
rates of various animals (e.g., rats, dogs, angd®)rand relates them to their respective
body masses; in financial engineering, fractal disien is employed to estimate the S&P
index; in image analysis, fractal dimension is exphll to quantify texture. The following
will briefly describe some of the applications cddtal dimension in the real-world
contexts.

One of the salient examples regarding fractal dsimnis to measure the length
of the coast of Britain in which the question afdgh is ill-posed. This causes ordinary
measurements to become meaningless due to its epmypFractal dimension is one
way to measure the degree of complexity by evalgdiow fast length increases if we
measure with respect to smaller and smaller sBabe-counting dimension (one form of
fractal dimension) reveals that the fractal dimengor measuring the length of the coast

of Britain is 1.31 (Peitgen et al., 1992).



Fractal dimension has been widely used in finaremgiineering as well. Much of
financial theory relies on the assumption that reexladjust prices rapidly to exclude
arbitrage opportunities, i.e., buying an assetlatneprice then immediately selling it for
a higher price. However, it is well-known that misdeased on fractional Brownian
motion (fBm) allow arbitrage opportunities (Chetaji2003; Rogers, 1997).
Nevertheless, realization of arbitrage based ankimd of model can be hindered by
transaction costs and the minimal amount of tintevben two consecutive transactions.
Even though practical arbitrage application offBm in the financial market seems
plausible, its possible applications in financiahtext have been proposed.

In fractal geometry, the fractal dimension, D, iguantity that gives an indication
of how completely a fractal appears to fill spaagpne zooms down to finer and finer
scales (“Fractal Dimension”, 2010). The followingeples can help elaborate the idea
of fractal dimension. Let us consider the Koch eute begin with a straight line of
length 1, called the initiator. We then removettddle third of the line, and replace it
with two lines that each have the same length @$3he remaining lines on each side.
This new form is called the generator, becausgdtifies a rule that is used to generate a
new form (“Fractals and the Fractal Dimension”, @01terations of such rules
constructs the so-called Koch curve (see Figungith) fractal dimension D =
log(N)/log(r) = log(4)/log(3) = 1.26. Another exataps the Sierpinski triangle. One
starts with an equilateral triangle, then connleetrhid-points of the three sides and
remove the resulting inner triangle. Such iteraioanstruct the Sierpinski triangle (see
Figure 1) with fractal dimension D = log(N)/logé&)log(3)/log(2) = 1.585 (“Fractal

Dimension”, 2010).
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Figure 1Koch Curve. Source: http://www.vanderbilt.edu/ApsS/chology/cogsci/
chaos/workshop/Fractals.html
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Figure 2 Sierpinski Triangle. Source: http://en.wikipedm@/wiki/Fractal_dimension

The primary task of Bayesian inference is to dgvéhe model #, x) and perform
the necessary computations to summarize the pastisiribution pf|x) in appropriate
ways. To begin with, we must start with a modeMatng a joint probability distribution
for 6 and y. The joint probability density function dag@ written as a product of two
densities that are referred to as the prior distitim p@) and the sampling distribution

p(xp) respectively: {{,x)=p©O)p(x|p). The posterior density:

p,x) _ p(6)p(x|6)
p(x) p(x)

p(6lx) =



where p(x)=§ p(&)p(x|6)d & . Since p(x) does not depend @it yields the

unnormalized posterior density:fX) is proportional to @)p(xp) (Gelman, Carlin,

Stern, & Rubin, 2004). The primary difference betwelassical statistical theory and the
Bayesian approach is that the latter consider éinarpeters as random variables that are
characterized by a prior distribution (NtzoufraB809).

Although fractal dimension is not easy to undemtand estimate, various domains
have benefited from studying fractal dimension. Ag@revious studies regarding
fractal dimension, most of them are highly theaadtiTherefore, the current study
attempts to estimate fractal dimension from aniagpgderspective.

Purpose of the Study

The primary purpose of this study is to find Bagesestimates for the Hurst
dimension (the parameter to be estimated) of difnaal Brownian motion (fBm) with a
Beta distribution as a prior distribution when tirecess is observed at both continuous
and discrete times. Since there are two paraméthkaisa and beta) associated with the
Beta distribution, this study will investigate timepact of the parameters on the Hurst
dimension estimation. Furthermore, the study attergpdevelop a R code for computing
Bayesian estimates for the Hurst dimension of a fdth a Beta prior when the process
is observed at both continuous and discrete times.

Resear ch Questions

Q1 Can we find a Bayesian estimate for the Hursedision of a fBm with a
Beta prior when the process is observed at distirats?

Q2 Can we find a Bayesian estimate for the Hursiedision of a fBm with a
Beta prior when the process is observed at contisitimes?



Q3 Will the Bayesian estimate for the Hurst dimensof a fBm vary when
the parameters of the Beta prior change?

Q4  Can we develop a R code for questions 1 thr@2gh
Rationale for the Study

The fBm has become widely popular in a theoretoaltext as well as in a
practical context for modeling self-similar procegsce the pioneering work of
Mandelbrot and Van Ness in 1968 (Achard & Coewjd010). A number of previous
studies have been dedicated to the estimatioraofdr dimension using various
approaches such as the maximum likelihood methahgl, 2003; Breton, 1998;
Dahlhaus, 1989; Es-Sebaiy, Ouassou, & Ouknine, ;20@&dahl, Ohley, Kay, & Siffert,
1986; Praskasa Rao, 2004), wavelet analysis (Btrakoor, & Sicar, 2004), and
discrete variations (Achard & Coeurjolly, 2010)t#dugh much work has been done to
the estimation of the Hurst dimension of the fBimjted studies of this kind focus on the
Bayesian estimation. Therefore, the current stadg estimate the Hurst dimension from
a perspective of the Bayesian framework.

Rossi, Allenby, and McCulloch (2006) argued thatr¢hare really no other
approaches (except the Bayesian approach) whicprcarde a unified treatment of
inference and decision as well as properly accagrfor parameter and model
uncertainty. Namely, flexibility and the generaldithe Bayesian approach allow
researchers to cope with complex problems. Howesagnewhat controversial is the
view that Bayesian approach delivers the answdrd@uestion in the sense that the
Bayesian inference provides answers conditiondaherobserved data rather than based
on distribution of test statistics over imaginaayrgples not observed. Even though the

Bayesian approach has decent benefits, it has sona costs including formulation of



prior, requirement of a likelihood function, andwoutation of various integrals required
in Bayesian paradigm (Rossi et al.). Developmemaoious simulation-based methods in
recent years has dramatically alleviated the coatfmrtal costs of the Bayesian
approach, leading to the increased adoption of 8lagenodels in marketing and other
fields. The increased adoption of the Bayesian@gr implies that the benefits
outweigh the costs for many problems of interesis@Ret al.). The advancement of
computation make complicated integrals become plesdtlowever, choosing an
appropriate or objective prior has been an issukarBayesian approach (Gelman et al.,
2004). Ross and his colleagues argued that inagstgare facing a practical problem
with little information in the real-world situatisrand should not neglect sources of
information outside of the current data set.

According to the definition of fBm (please see tladinition in page 8) proposed
by Mandelbrot and Van Ness (1968), the domain akHparameter ranges between 0
and 1. From the non-Bayesian perspective, the hbarstimeter is viewed as a fixed
guantity; from the Bayesian perspective, however Hurst parameter is regarded as a
random variable. With the definition of fBm with B<1, it is reasonable to use Beta
distribution as the prior distribution in orderdstimate the Hurst parameter by means of
Bayesian approach. As a result, Beta distributias wutilized as the prior distribution in
the present study.

Most of the previous studies regarding the estiomadif the fractal dimension of
fBm involved highly theoretical derivation of thetenator. Limited studies provided
practical programming for such problems. Furtheem&ayesian approach involves

complex computation. Winbugs, R, C, and other safénare the common tools for



Bayesian computation. Therefore, the current sisidy develop R code to the Bayesian
estimation of the fractal dimension of fBm usingddistribution as the prior
distribution.

Delimitations of the Study

In these questions | assume there is no other maeanNamely, the Hurst
parameter is the only parameter to be estimateditiddally, Beta prior for Hurst
dimension of a fBm is the only prior distributioor festimation of the Hurst parameter
due to the fact that Hurst dimension ranges fraim D, which coincides with the domain
of Beta distribution.

Definition of Terms

Bayesian data analysis: involves setting up a jeiabability distribution (full
probability model) for all observable and unobsetgajuantities in a problem and
calculating and interpreting the conditional probghbdistribution (posterior
distribution) of the unobserved quantities of ulieinterest, given the observed data
(Gelman et al., 2004).

Fractal dimensionit is a statistical quantity that gives an indioca of how
completely a fractal appears to fill space, aszmmns down to finer and finer scales
(“Fractal Dimension," 2010).

Fractional Brownian motionthe definition of fractional Brownian motion was
proposed by Mendelbrot and Van Ness (1968). Leed bonstant belonging to (0,1). A
fractional Brownian motion (8(t))-0 0f Hurst index H is a continuous and centered

Gaussian process with covariance function®®[B B™)(s)]=1/2(E"+s™-|t-sf"). For



H=1/2, the fBm is a standard Brownian motion. Ansiard fom B has the following
properties:

1. B™ (0)=0 and E[8" (t)]=0 for all t>0

2. B™ has homogeneous increments, i.&?) B+s)- B (s) has the same
law of B (t) for s,t >0

3. B™ is a Gaussian process and E[&t)%=t*", t>0, for all H(0,1)

The fBm is divided into three different familiesroesponding to O<H<1/2 (the
process is negatively correlated), H=1/2 (the pgeds a Brownian motion), 1/2<H<1
(the process is positively correlated), respecivel

Gaussian process: A stochastic process is a caledf time indexed random
variables vihere the set of time points could be continuoudisurete. A stochastic
process is called strictly stationary if the jailgtributions of X(t,), ..., X(ty), only
depend on the intervals betweept, ...t and are not affected by the shift of the time
origin. i.e., the joint distribution oK(t,), ..., X(tx) and the joint distribution of
X(ty41), -, X(tksr) are the same. To illustrate, whé&re 1, then for all t, the distribution
of X(t) is the same witl(t) = u ando?(t) = 6%. When k=2, the joint distribution of
X(t1) and X(t,) depends only on the interval between— t;, which is often called the
lagt. As a result, the autocovariance function betweand § depends on only. i.e.,
y(ty,ty) = y(t) = Cov[X(t),X(t + 1)]. In contrast, a less restricted stationarity itechl
weakly stationarity when there is no specificattmnmoments higher than second order.
That is, if a process’ mean is constant, E€X(t)] = p and its autocovariance function
depends only on the lag, it is said to be secodérmstationary. The weakly stationarity

is particularly useful in practice since it is lessnbersome to just check with the first



two moments. More specifically, when the joint dimtion of X(t;), ..., X(tyx) Iis

distributed as multivariate normal, the processaited the Gaussian process (Chatfield,
2004; Wei, 2006). Thus, Gaussian process can beeptumlized as a generalization of
the Normal distribution. It should be noted thaicei the multivariate normality is

uniquely characterized by its first and second muis)ea Gaussian process is also strictly
stationary. That is, a Gaussian process is possessmth the strictly stationary and
weakly stationary. With these desired propertigSaassian process is often used in
Bayesian modeling due to its characteristics ingtlige of computational tasks.

(Chatfield, 2004; Wei, 2006).

Hurst index it was Mendelbrot that named the parameter H(ef)Bifter the
name of the hydrologist Hurst (Biagini, Hu, @ksdndaZzhang, 2010).

Posterior distributionrefers to the conditional probability distributiof the
unobserved quantities of ultimate interest, givendbserved data (Gelman et al., 2004,
p. 3).

Prior distribution: refers to a probability distribution that treatgs@meter as a
random variable, which may reflect prior informatior belief as to what the true value
of the parameter may be (Bain & Engelhardt, 1992).

Summary

Fractional Brownian motion has been applied inauasifields since Mendelbrot
and Van Ness (1968). Estimation of the Hurst patanteas been of interest for
researchers. Various estimation methods have begoged in order to solve practical
problems and enrich the theoretical bases as HWellever, Bayesian estimation of the

Hurst parameter is limited. Bayesian estimationraas applied statisticians’ efforts due
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to its flexibility of incorporating prior informadin of parameters of interest. Hurst
parameter ranges from 0 to 1, making Beta distobube a reasonable prior. Therefore,

the above reasoning motivates the current study.
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CHAPTER II
REVIEW OF LITERATURE

Chapter Il is organized around five major topickeTirst section includes
Bayesian data analysis. The second section corftactal dimension. The third section
describes Brownian motion. The fourth section dises fractional Brownian motion.
Additionally, estimations of fractal dimension ma€tional Brownian motion are
provided, followed by the summary of this chapter.

Bayesian Data Analysis

The main difference between classical statistizabty and Bayesian thinking is
that the latter views parameters as random vasahkg are characterized by a prior
distribution (Ntzoufras, 2009). The prior distrilmrt represents the information available
to the researcher before any data are involvelddarstatistical analysis. Three steps are
summarized for Bayesian data analysis: the fiegt & to set up a full probability model;
that is, consistent with knowledge about the uryitegl scientific problem, a joint
probability distribution for all quantities is s@b. The second step is to condition on
observed data; by doing this, the appropriate piostdistribution is calculated. The
posterior distribution refers to the conditionablpability distribution of the unobserved
guantities of interest, given the observed data. third step is to evaluate the model fit;
more specifically, researchers would like to kndthe model fits the data (Gelman et

al., 2004).
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Researchers usually are more interested in cailocnlaf the posterior distribution
of the parameters given the observed data. Thempastistribution contains both prior
and observed data information. The primary reasobélieving Bayesian thinking is
that it provides a common-sense interpretationaifstical conclusions. More
specifically, a Bayesian interval for an unknowrantity of interest can be directly
regarded as having a high probability of contairthigunknown quantity, in contrast to
confidence interval, which may strictly be intetq@ein relation to a sequence of similar
inferences that might be made in repeated pra@@eénan et al., 2004). Additionally,
flexibility and generality of Bayesian approactoallresearchers to cope with complex
problems.

In Bayesian data analysis, various numerical sunasaf the posterior
distribution are desirable. For example, summanfdscation such as mean, median, and
mode are commonly used; summaries of variatiorudin standard deviation, the
interquartile range and other quartiles are oftegdu Besides, point summaries, it is
important to report posterior uncertainty. Prokibik particularly used as a fundamental
measure for uncertainty in Bayesian data analysis.

Bayesian data analysis depends heavily on simuolbdigcause of its relative ease
with which samples can often be generated fronobability distribution, even when the
density function cannot be explicitly integratece(@an et al., 2004). Among the
computation techniques, Markov chain Monte Carl€(W{C) methods are the most
helpful. Using MCMC, researchers can set up andagt complicated models that solve

problems that could not be solved with traditiomathods (Ntzoufras, 2009).
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General guidelines for computation strategy in By data analysis begin with
fitting many models and increase the complexitydgedly. We prefer to fit each model
relatively quickly, using inferences from the praysly-fitted simpler models as starting
values, and displaying inferences and comparirdata before continuing (Gelman et al.,
2004).

In summary, posterior distribution is the desireddoct in Bayesian data analysis
derived from the specified model and appropriaterpnformation. Additionally, more
common-sense interpretation of statistical conohsis the primary reason for
considering the Bayesian approach. However, Bayakata analysis relies heavily on
computations.

Fractal Dimension
|dea of Fractal Dimension

Fractals, derived from the Latin word frangere niego break, are unusual
imperfectly defined, mathematical objects that obseelf-similarity, that the parts are
somehow self-similar to the whole (Peitgen eti#92). A structure is said to be strictly
self-similar if it can be broken down into arbithaismall pieces, each of which is a small
replica of the entire structure (Peitgen et albje Belf-similarity process implies that
fractals are scale-invariant, meaning that you oadistinguish a small part from the

larger structure (see Figure 3, Scrumerati, 2009).
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e

a. Task b. Product Backlog Item ¢. Sprint Product

Figure 3 lllustration of Self-Similarity (Excerpted frontth://scrumerati.com/
2009/05/scrum-fractals.html#tp)

The fractal dimension measures cannot be derivadtigxut must be estimated
(“Fractal Dimension”, 2010). One of the most comnesamples for fractal dimension is
the estimation of the length of the coastline atdn or in other cases in which area or
volume may be ill-posed (see Figure 4). The unihtdrest (curve, surface, area or
volume) can be so complex that ordinary measuresri@dome meaningless. However,
scientists came up with an alternative way to mesathe complexity by evaluating how
fast the unit of interest increases if we meastutle rgspect to smaller and smaller scales.
The idea is that the unit of interest and the sdalaot vary arbitrarily, but instead are
regulated by a power law. The power law allows aes®ers to compute one quantity

from the other (Peitgen et al., 1992).
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—_—— —_— f— )
Unit = 200 km, Unit = 100 km, Unit = 50 km,
Length = 2400 km (approx.) Length = 2800 km (approx.) Length = 3400 km (approx.)

Figure 4 Example of Measurement of Coastline Length ofdini (Excerpted from
http://computationallegalstudies.com/page/3/)

Consider the following case for further understagadf fractal dimension.

For instance, the length of a coastline may berdeted by placing a 1 km ruler
end-to-end along the shore line. If a 0.5 km ridarsed for the same coast, then
the measured length will be longer. If the increadength follows a consistent
rule over a range of elemental rules, then it magddled a measure of the
coastline’s geometrical properties. The functicetdtionship between ruler size
and length is L =1 ¢ P, where L refers to total length, means elemental ruler
length, D stands for fractal dimension, aihdndicates scaling constant. In
practice, D has been shown to be correlated wétuthction’s intuitive
roughness. For D = 1.0, the curve is a smooth Wuingle for D = 1.99, the line is
extremely rough. (Lundahl et al., 1986, p. 152)

Type of Fractal Dimension

Mathematicians have dedicated themselves to comathpvarious notions of
dimension. They include topological dimension, faadimension, self-similarity
dimension, box-counting dimension, Hausdorff dimemscapacity dimension,
information dimension, compass dimension, Eucliceash more (Peitgen et al., 1992).

Among the various dimensions, | will briefly intnacke the following dimensions for
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clarification including self-similarity dimensiompmpass dimension, and box-counting
dimension, each of which is a special form of Mdbd#'s fractal dimension.

Self-similarity dimensiorGiven a self-similar structure, a relation existbAren
the reduction factos and the number of piecasnto which the structure can be divided.
The relation is shown as follows: a=1/sr equivalently, D=(log a)/(log(1/s)), where D is
called the self-similarity dimension (Peitgen et #092). Let us take the Koch curve
(refer to Figure 1) as an example, assuming a=¥W3sand a=16, s=1/9, respectively. By
looking at the both conditions, an identical séfhfitar dimension of the Koch curve D
was derived, where D=(log4)/(log3)=(log16)/(log9)2819. This example implies that
the power law relation between the number of pi@rgsthe reduction factor results in
identical self-similarity dimension, regardlessioé scale used for evaluation (Peitgen et
al.).

Compass dimensio@ompass dimension (also called divider or ruleredigion)
is defined as D=1+d, where d is the slope in tigddg-diagram of the measured length
versus precision §(Peitgen et al., 1992). For example, d for thesto&Britain is
approximately 0.36, meaning that the coast hasraass (fractal) dimension of around
1.36. Another example is the 3/2 curve in which .8=@akes the compass dimension
D=1+0.5=1.5 (Peitgen et al.).

Box-counting dimensionWhen structures have certain special propertiels asc
self-similar or structures like a coastline, seffigarity dimension and compass
dimension can be used to deal with such problerowseder, what can be done if the
structures are not of special properties? The loaxing dimension has been developed

to deal with structures of no special propertidse idea of box-counting dimension is
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related to coastline measurements (Peitgen €it%2). More specifically, the structure
IS put onto a regular mesh with mesh size s andttieenumber of grid boxes that
contain some of the structure, say N are countkd.r@élationship between s and N is
demonstrated to be N(s) due to the dependenceooftNe choice of s. Then, s is
changed progressively to smaller and smaller sinesthe corresponding number N(S) is
counted. Finally, the measurements in a log(N@jd/s) diagram is made to fit a
straight line to the plotted points of the diagrana calculate its slope D, which is the
box-counting dimension (Peitgen et al). The boxatimg dimension is one of the most
used dimensions in measurements and in all thasesedue to the following reasons.
First, the box-counting dimension proposes a syatienway to measure any structure in
the plane or even in the space. Additionally, gtrsightforward to calculate the
dimension by counting boxes and maintain statiskogally, the structure can be the
form of either self-similar or wild (Peitgen et al)

In summary, fractal dimension may not be an easgegt to understand. Various
types of fractal dimension have been proposedvariaty of research areas. Fractal
dimension can not be derived exactly but has tedtienated. Due to its potential for
applications, many studies have been dedicatdtketedtimation of the fractal dimension.

Brownian Motion

Brownian motion is named after Robert Brown, wheesed the motion in 1827
(Mazo, 2008). The definition of Brownian motionas follows (Chiang, 2006; Morters &
Peres, 2008). A real-valued stochastic proces9{B{@} is called a linear Brownian

motion with start in x belongs to R if the follovgrolds:
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1. B(t) is Gaussian,
2. B(0) = x,
3. B(t) has independent increments, i.e., for all 8rAgt<t.<...<t, the

increments B() - B(t.-1), B(t.-1) — B(t-2), ..., B(k) - B(ty) are independent variables;

4. for all t=0 and h>0, the increments B(t + h) — Et¢ normally distributed
with expectation zero and variance h;

5. E[B(t)-B(s)]=0, and

6.  Var[B(t)-B(s)]=0 %t-s) fors < t.

Brownian motion has been well established in firamktowever, classical
mathematical models of financial assets are fanfperfect. There are two problems
associated with classical mathematical modelsnairitial assets; namely, financial
processes are not wholly Gaussian and Markoviamsinibution. For decades,
researchers have argued that it is reasonabletmngsall information contained within
current asset price to be Markovian process. Neghss, technical traders have
consistently beaten the market. Similarly, Mand&ilf997) pointed out a list of
discrepancies between Brownian motion and the.fatisy include non-stationarity of
the underlying rules, repeated instances of distootis change, and long-term
dependence and so on. This resulted in acadenoiteiih purporting the existence of
non-Markovian market. Fractional Brownian motioraldewith the long-ranged
dependence problem while still assuming a Gaugsiaeess. It has the advantage of
giving simple and tractable solutions as opposdtdatochastic volatility models

(Daye, 2003). The following section deals with fraeal Brownian motion.
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Fractional Brownian Motion
The fractional Brownian motion was named as fra@idrownian motion by
Mandelbrot and Van Ness. The fractional Browniartiiomy which provides a suitable
generalization of the Brownian motion, is one @& #implest stochastic processes
exhibiting long-range dependence (Bishwal, 200&t@r, 1998). It has been used as a
modeling tool. The following demonstrates the sastit integral representation of

fractional Brownian motion (Biagini et al., 20106p The process

= _r _ OH-1/2 _ (_H-Y/
Z(t) F(H-l— 1/2) f ((t S) (—s) 2) dB(s)
1 0 ) B . ]
= —F(H+ 1/2) (j;w((t - S)H 1/2 _ (—S)H /2) dB(S) + J;) (t _ S)H 1/2 dB(S))

where B(t) is a standard Brownian motion dndefers to the gamma function, is a fBm

with 0< Hurst index <1. The constant[1(H+1/2) in the following computation is

dropped for the sake of simplicity. Let , ds=tdl;il =u

1 2
E[Z2(®)] = | [(t R I (—sﬁ“%]z ds = [t (1-2) 2 - "= ds

2
H-+ 112

= ftZH‘l [(1 - %) ; — (— %) 2] ds = jtZH_l [(1 - u)H_% — (—w)"72| tdu
= tZHf [(1 — u)Ier_l/2 — (—u)f_l/z]z du = C(H)t2H

Where () = [ (1 - w2 - (—u)‘j‘%r du.

Analogously, we have that

FIlE® =26 = f [(t Wi = (s - u)I:_l/2 2 ds



20

2
= tZHf [(t —s—wH 2 - (—u)f,l_l/2 du = C(H)|t - s[*"

Now

E[Z(DZ(s)] = —%{E[IZ(t) — Z(9)I1? — E[Z()?] — E[Z(s)*]}

1

According to the definition of fractional Brownianotion fBm proposed by
Mendelbrot and Van Ness (1968), a fractional Brammotion (B”(t))»o0f Hurst index
H is a continuous and centered Gaussian proceksawtariance function E[B(t)
BM)(s)]=1/2(E"+™-|t-sf"). Therefore, Z(t) is a fBm of Hurst index H.

The fBm is divided into three different familiesroesponding to 0<H<1/2,

H=1/2, 1/2<H<1, respectively. It was Mandelbrottthamed the parameter H of'B

after the name of the hydrologist Hurst, who madgaéstical study of yearly water run-
offs of the Nile river. Hurst found that the watan-offs in Nile River could not be
modeled by using a process with independent inanésnbut rather the increments could
be viewed as the increments of a fBm. Due to Hstsidly, Mandelbrot introduced the
name Hurst index. The basic feature of fBm is thatspan of independence between
their increments can be infinite (Mandelbrot & Mdass, 1968). As the Hurst parameter
H governs the fractal dimension of the fractioneduBnian motion, its regularity and the
long-memory behavior of its increments, the estiomadf H is an important but difficult
task which has led to very vast literature (Ach&r@oeurjolly, 2010). The following

section describes estimation of fractal dimensipfractional Brownian motion.
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Estimation of Fractal Dimension for
the Fractional Brownian Motion

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is often consi@d to be the best
obtainable estimator. In addition, the estimatasigmptotically unbiased (unbiased as the
sample size becomes large), asymptotically efftqigmmbtains the Cramer-Rao bound)
and is asymptotically Normally distributed (Lundahlal., 1986). In most cases, it is
impossible to obtain an explicit form for the esabmas a function of the data. Instead,
numerical methods are used to find the maximunhefikelihood function (Lundahl et
al.).

The Bishwal (2003) studies show the propertiehefMILE of a parameter
appearing linearly in drift coefficient of a norgiar stochastic differential equation driven
by fBm when the signal process is a nonlinear difo process. They proved the strong
consistency and asymptotic normality of the MLE] aerified that the MLE can be
explicitly calculated. This satisfies the asympiqtioperties mentioned in their work.

Lundahl and his colleagues (1986) extended the ltlasory of fractional
Brownian motion to the discrete case. More spadiffcan asymptotic Cramer-Rao
bound is derived for the variance of an estimate;c maximum likelihood estimator is
developed to estimate H. Results reveal that thawee of the estimator nearly achieves
the minimum bound. A generation algorithm for déterfractional motion is presented
and used to demonstrate the capabilities of the MbEN the discrete fractional
Brownian process is contaminated with additive Gausnoise. The results indicate that

it has strong potential for quantifying texturerthermore, Dahlhaus (1989) proved the
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asymptotic normality of the maximum likelihood esétor for the parameters of a long
range dependent Gaussian process.

In spite of the fact that maximum likelihood esttora are consistent and
asymptotically normal and also asymptotically et in general, they have the
following shortcomings. First, the calculations afeen cumbersome since the
expression for the MLE involves stochastic integimahich need appropriate
approximations for computational purposes. Addaitn the MLE are not robust in the
sense that a slight perturbation in the noise comapowill change the properties of the
MLE substantially. Therefore, other estimation noeihwere proposed in order to
circumvent such problems (Rao, 2004).

Other Estimation Methods of
Fractal Dimension in fBm

Bayraktar et al. (2004) used Wavelet analysis tionage the fractal dimension of
the S&P 500 index. They sampled and analyzed S&Pdafa at one-minute intervals
over the course of 11.5 years (January 1989-MapR@Epecifically, they developed a
method to investigate long range dependence, digahlly the Hurst parameter in a high
frequency financial time series. They found thedparameter to be around the 0.6
level for most of the 1990s, but dropped to thel®f 0.5 in the period 1997-2000,
which coincides with growth in Internet trading amyesmall investors.

Achard and Coeurjolly (2010) reviewed differentimsition procedures of Hurst
parameter of fractional Brownian motion and triegtovide estimators that were
quickly computable. They described four methodsstimation of the Hurst parameter:
(a) the standard procedure based on the log-liiyeafrihe variogram of dilated time

series (ST), (b) robust alternatives to outlieisgisample quantiles (Q) or trimmed
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means (TM), (c) robust alternative Gaussian whiisenor to additive Brownian motion
(methods BO and B1), and (d) robust alternativesutbers and additive noise by
combining these methods. Additionally, three défg#grmodels of contamination were
used in this study: (a) a model of additive out{i®), (b) a model of additive Gaussian
white noise to the fBm (B0), and (c) a model ofiidd Gaussian white noise to the fGn
(B1). They further recommended, from a practicakpective, that one should first
observe the data for the presence of outlierstlameéstimator based on trimmed means
(TM) should be used. Moreover, they recommendedhestandard method if the
differences |A-H®*>"|and |H™-H®>"| are close to zero.

Chiang (2006) utilized the method of Embedded Bhnarg Process (EBP)

proposed by Jones and Shen (2004) to estimateutst parameter, which builds a tree

of crossings that encodes the sample path. Theaisti is as foIIowsf{=:z—§i

N(m) N(m+1) N(n)
where p =2t Zt Ny BTt h Zlog? N(.)is the total number of
N(m)+N(m+1)+---+N(n) logp’ ’

crossings, and Z is the number of subcrossings.

Berzin and Leon (2007) consider the second ordeements of a fBm using
variation techniques. Based on an almost-sure cgewee theorem for general
functions, they construct certain regression mofitglthe parameter H. The regression
based estimator for H turns out to be asymptotiaatbiased, consistent and that it
satisfies the Central Limit Theorem.

Constantine and Hall (1994) proposed simple metlhadastimating fractal

dimension based on variogram along with log limegression. The estimator for fractal

. . . . 1
dimension presented in their work as-2 — S, where
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a = {32, (x—x)wjlog(g) {1 (xj—x)w;} . w; denotes the positive weight; the
integer m plays the role of a smoothing parameltescribing the distance away from the
origin; log (g) refers to the heteroscedasticity of the variables

Moreover, Dieker (2004) proposed an aggregate negianethod, which is based
on the self-similarity of the sample. The ideahatithe sequence gkis divided into
blocks of size m, and then the aggregated prosa$sfined as

2H-2N-2H

X ™=m Xyt ... +Xgernym-1), and Var(x™)=m . An estimator for Var@™) is

M-1yMiix™__ )2, where M=integer part of N/m arg™ = M~y M1

The estimator of Hurst dimension is obtained bytjslg the estimated variance of¥
against m on a log-log scale.
Higuchi (1988) estimated Hurst dimension by plajtirf{m) in a log-log plot

versus m and adding 2 to the fitted line, where

N-— . ; . . .
L(m)= m—; {ilMiifo;l | Z}Z}‘f(‘k_l)mﬂx]- |, and M is the integer part of (N-i)/m.

Summary
The estimation of fractal dimension in fractionabfnian motion has attracted

much attention for decades. Many efforts were madising maximum likelihood
estimators. However, cumbersome calculations inmglgtochastic integrals which need
appropriate approximations for computational puescsnd the robustness issue
associated with the MLE led to other estimationhods. Bayesian estimation for fractal
dimension in fractional Brownian motion along wilte prior of Beta distribution is
limited. Therefore, the current study attemptsdiineate the fractal dimension in

fractional Brownian motion using the Bayesian ajppio
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CHAPTER 111
METHODOLOGY

Various methods of the estimation of the Hurst peat@r have been proposed.
There are, however, limited studies focusing one3&gn data analysis along with Beta
distribution as the prior information for the estition of the Hurst parameter for the
fractional Brownian motion. Thus, we will focus thve Bayesian approach to estimate
the Hurst parameter for the fractional Brownian iomatin the following sections, the
Markov Chain Monte Carlo (MCMC) method will be sgieal in order to obtain the
Bayesian estimators. Additionally, model descripsi@long with the likelihood, prior
and posterior functions will be discussed. Thelfgetion describes information
associated with data simulations including différgmices of the parameters of the Beta
prior in order to examine if the Bayesian estimatane sensitive to the parameters of the
Beta prior as well as number of replications.

Markov Chain Monte Carlo Method

Direct simulation cannot be applied in all casegmposterior distributions of
interest involve multidimensional integrals. Sintida techniques based on Markov
chains overcome such problem due to their gengatid flexibility. Markov Chain
Monte Carlo (MCMC) techniques have become poputaresthe early 1990s due to the
massive development of computing facilities. TheMICtechniques enable quantitative
researchers to use highly complicated models amtage the corresponding posterior

distributions with accuracy. These MCMC technigaesbased on the construction of a
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Markov chain that eventually converges to the tdgsribution or so-called posterior
distribution f|x). This characteristic distinguishes MCMC aldamis from direct
simulation methods, which provide samples direfttiyn the posterior distribution.
Furthermore, the MCMC output is a dependent satmgbause it is generated from a
Markov chain, in contrast to the output of direethods, which is an independent
sample. Finally, MCMC methods, frequently callegtative methods, involve the notion
of an iterative procedure since in every step freguce values based on the previous
one (Ntzoufras, 2009). The following sections indya) definitions and terminology
associated with the MCMC method, (b) Markov chalre-algorithm of MCMC, (c) how
to describe the target distribution using MCMC autfgd) Monte Carlo error, and (e)
two popular MCMC algorithms, Metropolis-Hastinggalithm and the Gibbs sampling.
Definitions and Ter minology

In this section, definitions and terminology asated with MCMC are presented
as follows. They include equilibrium distributioccgnvergence of the algorithm, iteration
and total number of iterations T, initial valuestivé chaird®, burnin period, thinning
interval or sampling lag, iterations kept T', MCM@tput, and output analysis
(Ntzoufras, 2009).

Equilibrium distribution.This is also known as the stationary or targdtibtigtion
of the MCMC algorithm. The notion of the equilibmudistribution is related to the
Markov chain used to construct the MCMC algoritlsuch that the chain stabilizes to

the equilibrium/stationary distribution after a noen of time sequences*t B.

Therefore, in a Markov chain, the distributioneé® ando®1 will be identical and

equal to the equilibrium/stationary distributiorqutvalently, once it reaches its
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equilibrium (distribution), an MCMC scheme genesadependent random values from
the corresponding stationary distribution (Ntzogfr2009, p. 38).

Convergence of the algorithtAn MCMC algorithm converges when the
algorithm has reached its equilibrium and genenaaéses from the desired target
distribution. Generally it is unclear how much wastrun an algorithm to obtain
samples from the correct target distributions. &dwdiagnostic tests have been
developed to monitor the convergence of the algaritncluding monitoring the Monte
Carlo error, monitoring the trace plots (the ploftgterations versus generated values),
examining the ergodic mean (the mean value urgictirrent iterations), and other
statistical diagnostics. Small values of Monte Gariror indicate quantity of interest
with precision. Moreover, convergence is ensuredl walues are within a zone without
strong periodicities. Additionally, an indicatiohthe convergence of the algorithm is
achieved if the ergodic mean stabilizes after siarations. However, it is recommended
that all diagnostics must be applied to ensuredbavergence has been reached
(Ntzoufras, 2009, p. 38, 41).

Iteration. Iteration refers to a cycle of the algorithm thaherates a full set of
parameter values from the posterior distributicor. &amplep™ ando® | respectively,
denote the values of random vediagenerated at the 7th anth iterations of the
algorithm. Additionally, total number of iterations refers to the total number of the
iterations of the MCMC algorithm (Ntzoufras, 2009).

Initial values of the chaifd(®). The initial values refer to the starting valuesdis
to initialize the chain. These initial values maffuence the posterior summaries if they

are far away from the highest posterior probabditgas. Solutions to mitigating or
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avoiding the influence of the initial values inckucbmoving the first iterations of the
algorithm or letting the algorithm run for a langember of iterations or obtain different
samples with different starting points (Ntzoufra809).

Burnin period.In the burnin period the firdB iterations are eliminated from the

sample in order to avoid the influence of the atitialues. If the generated sample is
large enough, the effect of this period on theuwalton of posterior summaries is
minimal (Ntzoufras, 2009, p. 38).

Thinning interval or sampling lacAs has already been mentioned, the final
MCMC generated sample is not independent. Foréaison, we need to monitor the
autocorrelations of the generated values and salsaimpling lag L> 1 after which the
corresponding autocorrelation are low. Then, wegraduce an independent sample by
keeping the first generated values in every batdhiterations. Hence, if we consider a
lag (or thin interval) of three iterations, then keep the first of every three iterations
(i.e., we keep observations 1, 4, 7, etc.). Thiidas also followed to save storage space
or computational speed in high-dimensional probl@itigoufras, 2009, p. 38).

Iterations kept T'These are the number of the iterations retainied discarding
the initial burnin iterations (i.e., T'=T-B). If walso consider a sampling lag L>1, then
the total number of iterations kept refers to thalfindependent sample used for
posterior analysis (Ntzoufras, 2009, p. 38).

Markov Chain Monte Carlo (MCMC) outputhis refers to the MCMC generated
sample. We often refer to the MCMC output as thepa after removing the initial
iterations (produced during the burnin period) aadsidering the appropriate lag

(Ntzoufras, 2009, p. 38).
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Output analysisThis refers to analysis of the MCMC output samfilencludes
both the monitoring procedure of the algorithm’sneergence and analysis of the sample
used for the description of the posterior distridiand inference about the parameters of
interest (Ntzoufras, 2009, p. 38).

Markov Chain.The algorithm of MCMC is primarily based on the Mawv chain.

A Markov chain is a stochastic proce$§%0%,...,6(} such that
fe1p®,... oM = £ o) (3.1);

From equation 3.1, we know that the distributio® at time t+1 given all the
preceding values (from times t, t-1, ..., 1) depends only ke talued® of the previous
step t. Moreover, €] 6Y) is independent of time t and the initial valuéshe chain
0©. In order to generate a sample fromxJ, we must construct a Markov chain with
two desired properties: (apf(™)| 6“) should be easy to generate from, and (b) the
equilibrium distribution of the selected Markov ahanust be the posterior distribution of
interest f0| x) (Ntzoufras, 2009). The following steps areoramended to construct a
Markov chain.

1. Select an initial value®.

2. Generate T values until the equilibrium distribatie reached.

3 Monitor the convergence of the algorithm using argence diagnostics.
We generate more observations if convergence dstigsdail.

Cut off the first B observations.

Consider p& g€+ 6"} as the sample for the posterior analysis.
Plot the posterior distribution; specifically theivariate marginal
distributions

7. Finally, obtain summaries of the posterior disttibn including mean,

median, standard deviation, quantiles, and coroglatetc. (Ntzoufras,
2009, pp. 36-37)

o0k
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Describing the Target Distribution
Using MCM C Output

The MCMC output provides us with a random sampleneftype
6, 6@, 60, 6(T),
From this sample, for any function(@ of the parameters of interéstNtzoufras
(2009, p. 39) suggested the following proceduregetxribe the target distribution using
MCMC output.

1. Obtain a sample of the desired paramet€6)Y3oy simply considering
G(6™), G(6@), ..., G(6®), ..., G(6(T)).

2. Obtain any posterior summary of G@) from the sample using traditional

sample estimates. For example, we can estimajgoterior mean by

E(G Oy =GO = 2L, G (6) (3.2)

and the posterior standard deviation by

— ! — 2

SD(G010) = ==ZLi[G(69) - E(G (0)I)] (3.3)
3. Calculate and monitor correlations between pararete
4, Produce plots of the marginal posterior distribgio

Monte Carlo Error

The Monte Carlo error (MC error), an important mgaghat must be reported
and monitored in the analysis of the MCMC outputasures the variability of each
estimate due to the simulation. Low MC error intiksathe parameter of interest with
increased precision. It is proportional to the nseecof the generated sample size that can
be controlled by the user. Therefore, for a swgficinumber of iterations T, the quantity

of interest can be estimated with increased p@tidatch mean method and the
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window estimator method are the two most commonswayestimate MC error
(Ntzoufras, 2009, p. 39).

In order to calculate the MC error using the bateans method, we simply
partition the resulting output sample in K batcfuesually K = 30 or K = 50). Both the
number of batches K and the sample size of eachbat T '/K must be sufficiently
large in order to enable us to estimate the vaei@onsistently and also eliminate
autocorrelations (Ntzoufras, 2009, p. 39).

The following procedures deal with the calculatadrthe Monte Carlo error of
the posterior mean o5 (0) (Ntzoufras, 2009, p. 40). First, calculate eadiclbanean

G (0)y, by:
G(®)p = %Z?:(b—l)\wl G(e(t))

for each batclth = 1, ..., K, and the overall sample mean by
s 1 T 1 <K oo
G(®) =X, G (6@) ==X, GO,

assuming that we ke&p?, ..., 8(T") observations. Then an estimate of the MC error is

simply given by the standard deviation of the bateans estimates (0),

MCE[G ®)] = SE[G®)] = [+5D[G (@]

_ 1 K Z
- \/K(K—l)zb_1(G(e)b - G(e)) (3.4)
The procedure for calculating the MC error for atlyer posterior quantity of

interestU = U(e(l), ...,B(T')) is equivalent. To estimate the corresponding Monte
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Carlo error, we calculaté/J; = U(e(@-Dv+1) | g®W) from each batch = 1,..., K

and then the MC error by

MCE(U) = szb l(ﬁb—ﬁ)z (3.5)

The second method (window estimator) is based emxipression of the variance

in auto correlated samples given by Ntzoufras (2009

SD [G(8)]

JT_ Jl + 235 P o] -

MCE[G (8)] =

wherep, )] IS the estimated autocorrelation of lag that is, the correlation between

parameterss (6©) andG (G(Hk)). Thus, it is obvious that for large k the

autocorrelations will not be estimated reliablynfrthe sample because of the small
number of remaining observations. Moreover, in ficadhe autocorrelation will be close
to zero for a sufficiently largé . For this reason, we identify a windaw after which
autocorrelations are considerably Ifssty, < 0.1 (Carlin and Louis, 2000)] and
discardpy with k > 2 from the preceding MC error estimate. Hence, \thiglow based

modified MC error estimate is given by

SD [G(9)]

MCE[G (8)] = T\/l +23Y_ Puic o] (3.6)

Popular MCM C Algorithm
f(6) The following section briefly introduces the contepthe two most popular
MCMC methods: the Metropolis-Hastings algorithm émel Gibbs sampling. Since we

have just one parameter, H, to estimate, we wilfocus on the Gibbs sampling.
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(29 The Metropolis-Hastings algorithm. Assume a tadistribution
from which we wish to generate a sample of siz€he Metropolis-Hastings algorithm
can be described by the following iterative stézufras, 2009, p. 43); where is
the vector of generated values in t iteration efdlgorithm:

1. Set initial value®®.

2. Fort= 1,..., T repeat the following steps

a. Sep = p(t-D

b. Generate new candidate val@ésrom a proposal distribution g
(6-10")
= q(6']8)).
C. Calculate
o f(6")q(e[e’)
a—min (1’ f(®)a(e'[0) ) '

d. Updated(t) = @’ with probabilitya ande(t) = g = g(t~D
with probability 1e

The Metropolis-Hastings algorithm will converget®equilibrium distribution
regardless of whatever proposal distribution geleced. Nevertheless, in practice, the
choice of the proposal is important since poor ce®will considerably delay
convergence towards the equilibrium distribution.

The algorithm outlined above can be directly impdeed in Bayesian
framework by substituting the target distributi@f) by the posterior distributiof(6]x).

Thus, in Bayesian inference, the algorithm is sunwed as follows:
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1. Set initial values8(©f(@).

2. Fort= 1,..., T repeat the following steps
a. Setg=etb

b. Generate new candidate parameter vaidom a proposal
distribution q(0’|6)
C. Calculate

(o bl 3.7)

a=min (1' £(81x)q(6’[0)

d. Updated® = 6’ with probabilitya; otherwise sed® =0.

Model Descriptions
The likelihood function for fractional Brownian man, the distribution of Beta
prior, and the posterior distribution are as folkow
The likelihood function for fractional Brownian mon for the discrete case is as

follows (Lundahl et al., 1986, p. 155):

f(x|H) = —5——exp{—-x"R™x} (3.8)
(2m)Z|R|2 2

where H is the Hurst parametgs( x4, x,,..., x,) follows a standard fBm and
Ry=1/2("+j*[i-j|*").
The Beta prior distribution for H is as follows:

— F@+B) pa-1.1 _ p)B-1
P(h) = rrorash (1~ h) (3.9)
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The full probability model is derived from the prad of (3-5) and (3-6):

[EN

exp{—~xTR1x} - P pa-101 _p)B-1  (3.10)

;h) =

N3

Then we get the posterior distributikth| x4, x5, ..., x,,) for Q1 as follows:

k(h| %y, %y, ..., 2,) = EED (3-8)

m(x)

1

exp(—3xTR™1x) 2t B ha=1(1_py)B-1

gxh) ¢ )% é H@r®

k(h|xq ...X,) = 2m - 3.11

(hfxy - xn) = mE [ 1exp{—%xTR—1x}rr($’r'fé)ha—1(1—h)6—1dh (3.11)
(2m2Z|R|2

For the continuous case, however, the probabil@asares generated by two
different Hurst dimension processes are singul#lt réspect to each other (Praskasa
Rao, 2008), so it follows that there is no likelldofunction for the continuous case. The
theorem proposed by Praskasa Rao (2008, p. 28)falaws.

Theorem: Let Wiy (t), t> 0}, 1 = 1, 2, be two standard fBms with Hurst indices
ni7n2- Let Pi be the probability measure generated by the psod#fs (t, t>0}fori=1
2. Then the probability measurié% andP2 are singular with respect to each other.

Before moving on to the proof of theorem regardimgularity of fBms for
different Hurst indices, the theorem proposed bycKanko (2003) needs to be addressed
to facilitate the proof of theorem regarding siragity of fBms for different Hurst

indices. Let My (t), t> 0} be standard fBm with Hurst indéx € (0, 1). Then, with
probability onelim,,_,, - Z LWy (m) — 2Wy (m + ) + Wy (m + 1)]2=V,(0, H) for

any standard fBm with Hurst indéxe (O, 1).

Proof: Using the theorem proposed by Kurchenko 3200

limy o = E Wi (m) — 2Wigs (m +3) + Wigg(m + 1)]2= V0, Hi), =1, 2.
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SinceV,(0,H;) # V2(0,H,) if Hy # Hy, and since the convergence stated above is
convergence under the corresponding probabilitysones, it follows that the measures
P, andP; are singular with respect to each other. Due¢dhieorem of singularity of
fBms for different Hurst indices proposed by PraskRao (2008), the continuous case
was not included in this study.

Data Analysis

In this research, both estimation of the Hurst disi@n using simulations and real

data will be implemented. Descriptions of both pante presented as follows.

Estimation of the Hurst Dimension
Using Simulations

In this research, estimation of the Hurst dimensisimg simulations was
implemented. The details with respect to computativere described. In order to answer
the Research Question 1, we obtained the postdigtiibution up to a normalizing
constant and then using MCMC method we obtained@#yesian estimate (posterior
mean). Since there is no likelihood function fag ttontinuous case, therefore, it is not
possible to obtain the Hurst estimate for Rese@ubstion 2 in this research. For
Research Question 3, different beta priors weltaedti to investigate how sensitive the
Hurst estimates would be. As for setting parameittse Beta prior, the scenarios
considered in this research were presented in Tal#tarthermore, the Hurst dimension

in the simulation program will include 0.1 up t® @y the increment of 0.1.
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Table 1

Parameters of Beta Distributieanandp in the Current Study

Scenario «a B Scenario « B Scenario « B

1 0.1 0.1 11 1 0.1 21 3 0.1
2 0.1 0.5 12 1 0.5 22 3 0.5
3 0.1 1 13 1 1 22 3 1
4 0.1 2 14 1 2 24 3 2
5 0.1 3 15 1 3 25 3 3
6 0.5 0.1 16 2 0.1

7 0.5 0.5 17 2 0.5

8 0.5 1 18 2 1

9 0.5 2 19 2 2
10 0.5 3 20 2 3

Since the Metropolis-Hastings algorithm of MCMC wesed for computation in
this study, formula (3.7) was utilized. It is assththat the proposal distribution is the

Beta distribution. Applying formula (3.7) in thisgearch,

(f(h’IX)q(hIh’)>
fth]x)q(h’|h)

W]%inée""{‘ 2X"R) gy (01 = 0P
b (Zn);m% expl= X" R ) Ry e (L~ Pt Nt B po-i1 — ot
_ mexp{_%m_l"} T e | Foo Ty (1 — hp-t
"lme"p{_%xmﬂx};&—%h“‘l(l — h)f-1dh

WhereR;=1/2(P"+?" i-j|*".
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Therefore, the formula was used for computatioth@simulation for this
research. Metropolis-Hasting algorithm was usedaéwnputation with a starting value of
0.1. The number of iterations was set to be 10,Mihte Carlo Error was used to
examine the convergence.

Estimation of the Hurst Dimension
Using Real Data

The data used in this research include the dailyaraStock Index in the year of
2011. The dataset comprises of 247 data poinsrdéasonable to use this dataset since
only the discrete case will be considered in tegearch. For the estimation of the Hurst

dimension using real data, it is necessary to eséirthe mean and the variance.

xTR™1x

n .

According to Lundahl et al. (1986), the variancestimated by2 = Besides, the

t'R71X
t'/R~1t

mean is estimated b:yz (Hu, Nualart, Xiao, & Zhang, 2011). Metropolis-Hiag

algorithm was used for computation with a stariafyie of 0.1. The number of iterations

was set to be 10,000. Monte Carlo Error was usecamine the convergence.
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CHAPTER IV
RESULTSAND DISCUSSION
The purpose of this study was to estimate the Hlinsénsion of a fBm using the
Bayesian approach with Beta distribution as a pAalditionally, this study was to
examine how the choice of parameters of a Beta pronild affect the estimation. In

order to achieve the goals, the following reseaubstions were studied:

Q1 Can we find a Bayesian estimate for the Hursedision of a fBm with a
Beta prior when the process is observed at distirats?

Q2 Can we find a Bayesian estimate for the Hursiedision of a fBm with a
Beta prior when the process is observed at contisitimes?

Q3 Will the Bayesian estimate for the Hurst dimensof a fBm vary when
the parameters of the Beta prior change?

Q4  Can we develop a R code for questions 1 thr@2gh

To answer these research questions, this chaptegasized in the following
manners. First, a Bayesian estimate for the Hums¢sion of a fBm with a Beta prior
when the process is observed at discrete timasdasbed. Second, the difficulty in
finding a Bayesian estimate for the Hurst dimensiba fBm with a Beta prior when the
process is observed at continuous times is sugiestérd, the Bayesian analysis with
different parameters of Beta priors is illustrateémhally, the R codes for Research
Questions 1 and 3 are presented.

The likelihood function for fractional Brownian mot for the discrete case is as

follows (Lundahl et al., 1986, p.155):
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f(XlH) = ﬁexp{—szR_lx}
(2m)2|R|2
where H is the Hurst parametgr( x,, x,,..., %,) andR;=1/2("+j?"|i-j|".

The distribution of Beta prior:

['(a+B)
P(h) = ——=——"h*"*(1 —h)F?
O =t@r@" ¢
The full probability model is derived from the prax of (3-5) and (3-6):
h) = 1 _loTp-1¢y. F@B) va—1.9 _ 1\B-1
g(x; h) (Zﬂ)gm%exp{ X R7'x} I‘(oc)l"(B)h (1-h)

Therefore, the posterior distributiduth| x4, x5, ..., x,,) for research question 1 is shown

as follows:
g(x;h)
k(h| 24, %5, ..., %,) =
( | 1 2 ] n) m(X)
_ r — —
—rexp(—3x"R1x) F(S’;’;f‘;)h“ 1(1-p)B-1
k(h|x; ... x,) = BN — _Em2RE
& m(x) fé%exp{_%xTR—lx}%ha—1(1_h)3_1dh -
(2m)2|R|Z

Using Metropolis-Hastings algorithm of MCMC as wa#l the assumed proposal
distribution of Beta distribution, the following egtion was used for estimating the Hurst

dimension of a fBm in this study.

(f(h'|X)Q(h|h')>
f(h|x)q(h’[h)
1 1 _ F'(a+B) ., nae N B—
—s—1exp{—5X"R7'x} ()1 (1 —hHF?
1 I'(at +
Jo — w1 exp{—5x"R"'x} h*-1(1 — h)f-1dh T(a+B), o _
_eurre F@r® T a-pT
1 1 _ F'(a+B), _ F'(a+B) 1 mnee NB—
—a—1exp{—5X"R7'x} he=1(1 — h)f-1 ooy B —h)E-t
(ZTT)?RE 21 T'()I'(B) T'()Ir(B)
1

N CET .
Jo mexp{—ixTR X}F(a)l"(ﬁ)h (1 —h)B-1dh
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For the continuous case, however, the probabil@asares generated by two
different Hurst dimension processes are singul#lt réspect to each other (Praskasa
Rao, 2008), so it follows that there is no likelidofunction for the continuous case.
Using the theorem proposed by Kurchenko (2003),

limy, .o = X [Wis (m) — 2Wig; (m +3) + Wigg(m + D= V,(0, Hi), =1, 2.

SinceV,(0,H;) # V2(0,H,) if Hy # Hy, and since the convergence stated above is
convergence under the corresponding probabilitysones, it follows that the measures
P, andP; are singular with respect to each other. As atete continuous case was not
discussed in this study.

Simulation results are presented in the appenéi f&gppendix A). Overall, the
estimated H appears to be greater than the réebhkeé Table 2 example, the real His 0.1
while the estimated H appears to be greater thari@t us take Table 3 with real H of
0.5 and Table 4 with real H of 0.9 for instancegm@stimation is observed though the
overestimation is less severe as real H goes up t®the ease of readability, please see

the rest of the scenarios in Appendix A.
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Table 2

Simulation Results: True H=0.1

Estimated Monte Carlo
Real H Alpha Beta H Error

0.1 0.1 0.1 0.834 0.0038
0.1 0.1 0.5 0.536 0.0069
0.1 0.1 1 0.403 0.0074
0.1 0.1 2 0.218 0.0052
0.1 0.1 3 0.248 0.0055
0.1 0.5 0.1 0.879 0.0024
0.1 0.5 0.5 0.622 0.0031
0.1 0.5 1 0.470 0.0033
0.1 0.5 2 0.333 0.0029
0.1 0.5 3 0.272 0.0024
0.1 1 0.1 0.918 0.0018
0.1 1 0.5 0.700 0.0027
0.1 1 1 0.546 0.0029
0.1 1 2 0.399 0.0023
0.1 1 3 0.321 0.0021
0.1 2 0.1 0.954 0.0011
0.1 2 0.5 0.800 0.0021
0.1 2 1 0.670 0.0023
0.1 2 2 0.511 0.0021
0.1 2 3 0.417 0.0020
0.1 3 0.1 0.966 0.0008
0.1 3 0.5 0.856 0.0017
0.1 3 1 0.751 0.0018
0.1 3 2 0.600 0.0020
0.1 3 3 0.504 0.0016
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Table 3

Simulation Results: True H=0.5

Estimated Monte Carlo
Real H Alpha Beta H Error

0.5 0.1 0.1 0.938 0.0015
0.5 0.1 0.5 0.786 0.0059
0.5 0.1 1 0.716 0.0077
0.5 0.1 2 0.638 0.0085
0.5 0.1 3 0.575 0.0088
0.5 0.5 0.1 0.944 0.0012
0.5 0.5 0.5 0.810 0.0025
0.5 0.5 1 0.720 0.0030
0.5 0.5 2 0.640 0.0045
0.5 0.5 3 0.600 0.0057
0.5 1 0.1 0.950 0.0010
0.5 1 0.5 0.830 0.0020
0.5 1 1 0.743 0.0027
0.5 1 2 0.651 0.0030
0.5 1 3 0.610 0.0040
0.5 2 0.1 0.964 0.0009
0.5 2 0.5 0.857 0.0016
0.5 2 1 0.769 0.0017
0.5 2 2 0.677 0.0021
0.5 2 3 0.630 0.0025
0.5 3 0.1 0.972 0.0006
0.5 3 0.5 0.880 0.0014
0.5 3 1 0.800 0.0015
0.5 3 2 0.699 0.0016
0.5 3 3 0.646 0.0019
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Table 4

Simulation Results: True H=0.9

Estimated Monte Carlo
Real H Alpha Beta H Error

0.9 0.1 0.1 0.800 0.0044
0.9 0.1 0.5 0.938 0.0027
0.9 0.1 1 0.909 0.0061
0.9 0.1 2 0.855 0.0130
0.9 0.1 3 0.822 0.0151
0.9 0.5 0.1 0.984 0.0004
0.9 0.5 0.5 0.943 0.0012
0.9 0.5 1 0.909 0.0033
0.9 0.5 2 0.858 0.0091
0.9 0.5 3 0.762 0.0202
0.9 1 0.1 0.985 0.0004
0.9 1 0.5 0.943 0.0010
0.9 1 1 0.913 0.0021
0.9 1 2 0.851 0.0118
0.9 1 3 0.816 0.0115
0.9 2 0.1 0.986 0.0003
0.9 2 0.5 0.947 0.0080
0.9 2 1 0.913 0.0013
0.9 2 2 0.876 0.0032
0.9 2 3 0.836 0.0083
0.9 3 0.1 0.980 0.0030
0.9 3 0.5 0.951 0.0007
0.9 3 1 0.919 0.0014
0.9 3 2 0.880 0.0033
0.9 3 3 0.830 0.0070
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In addition, the estimated H decreases as Betangdeas go up given an Alpha
value (see Appendix B). Take Figure 5 for examgieen the true Hurst dimension of
0.1 and the assumed alpha parameter of the Betadsiribution of 0.1, the estimated
values of the Hurst dimension were 0.834, 0.538)3%.0.218, and 0.248 when the
values of beta parameter were assumed to be 6,1, @, and 3, respectively. This
finding revealed that the estimated value of H €ases as Beta parameters increase

given a fixed Alpha value. Similar patterns werarfd in Figure 6 through Figure 13.
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In contrast, the estimated H increases as Alphanpeters go up given a Beta
value (see Appendix B). Take Figure 14 for examgien the true Hurst dimension of
0.1 and the assumed beta parameter of the Betadistabution of 0.1, the estimated
values of the Hurst dimension were 0.834, 0.8781.8&.0.954, and 0.966 when the
values of alpha parameter were assumed to be 8.1, @, and 3, respectively. This
finding revealed that the estimated value of Heéases when alpha parameters increase
given a fixed beta value. Similar patterns werentbin Figure 14 through Figure 22.
Research Question 3 was answered since the estintasults vary as Alpha and Beta
parameters change. All the Monte Carlo errors apjoelae close to 0, implying that

results are precise.
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This study also sought to estimate the Hurst irfdexhe real-world dataset
obtained from the daily Taiwan Stock Index in tiearof 2011. For the real-data case,
the estimations of the variance and the mean gbitheess were necessary, which
requires computation of tH®;. In order to comput®;;, the value of less than 0.5 for the
Hurst index was assumed due to its down trendKepee B73). Specifically, 0.3 of the
Hurst index was assumed for this study. Additionahe values of Alpha and Beta of the
Beta prior distribution were assumed to be 0.1&nespectively since the estimated
Hurst index from the simulation appeared to beeclosthe true Hurst index. The results
revealed that the estimated Hurst index was 0.21 avMonte Carlo error of 0.0025.

The R codes were successfully developed to impléethersimulation in this
study using a variety of packages such as “dvfBmyiormt,” and “mcmcse.” The
package of “dviBm” referring to discrete variatiooisa fractional Brownian motion was
developed by Coeurjolly (2009) to deal with tharaation of Hurst dimension of a
fractional Brownian motion by using discrete vaoas methods in presence of outliers
and/or an additive noise. In the package of “dvfBsimulation of a fractional Brownian
motion by using the circulant matrix method knoverf‘@rcFBM” was utilized to
generate a discretized sample path of a fBm wittstHaarameter H in (0,1) by using the
circulant matrix method.

The package of ‘mnormt’ standing for the multivégiaormal and t distributions
was developed by Azzalini (2012) to provide funieidor computing the density and the
distribution function of multivariate normal and hivariate “t” variates, and for

generating random vectors sampled from these lligioins. In the package of ‘mnormt,’
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multivariate normal distribution known as “dmnormas used to generate observations
from the multivariate normal (Gaussian) probabitlitgtribution.

The package of ‘mcmcse’ representing Monte Cardm&ird Errors for MCMC
was developed by Flegal and Hughes (2012) to peowadls for computing Monte Carlo
standard errors (MCSE) in Markov chain Monte C&@M&MC) settings. In the package
of ‘mcmcse,’ the function of “mcse” was utilized¢ompute Monte Carlo standard errors
for expectations. The whole R code programmingsted in Appendix C and Appendix

D.
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CHAPTER YV
CONCLUSIONSAND RECOMMENDATIONS
Conclusions

The primary focus of this study was the estimatbthe Hurst dimension of a
fBm with a Beta prior when the process is obsertdabth discrete and continuous
times. Furthermore, this study sought to investidedw sensitive the estimation would
be to the choice of the parameters in the Betailligton. Finally, developing the R
codes for these research questions was anothevgaurphe conclusions of this study can
be summarized as follows. The Bayesian estimaktuast dimension of a fBm with a
Beta prior when the process is observed at distirags was successfully developed. For
the continuous case, however, the probability messgenerated by two different Hurst
dimension processes are singular with respectdo ethher (Praskasa Rao, 2008), so it
follows that there is no likelihood function foretltontinuous case. It implies that we are
unable to develop a Bayesian estimate of a fBm aieta prior when the process is
observed at continuous times unless we find anatberinating probability measure. As
in Chapter IV, the estimated H appears to be grélasée the real H. Overestimation is
observed though the overestimation is less sewereah H increases. In addition, the
estimated H decreases as Beta parameters incrigaseag Alpha value. In contrast, the
estimated H increases as Alpha parameters incgpase a Beta value. All the Monte
Carlo errors appear to be close to 0, implying thatilts are precise. Moreover, the

estimate of the Hurst index for the real-world dataobtained from the daily Taiwan
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Stock Index in the year of 2011 appeared to be. W&hnwhile, the R codes were
successfully developed to implement the simulaitiothis study using a variety of
packages such as “dvfBm,” “mnormt,” and “mcmcse.”
Recommendations
In this study, the researcher has assumed thardpesal distribution is Beta
distribution. In such a case, the assumption oBtbi& proposal distribution led to the

following formula

1

exp{_%xTR—lx} T'(a+P) (hn&=1(1—hr)B-1

n 1 T(aT'(B)

(2m)2|R|2

11 e L Tp-1,, L@+ } a1 -1

0 nTexp{—3x"R X}r( )F(B)h (1-h) dh T(a+B) | g1 )
(f(h’IX)q(hIh’))= @m2IRZ - | Twrgha-hf
D e

(2m)2|R|2

oS e

(2m)2|R|2

Future studies may consider a different type oppsal distribution. Moreover,
the researcher utilized Beta distribution to begher distribution. Future studies may
choose a different prior distribution such as umifalistribution to see if interesting
estimation outcomes occur. One thing needs to texns that the estimation of the Hurst
dimension tends to be over estimated. Future studsey consider different algorithm in
computing the MCMC process. Overall, all the reske@uestions have been successfully
answered except for the continuous case. Futudgestmay consider overcoming such
an issue. Finally, this study focused on the sitedl@ata. Future studies may consider

estimating the Hurst dimension using different g/péreal-world data.
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Table 5

Simulation Results: True H=0.2

65

Real H Alpha Beta Estimated H Monte Carlo Error
0.2 0.1 0.1 0.874 0.0040
0.2 0.1 0.5 0.635 0.0079
0.2 0.1 1 0.504 0.0790
0.2 0.1 2 0.407 0.0086
0.2 0.1 3 0.363 0.0077
0.2 0.5 0.1 0.898 0.0019
0.2 0.5 0.5 0.678 0.0038
0.2 0.5 1 0.543 0.0037
0.2 0.5 2 0.428 0.0032
0.2 0.5 3 0.371 0.0037
0.2 1 0.1 0.927 0.0017
0.2 1 0.5 0.733 0.0025
0.2 1 1 0.598 0.0026
0.2 1 2 0.455 0.0026
0.2 1 3 0.399 0.0023
0.2 2 0.1 0.952 0.0011
0.2 2 0.5 0.811 0.0021
0.2 2 1 0.686 0.0022
0.2 2 2 0.539 0.0019
0.2 2 3 0.455 0.0022
0.2 3 0.1 0.968 0.0008
0.2 3 0.5 0.859 0.0016
0.2 3 1 0.756 0.0019
0.2 3 2 0.610 0.0019
0.2 3 3 0.520 0.0019




Table 6

Simulation Results: True H=0.3
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Real H Alpha Beta Estimated H Monte Carlo Error
0.3 0.1 0.1 0.904 0.0030
0.3 0.1 0.5 0.697 0.0058
0.3 0.1 1 0.580 0.0076
0.3 0.1 2 0.481 0.0091
0.3 0.1 3 0.448 0.0080
0.3 0.5 0.1 0.922 0.0018
0.3 0.5 0.5 0.728 0.0034
0.3 0.5 1 0.611 0.0032
0.3 0.5 2 0.502 0.0039
0.3 0.5 3 0.459 0.0040
0.3 1 0.1 0.936 0.0013
0.3 1 0.5 0.767 0.0022
0.3 1 1 0.646 0.0027
0.3 1 2 0.529 0.0027
0.3 1 3 0.468 0.0028
0.3 2 0.1 0.957 0.0011
0.3 2 0.5 0.824 0.0017
0.3 2 1 0.711 0.0018
0.3 2 2 0.584 0.0023
0.3 2 3 0.507 0.0020
0.3 3 0.1 0.968 0.0007
0.3 3 0.5 0.861 0.0014
0.3 3 1 0.765 0.0017
0.3 3 2 0.637 0.0019
0.3 3 3 0.550 0.0017




Table 7

Simulation Results: True H=0.4
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Real H Alpha Beta Estimated H Monte Carlo Error
0.4 0.1 0.1 0.920 0.0029
0.4 0.1 0.5 0.749 0.0067
0.4 0.1 1 0.645 0.0076
0.4 0.1 2 0.570 0.0083
0.4 0.1 3 0.512 0.0090
0.4 0.5 0.1 0.933 0.0014
0.4 0.5 0.5 0.772 0.0026
0.4 0.5 1 0.669 0.0037
0.4 0.5 2 0.577 0.0041
0.4 0.5 3 0.534 0.0040
0.4 1 0.1 0.945 0.0014
0.4 1 0.5 0.791 0.0024
0.4 1 1 0.692 0.0026
0.4 1 2 0.592 0.0028
0.4 1 3 0.533 0.0031
0.4 2 0.1 0.960 0.0009
0.4 2 0.5 0.838 0.0015
0.4 2 1 0.736 0.0020
0.4 2 2 0.625 0.0018
0.4 2 3 0.567 0.0020
0.4 3 0.1 0.970 0.0008
0.4 3 0.5 0.867 0.0014
0.4 3 1 0.777 0.0015
0.4 3 2 0.664 0.0018
0.4 3 3 0.594 0.0018




Table 8

Simulation Results: True H=0.6

Real H Alpha Beta Estimated H Monte Carlo Error
0.6 0.1 0.1 0.950 0.0020
0.6 0.1 0.5 0.831 0.0052
0.6 0.1 1 0.767 0.0077
0.6 0.1 2 0.694 0.0101
0.6 0.1 3 0.668 0.0093
0.6 0.5 0.1 0.955 0.0009
0.6 0.5 0.5 0.847 0.0022
0.6 0.5 1 0.769 0.0029
0.6 0.5 2 0.702 0.0049
0.6 0.5 3 0.665 0.0063
0.6 1 0.1 0.961 0.0008
0.6 1 0.5 0.857 0.0019
0.6 1 1 0.784 0.0021
0.6 1 2 0.712 0.0031
0.6 1 3 0.680 0.0041
0.6 2 0.1 0.969 0.0007
0.6 2 0.5 0.876 0.0014
0.6 2 1 0.804 0.0019
0.6 2 2 0.729 0.0018
0.6 2 3 0.683 0.0025
0.6 3 0.1 0.974 0.0006
0.6 3 0.5 0.893 0.0014
0.6 3 1 0.821 0.0015
0.6 3 2 0.741 0.0018
0.6 3 3 0.695 0.0018




Table 9

Simulation Results: True H=0.7
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Real H Alpha Beta Estimated H Monte Carlo Error
0.7 0.1 0.1 0.963 0.0013
0.7 0.1 0.5 0.869 0.0045
0.7 0.1 1 0.820 0.0060
0.7 0.1 2 0.757 0.0080
0.7 0.1 3 0.716 0.0168
0.7 0.5 0.1 0.967 0.0007
0.7 0.5 0.5 0.878 0.0020
0.7 0.5 1 0.822 0.0035
0.7 0.5 2 0.772 0.0052
0.7 0.5 3 0.724 0.0047
0.7 1 0.1 0.967 0.0008
0.7 1 0.5 0.887 0.0015
0.7 1 1 0.825 0.0024
0.7 1 2 0.768 0.0032
0.7 1 3 0.739 0.0056
0.7 2 0.1 0.972 0.0006
0.7 2 0.5 0.898 0.0009
0.7 2 1 0.841 0.0017
0.7 2 2 0.780 0.0021
0.7 2 3 0.743 0.0027
0.7 3 0.1 0.976 0.0006
0.7 3 0.5 0.911 0.0010
0.7 3 1 0.852 0.0012
0.7 3 2 0.786 0.0016
0.7 3 3 0.754 0.0021




Table 10

Simulation Results: True H=0.8
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Real H Alpha Beta Estimated H Monte Carlo Error
0.8 0.1 0.1 0.973 0.0010
0.8 0.1 0.5 0.900 0.0032
0.8 0.1 1 0.857 0.0061
0.8 0.1 2 0.789 0.0119
0.8 0.1 3 0.794 0.0095
0.8 0.5 0.1 0.871 0.0027
0.8 0.5 0.5 0.908 0.0019
0.8 0.5 1 0.866 0.0031
0.8 0.5 2 0.812 0.0056
0.8 0.5 3 0.784 0.0103
0.8 1 0.1 0.977 0.0005
0.8 1 0.5 0.916 0.0013
0.8 1 1 0.873 0.0018
0.8 1 2 0.815 0.0036
0.8 1 3 0.780 0.0084
0.8 2 0.1 0.979 0.0004
0.8 2 0.5 0.920 0.0010
0.8 2 1 0.878 0.0014
0.8 2 2 0.826 0.0028
0.8 2 3 0.787 0.0041
0.8 3 0.1 0.981 0.0004
0.8 3 0.5 0.928 0.0010
0.8 3 1 0.883 0.0012
0.8 3 2 0.833 0.0018
0.8 3 3 0.805 0.0028
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Figure 42 Changes in H Hat gsIncreases Given True H=0&= 3



= _\\\\\Q\\\\\\\ —©— True H
i} o L &-- H hat
I
< |
S 7 , I I I I
0.1 o 1 | |
Beta
Figure 43 Changes in H Hat gsIncreases Given True H=06= 0.5
\\\\\\\\6\\_\\_\\ —— True H
) o o 2-- H hat
I
< |
S 7 , I I I I
0.1 o 1 | |
Beta
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Figure 5Q Changes in H Hat gsIncreases Given True H=0a = 3
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Figure 51 Changes in H Hat gsIncreases Given True H=08= 0.5
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Figure 52 Changes in H Hat gsIncreases Given True H=08= 1
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Figure 53 Changes in H Hat gsIncreases Given True H=08= 2
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Figure 54 Changes in H Hat gsIncreases Given True H=08= 3
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Figure 55 Changes in H Hat gsIncreases Given True H=08= 0.5
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Figure 56 Changes in H Hat gsIncreases Given True H=08= 1.
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Figure 58 Changes in H Hat gsIncreases Given True H=09= 3
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Figure 6Q Change in H hat asIncreases Given True H=0fi51
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Figure 62 Change in H hat asIncreases Given True H=0£z3.
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Figure 64 Change in H hat asIncreases Given True H=0[21
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Figure 65 Change in H hat asIncreases Given True H=0{252
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Figure 66 Change in H hat asIncreases Given True H=02;3
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Figure 67 Change in H hat asIncreases Given True H=030.5
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Figure 68 Change in H hat asIncreases Given True H=0{3;1
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Figure 62 Change in H hat asIncreases Given True H=0352
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Figure 7Q Change in H hat asIncreases Given True H=0{3;3
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Figure 71 Change in H hat asIncreases Given True H=0$~0.5
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Figure 72 Change in H hat asIncreases Given True H=0§k1
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Figure 74 Change in H hat asIncreases Given True H=0§k3
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Figure 75 Change in H hat asIncreases Given True H=0{5:0.5
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Figure 76 Change in H hat asIncreases Given True H=0{5s1
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Figure 77 Change in H hat asIncreases Given True H=0{552
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Figure 78 Change in H hat asIncreases Given True H=0{573
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Figure 72 Change in H hat asIncreases Given True H=0360.5
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Figure 8Q Change in H hat asIncreases Given True H=0{651
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Figure 81 Change in H hat asIncreases Given True H=0{652
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Figure 82 Change in H hat asIncreases Given True H=0{673
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Figure 83 Change in H hat asIncreases Given True H=0{50.5
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Figure 84 Change in H hat asIncreases Given True H=0[51
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Figure 85 Change in H hat asIncreases Given True H=0[52
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Figure 86 Change in H hat asIncreases Given True H=0[53
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Figure 88 Change in H hat asIncreases Given True H=0{851
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Figure 82 Change in H hat asIncreases Given True H=0{852
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Figure 9Q Change in H hat asIncreases Given True H=0{8;3
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Figure 91 Change in H hat asIncreases Given True H=0{8;0.5
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Figure 92 Change in H hat asIncreases Given True H=0{9;1
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Figure 93 Change in H hat asIncreases Given True H=0{952
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Figure 94 Change in H hat asIncreases Given True H=0{9:3
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Figure 95 The Scatter Plot of 2011 Daily Taiwan Stock Index
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APPENDIX C

R CODE FOR SIMULATION
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HH#H#HE Simulation #A#H##H

library(mnormt)

library(dviBm)

library(coda)

library(mcmcse)

HiH A Defining the LikelinoaghEtion ####HHHHHHHHHHHH I

R=function(n,h){

R=matrix(0,n-1,n-1)

for(iin 1:(n-1)¥{

for(jin 1:(n-1)X

R[i,jI=(i"(2*h)+j*(2*h)-abs(i-))"(2*h))/(2*n"(2*h))

H}

return(R)}

L=function(x,h){

n=length(x)

m=rep(0,n-1)

R=R(n,h)

x=x[2:n]



111

sigma2=as.numeric(t(x)%*%solve(R)%*%x/n)
L=dmnorm(x/sqgrt(sigma2),m ,R)
L= ifelse(L==0, exp(-700), L)

return(L) }

#HHH#H###H Defining a Function for Metroplisstiag Algorithm  ##HHHHEHIHHH

mh<-function(x, alpha, beta,h0, N)

##HH Metroplis-Hasting Algorithm with Proposal Dilsution of Beta Distribution

HAHHE

vec<- vector("numeric”, N)
vec[l]<- hO

for (iin 2:N)

can<- rbeta(1, alpha, beta)
aprob<- min(1, L(x, can)/L(X¥)h
u<- runif(1)

vec|[i]<- ifelse (u< aprob, caec[i-1])
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vec

#HHHHHH#H#H Setting Number of Alpha, Beta, H anchng, #####H#H#H#H###

hO0=.1

h1=.9

nh=9

nsim=10000

n=100

Alpha=c(.1,.5, 1, 2, 3)

Beta<-Alpha

for(i in 1:nh){

print(L(x,H[i])) }

H=seq(h0,h1,length.out=nh)

I=length(H)

J=length(Alpha)

K=length(Beta)

record = matrix(0,1*J*K,5)
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for(i in 1:1)

for(j in 1:J)

for(k in 1:K)

print(c(i,j,k))

h = H[i] #H#HHE Setting HuBimesion ####

alpha=Alpha][j]

beta=Beta[K]

x = circFBM(n, h,plotfBm = FALSE)

vec<-mh (x, alpha, beta, h0, nsim)

##HH Computing Hurst dimension using differentalpbeta, and number of iterations

HAHHE

mean.hurst= mean(vec)
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hhh<-mcmc(data=vec, start=1, end=nsiimzh)

remc = mcse(hhh, size="sqroot", g=NULlethod="bm", warn=FALSE)

#H#HH Computing Monte Carlo Error #####

record[J*K*(i-1)+J*(j-1)+k,1] = HI[i]

record[J*K*(i-1)+J*(j-1)+k,2] = alpha

record[J*K*(i-1)+J*(j-1)+k,3] = beta

record[J*K*(i-1)+J*(j-1)+k,4] = mean.hurs

record[J*K*(i-1)+J*(j-1)+k,5] = remc$se

write.table(record,"temp.csv”,append = TRUE,sep sow.name =FALSE,col.name

=FALSE)
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APPENDIX D

R CODE FOR REAL DATA
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##H# For Real Data #####

library(mnormt)
library(dvfBm)
library(coda)
library(mcmcse)
n=247

N=10000
h0=0.1

h=0.3

X <-¢(9039.63, 9045.11, 9014.32, 8866.23, 8908258.05, 8810.77, 8992.01,
9034.17, 8985.34, 8998.89, 8889.84, 9023.30, 9058%35.29, 8983.59, 9001.74,
9010.41, 9093.54, 9122.16, 9220.69, 9107.96, 8963812.41, 8666.61, 8679.12,
8740.32, 8738.71, 8763.69, 8867.16, 8744.81, 8@085361.16, 8597.87, 8611.79,
8675.37, 8661.63, 8815.52, 8769.87, 8692.10, 8818.34.41, 8566.91, 8616.29,
8493.83, 8317.38, 8190.50, 8343.79, 8421.66, 8528229.93, 8589.71, 8645.37,
8587.99, 8538.44, 8605.83, 8683.69, 8697.84, 837/3384.84, 8904.44, 8922.75,
8839.22, 8727.95, 8787.75, 8828.63, 8752.56, 8648.404.48, 8893.07, 8980.43,
9015.91, 8894.01, 9012.28, 9088.97, 9050.49, 9318337.30, 8930.24, 8997.73,
9001.80, 9048.25, 9073.88, 8977.77, 9039.55, 8998F17.25, 8885.40, 8952.25,
8944.38, 8767.30, 8730.23, 8732.30, 8797.29, 8808:257.66, 8860.58, 8999.84,
8981.71, 9024.54, 9025.21, 9044.85, 9020.60, 964831.67, 8737.24, 8833.86,
8739.84, 8671.45, 8679.15, 8571.93, 8663.86, 8608367.46, 8456.36, 8536.13,
8540.35, 8582.08, 8684.39, 8801.51, 8777.22, 849885.00, 8782.72, 8749.55,
8581.43, 8480.26, 8495.51, 8494.70, 8550.16, 8928@12.53, 8705.84, 8770.95,
8764.68, 8700.59, 8775.18, 8739.83, 8737.72, 8628629.09, 8466.35, 8472.37,
7962.87, 7769.60, 7261.54, 7717.58, 7566.39, 782%.869.17, 7886.93, 7807.67,
7721.19, 7414.36, 7348.71, 7369.43, 7592.51, 7359438.52, 7482.92, 7654.37,
7665.22, 7799.18, 7801.28, 7637.90, 7496.24, 7868601.29, 7568.22, 7530.00,
7455.50, 7374.58, 7494.29, 7572.83, 7485.60, 7515419.49, 7101.34, 7026.49,
7031.13, 7148.38, 7090.12, 7222.16, 7128.66, 69437@61.17, 7094.61, 7210.92,
7348.86, 7390.06, 7423.18, 7430.50, 7412.88, 7352393.73, 7347.93, 7272.51,
7352.43, 7506.08, 7437.77, 7548.36, 7693.24, 7837347.24, 7500.54, 7603.45,
7581.61, 7623.16, 7652.47, 7646.12, 7431.26, 7369472.16, 7515.50, 7520.95,
7333.57, 7296.09, 7166.26, 7064.61, 6967.66, 6248906.34, 6844.30, 6966.58,
7001.59, 7132.41, 7164.00, 7149.58, 7075.84, 7804(18.64, 6891.47, 6975.62,
6883.08, 6912.54, 6874.18, 6783.02, 6780.64, 66586%/8.63, 6968.22, 7035.10,
7125.04, 7085.50, 7086.10, 7026.86, 7109.85)
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time=numeric(n)

for(iin 1:n){

{

time[i]=i

1}

time

#iH#HHHHHHHHH defining the likelihooadtion #H###HHHHHHHHHHHHH

R=function(n,h){

R=matrix(0,n-1,n-1)

for(iin 1:(n-1)){

for(jin 1:(n-1)){

R[1,jI=(i"(2*h)+j*(2*h)-abs(i-))*(2*h))/(2*n"(2*h))

1}

return(R)}

L=function(x,h){
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n=length(x)
R=R(n,h)

x=x[2:n]

time=time[2:n]

R1=R+diag(0.1, n-1)

sigma2=as.numeric(t(x)%*%solve(R1)%*%x/n)

est.mean=as.numeric((t(time)%*%solve(R1)%*%x)/ei)%*%solve(R1)%*%time))

m=rep(est.mean,n-1)

L=dmnorm(x/sqrt(sigma2),m ,R1)

L= ifelse(L==0, exp(-700), L)

return(L) }

#Hp#HHHHHHHHH###  defining a function for Metropfiasting algorithm  ########H###HE

##### Metroplis-Hasting algorithm with proposaltdizution of beta distribution #####

mh<-function(x, alpha, beta, N)

{
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vec<- vector("numeric", N)

vec[l]<- hO
for (iin 2:N)
{

can<- rbeta(1, alpha, beta)
aprob<- min(1, L(x, can)/L(X¥)h
u<- runif(1)

vec[i]<- ifelse (u< aprob, caec[i-1])

vec

}
vec<-mh (x, 0.1, 3, 10000)
##### Computing Hurst dimension using differentalpoeta, and number of iterations
HitHHH

mean.hurst=mean(vec)

library(coda)

hhh<-mcmc(data=vec, start=1, end=10000, thin=1)

summary(hhh) #H###HE Give summary statigtisss#
mcse(hhh, size="sqroot", g=NULL, method="bm", wafALSE)

##### Computing Monte Carlo Error #####
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