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Abstract

This thesis determines the type of a particular discrete Painlevé equation using a geometric

approach based on Sakai theory. Previous work on discrete Painlevé equations has connected

the dynamics of these equations to actions of their symmetry groups on certain families of

rational algebraic surfaces. There is a known procedure for identifying the geometry of a

discrete Painlevé equation from its birational mapping. This thesis uses this known procedure

to determine the type of a particular discrete Painlevé equation appearing in [9].
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1 Introduction

Painlevé equations are an important family of nonlinear differential equations that were first

described by P. Painlevé in 1902 [18]. Painlevé was studying nonlinear ordinary differential

equations in search of purely nonlinear special functions. By studying the case where the only

movable singularities are poles (now called the Painlevé property), Painlevé and his student

B. Gambier found six new families of equations, called Painleve equations PI . . .PVI (see

Figure 1). The solutions to these equations, Painlevé transcendents, are nonlinear special

functions that are increasingly important in a wide range of applications.

(PI)
d2y

dt2
= 6y2 + t;

(PII)
d2y

dt2
= 2y3 + ty + α;

(PIII)
d2y

dt2
=

1

y

(
dy

dt

)2

− 1

t

dy

dt
+

1

t
(αy2 + β) + γy3 +

δ

y
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dt2
=

1
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(
dy

dt

)2

+
3

2
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β

y
;
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dt2
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(
1

2y
+

1

y − 1

)(
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dt

)2

− 1

t

dy

dt
+

(y − 1)2

t2

(
αy +

β

y

)
+ γ

y

t
+ δ

y(y + 1)

y − 1
;

(PVI)
d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(
1

t
+

1

t− 1
+

1

y − t

)
dy

dt
+

y(y − 1)(y − t)

t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
.

Figure 1: Painlevé Equations PI . . .PVI

In contrast, discrete Painlevé equations are a much more recent object of study. These

equations were originally defined as second-order nonlinear recurrence relations that became

a differential Painlevé equation in a continuous limit. The first discrete Painlevé equation

was explicitly identified in 1990, coming from the study of quantum gravity [6]. In the coming

decades, mathematicians obtained many examples of discrete Painlevé equations via several

approaches, such as applying the singularity confinement criterion to deautonomizations of
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QRT maps [8]. However, at the time, there was no clear understanding of the nature of

discrete Painlevé equations. Instead, there was a large collection of various examples whose

labeling in terms of continuous limits became increasingly convoluted.

It would take another decade for the appropriate definition and classification scheme to

emerge. In 2001, H. Sakai published his seminal paper on the geometric theory of Painlevé

equations [12]. Using techniques from algebraic geometry, Sakai defined discrete Painlevé

equations in terms of actions of an affine Weyl group on a certain family of rational algebraic

surfaces. This introduced a new way of classifying the discrete Painlevé equations, one

based on their associated rational surfaces, of which there are 22 different types (see Figure

2). Since then, Sakai theory has reached a relatively mature state. For more information on

the history of discrete Painlevé equations, refer to [8] and [15].

Unfortunately, Sakai theory has a high barrier to entry. Fully understanding the scheme

requires significant knowledge of several domains of mathematics, such as algebraic geometry

and representation theory. Notably, though, the Painlevé equations are of interest in appli-

cations. For example, the discrete Painlevé equations have applications to studying random

matrices and orthogonal polynomials (see [14], [19], [20], [2], and [13]). Thus, it is important

for applied mathematicians to recognize and describe discrete Painlevé equations when they

encounter them, making the high barrier to entry concerning.

The project that I’m working on is to catalogue various examples of discrete Painlevé

equations that were discovered in applications and labelled by their continuous limits in

terms of the algebro-geometric data of Sakai theory. Namely, starting from a second-order

nonlinear recurrence relation, we resolve its singularity structure to make it a well-defined

discrete dynamic on one of the families of Sakai surfaces characterized by a translation

element in the affine Weyl symmetry group of the family. Such a procedure was carefully

described in [4]. In this paper, we focus on one particular example of such an identification.

We study a recurrence relation obtained in a recent paper, [9], by Min and Wang, who

6
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Figure 2: Sakai’s Scheme: Surface Type (above) and Symmetry Type (below). Image
adapted from Anton Dzhamay, used with permission.
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studied orthogonal polynomials for a Gaussian weight with a jump.

2 Method

In this section, we give a very brief outline of the known identification procedure. Later, we

explain this process in detail. We start with a recurrence relation in two variables. Using

this, we can define rational maps of the complex plane to itself for each variable. Next, we

compactify our space from C×C to P1×P1 by adding points at infinity in each coordinate.

Finally, we resolve the indeterminacies of our map, for which we expect to find eight, using

the blow-up procedure from algebraic geometry.

The procedure described in the previous paragraph created a family of rational algebraic

surfaces. Associated with this family of surfaces is an algebraic object known as the Picard

lattice, which can be used to study the dynamic of our system. The Picard lattice of

our family of surfaces contains two important sublattices which can be described by certain

graphs, known as Dynkin diagrams. One sublattice characterizes the geometry of our surface

family, and its Dynkin diagram defines the surface type of our dynamic. A dual sublattice

characterizes the symmetry of our surface family, to which we associate an affine Weyl group,

which is a symmetry group of our family. The Dynkin diagram of this sublattice defines the

symmetry type of our dynamic.

Our dynamic induces a linear map on the Picard lattice. We then identify this linear map

with a translation element of the associated Weyl group. The triple consisting of the surface

type, the symmetry type, and the translation element is the abstract characterization of a

discrete Painlevé equation in Sakai theory.

The final step is to construct an explicit matching of our dynamic to a dynamic on one

of the 22 surface families by finding a change of coordinates. For each surface type, we have

some standard examples of equations, usually corresponding to short translation elements.
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It often happens that our final change of coordinates reduces our original equation to one

of these standard examples. In such cases, we first find a matching of the surface type by

constructing a preliminary change of basis between the two Picard lattices. We then identify

the dynamic by matching the surface sublattices and computing the associated translation

element. If this translation element is different but conjugated with one of the standard

examples, then we must adjust our preliminary change of basis by an action of some element

of our Weyl group. Finally, we can extend the change of basis on the Picard lattice to an

explicit change of coordinates that transforms our discrete Painlevé equation to a standard

example.

3 Understanding the Geometry

Discrete Painlevé equations are usually written as maps from P1 × P1 to itself defined by

rational functions that also have rational inverses (such maps are called birational). Here,

P1 is the complex projective line (sometimes called the Riemann sphere), consisting of the

complex numbers adjoined with an unsigned point at infinity. To compactify C × C with

(x, y) coordinates to P1 × P1, we introduce new coordinates, X = 1/x and Y = 1/y, such

that the value X = 0 corresponds to the point at infinity in the x coordinate. To cover the

entire P1×P1 space, we need a total of 4 coordinate charts: (x, y), (X, y), (x, Y ), and (X, Y )

(see Figure 3).

Since our maps are given by birational functions, the only issues come from "division by

zero". An important property of compactifying from C× C to P1 × P1 is a rigorous way of

understanding expressions of the form 1
0
. Namely, dividing any non-zero number by 0 will

evaluate to the point at infinity. Thus, when a map produces an expression where only the

denominator vanishes, the map will send that point to the zero of the inverse coordinate.

However, it is also possible for maps to result in 0
0

expressions, which are still indeterminate

9



Hx : x = 0

Hy : y = 0

Hx : X = 0

Hy : y = 0

Hx : x = 0

Hy : Y = 0

Hx : X = 0

Hy : Y = 0

Figure 3: Charts Covering P1 × P1. Image by Anton Dzhamay, used with permission.

on P1 × P1. We need to introduce more charts to resolve these.

To construct these new charts, we will use the blow-up procedure from algebraic geometry.

The blow-up procedure resolves 0
0

indeterminacies by "lifting" the lines that pass through

the blow-up point and separating them based on their slope. This lifting corresponds to

a projection π from the blown-up space to the original space such that π−1 is one to one

everywhere except the point being blown up, which instead maps to a new projective line P1

(see Figure 4). This new line is called an exceptional divisor, denoted by Ei or Fi throughout

this paper. Note that for any line L containing the blown-up point, L−Ei or L−Fi represents

the proper transform under π−1, which is the mapping of every point on the line except the

blown-up point.

Algebraically, when we blow up a point (x = x0, y = y0), we introduce two new coordinate

charts: (u, v) and (U, V ). In the (u, v) chart, u = x− x0 and v = y−y0
x−x0

. In the (U, V ) chart,

U = x−x0

y−y0
and V = y − y0. Thus, the blow-up is a coordinate substitution such that

10



π

E

L− E

L

M − E

M

Figure 4: Visualization of the Blow-Up Procedure. Image by Anton Dzhamay, used with
permission.

x = u + x0 = UV + x0 and y = uv + y0 = V + y0. In the (u, v) chart, the line u = 0

corresponds to the exceptional divisor, and in the (U, V ) chart, the line V = 0 corresponds

to the exceptional divisor. When we evaluate our previously indeterminate mapping in the

correct blow-up chart, we get some cancellation of zeroes that resolves the indeterminacy.

After we have blown up all the necessary points (explained in a later section), we will

have some rational algebraic surface, X. This surface will have an associated lattice called

the Picard lattice, denoted Pic(X). The Picard lattice is a free abelian group generated

by classes of certain basic curves. The Picard lattice of P1 × P1 is generated by classes of

coordinate lines (e.g. Hx and Hy). Each time we blow up a point, we add an extra element

to the basis of the Picard lattice, namely the class of the exceptional divisor of the blow-up.

Notationally, Ei corresponds to the class of the exceptional divisor Ei, so Ei = [Ei] with

respect to linear equivalence. Similarly, Hx = [Hx=a] and Hy = [Hy=a].
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The Picard lattice also has the additional structure of an intersection product, denoted

by •. For example, Hx • Hy = 1, since a horizontal line and vertical line will intersect

once. By considering the intersection product of a class with itself, one can determine the

self-intersection index of a class. For example, Hx • Hx = 0, since two vertical lines will

not intersect, and the same for Hy •Hy. Notably, it is also possible for a self-intersection

number to be negative. For classes of exceptional divisors, E•E = −1, and we also encounter

a self-intersection index of −2 or lower. Such curves are of special interest, as demonstrated

in a later section.

4 The Applied Example

The particular example for this article comes from the study of orthogonal polynomials.

This discrete Painlevé equation comes from Min and Wang in [9], who studied polynomials

orthogonal to a Gaussian weight with a jump. Such polynomials satisfy the so-called three-

term recurrence relation, and the coefficients in this relation evolve according to this discrete

Painlevé equation. After relabeling, we get the recurrence relation


2x+ 2x− 2n− 1 = 2y(sy),

(2x− n)2 = 4xyy.

(1)

We will use the following notation: x = xn, x = xn+1, and x = xn−1, and the same for y.

We can solve the above recurrence relations for x and y in terms of x and y. Furthermore,

by decrementing the value of the index in the first equation, we can solve for x in terms of

x and y. Similarly, by incrementing the value of the index in the second equation, we can

solve for y in terms of x and y. This gives the following mappings:

12



Forward step:


x =

1

2
+ n− x+ sy − y2,

y =
(1 + n− 2x)2

4xy
.

Backward step:


x = −1

2
+ n− 2x+ sy − y2,

y =
(n− 2x)2

4xy
.

(2)

After substituting, we get the following birational maps:


φ(x, y) =

(
1

2
+ n− x+ sy − y2, (n− 2(x+ y(−s+ y)))2

2y(−1− 2n+ 2x− 2sy + 2y2

)
,

φ−1(x, y) =

(
−(n− 2x)4 − 4s(n− 2x)2xy + 8x2(1− 2n+ 2x)y2

16x2y2
,
(n− 2x)2

4xy

)
.

(3)

We consider φ the forward step and φ−1 the backward step.

5 Determining the Surface X and its Type

These mappings are well defined for all points in P1 × P1 except where the numerator and

denominator of a mapping both vanish. Such points are called indeterminacies or base points.

Using a computer algebra system, we can see that the mappings are indeterminate for the

points q1(x = n
2
, y = 0), q3(x = 0, Y = 0), and q4(X = 0, Y = 0). The reasoning for this

choice of indices will become apparent later.

These three base points occur in the affine charts, which are the 4 original charts on

our P1 × P1 space. However, we must also check for any more indeterminate points that

are infinitely close to these base points. To compute such points, we can use the blow-

up procedure on our known base points and determine any indeterminacies on our new

exceptional divisors using the new charts.
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After blowing-up, we must continue this process until no more indeterminacies are iden-

tified. Completing this process, we find the following cascades.

q1

(
x =

n

2
, y = 0

)
← q2(u1 = 0, v1 = 0),

q3(x = 0, Y = 0),

q4(X = 0, Y = 0)← q5(U4 = 0, V4 = 0)← q6(U5 = −1, V5 = 0)

← q7(U6 = −s, V6 = 0)← q8

(
U7 = −

1

2
− n− s2, V7 = 0

)
.

(4)

At this point, we see that the forward and the backward maps are completely resolved.

We can now construct a diagram showing the relationship between our P1 × P1 space and

our rational surface, X. In this diagram (5), red lines correspond to −1 curves and blue lines

correspond to −2 curves. The index of a curve is the self-intersection number of its class,

which is obtained from the intersection product on Pic(X).

Hy y = 0

Hy y =∞

Hx

x = 0

Hx

x =∞

q1 q2

q3 q4
q5 q6

q7
q8 Blq1···q8

Hx − F3

Hy − F1 − F2

F1 − F2

F2

F3

Hy − F3 − F4

F4 − F5

F5 − F6

Hx − F4 − F5

F6 − F7 F7 − F8

F8

Figure 5: The Base Point Configuration and Visualization of the Surface X.
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6 Identifying the Surface Type and Induced Dynamics

on the Picard Lattice

Since we have the diagram of our surface X, we can construct the Dynkin diagram of our

surface roots (6). The surface roots correspond to the irreducible components of the anti-

canonical divisor class, −KX = 2Hx+2Hy−F12345678. For brevity, we introduce the notation

−Fij...k = −Fi − Fj − . . . − Fk. Almost all -2 curves on our rational surface corresponds to

a node of this Dynkin diagram, and intersecting curves correspond to connected nodes. The

curve F1 − F2, however, is not a surface root, since it is disjoint from −KX. Such curves

are called nodal curves, and they are outside the scope of this thesis. While the Dynkin

diagram can be relabeled up to its symmetries, this particular labeling of deltas was chosen

to make the upcoming change of basis clearer. By matching this diagram to the geometry

of the canonical examples in [15], we see that this configuration of surface roots defines an

A
(1)
2 /E

(1)
6 surface.

δ0 = F7 − F8,

δ1 = Hy − F12,

δ2 = Hx − F45,

δ3 = F5 − F6,

δ4 = F4 − F5,

δ5 = Hy − F34,

δ6 = F6 − F7.

δ0

δ1 δ2 δ3 δ4 δ5

δ6

δ0 = E7 − E8,

δ1 = E1 − E2,

δ2 = Hq − E15,

δ3 = E5 − E6,

δ4 = Hp − E35,

δ5 = E3 − E4,

δ6 = E6 − E7.

Figure 6: The Surface Root Dynkin Diagram, With Roots for the Applied Example (Left)
and Standard Example (Right). This diagram is known as an affine Dynkin diagram of type
E

(1)
6 .

At this point, we can construct a preliminary change of basis between our Pic(X) and

the standard Picard lattice. This can be done by creating a system of equations by equating

each δi of our surface to δi in the standard example. For future convenience, we relabeled

15



H1 from [15] as Hq and H2 as Hp. Thus, the preliminary change of basis can be computed

from the following system of equations.

Hy − F1 − F2 = E1 − E2, F5 − F6 = E5 − E6,

Hy − F3 − F4 = E3 − E4, F6 − F7 = E6 − E7,

Hx − F4 − F5 = Hq − E1 − E5, F7 − F8 = E7 − E8.

F4 − F5 = Hp − E3 − E5,

(5)

To compute the change of basis, we must either compute each element of our Picard

lattice in terms of elements of the standard Picard lattice, or vice versa. One label mapping

that satisfies the system of equations is

Hx = Hq +Hp − E1 − E3, Hq = Hx +Hy − F1 − F4,

Hy = Hp, Hp = Hy,

F1 = Hp − E1, E1 = Hy − F1,

F2 = E2, E2 = F2,

F3 = E4, E3 = Hy − F4,

F4 = Hp − E3, E4 = F3,

F5 = E5, E5 = F5,

F6 = E6, E6 = F6,

F7 = E7, E7 = F7,

F8 = E8. E8 = F8.

(6)

Note that we could reorient our Dynkin diagram through various symmetries that would

change how we match the surface roots of the two Picard lattices, hence why our first change

of basis is only preliminary.
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Now that we have matched geometries, we must determine the induced dynamics on

Pic(X). Let φ∗ be the function from Pic(X) to itself induced by the dynamics of φ. One can

compute how our exceptional divisors evolve, as well as the three other −2 curves, directly

from our mappings in different charts. The evolution is written below, where left arrows

indicate action under φ−1
∗ and right arrows indicate action under φ∗.

F7 − F8 ← Hy − F1 − F2, Hx − F4 − F5 ← F4 − F5,

Hy − F1 − F2 ← Hy − F3 − F4, F5 − F6 ← F5 − F6,

F6 − F7 ← Hx − F4 − F5, F4 − F5 ← F6 − F7,

F1 − F2 ← F1 − F2, Hy − F3 − F4 ← F7 − F8,

Hx + 2Hy − F1 − F4 − F5 − F6 − F7 ← F2, F3 ← F8.

Hx + 2Hy − F4 − F5 − F6 − F7 − F8 ← F3,

(7)

Hy − F1 − F2 → Hy − F3 − F4, F4 − F5 → F6 − F7,

Hy − F3 − F4 → F7 − F8, F5 − F6 → F5 − F6,

Hx − F4 − F5 → F4 − F5, F6 − F7 → Hx − F4 − F5,

F1 − F2 → F1 − F2, F7 − F8 → Hy − F1 − F2,

F2 → Hx − F1, F8 → Hx − F3.

F3 → F8,

(8)

Treating the above evolution as two linear systems of equations of 10 variables, namely

Hx,Hy, and F1···8, we can directly compute the mappings of these individual classes under
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φ∗ and φ−1
∗ . The mapping under φ∗ is as follows:

Hx → 4Hx + 2Hy − F1122334567, F4 → 2Hx +Hy − F12347,

Hy → 2Hx +Hy − F1234, F5 → 2Hx +Hy − F12346,

F1 → Hx − F2, F6 → 2Hx +Hy − F12345,

F2 → Hx − F1, F7 → Hx +Hy − F123,

F3 → F8, F8 → Hx − F3.

(9)

The mapping under φ−1
∗ is as follows:

Hx → Hx + 2Hy − F4567, F4 → Hx +Hy − F456,

Hy → 2Hx + 4Hy − F1244556678, F5 → Hy − F6,

F1 → Hx + 2Hy − F24567, F6 → Hy − F5,

F2 → Hx + 2Hy − F14567, F7 → Hy − F4,

F3 → Hx + 2Hy − F45678, F8 → F3.

(10)

7 Comparing the Dynamics and Determining the Final

Change of Basis

We can now compare the dynamics of our applied example to the dynamics of the standard

example. To compare the dynamics on the level of translation elements, we need to determine

the symmetry roots of our surface. The symmetry roots are classes in the Picard lattice that

are orthogonal to each of the surface roots. These are notable since reflections about these

symmetry roots fix the geometry of our surface. We can determine the symmetry roots of

our example by applying the label mapping to the symmetry roots of the standard example.
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α0 = Hq +Hp − E5 − E6 − E7 − E8

= (Hx +Hy − F1 − F4) + (Hy)− (F5)− (F6)− (F7)− (F8)

= Hx + 2Hy − F1 − F4 − F5 − F6 − F7 − F8

α1 = Hq − E3 − E4 = (Hx +Hy − F1 − F4)− (Hy − F4)− (F3)

= Hx − F1 − F3

α2 = Hp − E1 − E2 = (Hy)− (Hy − F1)− (F2)

= F1 − F2

(11)

These α roots are the symmetry roots of our example.

α0 = Hx + 2Hy − F145678

α1 = Hx − F13

α2 = F1 − F2

α0

α1 α2

α0 = Hq +Hp − E5678

α1 = Hq − E34

α2 = Hp − E12

Figure 7: The Symmetry Root Dynkin Diagram, With Roots for the Applied Example
(Left) and Standard Example (Right). This diagram is known as an affine Dynkin diagram
of type A(1)

2 .

Let δ be the anti-canonical divisor class −KX = 2Hx + 2Hy − F12345678. We can now

use the divisor mapping we computed earlier to determine the evolution of our α roots. For

example, the mapping of α0 under φ∗ can be computed as follows:

α0 = Hx + 2Hy − F1 − F4 − F5 − F6 − F7 − F8

7−→ (4Hx + 2Hy − 2F1122334567) + 2(2Hx +Hy − F1234)− (Hx − F2)

− (2Hx +Hy − F12347)− (2Hx +Hy − F12346)− (2Hx +Hy − F12345)

− (Hx +Hy − F123)− (Hx − F3)

= (Hx + 2Hy − F145678)− (2Hx + 2Hy − F12345678)

= α0 − δ

(12)
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Thus, α0 7→ α0− δ. Using similar computations, we find that α1 7→ α1 + δ and α2 7→ α2.

Let α⃗ = ⟨α0, α1, α2⟩. We expect the dynamics of the α roots to be a translation by a vector

times δ. Indeed, we find the following dynamics of α⃗ under φ∗:

φ∗(α⃗) = α⃗ + ⟨−1, 1, 0⟩δ (13)

Let ψ∗ be the dynamics of the standard example from [15]. We know ψ∗(α⃗) = α⃗ +

⟨0, 1,−1⟩δ. This is a different translation vector from our applied dynamic, which we will

show to be conjugated. Thus, we need to adjust our change of basis so our translation vector

matches the standard translation vector.

To adjust our change of basis, we must express φ∗ and ψ∗ in terms of generators of the

extended affine Weyl group of our surface, W̃
(
A

(1)
2

)
. The extended affine Weyl group is a

group of symmetries generating the dynamics defined as the semidirect product Aut
(
A

(1)
2

)
⋉

W
(
A

(1)
2

)
. Aut

(
A

(1)
2

)
is the same as the group of automorphisms of the symmetry root

diagram, which is isomorphic to the dihedral group D3. Thus, it can be generated by the

reflections defined in the diagram below. W
(
A

(1)
2

)
can be generated by wi = rαi

, which

acts on Pic(X) as defined below. The group W̃
(
A

(1)
2

)
is generated by the union of these

generators.

α0

α1 α2

σ0

σ2 σ1
wi(C) = rαi

(C) = C + (C • αi)αi,

where C ∈Pic(X)

Figure 8: Generators of W̃
(
A

(1)
2

)
To decompose our translation vectors, we can apply the generators of W̃ to α⃗ such that

it acts of the components of the vector αi the same way it would act on the surface roots αi.
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Note that δ = α0 + α1 + α2. Thus, we can decompose ψ∗ in following way. We want to find

the series of elements that can invert the mapping such that ψ∗ ◦ · · · is the identity element.

Thus, we want to act by elements until our translation vector becomes the zero vector. We

introduce the notation αij...k = αi + αj + . . .+ αk.

ψ∗ = ⟨α0, α1 + δ, α2 − δ⟩

= ⟨α0, α0112,−α01⟩

ψ∗ ◦ w2 = ⟨α0 + (−α01), α0112 + (−α01),−(−α01)⟩

= ⟨−α1, α12, α01⟩

ψ∗ ◦ w2 ◦ w0 = ⟨α1, α2, α0⟩

ψ∗ ◦ w2 ◦ w0 ◦ σ1 = ⟨α0, α2, α1⟩

ψ∗ ◦ w2 ◦ w0 ◦ σ1 ◦ σ0 = ⟨α0, α1, α2⟩

(14)

Thus, ψ∗ ◦ w2 ◦ w0 ◦ σ1 ◦ σ0 = id, the identity element of W̃ . Each of those generators

are involutions, so that equation can be rewritten as ψ∗ = σ0 ◦ σ1 ◦ w0 ◦ w2. This is the

decomposition of ψ∗ into generators of W̃ . Similarly, we can decompose φ∗ into generators

using the same process.

φ∗ = ⟨α0 − δ, α1 + δ, α2⟩

= ⟨−α12, α0112, α2⟩

φ∗ ◦ w0 = ⟨α12, α01,−α1⟩

φ∗ ◦ w0 ◦ w2 = ⟨α2, α0, α1⟩

φ∗ ◦ w0 ◦ w2 ◦ σ2 = ⟨α0, α2, α1⟩

φ∗ ◦ w0 ◦ w2 ◦ σ2 ◦ σ0 = ⟨α0, α1, α2⟩

(15)

Thus φ∗ ◦w0 ◦w2 ◦σ2 ◦σ0 = id, so φ∗ = σ0 ◦σ2 ◦w2 ◦w0. We have now decomposed both
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mappings into generators of W̃ . The next step is to describe φ∗ as a conjugation of ψ∗. Note

that the translation vectors for ψ∗ are φ∗ are nearly the same, but with their first and third

entries swapped. This suggests that σ1, which simply swaps the first and second entries of α⃗,

will be the conjugation element. We can demonstrate this conjugation through swapping the

positions of pairs of elements, denoted by bolded symbols in the following equations. Note

that when σ1 is "passed through" another generator, it acts on the index of that generator,

i, the same way it acts on the index of αi.

σ1 ◦ φ∗ ◦ (σ1)−1 = σ1 ◦ σ0 ◦ σ2 ◦ w2 ◦ w0 ◦ σ1

= σ1 ◦ σ0 ◦ σ2 ◦ w2 ◦ σ1 ◦ w2

= σ1 ◦ σ0 ◦ σ2 ◦ σ1 ◦ w0 ◦ w2

= σ1 ◦ σ1 ◦ σ0 ◦ σ1 ◦ w0 ◦ w2

= (σ1 ◦ σ1) ◦ σ0 ◦ σ1 ◦ w0 ◦ w2

= σ0 ◦ σ1 ◦ w0 ◦ w2

= ψ∗

(16)

This demonstrates that we can indeed write ψ∗ as σ1 ◦ φ∗ ◦ (σ1)−1.

Now that we have a conjugation between ψ∗ and φ∗, we can use this conjugation element

to adjust our preliminary change of basis to the final change of basis. Note that σ1 acts on

the Picard lattice as a sequence of three reflections: reflecting over Hq − E5 − E6, reflecting

over E1 − E7, and reflecting over E2 − E8. First, it is convenient to apply σ1 to our basis of

the Picard lattice of the standard example.
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σ1(Hq) = Hq, σ1(E4) = E4,

σ1(Hp) = Hq +Hp − E5 − E6, σ1(E5) = Hq − E6,

σ1(E1) = E7, σ1(E6) = Hq − E5,

σ1(E2) = E8, σ1(E7) = E1,

σ1(E3) = E3, σ1(E8) = E2.

(17)

With the mapping of these individual classes under σ1, we can compute the final change

of basis through substitution. The label mapping for Hx is computed as an example.

Hx = σ1(Hq +Hp − E1 − E3)

= σ1(Hq) + σ1(Hp)− σ1(E1)− σ1(E3)

= (Hq) + (Hq +Hp − E5 − E6)− (E7)− (E3)

= 2Hq +Hp − E3 − E5 − E6 − E7

(18)

Using the same process for each element of the basis for the standard Picard lattice, and

then solving for the inverse change of basis as well, we get the following relationships.
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Hx = 2Hq +Hp − E3 − E5 − E6 − E7, Hq = Hx +Hy − F1 − F4,

Hy = Hq +Hp − E5 − E6, Hp = Hx + 2Hy − F1 − F4 − F5 − F6,

F1 = Hq +Hp − E5 − E6 − E7, E1 = F7,

F2 = E8, E2 = F8,

F3 = E4, E3 = Hy − F4,

F4 = Hq +Hp − E3 − E5 − E6, E4 = F3,

F5 = Hq − E6, E5 = Hx +Hy − F1 − F4 − F6,

F6 = Hp − E5, E6 = Hx +Hy − F1 − F4 − F5,

F7 = E1, E7 = Hy − F1,

F8 = E2. E8 = F2.

(19)

This new change of basis results in the following labeling of surface roots:

δ0 = Hy − F1 − F2, δ4 = F5 − F5,

δ1 = F7 − F8, δ5 = Hy − F3 − F4,

δ2 = F6 − F7, δ6 = Hx − F4 − F5.

δ3 = F5 − F6,

(20)

and the following labeling of symmetry roots:

α0 = F1 − F2,

α1 = Hx − F1 − F3,

α2 = Hx + 2Hy − F1 − F4 − F5 − F6 − F7 − F8.

(21)

Using the same procedure from the beginning of this section with these new symmetry
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roots, we compute that φ∗(α⃗) = ψ∗(α⃗) = α⃗+⟨0, 1,−1⟩δ. This confirms that this final change

of basis is the label mapping that matches the two dynamics.

8 Determining the Change of Coordinates

Now that we have the correct change of basis from the standard example to our applied

example, we need to find the explicit change of coordinates that induces that change of

basis. From [15], the standard example has the following point configuration,

Hp p = 0

Hp p =∞

Hq

q = 0

Hq

q =∞

p1

p2

p5

p6p7p8

p3p4 p1(Q = 0, p = 0)← p2(u1 = 0, v1 = −a2),
p3(q = 0, P = 0)← p4(U3 = a1, V3 = 0),

p5(Q = 0, P = 0)← p6(u5 = 0, v5 = 1)

← p7(u6 = 0, v6 = −t)← p8(u7 = 0, v7 = a0 + t2).

Figure 9: The Point Configuration for the Standard A(1)
2 /E

(1)
6 Example

the following recurrence relations,


q + q = p− t− a2

p
,

p+ p = q + t+
a1
t
.

(22)

and the following maps:


ψ(q, p) =

(
−a2
p

+ p− q − t,−a
2
2 + a2p(−p+ 2q + t) + p2(−1 + a1 − pq + q2 + qt)

p(a2 + p(−p+ q + t))

)
,

ψ−1(q, p) =

(
a21 + a1q(−2p+ q + t)− q2(−1 + a2 − p2 + p(q + t))

q(a1 + q(−p+ q + t))
,−p+ a1

q
+ q + t

)
.

(23)
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Note that the information for the standard example contain a0, a1, and a2. These are the

root variables of this surface type, which are certain "intrinsic" parameters corresponding

to symmetry roots. An explanation for how these root variables are obtained is outside the

scope of this text, but the root variables for our original example are

a0 = 0, a1 = −n, and a2 = n+ 1. (24)

We found from the final change of basis that Hx = 2Hq +Hp − E3 − E5 − E6 − E7. This

means that every vertical line in the applied example corresponds to some (2, 1) curve in

the standard example that passes through the points p3, p5, p6, and p7. We must find which

(2, 1) curves pass through those points.

Consider an arbitrary (2, 1) curve, Aq2p+Bqp+Cp+Dq2 +Eq + F = 0. To force it to

pass through the point p3, we must look at this curve in the (q, P ) chart: Aq2 + Bq + C +

Dq2P + EqP + FP = 0. We want this equation to be true when q = 0 and P = 0.

Aq2 +Bq + C +Dq2P + EqP + FP = 0

A(0)2 +B(0) + C +D(0)2(0) + E(0)(0) + F (0) = 0

C = 0

(25)

Therefore, if this curve passes through the point p3, C must equal 0. Using similar

reasoning with p5, we find that A = 0. The computations for passing through points on

exceptional divisors are more subtle. To force the curve to pass through the point p6, we
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must look at this curve in the (u5, v5) chart.

Bq +Dq2P + EqP + FP = 0

BQ+DP + EQP + FQ2P = 0

B(u5) +D(u5v5) + E(u5)(u5v5) + F (u5)
2(u5v5) = 0

u5(B +Dv5 + Eu5v5 + Fu25v5) = 0

(26)

Remember that we are are trying to describe the class 2Hq +Hp − E3 − E5 − E6 − E7.

Curves in this class are proper transforms excluding the exceptional divisors E3, E5, E6, and

E7. The zero set for the equation above is the union of {u5 = 0}, which corresponds to the

class E5, and {B + Dv5 + Eu5v5 + Fu25v5 = 0}, which corresponds to the class we want.

Thus, we only consider the second factor. We want this equation to be true when u5 = 0

and v5 = 1.

B +Dv5 + Eu5v5 + Fu25v5 = 0

B +D(1) + E(0)(1) + F (0)2(1) = 0

B +D = 0

B = −D

(27)

Therefore, if the curve passes through the point p6, B must equal −D. Finally, using

similar reasoning with p7, we find that E = Dt. Applying the information about these

coefficients to the curve in the (q, p) chart, we get the curve F +D(q2− qp+ qt) = 0. Thus,

every vertical line in the applied example corresponds to some curve defined by a linear

combination of 1 and q2− qp+ qt in the standard example. These two expressions are called

the basis curves of x(q, p). Using similar computations for horizontal lines, we find that the

basis curves of y(q, p) are 1 and p− q. Note that due to the automorphisms of P1, we could

have chosen a different basis for this pencil of curves. Thus, when describing the change of
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coordinates, we must consider Möbius transformations of the basis curves.


x(q, p) =

A+B(q2 − qp+ qt)

C +D(q2 − qp+ qt)
,

y(q, p) =
K + L(p− q)
M +N(p− q)

.

(28)

To find the explicit change of coordinates between the standard example and the applied

example, we must determine the values of the coefficients A, · · · , N . We can determine

these values by matching −1 and −2 curves on the two surfaces. Starting with −2 curves,

consider the curve Hp − E3 − E5. Using the change of basis, we can see Hq − E3 − E5 =

(Hx +2Hy −F1−F4−F5−F6)− (Hy −F4)− (Hx +Hy −F1−F4−F6) = F4−F5. Thus,

the curve Hq − E3 − E5 on the standard surface corresponds to the curve F4 − F5 on the

applied surface. This means when P = 0, we want X = 0 and Y = 0.

(X(q, p), Y (q, p)) =

(
1

x(q, p)
,

1

y(q, p)

)
=

(
C +D(q2 − qp+ qt)

A+B(q2 − qp+ qt)
,
M +N(p− q)
K + L(p− q)

)
=

(
CP +D(q2P − q + qP t)

AP +B(q2P − q + qP t)
,
MP +N(1− qP )
KP + L(1− qP )

)
=

(
−Dq
−Bq

,
N

L

)
=

(
D

B
,
N

L

)
(29)

In order for D
B

and N
L

to be 0, D and N must both equal 0. Furthermore, when we sub-

stitute D = 0 and N = 0 into x(q, p) and y(q, p), we have only constants in the denominator.

Thus, the denominators can be "absorbed" into the constants in the numerator, so we have
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the following expressions for x and y.


x(q, p) = A+B(q2 − qp+ qt),

y(q, p) = K + L(p− q).
(30)

We can use similar reasoning with Hq −E1 −E5 to see that B = −L2 and with E1 −E2

to see that K = s−Lt
2

. The other −2 curves do not give us any new information. Thus, after

matching −2 curves, we get the following expressions for x and y.


x(q, p) = A− L2(q2 − qp+ qt),

y(q, p) =
s+ L(2p− 2q − t)

2
.

(31)

To identify the final constants, we must match −1 curves. The natural choices for these

computations are the exceptional divisors. For example, consider the fact that E4 corre-

sponds with F3. Thus, when U3 = a1 and V3 = 0 on the standard surface, we want x = 0

and Y = 0 on the applied surface. These computations follow the same logic as the previous

computations and are thus omitted. We find that A = −a1L2. Similarly using the fact that

E8 corresponds to F2, we find that L = − s
t
. At this point, we have determined the values of

each of the coefficients A, · · · , N .


x(q, p) = −s

2(q2 − qp+ qt+ a1)

t2
,

y(q, p) =
s(q − p+ t)

t
.

(32)

Note that the parameter s was not defined for the standard surface. Thus, we must

determine s in terms of t. Using the final divisor mapping, the fact that E2 corresponds to

F8, we get that s = t√
2
. Note we must also include the correspondence between root variables

and n to change between the parameters of the standard example and the parameters of our

example. This gives us our final change of coordinates that transforms our original example
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into the standard one. Additionally, we can use this first change of coordinates to compute

an inverse change of coordinates, that transforms the standard example into our original

example. The two changes of coordinates are given below.



x(q, p) =
q(p− q − t)− a1

2

y(q, p) =
q + t− p√

2
.

n = −a1

s =
t√
2

(33)



q(x, y) =
−2x+ n√

2y

p(x, y) =
−2y2 − 2x+ 2sy + n√

2y

t =
√
2s

a0 = 0

a1 = −n

a2 = n+ 1

(34)

With these changes of coordinates, we can move between our original example and the

standard A
(1)
2 /E

(1)
6 example, demonstrating that we have identified our original equation

correctly.

9 Conclusion

In this paper, we determined the surface type of an applied discrete Painlevé equation and

identified an explicit change of coordinates between it and a standard example. We also

demonstrated the procedure for identifying this change of coordinates in detail to serve as a

model for mathematicians unfamiliar with the theory of Painlevé equations.
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