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ABSTRACT 

Freundlich, Anna Elizabeth. A description of lichen community structure and the impacts 

of spruce beetle disturbance in Northwestern Colorado. Unpublished Master of 

Science thesis, University of Northern Colorado, 2019. 

 

Spruce beetle disturbance has affected millions of acres of forest throughout 

North America and Europe, but thus far little research has investigated how this 

disturbance influences lichen communities. To address this problem, we studied lichen 

communities and habitat characteristics within 44 plots across a chronosequence of 

spruce beetle damage spanning 1996–2017 in northwestern Colorado. We found 82 

species of lichens, few habitat differences among spruce beetle disturbance classes, and 

only the most recently affected plots (2012–2017) had significantly different lichen 

community structure relative to remaining areas. Two primary gradients explained the 

majority of variation of lichen community structure within our study area. The first 

gradient was related to forest location and substrate, with the positive end of the axis 

associated with the Routt NF, higher partially decayed wood, and more bare ground, 

while the negative end of axis one was associated with plots located in the Roosevelt NF 

which had higher lichen species richness, more heavily-decayed wood, and more lichen 

and plant understory cover. The second gradient described lichen community trends 

related to canopy closure on the positive end of the axis while higher wind speeds and 

heavily decayed logs were associated with the negative end of this gradient. We suggest 

that differences in habitat characteristics that we noted as related to spruce beetle 
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disturbance, were instead due to our sampling method and large plot size. Further we 

speculate that recovery of understory plants and subalpine fir may compensate for the 

loss of spruce, manifesting as minimal differences in forest structure and lichen 

community structure across beetle disturbance classes. Slow recovery times of lichens 

could have also inhibited our ability to detect a response to spruce beetle disturbance. 

Future researchers should further examine the response of lichens to spruce beetle 

response since this disturbance type will continue to affect native forests and associated 

organisms into the foreseeable future.  
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CHAPTER I 

INTRODUCTION TO THE STUDY SYSTEMS: LICHEN  

BIOLOGY, SPRUCE BEETLE DISTURBANCE,  

AND LICHEN DISTURBANCE ECOLOGY 

Summary 

North American coniferous forests have undergone dramatic changes over the 

past few decades. More intense, prevalent outbreaks of native bark beetles, owing to 

milder winters and drier environments due to climate change, have dramatically altered 

many landscapes; once healthy forests have been replaced by stands of defoliated snags 

(Bentz et al. 2010). In Colorado alone, the spruce beetle has affected over 1.5 million 

acres of Engelmann spruce (Picea engelmannii) and Subalpine Fir (Abies lasiocarpa) 

forests over the past two decades (Colorado State Forest Service 2015). While scientists 

have studied impacts of bark beetles on plants and animals, little research has been 

conducted on lichen communities. This study will address how lichens have been 

affected by spruce beetles in northwestern Colorado and describe the general lichen 

community trends within this area. 

Lichens – Biology and Importance 

Lichens are composites of many organisms, including at least one fungal partner 

and one or more photosynthetic partners (photobiont), which can be either an alga or a 

cyanobacterium (Nash 2008). For most lichens, the main fungal partner is an Ascomycete 

and the rest of lichenized fungi contain Basidomycete fungi as the structural fungi (Nash 
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2008). Recently, scientists have discovered that many ascomycete macrolichens also 

associate with basidiomycete yeast that are embedded within the cortex (Spribrille et al. 

2016). While the main fungal partner provides the structure and support, the photobiont 

provides either glucose or sugar alcohols for itself and its fungal partner (Nash 2008). 

This association allows lichen to inhabit areas where it would otherwise be harsh for 

either organism to survive individually (Insarova and Blagoveshchenskaya 2016). Lichen 

are generally slow-growing symbioses that grow attached to trees, rocks, moss, soil, or 

can even remain vagrant on soil (Sancho et al. 2007).   

Lichens are important components of forest ecosystems. They can facilitate 

nitrogen cycling (Campbell and Freden 2007; Marks et al. 2015), provide habitat for 

insects (Bokhorst et al. 2015), be used as nesting material (Hayward and Rosentreter 

1994), and serve as forage for ungulates during winter when preferred food is scarce 

(Lafleur et al. 2016). Lichens can also be important in the field of human public health, as 

some species are used as bioindicators of air pollution, and historically lichens have been 

used in traditional medicine that could become more widely used in future applications 

(Ranković 2015). It is therefore of the utmost importance to study how a pervasive and 

devastating disturbance like beetle kill could be affecting lichen communities. 

Description of Spruce Beetle Disturbance 

Disturbance is important in maintaining diversity within our ecosystems. Whether 

from pathogens, weather events, or insects, disturbance events create varying habitats 

within our ecosystems that help to support many different species (Sousa 1984). In 

coniferous forests throughout North America, tree death by bark beetle infestations has 

historically been an important source of disturbance; spruce beetles typically attacked 
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previously weakened trees, such as those affected by windthrow or disease (Raffa et al. 

2008). The periodic killing of these weakened trees would help maintain heterogeneity 

within these forests, allowing for different habitats and early-successional species to 

continue to survive (Sousa 1984). The main biotic driver of this disturbance in the 

subalpine spruce-fir forests, Dendroctonus rufipennis, is a bark beetle of the subfamily 

Scolytinae within the Curculionidae family. This species of bark beetle preferentially 

attacks Engelmann spruce (Picea engelmannii) trees and avoids subalpine fir (Abies 

lasiocarpa) (Six and Bracewell 2015). Spruce beetles roost in the boles of Engelmann 

spruce trees during reproduction and often kill the host tree; when they excavate their 

roosts, the developing beetles feed on the vascular tissue inducing extensive internal 

damage to their host trees and harmful fungi are introduced into the tree bole (Six and 

Bracewell 2015). In successfully invaded trees, individual trees die and become 

completely defoliated within 2 – 4 years (Bentz et al. 2010). 

However, the frequency and intensity of bark beetle attacks has increased in 

recent decades (Raffa et al. 2008). In Colorado alone, the spruce beetle has affected over 

1.5 million acres of Engelmann spruce forest over the past two decades (Colorado State 

Forest Service 2015). First, past management practices have made forests in the United 

States more susceptible to widespread beetle disturbance. Large areas of forest are 

comprised of older, even aged trees as a result of previous logging and fire exclusion; 

since bark beetles preferentially attack more mature trees, even-aged forests are highly 

vulnerable to widespread beetle disturbance (Berg et al. 2006).  

This native disturbance has also become an epidemic for reasons related to beetle 

and spruce response to climate change. Under historic conditions, spruce trees could 
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successfully resist bark beetle attacks by forcing burrowing beetles from their tree boles 

through pitch tubes (Nash 2008). Instead of digging into the tree, the offending insect is 

caught in a mass of pitch and forced out of the trunk. Unfortunately, when trees are under 

stress, such as drought associated with climate change, trees have fewer resources to 

allocate towards these pitch tubes and are less likely to successfully fend off a bark beetle 

attack (Hart et al. 2014; Nash 2008). Trees are also less likely to survive a beetle attack 

when they are attacked by large numbers of beetles (Allen et al. 2010). With milder 

winters and higher occurrences of drought caused by climate change, beetle outbreaks 

have and will continue to be prevalent and severe (Hart et al. 2014; Raffa et al. 2008). 

Specifically, climate change has increased the frequency of drought and subsequently 

stressed spruce-fir forests, reduced the over-winter cold mortality of the bark beetles, and 

potentially increased the likelihood of spruce beetles completing their life cycle within 

one year instead of two (Allen et al. 2010; Bentz et al. 2010; Hart et al. 2014; Raffa et al. 

2008). Raffa and others (2008) have predicted that these quicker development times and 

subsequently large beetle populations, coupled with weakened trees, will dramatically 

increase the extent and intensity of bark beetle outbreaks in the near future. It is of the 

utmost importance to learn about how ecosystems are affected by beetle kill as this 

disturbance type continues to impact our forests.  

Bark Beetle Disturbance – Abiotic and Biotic Impacts 

When trees die as a result of bark beetle outbreak, forest structure is altered. 

Large-scale tree mortality, as a result of bark beetle disturbance, increases the amount of 

light that reaches the forest floor (Gauslaa and Solhaug 1996), the amount of coarse 

woody debris (Klutsch et al. 2009), wind exposure (Boudreault et al. 2013b) and 
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evaporation (Biederman et al. 2014) within a stand, and can affect the timing and amount 

of snow cover in a forest (Perrot et al. 2014). Changes in the canopy and water uptake 

within a forest, as a result of bark beetle infestation, also have contradictory effects on the 

hydrology of impacted forests; more snow accumulates within areas affected by bark 

beetles due to the reduced canopy, while the increase in sun exposure can increase the 

amount of ablation occurring in beetle-impacted areas (Biederman et al. 2014; Boon 

2009). Beetle-impacted forests also have reduced evapotranspiration immediately after 

attack (since the trees are not alive) which is shortly reversed within a few years as 

vegetation recolonizes the understory (Mikkelson et al. 2013).  

After the trees are killed and defoliated within a bark beetle affected area, the rest 

of the forest ecosystem can respond in dramatic ways. More grasses and herbs establish 

themselves, and previously light-limited tree seedlings begin to grow more quickly 

(Boucher and Meade 2006). Lignicolous fungal cover increases as they take advantage of 

the increased amounts of substrate available (Bässler et al. 2016). As the populations of 

beetles increase, woodpeckers and other beetle predators become more prevalent (Drever 

and Martin 2010). Forest use by some mammal species changes after forests are attacked 

by spruce beetle; elk and mule deer use are positively correlated with bark beetle activity 

in forests, while habitat use by rodents such as ground squirrels and chipmunks is 

negatively correlated with bark beetle activity (Ivan et al. 2018). Finally, the fungal and 

insect communities within the tree boles are quite different; the fungi introduced by the 

bark beetles and local insects take advantage of the newly available tree snags (Allen et 

al. 2010).  
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Lichen Response to Logging and Fire Disturbance 

While limited research has addressed how macrolichen communities react to bark 

beetle outbreaks, there is information on how macrolichen communities respond to other 

disturbance types within coniferous forests. In general, disturbed lichen communities are 

significantly different than communities in unaffected areas (Bartels and Chen 2015; 

Boudreault et al. 2013a; Johansson 2008; Price and Hochachka 2001). For example, 

fruticose epiphytic lichens (shrubby or hair-like lichens that grow on trees) have lower 

abundance in post-logged and fire-disturbed sites than controls (Boudreault et al. 2013b). 

In transplant studies, fruticose epiphytic lichen thalli transplanted into disturbed areas had 

lower growth rates than thalli transplanted into mature forests (Boudreault et al. 2013a). 

Studies have also shown that a sudden increase in light exposure, associated with 

disturbance, can harm lichen and inhibit photosynthetic activity for species not adapted to 

high light conditions (Gauslaa and Solhaug 1996), and increased wind exposure can 

increase thallus breakage of lichens (Boudreault et al. 2013b). While fruticose epiphytic 

lichens are negatively affected by disturbance, this trend may not be true for all epiphytic 

lichens. In a transplant study of the foliose (leafy) lichen Lobaria oregana, thalli had 

higher growth rates when transplanted into logged plots than the unlogged plots (Muir et 

al. 2006). These disparities may be due to a number of factors (e.g., dispersal limitations, 

environmental tolerances) and their interactions. 

Terricolous (ground-dwelling) and lignicolous (wood-inhabiting) lichens, unlike 

epiphytic lichens, have demonstrated an overall increase in cover after disturbance in 

northern forests (Brǻkenhielm and Liu 1998; Girard et al. 2017). Particular species, such 

as Cladonia, tended to do well after logging disturbance; their cover increased and they 
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had higher growth rates in newly opened areas compared to control plots (Boudreault et 

al. 2013b). This positive trend does have some exceptions. Terricolous lichens such as 

Peltigera and Flavocetraria are more likely found in old forests with closed canopies 

than in more open sites (Zouaoui et al. 2014). While different terricolous and lignicolous 

lichens responded to disturbance differently, many studies showed an overall positive 

response to logging and fire disturbance because of the overwhelming growth by 

Cladonia species (Botting and Freden 2006; Zouaoui et al. 2014). It is also possible that 

lignicolous lichens increased in abundance as the availability of coarse woody debris 

increases, which influenced the overall response of ground-dwelling lichens (Bässler et 

al. 2016). 

Research Questions 

Within this thesis, we broadly describe patterns of lichen community structure 

within northwestern Colorado. We also examined the potential effects of spruce beetle 

disturbance on forest structure and lichen communities along a chronosequence of 

disturbance. Using previous research on the effects of bark beetle disturbance on forest 

structure and research on lichen responses to canopy-clearing disturbance, we had several 

questions we will examine within our study.  

Q1  Are there differences in forest structure between areas affected and 

unaffected by spruce beetle disturbance? 

 

Q2   Are there differences in forest structure among areas more or less recently 

affected by spruce beetle disturbance? 

 

Second, as a result of differing forest conditions, lichen communities in beetle-

affected areas would be different from lichen communities in unaffected areas. 

Furthermore, plots recently affected by spruce beetle would be different from areas less 
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recently affected by spruce beetle. We had the following questions related to lichen 

community structure: 

Q3  Are there differences in lichen community structure between areas 

affected and unaffected by spruce beetle disturbance? 

 

Q4  Are there differences in lichen community composition among areas more 

or less recently affected by spruce beetle disturbance? 
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CHAPTER II 

INVESTIGATION OF THE IMPACTS OF SPRUCE 

BEETLE DISTURBANCE ON MACROLICHEN 

COMMUNITIES IN NORTHWESTERN  

COLORADO 

Introduction 

North American coniferous forests have undergone dramatic changes over the 

past few decades. More intense, prevalent outbreaks of native bark beetles, owing to 

milder winters and drier environments due to climate change, have dramatically altered 

many landscapes; once healthy forests have been replaced by stands of defoliated snags 

(Bentz et al. 2010). In Colorado alone, the spruce beetle has affected over 1.5 million 

acres of Engelmann spruce forest over the past two decades (Colorado State Forest 

Service 2015). While scientists have studied impacts of bark beetles on plants and 

animals, little research has been conducted on lichen communities.  Therefore, we 

investigated whether lichen communities in beetle-affected forests had different lichen 

community structures based on time since spruce beetle disturbance. 

When forests are attacked by bark beetles, environmental conditions within these 

forests can change substantially. In spruce-fir forests, past fire-suppression tactics and 

natural regeneration after disturbance have resulted in large areas of even-aged forest 

(Berg et al. 2006). When tree monocultures are attacked by bark beetle under optimal 

conditions, large areas of forest can be killed (Bentz et al. 2010). This large-scale tree 

mortality increases the amount of light that reaches the forest floor (Gauslaa and Solhaug 
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1996), the amount of coarse woody debris increases (Klutsch et al. 2009), there is more 

wind exposure (Boudreault et al. 2013b) and evaporation (Biederman et al. 2014) within 

a stand, and the timing and amount of snow cover can also be affected (Perrot et al. 

2014). Changes in the canopy can have contradictory effects on the hydrology of 

impacted forests; more snow accumulates within areas affected by bark beetles due to the 

reduced canopy, while the increase in sun exposure can increase the amount of ablation 

occurring in beetle-impacted areas (Biederman et al. 2014; Boon 2009). These 

environmental changes, documented in other forests, could occur in the beetle-impacted 

forests of northern Colorado, and potentially influence its associated lichen communities. 

Lichens are important components of forest ecosystems. They can facilitate 

nitrogen cycling (Campbell and Freden 2007; Marks et al. 2015), provide habitat for 

insects (Bokhorst et al. 2015), are used as nesting material (Hayward and Rosentreter 

1994), and serve as forage for ungulates during winter when preferred food is scarce 

(Lafleur et al. 2016). Lichens can also be important in the field of human public health, as 

some species are used as bioindicators of air pollution, and historically lichens have been 

used in traditional medicine that could become more widely used in future applications 

(Ranković 2015). It is therefore critical to study how a pervasive and devastating 

disturbance like beetle kill could be affecting lichen communities.  

At this current time, little information exists on the community response of 

lichens to bark beetle disturbance. To our knowledge, there are very few studies that 

study lichen response, either directly or indirectly, to bark beetle disturbance (Bässler et 

al. 2016; Beudert et al. 2015). Other related studies either investigate the effect of insect 

infestation on abiotic elements of the environment that minimally includes lichens 



 

11 

 

 
 

(Navrátil et al. 2019), focus on a single species’ response (McCune et al. 2008), or 

investigate the impact of other disturbances but also consider lichen response due to 

overlap in forest cutting and beetle-kill impacts (Waterhouse et al. 2011). Bässler and 

others (2016) found that lignicolous lichens had higher species richness and abundance in 

areas affected by spruce beetle than in areas unaffected by spruce beetle. There are no 

studies that examine epiphyte response, terricolous response, or a holistic community 

response to bark beetle disturbance.  

However, there is ample information on how macrolichen communities react to 

fire and logging disturbance within coniferous forests. We researched these disturbances 

because, like bark beetle disturbance, they reduce the amount of canopy cover relative to 

pre-disturbance conditions. In general, fire- or logging-disturbed lichen communities are 

significantly different than communities in unaffected areas (Bartels and Chen 2015; 

Boudreault et al. 2013a; Boudreault et al. 2013b; Johansson 2008; Price and Hochachka 

2001). For example, fruticose epiphytic lichens have lower abundance in post-logged and 

fire disturbed sites than in control plots (Boudreault et al. 2013a). In transplant studies, 

fruticose epiphytic lichen thalli transplanted into disturbed areas had lower growth rates 

than thalli transplanted into mature forests (Boudreault et al. 2013a). While fruticose 

epiphytic lichens are negatively affected by disturbance, this trend is not true for all 

epiphytic lichens. In a transplant study of the foliose lichen Lobaria oregana, thalli had 

higher growth rates when transplanted into logged plots than the unlogged plots (Muir et 

al. 2006). These disparities may be due to numerous factors (e.g., dispersal limitations, 

environmental tolerances) and their interactions. 
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Terricolous and lignicolous lichens, unlike epiphytic lichens, have demonstrated 

an overall increase in lichen cover after disturbance in northern forests (Brǻkenhielm and 

Liu 1998; Girard et al. 2017). After logging disturbance, particular species, such as 

Cladonia, increase in cover and have higher growth rates in newly opened areas 

compared to control plots (Boudreault et al. 2013b). This positive trend does have some 

exceptions. Terricolous lichens such as Peltigera and Flavocetraria are more likely to be 

found in old forests with closed canopies than in more open sites (Zouaoui et al. 2014). 

While different terricolous and lignicolous lichens react to disturbance differently, many 

studies show an overall positive response to logging and fire disturbance because of the 

overwhelming amount of growth by Cladonia species (Botting and Freden 2006; Zouaoui 

et al. 2014).  

We had several objectives with this study. First, we investigated whether spruce 

beetle disturbance affected lichen community structure and whether lichen communities 

varied along a chronosequence of time since beetle disturbance. Second, we sought to 

broadly describe patterns of lichen communities within northwestern Colorado and relate 

them to the environmental conditions within our study area. 

Methods 

Study Area 

Our study area included parts of the Engelmann spruce-subalpine fir forest of 

northwestern Colorado (40°21’8” - 41°1’5”N, 105°9’5” - 107°19’36”W; Figure 1). Our 

study area contained two forest units, Roosevelt and Routt National Forests (NF), 

separated from each other by a 50km wide valley. The Routt NF unit is bisected by the 

continental divide, while the Roosevelt NF unit sits just north and east of the continental 
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divide. Both forest units contain spruce-fir forest affected by spruce beetle; in general, the 

Routt NF was affected from 1996 – 2006, while the Roosevelt NF was affected from 

2007 and continues through the present.  

 

Figure 1: Study Design Map. Study area located in the Routt (left) and Roosevelt (right) 

National Forests in northern Colorado. Purple areas represent areas that were unaffected 

spruce-fir forest and colored areas were detected as affected by spruce beetles 1996 – 

2017. Site locations are marked as black dots with a white outline. 

 

Plots within both forest units were located within spruce-fir forests and had 

similar environmental characteristics; all plots were located at elevations (2,800 – 

3,400m), experienced wind speeds (4-6 m/s), had average annual temperature ranges of  

42-49 °C and forests were co-dominated by Engelmann spruce and subalpine fir (Fick 

and Hijmans 2017, Table 1). Understory communities were dominated by Vaccinium 

scopulorum, Arnica cordifolia, and numerous grass species (Pers. obs.).  However, these 

two forests did differ in annual precipitation; weather typically moves west to east, 

bringing moisture from the Pacific Ocean (Kittel et al. 2015). The Routt NF, located 
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further west, receives more annual precipitation (81-170 cm) than the Roosevelt NF (48-

120 cm), which is located further within the rain shadow of the southern Rocky 

Mountains (Fick and Hijmans 2017).  

We selected this area over other spruce-fir forests in northern CO, because it was 

affected by spruce beetle (Dendroctonus rufipennis) to varying degrees in the 30 years 

prior to sampling; there was a robust lichen community present; and it was free of spruce 

budworm (Choristoneura freemani) at the time of sampling. Aerial Detection Survey data 

provided by the US Forest Service, based on aerial observer notes of needle discoloration 

(USDA Forest Service et al. 1996 - 2017), helped us determine the location and timing of 

spruce beetle attack within these spruce-fir forests (Ciesla 2006). Needle discoloration 

typically occurs the second or third year after initial infestation (Bentz et al. 2010), thus 

these aerial data were used to determine the approximate year of first infestation by 

spruce beetles.  
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Table 1: Mean characteristics of beetle disturbance classes. Associated variance (standard 

deviation in parentheses) is recorded with each characteristic. Significant differences 

between classes are marked with different lettered superscripts to signify differences. 

Unmarked variables or those with the same letter are not significantly different. 

 1996-

2003 

2004-

20061 

2007-

2011 

2012-2017 Unaffected 

Spruce-Fir 

Forest 

Sampling Design 

# of Plots Sampled 8 12  8 7 8 

Forest Affiliation 

Routt:Roosevelt  

8:0 9:3 2:6 0:7 3:5 

Abiotic Characteristics2 

Elevation (ft) 9976.1 

(670.1) 

9805.3 

(518.0) 

9896.8 

(585.6) 

10180.3 

(461.1) 

10061.4 

(262.9) 

Water Cover4  1.1 (0.4) 1.2 (0.4) 1.4 (0.5) 1.1 (0.4) 1.4 (1.1) 

Rock Cover4  2.7 (1.2) 2.2 (1.3) 1.8 (0.5) 3.6 (1.8) 2.5 (1.1) 

Ground Cover4  3.3 (0.9) 3.2 (1.1) 3.1 (0.8) 2.1 (0.4) 2.9 (0.8)  

Precipitation (cm) 139.4 

(30.0)a 

116.6 

(22.6)a,b 

94.7 

(22.4)b,c  

58.2 (7.1)d  103.4 

(32.0)a,b 

Mean Maximum 

Annual Temp (°C) 

45.9 (2.5)  46.1 (1.7)  46.2 (2.7) 46.7 (2.1) 45.5 (1.4) 

Mean Minimum 

Annual Temp (°C) 

23.5 (1.2) 22.7 (1.6) 22.5 (2.0) 23.5 (2.1) 22.3 (1.5) 

Mean Wind-speed 

1984-2012 (m/s) 

4.7 (0.5) 4.9 (0.5) 5.6 (0.5) 5.6 (0.8) 5.6 (0.5) 

Slope (°) 5.7 (2.0) 5.1 (1.8) 5.9 (2.3) 7.4 (3.6) 4.5 (2.2) 

Biotic Characteristics 

Understory Cover4  6 (0.7) 6.2 (1.0) 6.4 (0.5) 6.1 (1.2) 6.5 (0.5) 

Lichen Cover – 

Trees4  

2.8 (1.5) 3.3 (1.3) 3.4 (1.6) 2.7 (1.3) 3.4 (1.6) 

Lichen Cover – 

Ground4  

2.5 (0.5) 2.2 (0.4) 2.5 (0.8)  3.4 (1.6) 2.1 (0.6)       

Fine Woody Debris4  2.9 (1.0) 2.9 (0.9) 2.8 (0.7) 3.3 (1.0) 2.6 (0.9) 

Coarse Woody 

Debris4  

3.75 (1.2) 3.8 (0.7) 3.6 (1.1) 4.3 (1.3) 3.4 (1.1) 

Log Rank 14  1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 

Log Rank 24  1.25 (0.5) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.1 (0.4) 

Log Rank 34  4.9 (1.0) 4.7 (1.4) 3.5 (1.4) 2.9 (1.3)  3.8 (1.2) 

Log Rank 44  4.25 (0.9) 4.4 (0.7) 4.5 (0.9) 5.3 (0.8) 4.9 (0.4) 

Log Rank 54  3 (1.1) 3.4 (1.2) 4.1 (1.8) 4.3 (0.5) 3.8 (1.3) 

Standing Wood 

Rank 14  

4.3 (1.2) 4.25 (1.1) 4.5 (0.5) 4.3 (1.3) 4.9 (0.6) 
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Table 1, Continued 

 1996-

2003 

2004-

20061 

2007-

2011 

2012-2017 Unaffected 

Spruce-Fir 

Forest 

Standing Wood 

Rank 24  

4.4 (0.9) 3.8 (1.1) 4.6 (0.5) 4.9 (0.9) 4.1 (0.6) 

Standing Wood 

Rank 34  

4.1 (0.6) 4.7 (1.0) 3.4 (1.1) 3.7 (1.0) 3.9 (0.8) 

Standing Wood 

Rank 44  

1.1 (0.4) 1.25 (0.5) 1.0 (0.0) 1.7 (0.5) 1.4 (0.5) 

Standing Wood 

Rank 54  

1 (0.0) 1.1 (0.3) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 

Engelmann Spruce4  3.6 (0.9) 3.3 (0.8) 3.4 (0.9) 3.6 (1.3) 3.9 (1.0) 

Subalpine Fir4  6.1 (0.8) 6.2 (0.7) 6.4 (0.7) 5.9 (0.7) 5.9 (1.0) 

Lodgepole Pine4  1.25 (0.9) 0.9 (1.1) 1.25 (1.0) 1.0 (0.8) 1.3 (0.9) 

Basal Area (ft2/ac) 67.8 

(15.1) 

82.7 

(12.1) 

74.1 

(12.2) 

66.4 (20.2) 84.8 (10.6) 

Diversity Measurements3 

Alpha Richness 11.0 

(3.0)a       

11.8 

(3.1)a  

14.3 

(3.7)ab  

16.7 (4.9)b  15.9 (4.5)ab  

Beta Diversity 2 2.1 2.1 1.8 1.8 

Gamma Diversity  36 38 48 55 45 
1Averages do not include data from G2_S06, which was excluded as an outlier. One plot was 

removed from 2004-2006 beetle disturbance class so only 12 of 13 original plots are included in the 

statistics provided. 
2Environmental variable summaries are not included here if standard deviation was less than 1 (n 

= 9), unless they were associated with strong correlation coefficients within the NMS ordination.  
3Diversity values were calculated using unmodified species data.  
4Values represented in the table represent coverage class values on the following scale: 1 = <1%, 2 

= 1-5%, 3 = 6-10%, 4= 11-25%, 5= 36-50%, 6= 51-75%, 7= 76-90%, 8= ≥90%. 

 

Study Design 

We developed a stratified random sampling design to determine plot locations. 

Our sampling stratum was a spatially explicit data layer indicating beetle attack by 

chronology, and roughly balanced by area. First, we extracted 22 aerial survey data layers 

(USFS et al. 1996 - 2017) for each year available (i.e. 1996 – 2017) in ArcGIS 10.6.1 

(ESRI 2018). From these data, we extracted areas that were affected by spruce beetle, i.e. 

areas of spruce-fir forest exhibiting needle discoloration. Areas were visually confirmed 

within a GIS that these beetle-affected areas were within spruce-fir forests. This 
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confirmation was done by comparing spruce beetle areas extracted from aerial survey 

data layers to a forest type data layer (US Geologic Survey Gap Analysis Program 2011). 

We then sought to create “beetle disturbance classes” to consolidate annual data into 

broader multi-year categories to increase manageability and minimize error. Since signs 

of infection occur over a period of several years, detection was sometimes inconsistent in 

sequential years; thus, grouping several years into classes helped minimize this error. 

Additionally, due to disparities in the total aerial extent of beetle kill each year and our 

goal to create roughly equal-area beetle disturbance classes, we clustered sequential years 

non-uniformly (Figure 2). Finally, four of our beetle disturbance classes composed 

sequential years of impact, balanced to contain roughly the same amount of forest area 

affected by spruce beetle: bark beetle attack detected in 1996 – 2003, 2004 – 2006, 2007 

– 2011, and 2012 – 2017 (Figure 2). A final fifth class in our stratum was classified as 

unaffected forest, where no extensive damage was detected within spruce-fir forests from 

1996 – 2017 (US Geologic Survey Gap Analysis Program 2011). Since spruce beetles are 

a native source of disturbance within these forests, all spruce likely experience some level 

of spruce beetle damage, but our “unaffected” areas contain forests which never reached 

epidemic levels that were detected remotely as were the forests in the four beetle 

disturbance classes. 
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Figure 2: Spruce Beetle Damage Graph. Total area (km2) affected by spruce beetle, per 

year, within our study area are represented as filled bars or numbers, if less than 10 km2 

total of damage. Eligible unaffected area is represented as the final column in the figure. 

The hollow boxes represent the eligible sampling area for each beetle disturbance class; 

the width of each box depicts the years included within each class and the height 

indicates the total eligible area after applying a negative buffer of 35m to the polygons 

within each beetle disturbance class.   

Within the aerial survey polygon layers (USFS et al. 1996 – 2017), areas were 

commonly marked as first impacted by beetles for more than one year. This detection 

pattern could be due to the subtle nature of the aerial signal or that needle discoloration 

within spruce-fir forest occurs for multiple years (Ciesla 2006). Although creating multi-

year beetle disturbance classes helped minimize error associated with detecting first 

infestation in more than one year, it was still possible for an overlap in detection of first 

attack to occur in two classes. To maintain consistency, we only used forest areas that fell 

within one beetle disturbance class for our eligible sampling area. A negative buffer of 

35m, roughly the width of our plots, was then applied to each beetle-disturbance class 
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polygon to further ensure that selected sites fit entirely within the areas of known beetle 

kill history.  

We randomly generated 100 potential sampling locations (i.e. 20 sites per class) 

in a GIS within each beetle disturbance class and the unaffected forest category. Plots 

were deemed high priority from these generated points based on a combination of site 

accessibility (i.e., sites that were safe to access and no more than six miles from a 

trailhead) and proximity to additional sampling points. Fifty plots (i.e. 10 sites per class) 

were categorized as high priority while the remaining plots could be sampled if time 

allowed. In the field, we established the majority of plots within 50 m of the randomly 

generated point, but some had to be relocated due to inaccessibility to the original point, 

to avoid snow or water cover >25% within the plot, and to guarantee that plots would fall 

within forested habitat. We established 18 plots more than 50m away from their original 

randomly generated points; the furthest point was 1.3 km away from the original point.  

Sampling Protocol 

Lichen surveys were conducted within a 34.7m radius circular plot for a 

maximum time limit of two hours (McCune 2000). At each plot, we collected samples of 

all unknown macrolichen species encountered and then transported them to the 

University of Northern Colorado for further identification. We collected any foliose or 

fruticose specimens that were on the ground (i.e., decaying wood, rocks, and soil) and up 

to 2m in height above the ground on trees and boulders. A few species were field 

identified (5%), thus do not have associated herbarium vouchers. In addition, we visually 

estimated the abundance of each species using a cover class scale (i.e., 1 = 1-3 lichen 

thalli, 2 = 4-10 lichen thalli, 3 = coverage <1%, 4 = coverage 1 – 5%, coverage 5 = 6 – 



 

20 

 

 
 

25%, and 6 = coverage >26%; as per Holt et al. 2007). Species were identified in the lab 

using chemical tests and morphological keys (Goward 1999; McCune and Goward 1995). 

Thin layer chromatography was used to identify certain specimens within the genera of 

Cladonia, Xanthoparmelia, and Solorina. 

At each plot, we recorded GPS coordinates and the elevation with a GPS unit at 

plot center. Slope and aspect was determined at plot center using a clinometer and a 

compass. All habitat measurements were determined visually within the plots, using 

cover categories: <1, 1-5, 6-10, 11-25, 26-50, 51-75, 76-90, or ≥ 90%, to closely mirror 

the logarithmic scale used for lichen abundance with added cover categories at the higher 

end of our scale. We measured the percent cover of total understory (i.e., vascular 

vegetation less than 0.5 m tall), overstory trees by species, snow, total lichen on trees, 

total lichen on the ground and rocks, rock, standing water, bare soil/duff, fine woody 

debris (i.e., distinguishable twigs and branches less than 8 cm in diameter), and coarse 

woody debris (i.e., wood larger than 8cm in diameter and stumps shorter than 1.5m tall). 

We categorize standing wood and logs into five decay rank (Table 2; adapted from 

Woodall and Monleon 2007), and then we estimated the abundance of wood within each 

decay rank using the same categories used for habitat cover. Logs were determined as 

fallen trees in contact with the ground for over 50% or more of their surfaces and were 8 

cm or more in diameter. Further, snags (i.e., standing wood that is not a live tree) were 

defined as dead or dying trees that were still upright with less than 50% of their surfaces 

in contact with the ground.  
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Table 2: Snags and Log Decay Rank (Adapted from Woodall and Monleon 2007) 

Trees, Snags, and 

Log Decay Rank 

Descriptions 

Rank 1 Healthy trees. Large and small branches are present on over 50% of the tree, 

foliated, bark is present, wood is hard. 

Rank 2 Tree with healthy branches present on 50% or less of the tree, foliated, large 

branches and some small branches are still present, bark is present and wood 

is hard. 

Rank 3 Tree with overall dead appearance; large and smaller branches are present but 

are not foliated, bark is starting to loosen, and some insect or woodpecker 

damage is present. Wood is generally hard, may be soft in some places. 

Rank 4 Tree with large branches present, most of the smaller branches have been 

broken off the tree, branches are defoliated. Tops are typically broken off and 

at least 50% of the bark is loose or falling off the tree. The wood is soft and 

there are signs of obvious rot and insect damage, such as small exit holes in 

the trunk. 

Rank 5 All the small branches have been broken off and the majority of larger 

branches have fallen, the branches are defoliated. Most of the bark is gone, 

exposing the wood underneath which is soft and losing its structural integrity. 

Snags in this class must be standing and taller than 1.5m in height. If they are 

shorter, they are considered stumps or coarse woody debris. 

Basal area and canopy cover measurements were recorded at the plot center and at 

the north, south, east, and west edges of the plot perimeter. These five values were then 

averaged to yield overall plot measurements. Basal area, counting both live trees and 

snags, was recorded using wedge prisms, and canopy cover was determined using a 

spherical densitometer.  

Analyses 

The logarithmic nature of the lichen abundance classes eliminated the need to 

transform the data prior to conducting multivariate analyses. We then removed rare 

species (i.e., those occurring within only one plot; 37 species) to help clarify patterns 

within our data. One plot was removed from our dataset as it was more than two standard 

deviations from the grand mean of the average community distances. 

Multivariate analyses were conducted within PC-ORD Version 7 (McCune and 

Mefford 2016). We used Non-Metric Multidimensional Scaling (NMS) to quantify 

relationships among plots without assuming gradients of community structure that 
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defined plot relationships. NMS was selected because our data did not follow linear, 

parametric assumptions, as is often encountered in community data, and zero values were 

frequent within our dataset, so it was important to select a statistical method robust 

enough to handle these absences (McCune and Grace 2002). NMS was conducted using 

the Autopilot mode on “Slow and Thorough” with the Sørenson distance measure, the 

most commonly used distance measure for community data (McCune and Grace 2002). 

We used a maximum of 500 iterations with 250 runs of real data to determine the best fit, 

defined as a solution with low stress and low instability.  

We used Multi-response Permutation Procedure (MRPP; Mielke 1984) to 

determine whether groups were defined better by grouping variables than by random 

chance within our data (McCune and Grace 2002). We conducted MRPP comparisons on 

the lichen community data and our environmental variables. Euclidean distances were 

used to determine class and forest-level differences among environmental variables, 

while we used Sørenson distances to evaluate class and forest-level groupings of our 

lichen community data. Results were determined as statistically significant after applying 

a Bonferroni correction for multiple comparisons. 

Finally, an Indicator Species Analysis (ISA; Dufrene and Legendre 1997) was 

conducted to determine the fidelity and frequency of lichen species occurring within 

preassigned groups. ISA helped us determine which species were indicative of each 

beetle disturbance classes. We also ran a randomization test, with 4999 runs, to 

discriminate significant indicator values from those simply arising by chance. 
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Results 

We surveyed 44 total plots during summer 2018 (Table 1) and recorded a total of 

82 species of lichens (Appendix 1). The most commonly encountered species were 

Cladonia chlorophaea, Melanohalea exasperatula, and Usnea lapponica. Prior to rare 

species deletions, the average species richness of each plot was 14.6 species and 

Whittaker’s beta diversity of the sampling efforts was 4.6, suggesting moderate 

heterogeneity among plots.  

Differences Among Beetle  

Disturbance Classes 

We found weak but significant differences in lichen community structure across 

all beetle disturbance classes (A = 0.04, p < 0.001). Pairwise contrasts of lichen 

community structure among beetle disturbance classes yielded no significant differences 

(p > 0.05), except for a few notable exceptions. Specifically, the lichen communities of 

plots in the 2012-2017 beetle disturbance class were different from the plots in the 1996-

2003 class (A = 0. 0.07, p < 0.001), 2004-2006 class (A = 0.07, p < 0.001), and 

unaffected forest class (A = 0. 0.04, p = 0.02). The 2007-2011 beetle disturbance class 

plots were the only ones not significantly different in lichen community structure from 

those impacted during 2012-2017 (A = 0.02, p = 0.13).  

Indicator Species Analyses revealed that only five species were significant 

indicators (p < 0.05) for the 2012-2017 beetle disturbance class. These species were: 

Melanohalea subolivacea, Physcia adscendens, P. stellaris, Vulpicidia pinastri, and 

Xanthoparmelia cumberlandia (Appendix 1). These species had high fidelity within plots 

affected within the 2012-2017 beetle disturbance class and were quite rare within the 



 

24 

 

 
 

other disturbance classes. There were no significant indicator species for the remaining 

beetle disturbance or unaffected classes. 

The majority of forest characteristics did not significantly differ between beetle 

disturbance classes (p >0.05, Table 1). However, we did find a significant difference in 

annual precipitation among beetle disturbance classes (A = 0.34, p < 0.001). Because the 

2012-2017 plots showed community differences to most other beetle disturbance classes, 

we also analyzed the environmental variables to compare the 2012-2017 plots to the 

remaining plots, as a single group, and we noted a similar pattern of homogeneity across 

plots. However, we did find that these 2012–2017 plots had significantly lower 

ground/duff cover (A = 0.06, p = 0.02), higher lichen ground cover (A = 0.09, p = 0.002), 

less cover of partially decayed logs (Log rank 3; A = 0.05, p = 0.04), more cover of 

intermediate-advanced decayed logs (Log rank 4; A = 0.06, p = 0.03), and lower annual 

precipitation (A = 0.27, p < 0.001) compared to all other plots combined. 

Community Structure 

The NMS ordination recommended by PC-ORD (McCune and Mefford 2016) 

was a 3D solution (p = 0.004; Figure 3). The best solution had a final stress of 17.81. The 

final instability was <0.001 and 81 iterations were used in the final solution. The 3-axis 

solution explained 72.6% of the variance in lichen community structure.  

The first axis explained 38.2% of the variance. The positive end of axis one was 

correlated with higher annual precipitation (r = 0.743), further west longitude (r = 0.682), 

higher cover of partially decayed logs (Log rank 3, r = 0.576), further north latitudes (r = 

0.469), and higher cover of ground/duff (r = 0.363). The species most strongly positively 

correlated with axis one was Cladonia fimbriata (r = 0.344). Environmental variables 
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with the strongest negative associations to axis one were higher total lichen species 

richness (r = -0.89), higher cover of lichens on the ground (r = -0.419) and lichens on 

trees (r = -0.396), higher cover of heavily decayed logs (Log rank 5, r = -0.477), closed 

canopies (r = -0.429), and higher maximum (r = -0.499) and minimum temperatures (r = 

-0.45). The species with the strongest negative correlations were Melanohalea 

subolivacea (r = -0.718), Vulpicidia pinastri (r = -0.649), Cladonia sulphurina (r = -

0.66), Parmeliopsis ambigua (r = -0.528), Bryoria fuscescens (r = -0.504), and Usnea 

lapponica (r = -0.499).  

The second axis explained 18.8% of the variance within the lichen community 

matrix. The environmental variable with the strongest positive correlation, albeit fairly 

weak, was canopy closure (r = 0.307). The species with the strongest positive correlations 

were Peltigera malacea (r = 0.416) and Peltigera leucophlebia (r = 0.342). 

Environmental variables with the strongest negative correlations to this second axis were 

the higher cover of heavily decayed logs (Log rank 5, r = -0.368) and faster average wind 

speeds (r = -0.314). The species with the strongest negative correlations were Cladonia 

macrophyllodes (r = -0.624), Physcia adscendens (r = -0.452), Stereocaulon alpina (r = -

0.38), and Vulpicidia pinastri (r = -0.35). 

The third axis explained 15.6% of the variance. While most associations with this 

axis were weak, the environmental variables with the strongest positive correlations were 

higher cover of overstory subalpine fir (r = 0.395) and higher understory plant cover (r = 

0.357). Species with the strongest positive correlations were Cladonia cariosa (r = 0.507) 

and Parmeliopsis hyperoptera (r = 0.426). The environmental variables with the 

strongest negative correlations to axis three were higher maximum (r = -0.399) and 
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minimum temperatures (r = -0.309), higher lichen cover on the ground (r = -0.338), 

higher lichen cover on rocks (r = -0.304), and higher cover of overstory Englemann 

spruce (r = -0.255). Species with the strongest negative correlations were Peltigera 

malacea (r = -0.597), Cladonia cariosa (r = -0.51), Cladonia macrophyllodes (r = -

0.436), and Cladonia ecmocyna ssp. intermedia (r = -0.346). 

 

Figure 3: NMS ordination of the lichen community composition with three different 

overlays represented in the above panels. Each symbol represents one of our 44 plots. A 

3D solution was recommended, but only two dimensions are shown here. In (A), 

Roosevelt plots are marked by open triangles, while Routt plots are marked by closed 

grey triangles. 2012 – 2017 beetle disturbance class plots are marked with open circles 

around triangles. In (B) the relative size of the diamonds represents the relative cover of 

intermediate decay of logs (Log rank 3), and in (C) the size of the symbol indicates the 

relative amount of precipitation. 
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Discussion 

The following section will discuss the general patterns that describe lichen 

community structure throughout our study. Since we found a 3D solution, this means that 

there will be a separate discussion for each of the three axes that describe our lichen 

community patterns. 

Axis 1: Geography/Substrate Axis 

The primary ordination axis represents a geography/substrate gradient in 

macrolichen community structure. The driving forces behind this gradient are large-scale 

environmental conditions and geographical patterns. The two forests within our study 

area are roughly represented on opposing ends of axis one (Figure 3). Our sampling 

design constrained plots to spruce-fir forests, resulting in plots with similar elevations 

and tree canopy communities, but climatic variables differed between forests. Plots in the 

Routt National Forest (NF), located further north and west and situated near the 

continental divide, were wetter and cooler than plots in the Roosevelt National NF, which 

were located in the southern and eastern portions of the study area (Figure 1). Patterns in 

precipitation are dictated by how moisture is introduced within the region; the majority of 

moisture in Colorado comes from the Pacific Ocean to the western side of the state (Abbs 

and Pielke 1986). As these systems move eastward across the mountains, precipitation is 

released along the western slope and mountaintops with little moisture remaining for the 

eastern portions of the mountains and plains (Baron and Denning 1993). The geographic 

locations explain the climatic patterns between plots within the Routt NF and those in the 

Roosevelt NF, to which lichens were clearly responding along this axis. Similar trends of 

large-scale patterning of geography and climate has been found to affect lichen 
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community structure in a number of other studies (e.g., Esseen et al. 2016; Giordani and 

Incerti 2008; Marini et al. 2011).  

Axis one also represents a substrate availability and suitability axis. In the 

species-rich Roosevelt plots, there was more heavily decayed wood (Log rank 5) and less 

open ground, while the less speciose Routt plots had more open ground and partially 

decayed wood (Log rank 3). Research has repeatedly shown that lichens can have strong 

preferences for particular substrates; specifically, that larger wood in advanced stages of 

decay harbor higher species richness and are more favorable for lichens than smaller, 

partially decayed wood (Dittrich et al. 2014; Humphrey et al. 2002; Kumar et al. 2017; 

Santianello et al. 2017). On the other hand, cover of open ground within sites could be 

indicative of soil habitat suitability. Assuming that areas suitable for lichens and/or 

vascular plants should be colonized, there should be less open ground in areas conducive 

to lichen and/or vascular plant establishment. If the underlying soil is not suitable, we 

would assume that these areas would not be colonized and remain open ground. 

Therefore, areas with more open ground and lower diversity, like what we observed in 

the Routt NF, may reflect lack of suitable substrate or terricolous habitat. These patterns 

of lichen diversification with more substrate availability within forest systems have also 

been supported by other studies (Crites and Dale 1998; Dittrich et al. 2014; Holt et al. 

2015). 

Axis 2: Canopy Fragmentation  

Gradient 

The second axis corresponds to a canopy fragmentation gradient. The lichen 

response along this gradient reflects their sensitivity to increased solar radiation and the 

drying conditions of wind that could be a product of open canopies and resulting higher 
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wind speeds. Peltigera leucophlebia and Peltigera malacea are associated with the closed 

canopy end of axis two and often specialize in older, contiguous forests (Zouaoui et al. 

2014), while other lichens (e.g. Cladonia spp.) favor more open areas (Brǻkenhielm and 

Liu 1998; Boudreault et al. 2013b; Botting and Freden 2006; Girard et al. 2017; Zouaoui 

et al. 2014). Beyond altering direct incoming solar radiation, canopy fragmentation can 

also increase susceptibility to wind damage. On forest edges, alectoroid lichens 

experience more fracturing and are present in lower quantities than interior forest habitat 

(Esseen and Reinhorn 1998). Lichens underneath open canopies could also experience 

more intense drying effects as a result of increased wind exposure, which could affect 

lichen establishment (Anstett and Coiner 2010). Axis two therefore represents differing 

local growing conditions, due to open or closed canopies, to which lichens in these 

forests respond. 

Axis 3: Spruce/Fir Gradient 

The third ordination axis corresponds to an Engelmann Spruce-Subalpine Fir 

gradient, where the highest and lowest overstory cover of each species oppose one 

another at the ends of axis three. While all our sampled forests were dominated by fir 

(Table 1), the relative proportions of spruce:fir, as determined by the contribution of both 

species, varied along this axis. Numerous other studies have found that tree-specific 

characteristics like bark roughness and pH influence lichen community structure of 

epiphytes (Holt et al. 2015; Rosabal et al. 2013; Spier et al. 2010). Interestingly, the 

lichens responding most strongly to this gradient in our sample were all terricolous, thus 

differences in the environment under these trees was a key driver of lichen response 

rather differences on the trees’ surfaces.  
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Research has shown that leaf litter, like foliar nutrient properties (Richardson 

2004) and decay rates, can vary by species; specifically, Bigler and Veblen (2010) found 

that Engelmann spruce litter decays more quickly than subalpine fir (half-life of 4 years 

compared to 19 years) and a higher litter load. As these needles decay, concentrations of 

dissolved elements in the soil are altered (e.g, Cu, Zn, Mn, Cd, and Pb; Lomander and 

Johansson 2001) and could impact lichen fitness and colonization success (Paul et al. 

2009). Further, soil research has shown that overstory tree species can also alter soil 

characteristics, such as carbon and nitrogen availability, that could be important for 

lichen establishment (Finzi et al. 1998; Augusto et al. 2002). Lichens are quite sensitive 

to microclimatic conditions (Haughian and Burton 2018; Lόpez et al. 2016; Nash 2008), 

and differing conditions around each tree species and under each differing litter load 

could differ enough to support different lichen communities. Plant and microbe 

community structure vary under different tree canopies (Behara and Misra 2006; Ister and 

Gokbulak 2009; Nilsson et al. 2008; Svenning and Skov 2002; Urbanová et al. 2015) and 

there is some support that terricolous lichens can be influenced by tree species 

(Košuthová et al. 2013). Our observations along this spruce-fir gradient represent a 

similar pattern for lichen communities, largely comprising terricolous species, in 

northwestern Colorado. 

Finally, while this spruce-fir gradient signals direct effects of the dominating 

overstory trees on terricolous lichens within these forests, this gradient likely also reflects 

competition between vascular plants and lichens. Other research suggests that in areas 

that have higher abundances of understory plants, ground-dwelling lichens are 

outcompeted (Cornelissen et al. 2001; Lӧbel et al. 2006). We found greater abundance 
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and frequency of ground-dwelling taxa, including Peltigera malacea, Cladonia 

ecmocyna, and Cladonia macrophyllodes, in plots with lower cover of understory plants. 

When cover of understory plants was high, the key lichen associates were wood-

inhabiting species like Parmeliopsis hyperoptera and Cladonia cariosa, which may be 

able to avoid competition by occupying substrates that are not colonized by vascular 

plants (i.e. not soil). Less competition from understory plants at one end of this gradient, 

under canopies with a higher spruce:fir ratios, could also reflect less favorable conditions 

for vascular plant communities, which indirectly releases lichens from competition. 

Future research is needed to explore the factors that could contribute to the ill-suitability 

of canopies with more spruce cover for vascular plants, like soil chemistry, litter depth, 

and microclimate. These conditions, in turn, could clarify the relative contribution of 

direct effects of overstory tree identity on lichens versus the effects of competition 

between understory plants and lichen communities under different forest canopies.  

Bark Beetle Impact - Countering 

Expectations 

Prior literature of spruce beetle-kill effects on lichens (Bässler et al. 2016) and 

other canopy opening disturbance effects on lichens (Bartels and Chen 2015; Botting and 

Freden 2006; Boudreault et al. 2013a; Boudreault et al. 2013b; Lafleur et al. 2016; 

Zouaoui et al. 2014), led to our prediction that spruce beetle disturbance would impact 

lichen communities within northwestern Colorado. We expected that associated forest 

structural changes, noted elsewhere for beetle impacted forests, would precipitate these 

community shifts. We, however, did not observe these differences in forest structure in 

our study area, as are documented elsewhere. We propose two explanations for why our 
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sampled plots did not show these forest structure differences, which both would require 

further work beyond the scope of this study for confirmation.  

First, our forest type could potentially mask beetle-induced structural changes. 

Spruce-fir forests in North America are co-dominated by Engelmann spruce (Picea 

engelmannii) and Subalpine fir (Abies lasiocarpa). When these forests are attacked by 

bark beetle, only mature spruce trees are killed (Bentz et al. 2010; Derose and Long 

2007; Veblen et al. 1991). However, spruce and fir trees are not evenly distributed 

throughout the landscape and often depend upon previous disturbance (Mietkiewicz et al. 

2018). Since these two species share an ecological niche, individuals of both species will 

occupy habitat vacancies and utilize resources as they come available. Other spruce-fir 

forests affected by spruce beetle have transitioned from spruce-dominated to fir- or 

aspen-dominated forests (Derose and Long 2007; Veblen et al. 1991). This shifting 

mosaic of overstory conifers in forests with more than one dominant species may act as a 

buffer to drastic forest structure changes often associated with beetle-kill in single-

species dominated forests (e.g., Lodgepole pine; Cichewski and Williston 2004; Creeden 

et al. 2014; Klutsch et al. 2009; Perovich and Sibold 2016). 

Second, the size of our sampling units could have obscured structural changes 

documented elsewhere associated with beetle epidemics, such as coarse woody debris or 

canopy cover. Other studies that report structural differences used much smaller sampling 

units (0.05-0.1 ha), and they also targeted canopy gaps produced as a result of beetle 

disturbance (Bässler et al. 2016; Winter et al. 2015; Winter et al. 2017). Our larger plots 

often contained both impacted spruce trees and healthy fir trees. Furthermore, we used a 

random stratified sample to increase our capacity to extrapolate patterns to the entire 
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study area and we relied on remotely sensed data rather than local site observations to 

locate plots. While our sampling methods were chosen because they align with protocols 

used with lichens in numerous past studies (e.g., Geiser and Neitlich 2007; Holt et al. 

2009; Peterson and McCune 2001) and to increase the inference of our findings across 

the landscape, they may have been less than ideal to capture forest structure differences 

to the scale of this heterogeneous disturbance.  

Overall, we did detect some differences in lichen community structure and 

environmental conditions among our disturbance classes. Lichen community structure of 

plots in the 2012-2017 beetle disturbance class were unique compared to most of the 

other disturbance classes; these plots received less annual precipitation, had higher lichen 

ground cover, lower cover of bare ground, and higher cover of intermediate and advanced 

decay logs (Log rank 3 and rank 4; Table 1). However, it is unclear if these differences in 

lichen community structure and associated environmental conditions are due to spruce 

beetle impact.  

In forests affected by spruce beetle, understory forbs and tree saplings can 

respond quite quickly to canopy openings, which could then compensate for the loss of 

the overstory spruce trees (Berg et al. 2006; Pec et al. 2015). However, it is unlikely that 

measured differences in lichen community structure, only detected within six years of the 

infestation (i.e., 2012-2017 beetle disturbance class), are a result of rapid response and 

subsequent recovery to spruce beetle disturbance in six years. Lichens are slow-growing 

organisms and are difficult to detect until propagules have grown for several years 

(Bartels and Chen 2015; Girard et al. 2017), so it is unlikely that the indicator species for 

this disturbance class established themselves so recently after spruce beetle disturbance. 
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Next, the environmental conditions that separated this disturbance class apart from the 

remaining plots are unlikely to be influenced by bark beetle outbreak, but rather are 

characteristics that are affected by large-scale, long-term patterns. Specifically, changes 

to regional weather patterns occurs over larger spatial scales than the patchwork of 

beetle-kill studied here, and severe wood degradation in this region often occurs over a 

greater time scale than six years since bark beetle disturbance in the 2012-2017 beetle 

disturbance class plots. Instead, we suggest that the 2012 – 2017 plots were different 

because of larger geographic and environmental patterns within our study area described 

above as our strongest gradient in community structure along axis one. 

Accordingly, all 2012-2017 beetle disturbance class plots were restricted to the 

Roosevelt NF (Table 1), which have more suitable environments and habitats available 

for macrolichens (Figure 3). Additionally, the majority of 2012-2017 class indicator 

species had strong negative correlations with axis one, which is more indicative of their 

affinity to that particular geography/substrate than their ability to colonize and establish 

within six years. This uneven distribution of plots between forests was also apparent in 

the 1996 – 2003 disturbance class, as these plots were only located within the less 

favorable Routt NF (Table 1). However, this unbalanced sampling was difficult to avoid. 

As the spruce beetle epidemic traveled through northern Colorado, the beetles traveled 

from the west to the east. This resulted in older plots being concentrated within the Routt 

NF and more recently affected plots being concentrated within the Roosevelt NF. 

Therefore, the differences we measured in lichen community structure more likely 

reflected larger geographic and environmental patterns. 



 

35 

 

 
 

Overall, we are not confident that we were able to capture structural changes in 

forest structure associated with spruce beetle attack and subsequent impacts on lichen 

community structure. We detected weak differences in lichen community structure and 

environmental conditions between plots sampled shortly after initial spruce beetle 

disturbance (2012-2017) but not among beetle disturbance classes older than six years 

post-infestation. We suspect that these differences are an artifact of our sampling design 

and the forest type, and instead reflect large-scale differences in geography and substrate. 

We cannot be sure if a beetle disturbance signal was not detected due to recovery of 

understory subalpine fir trees or as a result of our sampling design that did not 

specifically target canopy gaps resulting from bark beetle disturbance. Since we were 

unable to measure differences in forest structure related to bark beetle disturbance, any 

patterns we noted in lichen community structure cannot be unequivocally tied to spruce 

beetle impact. We therefore recommend that future researchers further investigate how 

bark beetles could be impacting lichen communities in this forest type. 

Studying the impact of spruce beetle disturbance in lichens is important because 

this and other bark beetle disturbances will continue to become more prevalent as climate 

change continues to alter environmental conditions within our forests (Bentz et al. 2010; 

Raffa et al. 2008). As temperatures warm, spruce beetle populations develop more 

quickly into mature beetles, fewer individuals die during winter diapause, and trees are 

more often drought-stressed and cannot fend off offending beetles (Allen et al. 2010; 

Bentz et al. 2010; Hart et al. 2014; Nash 2008). While research has shown that bark 

beetle disturbance has had impacts on other forest animals (Allen et al. 2010; Drever and 

Martin 2010; Ivan et al. 2018,) and plants (Boucher and Meade 2006), this study 
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illustrates that disturbance may not always have immediate impacts on every component 

of our forest ecosystems, or at least at the scale we measured. 

Limitations and Future Directions 

While we identify some novel trends in the current work, our study had several 

limitations. First, we were not able to detect changes in forest structure with our sampling 

protocol, likely due to the several reasons described above (e.g. sampling method, forest 

type). However, other studies, conducted within the same forests in northern Colorado, 

detected a disturbance signal from bark beetles (Veblen et al. 1991; Mietkiewicz et al. 

2018). Prior disturbance has also been shown to influence subsequent bark beetle 

disturbance impacts, and this could have confounded a clear signal in our study 

(Mietkiewicz et al. 2018; Veblen et al. 1994).  

Next, we did not investigate whether our study area had been affected by 

additional disturbances, such as fire, logging, or wind-throw events. The high overall 

cover, across all plots, of overstory fir (mean = 74.0, SD = 15.6) led us to suspect that 

these forests had been previously disturbed by factors other than beetles; mature spruce-

fir forests are dominated by spruce trees, while younger forests or those recovering from 

disturbance are first dominated by fir trees (Derose and Long 2007; Kayes and Tinker 

2011; Temperli et al. 2015; Veblen et al. 1991), and full recovery from fir to spruce 

dominance can take several decades (Derderian et al. 2016; Veblen et al. 1991). 

However, the impact of multiple disturbances on lichen community structure was outside 

the scope of our study. Research has shown that previous disturbance can determine how 

an area will be impacted by bark beetle outbreaks (Berg et al. 2006; Temperli et al. 2015; 
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Veblen et al. 1994), so future work on this topic could benefit from consideration of 

multiple disturbance types.  

Finally, while studies have shown that forest structure can change within a few 

years after bark beetle disturbance (Derose and Long 2007; Winter et al. 2015; Winter et 

al. 2017), potentially we sampled too recently after spruce beetle disturbance to detect 

notable differences. We recommend that future studies revisit this area at a later date to 

accommodate the slower response times of lichen communities. Considering that the 

longest time since disturbance was 20 years and previous work has shown that lichen 

establishment is not detected until 7 – 15 years after disturbance (Bartels and Chen 2015; 

Girard et al. 2017), our study could have detected lichen die-back but not lichen 

establishment. 
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CHAPTER III 

SUMMARY OF SPRUCE BEETLE IMPACT ON  

LICHEN COMMUNITY COMPOSITION 

AND FUTURE DIRECTIONS 

Bark Beetle Impact – Countering Expectations 

Prior literature of spruce beetle-kill effects on lichens (Bässler et al. 2016) and 

other canopy opening disturbance effects on lichens (Bartels and Chen 2015; Botting and 

Freden 2006; Boudreault et al. 2013a; Boudreault et al. 2013b; Lafleur et al. 2016; 

Zouaoui et al. 2014), led to our prediction that spruce beetle disturbance would impact 

lichen communities within northwestern Colorado. We expected that associated forest 

structural changes, noted elsewhere for beetle impacted forests, would precipitate these 

community shifts. We, however, did not observe these differences in forest structure in 

our study area, as are documented elsewhere. We propose two explanations for why our 

sampled plots did not show these forest structure differences, which both would require 

further work beyond the scope of this study for confirmation.  

First, our forest type could potentially mask beetle-induced structural changes. 

Spruce-fir forests in North America are co-dominated by Engelmann spruce (Picea 

engelmannii) and Subalpine fir (Abies lasiocarpa). When these forests are attacked by 

bark beetle, only mature spruce trees are killed (Bentz et al. 2010; Derose and Long 

2007; Veblen et al. 1991). However, spruce and fir trees are not evenly distributed 

throughout the landscape and often depend upon previous disturbance (Mietkiewicz et al. 

2018). Since these two species share an ecological niche, individuals of both species will 
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occupy habitat vacancies and utilize resources as they come available. Other spruce-fir 

forests affected by spruce beetle have transitioned from spruce-dominated to fir- or 

aspen-dominated forests (Derose and Long 2007; Veblen et al. 1991). This shifting 

mosaic of overstory conifers in forests with more than one dominant species may act as a 

buffer to drastic forest structure changes often associated with beetle-kill in single-

species dominated forests (e.g., Lodgepole pine; Cichewski and Williston 2004; Creeden 

et al. 2014; Klutsch et al. 2009; Perovich and Sibold 2016). 

Second, the size of our sampling units could have obscured structural changes 

documented elsewhere associated with beetle epidemics, such as coarse woody debris or 

canopy cover. Other studies that report structural differences used much smaller sampling 

units (0.05-0.1 ha), and they also targeted canopy gaps produced as a result of beetle 

disturbance (Bässler et al. 2016; Winter et al. 2015; Winter et al. 2017). Our larger plots 

often contained both impacted spruce trees and healthy fir trees. Furthermore, we used a 

random stratified sample to increase our capacity to extrapolate patterns to the entire 

study area and we relied on remotely sensed data rather than local site observations to 

locate plots. While our sampling methods were chosen because they align with protocols 

used with lichens in numerous past studies (e.g., Geiser and Neitlich 2007; Holt et al. 

2009; Peterson and McCune 2001) and to increase the inference of our findings across 

the landscape, they may have been less than ideal to capture forest structure differences 

to the scale of this heterogeneous disturbance.  

Overall, we did detect some differences in lichen community structure and 

environmental conditions among our disturbance classes. Lichen community structure of 

plots in the 2012-2017 beetle disturbance class were unique compared to most of the 
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other disturbance classes; these plots received less annual precipitation, had higher lichen 

ground cover, lower cover of bare ground, and higher cover of intermediate and advanced 

decay logs (Log rank 3 and rank 4; Table 1). However, it is unclear if these differences in 

lichen community structure and associated environmental conditions are due to spruce 

beetle impact.  

In forests affected by spruce beetle, understory forbs and tree saplings can 

respond quite quickly to canopy openings, which could then compensate for the loss of 

the overstory spruce trees (Berg et al. 2006; Pec et al. 2015). However, it is unlikely that 

measured differences in lichen community structure, only detected within six years of the 

infestation (i.e., 2012-2017 beetle disturbance class), are a result of rapid response and 

subsequent recovery to spruce beetle disturbance in six years. Lichens are slow-growing 

organisms and are difficult to detect until propagules have grown for several years 

(Bartels and Chen 2015; Girard et al. 2017), so it is unlikely that the indicator species for 

this disturbance class established themselves so recently after spruce beetle disturbance. 

Next, the environmental conditions that separated this disturbance class apart from the 

remaining plots are unlikely to be influenced by bark beetle outbreak, but rather are 

characteristics that are affected by large-scale, long-term patterns. Specifically, changes 

to regional weather patterns occurs over larger spatial scales than the patchwork of 

beetle-kill studied here, and severe wood degradation in this region often occurs over a 

greater time scale than six years since bark beetle disturbance in the 2012-2017 beetle 

disturbance class plots. Instead, we suggest that the 2012–2017 plots were different 

because of larger geographic and environmental patterns within our study area described 

above as our strongest gradient in community structure along axis one. 
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Accordingly, all 2012-2017 beetle disturbance class plots were restricted to the 

Roosevelt NF (Table 1), which have more suitable environments and habitats available 

for macrolichens (Figure 3). Additionally, the majority of 2012-2017 class indicator 

species had strong negative correlations with axis one, which is more indicative of their 

affinity to that particular geography/substrate than their ability to colonize and establish 

within six years. This uneven distribution of plots between forests was also apparent in 

the 1996–2003 disturbance class, as these plots were only located within the less 

favorable Routt NF (Table 1). However, this unbalanced sampling was difficult to avoid. 

As the spruce beetle epidemic traveled through northern Colorado, the beetles traveled 

from the west to the east. This resulted in older plots being concentrated within the Routt 

NF and more recently affected plots being concentrated within the Roosevelt NF. 

Therefore, the differences we measured in lichen community structure more likely 

reflected larger geographic and environmental patterns. 

Overall, we are not confident that we were able to capture structural changes in 

forest structure associated with spruce beetle attack and subsequent impacts on lichen 

community structure. We detected weak differences in lichen community structure and 

environmental conditions between plots sampled shortly after initial spruce beetle 

disturbance (2012-2017) but not among beetle disturbance classes older than six years 

post-infestation. We suspect that these differences are an artifact of our sampling design 

and the forest type and reflect large-scale differences in geography and substrate rather 

than differences based on time since beetle disturbance. We cannot be sure if a beetle 

disturbance signal was not detected due to recovery of understory subalpine fir trees or as 

a result of our sampling design that did not specifically target canopy gaps resulting from 
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bark beetle disturbance. Since we were unable to detect differences in forest structure 

related to bark beetle disturbance, any patterns we noted in lichen community structure 

cannot be unequivocally tied to spruce beetle impact.  

Studying the impact of spruce beetle disturbance in lichens is important because 

this and other bark beetle disturbances will continue to become more prevalent as climate 

change continues to alter environmental conditions within our forests (Bentz et al. 2010; 

Raffa et al. 2008). As temperatures warm, spruce beetle populations develop more 

quickly into mature beetles, fewer individuals die during winter diapause, and trees are 

more often drought-stressed and cannot protect themselves from offending beetles (Allen 

et al. 2010; Bentz et al. 2010; Hart et al. 2014; Nash 2008). While research has shown 

that bark beetle disturbance has had impacts on other forest animals (Allen et al. 2010; 

Drever and Martin 2010; Ivan et al. 2018,) and plants (Boucher and Meade 2006), this 

study illustrates that disturbance may not always have apparent impacts on every 

component of our forest ecosystems, or at least at the scale we measured. 

Future Directions 

 The majority of ecological lichen studies thus far have been restricted to studying 

only specific components of lichen communities. For example, lichen disturbance studies 

in Canada often strictly study terricolous lichens that are important winter forage for 

caribou (Waterhouse et al. 2011; Boudreault et al. 2013b). Elsewhere, studies focus only 

on the response of single lichen species (Ignatenko and Tarasova 2018) or specific groups 

of lichens such as alectoroid epiphytes (McCune et al. 2008; Horstkotte et al. 2011), 

terricoles (Košuthová et al. 2013; Zouaoui et al. 2014) or lignicoles (Bässler et al. 2016). 

However, studies such as these are insufficient when we want to understand the entire 
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lichen community due to their narrow focus. Forests are heterogeneous with many 

microhabitats available for lichen establishment. These habitats, in turn, can support 

diverse lichen communities that are sensitive to different environmental conditions. A 

holistic understanding of the lichen community requires an approach that studies all these 

potential microhabitats.  

Even within a single forest canopy, distinct environments exist, each supporting 

different communities. Epiphytic lichens can vary along a vertical gradient; epiphytic 

communities closer to the ground are different from epiphytic communities in the mid or 

upper canopy (Kobylinski and Fredeen 2014; Fritz 2009; Campbell and Coxson 2001). 

The root of these disparities in epiphytes has been primarily attributed to differences in 

substrate quality and quantity (Crites and Dale 1998, Bässler et al. 2016; Dittrich et al. 

2014; Santianello et al. 2017) or microclimate (Ódor et al. 2013; Rubio-Salcedo et al. 

2015). Terricolous lichens, on the other hand, can be exposed to direct vascular plant and 

moss competition (Lӧbel et al. 2006; Cornelissen et al. 2001) and are sensitive to 

different soil types (Zouaoui et al. 2014). Terricolous lichens can also be buried under 

snowpack for large portions of the year, which can affect their photosynthetic activity and 

buffer them from temperature extremes, which is not true for epiphytic lichens growing 

above the snow pack (Bjerke et al. 2011). However, few studies have contrasted lichen 

responses from those on the ground to those in the trees (Botting et al. 2008; Boudreault 

et al. 2015).  

 Environmental conditions, such as temperature and humidity, can differ between 

the ground and canopy as distance above the ground increases (Campbell and Coxson 

2001; Fritz 2009). Epiphytic lichens experience different environmental conditions than 
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ground-dwelling lichens, including increased wind exposure and solar radiation 

(Campbell and Coxson 2001; Fässler et al. 2014). Differences in conditions important for 

epiphytic and ground-dwelling communities are further illustrated by how these lichens 

oppositely respond to canopy openings (Boudreault et al. 2015). Studies on epiphytic 

lichens have found that disturbance-induced increases in solar radiation reduced 

photosynthetic activity of shade-adapted lichens (Gauslaa and Solhaug 1996), and that 

the distribution of epiphytic lichens was limited to areas with higher humidity, such as 

valleys or trees near bodies of water (Rambo 2010). Furthermore, higher wind speeds 

near forest edges increased fracturing and reduced the overall size of alectoroid lichens 

(Esseen and Reinhorn 1998; Esseen 2019). Studies of lichen response to logging and fire 

disturbance have found that, in general, epiphytic lichens responded poorly to these types 

of disturbances (i.e., slower growth rates and lower abundances) (Bartels and Chen 2015; 

Horstkotte et al. 2011). 

 In contrast, lignicolous and terricolous lichens respond quite differently to these 

same types of disturbances. Lignicolous lichens responded positively to disturbances that 

increase the woody debris available for colonization (Bässler et al. 2016). The majority of 

studies have shown that terricolous lichens, like Cladonia ssp., responded positively to 

logging and fire disturbance, through increased growth and cover as the canopy opens 

(Lafleur et al. 2016; Zouaoui et al. 2014; Boudreault et al. 2013b). However, many of 

these studies only focused on caribou food sources, so old-forest specialists, like 

Peltigera ssp., may respond differently to disturbances that reduce canopy cover. 

Generally terricoles community structure is driven by different factors (e.g. competition 

with plants and bryophytes, litter thickness, and microtopography; Boudreault et al. 2002) 



 

45 

 

 
 

than those important for epiphytes (e.g. solar radiation and humidity) or corticoles (e.g. 

woody debris). Overall, we expect that the community composition of downed wood- or 

ground-dwelling and epiphytic lichens differ due to the different environmental 

conditions they experience and their differential response to these conditions.  

 Studies into whether different components of lichen communities (e.g. epiphytes 

vs. lignicoles vs. terricoles) vary within a forest could also clarify the relative importance 

of microclimatic conditions and substrate. Numerous studies show that lichens often have 

specific preferences for substrates. For example, lignicolous species richness is often 

higher on larger, more severely decayed wood than smaller, less decayed wood (Caruso 

and Rudolphi 2009; Dittrich et al. 2014). Other studies have related lichen substrate 

preference to specific tree species (Asplund et al. 2014) and bark characteristics like 

roughness and pH (Jüriado et al 2012; Lamit et al. 2015). Overall, lichen substrate studies 

tend to focus on substrate-related traits and do not consider how environmental 

conditions could also influence lichen distributions. Studies that consider both substrate 

type and growth location within the forest could clarify whether the environmental 

conditions associated with the environment or the substrates themselves contribute more 

to lichen community composition. Future studies could begin to address these questions 

by concurrently examining lichen community structure of substrate-specific species (i.e. 

lignicolous, terricolous, and epiphytic lichens) and the community structure along a 

vertical gradient (e.g. lichens on the ground level vs. lichens in the trees). These types of 

studies are important to inform land management practices within lichen-rich forests. 

Understanding each components’ contribution to the whole community response could 

allow land managers to more effectively conserve lichen communities. Lichens are 
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important components of our ecosystems, and better understanding of their diverse 

components can have positive impacts on the other organisms that rely on lichens for 

survival. 

Summary 

 Overall, we detected some differences in lichen community composition and 

environmental conditions among our beetle disturbance classes within northwestern 

Colorado. However, we are not convinced that these differences are necessarily a result 

of spruce beetle disturbance. The variables that were detected as different are unlikely to 

be influenced by bark beetle disturbance. We also cannot conclusively determine that 

there was no influence of spruce beetle disturbance on lichen community composition 

because we could not detect a disturbance signal. Instead, we believe that larger 

geographic patterns and environmental conditions influence lichen community 

composition within northwestern Colorado.  
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Appendix A: Indicator values represent fidelity and abundance of each species. There 

are no indicator values for rare (1 plot) taxa, and significant indicator values are 

represented by *. Frequency represents the number of plots where a lichen species was 

detected. Frequency is the number of plots that contained each species. Average 

abundance represents the average abundance value of each species within plots where 

each lichen was detected. 

Species Name Indicator values Frequency Average 

Abundance 

Brodoa oroarctica  1 1.00 

Bryoria chalybeiformis  1 3.00 

Bryoria fremontii 14.3 7 2.43 

Bryoria fusescens 18.3 25 2.96 

Cetraria ericetorum  1 1.00 

Cetraria islandica  1 1.00 

Cladonia asahinae  1 3.00 

Cladonia baciliformis 5.6 4 2.25 

Cladonia cariosa 24.9 29 2.45 

Cladonia carneola 26.0 31 2.35 

Cladonia cenotea  1 2.00 

Cladonia chlorophaea 22.4 42 2.71 

Cladonia coniocraea 21.7 34 2.38 

Cladonia decorticata  5 1.60 

Cladonia deformis 12.8 3 1.37 

Cladonia ecmocyna ssp. 

intermedia 

28.7 13 2.15 

Cladonia ecmocyna ssp. 

occidentalis 

15.2 6 3.50 

Cladonia fimbriata 28.4 34 2.27 

Cladonia gracilis  1 1.00 

Cladonia gracilis subsp. turbinata  1 2.00 

Cladonia macilenta 21.0 3 2.33 

Cladonia macrophyllodes 14.4 21 2.90 

Cladonia merochlorophaea 14.4 1 3.00 

Cladonia ochlorochlora 7 5 1.40 

Cladonia pyxidata 5.2 3 1.00 

Cladonia rangiferina  1 0.10 

Cladonis sulphurina 22.7 22 2.36 

Cladonia umbricola  12 2.17 

Cladonia verruculosa  1 1.00 

Dermatocarpon intestiniforme  1 1.00 

Dermatocarpon moulinsii  1 2.00 

Dermatocarpon reticulatum  1 1.00 

Evernia divaricata  1 1.00 
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Appendix A, Continued 

Species Name 

Indicator values Frequency Average 

Abundance 

Hypogymnia austerodes  1 1.00 

Hypogymnia farinacea  1 3.00 

Hypogymnia imshaugii 6.0 3 1.33 

Melanohalea exasperatula 20.9 39 3.18 

Melanohalea subolivacea 45.1*     2012 - 2017 9 3.33 

Nephroma parile  1 1.00 

Parmeliopsis ambigua 20.6 22 2.18 

Parmeliopssis hyperopta 12.2 8 2.38 

Parmelia omphalodes  1 1.00 

Parmelia sulcata  1 1.00 

Physciella melanchra 15.2 5 2.00 

Peltigera apthosa 17.4 18 2.72 

Peltigera britannica  1 3.00 

Peltigera canina 14.8 5 2.20 

Peltigera collina  1 2.00 

Peltigera didactyla  1 2.00 

Peltigera horizontalis  1 3.00 

Peltigera kristinsonii 8.4 6 2.67 

Peltigera leucophlebia 17.7 12 2.67 

Peltigera malacea 18.4 26 2.55 

Peltigera neckeri  1 2.00 

Peltigera polydactyla 28.5 13 2.77 

Peltigera ponojensis 6.7 8 2.88 

Peltigera praetextata  1 2.00 

Peltigera rufescens 7.3 7 2.43 

Phaeophyscia nigricans  1 1.00 

Phaeohyscia orbicularis 13.2 4 1.75 

Physcia adscendens 39.5*     2012 - 2017 13 1.54 

Physcia biziana  1 1.00 

Physcia caesia  1 1.00 

Physcia stellaris 42.3*     2012 - 2017 5 1.40 

Psoroma hyponorum 26.6 19 1.74 

Rhizoplaca chrysoleuca  1 2.00 

Rhizoplaca melanophthalma 14.3 1 5.00 

Solorina crocea  1 2.00 

Solorina octospora  1 3.00 

Solorina saccata 8.5 8 2.00 

Stereocaulon alpina 9.1 2 2.00 

Stereocaulon myriocarpum 7.5 2 1.00 

Umbilicaria hyperborea 7.3 5 2.60 

Usnea cavernosa  1 1.00 
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Appendix A, Continued 

Species Name 

Indicator values Frequency Average 

Abundance 

Usnea lapponica 24.4 40 3.05 

Vestergrenopsis elaeina  1 1.00 

Vulpicidia pinastri 34.9*     2012 - 2017 13 2.08 

Xanthoria elegans  1 1.00 

Xanthoparmelia coloradoensis 25.9 5 1.40 

Xanthoparmelia cumberlandia 36.1*     2012 - 2017 7 2.86 

Xanthoparmelia lineola 19.0 4 2.75 
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