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ABSTRACT 

Rhodes, Amy Christine. Estimating Pre-morbid Intellectual Functioning Using the Das-
Naglieri: Cognitive Assessment System. Published Doctor of Philosophy 
dissertation, University of Northern Colorado, 2012. 

 
 Neurological evaluation often utilizes a comparison of current test performance 

and previous performance to note any changes in neurological functioning. Previous 

methods have utilized atheoretical assessment measures such as the Wechsler Intelligence 

Scale for Children IV as means of determining pre-morbid functioning. The purpose of 

this study was to develop pre-morbid intellectual functioning equations using the 

theoretical Das-Naglieri: Cognitive Assessment System (CAS) as a method to determine 

functioning prior to a neurological injury in children. Participants included the CAS 

standardization sample (N = 2,791). The sample was randomly divided into two groups 

(90% comprising the development sample and the remaining 10% consisting of the 

validation sample). In addition, 22 individuals from the CAS standardization sample who 

reported a traumatic brain injury (TBI) were also withheld for a small clinical validation 

sample. The development group was used to create 17 equations to estimate both CAS-

Domain scores and CAS Full Scale IQ. Sixteeen of the 17 equations were accurate 

predictors of the CAS-Domain and CAS Full Scale scores in the non-clinical validation 

sample. These equations hold promise in accurate estimation in clinical samples as 

evidenced by the validation in the small TBI clinical sample utilized in this study 

although more clinical validation is required. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

In the last couple of decades, researchers have begun to include the study of 

estimating pre-morbid intellectual functioning of people with traumatic brain injuries 

(TBI) into the research discipline of traumatic brain injuries. Educational researchers 

often searched for information regarding the magnitude of the adverse effects of brain 

injury and potential interventions that might be useful for children and adults to recover 

the loss of functioning caused by a TBI. Many studies have shown the disadvantageous 

effects children with TBI may face in the educational setting including difficulties in 

sustaining attention and concentration and other executive functioning deficits, ultimately 

affecting their academic performance (Semrud-Clikeman, 2001). With the increasing 

knowledge in understanding a person’s pre-morbid intellectual functioning and how it 

can facilitate intervention selections, many researchers and educators alike are becoming 

more intrigued by what the pre-morbid estimates have to offer. Given that some degree of 

loss of cognitive functioning typically exists following a TBI experience, interactionists 

may wonder to what extent remedial efforts are successful or reorder the level and 

potential of the pre-injury functioning.  
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Traumatic Brain Injury 

Traumatic brain injury (TBI) is the world-wide leading cause of death and a 

significant cause of disabilities in children (Suominen et al., 1998). For example, using 

data from 2002-2006, the Centers for Disease Control reported that approximately 

511,000 cases occurred per year for children from 0-14 years of age (Faul, Xu, Wald, & 

Coronado, 2010). Moreover, males are more likely than females to suffer a traumatic 

brain injury; the ratio of injuries of males to female was approximately 2:1 between the 

ages of 5 and 14, with the greatest discrepancy between genders evident between the ages 

of 10 to 14 (Faul et al., 2010). Thus, TBI is a pervasive phenomenon in childhood. 

Traumatic brain injuries are generally classified as either open or closed head 

injury. Open head injuries, which are rarer than closed head injuries, include wounds 

inflicted by gunshots, assault, and surgery (Semrud-Clikeman, 2001). In contrast, closed 

head injuries classically include hitting a hard surface, falling, or some types of abuse, 

such as Shaken Baby Syndrome (Semrud-Clikeman, 2001).  

 In addition to the nature (closed versus open) of head injuries, the severity of 

injury is also an important factor to consider and largely determines the degree of 

impairment of skills and abilities. The severity of injury, categorized as mild, moderate 

and severe, is determined by the Glasgow Coma Scale (GCS; Jennett & Teasdale, 1981), 

which assesses one’s level of consciousness and response.  

Many studies have shown long-lasting effects of TBI for children including 

cognitive and neuropsychological deficits. Kaufmann, Fletcher, Levin, Miner, and 

Ewing-Cobbs (1993) indicated that TBI results in attentional problems, primarily in the 

areas of sustained and selective attention. Ewing-Cobbs, Fletcher, Levin, Iovino, and 
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Miner (1998) found that children with TBI displayed difficulties in their ability to focus 

attention, as well as sustaining and shift their attention resulting in long-lasting deficits in 

academic achievement. With similar samples of children with TBI, other researchers 

have found that these children display significant deficits in executive functioning skills 

such as short-term memory and problem solving skills (Dennis, Wilkinson, Koski, & 

Humphreys, 1995; Hoffman, Donders, & Thompson, 2000).  

 The reauthorization of Section 504 and the Rehabilitation Act of 1973, and the 

Individuals with Disabilities in Education Act (IDEA; 2004) included the category of 

traumatic brain injury (Russell, 1993) and is now recognized and used consistently in 

educational settings.  Previously, most students with TBI were labeled as emotionally 

disturbed, learning disabled, other health impaired, or physically handicapped in order to 

receive services (D’Amato & Rothlisberg, 1996). The lack of a specific educational 

diagnosis meant less beneficial instruction for children due to the lack of a specialized 

education plan in schools (D’Amato & Rothlisberg, 1996).   

All categories of head injuries, from mild to severe, result in a negative impact of 

neuropsychological and cognitive functioning including cognitive deficits, behavioral 

problems, poor school performance, and potentially declines in adaptive functions for 

more severe head injuries (Yeates, 2000). It has been reported time and again that the 

negative sequalae of TBI often persist well after the acute stages of recovery (Yeates et 

al., 2002), making knowledge of TBI applicable and necessary for educators in order for 

children with TBI to be successful in school.  
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Pre-morbid Intellectual Functioning 

Researchers and educators alike are beginning to recognize the importance of 

comparing a child’s previous level of functioning to their current cognitive functioning, 

or pre-morbid functioning, to detect and determine severity of the TBI (Lezak, Howieson, 

& Loring, 2004) and its overall adverse impact. Many studies have been conducted to 

find the ‘best method’ of estimating pre-morbid level of functioning including studies 

that (a) used solely demographic variables (Barona, Reynolds, & Chastain, 1984), (b) 

incorporated additional variables of current subtest/domain standard scores 

(Vanderploeg, Schinka, & Axelrod, 1996), and (c) used historical test performance data 

to get an accurate estimate of a person’s functioning prior to the brain injury (Baade & 

Schoenberg, 2004).  

Studies incorporating current assessment subtest and domain scores have 

historically used the Wechsler scales as their primary assessment including estimates 

using the Wechsler Adult Intelligence Scale-Revised (Vanderploeg et al., 1996), the 

Wechsler Adult Intelligence Scale-Third Edition (Schoenberg, Duff, Dorfman, & Adams, 

2004), and the Wechsler Intelligence Scale for Children-Fourth Edition (Schoenberg, 

Lange, Brickell, & Saklofke, 2007). These studies utilized picture completion, 

information, vocabulary, and matrix reasoning as well as demographic variables of age in 

years, gender, and parent education level because of their demonstrated reliability and 

demonstrated utility in previous pre-morbid estimate equations (Schoenberg et al., 2007) 

such as that proposed by Barona and colleagues (1984). Demographic variables were 

included only if they contributed significantly to the estimation equation; all equations 

incorporated at least one of the demographic variables if not all into the final estimation 
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equation. Schoenberg, Lange, Saklofske, and Suarez (2008) tested the proposed equations 

using a clinical sample of children who sustained a TBI and found that all variables 

entered into the equation assisted in yielding accurate estimates of pre-morbid 

functioning as compared to a healthy control sample.  

The inclusion of the atheoretical Wechsler scales in the estimate of pre-morbid 

intellectual functioning despite its popularity in the practice of IQ assessment leaves 

perhaps much to be desired in view of modern theoretical, neuropsychological-based 

perspectives of cognitive functioning that seem more connected to remedial efforts and 

positive outcomes, e.g., the Das-Naglieri Cognitive Assessment System (Naglieri & Das, 

1997). 

Das-Naglieri: Cognitive Assessment System 

 The age of previous intelligence assessments, such as Wechsler and Stanford 

Binet scales, have not allowed for the incorporation of recent discoveries of intelligence 

theories into our cognitive assessments, leaving them to be dated and potentially less 

effective in measuring children’s abilities. Naglieri and Kaufman (2001) proposed that 

not only are cognitive assessments such as Wechsler and Stanford Binet scales outdated, 

but the content of the assessments was created prior to their prospective theories of 

intelligence, creating assessments that were weak in theoretical basis.    

 An alternative conceptualization of cognitive functioning was offered by A.R. 

Luria (1966, 1973) who proposed that human cognitive processes involved three 

functional systems that work together to create mental activity or cognitive processes. 

Luria (1966) proposed a model of cognitive processing made up of three functional units 

necessary for mental activity. He went on to describe the uniqueness of each unit but also 
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concluded that each functional unit depended on one another to function and perform 

effectively (Luria, 1980). Luria’s work led to the conceptualization of the Planning 

Attention Simultaneous and Successive model (PASS; Naglieri & Das, 1990), often seen 

as an interactive and inter-reliant model of the construct of mental activity, which was 

further operationalized with the Das-Naglieri: Cognitive Assessment System (CAS; 

Naglieri & Das, 1997). 

According to the authors, using the theoretical framework provided by the PASS 

model, the CAS surpassed the constraints experienced by previous intelligence tests 

(Naglieri & Kaufman, 2001). The benefit of the PASS model over traditional models of 

intelligence was the incorporation of planning and attention domains, the two areas 

considered to be essential for cognitive functioning (Naglieri & Das, 1997). The CAS 

proposed to replace the term intelligence with mental abilities being referred to as 

cognitive processes (Naglieri, 1999).   

 Thus, with the PASS model as a foundation, Naglieri and Das (1997) created a 

new assessment of cognitive processes that was comprised of four domains (Planning, 

Attention, Simultaneous, and Successive). The four domains also contributed and formed 

a psychometric estimate of a Full Scale score. The CAS standard battery has 12 subtests 

with three subtests factoring into each of the PASS domain scores. The subtests of the 

CAS are Planning Scale--Planned Codes (PCd), Matching Numbers (MN), Planned 

Connections (PCn); Attention Scale--Number Detection (ND), Expressive Attention 

(EA), Receptive Attention (RA); Simultaneous Scale--Figure Memory (SR), Nonverbal 

Matrices (NvM), Verbal-Spatial Relations (VSR); Successive Scale--Sentence Repetition 

(SR),Word Series (WS), Speech Rate (SpR) [children aged 5 to 7 years only], and 
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Sentence Questions (SQ) [children aged 8 to 17 years only]. (For a more detailed 

description of the Cognitive Assessment System, reference Chapter III. Methodology: 

The Das-Naglieri Cognitive Assessment System) 

Statement of the Problem 

 The practice of estimating pre-morbid intellectual functioning on school-aged 

children has many utilities including, but not limited to, determination of brain injury 

severity, assistance with intervention selections in the school, and future outcomes for 

affected children. Few studies exist in estimating pre-morbid intellectual functioning in 

school aged children, with current studies relying heavily on the Wechsler intelligence 

assessments such as the Wechsler Intelligence Scale Children III/IV (WISC III/IV) and 

the Wechsler Adult Intelligence Scale III (WAIS III). The reality that only one set of 

equations stands out among the rest and is available for use with children, whose center 

intelligence assessment lacks the sensitivity to detect subtle deficits in this population 

(Naglieri, Das, & Jarman, 1990), is being used to ascertain information about a child’s 

outcome is concerning. Due to the theoretical limitations of the Wechsler scales, the 

inclusion of an assessment involving cognitive processes, such as the Cognitive 

Assessment System, should be considered in estimating pre-morbid intellectual 

functioning. 

The Purpose and Rationale of the Study 

With traumatic brain injuries (TBI) remaining one of the main public health 

problems in both developed and developing countries and the leading cause of brain 

damage in children and young adults (Lezak et al., 2004), the need for a more 

comprehensive understanding of estimating pre-morbid, that is pre-injury intellectual 
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functioning for school aged children who have suffered a TBI, is crucial. Schools and 

clinics are faced with an increasing demand to provide accommodations and 

interventions for children with a TBI diagnosis, and the ability to estimate pre-morbid 

intellectual functioning is essential in the determination of services. The CAS (Naglieri & 

Das, 1997) has linked assessment findings with interventions for children (e.g., Carlson 

& Das, 1997; Naglieri & Gottling, 1995, 1997), making it a viable and necessary addition 

to the field of estimating pre-morbid intellectual functioning.   

This study’s purpose was to create an equation(s) that utilizes an assessment 

whose foundations center on a neuropsychological theory of cognitive processing, whose 

creation was theoretically driven, and has research linking assessment data to 

interventions. In addition, creating an equation(s) that expands from the already created 

pre-morbid intellectual functioning equations, such as the OPIE III for adults or the 

equations using WISC IV standardization data, whose basis lies in almost century old 

theories and practices will benefit both educators and practitioners in estimating pre-

morbid intellectual functioning. 

 The rationale and need for the present study was based on the following points 

supported by the literature including 

1. The limited number of assessments and equations that are available for use 

in estimating pre-morbid intellectual functioning. 

2. The lack of neurologically based intelligence theories in other intellectual 

assessments used to estimate pre-morbid intellectual functioning. 

3. The need for further exploration and validation of the technique of 

estimating pre-morbid intellectual functioning in school aged children. 



9 
 

4. The need to expand previous research done in estimating pre-morbid 

intellectual functioning. 

Research Questions 

 Based upon the previous discussion and the comprehensive literature review in 

Chapter II (see next), the following research questions were investigated. 

Q1 Which of the Planning domain subtests (Matching Numbers, Planned 
Codes, Planned Connections), in combination with demographic variables 
of parent education level, race and gender, are the best predictors in 
assessing pre-morbid intellectual functioning in school aged children for 
the Planning Domain? 

 
Q2 Which of the Attention domain subtests (Expressive Attention, Number 

Detection, Receptive Attention), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Attention Domain? 

 
Q3  Which of the Simultaneous domain subtests (Nonverbal Matrices, Verbal-

Spatial Relations, Figure Memory), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Simultaneous Domain? 

 
Q4 Which of the Successive domain subtests (Word Series, Sentence 

Repetition, Sentence Questions, Speech Rate), in combination with 
demographic variables of parent education level, race and gender, are the 
best predictors in assessing pre-morbid intellectual functioning in school 
aged children for the Successive Domain? 

 
Q5 Which of the Cognitive Assessment System 12 subtests, in combination 

with demographic variables of parent education level, race and gender, are 
the best predictors in assessing pre-morbid intellectual functioning in 
school aged children for the Full Scale score? 

 
Q6 Which of the Cognitive Assessment System four domains (Planning, 

Attention, Simultaneous, Successive), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Full Scale score? 
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Q7 Using a subsample of children with TBI and the withheld 10% from each 
age group, will the equations prove valid in estimating pre-morbid 
intellectual processing? 

 
Limitations of the Study 

 
 One limitation of the current study was the finding that children’s cognitive skills 

can progress rapidly during the first six months following a neuropsychological insult 

(Dykeman, 2009); thus, the chance of either over- or under-estimating the child’s pre-

morbid intellectual functioning increases as the time since injury elapses (Schoenberg et 

al., 2008). This limitation was further expressed by the lack of time-elapsed since injury 

data of the 22 individuals in the CAS sample with a recorded TBI furthering the need for 

additional studies to validate the equations with children who have experienced a TBI.  

Another limitation of the current study was that the developed equation(s) was not 

able to account for all variables that might impact the variance in an individual’s PASS 

cognitive processes and overall cognition, e.g., location of injury, time elapsed since 

injury, and severity of injury (Schoenberg et al., 2008; Harrington, 1990). Again, this 

could have resulted in an over- or under-estimation of the child’s pre-morbid intellectual 

functioning and should be considered when interpreting the results from the equation(s).  

Given the limited size of the TBI validation sample for the pre-morbid intellectual 

estimation equation(s), additional research might be necessary to establish the clinical 

utility of the equation(s) on children with traumatic brain injury. Additional studies might 

be warranted to validate the equation(s) with children who have suffered other 

neuropsychological injuries. 
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Definitions of Terms 

 Closed head injury. The most common of head injuries, closed head injuries 

usually result from falling, automobile accidence or assaults. Head injuries can occur at 

the site of impact (coup) or the opposite site of impact (countercoup injury). Symptoms 

of closed head injuries often include hypoxia, increased intracranial pressure, shock, 

seizures, and sometimes infections.  

 Executive functioning. The function that allows us to organize our behavior over 

time, plan and organize activities, manage our emotions, and regulate our thoughts in 

order to work in a more efficient and effective manner (Dawson & Guare, 2010) 

 Glasgow coma score (GCS). A very quick, bedside assessment for doctors to 

determine level of consciousness and brief assess of possible impairment. The quick 

assessment results in a score that is based on a scale from 3-15.  

 Mild head injury. An injury to the head that results in loss of consciousness or 

post amnesia for less than one hour with a GCS between 13 and 15.  

 Moderate head injury. An injury to the head that results either loss of 

consciousness or amnesia for 1 to 24 hours post-accident, with a GCS between 9 and 12.  

 Open head injury. Rarer than closed head injuries, they typically include wounds 

inflicted by gunshots, assault, and surgery (Semrud-Clikeman, 2001) 

 PASS. Planning--a cognitive process that uses organization and monitoring that is 

designed to apply and evaluate problem solving (Naglieri & Das, 1997). Attention-- 

cognitive process involving selectively focusing on a given stimuli while inhibiting the 

response to focus on other stimuli (Naglieri & Das, 1997). Simultaneous processing--a 

cognitive process that integrates stimuli into synchronous and primarily spatial groups. 
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(Naglieri & Das, 1990). Successive processing--a cognitive process that involves the 

integration of stimuli into some sort of specific series where the elements create a chain-

like effect (Naglieri & Das, 1990). 

 Pre-morbid. Preceding the occurrence of brain injury or disease.  

 Severe head injury. An injury/insult to the head that results in loss of 

consciousness and/or amnesia that lasts longer than 24 hours post-accident, with a GCS 

between 3 and 8. 

 Traumatic brain injury. As defined by U.S. Department of Education (1992): 

 an acquired injury to the brain caused by an external physical force, resulting in 
total or partial functional disability or psychosocial impairment, or both, that 
adversely affects a child’s educational performance. The term applies to open or 
closed head injuries resulting in impairments in one or more areas, such as 
cognition; language; memory; attention; reasoning; abstract thinking; judgement; 
problem-solving; sensory, perceptual, and motor abilities; psycho-social 
behaviour; physical functions; information processing; and speech. The term does 
not apply to brain injuries that are congenital or degenerative, or to brain injuries 
induced by birth trauma. (pp. 44, 802) 
 

 Working memory. The process of holding information for the purpose of 

completing a task and includes both the storage and manipulation of information (Levin 

et al., 2004).   

 



 
 
 
 
 

CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 

The overwhelming number of children experiencing a traumatic brain injury 

(TBI; Faul et al., 2010) necessitates the need for an additional method of estimating pre-

morbid intellectual functioning that goes beyond demographic variables, theoretically 

outdated general ability measures of intelligence (e.g., Wechsler scales), and academic 

achievement variables. 

This chapter provides an introduction to the history and theories of intelligence 

used to estimate pre-morbid intellectual functioning including the cognitive processing 

theory that served as the foundation for the development of processing the Cognitive 

Assessment System (CAS) uses. Then definitions and classifications of traumatic brain 

injury and its educational impact in students in kindergarten through twelfth grade are 

reviewed. This chapter discusses this in light of current methods of estimating pre-morbid 

intellectual functioning, focusing on alternative theories and methods of estimating pre-

morbid functioning that necessitated the current study.  

Brief History of Intelligence Theory and Testing 

  The field of intelligence testing was initiated in 1905 with the introduction of 

Alfred Binet and Theodore Simon’s intelligence test. Binet’s theory of intelligence 

subscribed to intelligence as a single construct, consistent with the thinking of the time of 

theorists positing “intelligence” rather than multiple, or distinct, abilities making up the 
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larger idea of “intelligence” (Kamphaus, 1993). Alfred Binet’s scale of intelligence was 

constructed for the sole purpose of diagnosing mental retardation (Kamphaus, 1993). 

Unlike Alfred Binet’s single entity theory of intelligence, Charles Spearman’s 

(1927) introduced his theory of general intelligence or what he called “g.” Spearman’s 

theory of intelligence came after Binet’s theory, resulting from a significant amount of 

factor analysis to determine that intelligence is comprised of many distinct abilities. 

Spearman’s “g” theory is ranked above other hierarchical theories of intelligence where 

there is an overall construct that is made up of many specific “s” factors. Spearman 

suggested that “g” was the underlying mental energy necessary to all cognitive problem-

solving (Kamphaus, 1993). 

Wechsler (1958) viewed intelligence as a complex interaction of facilities that 

produced intelligent behavior that reflected upon Spearman’s “g”. Wechsler expanded 

upon Spearman’s theory and suggested that intelligence is not localized in one area of the 

brain and thus focused on what he termed the “perception of relations.” His perception of 

relations implied that representation of stimuli in terms of their location in neurons was 

unimportant and was independent of the localization of a specific stimulus. During test 

construction, Wechsler borrowed ideas of methods and tests from the Army mental 

testing program that assessed incoming adults in the military during World War I to 

determine appropriate placement based on aptitude (Naglieri & Kaufman, 2001).  

 Some argue that many intelligence theories and tests have not changed since the 

original production of the Binet and Simon scale from 1905 and David Wechsler’s first 

IQ test published in 1939. For example, Naglieri and Kaufman (2001) compared the old 

to the new versions of the Stanford-Binet and Wechsler scales as essentially a cosmetic 
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facelift, having identical constructs with modifications only in presentation and updates 

in standardization data. The problem with having only a cosmetic facelift was the data 

obtained from these assessments might reflect current census data and population but 

were still an atheoretical assessment that might not measure what it is now purporting to 

measure. Thus, these tests have not been updated to include the copious amounts of 

contemporary research findings even during the past 50 years. Nonetheless, the 

assessments are essentially still considered effective in measuring what they originally 

purported to measure (Kamphaus, 1993) and remain popular.  

 Starting in the 1960s, the “cognitive revolution” (Miller, Galanter, & Pribram, 

1960) encouraged researchers and clinicians to examine intelligence from a different 

perspective in terms of cognitive processes rather than “g” or global ability (Naglieri & 

Kaufman, 2001). Construing intelligence in terms of cognitive processes allowed for the 

introduction of the Kaufman intelligence tests in the 1980s, e.g., the Kaufman 

Assessment Battery for Children (K-ABC), the Differential Ability Scales (DAS; Elliot, 

1990), and Das-Naglieri: Cognitive Assessment System (Naglieri & Das, 1997) in the 

1990s.  

Luria’s Theory of Mental Processes and the Planning  
Attention Simultaneous and Successive Model 

 
 A comprehensive overview of Luria’s (1966, 1973) model of cognitive processing 

including the Planning Attention Simultaneous and Successive (PASS) model is 

discussed in the following section, followed by a brief introduction to the Das-Naglieri: 

Cognitive Assessment System and its link to evidence based interventions through 

assessment results.   
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Luria’s (1966, 1973) Planning Attention Simultaneous and Successive (PASS) 

model proposed that human cognitive processes involved three functional systems that 

worked together and were essential for mental activity. Luria (1973) believed that the 

three functional systems were housed in different neuroanatomical areas, contributed 

uniquely to mental processes, and worked together to create mental activity. Luria further 

suggested that these areas were interdependent such that each functional unit depended 

on the other units to function and perform effectively (Luria, 1980).   

The first functional unit of Luria’s (1973) model is responsible for regulating 

cortical tone, or arousal, which allows for the focus and maintenance of attention. The 

second functional unit receives and stores information using both simultaneous and 

successive processing once information is received. The third functional unit is the 

planning or decision making unit, which regulates and directs mental activity.  In the 

sections that follow, the functional units proposed by A.R. Luria in detail as well as the 

PASS model constructs supported by Luria’s model are described. 

Attention 

The first functional unit has the responsibility of maintaining arousal and cortical 

stimulation, allowing a person to maintain a certain level of attention (Luria, 1973). The 

areas of the brain that contribute to this function include the brain stem, diencephalon, 

and medial areas of the brain. Luria proposed that a deficit in the first functional unit, 

through inadequate or excessive performance, could produce problematic functioning of 

the second and third functional units.  

Attention is the main component of the first functional unit and is included in the 

PASS model as an essential mental process. Wechsler scales and other intelligence tests 
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have been criticized as either not including measures of attention or not properly 

measuring attention in intelligence tests (Naglieri & Das, 1988). Given that attention is 

frequently construed as a key component of academic achievement and one of the 

underlying symptoms of a TBI (Semrud-Clikeman, 2001), it is important to assess 

attention to further understand how it can affect the performance of other mental 

processing structures. 

Consistent with this, Gutentag, Naglieri, and Yeates (1998) investigated observed 

differences in test scores of children with mild, moderate, and severe TBI compared to 

healthy peers matched on critical variables. They hypothesized that children with TBI 

would have lower performance on Attention and Planning subtests compared to other 

subtests. Results indicated that children with TBI scored similarly to their peers with only 

one Attention subtest (Number Detection) resulting in significant differences and scored 

significantly different on all three Planning Subtests (Matching Numbers, Planned Codes, 

Planned Connection). These differences suggested that children with TBI performed 

differently on attention and planning tests compared to control, or normal, children. 

Successive and Simultaneous 
Processing 
 

The second functional unit is responsible for how a person receives incoming 

information, how they process that information, and how they preserve the incoming 

information. This area of functioning is located in the occipital, parietal, and temporal 

lobes (Luria, 1973)--the areas of the brain that are responsible in part for decoding and 

storing sensory information. Luria (1966) proposed that there are two approaches the 

human brain uses to process information: simultaneously and successively. The two 

methods of simultaneous and successive processing are discussed below.  
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Simultaneous processing is similar to categorizing--where the brain integrates 

stimuli perceived from groups, determines the relationship among the stimuli, and acts 

accordingly (Naglieri & Das, 1990). Simultaneous processing may be used to follow a 

multi-step direction of “put the placemat under the plate but to the left of the napkin.” 

Simultaneous processing requires that one consider a larger context and thus likely 

requires planning and attention in this task. Successive processing allows the integration 

of stimuli through the use of linear relationships to form a string of stimuli (Naglieri & 

Das, 1990). For example, successive processing is necessary in following a storyline and 

being able to understand the progression of the story from beginning to end. 

Gutentag et al. (1998) tested these elements and demonstrated that when children 

with TBI were compared to a control group matched on critical variables, their scores did 

not differ significantly from one another on all Simultaneous subtests (Nonverbal 

Matrices, Verbal-Spatial Relations and Figure Memory) and all but one Successive 

subtests (Word Series and Sentence Questions). The Sentence Repetition subtest from the 

Successive domain was the only one to demonstrate significant differences between 

normal and TBI children.  

Planning 

The third and final functional unit from Luria’s mental processing model is 

located in the frontal and pre-frontal areas of the brain. Luria (1973) proposed that the 

third unit was implicated in executive functioning or the ability to plan, act on said plan, 

and evaluate the plan afterwards. Das, Naglieri and Kirby (1994) described the third 

functional unit as the one that joined the three units and produced mental activities. Das 
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(1984) further suggested that the third functional unit makes human intelligence what it 

is.  

The final functional unit allows for the Planning in the PASS model to occur. 

Without the executive function, or the ability to plan, execute, and evaluate said plan, 

other mental processes might not be acknowledged because planning in essence links 

Attention, Successive, and Simultaneous processing together. However, just as attention 

has been largely overlooked in measures of intelligence, Naglieri and Das (1988) 

contended that planning has also generally been ignored. In particular, planning is not 

typically measured directly through intelligence assessments but rather through clinical 

observations or third party behavior rating scales such as the Behavior Rating Inventory 

of Executive Functioning (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000). 

Planning is an essential component in academic areas and is important in self-

monitoring, impulse control, and initiating task completion (Naglieri, 1999). It is 

important to include measures assessing planning processes in children with TBI as they 

are often observed having trouble with impulse control and executive functioning 

(Semrud-Clikeman, 2001). Gutentag et al. (1998) reported that children with TBI earned 

lower scores on subtests from the Planning domain compared to healthy controls. 

The Das-Naglieri: Cognitive  
Assessment System  
 

With the PASS model as a foundation, Naglieri and Das (1997) created an 

assessment of cognitive processes for children aged 5 through 17 that was comprised of 

four domains (Planning, Attention, Simultaneous, and Successive) and also an overall 

Full Scale score, a psychometric for practical purposes. The Cognitive Assessment 

System (CAS) standard battery has 12 subtests with three subtests factoring into each of 
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the PASS domain scores. The subtests of the CAS are Planning Scale--Planned Codes 

(PCd), Matching Numbers (MN), Planned Connections (PCn); Attention Scale--Number 

Detection (ND), Expressive Attention (EA), Receptive Attention (RA); Simultaneous 

Scale--Figure Memory (SR), Nonverbal Matrices (NvM), Verbal-Spatial Relations 

(VSR); and Successive Scale--Sentence Repetition (SR),Word Series (WS), Speech Rate 

(SpR) [children aged 5 to 7 years only], and Sentence Questions (SQ) [children aged 8 to 

17 years only]. (For a more detailed description of the Cognitive Assessment System, see 

Chapter III. Methodology: The Das-Naglieri Cognitive Assessment System) 

The PASS theory served as the foundation for a number of proposed 

interventions. One such intervention was the Process-Based Instruction (PBI; Ashman & 

Conway, 1993). Process-Based Instruction provides valuable information on how to 

incorporate planning instruction into everyday activities in the classroom. It has the 

potential to tie the CAS test data to an effective classroom intervention tailored to the 

specific needs of the student. 

Linked to the PBI intervention are studies that have focused on encouraging 

children’s use of planning and have shown positive effects on their academic 

performance. For example, Cormier, Carlson and Das (1990) sought to facilitate planning 

rather than teach planning through direct instruction by tying verbalization techniques to 

planning, which resulted in an increase in performance. Other studies (e.g., Carlson & 

Das, 1997; Naglieri & Gottling, 1995, 1997), including one involve math computation, 

have likewise sought to facilitate planning through means other than direct instruction.  

Naglieri and Gottling (1997) examined whether a math intervention emphasizing 

planning would differentiate among groups depending on cognitive characteristics 



21 
 
displayed by students. All students were administered the CAS though protocols were not 

scored until the study was completed. Results indicated that children who had low 

Planning scores benefited from the planning instruction more than did students high in 

Planning (Naglieri & Gottling, 1997). Thus, matching intervention and instruction based 

on cognitive weaknesses displayed by students resulted in outcomes that were beneficial 

not only children for with TBI but all students. However, given that this project primarily 

focused on children with TBI, in the next section classification and symptoms of such 

injuries are reviewed. 

Definition, Classification and Symptoms of 
Traumatic Brain Injury 

  
 Traumatic brain injury can manifest itself in many different ways depending on 

how it is defined, the classification of the injury, and the symptoms one experiences 

following a traumatic brain injury. In this section, a definition commonly used by 

educators is presented, followed by a discussion of the classification of TBI. The section 

concludes with an overview of the symptoms commonly experienced following a TBI.  

Definition of Traumatic Brain 
Injury 
 

The field of education has recognized traumatic brain injury (TBI) as an 

educational diagnosis that can result in special education services or individualized 

interventions since IDEA in 1990 and its revision in 2004. Definitions of traumatic brain 

injury vary; however, the one used by educational institutions is the definition provided 

by the U.S. Department of Education (1992):  

Traumatic Brain Injury means an acquired injury to the brain caused by an 
external physical force, resulting in total or partial functional disability or 
psychosocial impairment, or both, that adversely affects a child’s educational 
performance. The term applies to open or closed head injuries resulting in 
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impairments in one or more areas, such as cognition; language; memory; 
attention; reasoning; abstract thinking; judgment; problem-solving; sensory, 
perceptual, and motor abilities; psycho-social behavior; physical functions; 
information processing; and speech. The term does not apply to brain injuries that 
are congenital or degenerative, or to brain injuries induced by birth trauma. (pp. 
44, 802)  
 

Classification of Traumatic  
Brain Injury 

 Traumatic brain injuries are often classified as open or closed head injuries and 

also are described in the terms of the severity, which include mild, moderate, or severe 

levels. The classification of open versus closed as well as the severity of the injury 

provides valuable insight into the general prognosis and guides the choice of intervention 

for children who suffered from a TBI.  

The severity of injury has been correlated with difficulties in visual attention, 

verbal memory, performance (non-verbal) IQ, academic performance, and adaptive 

behavior (Ewing-Cobbs et al., 1997). In addition, DiScala, Osberg, Gans, Chin, and Grant 

(1991) found that approximately 20-40% of TBI classified as severe resulted in 

impairments that affected learning and development. One important distinction that 

should be noted is that injuries that stem from infections, tumors, metabolic disorders, 

toxins, and anoxic injuries are not considered TBI but rather are considered non-

traumatic brain injuries (Savage & Wolcott, 1994); thus, they were not included in the 

description of TBI for this study.  

 The timing and the nature of the injury (open versus closed) might have 

consequences that are not evident during childhood. However, it should be noted that the 

manifestation of symptoms from a TBI in childhood is often delayed because of the 

disruption of general cognitive and behavioral development that can result from a head 
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injury (Lehr, 1990; Russell, 1993). Thus, although not always apparent, the trauma itself 

can disrupt the normal cognitive development experienced during childhood and 

adolescence (Haley, Cioffi, Lewis, & Barya, 1990).  

General Symptoms of Traumatic  
Brain Injury 

A number of researchers and theorists have suggested that specific attentional and 

processing components are impaired following a TBI (Mirsky, 1996; Ponsford & 

Kinsella, 1992; Posner & Peterson, 1990; Stuss et al., 1989; van Zomeren & Brouwer, 

1994) including sustained attention, selective attention, and speed of processing. 

“Response variability,” defined as high levels of variability and fluctuation in 

performance, is also a symptom of TBI (Catroppa & Anderson, 1999; Mirskey, 1996; 

Stuss et al., 1989; van Zomeren & Brouwer, 1994).  

Educational Impact for Children with Traumatic  
Brain Injuries 

 
 It is common for children who experience a TBI to have difficulties when 

returning to school because of the effects the TBI has on overall functioning (Hawley, 

Ward, Magnay, & Mychalkiw, 2004). Classification of TBI in the schools should be less 

challenging as educators become more aware of the symptoms and challenges children 

with TBI face. Classification of TBI in the schools including important information to 

ensure an appropriate placement for children with TBI is first discussed, followed by a 

discussion on the symptoms of TBI by the varying levels of severity commonly seen in 

schools and how it impacts the child’s ability to pay attention, retain information, and 

learn in the classroom. 
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Classification of Traumatic Brain  
Injury in the Schools 
 

At the very least, 1 out of every 550 students (school-aged) will experience some 

form of TBI every year that can result in a long-term disability (Savage & Wolcott, 

1994). Further, it is estimated that at least 20 students out of 10,000 will sustain a TBI 

and require educational support (Arroyos-Jurado, Paulsen, Merrell, Lindgren, & Max, 

2000). Hux, Marquardt, Skinner, and Bond (1999) found that nearly 29% of students with 

a reported TBI received special education services and that younger children received 

more special education services. Hux et al. suggested that this occurred because educators 

were better able to identify and diagnose academic, social, and behavior challenges in 

younger students than in older students.  

Although TBI can significantly impact educational outcomes in children, 

educators with minimal training and exposure to TBI express apprehension in 

understanding and accommodating a child with TBI (Blosser & DePompei, 1991). In 

addition, educators and parents might not understand that a diagnosis of mild TBI does 

not imply that educational outcomes are also mild.  That is, even a mild TBI diagnosis 

might be associated with significant and continuing adverse consequences for learning 

(Dikmen & Levin, 1993; Savage, 1991). However, mistakenly assuming that mild TBI is 

synonymous with mild impact in educational functioning might not allow the student 

access to interventions and resources essential in their recovery. 

It is common for children with TBI to be classified as necessitating special 

education services while in school.  The degree of services provided, including 

interventions in the general education setting or placement in special education 

classrooms, depends entirely upon the individual case and the knowledge of the 
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professionals involved. Typically, when a student is identified with an educational 

disability such as a learning disability or emotional disability, they undergo annual or 

triennial evaluations to determine if services are still needed and to adjust services 

received as appropriate. Children with TBI require more frequent evaluation (e.g., 

monthly or after every grading period) that depend on the individual case (Cohen, 1986; 

Lehr, 1990). Frequent evaluation is common in the recently proposed model of Response 

to Intervention (RTI) within IDEA (2004) and is helpful in providing the students with 

the necessary resources as educators become aware of the student’s need.   

Educational Impact and Level  
of Severity 
 

Mild TBI may result in significant educational problems. For example, Levin et 

al. (2008) found that children with mild TBI showed a decrease in working memory 

abilities compared to non-injured children. These results indicated that some deficits in 

executive functioning, particularly working memory, might exist for children with mild 

TBI. Children who suffer a moderate TBI generally display executive functioning deficits 

including problems with purposeful, goal-directed, and problem solving behavior (Gioia 

& Isquith, 2004). In addition to problem solving, deficits are generally evident in 

domains such as attention/concentration and memory (Rimel, Giordani, Barth, & Jane, 

1982).  

Severe TBI can have drastic consequences for children, especially with regard to 

their academic successes and future outcomes. Severe head injuries are critical; 50% of 

children admitted into hospitals die due to a severe head injury (Fletcher et al., 1995). 

Those who survive have long-lasting deficits in educational achievement (Ewing-Cobbs, 

Fletcher, & Levin, 1986; Ewing-Cobbs, Iovino, Fletcher, Miner, & Levin, 1991) and 
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display significant deficits in executive functioning skills such as attention/concentration, 

memory, and problem solving (Jaffe, Polissar, Fay, & Liao, 1995).  

Academic Problems of Children  
with Traumatic Brain Injury 
 

The inability to sustain attention in the classroom results in a decrease in working 

memory, leaving some students with TBI at a loss compared to their peers. With 

problems in attention/concentration and working memory, children often get frustrated, 

potentially resulting in behavioral problems. Studies have found a significant relationship 

between head injury and hyperactivity (Bijur, Haslum & Golding, 1990) as well as 

difficulties in attention and low frustration tolerance up to four years after the injury 

(Klonoff, Low, & Clark, 1977). Problems with attention, organization, and self-regulation 

can also impact the child’s ability to read, write, and perform basic math functions (Fay 

et al., 1994). 

Schaffer, Bijur, Chadwick, and Rutter (1980) reported that one-third of the 

children sampled were reading at a level greater than or equal to two years below their 

chronological age. They proposed that the decline in reading ability was facilitated by a 

global loss of intellectual functioning. This hypothesis was later refuted by Slater and 

Kohr’s (1989) and Berger-Gross and Schackelford’s (1985) findings showing arithmetic 

problems persisted more than spelling and writing activities despite intellectual (IQ) 

recovery.  

Hawley et al. (2004) reported similar results when they assessed academic and 

educational impact on 130 children with TBI aged 5 through 15. They found that teachers 

reported that children who suffered a mild or moderate TBI had difficulties in 

attention/concentration, memory, and problems with school work. As well, 94.4% of 
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children with reported memory problems experienced trouble with school work. Reading 

ability was also measured on 36 students with TBI using the Wechsler Objective Reading 

Dimensions (WORD) and was analyzed to determine the discrepancy between 

chronological age and reading age. Approximately 52% of the individuals assessed read 

at a level greater than or equal to one year below their chronological age and 36.1% of 

students read at a level greater than or equal to two years below their chronological age. 

However, it was unclear whether there were reading concerns for these students prior to 

injury. These results illustrate that academic and educational problems might persist 

despite the appearance of intellectual recovery. 

Catroppa and Anderson (1999) synthesized the research of TBI and its effect on 

academic performance in children in their comprehensive study of academic skills, 

examining listening comprehension, reading, spelling, and arithmetic in 69 children who 

had sustained a documented mild, moderate, or severe TBI. Importantly, unlike prior 

studies, the researchers analyzed pre- and post-injury data and found no significant 

differences between groups on pre-injury ability. Pre-injury data used in the study 

consisted of parent report post-accident reflecting on previous functioning of their child.  

Catroppa and Anderson (1999) results indicated that children suffering a mild TBI 

fared better than children experiencing a moderate or severe TBI. In the areas of spelling 

and reading, children with moderate and severe TBI performed similarly. In contrast, for 

arithmetic and listening comprehension, a “dose-response relationship” was clear, such 

that as the severity of a head injury worsened, the student’s performance on these tasks 

became commensurately worse. Further, it appeared that individuals with severe TBI did 

not improve at the 12 month and 24 month post-injury evaluation in the area of arithmetic 
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(Catroppa & Anderson, 1999). Such data highlight the value of having a measure of pre-

morbid intellectual functioning so as to assess pre and post head injury performance. 

The growing numbers of children who suffer a traumatic brain injury (TBI) 

enrolled in schools increase the need for education professionals to be aware of not only 

symptoms of TBI but also well-versed in effective interventions to help students with 

TBI succeed academically. Similarly, considering the long-lasting deficits of TBI, it is 

also important for educators to take into account not on current possible deficits but also 

how children functioned prior to the injury so that interventions and proper educational 

arrangements can be made that best suit the individual. A vital way to assess pre-morbid 

functioning and create effective interventions would be to use cognitive assessment 

measures linked to interventions through demonstrated research studies. 

Pre-morbid Intellectual Functioning 

Pre-morbid intellectual functioning, or the level of functioning prior to an insult 

or injury to the brain, is valuable in determining the direct impact of the TBI and future 

directions for interventions and supports for the individual. Typically, clinicians estimate 

pre-morbid intellectual functioning because it provides a baseline in establishing the 

presence and magnitude of deficits that result from brain injury. Additionally, estimating 

pre-morbid functioning can be helpful for educators to select appropriate interventions 

and adjust progress monitoring measures to continually assess a child’s functioning.  

A variety of methods are used to estimate pre-morbid intellectual functioning 

including (a) clinical interview, (b) demographic regression formulas, (c) current test 

performance regression formulas, (d) combining demographic and current performance 

data, (e) historical test performance, and (f) combining historical test performance with 
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demographic data. Determining appropriate methods for estimating pre-morbid 

intellectual functioning can be difficult. Measures used should strongly correlate with the 

measured IQ of a healthy individual and must be resistant to neurological deficit and/or 

psychiatric disorder (Morris, Wilson, Dunn, & Teasdale, 2005). Each of the methods of 

estimating pre-morbid intellectual functioning is described in the following sections. 

Clinical Interview 

Clinical interviews are one of the most common and least accurate methods of 

estimating pre-morbid intellectual functioning. For example, Smith-Seemiller, Franzen, 

Burgess, and Prieto (1997) investigated the method of pre-morbid estimation 

neuropsychologists used in their clinical practices. They found that the most commonly 

used method of estimating was the clinical interview, followed by the Barona et al. 

(1984) equation that utilized demographic information in a regression model to estimate 

pre-morbid intellectual functioning. Such findings are problematic, however, given that a 

number of studies (see Kareken & Williams, 1994; Wedding & Faust, 1989) have 

demonstrated it to be largely ineffective due to its subjective nature.   

Many variables account for the subjectivity of the clinical interview to estimate 

pre-morbid intellectual functioning for clinical populations, e.g., a client’s possible 

exaggeration of his/her difficulties (Johnson-Greene & Binder, 1995). Even assuming 

that records are available, increasing the accuracy of information provided to a clinician, 

clinical judgment remains subjective and reaching proficiency (i.e., accuracy) is 

extremely difficult (Kareken & Williams, 1994). Romans and Caplan (1994) found that 

clinical judgment, or subjective estimates, did not take into account client education and 

occupation levels despite their known influence on assessment performance and results. 
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Demographic Information 

 Another method in estimating pre-morbid intellectual functioning, and possibly 

more highly regarded than clinical interview, is to use demographic information in a 

regression formula to estimate previous levels of functioning in clients who have suffered 

a TBI. Barona et al. (1984) were the first to develop an actuarial method of estimating 

pre-morbid functioning; they created an equation that was more objective than interviews 

and more culturally sensitive than other methods.   

Barona et al. (1984) developed their equation by using the standardization sample 

from the Wechsler Adult Intelligence Scale-Revised in combination with seven 

demographic variables: age, sex, education, occupation, urban-rural setting, geographic 

region of residence, and race. Results indicated that race, education, and occupation were 

the most powerful predictors for all equations created because they tended to load onto 

the equation more than the other variables used in the analysis.  

Three equations were created using this information to estimate pre-morbid: Full 

Scale IQ, Verbal IQ, and Performance IQ. Equation 1 gives the formula for Estimated 

Verbal IQ: 

Estimated Verbal IQ = 54.23 + .49 (age) + 1.92(sex) + 4.24 (race) + 5.25 

(education) + 1.89 (occupation) + 1.24 (U-R residence)   (1) 

with a standard error for the estimate of VIQ = 11.79, R=.62.  For example, using the 

codes provided by Barona et al. (1984), a 25-34 year old (coded 4) Black (coded 1) 

female (coded 1) with 16 or more years of education (coded 6) and a professional job 

(coded 6) in an urban setting (coded 2) would have an Estimated Verbal IQ of 107.67, 
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using Equation 1 as follows: 54.23 + .49(4) + 1.92(1) + 4.24(1) + 5.25(6) + 1.89(6) + 

1.24 (2) = 107.67. 

 Equation 2, taken from Barona et al. (1984), gives the formula for Estimated 

Performance IQ: 

Estimated Performance IQ = 61.58 + .31 (age) + 1.09 (sex) + 4.95 (race) + 

3.75 (education) + 1.54 (occupation) + .82 (region)   (2) 

with a standard error for the estimate of PIQ = 13.23, R =.49.  For example, using the 

same coding described previously, with the exception that the North-Central region 

(coded 2) is implemented rather than U-R residence, the Estimated Performance IQ 

would be 102.24, using Equation 2 as follows: 61.58 + .31 (4) + 1.09 (1) + 4.95 (1) + 

3.75 (6) + 1.54 (6) + .82 (2) = 102.24. 

 Equation 3, taken from Barona et al. (1984), gives the formula for Estimated 

Performance IQ: 

Estimated Full Scale IQ = 54.96 + .47 (age) + 1.76 (sex) + 4.71 (race) + 5.02 

(education) + 1.89 (occupation) + .59 (region)    (3) 

with a standard error for FSIQ = 12.14, R = .60. For example, using the same coding 

described previously in illustrating Equation 2, the Estimated Full Scale IQ would be 

105.59, using Equation 3 as follows: 54.96 + .47(4) + 1.76 (1) + 4.71 (1) + 5.02 (6) + 

1.89 (6) + .59 (2) = 105.59. 

  Overall, the greatest weights in each of the equations were given to education, 

occupation, and race, suggesting that these variables were the strongest predictors of pre-

morbid intellectual functioning. However, occupation and education level were not 
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practical when estimating pre-morbid intellectual functioning in children, necessitating 

that other variables be used.  

 A number of other researchers have examined demographic variables as 

predictors of pre-morbid functioning. For example, Heaton, Taylor, and Manly (2003) 

found, similar to Barona et al. (1984), that variables such as education, ethnicity, and 

gender all affected neuropsychological test performance in normal adults. Other 

researchers have shown education, ethnicity, and gender affected performance in diverse 

clinical samples (Moses, Pritchard, & Adams, 1999; Vanderploeg, Axelrod, Sherer, 

Scott, & Adams, 1997).  

However, there are potential limitations to only using demographic variables in 

estimating pre-morbid intellectual functioning. Basso, Bornstein, Roper, and McCoy 

(2000), among other researchers, found that the Barona equation (both the original and 

the revised) was susceptible to regression towards the mean and was likely to 

overestimate pre-morbid functioning for individuals at the lower end of functioning and 

underestimate pre-morbid functioning for individuals at the higher end of cognitive 

functioning (see also Paolo, Ryan, Troster, & Hilmer, 1996; Veiel & Koopman, 2001; 

Wrobel & Wrobel, 1996).  Sweet, Moberg, and Tovian (1990) likewise reported that the 

Barona equation was less valid at the upper and lower extremes of ability.   

Current Test Performance 

 Another method of estimating pre-morbid intellectual functioning is using a 

client’s current test performance. This method has been applied using assessments such 

as the Wechsler Adult Intelligence Scales (WAIS-R through WAIS-IV), the Wechsler 

Test of Adult Reading (WTAR), or the North American Reading Test (NART). This 
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method is based on the assumption that some test scores are less likely to be affected than 

others following a neurological insult (Baade, Heinrichs, Coady, & Stropes, 2011). Baade 

and colleagues (2011) labeled tests less likely to be affected by neurological insult as 

“hold tests,” while those that are more susceptible to injury as “don’t hold tests” (Smith-

Seemiller et al., 1997).  

 Hold tests typically measure crystallized intelligence or stored knowledge and 

skill (Lezak et al., 2004). Stored knowledge and skills might include reading 

pronunciation (McGurn et. al, 2004) and vocabulary knowledge (Yuspeh, Vanderploeg, 

& Kershaw, 1998). For a hold test to be considered appropriate for estimating pre-morbid 

intellectual functioning, it must be assessed for validity and reliability in the neurological 

populations for whom the researchers create the equation, e.g., TBI or Alzheimer’s 

(Green et al., 2008). It is important to establish reliability and validity in the neurological 

populations intended because of the potential impact of under or overestimating pre-

morbid functioning. It is possible for a reading test to provide an accurate estimate in a 

person with dementia, but it may underestimate functioning in a patient with aphasia.  

 Green et al. (2008) investigated the validity of the Wechsler Test of Adult 

Reading, a known “hold” test, because of its emphasis on reading ability and on 

measuring pre-morbid intellectual functioning in patients with TBI. They observed that 

the WTAR was a valid measure of an individual’s pre-morbid level of functioning taking 

several variables into account, e.g., severity, English proficiency, no prior learning 

disability, and no speech concerns both prior (based on report) and post-accident. Ball, 

Hart, Stutts, Turf, and Barth (2007) also studied the validity of the WTAR reading subtest 
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in estimating pre-morbid functioning and found it to be the strong predictor, except for in 

cases where the individual has high education levels such as a doctorate.  

 The North American Reading Test (NART), a test measuring one’s ability to read 

sight words and word passages, is also a hold test considered appropriate for estimating 

pre-morbid intellectual functioning. Studies have found that although the NART is valid, 

reliance on the test might underestimate levels of pre-morbid functioning and the overall 

effects of the brain injury (Morris et al., 2005). Researchers suggest because of the 

NART’s general underestimation of pre-morbid functioning, it might be best used in 

combination with demographic variables to get a more accurate representation of pre-

morbid functioning (Crawford & Allan, 1997).  

Historical Test Performance 

If available, tests administered prior to an injury provide valuable insight into a 

person’s pre-morbid intellectual functioning. Reynolds (1997) proposed that historical 

test performance is “one of the very best means of estimating premorbid IQ or ability” (p. 

775) and suggested that data obtained from standardized IQ or achievement assessment 

were superior to grades in determining pre-morbid intellectual functioning. This was in 

part due to standardized assessments being a better method to compare individuals of the 

same age, gender, and education level to peers, making it a more reliable estimate over 

grades, which tend to be subjective and not universal.  

A common difficulty in using historical test performance in estimating pre-morbid 

intellectual functioning is the lack of previous test data for many children and adults. 

Many individuals, unless already identified for a learning disability or other achievement 

impacting disability, will not have any prior testing to provide insight on their pre-morbid 
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functioning. Baade and Schoenberg (2004) found that prior test data were valuable but 

were more likely to be available for adults than for children. When possible, historical 

test data should be utilized in estimating pre-morbid intellectual functioning as it should 

provide the most objective data out of all of the estimating methods. 

Familial IQ and Parent  
Occupation  
 
 Using the IQ of other family members to assess pre-morbid intellectual 

functioning is not a common practice but is still worth noting. There is some debate as to 

the accuracy of estimation using this method as well as the appropriateness of the 

method. Some researchers recommend the use of using familial IQ in estimation, 

cautioning that it is best when data are provided from an identical twin. Otherwise, it is 

no different than using demographic variables in estimating one’s pre-morbid functioning 

(Baron, 2005; Reynolds, 1997). 

 Parent occupation has also been evaluated as a method of estimating a child’s pre-

morbid intellectual functioning. For example, Reynolds and Gutkin (1979) found that 

using the father’s occupation in addition to demographic variables accounted for 

approximately 50-67% of the variance in pre-morbid intellectual functioning. This 

method was considered valid at the time but is not commonly used among clinicians 

today. 

Combined Current Performance  
and Demographic Variables 
 
 Prior work suggests that pre-morbid intellectual functioning is best estimated 

using historical test data. However, as described above, previous assessment data are 

rarely available to estimate pre-morbid intellectual functioning. With the lack of 
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historical data for insight on pre-morbid functioning, a combination of demographic and 

current assessment variables that are less sensitive to neurological insult might be the best 

method (Schoenberg, Scott, Duff, & Adams, 2002; Vanderploeg, 1994). 

 Many researchers have attempted to combine current performance and 

demographic variables in a regression equation to estimate pre-morbid intellectual 

functioning. The most popular is the Oklahoma Premorbid Intelligence Estimate-3 

(OPIE-3), developed by Schoenberg and colleagues (2002). The OPIE-3 formula uses 

demographic variables of age, education, ethnicity, region of country, and gender along 

with Wechsler Adult Intelligence Scale-III (WAIS-III) subtest raw scores of matrix 

reasoning, picture completion, vocabulary, and information. The subtests were selected 

because of previous research indicating they were resistant to neurological dysfunction 

(Axelrod, Vanderploeg & Schinka, 1999; Donders, Tulsky, & Zhu, 2001).  

Five prediction equations were developed to estimate Full Scale IQ using the 

previously mentioned demographic variables and subtests including an equation using 

only the Vocabulary (voc) subtest, Vocabulary and Matrix Reasoning (MR), and Matrix 

Reasoning only to estimate the Full Scale IQ. Coding variables were provided so the 

analysis was consistent across users. Coding variables were necessary to provide a 

numerical entry for a categorical variable such as gender, ethnicity, and region of 

country. One equation created using Vocabulary and Matrix Reasoning subtests was as 

follows: FSIQ = 45.997 + .652 (voc. raw score) + 1.287 (MR raw score) + .157 (age in 

years) + 1.034 (education) + .652 (ethnicity) – 1.015 (gender), standard error of the 

estimate was 6.63. 
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 The OPIE-3 formulas (Schoenberg, Duff, Scott, Patton, & Adams, 2006) were 

analyzed to determine if errors in estimating varied across 13 age groups of the WAIS-III 

(i.e., 16-17, 18-19, 20-24, 25-29,30-34, 35-44,45-54,55-64, 65-69, 70-74, 75-79, 80-84 

and 85-89 years of age). They found that the formula resulted in underestimates of 

predicted IQ at the extremes (individuals under 20 and individuals over 79 years of age), 

while overestimating pre-morbid IQ for individuals in the 35 to 54 age groups. These 

results indicated that while the OPIE-3formulas were a valid method of estimating pre-

morbid intellectual functioning, caution should be used when interpreting the results 

depending on the age of the individual tested.  

 Schoenberg et al. (2007) used the Canadian Wechsler Intelligence Scale for 

Children-Fourth Edition (WISC-IV) subtests along with demographic variables to predict 

pre-morbid intellectual functioning in children and adolescents. Schoenberg and 

colleagues used the standardization sample from the WISC-IV to create regression 

algorithms to predict pre-morbid functioning. After splitting the group randomly, one for 

development and one for validation, a one-way analysis of variance (ANOVA) and Chi-

Square analyses were used to examine differences between the two groups. Next, a series 

of hierarchical regression analyses was used to create prediction algorithms using the 

demographic variables of age, parent education, ethnicity, gender, and region of country 

along with the WISC-IV information, vocabulary, matrix reasoning, and picture 

completion subtests. Schoenberg et al. dummy coded all variables except age and parent 

education because statistically, categorical variables should not be considered continuous 

variables since the variables would be inappropriately weighted, thereby affecting the 
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outcome of the analysis. It is worth noting that these equations were of the few that used 

dummy variables in categorical variables, making it more statistically reliable and valid.  

Schoenberg and colleagues’ (2007) study found the sole use of demographic 

variables accounted for only 22% of the variance described in the model. However, when 

subtest data were included with demographic variables, 45-75% of the variance was 

explained by the model. Twelve algorithms were created to estimate pre-morbid 

functioning in children using demographic data and a combination of demographic and 

WISC subtest data. The algorithms were similar to the ones created by Schoenberg et al. 

(2002) using the Wechsler Adult Intelligence Scale-Third Edition. An example of an 

algorithm created using the WISC-IV subtests of Vocabulary and Matrix Reasoning is as 

follows: FSIQ = 89.701 + 1.113 (voc raw score) + 1.181 (MR raw score) – 4.761 (age) + 

ethnicity + gender, standard error of the estimate = 69.3. As with the previously created 

equations using the WAIS-III data, coding variables were provided to allow for a more 

accurate estimate.  

Other researchers have created equations using both current test performance and 

demographic variables. Vanderploeg and Schinka (1995) used regression equations to 

estimate pre-morbid intellectual functioning using the Wechsler Adult Intelligence Scale-

Revised (WAIS-R) standardization sample data. Vanderploeg, Schinka, Baum, Tremont, 

and Mittenberg (1998) used current test scores along with demographic variables, which 

accounted for approximately 50-67% of the variance. One difference between the 

equations created by Vanderploeg and Schinka (1995) and other researchers was the 

removal of the urban/rural location and geographic region in the analyses because 

previous research indicated they were trivial and did not significantly contribute to the 
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equations. At the time, their equations accounted for more variance than in other 

prediction equations using the WAIS or the WAIS-R. In addition, studies have shown 

that demographic variables of parent education level and child’s ethnicity accounted for 

20-28% of variance. In studies combining intelligence subtests scores and demographic 

variables, 50-67% of the variance was explained (Schoenberg et al., 2007).  

Assumptions of Estimating  
Pre-morbid IQ 
 
 As with many research outcomes, assumptions must be met in order for a method 

of estimating pre-morbid intellectual functioning to be considered valid. Schoenberg et 

al. (2007) reported on the assumptions necessary for estimating pre-morbid intellectual 

functioning including qualifications for using the equation with healthy versus 

neurologically impaired individuals. In particular, when using the equations with healthy 

individuals, Schoenberg et al. suggested that the difference between the actual and 

estimated IQ score should not be significantly different. Further, they suggested that 

when using the equation with neurologically impaired individuals, the predictions should 

be greater than actual performance on IQ measures and the mean of the assumed 

predicted IQ scores of the clinical sample should estimate the mean of actual Full Scale 

IQ scores of healthy individuals (i.e., mean = 100, standard deviation = 15).   

Researchers have found that assessing pre-morbid functioning in children is much 

more complex than estimating adult pre-morbid functioning due to the 

neuropsychological development of cognitive constructs that occur during childhood 

(Kaufman, 1990; Sattler, 1988, 2001). Many researchers cautioned clinicians with regard 

to interpreting pre-morbid estimates of children due to childhood cognitive development.  

It has also been found that using the pre-morbid equations to predict functioning 8-12 
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months after an injury might be an underestimate because of the changes in neurological 

functioning that typically occur during the first 6-12 months post-injury (Schoenberg et 

al., 2007). Finally, many of the methods utilized regression methods; there was a strong 

likelihood of regression toward the mean and a general restriction of the range for IQ 

scores (Stevens, 1985). 

Issues with Current Methods of Estimation 

Researchers have created various methods that can be used to estimate pre-morbid 

intellectual functioning in clinical populations such as TBI. The problem with the leading 

method of estimation--clinical interview--is that it is highly subjective with difficulty in 

reaching proficiency and might overestimate pre-morbid intellectual functioning 

(Kareken & Williams, 1994). In addition, it is clear that clinicians are not using 

appropriate variables to estimate pre-morbid intellectual functioning following a clinical 

interview. Most clinicians appear to ignore the two most important variables in 

estimating pre-morbid intellectual functioning--education and occupation levels of their 

clients (Romans & Caplan, 1994). 

Methods such as regression equations are seen as being a more accurate form of 

estimation. Of the many equations used to estimate pre-morbid intellectual functioning 

available to clinicians, it is evident that the majority of the equations employ assessments 

that are inherently atheoretical. For example, the OPIE-3 formula (Schoenberg et al., 

2002) utilized the outdated and atheoretical Wechsler scale to estimate pre-morbid 

intellectual functioning. The inherent flaw in using an atheoretical assessment was the 

uncertainty of the assessment measuring what it purported to measure. An atheoretical 

assessment relies on the subjective opinion of the creator as to the construct of 
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intelligence, making the assessment another subjective measure to estimate pre-morbid 

intellectual functioning in individuals with TBI.  

In contrast, theoretical assessments are supported by research and are constructed 

following the specific philosophy of a model of cognitive processing or intelligence. The 

use of an assessment that is representative of a theoretical model of functioning might 

potentially allow more valuable insight into the pre and post functioning of an individual 

who has suffered a traumatic brain injury. It might further the information obtained by 

allowing the clinician access to evidence-based interventions that are derived from test 

data. The theoretically based Das-Naglieri: Cognitive Assessment System was 

constructed utilizing PASS model constructs, making it an ideal assessment to use in 

estimating pre-morbid intellectual functioning in TBI populations.  

Conclusion 

 The literature provided compelling evidence that not only is there a need for 

another method of estimating pre-morbid intellectual functioning but that the traditional 

methods in use are outdated and have the potential to provide inaccurate assessment data, 

potentially impacting the prognosis and selection of interventions for children with TBI. 

In addition, the literature suggested that the CAS provides a solid theoretical foundation 

in neurological functioning, making it an essential assessment to include in the field of 

estimating pre-morbid intellectual functioning. Luria’s framework and the application of 

the PASS model in the Cognitive Assessment System allows for the inclusion of the 

Planning and Attention, vital measures in determining the overall functioning of children 

following a TBI.  

 



 
 
 
 
 

CHAPTER III 
 
 

METHODOLOGY 
 
 

Overview of the Study 
 

The purpose of this study was to derive an equation(s) using the Das-Naglieri: 

Cognitive Assessment System (CAS) for estimating pre-morbid intellectual functioning 

for school-aged children who have suffered a traumatic brain injury (TBI). This would 

serve to augment the literature of estimating pre-morbid intellectual functioning to 

include an equation(s) that uses an assessment with foundations centered on a 

neuropsychological theory of intelligence and expand from the already created pre-

morbid intellectual functioning formulas. Similar to other studies, this study also 

examined the relationship between assessment variables (e.g., domain and subtest scores) 

and demographic variables (e.g., gender, race, parent education) in estimating pre-morbid 

intellectual functioning in children with TBI.  

This chapter begins with a description of subjects and sample characteristics, 

followed by a discussion of the Das-Naglieri: Cognitive Assessment System. Lastly, the 

hypotheses and statistical procedures used in this study are discussed.  

Participants 

 The data for this study were collected as part of the standardization sample used 

to norm the Cognitive Assessment System (Naglieri & Das, 1997). A formal proposal 

was submitted to the Institutional Review Board (IRB) at the University of Northern 
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Colorado in Greeley, Colorado which was granted in accordance of their guidelines to 

conduct research with human participants and previously collected data (see Appendix 

C). A stratified random sample was used to closely represent the U.S. population 

according to the 1990 U.S. Census data. Data collection for the standardization of the 

CAS was completed between the fall of 1993 and the spring of 1996. A total of 2,200 

children between the ages of 5 and 17 were tested to create the normative sample, 

including children from both general and special education, with an additional 872 

participants tested to establish the reliability and validity of the CAS (Naglieri & Das, 

1997).  

 The CAS standardization sample was determined by a stratified random sample 

plan obtained from 68 testing sites across the United States. Nine variables were used to 

select participants for the standardization sample including 

1. Age (5 years 0 months to 17 years and 11 months) 

2. Gender (Male, Female) 

3. Race (Black, White, Asian, Native American, Other) 

4. Hispanic Origin (Hispanic, Non-Hispanic) 

5. Region (Midwest, Northeast, South, West) 

6. Community Setting (Urban/Suburban, Rural) 

7. Classroom Placement (Full-time Regular Education Classroom, Part-time 

Special Education Resource, Full-time Self Contained Special Education) 

8. Educational Classification (Learning Disability, Speech/Language 

Impairment, Serious Emotional Disturbance, Mental Retardation, 

Giftedness, and Non-special Education) 
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9. Parental Educational Attainment Level (less than high school degree, high 

school graduate or equivalent, some college or technical school, four or 

more years of college). The parental educational attainment level was 

averaged if both mother and father data were available (Naglieri & Das, 

1997). 

Sample Characteristics 

For standardization purposes of the CAS (Naglieri & Das, 1997), an equal number 

of males and females were tested, ranging from 200 to 300 total participants at each age. 

Of the sample of 2,200 participants, 76.9% of the participants classified themselves as 

White, 13.5% as Black, and 9.6% classified themselves as “Other.” In addition, 11.4% of 

the participants classified themselves as Hispanic, while the remaining 88.6% classified 

themselves as Non-Hispanic.  

Participants were also sampled across four geographical regions and closely 

followed the distribution of the population established by the 1990 U.S. Census that 

divided the United States into four separate regions: Northeast (18.7%), Midwest 

(25.2%), South (33.8%), and West (22.5%). In addition, 74.8% of participants were from 

an urban community setting and the remaining 25.2% were from rural settings.  

For the purpose of this study, the Cognitive Assessment System standardization 

sample was separated into three groups: development sample, validation sample, and TBI 

sample. The development sample consisted of 90% of the total sample and was used to 

create the equation(s) for the study. Ten percent from each age group (ages 5-7, 8-10, 11-

13 and 14-17) of the standardization group were randomly assigned to the validation 

sample to validate the equation(s) upon completion. Males and females were equally 
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represented based on their proportions in each age group. All individuals in the 

standardization sample who disclosed having a traumatic brain injury were also withheld 

from the development sample for further validation of the equation(s). A definition of 

validation and its methods relating to this study are discussed in the Statistical Procedures 

and Data Analysis sections. 

Instrumentation 

The Das-Naglieri Cognitive  
Assessment System 
 
 The Das-Naglieri Cognitive Assessment System (CAS) was used in the creation 

of the equation(s) to estimate pre-morbid intellectual functioning in school-aged children 

with a known TBI. The CAS provides four domain scores: Planning, Attention, 

Simultaneous, and Successive (PASS).   

 Each domain score was organized with a mean of 100 (SD = 15). A Full-Scale 

score comprising all four domains was also available with the same metrics. The four 

domain areas were formed through the contribution of 12 subtests (mean = 10; SD = 3). 

The number of subtests administered (12 total) depended on the battery given; a standard 

battery has the complete 12 subtests, while the basic battery has eight subtests. The 

cognitive processing scales and their subtests are depicted in Table 1 (Naglieri & Das, 

1997). 
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Table 1 

Cognitive Assessment System Domains and Subtests 

Scales Subtests 

Planning Matching Numbers* 
Planned Codes* 
Planned Connections 

Attention Expressive Attention* 
Number Detection* 
Receptive Attention 
 

Simultaneous Nonverbal Matrices* 
Verbal-Spatial Relations* 
Figure Memory 

Successive Word Series* 
Sentence Repetition* 
Speech Rate (ages 5-7) 
Sentence Questions (ages 8-17) 

* Denotes subtests used in Basic Battery consisting of eight subtests. The Standard 
Battery has 12 subtests.  
 
 

Psychometric Properties of the  
Cognitive Assessment System 

 Test-retest reliability was established using 215 children from the standardization 

sample for the Planning and Attention domains as well as the Speech Rate subtest 

because of the involvement of time in the determination of the scaled score. A split-half 

method was used to establish reliability for the Simultaneous and Successive domains. 

Reported internal reliabilities were high--the Full Scale reliability scores ranged from .95 

to .97 for the Standard Battery and from .85 to .90 for the Basic Battery. The average 

reliabilities for the PASS Standard Battery (Naglieri & Das, 1997) are .88 (Planning), .88 

(Attention), .93 (Simultaneous), and .93 (Successive).  



47 
 
 Content validity for the CAS was determined by using experimental examination 

and task analysis so the subtests would mirror the process described in the PASS theory 

and its constructs. Construct validity, important in intelligence testing to developmental 

trends, was also measured. Criterion-related validity was established using the Wechsler 

Intelligence Scale for Children III (WISC-III), the Wechsler Preschool and Primary Scale 

of Intelligence-Revised (WPPSI-R), and the Scholastic Aptitude Test (SAT). The CAS 

was also determined to be a good predictor of academic performance when it was 

administered to 1,600 children in combination with the Woodcock Johnson Revised (WJ-

R) Tests of Achievement (Naglieri & Das, 1997). 

 Additional studies were conducted with the CAS to determine the performance of 

special groups such as children with Attention Deficit/Hyperactivity Disorder (see 

Moonsamy, Jordaan, & Greenop, 2009) and children diagnosed with Mental Retardation 

including 22 children who had a documented TBI. Gutentag et al. (1998) compared TBI 

performance to a matched control sample’s performance on the CAS. The TBI sample 

consisted of 14 males and 8 females, aged 9.8 to 17 years, who suffered a non-penetrating 

head injury with severity of injury ranging from moderate to severe. Results showed that 

children who had suffered from a TBI were more likely to obtain lower scores on 

Planning and Attention subtests than the matched control group. This further supported 

the data provided by the standardization sample of the CAS, which indicated that 

individuals with TBI did indeed perform worse than their peers specifically in the areas 

of Planning and Attention. 

 McCrea (2006) further validated the utility of the CAS with neurologically 

impaired individuals. This study attempted to determine the neuropsychological 
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specificity of the CAS subtests in post-acute injury phase of patients with a brain lesion. 

Results indicated that overall the CAS served as a useful assessment for providing 

multiple baseline data in neurological functioning evaluation. This study, as well as 

others (i.e., Gutentag et al., 1998; Moonsamy et al., 2009) supported the validity of the 

Cognitive Assessment System with not only healthy individuals but individuals in 

clinical populations such as TBI as well.  

Domain and Subtest Description 

Planning scale. The Planning subtests were incorporated into the CAS to assess 

the child’s ability to create a plan, apply the plan, and verify the effectiveness of the plan 

toward reaching the goal and modifying the plan if necessary.  

Matching numbers. Each item in this subtest presented the examinee with eight 

rows of numbers with six numbers per row. Examinees must underline the two numbers 

that are the same in each row. The examinees repeated this task until the 150 seconds (s) 

were completed or until the examinee finished the task. The score for this subtest was the 

sum of ratios of the number of correctly underlined numbers and time (in seconds) to 

complete the task (rounded to whole numbers). Reliability coefficients on this subtest 

ranged from .67-.84 depending on the age of the individual. 

Planned codes. There were two items for this particular Planning subtest. Each 

item had its own set of codes and was arranged in columns and rows. At the top of each 

page, a legend was provided to show the correspondence of the letters (A, B, C, D) to 

specific codes (XX, XO, OO, OX). Below the legend were eight rows with the numbers 

provided with a blank for each code. Examinees copied the codes to the corresponding 

letters in the boxes provided. Examinees between the ages of 5 years, 0 months and 7 
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years, 11 months were allotted a 120 s per item. Examinees between 8 years, 0 months 

and 17 years,11 months were allotted 60 s per item. The score for this subtest was the 

sum of ratios of the number of correct and time (in seconds) to complete the task 

(rounded to whole numbers). Reliability coefficients on this subtest ranged from .70-.92 

depending on the age of the individual. 

Planned connections. This subtest consisted of eight items. The first six items 

required the examinee to connect numbers in sequential order (1 to 2, 2 to 3, etc), while 

the last two items required the examinee to connect numbers and letters in sequential 

order (1 to A, A to 2, 2 to B, B to 3, etc.). Examinees between the ages of 5-7 were 

administered Items 1 through 5 and examinees aged 8 through 17 were administered 

Items 4-8. The score for this subtest was the sum of item times in seconds. Reliability 

coefficients on this subtest ranged from .66-86 depending on the age of the individual. 

Attention Scale. Attention subtests “require the focus of cognitive activity, 

detection of a particular stimulus, and inhibition of responses to irrelevant competing 

stimuli” (Naglieri & Das, 1997, p. 17). The subtests involved the inspection of stimulus 

features and the decision of responding or not responding to competing stimuli.  

Expressive attention. This subtest required different stimuli depending on the age 

of the examinee. Younger examinees, ages 5 to 7, were presented with a page of pictures 

with common animals. Examinees first identified whether the animal depicted was big or 

small. In the next item, the animals shown were sized appropriately (i.e., gorilla would be 

big, mouse would be depicted as small). In the final set, the size of the animals depicted 

was incongruent with its actual size (i.e., gorilla would be small, mouse would be big). 

The examinee would answer based on the actual size of the animal in real life.  The items 
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in the final set measured selective attention as the examinee was presented with 

competing stimuli and focused attention on the particular task at hand.    

 The older examinees, ages 8 to 17, were given a variation of the Stroop Test 

(Stroop, 1935) using different stimuli from the younger examinees although the task was 

the same. For the first item, examinees read 40 words distributed equally among the 

words red, blue, yellow, and green. For the second item, examinees named the 40 color 

rectangles (red, blue, yellow and green). For the third task, examinees said the color of 

the word (40 color words presented in the four colors with the word colors being 

incongruent with the printed color) rather than to read the word itself. The items in the 

final set measured selective attention for the same reason mentioned above for younger 

examinees. The score for this subtest was the ratio of the number of correct and time (in 

seconds) to complete the third task (rounded to whole numbers). Reliability coefficients 

for Expressive Attention ranged from .64-.93 depending on the age of the individual. 

Number detection. Examinees were presented with a page with 18 rows of 10 

numbers.  Above the 18 rows of 10 numbers was a set of numbers specifying what the 

examinee should underline. There were two conditions-the first had numbers printed in 

regular typeface and the second set had numbers printed in outlined typeface. The score 

for this subtest was the ratio of number of correct identifications minus incorrectly 

marked numbers as a function of the time to complete subtest. For example, scores were 

negatively related to completion time such that holding the difference score constant, 

performance was better the less time taken to the complete the task. Reliability 

coefficients on this subtest ranged from .71-.89 depending on the age of the individual. 
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Receptive attention. This subtest contained two components dependent upon the 

examinees’ age. Examinees aged 5 to 7 years underlined the pair of drawings that were 

similar in appearance or had the same name (e.g., two identical flowers or a rose and a 

lily). Examinees aged 8 to 17 underlines the letters that were either similar in appearance 

(e.g., b and b) or had the same name (e.g., b and B). The score for this subtest was the 

ratio of number of correct identifications minus incorrectly marked numbers as a function 

of the time to complete subtest. For example, scores were negatively related to 

completion time such that holding the difference score constant, performance was better 

the less time taken to the complete the task. Reliability coefficients on the Receptive 

Attention subtest ranged from .63-.90 depending on the age of the individual. 

Simultaneous processing. Simultaneous processing subtests required the 

combination of separate constituents into a group of related parts using nonverbal and 

verbal abilities. 

Nonverbal matrices. Examinees were presented with different geometric shapes 

that were unified through logical or spatial organization. Examinees deciphered the 

relationship and picked the best option (out of six) that corresponded to that relationship. 

The score was the total number of correct answers plus one point for each item not 

administered below the starting point. Reliability coefficients on this subtest ranged from 

.83-.93 depending on the age of the individual. 

Verbal-spatial relations. An understanding of logical and grammatical 

descriptions of spatial relationships was required for this subtest. Examinees were 

presented with six drawings and a printed question at the bottom of each page that was 

read aloud to them. Examinees chose the option that best complemented the verbal 
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description/sentence at the bottom of the page. The score ws the total number of correct 

answers plus one point for each item not administered below the starting point. 

Reliability coefficients on the Verbal-Spatial Relations subtest ranged from .70-.87 

depending on the age of the individual. 

Figure memory. Examinees were shown a page that presented a two- or three-

dimensional geometric figure for five seconds after which the picture was removed. 

Examinees were then given a response book with a more complex geometric shape, with 

the original figure embedded, and would identify the original figure by indicating the 

lines (by tracing) that made up that figure. The score for this test was the number of 

correctly identified original figures plus one point for each item not administered below 

the starting point. Reliability coefficients on this subtest ranged from .81-.93 depending 

on the age of the individual. 

Successive processing. Successive Processing subtests required the 

comprehension of linear organization of elements (numbers, words, etc.). All subtests 

required the examinee to comprehend information that was presented in a specific order 

and understand that meaning comes from the order. 

Word series. The examinee was read a series of single-syllable/high frequency 

words ranging in length from two words to nine words. The examinee was then asked to 

repeat the series of words. The score for this subtest was total number of correctly recited 

series plus one point for each item not administered below the starting point. Reliability 

coefficients on Word Series ranged from .77-.91 depending on the age of the individual. 

Sentence repetition. The examinee was asked to repeat a sentence that contained 

color words (e.g., “The blue is yellowing”). Color words were utilized to reduce sentence 
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meaning and decreased the influence of simultaneous processing in this task. The score 

consisted of the total number of sentences repeated successfully plus one point for each 

item not administered below the starting point. Reliability coefficients on Sentence 

Repetition ranged from .77-.89 depending on the age of the individual. 

Speech rate. Examinees were given a three-word series and were asked to repeat 

the series until told to stop. Eight different items comprised this subtest and the 

examinees were to repeat the series 10 times before stopping. The score was the total 

time required to complete each series. Reliability coefficients on this subtest ranged from 

.67-.87 depending on the age of the individual. 

Sentence questions. This subtest was only administered to examinees eight and 

older. The examiner read a sentence and the examinee was then asked a question about 

the sentence. The question required an understanding of the serial placement of the words 

and sentence syntax. For example, the examiner might read “The blue is yellowing” and 

ask the examinee “Who is yellowing”; the correct answer would be “blue.” The total 

number of questions answered correctly was the subtest score plus one point for each 

item not administered below the starting point. Reliability coefficients on the Sentence 

Questions subtest ranged from .79-.88 depending on the age of the individual. 

Statistical Procedures and Data Analysis 

Descriptive analyses were conducted to provide the characteristics of the three 

samples used in the analysis. Although approximately 3,100 children were used in the 

standardization of the CAS, cases with missing data were not included in the analysis, 

leaving a total of 2,791 individual data to be analyzed in this study. The primary analyses 

concerned predictors of Planning, Attention, Simultaneous, Successive and Full Scale IQ.  
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These data were analyzed according to the research questions outlined via multiple linear 

regression (MLR). From the statistical standpoint that categorical variables should not be 

treated as continuous, all categorical variables used in the analysis were dummy coded 

(Tabachnick & Fidell, 2007). The research questions and proposed statistical analyses are 

below. 

Q1 Which of the Planning domain subtests (Matching Numbers, Planned 
Codes, Planned Connections), in combination with demographic variables 
of parent education level, race and gender, are the best predictors in 
assessing pre-morbid intellectual functioning in school aged children for 
the Planning Domain? 

 
Q2 Which of the Attention domain subtests (Expressive Attention, Number 

Detection, Receptive Attention), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Attention Domain? 

 
Q3  Which of the Simultaneous domain subtests (Nonverbal Matrices, Verbal-

Spatial Relations, Figure Memory), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Simultaneous Domain? 

 
Q4 Which of the Successive domain subtests (Word Series, Sentence 

Repetition, Sentence Questions, Speech Rate), in combination with 
demographic variables of parent education level, race and gender, are the 
best predictors in assessing pre-morbid intellectual functioning in school 
aged children for the Successive Domain? 

 
Q5 Which of the Cognitive Assessment System 12 subtests, in combination 

with demographic variables of parent education level, race and gender, are 
the best predictors in assessing pre-morbid intellectual functioning in 
school aged children for the Full Scale score? 

 
Q6 Which of the Cognitive Assessment System four domains (Planning, 

Attention, Simultaneous, Successive), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Full Scale score? 
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Multiple linear regression (MLR) procedures were applied to the 12 subtests, the 

four domains, along with the demographic variables of parent education, age, gender, and 

race. Variables in the prediction equation(s) were entered using stepwise procedures. 

Once the variables had been entered into the equation(s), a check for the assumptions was 

completed to further validate the appropriateness of the equation(s) and the MLR analysis 

utilized in this study. The assumptions of linearity, independence of errors, normality of 

errors, and equality of variance (Tabachnick & Fidell, 2007) were examined. 

The stepwise method used an atheoretical approach relying solely on statistical 

criteria to determine which variables should remain in the prediction equation 

(Tabachnick & Fidell, 2007). Unlike the methods of estimating pre-morbid intellectual 

functioning that utilize the theory regarding the stable subtests and domains of the 

Wechsler scales, there has yet to be a solid theoretical foundation to provide insight into 

the CAS subtest and domains that might prove best in estimating pre-morbid intellectual 

functioning. Thus, an atheoretical approach in multiple linear regression was utilized 

given the exploratory nature of this study. The CAS is comprised of four independent and 

inter-dependent domains, making it difficult to determine what domain(s) and subtest(s) 

might be the best predictors in estimating pre-morbid intellectual functioning as no other 

study has addressed or investigated the process of estimating pre-morbid ability with the 

CAS.  

Although there is not sufficient research to determine which of the CAS domains 

and subtests should be factored into the regression equation(s), there have been a wide 

range of studies involving symptoms and impacts of TBI (i.e., Gutentag et al., 1998). 

Sufficient studies have been conducted to determine profiles of children who have 
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sustained a traumatic brain injury, allowing for the following hypotheses for which of the 

PASS domains and subtests might prove best in estimating pre-morbid intellectual 

functioning. 

It was hypothesized based on previous literature that significant deficits in 

attention and planning domains would be observed in TBI populations (Gutentag et al., 

1998), that subtests from the Successive and Simultaneous domains would be more 

robust to TBI, and therefore, they would be more likely to account for more variance 

explained by the proposed equation(s). Specifically, Gutentag and colleagues (1998) 

found that scores between TBI and control participants were similar for Verbal-Spatial 

Relations, Figure Memory, and Word Series subtests. It was hypothesized that the three 

aforementioned subtests would work best (in combination with demographic variables) to 

predict pre-morbid intellectual functioning in children. 

Q7 Using a subsample of children with TBI and the withheld 10% from each 
age group, will the equations prove valid in estimating pre-morbid 
intellectual processing? 

 
Using the results of research questions one through six, prediction equations were 

formed. These equations were then validated using a non-clinical sample and a clinical 

sample. For this, validation confirmed the accuracy of the developed equations by 

utilizing a sub-sample of the CAS standardization data to test the equations using real 

data. The assessment and demographic data from the two validation groups (10% of the 

cases and the TBI sample) were individually entered into the previously created 

equation(s) and then analyzed to determine accuracy of predicted versus actual scores.  

Data for each group (i.e., control and TBI) were analyzed using paired-samples t-tests.  

For the control sample, if the derived equation(s) accurately predicted the Full Scale 



57 
 
Intelligence Quotient (FSIQ) as well as performance on the various domain measures, 

then there should not be a statistically significant difference between the scores.  

However, for the TBI sample, it was expected that predicted scores on each measure 

would be significantly greater than the actual scores.  Following these analyses of the 

validation groups, the information derived was compared to prior research and theoretical 

expectations to determine how the equation(s) performed compared to other pre-morbid 

estimators. 

It was hypothesized based on the previous literature that the data from the 

validation samples (TBI and 10% of the cases) would produce an accurate estimate of 

pre-morbid intellectual functioning and would meet the basic assumptions of estimating 

pre-morbid intellectual functioning as discussed in Chapter II.  
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CHAPTER IV 
 
 

RESULTS 
 
 

 The primary goal of this study was to derive an equation(s) using the Das-

Naglieri: Cognitive Assessment System (CAS) for estimating pre-morbid intellectual 

functioning for school-aged children who have suffered a traumatic brain injury (TBI).  

The second goal of this study was to examine the extent to which the CAS subtest and 

CAS domain scores predicted pre-morbid intellectual functioning using multiple linear 

regression methods. This chapter is divided into four sections: (a) analysis of missing 

data (b) group characteristics, (c) creation of the equation, and (d) summary of the 

findings as they related to the research questions proposed in Chapter I. Statistical 

analyses were conducted using SPSS Version 20. 

Analysis of Missing Data 

 The deletion of cases of missing data in the analyses conducted for this study was 

briefly mentioned at the beginning of Chapter III as the method of choice. The purpose 

for deleting cases with missing data listwise was to provide the most accurate regression 

estimates possible for the Cognitive Assessment System in estimating pre-morbid 

intellectual functioning. A total of 281 cases (9%) from the overall CAS standardization 

sample were deleted in the former analyses. To determine the pattern of missing data, 

analyses compared the descriptive data of the missing data with that of the overall sample 

as well as univariate statistics to examine proportions of missing data.  
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 Table 2 displays the descriptive statistics for the overall CAS standardization 

sample and the descriptive data for the cases with missing variables. The percentage of 

males and females between each sample were equal, as were the percentages of races 

represented in each group, with the exception of Whites who had 10% less representation 

in the missing data cases and Blacks who had 12% more cases represented in the missing 

data cases compared to the complete sample. Although there appeared to be more 

individuals between the ages of 5 and 9 with missing data compared to other age groups, 

the difference was also not statistically significant, t < 1. It should be noted that there 

were still a significant number of all genders, races, and age groups represented in the 

complete data that there should have been no foreseeable problems with running analyses 

using cases with only complete information.  
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Table 2 

Descriptive Statistics of Demographic Variables by Missing Data and Complete Data 
Cases 
 
 Missing (n = 281) Complete Data (n = 2791) 
Variable n % n % 
Gender     

Male 137 49 1335 48 
Female 144 51 1450 52 

Race     
White 191 68 2169 78 
Black 67 24 345 12 
Asian 2 1 13 .5 

Native American 16 6 138 5 
Other 5 2 126 5 

Age     
5 66 23 269 10 
6 31 11 393 14 
7 33 12 410 15 
8 29 10 287 10 
9 30 11 253 9 

10 19 6 271 10 
11 20 7 185 7 
12 16 6 122 4 
13 17 6 167 6 
14 7 2 162 6 
15 6 2 123 .4 
16 2 1 116 4 
17 6 2 107 4 

 
 
 
 A string analysis was also conducted on each individual case of missing data to 

determine if any patterns resulted in a significant number of cases being represented for 

any single subtest compared to other subtests. For example, it was found that 11 cases 

resulted in similar missing data patterns of missing the Matching Numbers Subtest, 

Planning Domain Score, and Full Scale scores. The pattern with the most missing data (n 

= 66, 2.1%) had the following pattern: Planned Codes, Planning Domain, and Full Scale 
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score. Results indicated that each string, or individual pattern of missing data, represented 

less than 3% of the overall sample (missing cases and complete cases combined). With 

each individual pattern of missing data resulting in a drastically small number of cases, it 

could be safe to determine that the pattern of missing subtest data was random.  

 Analyses to determine best predictors of CAS subtests and domains and the 

development of estimation equations were also conducted using the Expectation 

maximization (EM) method of imputation for missing variables. Expectation 

maximization was selected based on criteria discussed by Cohen, Cohen, West, and 

Aiken (2002), rendering it the best method of imputation for random missing data sets 

utilizing an atheoretical approach to analysis. Expectation maximization imputes missing 

variables through a two-step process: step one involves an analysis of all complete data to 

determine what values would be expected and the second step would run a maximum 

likelihood regression after the values had been imputed (Tabachnick & Fidell, 2007). 

Analyses did not result in significant differences in results as compared to the complete 

data only analyses.  

Group Characteristics 

 A total of 2,791 participants were utilized in the following analyses after 281 

individual cases (9%) were deleted due to missing data. Cohen et al. (2002) noted that in 

cases with over 3-5% missing data, imputation methods might skew the analyses and 

result in more errors. Thus, the data reflected only those cases with complete data. The 

remaining complete data cases from the CAS standardization sample were randomly 

divided into two groups. The first group was selected as the development sample, 

representing approximately 90% of the sample (development group, n = 2,492).  The 
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second group, comprising approximately 10% of the sample, was used to validate the 

equations (non-clinical validation group, n = 277). All cases with reported TBI served as 

a clinical validation group (TBI validation, n = 22).  

 The development group consisted of 2,492 individuals and was representative of 

the 1990 United States Census (Naglieri & Das, 1997) with slightly more females (n = 

1283; 51.5%) than males (n = 1209; 48.5%).  As displayed in Table 3, the development 

group consisted of 77.4% White participants, 12.4% Black, 4.7% Asian, 0.4% Native 

American, and 5.1% Other. Due to the age of the standardization sample, the sample was 

then compared to a recent U.S. census from 2010. Both the gender and the breakdown of 

race closely mimicked the general U.S. population as reported by the U.S. Census Data 

from 2010 (U.S. Census Bureau, 2011; see Table 3), further validating the utility of the 

CAS in recent years. Approximately 16.3% of the group had reported parents as having 

less than a high school degree for their education, 32.5% having a high school diploma or 

equivalent, 21.4% having some college experience, and 29.9% of the group reported 

parents having a college degree. Descriptive data and the number of participants per age 

group are displayed in Table 4. 
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Table 3 

U.S. Census Data and Cognitive Assessment System Estimation Development Sample 
Demographic Breakdown by Percentage 
 
Category U.S. Census Data CAS Development Sample 
Race   

White 77.1 77.4 
Black 12.9 12.4 

Native American 0.9 0.4 
Asian 5.0 4.7 
Other 4.1* 5.1 

Gender   
Female 50.9 51.5 

Male 49.1 48.5 
*U.S. Census does not contain an “Other” Category. Data were retrieved by taking the 
difference of the sum of all races and subtracting from 100. 
 
 
 
 The non-clinical validation group consisted of 277 participants (118 male, 159 

female). Table 2 showed that the non-clinical validation group consisted of 78.7% White 

participants, 13% Black, 3.2% Asian, .7% Native American, and 4.3% Other participants. 

It appeared that the non-clinical validation group approximated the development group, 

making the comparison between the two a valid representation of the population. 

Approximately 15.9% of the group had reported parents as having less than a high school 

degree for their education, 35% with a high school diploma or equivalent, 19.9% with 

some college experience, and 29.2% of the group reporting having a college degree. The 

number of participants per age group for the non-clinical validation group is also 

displayed in Table 4. 

 The final group included in the analyses was comprised of individuals with a 

reported traumatic brain injury. The TBI validation group consisted of 22 individuals: 14 

males (63.6%) and 8 females (36.4%). As seen in Table 4, the TBI validation group 
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consisted of 95.5% White participants (n = 21) and 4.5% Black participants (n = 1). 

Approximately 18.2% of the group had reported parents as having less than a high school 

degree for their education, 22.7% had a high school diploma or equivalent, 36.4% had 

some college experience, and 22.7% of the group had a college degree. Additional 

descriptive information including the number of participants per age group for the TBI 

validation group is also displayed in Table 4. 

 

Table 4 

Descriptive Statistics of Demographic Variables by Cognitive Assessment System Group 
 

 Development (n = 2492) Non-Clinical (n = 277) TBI       (n = 22) 
Variable N % n % n % 
Gender       

Male 1209 48.5 118 42.6 14 36.4 
Female 1283 51.5 159 57.4 8 63.6 

Race       
White 1930 77.4 218 78.7 21 95.5 
Black 308 12.4 36 13 1 4.5 
Asian 11 .4 2 0.7   

Native American 126 5.1 12 4.3   
Other 117 4.7 9 3.2   

Age       
5 244 9.8 25 9   
6 350 14 43 15.5   
7 372 14.9 38 13.7   
8 257 10.3 30 10.8   
9 221 8.9 28 10.1 1 4.5 

10 231 9.3 27 9.7 3 13.6 
11 152 6.1 15 5.4 4 18.2 
12 110 4.4 12 4.3   
13 140 5.6 14 5.1 3 13.6 
14 117 4.7 18 6.5 6 27.3 
15 108 4.3 11 4 1 4.5 
16 97 3.9 6 2.2 3 13.6 
17 93 3.7 10 3.6 1 4.5 
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 Differences between development and non-clinical validation groups for age, 

parent education level, CAS subtest/domain standard scores, and Full Scale scores were 

evaluated using one-way analysis of variance (ANOVA) and are displayed in Table 5. 

Mean differences were expected between the development sample and the TBI validation 

sample, as well as between the non-clinical validation sample and the TBI validation 

sample so no analyses were conducted between those groups. Means and standard 

deviations of the Cognitive Assessment System for TBI validation sample are presented 

in Table 6. Means for both the development group as well as the non-clinical validation 

sample mirrored the general population with a mean standard score of 10 on all subtests 

(SD = 3) and means of 100 for the full scale score and domain (SD = 15). There were no 

statistical differences between the development and non-clinical validation group on any 

of the variables (p > .05; i.e., CAS measures, parent education level, age), indicating the 

appropriateness to create and validate the equation(s) using the current samples as they 

were comprised of similar group characteristics and mirrored the general population in 

CAS scores.  
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Table 5 

Means and Standard Deviations of Cognitive Assessment System Scaled Scores: Development and Non-Clinical Validation 
 
Variable Development Non-clinical Validation 1-Way ANOVA 

 M SD M SD F-Ratio p 
Domain              Subtest       
Planning  100.11 15.46 100.62 14.42 0.27 .60 

Matching Numbers(MN) 9.95 3.09 10.00 2.85 0.09 .76 
Planned Codes(PD) 10.09 2.99 10.01 2.79 0.18 .67 

Planned Connect(PN) 10.041 3.00 10.30 2.87 1.91 .17 
Attention 100.68 14.98 99.78 15.39 0.91 .34 

Expressive Attention(EA) 10.05 3.08 10.17 2.87 0.36 .55 
Number Detection (ND) 10.14 3.01 10.01 3.05 1.67 .20 

Receptive Attention(RA) 10.07 3.03 9.90 2.99 0.83 .36 
Simultaneous 101.16 14.92 100.47 15.05 0.54 .46 

Nonverbal Matrices(MT) 10.15 3.00 10.21 3.11 0.08 .77 
Verbal-Spatial Rel. (SV) 10.26 3.01 9.77 2.96 3.76 .05 

Figure Memory (FM) 10.32 3.06 10.18 3.06 0.43 .51 
Successive  100.75 15.16 99.50 14.72 1.70 .19 

Word Series (WS) 10.10 3.07 9.87 2.94 1.40 .24 
Sentence Repetition(SR) 10.24 2.96 10.03 3.03 1.16 .28 
Sentence Questions(SQ) 10.23 3.09 10.02 2.93 1.13 .29 

Speech Rate (SSR) 10.11 3.04 9.99 2.82 0.35 .55 
Full Scale 100.53 15.43 99.74 15.13 0.64 .42 
Parent Education Level 13.46 1.91 13.40 1.91 0.19 .67 
Age (in years) 9.42 3.47 9.33 3.37 0.17 .68 

 
 66 
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Table 6 

Means and Standard Deviations of Cognitive Assessment System Scaled Scores: 
Traumatic Brain Injury 
 

Variable       TBI 
Domain                      Subtest M SD 
Planning  80.95 17.06 

Matching Numbers(MN) 7.45 3.31 
Planned Codes(PD) 6.05 3.05 

Planned Connect(PN) 7.32 3.11 
Attention 87.23 19.56 

Expressive Attention(EA) 9.09 3.13 
Number Detection (ND) 9.18 3.25 

Receptive Attention(RA) 7.27 3.99 
Simultaneous 94.00 14.06 

Nonverbal Matrices(MT) 8.73 2.68 
Verbal-Spatial Rel. (SV) 7.36 3.30 

Figure Memory (FM) 9.41 2.34 
Successive  91.41 11.42 

Word Series (WS) 9.27 2.201 
Sentence Repetition(SR) 8.73 2.51 
Sentence Questions(SQ) 8.77 1.88 

Speech Rate (SSR) 7.59 2.95 
Full Scale 84.86 16.39 
Parent Education Level 13.45 1.82 
Age (in years) 13.00 2.31 
Note. Domain scores (Planning, Attention, Simultaneous and Successive) are organized 
with a mean of 100 and a standard deviation of 15. Subtest scores are organized with a 
mean of 10 and a standard deviation of 3.  

 

Research Questions 

 In the following sections, analyses and results for the seven research questions 

proposed in Chapters I and III are presented.  

 Q1 Which of the Planning domain subtests (Matching Numbers, Planned  
Codes, Planned Connections), in combination with demographic variables 
of parent education level, race and gender, are the best predictors in 
assessing pre-morbid intellectual functioning in school aged children for 
the Planning Domain? 

 



68 
 

 
 

 Q2 Which of the Attention domain subtests (Expressive Attention, Number  
Detection, Receptive Attention), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Attention Domain?  
 

 Q3  Which of the Simultaneous domain subtests (Nonverbal Matrices, Verbal- 
Spatial Relations, Figure Memory), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Simultaneous Domain? 

 
 Q4 Which of the Successive domain subtests (Word Series, Sentence  

Repetition, Sentence Questions, Speech Rate), in combination with 
demographic variables of parent education level, race and gender, are the 
best predictors in assessing pre-morbid intellectual functioning in school 
aged children for the Successive Domain? 

 
 Q5 Which of the Cognitive Assessment System 12 subtests, in combination  

with demographic variables of parent education level, race and gender, are 
the best predictors in assessing pre-morbid intellectual functioning in 
school aged children for the Full Scale score? 

 
 Q6 Which of the Cognitive Assessment System four domains (Planning,  

Attention, Simultaneous, Successive), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Full Scale score? 

 
 Q7 Using a subsample of children with TBI and the withheld 10% from each  

age group, will the equation prove valid in estimating pre-morbid 
intellectual processing? 

 
Creation of the Equation 

 The exploratory nature of this study and the lack of a theoretical model to drive 

predictor variable selection necessitated the use of stepwise regression. To determine the 

best CAS subtest predictor, each subtest was entered into a regression equation using the 

stepwise method. Stepwise regression allows the entry of variables in a regression 

equation based purely on statistical criteria (Tabachnick & Fidell, 2007). Cohen et al. 

(2002) cautioned the use of stepwise method unless a ratio of at least 1 variable per 40 
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cases were available (i.e., a large n) and a cross-validation sample was utilized to validate 

the results. This study had a ratio that well exceeded that suggested by Cohen et al. and a 

cross-validation sample was utilized to help determine the efficacy of the created 

equations in estimating pre-morbid intellectual functioning. 

 The stepwise regression method allowed all CAS-subtests to be analyzed solely 

for their contribution to predicting each respective domain score as well as the full scale 

score. The CAS-subtests that most strongly predicted the domain scaled score were 

selected. The same procedure was introduced to select the top CAS-domain predictor 

variables of full scale IQ.  

 Although summary results for the equations can be found in Table 31, full 

equations are presented in the following section as well as in Appendix A. All equations 

were significant predictors of Full Scale scores and Domain Scores. 

Summary of Findings 

 To illustrate how the equation works in practice, a case from the CAS 

standardization sample is presented throughout the Summary of Findings. Specifically, a 

14-year-old Native American male’s data as presented in the CAS Standardization 

sample serves as an example of the equation’s use in practice. His CAS assessment data 

are as follows:  
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Table 7 

Cognitive Assessment System Standardization Sample Example:  
Native American Male 

 
CAS Domain/Subtest Score 

Planning 106 
Matching Numbers 12 
Planned Codes 9 
Planned Connections 12 

Attention 121 
Expressive Attention 13 
Receptive Attention 12 
Verbal-Spatial Relations 15 

Simultaneous 81 
Nonverbal Matrices 10 
Number Detection 7 
Figure Memory 4 

Successive 113 
Word Series 13 
Sentence Repetition 12 
Sentence Questions 12 
Speech Rate 11 

Full Scale  107 
 
 
 
 Q1 Which of the Planning domain subtests (Matching Numbers, Planned  

Codes, Planned Connections) in combination with demographic variables 
of parent education level, race and gender are best predictors in assessing 
pre-morbid intellectual functioning in school aged children for the 
Planning Domain? 
 

 A stepwise regression method was utilized to determine which of the Planning 

domain subtests were best in predicting pre-morbid intellectual functioning in school 

aged children. This was a purely data-driven approach to determining which subtests 

were most useful in predicting the Planning domain, thereby predicting pre-morbid 

intellectual functioning. It was determined that Matching Numbers and Planned Codes 

were the best predictors of the Planning domain (see Table 8). These CAS-subtests were 

then entered into the final regression equation. Of particular interest, the two best 
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predictor subtests were utilized in the administration of the Basic Battery of the CAS, 

meaning that the Extended or full version of the CAS might not need to be administered 

to predict pre-morbid intellectual functioning in the area of Planning. 

 

Table 8 
 
Stepwise Regression: Best Predictor Variables for Planning Domain 
 

Predictor B SE 95% CI 
Matching Numbers 2.99** 0.04 [2.91, 3.07] 
Planned Codes 2.55** 0.04 [2.47, 2.62] 
R2 0.89 

  F 10299.18**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
 In view of the regression findings, the following equations are a product of 

entering in the two best contributors, the single best contributor, and solely demographic 

variables. Three equations were created using this information to estimate pre-morbid 

intellectual functioning for the Planning Domain. 

Planning Estimate Equation 1: Top Two 
Cognitive Assessment System Subtests  
and Demographics 
 
 The first equation was created by forcing Matching Numbers and Planned Codes 

into the equation, followed by the demographic variables of gender, parent education 

level and race. Table 9 gives the formula for Planning Estimate Equation 1. 
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Table 9 
 
Regression Results Summary for Estimating Planning Domain Score from  
Demographic Variables and Cognitive Assessment System-Subtests Standard  
Scores 
 

Predictor B SE 95% CI 
Constant 43.91** 0.48 [42.97, 44.85] 
Matching Numbers 2.97** 0.04 [2.89, 3.05] 
Planned Codes 2.53** 0.04 [2.45, 2.61] 
Gender         Male 0.34 0.20 [-0.05, 0.73] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 1.10** 0.31 [0.49, 1.71] 

     Some College 0.86** 0.33 [0.21, 1.51] 
     College Grad 2.11** 0.32 [1.48, 2.74] 
Race         White 0 0 

      Black -2.28 0.31 [-2.89, -1.67] 
     Asian -0.54 0.48 [-1.48, 0.40] 
     Other -0.25 0.46 [-1.15, 0.65] 
     Native American 2.18** 1.50 [-0.76, 5.12] 
R2 0.90 

  F 2172.71**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
 For example, a 14 year old Native American (2.180) male (.337) with a reported 

parent education level of college graduate (2.114) and subtest standard scores for 

Matching Numbers (12)(2.972) and Planned Codes = (9)(2.537) would have an estimated 

Planning domain score of 107 using Equation 1 (i.e.,  43.914 + 2.972(12) + 2.537(9) + 

.337 + 2.114 + 2.180 = 107.04.) 
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Planning Estimate Equation 2: Top 
Cognitive Assessment System  
Subtest and Demographics 
 
 Another equation was formulated using the CAS-subtest that made the most 

contribution, Matching Numbers, in combination with the demographic variables listed 

previously. Table 10 gives the formula for Planning Estimate Equation 2 using one CAS-

subtest in combination with demographic variables. 

 

Table 10 
 
Regression Results Summary for Estimating Planning Domain Score from  
Demographic Variables and Cognitive Assessment System-Subtest  
Standard Score 
 

Predictor B SE 95% CI 
Constant 59.21** 0.70 [57.84, 60.58] 
Matching Numbers 4.07** .06 [3.95, 4.19] 
Gender         Male -1.79** 0.33 [-2.43, -1.14] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 1.44** 0.51 [0.44, 2.43] 

     Some College 1.10* 0.55 [0.02, 2.18] 
     College Grad 2.80** 0.52 [1.78, 3.82] 
Race         White 0 0 

      Black -3.12** 0.51 [-4.12, -2.12] 
     Asian 2.56 0.79 [1.01, 4.11] 
     Other 0.50 0.76 [-0.99, 1.99] 
     Native American 3.57 2.48 [-1.29, 8.44] 
R2 0.72 

  F 711.12**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 Using the same data from the previous example with the codes provided, a 14-

year-old Native American (3.571) male (-1.791) with a reported parent education level of 

college graduate (2.799) and CAS subtest standard scores of 12 for Matching Numbers 

(4.073) would have an estimated Planning domain score of 112 using Equation 2 (i.e., 

59.211+4.073(12)+(-1.791)+2.799+3.571= 112.6.) 

Planning Estimate Equation 3:  
Demographic Only 
 
 Planning Estimate Equation 3 was constructed using only demographic variables. 

All of demographic variables were forced into the equation, giving another option in 

estimating Planning Domain scores for an individual as depicted in Table 11. 
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Table 11 
 
Regression Results Summary for Estimating Planning Domain Score from  
Demographic Variables Only 
 

Predictor B SE 95% CI 
Constant 98.24** 0.84 [96.59, 99.89] 
Gender         Male -5.08** 0.59 [-6.24, -3.92] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 3.90** .91 [2.13, 5.68] 

     Some College 4.27** .985 [2.34, 6.20] 
     College Grad 7.72** .94 [5.28, 8.96] 
Race         White 0 0 

      Black -4.18 .92 [-5.98, -2.38] 
     Asian 10.11** 1.41 [7.35, 12.87] 
     Other 1.06 1.37 [-1.63, 3.75] 
     Native American -1.98 4.46 [-10.72, 6.75] 
R2 0.10 

  F 33.14**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
 Using the same data from the previous two examples with the codes provided, a 

14-year-old Native American (-1.983) male (-5.075) with a reported parent education 

level of college graduate (7.717) would have an estimated Planning domain score of 

98.896 using Equation 3 as follows: 98.237 + (-5.075) + 7.717 + (-1.983) = 98.896. 

 By using an actual case from the standardization sample of the CAS, a 

comparison between actual and estimated scores was easily obtained to cross-reference 

the two scores. The 14-year-old Native American boy was randomly selected from the 

non-clinical CAS standardization sample and was utilized as a reference to help showcase 
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the validity of the equations. As is apparent in Table 12, utilizing Planning Estimate 

Equation 1 (top 2 contributing CAS subtests and demographic variables) would produce 

similar estimates to the actual Planning Domain score, indicating that it might be the 

most appropriate equation. 

 

Table 12 

Native American Example with Predicted and Actual Score for the Planning Domain 
 

Equation Predicted Score Actual Score Difference 
Planning Est. Equation 1 107.04 106 1.4 

Planning Est. Equation 2 112.66 106 6.66 

Planning Est. Equation 3 98.86 106 -7.14 

 

 Q2 Which of the Attention domain subtests (Expressive Attention, Number  
Detection, Receptive Attention) in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Attention Domain? 

 
 Similar methods were utilized to determine the best subtests in predicting pre-

morbid intellectual functioning in the Attention Domain as they were in the selection of 

Planning Domain subtests. A data-driven approach was utilized during which all subtests 

were entered in a regression equation using the stepwise method to determine which 

subtests contributed to the prediction of the Attention domain. It was determined that 

Receptive Attention and Expressive Attention were the best predictors of the Attention 

domain (see Table 13). These subtests were then entered into the final regression 

equation. Expressive Attention is a subtest that can be administered in both the Basic and 

Extended version of the CAS, making the application of these equations increasingly 
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valuable in administering the assessment as the complete assessment might not need to be 

administered to obtain pre-morbid estimates.  

 

Table 13  

Stepwise Regression: Best Predictor Variables for Attention 
 

Predictor B SE 95% CI 
Receptive Attention 3.10** 0.04 [3.03, 3.17] 
Expressive Attention 2.43** 0.04 [2.36, 2.50] 
R2 0.89 

  F 10103.57**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 

 The following equations are a product of entering in the two best contributors, the 

single best contributor, and solely demographic variables. Three equations were created 

using this information to estimate pre-morbid intellectual functioning for the Attention 

Domain.  

Attention Estimate Equation 1: Top  
Two Cognitive Assessment System  
Subtests and Demographics) 
 
 The first equation was created by forcing Receptive Attention and Expressive 

Attention into the equation, followed by the demographic variables of gender, parent 

education level. and race. Table 14 gives the formula for Attention Estimate Equation 1 

using two CAS-subtests in combination with demographic variables. 
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Table 14 
 
Regression Results Summary for Estimating Attention Domain Score from  
Demographic Variables and Cognitive Assessment System-Subtests Standard  
Scores 
 

Predictor B SE 95% CI 
Constant 45.58** 0.49 [44.62, 46.53] 
Receptive Attention 3.07** 0.04 [3.00, 3.15] 
Expressive Attention 2.43** 0.04 [2.36, 2.50] 
Gender         Male -0.55** 0.20 [-0.95, -0.15] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.09 0.31 [-0.69, 0.51] 

     Some College 0.11 0.33 [-0.54, 0.76] 
     College Grad 0.40 0.32 [-0.23, 1.02] 
Race         White 0 0 

      Black -0.533 0.310 [-1.14, 0.07] 
     Asian 0.02 0.48 [-0.92, 0.97] 
     Other -1.278** 0.46 [-2.18, -0.37] 
     Native American -0.66 1.50 [-3.60, 2.28] 
R2 0.89 

  F 2034.05**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 Following the same example outlined in the Planning Estimate Equations, a 14- 

year-old Native American (-.660) male (-.552) with a reported parent education level of 

college graduate (.397) and subtest standard scores of 12 for Receptive Attention (3.074) 

and 13 for Expressive Attention (2.427) would have an estimated Attention domain score 

of 113, using Attention Estimate Equation 1: 45.577 + 3.074(12) + 2.427(13) + (-.552) + 

.397 + (-.660) = 113.23.  
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Attention Estimate Equation 2: Top  
Cognitive Assessment System  
Subtest and Demographics 
 
 Equation 2 was formulated using the subtest that made the most contribution, 

Receptive Attention, in combination with the demographic variables listed above. Table 

15 gives the formula for Attention Estimate Equation 2--the formula that utilized one 

CAS-subtest in combination with demographic variables. 

 

Table 15 

Regression Results Summary for Estimating Attention Domain Score from  
Demographic Variables and Cognitive Assessment System-Subtest Standard  
Score 
 

Predictor B SE 95% CI 
Constant 60.10** 0.75 [58.63, 61.56] 
Receptive Attention 3.98** 0.06 [3.87, 4.09] 
Gender         Male -0.70* 0.35 [-1.37, -0.03] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.48 0.52 [-0.54, 1.50] 

     Some College 0.89 0.57 [-0.22, 2.00] 
     College Grad 2.27** 0.54 [1.20, 3.33] 
Race         White 0 0 

      Black -1.82** 0.53 [-62.8, -0.79] 
     Asian 1.29 0.82 [-0.31, 2.89] 
     Other 0.63 0.79 [-0.91, 2.17] 
     Native American -0.78 2.55 [-5.78, 4.22] 
R2 0.69 

  F 599.09**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 For example, the 14-year-old Native American (-.781) male (-.702) with a 

reported parent education level of college graduate (2.265) and CAS-subtest standard 

score of 12 for Receptive Attention (3.979) would have an estimated Attention domain 

score of 108 using Attention Estimate Equation 2 as follows: 60.095 + 3.979(12) + (-

.702) + 2.265 +(-.781) = 108.625.  

Attention Estimate Equation 3: 
Demographic Only 
 
 Attention Estimate Equation 3 was constructed in which all of the demographic 

variables were forced into the equation, giving another option in estimating Attention 

Domain scores for an individual. Table 16 gives the formula for Attention Estimate 

Equation 3. 
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Table 16 
 
Regression Results Summary for Estimating Attention Domain Score from  
Demographic Variables Only 
 

Predictor B SE 95% CI 
Constant 99.06** 0.81 [97.47, 100.65] 
Gender         Male -5.36** 0.57 [-6.49, -4.24] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 3.56** 0.88 [1.84, 5.28] 

     Some College 4.36** 0.96 [2.48, 6.23] 
     College Grad 7.64** 0.91 [5.86, 9.43] 
Race         White 0 0 

      Black -3.54** 0.89 [-5.29, -1.79] 
     Asian 8.27** 1.37 [5.58, 10.96] 
     Other 1.16 1.33 [-1.45, 3.77] 
     Native American 0.81 4.33 [-7.67, 9.29] 
R2 0.09 

  F 14.28**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    

 The 14 year old Native American (.810) male (-5.363) with a reported parent 

education level of college graduate (7.642) would have an estimated Attention domain 

score of 102 using Attention Estimate Equation 3: 99.060 + (-5.363) + 7.642 + (.810) = 

102.14.  

 Table 17 shows the predicted scores from the Attention Estimate Equations and 

the actual Attention Domain scores obtained by the 14-year-old Native American that 

was selected from the CAS Standardization Sample. Similar to the Planning Domain 

Estimates, the best estimation equation in the Attention Domain was Attention Estimate 
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Equation 1--the equation that utilized the best two CAS-subtests in combination with 

demographic variables. Contrasted to the Planning domain estimate equations, it appears 

that the prediction equations for the Attention subtests were not as effective.  

 

Table 17 

Native American Example with Predicted and Actual Score for the Attention Domain 
 

Equation Predicted Score Actual Score Difference 
Attention Est. Equation 1 113.23 121 -7.77 

Attention Est. Equation 2 108.62 121 -12.38 

Attention Est. Equation 3 102.14 121 -18.86 

 
 
 
 Q3 Which of the Simultaneous domain subtests (Nonverbal Matrices, Verbal- 

Spatial Relations, Figure Memory) in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children 
for the Simultaneous Domain? 
 

 The same analyses were conducted as in the Planning and Attention domain to 

determine the best subtests in predicting pre-morbid intellectual functioning in school 

aged children. As evident from Table 18, it was determined that Figure Memory and 

Verbal-Spatial Relations were the best predictors of the Simultaneous domain. These 

subtests were then entered into the final regression equation. As with the Attention 

Domain, one of the subtests from the Simultaneous domain could be administered in the 

Basic Battery of the CAS, Verbal-Spatial Relations. This allowed some flexibility with 

the administration of the CAS as not all subtests would need to be administered to 
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determine current Full Scale and Domain scores as well as predict pre-morbid 

functioning at the Full Scale and Domain levels.  

 

Table 18 

Stepwise Regression: Best Predictor Variables for Simultaneous 
 

Predictor B SE 95% CI 
Figure Memory 2.88** 0.04 [2.80, 2.96] 
Verbal-Spatial Relations 2.55** 0.04 [2.47, 2.63] 
R2 0.87 

  F 8188.39**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    

 The following equations are a product of entering in the two best contributors, the 

single best contributor, and solely demographic variables. Three equations were created 

using this information to estimate pre-morbid intellectual functioning for the 

Simultaneous Domain.  

Simultaneous Estimate Equation 1: Top 
Two Cognitive Assessment System  
Subtests and Demographics 
 
 Simultaneous Estimate Equation 1 was created by forcing Figure Memory and 

Visual-Spatial Relations into the equation, followed by the demographic variables of 

gender, parent education level, and race. Table 19 gives the formula for Simultaneous 

Estimate Equation 1. 
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Table 19 
 
Regression Results Summary for Estimating Simultaneous Domain Score from 
Demographic Variables and Cognitive Assessment System-Subtests  
Standard Scores 
 

Predictor B SE 95% CI 
Constant 45.98** 0.52 [44.93, 47.00] 
Figure Memory 2.78** 0.04 [2.70, 2.86] 
Verbal-Spatial Relations 2.49** 0.04 [2.41, 2.57] 
Gender         Male -0.10 0.214 [-0.52, -0.32] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.65* 0.33 [0.004, 1.29] 

     Some College 1.13** 0.36 [.42, 1.83] 
     College Grad 2.21** 0.35 [1.52, 2.90] 
Race         White 0 0 

      Black -1.66** 0.34 [-2.32, -0.99] 
     Asian 1.62** 0.51 [.61, 2.62] 
     Other .27 0.50 [-.71, 1.24] 
     Native American -2.52 1.61 [-5.68, 0.64] 
R2 0.87 

  F 1709.27**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    

 
 Following the same example outlined in the Planning Estimate Equations and the 

Attention Estimate Equations, a 14 year-old Native American (-2.520) male (-.100) with 

a reported parent education level of college graduate (2.207) and subtest standard scores 

of 4(2.782) and 7(2.493) would have an estimated Simultaneous domain score of 74 

using Simultaneous Estimate Equation 1 as follows: 45.975 + 2.782(4) + 2.493(7) + (-

.100) + 2.207 + (-2.520) = 74.14. 
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Simultaneous Estimate Equation 2:  
Top Cognitive Assessment System  
Subtest and Demographics 
  
 Simultaneous Estimate Equation 2 was created using the CAS-subtest that made 

the most contribution, Figure Memory, in combination with the demographic variables of 

gender, parent education level, and race. Table 20 gives the formula for Simultaneous 

Estimate Equation 2. 

 

Table 20 
 
Regression Results Summary for Estimating Simultaneous Domain Score from 
Demographic Variables and Cognitive Assessment System-Subtest Standard Scores 

Predictor B SE 95% CI 
Constant 60.72** 0.75 [59.25, 62.19] 
Figure Memory 3.68** 0.06 [3.56, 3.79] 
Gender         Male -0.08 0.34 [-0.76, 0.59] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 1.91** 0.53 [0.88, 2.95] 

     Some College 3.22** 0.58 [2.08, 4.35] 
     College Grad 5.56** 0.56 [4.47, 6.66] 
Race         White 0 0 

      Black -2.96** 0.54 [-4.03, -1.89] 
     Asian 0.39 0.83 [-1.23, 2.01] 
     Other -0.52 0.80 [-2.09, 1.05] 
     Native American -4.33 2.60 [-0.76, 9.42] 
R2 0.67 

  F 561.49**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 The 14-year-old Native American (-4.330) male (-.082) with a reported parent 

education level of college graduate (5.561) and CAS-subtest standard score of 4(3.677) 

would have an estimated Simultaneous domain score of 76 using Simultaneous Estimate 

Equation 2: 60.716 + 3.667(4) + (-.082) + 5.561 + (-.4330) = 76.573. 

Simultaneous Estimate Equation 3: 
Demographic Only 
 
 Simultaneous Estimate Equation 3 was constructed by forcing all of the 

demographic variables into the equation, giving another option in estimating 

Simultaneous Domain scores for an individual. Table 21 shows the formula for 

Simultaneous Estimate Equation 3.  For example, the 14-year-old Native American       

(.-3.439) male (-.237) with a reported parent education level of college graduate (12.577) 

would have an estimated Simultaneous domain score of 104 using Simultaneous Estimate 

Equation 3 as follows: 95.814 + (-.237) + 12.577 + (.-3.439) = 104.71.  

 Table 22 shows the predicted scores from the Simultaneous Estimate Equations 

and the actual Simultaneous Domain scores obtained by the 14-year-old Native American 

that was selected from the CAS Standardization Sample. Unlike the Planning Domain 

Estimates and the Attention Domain Estimates, the best estimation equation for the 

Simultaneous Domain was Simultaneous Estimate Equation 2--the equation that utilized 

the best CAS-subtest in combination with demographic variables. Interestingly, the 

demographic only equation for estimating the Simultaneous domain significantly over-

estimated the intellectual functioning of the Native American male example.   
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Table 21 
 
Regression Results Summary for Estimating Simultaneous Domain Score from 
Demographic Variables Only 
 

Predictor B SE 95% CI 
Constant 95.81** 0.77 [94.30, 97.33] 
Gender         Male -0.24 0.55 [-1.31, 0.84] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 4.25** 0.84 [2.60, 5.90] 

     Some College 6.47** 0.91 [4.68, 8.26] 
     College Grad 12.58** 0.87 [10.87, 14.28] 
Race         White 0 0 

      Black -9.17** 0.85 [-10.84, -7.50] 
     Asian 5.31** 1.31 [2.74, 7.88] 
     Other -2.96* 1.27 [-5.45, -0.47] 
     Native American -3.44 4.13 [-4.66, 11.53] 
R2 0.17 

  F 62.47**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

     

  

Table 22 

Native American Example with Predicted and Actual Score for the Simultaneous Domain 
 

Equation Predicted Score Actual Score Difference 
Simultaneous Est. Equation 1 74.14 81 -6.86 

Simultaneous Est. Equation 2 76.57 81 -4.43 

Simultaneous Est. Equation 3 104.71 81 23.71 
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 Q4 Which of the Successive domain subtests (Word Series, Sentence  
Repetition, Sentence Questions, Speech Rate) in combination with 
demographic variables of parent education level, race and gender, are the 
best predictors in assessing pre-morbid intellectual functioning in school 
aged children for the Successive Domain? 
 

 The same stepwise regression analyses were conducted as in the previous 

domains to determine the best subtests in predicting pre-morbid intellectual functioning 

in school aged children. It was determined that Sentence Repetition and Word Series 

were the best predictors of the Successive domain (see Table 23). These subtests were 

then forced into the final regression equations that were created. As with the Planning 

Domain, the two best predictor subtests were utilized in the administration of the Basic 

Battery of the CAS, meaning that the Extended or full version of the CAS did not need to 

be administered to predict pre-morbid intellectual functioning in the area of Planning.  

 

Table 23 

Stepwise Regression: Best Predictor Variables for Successive 
 

Predictor B SE 95% CI 
Sentence Repetition 2.97** 0.04 [2.89, 3.05] 
Word Series 2.34** 0.04 [2.26, 2.42] 
R2 0.90 

  F 10562.59**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 The following equations are a product of entering in the two best CAS-subtest 

contributors, the single best CAS-subtest contributor, and solely demographic variables. 

Three equations were created using this information to estimate pre-morbid intellectual 

functioning for the Successive Domain.  

Successive Estimate Equation 1: Top 
Two Cognitive Assessment System  
Subtests and Demographics 
 
 Successive Estimate Equation 1 was created by entering Word Series and 

Sentence Repetition into the equation, followed by the demographic variables of gender, 

parent education level, and race. Table 24 provides the formula for Successive Estimate 

Equation 1. Following the same example outlined in the previous domain estimates, a 14- 

year-old Native American (-.209) male (.048) with a reported parent education level of 

college graduate (1.478) and subtest standard scores of 12(2.931) and 13(2.333) would 

have an estimated Successive domain score of 113 using Successive Estimate Equation 1 

as follows: 46.363 + 2.931(12) + 2.333(13) + (.048) + 1.478 + (-.209) = 113.18. 
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Table 24  
 
Regression Results Summary for Estimating Successive Domain Score from 
Demographic Variables and Cognitive Assessment System-Subtests Standard  
Scores 
 

Predictor B SE 95% CI 
Constant 46.36** 0.46 [45.47, 47.23] 
Sentence Repetition 2.93** 0.04 [2.84, 3.02] 
Word Series 2.33** 0.04 [2.25, 2.41] 
Gender         Male 0.05 0.20 [-0.34, 0.43] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.52 0.30 [-0.08, 1.11] 

     Some College 0.56 0.33 [-0.09, 1.21] 
     College Grad 1.48** 0.32 [0.85, 2.11] 
Race         White 0 0 

      Black 0.64* 0.31 [0.03, 1.24] 
     Asian 0.40 0.47 [-0.52, 1.33] 
     Other -0.55 0.46 [-1.45, 0.35] 
     Native American -0.21 1.48 [-3.12, 2.70] 
R2 0.90 

  F 2136.94**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
Successive Estimate Equation 2: Top  
Cognitive Assessment System  
Subtest and Demographics 
 
 The Successive Estimate Equation 2 was created using the CAS-subtest that made 

the most contribution, Sentence Repetition, in combination with the demographic 

variables of gender, parent education level, and race. Table 25 provides the formula for 

Successive Estimate Equation 2.  
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Table 25 
 
Regression Results Summary for Estimating Successive Domain Score from 
Demographic Variables and Cognitive Assessment System-Subtest  
Standard Score 
 

Predictor B SE 95% CI 
Constant 54.61** 0.66 [53.31, 55.91] 
Sentence Repetition 4.41** 0.05 [4.31, 4.52] 
Gender         Male 0.28 0.30 [-0.32, 0.87] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.24 0.46 [-0.67, 1.15] 

     Some College 0.45 0.51 [-0.55, 1.44] 
     College Grad 1.51** 0.49 [0.54, 2.48] 
Race         White 0 0 

      Black 1.29** 0.47 [0.37, 2.22] 
     Asian 1.64* 0.72 [0.22, 3.05] 
     Other -0.63 0.70 [-2.01, 0.75] 
     Native American 1.29 2.27 [-3.17, 5.74] 
R2 0.76 

  F 853.77**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    

 

 The 14-year-old Native American (1.287) male (.277) with a reported parent 

education level of college graduate (1.509) and Sentence Repetition standard score of 

12(4.411) would have an estimated Successive domain score of 110 using Successive 

Estimate Equation 2 as follows: 54.610 + 12(4.411) + (.277) + 1.509 + 1.287 = 110.61.  
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Successive Estimate Equation 3:  
Demographic Only 
 
 The Successive Estimate Equation 3 was constructed by forcing all of the 

demographic variables into the equation, giving yet another option in estimating 

Successive Domain scores for an individual. Table 26 displays the formula for 

Successive Estimate Equation 3 including the beta weights and the standard error of 

estimate (SEE). 

 
 
Table 26 
 
Regression Results Summary for Estimating Successive Domain Score from 
Demographic Variables Only 
 

Predictor B SE 95% CI 
Constant 96.20** 0.82 [94.60, 97.80] 
Gender         Male -0.82 0.58 [-1.96, 0.31] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 3.46** 0.89 [1.72, 5.20] 

     Some College 6.15** 0.96 [4.26, 8.04] 
     College Grad 11.46** 0.92 [9.66, 13.26] 
Race         White 0 0 

      Black -4.17** 0.90 [-5.93, -2.40] 
     Asian -1.32 1.38 [-4.03, 1.39] 
     Other -6.06** 1.34 [-8.69, -3.43] 
     Native American -1.39 4.36 [-9.94, 7.15] 
R2 0.10 

  F 34.92**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 For example, the 14-year-old Native American (-1.393) male (-.823) with a 

reported parent education level of college graduate (11.464) would have an estimated 

Successive domain score of 105 using Successive Estimate Equation 3 as follows: 96.200 

+ (-.823) + 11.464 + (-1.393) = 105.44.  

 Table 27 shows the predicted scores from the Successive Estimate Equations and 

the actual Successive Domain scores obtained by the 14-year-old Native American that 

was selected from the CAS Standardization Sample. Unlike the Simultaneous Domain 

Estimates, but similar to the Planning Domain Estimates and the Attention Domain 

Estimates, the best estimation equation for the Successive Domain was Successive 

Estimate Equation 1--the equation that utilized the best two CAS-subtests (Word Series 

and Sentence Repetition) in combination with demographic variables. The second best 

equation appeared to be Successive Estimate Equation 2 that utilized the single best 

CAS-subtest in combination with demographic variables.   

 

Table 27  

Native American Example with Predicted and Actual Score for the Successive Domain 
 

Equation Predicted Score Actual Score Difference 
Successive Est. Equation 1 113.18 113 .18 

Successive Est. Equation 2 110.61 113 -2.39 

Successive Est. Equation 3 105.44 113 -7.56 
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 Q5 Which of the Cognitive Assessment System 12 subtests in combination  
with demographic variables of parent education level, race and gender, are 
the best predictors in assessing pre-morbid intellectual functioning in 
school aged children? 
 

 Similar methods were utilized to determine which of the 12 CAS-subtests were 

best in predicting pre-morbid intellectual functioning, specifically for the Full Scale score 

as was used to determine the best subtests for each domain. A stepwise regression 

analyses was conducted in which all CAS-subtests were entered into the equation, 

resulting in those that contributed significantly to remain in the equation and those that 

did not contribute significantly to be excluded in the final model. This method was a 

purely data-driven approach to determining the best subtests in predicting Full Scale 

scores as there was no current theoretical basis for the analyses.  

 The CAS-subtests determined to be the best predictors were the same CAS-

subtests that contributed significantly to each respective domain: Matching Numbers, 

Planned Codes, Receptive Attention, Expressive Attention, Figure Memory, Visual-

Spatial Relations, Sentence Repetition, and Word Series. The following equations were a 

product of entering the two best contributors in each domain, the single best contributor, 

and solely demographic variables. Three equations were created using this information to 

estimate pre-morbid intellectual functioning for the Full Scale score. 

Full Scale Cognitive Assessment System- 
Subtest Estimate Equation 1: Top Two  
Cognitive Assessment System Subtests  
and Demographics 
 
 The Full Scale CAS-Subtest Estimate Equation 1 was created by entering the best 

two CAS-subtest predictors from each domain into the equation, followed by the 
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demographic variables of gender, parent education level, and race. Table 28 provides the 

formula for Full Scale CAS-Subtest Estimate Equation 1. 

 

Table 28 
 
Regression Results Summary for Estimating Full Scale Score from Demographic 
Variables and Cognitive Assessment System-Subtests Standard Scores 
 

Predictor B SE 95% CI 
Constant 21.58** 0.43 [20.73, 22.43] 
Matching Numbers 1.09** 0.03 [1.03, 1.15] 
Planned Codes 0.92** 0.03 [0.86, 0.97] 
Receptive Attention 1.10** 0.03 [1.04, 1.15] 
Expressive Attention 0.86** 0.03 [0.81, 0.91] 
Figure Memory 0.98** 0.03 [0.93, 1.04] 
Verbal-Spatial Relations 0.91** 0.03 [0.85, 0.96] 
Sentence Repetition 1.05** 0.03 [0.99, 1.11] 
Word Series 0.84** 0.03 [0.78, 0.89] 
Gender         Male 0.28 0.14 [-0.01, 0.56] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.40 0.22 [-0.03, 0.82] 

     Some College 0.37 0.24 [-0.09, 0.84] 
     College Grad 1.11** 0.23 [0.66, 1.57] 
Race         White 0 0 

      Black -0.78 0.22 [-1.21, -0.34] 
     Asian -0.32 0.34 [-0.99, 0.35] 
     Other -0.48 0.33 [-1.12, 0.36] 
     Native American -0.17 1.06 [-2.24, 1.90] 
R2 0.95 

  F 2907.83**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 Using the previous example, a 14-year-old Native American (-.168) male (.276) 

with a reported parent education level of a college graduate (1.112) and subtest standard 

scores of 12(Matching Numbers = 1.090), 9(Planned Codes = .915), 12(Receptive 

Attention = 1.096), 13(Expressive Attention = .863), 4(Figure Memory = .983), 7(Visual-

Spatial Relations = .906), 12(Sentence Repetition = 1.050) and 13(Word Series = .836) 

would have an estimated Full Scale score of 102.23 using Full Scale CAS-Subtest 

Estimate Equation 1 as follows: Full Scale = 21.584 + (12)(1.090) + (9)(.915) + 

(12)(1.096) + (13)(.863) + (4)(.983) + (7)(.906) + (12)(1.050) + (13)(.836) + (.276) + 

(1.112) + (-.168) = 102.23.  

Full Scale Cognitive Assessment System- 
Subtest Estimate Equation 2: Top  
Cognitive Assessment System  
Subtest and Demographics 
 
 Full Scale CAS-Subtest Estimate Equation 2 was created using the CAS-subtest 

that made the most contribution from each domain--Matching Number, Receptive 

Attention, Figure Memory and Sentence Repetition--in combination with the 

demographic variables of gender, parent education level, and race. Table 29 provides the 

formula for Full Scale CAS-Subtest Estimate Equation 2. 
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Table 29 
 
Regression Results Summary for Estimating Full Scale Score from Demographic 
Variables and Cognitive Assessment System-Subtest Standard Scores 
 

Predictor B SE 95% CI 
Constant 33.73** 0.67 [32.41, 35.05] 
Matching Numbers 1.62** 0.05 [1.53, 1.71] 
Receptive Attention 1.59** 0.05 [1.49, 1.69] 
Figure Memory 1.38** 0.05 [1.30, 1.47] 
Sentence Repetition 1.92** 0.05 [1.83, 2.00] 
Gender         Male -0.06 0.24 [-0.54, 0.42] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.51 0.37 [-0.21, 1.24] 

     Some College 0.70 0.40 [-0.09, 1.49] 
     College Grad 1.96** 0.40 [1.18, 2.73] 
Race         White 0 0 

      Black -1.13** 0.38 [-1.87, -0.39] 
     Asian 0.83 0.58 [-0.313, 1.96] 
     Other 0.57 0.56 [-0.52, 1.66] 
     Native American 0.47 1.80 [-3.06, 3.99] 
R2 0.85 

  F 1196.27**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    

 

 The 14-year-old Native American (.467) male (-.061) with a reported parent 

education level of a college graduate (1.958) and subtest standard scores of 12(Matching 

Numbers = 1.620), 12(Receptive Attention = 1.589), 4(Figure Memory = 1.384), 

12(Sentence Repetition = 1.916) would have an estimated Full Scale score of 103 using 

Full Scale CAS-Subtest Estimate Equation 2 as follows: Full Scale = 33.727  + 
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(12)(1.620) + (12)(1.589) + (4)(1.384) + (12)(1.916) + (-.061) + (1.958) + (.467) = 

103.13.    

Full Scale Demographic Estimate 
Equation 1: Demographic Only 
 
 The Full Scale Demographic Estimate Equation 1 was constructed by forcing all 

of the demographic variables into the equation, providing a demographic only equation to 

estimate Full Scale pre-morbid functioning. Table 30 illustrates the formula for Full Scale 

Demographic Estimate Equation 1. 

 
 
Table 30 
 
Regression Results Summary for Estimating Full Scale Score from Demographic 
Variables Only 
 

Predictor B SE 95% CI 
Constant 96.06** 0.80 [95.90, 96.22] 
Gender         Male -3.77** 0.57 [-4.79, -2.56] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 5.00** 0.87 [3.29, 6.71] 

     Some College 7.05** 0.95 [5.19, 8.91] 
     College Grad 13.03** 0.90 [11.26, 14.80] 
Race         White 0 0 

      Black -6.95** 0.88 [-8.67, -5.22] 
     Asian 7.18** 1.36 [4.51, 9.85] 
     Other -2.27 1.32 [-4.86, 0.31] 
     Native American -1.93 4.29 [-10.34, 6.47] 
R2 0.16 

  F 59.51**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    



99 
 

 
 

 For example, the 14-year-old Native American (-1.934) male (-3.765) with a 

reported parent education level of college graduate (13.028) would have an estimated 

Full Scale score of 103 using the Full Scale Demographic Estimate Equation 1 as 

follows: 96.060+ (-3.765)+13.028+(-1.934) = 103.41. 

Q6 Which of the Cognitive Assessment System four domains (Planning, 
Attention, Simultaneous, Successive), in combination with demographic 
variables of parent education level, race and gender, are the best predictors 
in assessing pre-morbid intellectual functioning in school aged children? 

 
 A stepwise regression analysis was conducted wherein all four domains were 

entered into the regression, resulting in those that contributed significantly to remain in 

the equation and those that did not contribute significantly to not be included in the final 

model. This method was a purely data-driven approach to determining the best domains 

in predicting Full Scale scores as there was no theory at this point to drive the analyses. 

The domains were then forced into the equation along with demographic variables of 

gender, parent education level, and race. All variables were once again dummy-coded so 

as not to obfuscate the impact of the categorical variables examined. 

 The domains determined to be the best predictors were the Planning and 

Successive Domains, followed by Simultaneous and Attention (see Table 31). The 

following equations are a product of entering in the two best CAS-Domain contributors 

and the single best CAS-Domain contributor in combination with demographic variables. 

Two equations were created using this information to estimate pre-morbid intellectual 

functioning for the Full Scale score. 
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Table 31 

Stepwise Regression: Best Cognitive Assessment System-Domain Predictor  
Variables for Full Scale 
 

Predictor B SE 95% CI 
Planning 0.62 0.01 [0.61, 0.64] 
Successive 0.51 0.01 [0.49, 0.52] 
R2 0.86 

  F 7818.78**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
Full Scale Cognitive Assessment System- 
Domain Estimate Equation 1: Top Two 
Cognitive Assessment System Domains  
and Demographics 
 
 Full Scale CAS-Domain Estimate Equation 1 was created by forcing Planning and 

Successive domains into the equation, followed by the demographic variables of gender, 

parent education level, and race. Table 32 provides the formula for Full Scale CAS-

Domain Estimate Equation 1. 
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Table 32 
 
Regression Results Summary for Estimating Full Scale Score from Demographic 
Variables and Cognitive Assessment System-Domains Standard Scores 
 

Predictor B SE 95% CI 
Constant 10.37** 0.97 [8.47, 12.27] 
Planning Domain 0.61** 0.01 [0.59, 0.62] 
Successive Domain 0.49** 0.01 [0.47, 0.50] 
Gender         Male -0.28 0.23 [-0.72, 0.17] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 0.95** 0.34 [0.27, 1.62] 

     Some College 1.47** 0.38 [0.73, 2.21] 
     College Grad 2.77** 0.37 [2.05, 3.49] 
Race         White 0 0 

      Black -2.38** 0.35 [-3.07, -1.70] 
     Asian 1.67** 0.54 [0.61, 2.73] 
     Other 0.03 0.52 [-0.99, 1.05] 
     Native American -0.05 1.68 [-3.35, 3.25] 
R2 0.87 

  F 1669.20**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 

    
 
 
 Utilizing the example used previously, a 14-year-old Native American (-.052) 

male (-.279) with a reported parent education level of a college graduate (2.766) and 

domain standard scores of 106 (Planning) and 113 (Successive) would have an estimated 

Full Scale score of 111 using Full Scale CAS-Domain Estimate Equation 1 as follows: 

Full Scale = -10.371 + (106)(.608) + (113)(.486) + (-.279) + (2.766) + (-.052) = 111.43. 
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Full Scale Cognitive Assessment System- 
Domain Estimate Equation 2: Top  
Cognitive Assessment System  
Domain and  Demographics 
 
 The Full Scale CAS-Domain Estimate Equation 2 was generated by forcing the 

top CAS-Domain contributor, Planning, into the equation along with the demographic 

variables of gender, parent education level, and race. Table 33 gives the formula for Full 

Scale CAS-Domain Estimate Equation 2. 

 
 
Table 33 
 
Regression Results Summary for Estimating Full Scale Score from Demographic 
Variables and Cognitive Assessment System-Domain Standard Score 
 

Predictor B SE 95% CI 
Constant 21.22** 1.26 [18.75, 23.68] 
Planning Domain 0.76** 0.01 [0.74, 0.79] 
Gender         Male 0.10 0.35 [-0.59, 0.79] 
     Female 0 0 

 Parents Education Level         > HS 0 0 
      HS 2.03** 0.53 [0.98, 3.07] 

     Some College 3.80** 0.58 [2.66, 4.94] 
     College Grad 7.15** 0.56 [6.05, 8.24] 
Race         White 0 0 

      Black -3.76** 0.54 [-4.82, -2.70] 
     Asian -0.53 0.84 [-2.17, 1.12] 
     Other -3.08** 0.81 [-4.66, -1.50] 
     Native American -0.42 2.62 [-5.55, 4.71] 
R2 0.69 

  F 606.56**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 
* p < .05. **p < .01. 
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 The 14-year-old Native American (-.423) male (.103) with a reported parent 

education level of a college graduate (7.146) and domain standard scores of 106 

(Planning) would have an estimated Full Scale score of 108 using Full Scale CAS-

Domain Estimate Equation 2 as follows: Full Scale = 21.218 + (106)(.762) + (.103) + 

(7.146) + (-.423) = 108.81. 

 Table 34 shows the predicted scores from all the Full Scale Estimate Equations 

(CAS-subtests, CAS-Domains and demographic only) and the actual Full Scale scores 

obtained by the 14-year-old Native American that was selected from the CAS 

Standardization Sample. Using the selected participant, it appears that the Full Scale 

CAS-Domain Equation 2 performed best in estimating pre-morbid intellectual 

functioning as it was closest to the actual score. This equation utilized the best CAS-

Domain predictor, Planning, to estimate pre-morbid intellectual functioning in 

combination with the demographic variables of gender, parent education level, and race. 

All subtests appeared to do a sufficient job in having the estimated pre-morbid 

intellectual functioning mirror the actual score obtained. This was a good indicator that 

the equations were effective as the estimates should not differ drastically from the actual 

score on a non-clinical case such as the one utilized as an example throughout this 

chapter.    
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Table 34  

Native American Example with Predicted and Actual Score for the Full Scale 
 

Equation Predicted Score Actual Score Difference 
Full Scale CAS-Subtest Eq. 1 102.23 107 -4.77 

Full Scale CAS-Subtest Eq. 2 103.13 107 -3.87 

Full Scale Demographic Eq. 1 103.41 107 -3.59 

Full Scale CAS-Domain Eq. 1 111.43 107 4.43 

Full Scale CAS-Domain Eq. 2 108.81 107 1.81 

 

 It was determined that the Planning and Successive domains were most predictive 

in estimating the Full Scale IQ (p < .05), while the following CAS subtests were the top 

two contributors in estimating their respective domains (p < .05): (a) Matching Numbers 

(MN) and Planned Codes (PD) for the Planning domain, (b) Receptive Attention (RA) 

and Expressive Attention (EA) for the Attention domain, (c) Figure Memory (FM) and 

Visual-Spatial Relations (SV) for Simultaneous, and (d) Sentence Repetition (SR) and 

Word Series (WS) for the Successive domain. In addition, each domain was a significant 

predictor in estimating the Full Scale scores. Stepwise analyses and results are depicted in 

Table 35. 
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Table 35 

Stepwise Regression Analyses for the Domain and Full Scale Scores 
 

Criterion Predictor B SE 95% CI 
Full Scale Score Planning 0.63** 0.01 [0.61, 0.65] 

 Successive 0.51** 0.01 [0.49, 0.53] 

 R2 0.86  
  F 7818.78**   Planning Matching Numbers 2.99** 0.04 [2.92, 3.07] 

     

 Planned Codes 2.55** 0.04 [2.47, 2.63] 

 R2 0.89 0.35 
  F 10299.18**        

Attention Receptive Attention 3.10** 0.04 [3.02, 3.17] 

 Expressive Attention 2.43** 0.04 [2.36, 2.50] 

 R2 0.89 0.35 
  F 10103.57**        

Simultaneous Figure Memory 2.88** 0.04 [2.80, 2.96] 

 Visual-Spatial Rel. 2.55** 0.04 [2.47, 2.63] 

 R2 0.87 0.35 
  F 8188.39**        

Successive Sentence Repetition 2.97** 0.04 [2.89, 3.05] 

 Word Series 2.34** 0.04 [2.26, 2.42] 

 
R2 0.90 

    F 10562.59**     
Note. N = 2492.  CI = Confidence Interval.  SE = Standard Error 

 * p < .05. **p < .01. 
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 Those variables that comprised the best predictors were then utilized to create the 

regression equations for this study. Sequential regression methods were utilized for the 

creation of the equations after stepwise regression had determined the significant 

contributors for each domain and full scale analysis. Sequential regression differs from 

stepwise regression in that it allows theoretical considerations, such as the order of entry 

of assessment scores versus demographic variables, to help determine when variables 

enter the equation (Tabachnick & Fidell, 2007). Sequential regression allowed flexibility 

to enter in the subtest/domain scores into the equation first before entering the 

demographic variables as is common practice in the estimation literature (e.g., 

Schoenberg et al., 2004, 2007).  

 For the Full Scale score, the following equations were used: (a) demographic 

variables only, (b) subtest standard scores and demographic variables, and (c) domain 

standard scores and demographic variables. In addition, prediction equations for 

individual domain scores were created using (a) demographic variables only, (b) subtest 

standard scores and demographic variables. A total of 17 equations were created to 

predict pre-morbid intellectual functioning at the Domain score and Full Scale IQ levels.  

Five regression equations incorporated only the demographic variables of gender, parent 

education level, and race--one for each domain and Full Scale score. Five equations were 

generated incorporating the two subtests that provided the most predictive value (e.g., 

Matching Numbers and Planned Codes), in combination with demographic variables (i.e., 

gender, parent education level and race), to predict each domain and Full Scale score. 

Five equations were generated incorporating the single best subtest predictor in 

combination with demographic variables in estimating domain and full scale scores.  
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Finally, two equations were created to predict the Full Scale score using the best domain 

in predicting the full scale score in combination with demographic variables and using 

the top two domain predictors in combination with demographic variables.  

 So as not to influence the contribution of the categorical variables based on 

arbitrarily assigned numbers, variables for gender, parent education level, and race were 

each dummy coded (see Schoenberg et al., 2007, for a similar approach). In the creation 

of the demographic only equations, all demographic variables were entered into the 

equation. For subsequent models (both subtest and domain), each top predicting subtest 

or domain variable was entered first into the equation, followed by each of the 

demographic variables. Regression equations and their resultant R2, standard errors of 

measurement, and unstandardized beta coefficients were then developed. 
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Table 36 

Regression Results Summary for Estimating Full Scale and Domain Scores From 
Demographic Variables and Cognitive Assessment System Subtest/Domain Standard 
Scores 
 

Regression Model R2 SEE F 
Full Scale Score    Full Scale Demographic Estimate Eq. 1 0.16 14.16 59.51** 

Full Scale CAS-Subtest Estimate Eq. 1 0.95 3.48 2907.83** 
Full Scale CAS-Subtest Estimate Eq. 2 0.86 5.94 1196.27** 

Full Scale CAS-Domain Estimate Eq. 1 0.87 5.56 1669.20** 
Full Scale CAS-Domain Estimate Eq. 2 0.69 8.64 606.56** 

Planning    Planning Estimate Equation 1 0.90 4.96 2172.71** 
Planning Estimate Equation 2 0.72 8.82 711.12** 
Planning Estimate Equation 3 0.10 14.72 33.134** 

Attention    Attention Estimate Equation 1 0.89 4.95 2034.05** 
Attention Estimate Equation 2 0.69 8.43 599.10** 
Attention Estimate Equation 3 0.09 14.28 32.17** 

Simultaneous    Simultaneous Estimate Equation 1 0.87 5.32 1709.28** 
Simultaneous Estimate Equation 2 0.67 8.58 561.49** 
Simultaneous Estimate Equation 3 0.17 13.63 62.47** 

Successive    Successive Estimate Equation 1 0.90 4.90 2136.94** 
Successive Estimate Equation 2 0.76 7.50 853.77** 
Successive Estimate Equation 3 0.10 14.39 34.92** 

NOTE: N  = 2492.  ** p < .001.  CAS = Cognitive Assessment System; SEE = standard error of estimate; Full Scale Demographics 
Estimate Eq. 1= demographic only equation; Full Scale CAS-Subtest Estimate Eq. 1 = equation utilizing Matching Numbers, Planned 
Codes, Receptive Attention, Expressive Attention, Figure Memory, Visual-Spatial Relations, Sentence Repetition and Word Series 
subtest standard scores + demographic variables to predict Full Scale IQ; Full Scale CAS-Subtest Estimate Eq. 2 = equation utilizing 
Matching Numbers, Receptive Attention, Figure Memory and Sentence Repetition standard scores + demographic variables to predict 
Full Scale IQ; Full Scale CAS-Domain Estimate Eq. 1 = equation utilizing Planning and Successive domain standard scores and 
demographic variable to predict Full Scale IQ s; Full Scale CAS-Domain Estimate Eq. 2 = equation utilizing Planning Domain 
standard scores and demographic variables to predict Full Scale IQ; Planning Estimate Equation 1 = equation utilizing Matching 
Numbers and Planned Codes standard scores + demographic variables to predict Planning Domain score; Planning Estimate Equation 
2 = equation utilizing Matching Numbers standard score + demographic variables to predict Planning Domain score; Planning 
Estimate Equation 3 = demographic only; Attention Estimate Equation 1  = equation utilizing Expressive Attention and Receptive 
Attention subtest standard scores + demographic variables to predict Attention Domain score; Attention Estimate Equation 2 = 
equation utilizing Receptive Attention subtest standard scores + demographic variables to predict Attention Domain score; Attention 
Estimate Equation 3 = demographic only to estimate Attention; Simultaneous Estimate Equation 1  = equation utilizing Figure 
Memory and Visual-Spatial Relations subtest standard scores + demographics to predict Simultaneous Domain score; Simultaneous 
Estimate Equation 2  = equation utilizing Figure Memory subtest standard score + demographics to predict Simultaneous Domain 
score; Simultaneous Estimate Equation 3 = demographic only to estimate Simultaneous domain score; Successive Estimate Equation 1   
= equation utilizing Sentence Repetition and Word Series subtest standard score + demographics to predict Successive Domain score; 
Successive Estimate Equation 2   = equation utilizing Sentence Repetition subtest standard score + demographics to predict 
Successive Domain score; Successive Estimate Equation 3 = demographic only to predict Successive Domain score. 
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 The demographic information accounted for approximately 16% of the variance 

for the Full Scale equation while accounting for 9.4% to 16.8% of the variance on the 

domain equations. In addition, the equations comprising both two best CAS predictors 

and demographic variables accounted for 87.3 to 94.9% of the variance. Equations that 

combined demographic variables and the best CAS predictor accounted for 67%-75% of 

the overall variance in the model. It should be noted that all subtests entered into the 

equation (with the exception of the Receptive Attention-RA and Visual-Spatial Relations-

SV) were all subtests that could be administered using the Basic Battery in addition to the 

extended battery. This could extend the utility of the equations by not requiring 

examiners to administer the full battery but rather the basic battery with the addition of 

two subtests--Receptive Attention and Visual-Spatial Relations.  

Validation of Equations 

 Q7 Using a subsample of children with TBI and the withheld 10% from each  
age group, will the model prove valid in estimating pre-morbid intellectual 
processing? 
 

 To evaluate the accuracy of the equations, 17 equations were cross-validated with 

the non-clinical validation sample as well as the TBI validation sample. Validation once 

again confirmed the accuracy of the developed equations by utilizing a sub-sample of the 

CAS standardization data to test the equations using real data. The assessment and 

demographic data from the two validation groups (10% of the cases and the TBI sample) 

were individually entered into the previously created equation(s) and then analyzed to 

determine accuracy of predicted versus actual scores.  Data for each group (i.e., control 

and TBI) were analyzed using paired-samples t-tests.  For the control sample, if the 

derived equation(s) accurately predicted FSIQ as well as performance on the various 
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domain measures, then there should not be a statistically significant difference between 

the scores.  However, for the TBI sample, it was expected that predicted scores on each 

measure would be significantly greater than the actual scores. Following these analyses 

of the validation groups, the information derived was compared to prior research and 

theoretical expectations to determine how the equation(s) performed compared to other 

pre-morbid estimators. 

 This was first done by entering each of the 277 non-clinical samples and the 22 

TBI sample data into each of the 17 equations. A total of five predicted Full Scale scores 

were estimated along with three predicted CAS-domain scores for each domain (12 in 

total). Descriptive statistics and paired sample t-tests are depicted in Table 37. 
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Table 37 

Descriptive Statistics, Mean Comparisons and Significance Results Between Actual and Predicted Values for Domain  
and Full Scale Cognitive Assessment System Results 
 
 Non-Clinical Validation Sample 
Actual IQ Mean SD Min Max p df t 

Full Scale 99.747 15 56 143    
Planning  100.62 14 61 139    
Attention 99.779 14 63 150    

Simultaneous 100.47 15 62 142    
Successive 99.501 14 59 139    

Predicted IQ        
Full Scale Demographic Est. Eq. 1 100.10 6.17 85 116 0.654 276 -0.448 
Full Scale CAS-Subtest Est. Eq. 1 99.69 14.92 57 139 0.812 276 0.238 
Full Scale CAS-Subtest Est. Eq. 2 99.74 14.07 56 135 0.994 276 0.007 

Full Scale CAS-Domain Est. Eq. 1 100.18 14.07 57 134 0.184 276 -1.33 
Full Scale CAS-Domain Est. Eq. 2 100.65 12.44 69 134 0.062 276 -1.871 

Planning Est. Equation 1 100.10 13.39 69 144 0.059 276 1.899 
Planning Est. Equation 2 100.19 12.14 70 133 0.37 276 0.898 
Planning Est. Equation 3 99.61 4.51 88 116 0.213 276 1.248 

Attention Est. Equation 1 100.4 13.81 61 150 0.04 276 -2.065 
Attention Est. Equation 2 99.88 12.06 71 137 0.817 276 -0.232 
Attention Est. Equation 3 100.19 4.36 90 114 0.614 276 -0.505 

Simultaneous Est. Equation 1 100.13 13.66 68 135 0.296 276 1.048 
Simultaneous Est. Equation 2 100.62 12.4 71 132 0.785 276 -0.274 
Simultaneous Est. Equation 3 100.95 6.24 86 113 0.55 276 -0.598 

Successive Est. Equation 1 99.61 14.34 62 137 0.674 276 -0.42 
Successive Est. Equation 2 99.33 13.51 60 131 0.697 276 0.389 
Successive Est. Equation 3 100.65 4.92 89 107 0.159 276 -1.411 

*NOTE: Bold lines indicate predicted scores that are significantly different than the actual score. 
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Non-Clinical Validation Sample 

 For the non-clinical validation sample, the average predicted score across all age 

levels (domain and full scale) did not significantly differ on all equations except for the 

equation utilizing the top two Attention CAS-subtests to predict the Attention domain 

score (Attention Estimate Equation 2, t(276) = -2.065, p=.04); meaning that all equations 

were effective in estimating pre-morbid intellectual functioning in the non-clinical 

sample by having predicted scores that did not differ significantly from the actual scores. 

In addition, correlations between actual scores and predicted scores were found to be 

significant (p=.000, r ranged from .328 to .975). Table 36 shows the equation, minimum 

and maximum values, and the relative t value and p values.  

 To further analyze the accuracy of the predicted scores, a paired sample t-test was 

conducted for each individual age group to determine which equations were most 

appropriate depending on the age of the individual. All predicted scores did not differ 

from the actual score for each age group except for the age/equation combination 

displayed in Table 38. Although some equations resulted in significantly different 

predicted values than actual values, it appeared that each age group had at least one 

equation from each of the CAS-Domain and Full Scale categories that could be utilized to 

predict domain and full scale scores. Further investigation is necessary, potentially with a 

larger sample size, to determine the validity of the equations in Table 38 in combination 

with the age groups in question.  
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Table 38 

Analyses of Cognitive Assessment System Pre-morbid Equation Accuracy by Age 
 
Regression Model Age df Actual 

(Mean) 
Predicted 
(Mean) 

t p 

Full Scale CAS-Subtest Est. Eq. 1 12 11 86 88 2.882 .015 

Full Scale CAS-Subtest Est. Eq. 2 12 11 86 89 3.857 .003 

Full Scale CAS-Domain Est. Eq. 1 6 42 103 101 -2.182 .035 

Full Scale CAS-Domain Est. Eq. 2 12 11 86 93 2.612 .024 

Planning Est. Equation 1 12 11 93 95 -2.695 .021 

Planning Est. Equation 2 12 11 93 97 -2.88 .015 

Planning Est. Equation 3 14 17 106 101 2.294 .035 

Attention Est. Equation 1 7 37 96 98 -2.196 .034 

Simultaneous Est. Equation 1 5 24 105 102 2.521 .019 

Simultaneous Est. Equation 2 12 11 87 94 -2.627 .005 

 16 5 86 94 -5.581 .002 

Simultaneous Est. Equation 3 12 11 87 98 -2.627 .024 

 13 13 108 101 2.433 .03 

 16 5 86 98 -3.405 .019 

Successive Est. Equation 1 14 17 106 104 2.117 .044 

Successive Est. Equation 2 14 17 106 102 2.793 .012 
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 An additional analysis common in the pre-morbid intellectual functioning 

literature was to determine if the estimated score differed significantly from the actual 

score on a number of criteria (e.g., Schoenberg et al., 2007). This study conducted 

additional analyses on the non-clinical validation sample to determine the differences 

between predicted and actual standard scores on the following criteria: (a) ±5 points, (b) 

±10 points, and (c) same category. Analyses were comparable to those reported in other 

studies assessing pre-morbid intellectual functioning equations (i.e., Schoenberg et al., 

2007). The analyses are displayed in Table 39. 
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Table 39 

Predictive Accuracy of Estimations of Full Scale and Domain Scores: Non-clinical 
Validation Sample 
 
 Percentage Within 
Equation ±5 ±10 Same Category 
Full Scale Demographic Est. Eq. 1 25.3 53.1 42.2 

Full Scale CAS-Subtest Est. Eq. 1 87 99.6 85.2 

Full Scale CAS-Subtest Est. Eq. 2 65 94.2 71.1 

Full Scale CAS-Domain Est. Eq. 1 65.7 93.5 66.4 

Full Scale CAS-Domain Est. Eq. 2 50.2 81.2 59.2 

Planning Est. Equation 1 75.5 97.1 75.8 

Planning Est. Equation 2 50.2 79.8 57 

Planning Est. Equation 3 25.6 50.2 46.6 

Attention Est. Equation 1 77.6 95.7 31 

Attention Est. Equation 2 48.7 85.2 35 

Attention Est. Equation 3 30 54.9 52.3 

Simultaneous Est. Equation 1 62.1 93.1 69.3 

Simultaneous Est. Equation 2 39.7 70.8 49.5 

Simultaneous Est. Equation 3 28.5 52.3 40.1 

Successive Est. Equation 1 73.3 96.8 72.6 

Successive Est. Equation 2 50.5 81.6 63.5 

Successive Est. Equation 3 29.2 55.6 53.4 
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Traumatic Brain Injury Validation  
Group 

 Analyzing the TBI validation group required a different interpretation than the 

non-clinical validation group. As mentioned in Chapter II, when predicting pre-morbid 

intellectual functioning in clinical samples, significant differences might indicate that the 

TBI group was meeting the basic assumptions of mirroring the normal population (i.e., M 

= 100; SD = 15). In addition, significant difference between predicted and actual scores 

was consistent with these predictions.  The TBI validation group average predicted score 

across all age levels (domain and full scale) differed significantly on all but 10 equations. 

Table 40 shows the equation, minimum and maximum values, and the relative t value and 

p values. The bolded lines indicate predicted scores that were significantly different than 

the actual score.
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Table 40 

Descriptive Statistics, Mean Comparisons, and Significance Results Between Actual and Predicted Values for Domain and  
Full Scale Cognitive Assessment System Results for Traumatic Brain Injury Validation Sample 
 
 TBI Validation Sample 
Actual IQ Mean SD Min Max p df t 

Full Scale 84.86 16.39 50 116    
Planning  80.95 17.05 49 106    
Attention 87.22 19.55 51 134    

Simultaneous 94 14.06 62 120    
Successive 93.40 11.41 62 110    

Predicted IQ        
Full Scale Demographic Est. Eq. 1 100.03 5.64 85 109 .00 21 -4.773 

Full Scale CAS-Subtest Est. Eq. 1 86.16 16.36 53 120 .063 21 -1.966 
Full Scale CAS-Subtest Est. Eq. 2 87.82 15.89 58 119 .025 21 -2.423 

Full Scale CAS-Domain Est. Eq. 1 85.33 13.67 61 105 .697 21 -.395 
Full Scale CAS-Domain Est. Eq. 2 86.02 14.16 58 108 .448 21 -.773 

Planning Est. Equation 1 82.56 15.87 55 100 .08 21 -1.839 
Planning Est. Equation 2 89.65 14.07 65 113 0 21 -4.714 
Planning Est. Equation 3 99.10 4.14 88 105 0 21 5.226 
Attention Est. Equation 1 88.77 18.42 57 135 .003 21 -.984 

Attention Est. Equation 2 89.20 16.2 63 124 .2 21 -1.322 
Attention Est. Equation 3 99.61 4.18 90 106 .005 21 -3.15 

Simultaneous Est. Equation 1 95.96 13.91 66 120 .116 21 -1.639 
Simultaneous Est. Equation 2 97.99 9.87 75 113 .022 21 -2.464 

Simultaneous Est. Equation 3 101.42 5.23 86 108 .016 21 -2.624 
Successive Est. Equation 1 94.29 10.73 68 109 .126 21 -1.594 
Successive Est. Equation 2 93.379 11.16 59 107 .982 21 .023 

Successive Est. Equation 3 101.11 4.37 91 107 .003 21 -3.348 
*NOTE: Bold lines indicate predicted scores that are significantly different than the actual score. 
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 The alpha level for all planned comparisons for each set of equations (e.g., those 

for the full scale estimate, planning estimates, etc.) was corrected by employing the 

Bonnferoni correction, whereby the alpha level (.05) was divided by the number of tests 

conducted. Thus, using this correction for the full scale estimates (adjusted alpha = .010) 

there was a reliable difference between the predicted and actual values only for the full-

scale demographic estimate for Equation 1. Using this correction for the domain 

estimates (adjusted alpha = .016), Planning Estimate Equation 1(2 CAS-subtests) did not 

produce significantly different results as expected for individuals with a TBI. Attention 

equations 1 and 3 produced statistically different scores in the TBI validation sample, 

providing some evidence of its effectiveness in estimating pre-morbid intellectual 

functioning in clinical populations. All but one equation resulted in non-significant 

differences; Simultaneous Estimate Equation 3(demographic only) appeared effective in 

estimating pre-morbid intellectual functioning in the TBI sample by producing 

marginally significant different estimated scores versus predicted scores (p = .016). Two 

equations, Successive Estimate Equation 1 and 2, appeared less effective in estimating 

pre-morbid intellectual functioning in the TBI sample as evidenced by not producing 

significantly different estimated scores versus predicted scores as compared to Successive 

Estimate Equation 3 (p = .003 ). More validation is necessary before conclusive results 

can be obtained with regard to equation validity in clinical populations.  

 Due to the small sample size of the TBI validation sample, age related analyses 

per equation were not conducted. Further investigation is necessary with a large diverse 

sample to determine the validity of all CAS pre-morbid estimation equations on clinical 

samples.  



 
 
 
 
 

CHAPTER V 
 
 

DISCUSSION 
 
 

 This chapter reviews the purpose of the present study and summarizes the major 

findings while offering theoretical and practical implications of the results. Potential 

limitations of the current study are then discussed. Finally, suggestions for future 

directions are presented. 

Purpose of Study 

The last couple of decades have witnessed increased research seeking to estimate 

pre-morbid intellectual functioning of people with traumatic brain injuries (TBI) into the 

research discipline of traumatic brain injuries (see Schoenberg et al., 2004, 2007, 2008). 

Many studies have shown the deleterious effects children with TBI might face in 

educational settings including difficulties sustaining attention and concentration and other 

executive functioning deficits that affect academic performance (Semrud-Clikeman, 

2001). Schools and clinics are faced with an increasing demand to provide 

accommodations and interventions for children with a TBI diagnosis; the ability to 

estimate pre-morbid intellectual functioning is essential in the determination of services 

as interventions will be tools designed to assist an individual in reaching their pre-injury 

functions, abilities, and skills.  

Studies incorporating current assessment tools have historically used the 

Wechsler scales as their primary assessment (Schoenberg et. al, 2004, 2007; Vanderploeg 
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et al., 1996). Including the atheoretical Wechsler scales in estimating pre-morbid 

intellectual functioning, despite its popularity in the practice of IQ assessment, is 

insufficient in view of modern theoretical, neuropsychological-based perspectives of 

cognitive functioning that are better connected to remedial efforts and positive outcomes, 

such as the Das-Naglieri Cognitive Assessment System (Naglieri & Das, 1997). 

The purpose of this study was to derive equations using the Das-Naglieri: 

Cognitive Assessment System (CAS) for estimating pre-morbid intellectual functioning 

for school-aged children who have suffered a traumatic brain injury (TBI).  This provides 

a method of estimating pre-morbid intellectual functioning that uses an assessment 

centered on a neuropsychological theory of intelligence and expands from existing pre-

morbid intellectual functioning formulas.  

Summary of the Study 

A general overview of the equations created is first discussed, followed by a 

breakdown of analyses conducted to determine the usefulness of the equations. Next, 

each domain and full scale’s respective equations and outcomes are then reviewed. 

Finally, a cross-validation sample with the 22 individuals with TBI is presented, ending 

with a short evaluation of the assumptions when estimating pre-morbid functioning. 

The Das-Naglieri: Cognitive Assessment System standardization sample was 

utilized to create 17 regression equations that estimated both the CAS Domain score and 

Full Scale IQ. Procedures were similar to those used to create previous pre-morbid 

estimates based on the Wechsler scales (Schoenberg et al., 2004, 2007; Vanderploeg et 

al., 1996), utilizing top subtest predictors in combination with demographic variables to 

predict pre-morbid functioning. Predictors included CAS-subtests (both the best 
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contributor and the top two contributors) as well as demographic variables (i.e., gender, 

race, and parent education level). One component that differed from other studies (except 

for Schoenberg et al., 2007) was the utilization of dummy-coded demographic variables 

so as not to unintentionally influence the analyses assigning numeric values to categorical 

variables (Tabachnick & Fidell, 2007).  

 Three equations were created to estimate each of the four CAS-Domain scores. 

This resulted in a total of 12 equations--three equations for each of the CAS-Domains of 

Planning, Attention, Simultaneous, and Successive. The equations included the top CAS-

subtest in combination with demographic variables, the top two performing CAS-subtests 

in combination with demographic variables, and an equation utilizing demographic 

variables only in estimating pre-morbid CAS-Domains scores. For psychometric 

purposes and to remain consistent with other studies that utilized Full Scale IQ, an 

additional five equations were developed to estimate pre-morbid intellectual functioning 

for the CAS Full Scale IQ. Two equations utilized the top predicting CAS-Domain and 

top predicting CAS-subtest in combination with demographic variables to estimate pre-

morbid intellectual functioning. Two additional equations combined the top two 

contributing CAS-Domains with demographic variables and the top two contributing 

CAS-subtests with demographic variables. The final equation estimated CAS Full Scale 

IQ using only the demographic variables.  

Analysis of Equation 

 In general, the equations derived provided accurate estimates of both CAS-

Domain Scores as well as CAS Full Scale IQ scores. All equations accounted for a 

significant amount of variance in actual CAS-Domain and IQ scores. The standard error 
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of estimation (SEE) for demographic only variables was relatively high, though 

comparable with other pre-morbid equation studies, with a range from 13.63-14.39 for 

both the CAS-Domain and CAS Full Scale prediction equations. The SEE was 

significantly improved when demographic variables were combined with CAS measures 

with a range of 3.48-8.82. The lower SEE occurred in equations utilizing the top two best 

contributors from the CAS, both Domain and Subtests, in combination with demographic 

variables. The SEE for this group ranged from 3.48 to 5.56. The equations utilizing only 

the top CAS contributor in combination with demographic variables had SEE values 

ranging from 5.94 to 8.82. The SEE for the combination equations in this study were 

similar to those found in the Schoenberg et al. (2007) study that employed similar 

methods. As with similar studies, it appeared that utilizing both current assessment data 

and demographic data in estimating pre-morbid intellectual functioning might be the best 

practice in yielding accurate estimates. 

When the equations were applied to the non-clinical validation sample, the mean 

estimated CAS-Domain and CAS Full Scale IQ scores did not significantly differ any 

equations, except for the Attention Estimate Equation 1 that utilized the top two CAS-

subtests in combination with demographic variables to estimate the pre-morbid CAS-

Attention domain score (p = .04). All combination equations approximated the CAS 

mean of 100 and a standard deviation of 15, while the demographic only variables 

approximated the CAS mean of 100 but had a standard deviation closer to 5. The 

majority of the equations (n = 10) had estimates of pre-morbid functioning within 10 

points of the actual CAS-Domain and CAS Full Scale IQ scores. All equations that 

combined demographic variables with either top predicting CAS-Subtests or CAS-
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Domains preformed significantly better than the demographic only counterparts. Thus, 

combination equations might be utilized prior to utilizing demographic only equations in 

estimating pre-morbid functioning. 

This study went beyond previous studies by decomposing the pre-morbid 

equations and analyzing the results based on the child’s age. These analyses provided 

information that will be useful in determining the appropriateness of the equation in 

specific age populations. In particular, some equations showed limitations in accurately 

estimating pre-morbid intellectual functioning, primarily for children aged 12 (seven 

equations total) and 14 (three equations total), although additional ages were represented 

with less than three equations resulting in significant differences in actual versus 

estimated scores (ages 5, 6, 7, 13, and 16). Analyses indicated that for 13 of the 17 

equations, predicted scores differed significantly from the actual CAS-Domain or CAS 

Full Scale IQ scores (p < .05) for certain ages. All of the ages (5, 6, 7, 12, 13, 14, and 16) 

had at least one equation for each CAS-Domain and CAS Full Scale score that did not 

result in significant differences that would be appropriate to use in estimating pre-morbid 

intellectual functioning. For example, if the Attention Estimate Equation 1 resulted in 

significant differences in actual versus predicted CAS-Attention scores for seven-year- 

olds, Attention Estimate Equations 2 and 3 would still be valid options for estimating pre-

morbid functioning in that age group. It should be noted that because all of these age 

groups had a small sample size (n < 45), further validation of the equations would be 

necessary to determine any true age discrepancies among the equations. All of these 

results showed promise in being effective methods of estimating pre-morbid intellectual 

functioning in children and adolescents. 
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Domain Estimation Equations 

It appeared that all three equations--(a) two subtests and demographic variables; 

(b) one subtest and demographic variables, and (c) demographic variables only--created 

to estimate the Planning Domain were valid and appropriate to use when estimating pre-

morbid intellectual functioning. Practitioners should use caution when interpreting the 

Planning Domain estimates for healthy individuals ages 12 and 14 until more information 

can be provided regarding the validity of these equations as they did produce 

significantly different values from estimated and actual scores (p = .021, p = .015 and  p 

= .035). 

 Two out of the three equations created to estimate the Attention Domain were 

valid and appropriate to use when estimating pre-morbid intellectual functioning as 

evidenced by their predictive value in estimating pre-morbid intellectual functioning on 

the non-clinical validation sample. Attention Estimate Equation 1 (i.e., two subtests and 

demographic variables to estimate pre-morbid intellectual functioning) resulted in 

significant differences between actual and predicted scores for non-clinical individuals (p 

= .04).  Practitioners should use caution when interpreting the Attention Domain 

estimates for Attention Estimate Equation 1, particularly for healthy individuals who are 

seven-years-old, until more information can be provided regarding the validity of these 

equations since they produced significantly different values from estimated and actual 

scores (p = .034).  

 Overall, all three equations worked well in estimating pre-morbid intellectual 

functioning in non-clinical individuals (p > .05) for the Simultaneous domain. As with 

the previous domains, practitioners should use caution when interpreting the 
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Simultaneous Domain estimates for all estimate equations, particularly for healthy 

individuals who are in the 12-16 year range, until further validation can be provided (p = 

.019, p = .005 and p = .024, respectively).  

 The results of the Simultaneous analyses supported the initial hypothesis that 

Figure Memory and Visual-Spatial Relations would be significant predictors in 

estimating pre-morbid intellectual functioning. This was consistent with Gutentag et al. 

(1998) who found no significant difference in test performance between healthy controls 

and individuals with TBI on the Figure Memory and Visual-Spatial Relations subtests.  

Successive Domain equations appeared to work well in estimating pre-morbid 

intellectual functioning in non-clinical individuals as a whole (p > .05). However, 

Successive Estimate Equations 1 and 2--(a) two subtests and demographic variables and 

(b) one CAS subtest and demographic variables to estimate pre-morbid intellectual 

functioning--did result in significant differences in the 14-year-old sample (p = .044 and 

p = .012), meaning that caution in interpretation should be using those two equations in 

estimating pre-morbid intellectual functioning in 14-year-olds until further validation can 

be provided. 

The results of the Successive analyses were consistent with the initial hypothesis 

that Word Series would be significant predictor of pre-morbid intellectual functioning. 

This also comported with Gutentag et al. (1998) who found no significant difference in 

test performance between healthy controls and individuals with TBI on the Word Series 

subtests. 
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Full Scale Estimation Equations 

Both the Full Scale CAS-Subtest Estimate Equations and the Full Scale 

Demographic Estimate Equation worked well in estimating pre-morbid intellectual 

functioning in non-clinical individuals (p > .05) in that the estimated score did not 

significantly differ from the actual score across all ages in the non-clinical validation 

sample. The CAS-Subtest Estimate Equations used both the top two predictors from each 

CAS Domain (Full Scale CAs-Subtest Estimate Equation 1) and the single best CAS 

subtest predictor (Full Scale CAs-Subtest Estimate Equation 2) from each domain in 

combination with demographic variables to estimate pre-morbid intellectual functioning. 

The Full Scale Demographic equation used solely demographic variables in its estimation 

of pre-morbid intellectual functioning. Practitioners should use caution when interpreting 

the results of the Full Scale CAS-Subtest Estimate Equations 1 (p = .015) and 2 (p = 

.003), particularly for healthy individuals who are 12-years-old until more information 

can be provided regarding the validity of these equations as they did produce 

significantly different values from estimated and actual scores.   

Full Scale CAS-Domain Estimate Equations 1 and 2--(a) two CAS-Domains in 

combination with demographic variables to estimate pre-morbid intellectual functioning 

and (b) one CAS-Domain in combination with demographic variables--worked well in 

estimating pre-morbid intellectual functioning in non-clinical individuals (p < .05) in that 

the estimated score did not significantly differ from the actual score across all ages in the 

non-clinical validation sample. Full Scale CAS-Domain Estimate Equation 1 appeared to 

be less effective at predicting Full Scale scores on healthy individuals aged six as it 

produced significantly different estimations from the actual score (p = .035). In addition, 
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Full Scale CAS-Domain Estimate Equation 2 did not perform as well for healthy 

individuals who are 12-years-old for the same reason as Full Scale CAS-Domain 

Estimate Equation 1 (p = .024).   

 The results of best predictor CAS-domains, with the Planning domain as the 

strongest contributor, contrasted with the hypothesis that Planning and Attention would 

not make significant contributions to the equations to estimate pre-morbid intellectual 

functioning. However, it was hypothesized that the Successive Domain would be 

valuable in predicting pre-morbid intellectual functioning as was the case in this study.   

Traumatic Brain Injury Cross- 
Validation Sample 

The additional cross-validating utilized data from 22 individuals identified as 

having a TBI in the CAS standardization sample, which demonstrated that the average 

predicted score across all age levels (domain and full scale) differed significantly on all 

but 10 equations. Although not all equations resulted in significant differences for 

individuals with a TBI, it showed promise of the effectiveness of the equations in 

estimating pre-morbid intellectual functioning in clinical populations. It is possible with 

more research, including testing the equations on a significantly larger sample of children 

with TBI, that the differences between actual and predicted scores will be significant for 

all 17 equations. Although these results were promising for estimating pre-morbid 

intellectual functioning in children who have experienced a TBI, the findings should be 

considered tentative as larger cross-validation samples are needed. 

Estimation Assumptions   

All pre-morbid intellectual functioning equations must meet basic methodology 

assumptions as set forth by previous researchers (i.e., Schoenberg et al., 2007) in order to 
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be deemed appropriate in assessing pre-morbid functioning in both healthy and clinical 

populations. As mentioned previously, when using the equations with healthy 

individuals, Schoenberg et al. (2007) suggested that the difference between the actual and 

estimated IQ score should not be significantly different. Further, they suggested that 

when using the equation with neurologically impaired individuals, the predictions should 

be greater than actual performance on IQ measures and the mean of the assumed 

predicted IQ scores of the clinical sample should estimate the mean of actual Full Scale 

IQ scores of healthy individuals (i.e., mean = 100, standard deviation = 15). In this study, 

the non-clinical validation sample confirmed the first component in validating a set of 

pre-morbid estimation equations by having no significant difference between estimated 

and actual scores. Sixteen out of the 17 equations resulted in no significant difference 

between the two scores (with the exception of the Attention Estimate Equation 1). In 

addition, the TBI validation group appeared to be near the general population’s mean of 

100 and a standard deviation of 15; however, due to the small sample size, more research 

is needed to further validate this assumption. 

Implications 

 There are substantial theoretical and practical implications of this study. 

Theoretically, prior efforts at estimating pre-morbid IQ have relied heavily on 

atheoretical approaches such as the Wechsler scales and the Stanford-Binet. While new 

Wechsler scales have been developed, Naglieri and Kaufman (2001) contended that these 

refinements still failed to incorporate new theoretical approaches and only updated the 

material based on presentation and standardization data.  
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 Alternatively, the Das-Naglieri: Cognitive Assessment System (Naglieri & Das, 

1997) provided an assessment with strong theoretical underpinnings in neurological 

functioning modeled after Luria’s (1966, 1973) model of cognitive processing. As such, 

it incorporates the assessment of three functional systems necessary for neurological 

processing, Planning, Attention, and Successive/Simultaneous processing (Luria, 1966, 

1973). 

 This study provided the addition of utilizing the Das-Naglieri: Cognitive 

Assessment System in estimating pre-morbid intellectual functioning by offering 

estimation equations based on more neurologically sound assessments to the field of 

estimating pre-morbid intellectual functioning. This marked a great contribution to not 

only estimating pre-morbid intellectual functioning but to the field of assessment, 

evaluation, and education as well. It provided one more approach to an ever-growing 

field with hopes of linking assessment data to intervention, something that has yet to be 

accomplished in this domain.  

 The field of school psychology is constantly shifting and changing to incorporate 

new models and theories to support our practice. With the incorporation of Response to 

Intervention (RTI), there is a greater need to use theoretically tested and sound 

assessment measures when working with school-aged children. There needs to be a shift 

from using atheoretical methods of assessment, such as the Wechsler and Stanford-Binet 

cognitive assessments, toward a more theoretical, research driven assessment such as the 

Das-Naglieri: Cognitive Assessment System. This will assist in helping make sound 

education determinations when estimating pre-morbid intellectual functioning for 

children with a traumatic brain injury.  
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A variety of practical applications when using a theoretically sound assessment to 

estimate pre-morbid intellectual functioning in school-aged children are also noted from 

this study. The CAS incorporates evidence-based classroom interventions tied to test 

data, proving its utility above the Wechsler scale. Estimating pre-morbid intellectual 

functioning in a student who has a traumatic brain injury and being able to analyze 

current scores as compared to an estimated previous level of functioning can help in the 

selection and implementation of an intervention. No other assessment to date in 

estimating pre-morbid intellectual functioning has this ability.  

For example, interventions have been studied to determine the effect on classroom 

interventions on individuals who show a cognitive weakness in the domain area of 

Planning. Naglieri and Gottling (1997) incorporated planning instruction in a math lesson 

and found that students who displayed poor planning benefited from planning instruction 

more than students who had strength in planning. This is just one example of many in 

which the CAS test data, specifically the comparison of current test performance to 

estimating previous levels of functioning, could help with intervention selection, 

implementation, and student progress.  

The practice of estimating pre-morbid intelligence is slowly becoming more 

commonplace in the educational system and new benefits are still being discovered. 

There might be additional uses beyond the assistance for intervention selection in 

estimating pre-morbid intellectual functioning. Additional uses that have yet to be studied 

but hold promise include eligibility determination for special education and monitoring of 

recovery following a traumatic brain injury.  
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Limitations  

One limitation of the current study was finding that children’s cognitive skills 

could progress rapidly during the first six months following a neuropsychological insult 

(Dykeman, 2009). Thus, there is the chance of either over- or under-estimating the child’s 

pre-morbid intellectual functioning as the time since injury elapses increases (Schoenberg 

et al., 2007). The time elapsed between injury and CAS administration for the 22 

individuals with a reported TBI used in this study was unknown, necessitating the need to 

continue validating the 17 equations derived in this study. In accordance with the 

previous limitation, a study incorporating time-elapsed since injury into pre-morbid 

estimation equations might prove beneficial in providing even more accurate estimates in 

children with TBIs.  

Another limitation of the current study was that the equations developed could not 

account for all variables that might impact the variance in an individual’s PASS cognitive 

processes and overall cognition, e.g., location of injury, time elapsed since injury, and 

severity of injury (Harrington, 1990; Schoenberg et al., 2008). Again, this could result in 

an over- or under-estimation of the child’s pre-morbid intellectual functioning and should 

be considered when interpreting the results from the equations.  

A third limitation of the study was the number of cases with missing data. 

Although the cases with missing data appeared to be at random, there was always a 

chance that information in the missing data might skew the results of the analyses. The 

researcher attempted to remedy this by analyzing the data using the Expectation 

Maximization method of imputation to determine if cases with missing data contributed 

significantly to the results. Analyses indicated there were no drastic differences in the 
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outcomes of the equations by using either deleting missing cases from the analyses or 

utilizing an imputation method. 

A fourth limitation of the study was the age of the Cognitive Assessment System; 

using U.S. Census data from the early 1990s might or might not have accurately 

represented current population trends and data. Although the researcher attempted to 

compare the census data utilized for the standardization of the CAS to the most recent 

2010 U.S. Census data, a similar breakdown of race was reported in the early 1990’s. A 

limitation still exists in understanding the application of the CAS to the current U.S. 

population.  

Most significantly, the small size of the TBI validation sample for the pre-morbid 

intellectual estimation equations posed a significant limitation in the ability to generalize 

equation estimates to clinical populations. Additional studies might be warranted to 

validate the equations with children who have suffered a neuropsychological injury such 

as traumatic brain injury. 

Suggestions for Future Research 

 Future research would benefit in several ways to further refine methods of 

estimating pre-morbid intellectual functioning.  First, as is necessary with other pre-

morbid equations utilizing the Wechsler scales, future research should continue to 

validate the equations using a clinical sample. Ideally, a larger sample of children who 

have experienced a TBI, ranging in age from 5 to 17, would be necessary to fully validate 

the equations proposed in this study. Information on variables including time elapsed 

since injury, pre-morbid data (if available), and location and severity of injury would be 

necessary to provide a comprehensive understanding of the utility of the equations in a 
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clinical population. Analyses should include performance of the equation depending on 

the severity, the location, and time elapsed to determine the appropriate administration of 

the equations in determining pre-morbid functioning in school-aged children. This would 

allow school practitioners to be well versed in the utility of the equations and determine 

appropriate intervention and placement as a result of the information provided by the 

estimates.  

 Finally, studies incorporating pre-morbid intellectual functioning in educational 

practices might yield valuable information for both clinicians and school practitioners in 

education decision-making and placement. With the new initiation of Response to 

Intervention (RTI), pre-morbid intellectual functioning might help in selecting and 

implementing evidence-based interventions. Determining the usefulness of having pre-

morbid functioning data in the decision-making process might allow practitioners to 

implement appropriate interventions more rapidly than applying interventions 

haphazardly that might or might not prove beneficial for the child. In addition, having 

pre-morbid functioning estimates might allow proper placements in special education to 

further validate the educational impact of a traumatic brain injury.  

Conclusion 

 This study set out to create pre-morbid functioning estimation equations using the 

Das-Naglieri: Cognitive Assessment System and served to augment the literature of 

estimating pre-morbid intellectual functioning in school-aged children. Evidence 

suggested that 16 of the 17 equations created in this study were valid and appropriate to 

use in estimating pre-morbid intellectual functioning as evidenced by the equations 

produced between estimated scores, which did not reliably differ from actual scores for 
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CAS-Domains and CAS Full Scale IQ. Further, it provided preliminary evidence that the 

equations might be effective in estimating pre-morbid intellectual functioning in clinical 

samples of children with a TBI.  

A set of pre-morbid estimation equations could prove beneficial in the educational 

system to support educational based decision-making for both special education 

placement and for evidence-based intervention selection in the RTI process. The use of 

pre-morbid estimates in data based decision-making could help streamline the RTI 

process and special education placement decisions in order to best serve students 

reintegrating into the school system following a traumatic brain injury. Future research is 

needed to further validate the equations on a clinical sample of children with neurological 

deficits to determine the full utility and application of the 17 equations, as well as 

validate the utility of pre-morbid estimation in education systems. Data from this study 

could be cast along with other attempts in estimating pre-morbid intelligence when other 

data are not available.  
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Planning Estimation Equation 1: 
Planning domain = 43.914 + Matching Numbers Std. Score (2.972) + Planned Codes 
(2.537) + Gender + PEL + Race 
 
Gender  male (.337) female(nil) 
PEL >HS(nil) HS(1.103) Some College(.861) College grad(2.114) 
Race White(nil) Black(-2.281) Asian(-.544) Other(-.246)                 

Native A. (2.180) 
 
Planning Estimate Equation 2: 
Planning domain = 59.211 + Matching Numbers Std. Score (4.073) + Gender + PEL + 
Race 
 
Gender  male (-1.791) female(nil) 
PEL >HS(nil) HS(1.444) Some College(1.095) College grad(2.799) 
Race White(nil) Black(-3.123) Asian(2.564) Other(.499)                

Native A. (3.571) 
 
Planning Estimate Equation 3: 
Planning domain = 98.237 + Gender + PEL + Race 
 
Gender  male (-5.075) female(nil) 
PEL >HS(nil) HS(3.904) Some College(4.268) College grad(7.717) 
Race White(nil) Black(-4.181) Asian(10.113) Other(1.057)                

Native A. (-1.983) 
 
Attention Estimate Equation 1: 
Attention = 45.577 + Receptive Attention Std. Score (3.074) + Expressive Attention Std. 
Score (2.427) + Gender + PEL + Race 
 
Gender  male (-.552) female(nil) 
PEL >HS(nil) HS(.089) Some College(.109) College grad(.397) 
Race White(nil) Black(-.533) Asian(.024) Other(-1.276)                

Native A. (-.660) 
 
Attention Estimate Equation 2: 
Attention = 60.095 + Receptive Attention Std. Score (3.979) + Gender + PEL + Race 
 
Gender  male (-.702) female(nil) 
PEL >HS(nil) HS(.481) Some College(.888) College grad(2.265) 
Race White(nil) Black(-1.824) Asian(1.294) Other(.628)                

Native A. (-.781) 
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Attention Estimate Equation 3: 
Attention = 99.060 + Gender + PEL + Race 
 
Gender  male (-5.363) female(nil) 
PEL >HS(nil) HS(3.560) Some College(4.356) College grad(7.642) 
Race White(nil) Black(-3.542) Asian(8.267) Other(1.159)                

Native A. (.810) 
 
Simultaneous Estimate Equation 1: 
Simultaneous = 45.975 + Figure Memory Std. Score (2.782) + Visual-Spatial Relations 
(2.493) + Gender + PEL + Race 
 
Gender  male (-.100) female(nil) 
PEL >HS(nil) HS(.649) Some College(1.125) College grad(2.207) 
Race White(nil) Black(-1.655) Asian(1.617) Other(.266)                

Native A. (-2.520) 
 
Simultaneous Estimate Equation 2: 
Simultaneous = 60.716+ Figure Memory (3.677) + Gender + PEL + Race 
 
Gender  male (-.082) female(nil) 
PEL >HS(nil) HS(1.913) Some College(3.215) College grad(5.561) 
Race White(nil) Black(-2.961) Asian(.390) Other(-.522)                 

Native A. (-4.330) 
 
Simultaneous Estimate Equation 3: 
Simultaneous = 95.814+Gender + PEL + Race 
 
Gender  male (-.237) female(nil) 
PEL >HS(nil) HS(4.250) Some College(6.474) College grad(12.577) 
Race White(nil) Black(-9.171) Asian(5.310) Other(-2.961)                

Native A.(-3.439) 
 
Successive Estimate Equation 1: 
Successive = 46.363 + Sentence Repetition (2.931) + Word Series (2.333) + Gender + 
PEL + Race 
 
Gender  male (.048) female(nil) 
PEL >HS(nil) HS(.515) Some College(.558) College grad(1.478) 
Race White(nil) Black(.637) Asian(.403) Other(-.547)                 

Native A. (-.209) 
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Successive Estimate Equation 2: 
Successive = 54.610 + Sentence Repetition Std. Score (4.411) + Gender + PEL + Race 
 
Gender  male (.277) female(nil) 
PEL >HS(nil) HS(.241) Some College(.447) College grad(1.509) 
Race White(nil) Black(1.293) Asian(1.636) Other(-.631)                

Native A. (1.287) 
 
Successive Estimate Equation 3: 
Successive =  96.200 + Gender + PEL + Race 
 
Gender  male (-.823) female(nil) 
PEL >HS(nil) HS(3.461) Some College(6.146) College grad(11.464) 
Race White(nil) Black(-4.165) Asian(-1.319) Other(-6.063)               

Native A. (-1.393) 
 
Full Scale Demographic Equation 1: 
Full Scale = 96.090 + Gender + PEL + Race 
 
Gender  male (-3.765) female(nil) 
PEL >HS(nil) HS(5.001) Some College(7.050) College grad(13.028) 
Race White(nil) Black(-6.947) Asian(7.181) Other(-2.272)               

Native A. (-1.934) 
 
Full Scale CAS-Subtest Estimate 1: 
Full Scale = 21.584 +Matching Numbers Std. Score (1.090) + Planned Codes (.915) + 
Receptive Attention Std. Score (1.096) + Expressive Attention Std. Score (.863) + Figure 
Memory Std. Score (.983) + Visual-Spatial Relations (.906) + Sentence Repetition Std. 
Score (1.050) + Word Series (.836) + Gender + PEL + Race 
 
Gender  male (.276) female(nil) 
PEL >HS(nil) HS(.397) Some College(.374) College grad(1.112) 
Race White(nil) Black(-.780) Asian(-.319) Other(-.480)                   

Native A. (-.168) 
 
Full Scale CAS-Subtest Estimate 2: 
Full Scale = 33.727 + Matching Numbers Std. Score (1.620) + Receptive Attention Std. 
Score (1.589) + Figure Memory Std. Score (1.384) + Sentence Repetition Std. Score 
(1.916) + Gender + PEL + Race 
 
Gender  male (-.061) female(nil) 
PEL >HS(nil) HS(.514) Some College(.700) College grad(1.958) 
Race White(nil) Black(-1.131) Asian(.826) Other(.572)      

Native A. (.467) 
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Full Scale CAS-Domain Estimate 1: 
Full Scale = -10.371 + Planning Domain Standard Score (.608) + Successive Domain 
Std. Score (.486) + Gender + PEL + Race 
 
Gender  male (-.279) female(nil) 
PEL >HS(nil) HS(.946) Some College(1.469) College grad(2.766) 
Race White(nil) Black(-2.381) Asian(1.674) Other(.031)               

Native A. (-.052) 
 
Full Scale CAS-Domain Estimate 2: 
Full Scale = 21.218 + Planning Domain Standard Score (.762) + Gender + PEL + Race 
 
Gender  male (-.279) female(nil) 
PEL >HS(nil) HS(2.025) Some College(3.797) College grad(7.146) 
Race White(nil) Black(-3.760) Asian(-.526) Other(-3.078)               

Native A. (-.423) 
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 Traumatic brain injury (TBI) is the world-wide leading cause of death and a 

significant cause of disabilities in children (Suominen et al., 1998).  Using data from 

2002-2006, the Centers for Disease Control reported that approximately 511,000 cases 

occurred per year for children from 0-14 years of age (Faul, Xu, Wald, & Coronado, 

2010). Moreover, males are more likely than females to suffer a traumatic brain injury, 

with the ratio of injuries of males to female being approximately 2:1 between the ages of 

5 and 14, with the greatest discrepancy between genders evident between the ages of 10 

to 14 (Faul et al., 2010).  Thus, TBI is a pervasive phenomenon in childhood. 

 The long-lasting effects of TBI for children, including cognitive and 

neuropsychological deficits have been well documented. TBI’s result in attentional 

problems (Kaufmann, Fletcher, Levin, Miner, & Ewing-Cobbs, 1993), primarily in the 

areas of sustained and selective attention with displayed difficulties in the ability to focus 

attention, as well as sustaining and shift their attention resulting in long-lasting deficits in 

academic achievement (Ewing-Cobbs, Fletcher, Levin, Iovino, & Miner, 1998). With 

similar samples of children with TBI, other researchers have found that these children 

display significant deficits in executive functioning skills such as short-term memory and 

problem solving skills (Dennis, Wilkinson, Koski, & Humphreys, 1995; Hoffman, 

Donders, & Thompson, 2000). The reauthorization of Section 504 and the Rehabilitation 

act of 1973, IDEA (1990) included the category of traumatic brain injury (Russell, 1993) 

and is now recognized and used consistently in educational settings.  Previously, most 

students with TBI were being labeled as “emotionally disturbed,” learning disabled, other 

health impaired, or physically handicapped in order to receive services (D’Amato & 

Rothlisberg, 1996). 
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 Pre-morbid intellectual functioning, or the level of functioning prior to an insult 

or injury to the brain, is valuable in determining the direct impact of the TBI and future 

directions for interventions and supports for the individual. Typically, clinicians estimate 

pre-morbid intellectual functioning because it provides a baseline in establishing the 

presence and magnitude of deficits that result from brain injury. Additionally, estimating 

pre-morbid functioning can be helpful for educators to select appropriate interventions 

and adjust progress monitoring measures to continually assess a child’s functioning.  

 A variety of methods are used to estimate pre-morbid intellectual functioning 

including (a) clinical interview, (b) demographic regression formulas, (c) current test 

performance regression formulas, (d) combining demographic and current performance 

data, (e) historical test performance, and (f) combining historical test performance with 

demographic data. Determining appropriate methods for estimating pre-morbid 

intellectual functioning can be difficult, and the measures used should strongly correlate 

with the measured IQ of a healthy individual and must be resistant to neurological deficit 

and/or psychiatric disorder (Morris, Wilson, Dunn, & Teasdale, 2005).   

 Studies incorporating current assessment subtest and domain scores have 

historically used the Wechsler scales as their primary tool, including estimates using the 

Wechsler Adult Intelligence Scale-Revised (Vanderploeg, Schinka, & Axelrod, 1996), 

the Wechsler Adult Intelligence Scale-Third Edition (Schoenberg et al., 2004) and the 

Wechsler Intelligence Scale for Children – Fourth Edition (Schoenberg et al., 2007). 

These studies utilized the subtests of Picture Completion, Information, Vocabulary, and 

Matrix Reasoning as well as demographic variables of age in years, gender, and parent 

education level because of their demonstrated reliability and demonstrated utility in 
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previous pre-morbid estimate equations (Schoenberg et al., 2007) such as that proposed 

by Barona and colleagues (1984). Demographic variables were included only if they 

contributed significantly to the estimation equation, with all equations incorporating at 

least one of the demographic variables if not all into the final estimation equation. 

Schoenberg et al (2008) tested the proposed equations using a clinical sample of children 

who sustained a TBI and found that all variables entered into the equation assisted in 

yielding accurate estimates of pre-morbid functioning as compared to a healthy control 

sample.  

 The inclusion of the atheoretical Wechsler scales in the estimate of pre-morbid 

intellectual functioning despite its popularity in the practice of IQ assessment, leaves 

perhaps much to be desired in view of modern theoretical, neuropsychological based 

perspectives of cognitive functioning that seem more connected to remedial efforts and 

positive outcomes, such as the Das-Naglieri Cognitive Assessment System (Naglieri & 

Das, 1997). 

 The age of previous intelligence assessments, such as Wechsler and Stanford 

Binet scales, have not allowed for the incorporation of recent discoveries of intelligence 

theories into our cognitive assessments, leaving them to be dated and potentially less 

effective in measuring children’s abilities. Naglieri and Kaufman (2001) propose that not 

only are cognitive assessments such as Wechsler and Stanford Binet scales outdated but 

the content of the assessments were created prior to their prospective theories of 

intelligence, creating assessments that are weak in theoretical basis.    

 An alternative conceptualization of cognitive functioning was offered by A.R. 

Luria (1966, 1973) who proposed that human cognitive processes involved three 
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functional systems that work together to create mental activity, or cognitive processes. 

Luria proposed a model of cognitive processing made up of three functional units that are 

necessary for mental activity (1966). He went on to describe the uniqueness and 

independence of each unit but also concluded that each functional unit depends on one 

another to function and perform effectively (Luria, 1980). Luria’s work led to the 

conceptualization of the PASS (Planning, Attention, Simultaneous, and Successive; Das 

& Naglieri, 1995) model of cognitive functioning, often seen as an interactive and inter-

reliant model of the construct of mental activity, which was further operationalized with 

an assessment tool known as the Das-Naglieri: Cognitive Assessment System (CAS; 

Naglieri & Das, 1997). 

 According to the authors, using the theoretical framework provided by the PASS 

model the CAS surpassed the constraints experienced by previous intelligence tests 

(Naglieri & Kaufman, 2001). The benefit of the PASS model over traditional models of 

intelligence is the incorporation of planning and attention domains, the two areas 

considered to be essential for cognitive functioning (Naglieri, 1997) and the two areas 

often impacted following a TBI (Hoffman et al., 2000).  

 The practice of estimating pre-morbid intellectual functioning on school aged 

children have many utilities including, but not limited to, determination of brain injury 

severity, assistance with intervention selections in the school and future outcomes for 

affected children. Few studies exist in estimating pre-morbid intellectual functioning in 

school aged children, with current studies relying heavily on the Wechsler intelligence 

assessments. The reality that only one set of equations stands out among the rest and are 

available for use with children, whose center intelligence assessment tool lacks the 
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sensitivity to detect subtle deficits in this population (Naglieri, Das & Jarman, 1990) is 

being used to ascertain information about a child’s outcome is concerning. Due to the 

theoretical limitations of the Wechsler scales, the inclusion of an assessment involving 

cognitive processes, such as the Cognitive Assessment System, should be considered in 

estimating pre-morbid intellectual functioning. 

 This study’s purpose is to create an equation(s) that utilizes an assessment whose 

foundations center on a neuropsychological theory of cognitive processing, whose 

creation was theoretically driven, and has research linking assessment data to 

interventions. In addition, creating an equation(s) that expands from the already created 

pre-morbid intellectual functioning equations, such as the OPIE III for adults or the 

equations using WISC IV standardization data, whose basis lies in almost century old 

theories and practices will benefit both educators and practitioners in estimating pre-

morbid intellectual functioning. 

Method 

Participants 

 Participants included 2,791 individuals with complete data from 3,072 subjects in 

the Das-Naglieri: Cognitive Assessment System (CAS) standardization sample. 

Demographic variables include age in years, parent education level and gender. The CAS 

standardization sample was selected to closely match the United States Census data on 

key demographic variables of gender, sex, geographic region, parent education level and 

race/ethnicity. Demographic characteristics of the CAS standardization sample are 

provided in the CAS Interpretive Manual (Naglieri & Das, 1997). 
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Measures and Procedure 

 The Das-Naglieri Cognitive Assessment System (CAS) is a cognitive assessment 

instrument that is normed according to United States Census data and is based on the 

PASS theory. The CAS provides four domain scores, namely Planning, Attention, 

Simultaneous and Successive (PASS) as well as a Full Scale (FS) score comprised of all 

four domains for psychometric purposes.  Each domain and the FS score is organized 

with a mean of 100 (SD = 15). The four domain areas are formed through the 

contribution of 12 subtests (mean = 10; SD = 3). The number of subtests administered (12 

total) depends on the battery given: a standard battery includes the complete 12 subtests, 

while the basic battery requires eight subtests. Additional psychometric properties of the 

CAS can be found in the interpretive handbook (Naglieri & Das, 1997). The manual 

reports adequate to high reliability coefficients along with validity studies conducted 

during its development. 

 The CAS standardization sample was divided into two random groups after 

removing the individuals with a reported TBI (n = 22). The first group was used to create 

the equations (development group, n = 2,492) and the second was used to validate the 

equations (non-clinical validation group, n = 277). The remaining 22 individuals with a 

reported TBI were utilized in a preliminary analysis of the effectiveness of the equations 

with a clinical sample. Differences between the development group and the non-clinical 

validation group for age, race, parent education level, gender, as well as Full Scale, 

domain. and subtest scores were analyzed using a one-way analysis of variance.  

 As the CAS is comprised of four domain areas which according to the PASS 

theory have a unique relationship of being independent, yet they are independent, it is 
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difficult to determine which domains and/or subtests may be the best predictors in 

estimating overall (FS) pre-morbid intellectual functioning. Thus, a stepwise method of 

multiple linear regression was utilized due to the exploratory nature of this study and the 

fact that this is the first known study that uses the Cognitive Assessment System in 

estimating pre-morbid intellectual functioning. Once the top predicting CAS subtests and 

CAS domains were revealed, a series of enter regression analyses were conducted to 

create the algorithms. 

 A total of 17 equations were generated to predict pre-morbid intellectual 

functioning at the Domain score and Full Scale IQ level. Five regression equations 

incorporated only the demographic variables of gender, parent education level, and race, 

one for each domain and Full Scale score. Four equations were generated incorporating 

the two subtests that provided the most predictive value (e.g., Matching Numbers and 

Planned Codes), in combination with demographic variables (i.e., gender, parent 

education level and race) to predict each domain and Full Scale score separately. Five 

equations were generated incorporating the single best subtest predictor in combination 

with demographic variables in estimating domain and full scale scores.  Finally, two 

equations were created to predict the Full Scale score using the best domain in predicting 

the full scale score in combination with demographic variables, and using the top two 

domain predictors in combination with demographic variables.  

 So as not to influence the contribution of the categorical variables based on 

arbitrarily assigned numbers variables for gender, parent education level, race, were each 

dummy coded (see Schoenberg et al., 2007, for a similar approach). In the creation of the 

demographic only equations, all demographic variables were entered into the equation. 
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For subsequent models (both subtest and domain), each top predicting subtest or domain 

variable was entered first into the equation, followed by each of the demographic 

variables. 

 The final stage of analysis consisted of cross-validating the generated equations 

using the non-clinical validation sample (10% of the standardization sample) as well as 

the small sub-sample of children with a identified TBI (n = 22) as a preliminary analysis 

of the utility of the equations.  

Results 

 Descriptive statistics and analysis of variance analyses for demographic variables 

and CAS measures between the development and non-clinical group are presented in 

Tables 1 and 2. There were no statistically significant differences between the groups on 

any of the demographic variables (i.e., gender, age, and parent education level), CAS 

subtests, CAS domains, and Full Scale scores.  
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Table 1 

Descriptive Statistics of Demographic Variables by Cognitive Assessment System Group 
 
 Development (n = 2492) Non-Clinical (n = 277) TBI (n = 22) 

Variable N % n % N % 
Gender       

Male 1209 48.5 118 42.6 14 36.4 
Female 1283 51.5 159 57.4 8 63.6 

Race       
White 1930 77.4 218 78.7 21 95.5 
Black 308 12.4 36 13 1 4.5 
Asian 11 .4 2 0.7   

Native Am. 126 5.1 
12 4.3   

Other 117 4.7 9 3.2   
Age       

5 244 9.8 25 9   
6 350 14 43 15.5   
7 372 14.9 38 13.7   
8 257 10.3 30 10.8   
9 221 8.9 28 10.1 1 4.5 

10 231 9.3 27 9.7 3 13.6 
11 152 6.1 15 5.4 4 18.2 
12 110 4.4 12 4.3   
13 140 5.6 14 5.1 3 13.6 
14 117 4.7 18 6.5 6 27.3 
15 108 4.3 11 4 1 4.5 
16 97 3.9 6 2.2 3 13.6 
17 93 3.7 10 3.6 1 4.5 

 

 

 

 

 



 

Table 2 

Means and Standard Deviations of Cognitive Assessment System Scaled Scores: Development and  
Non-Clinical Validation 
 

Variable Development Non-clinical Validation 1-Way ANOVA 

 M SD M SD F-Ratio p 
Domain              Subtest       
Planning  100.11 15.46 100.62 14.42 0.27 .60 

Matching Numbers(MN) 9.95 3.09 10.00 2.85 0.09 .76 
Planned Codes(PD) 10.09 2.99 10.01 2.79 0.18 .67 

Planned Connect(PN) 10.041 3.00 10.30 2.87 1.91 .17 
Attention 100.68 14.98 99.78 15.39 0.91 .34 

Expressive Attention(EA) 10.05 3.08 10.17 2.87 0.36 .55 
Number Detection (ND) 10.14 3.01 10.01 3.05 1.67 .20 
Receptive Attention(RA) 10.07 3.03 9.90 2.99 0.83 .36 

Simultaneous 101.16 14.92 100.47 15.05 0.54 .46 
Nonverbal Matrices(MT) 10.15 3.00 10.21 3.11 0.08 .77 

Verbal-Spatial Rel. (SV) 10.26 3.01 9.77 2.96 3.76 .05 
Figure Memory (FM) 10.32 3.06 10.18 3.06 0.43 .51 

Successive  100.75 15.16 99.50 14.72 1.70 .19 
Word Series (WS) 10.10 3.07 9.87 2.94 1.40 .24 

Sentence Repetition(SR) 10.24 2.96 10.03 3.03 1.16 .28 
Sentence Questions(SQ) 10.23 3.09 10.02 2.93 1.13 .29 

Speech Rate (SSR) 10.11 3.04 9.99 2.82 0.35 .55 
Full Scale 100.53 15.43 99.74 15.13 0.64 .42 
Parent Education Level 13.46 1.91 13.40 1.91 0.19 .67 
Age (in years) 9.42 3.47 9.33 3.37 0.17 .68 
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 A summary of all of the equations generated from the development group (n = 

2492) are presented in Table 3 and the equations are presented in their entirety at the end 

of the article. The demographic information accounted for approximately 16% of the 

variance for the Full Scale equation, while accounting for 9.4% to 16.8% of the variance 

on the domain equations. The equations comprising both two best CAS predictors and 

demographic variables accounted for 87.3 to 94.9% of the variance. Equations that 

combined demographic variables and the single best CAS predictor accounted for 67%-

75% of the overall variance in the model. It should be noted that all the subtests that 

entered into the equation (with the exception of the Receptive Attention-RA and Visual-

Spatial Relations-SV) are all of the subtests that can be administered for the CAS Basic 

Battery. This can extend the utility of the equations by not requiring examiners to 

administer the full battery but rather the basic battery with the addition of two subtests, 

Receptive Attention and Visual-Spatial Relations.  
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Table 3 

Regression results Summary for Estimating Full Scale and Domain Scores From 
Demographic Variables and Cognitive Assessment System Subtest/Domain Standard 
Scores 
 

Regression Model R2 SEE F 
Full Scale Score    Full Scale Demographic Estimate Eq. 1 0.16 14.16 59.51** 

Full Scale CAS-Subtest Estimate Eq. 1 0.95 3.48 2907.83** 
Full Scale CAS-Subtest Estimate Eq. 2 0.86 5.94 1196.27** 

Full Scale CAS-Domain Estimate Eq. 1 0.87 5.56 1669.20** 
Full Scale CAS-Domain Estimate Eq. 2 0.69 8.64 606.56** 

Planning    Planning Estimate Equation 1 0.90 4.96 2172.71** 
Planning Estimate Equation 2 0.72 8.82 711.12** 
Planning Estimate Equation 3 0.10 14.72 33.134** 

Attention    Attention Estimate Equation 1 0.89 4.95 2034.05** 
Attention Estimate Equation 2 0.69 8.43 599.10** 
Attention Estimate Equation 3 0.09 14.28 32.17** 

Simultaneous    Simultaneous Estimate Equation 1 0.87 5.32 1709.28** 
Simultaneous Estimate Equation 2 0.67 8.58 561.49** 
Simultaneous Estimate Equation 3 0.17 13.63 62.47** 

Successive    Successive Estimate Equation 1 0.90 4.90 2136.94** 
Successive Estimate Equation 2 0.76 7.50 853.77** 
Successive Estimate Equation 3 0.10 14.39 34.92** 

NOTE: N  = 2492.  ** p < .001.  CAS = Cognitive Assessment System; SEE = standard error of estimate; Full Scale Demographics 
Estimate Eq. 1= demographic only equation; Full Scale CAS-Subtest Estimate Eq. 1 = equation utilizing Matching Numbers, Planned 
Codes, Receptive Attention, Expressive Attention, Figure Memory, Visual-Spatial Relations, Sentence Repetition and Word Series 
subtest standard scores + demographic variables to predict Full Scale IQ; Full Scale CAS-Subtest Estimate Eq. 2 = equation utilizing 
Matching Numbers, Receptive Attention, Figure Memory and Sentence Repetition standard scores + demographic variables to predict 
Full Scale IQ; Full Scale CAS-Domain Estimate Eq. 1 = equation utilizing Planning and Successive domain standard scores and 
demographic variable to predict Full Scale IQ s; Full Scale CAS-Domain Estimate Eq. 2 = equation utilizing Planning Domain 
standard scores and demographic variables to predict Full Scale IQ; Planning Estimate Equation 1 = equation utilizing Matching 
Numbers and Planned Codes standard scores + demographic variables to predict Planning Domain score; Planning Estimate Equation 
2 = equation utilizing Matching Numbers standard score + demographic variables to predict Planning Domain score; Planning 
Estimate Equation 3 = demographic only; Attention Estimate Equation 1  = equation utilizing Expressive Attention and Receptive 
Attention subtest standard scores + demographic variables to predict Attention Domain score; Attention Estimate Equation 2 = 
equation utilizing Receptive Attention subtest standard scores + demographic variables to predict Attention Domain score; Attention 
Estimate Equation 3 = demographic only to estimate Attention; Simultaneous Estimate Equation 1  = equation utilizing Figure 
Memory and Visual-Spatial Relations subtest standard scores + demographics to predict Simultaneous Domain score; Simultaneous 
Estimate Equation 2  = equation utilizing Figure Memory subtest standard score + demographics to predict Simultaneous Domain 
score; Simultaneous Estimate Equation 3 = demographic only to estimate Simultaneous domain score; Successive Estimate Equation 1   
= equation utilizing Sentence Repetition and Word Series subtest standard score + demographics to predict Successive Domain score; 
Successive Estimate Equation 2   = equation utilizing Sentence Repetition subtest standard score + demographics to predict 
Successive Domain score; Successive Estimate Equation 3 = demographic only to predict Successive Domain score. 
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. To evaluate the accuracy of the equations, the 17 equations were cross-validated 

with the non-clinical validation sample as well as the TBI validation sample. Validation 

once again confirms the estimated accuracy of the developed equations by utilizing a sub-

sample of the CAS standardization data to test the equations using real data. The 

assessment and demographic data from the two validation groups (10% of the cases and 

the TBI sample) were individually entered into the previously created equation(s) and 

then analyzed to determine accuracy of predicted versus actual scores.  Data for each 

group (i.e., control and TBI) were analyzed using paired-samples t-tests.  For the control 

sample, if the derived equation(s) accurately predicts FSIQ as well as performance on the 

various domain measures, then there should not be a statistically significant difference 

between the earned and estimated scores.  However, for the TBI sample, it is expected 

that predicted scores on each measure will be significantly greater than the actual scores.   

 Following these analyses of the validation groups, the information derived is 

compared to prior research and theoretical expectations to determine how the equation(s) 

performs compared to other pre-morbid estimators. Each of the 277 non-clinical sample 

and the 22 TBI sample data were entered into each of the 17 equations. A total of five 

predicted Full Scale scores were estimated, along with three predicted CAS-domain 

scores for each domain (12 in total).  

 For the non-clinical validation sample, the average predicted score across all age 

levels (domain and full scale) did not significantly differ on all equations except for the 

equation utilizing the top two Attention CAS-subtests to predict the Attention domain 

score (Attention Estimate Equation 2, t(276) = -2.065, p=.04); meaning that all equations 

were effective in estimating pre-morbid intellectual functioning in the non-clinical 
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sample by having predicted scores that did not differ significantly from the actual scores. 

Table 4 shows the equation, minimum and maximum values, and the relative t value and 

p values.  



 

Table 4 

Descriptive Statistics, Mean Comparisons and Significance Results Between Actual and Predicted Values for Domain  
and Full Scale Cognitive Assessment System Results 
 
 Non-Clinical Validation Sample 
Actual IQ Mean SD Min Max P df t 

Full Scale 99.747 15 56 143    
Planning  100.62 14 61 139    
Attention 99.779 14 63 150    

Simultaneous 100.47 15 62 142    
Successive 99.501 14 59 139    

Predicted IQ        
Full Scale Demographic Est. Eq. 1 100.10 6.17 85 116 0.654 276 -0.448 
Full Scale CAS-Subtest Est. Eq. 1 99.69 14.92 57 139 0.812 276 0.238 
Full Scale CAS-Subtest Est. Eq. 2 99.74 14.07 56 135 0.994 276 0.007 

Full Scale CAS-Domain Est. Eq. 1 100.18 14.07 57 134 0.184 276 -1.33 
Full Scale CAS-Domain Est. Eq. 2 100.65 12.44 69 134 0.062 276 -1.871 

Planning Est. Equation 1 100.10 13.39 69 144 0.059 276 1.899 
Planning Est. Equation 2 100.19 12.14 70 133 0.37 276 0.898 
Planning Est. Equation 3 99.61 4.51 88 116 0.213 276 1.248 

Attention Est. Equation 1 100.4 13.81 61 150 0.04 276 -2.065 
Attention Est. Equation 2 99.88 12.06 71 137 0.817 276 -0.232 
Attention Est. Equation 3 100.19 4.36 90 114 0.614 276 -0.505 

Simultaneous Est. Equation 1 100.13 13.66 68 135 0.296 276 1.048 
Simultaneous Est. Equation 2 100.62 12.4 71 132 0.785 276 -0.274 
Simultaneous Est. Equation 3 100.95 6.24 86 113 0.55 276 -0.598 

Successive Est. Equation 1 99.61 14.34 62 137 0.674 276 -0.42 
Successive Est. Equation 2 99.33 13.51 60 131 0.697 276 0.389 
Successive Est. Equation 3 100.65 4.92 89 107 0.159 276 -1.411 

*NOTE: Bold lines indicate predicted scores that are significantly different than the actual score. 
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 To further analyze the accuracy of the predicted scores, a paired sample t-test was 

conducted for each individual age group to determine which equations are most 

appropriate depending on the age of the individual.  All predicted scores did not differ 

from the actual score for each age group except for the following age/equation 

combination displayed in Table 5. Although some equations result in significantly 

different predicted values than actual values, it does appear that each age group has at 

least one equation from each of the CAS-Domain and Full Scale categories that can be 

utilized to predict domain and full scale scores. Further investigation is necessary, 

potentially with a larger sample size, to determine the validity of the equations in Table 5 

in combination with the age groups in question. 

 

Table 5 

Analyses of Cognitive Assessment System Pre-morbid Equation Accuracy by Age 
 
Regression Model Age df Actual 

(Mean) 
Predicted 
(Mean) 

t P 

Full Scale CAS-Subtest Est. Eq. 1 12 11 86 88 2.882 .015 
Full Scale CAS-Subtest Est. Eq. 2 12 11 86 89 3.857 .003 

Full Scale CAS-Domain Est. Eq. 1 6 42 103 101 -2.182 .035 
Full Scale CAS-Domain Est. Eq. 2 12 11 86 93 2.612 .024 

Planning Est. Equation 1 12 11 93 95 -2.695 .021 
Planning Est. Equation 2 12 11 93 97 -2.88 .015 
Planning Est. Equation 3 14 17 106 101 2.294 .035 
Attention Est. Equation 1 7 37 96 98 -2.196 .034 

Simultaneous Est. Equation 1 5 24 105 102 2.521 .019 
Simultaneous Est. Equation 2 12 11 87 94 -2.627 .005 

 16 5 86 94 -5.581 .002 
Simultaneous Est. Equation 3 12 11 87 98 -2.627 .024 

 13 13 108 101 2.433 .03 
 16 5 86 98 -3.405 .019 

Successive Est. Equation 1 14 17 106 104 2.117 .044 
Successive Est. Equation 2 14 17 106 102 2.793 .012 
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 Additional cross-validation analyses on the non-clinical validation sample to 

determine the differences between predicted and actual standard scores on the following 

criteria: (a) ±5 points, (b) ±10 points, and (c) same category. Analyses that are 

comparable to those reported in other studies assessed pre-morbid intellectual functioning 

equations (i.e., Schoenberg et al., 2007). The analyses are displayed in Table 6. In this 

case, predicted scores were categorized into three categories (a) ±5 points, (b) ±10 points, 

and (c) same category and again show comparability to similar studies of estimating pre-

morbid intellectual functioning.  

 

Table 6 

Predictive Accuracy of Estimations of Full Scale and Domain Scores: Non-clinical 
Validation Sample 
 
 Percentage Within 
Equation ±5 ±10 Same Category 
Full Scale Demographic Est. Eq. 1 25.3 53.1 42.2 
Full Scale CAS-Subtest Est. Eq. 1 87 99.6 85.2 
Full Scale CAS-Subtest Est. Eq. 2 65 94.2 71.1 
Full Scale CAS-Domain Est. Eq. 1 65.7 93.5 66.4 
Full Scale CAS-Domain Est. Eq. 2 50.2 81.2 59.2 
Planning Est. Equation 1 75.5 97.1 75.8 
Planning Est. Equation 2 50.2 79.8 57 
Planning Est. Equation 3 25.6 50.2 46.6 
Attention Est. Equation 1 77.6 95.7 31 
Attention Est. Equation 2 48.7 85.2 35 
Attention Est. Equation 3 30 54.9 52.3 
Simultaneous Est. Equation 1 62.1 93.1 69.3 
Simultaneous Est. Equation 2 39.7 70.8 49.5 
Simultaneous Est. Equation 3 28.5 52.3 40.1 
Successive Est. Equation 1 73.3 96.8 72.6 
Successive Est. Equation 2 50.5 81.6 63.5 
Successive Est. Equation 3 29.2 55.6 53.4 
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Discussion 

 The Das-Naglieri: Cognitive Assessment System standardization sample was 

utilized to create 17 regression equations that estimated both the CAS Domain score and 

CAS Full Scale IQ. Procedures were similar to those used to create previous pre-morbid 

estimates based on the Wechsler scales (Schoenberg et. al., 2004, 2007; Vanderploeg et 

al., 1996), utilizing top subtest predictors in combination with demographic variables to 

predict pre-morbid functioning. Predictors included CAS-subtests (both the best 

contributor and the top two contributors), as well as demographic variables (i.e., gender, 

race and parent education level). One component that differed from other studies (but see 

Schoenberg et. al., 2007) was the utilization of dummy coded demographic variables so 

as not to unintentionally influence the analyses assigning numeric values to categorical 

variables.  

 Three equations were created to estimate each of the four CAS-Domain scores. 

This resulted in a total of 12 equations--three equations for each of the CAS-Domains of 

Planning, Attention, Simultaneous and Successive. The equations included the top CAS-

subtest in combination with demographic variables, the top two performing CAS-

Subtests in combination with demographic variables and an equation utilizing 

demographic variables only in estimating pre-morbid CAS-Domains scores. For 

psychometric purposes and to remain consistent with other studies that utilize full scale 

IQ, an additional five equations were developed to estimate pre-morbid intellectual 

functioning for the CAS Full Scale IQ. Two equations utilized the top predicting CAS-

Domain and top predicting CAS-subtest in combination with demographic variables to 

estimate pre-morbid intellectual functioning. Two additional equations combined the top 
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two contributing CAS-Domains with demographic variables and the top two contributing 

CAS-Subtests with demographic variables. The final equation estimated CAS Full Scale 

IQ using only the demographic variables. Cross-validation of the equations was 

accomplished utilizing 10% of the CAS standardization sample as well as 22 individuals 

with a known TBI.    

 In general, the equations derived provided accurate estimates of both CAS-

Domain Scores as well as CAS Full Scale IQ scores. All equations accounted for a 

significant amount of variance in actual CAS-Domain and IQ scores. The standard error 

of estimation (SEE) for demographic only variables was relatively high, though 

comparable with other pre-morbid equation studies, with a range from 13.63-14.39 for 

both the CAS-Domain and CAS Full Scale prediction equations. The SEE was 

significantly improved when demographic variables were combined with CAS measures 

with a range of 3.48-8.82. The lower SEE occurred in equations utilizing the top two best 

contributors from the CAS, both Domain and Subtests, in combination with demographic 

variables. The SEE for this group ranged from 3.48 to 5.56. The equations utilizing only 

the top CAS contributor in combination with demographic variables had SEE values 

ranging from 5.94 to 8.82.  

 When the equations were applied to the non-clinical validation sample the mean 

estimated CAS-Domain and CAS Full Scale IQ scores did not significantly differ any 

equations, except for the Attention Estimate Equation 1 that utilized the top two CAS-

Subtests in combination with demographic variables to estimate pre-morbid CAS-

Attention domain score (p=.04). All combination equations approximated the CAS mean 

of 100 and a standard deviation of 15, while the demographic only variables 
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approximated the CAS mean of 100 but had a standard deviation closer to 5. The 

majority of the equations (n = 10) had estimates of pre-morbid functioning within 10 

points of the actual CAS-Domain and CAS Full Scale IQ scores. All equations that 

combined demographic variables with either top predicting CAS-Subtests or CAS-

Domains preformed significantly better than the demographic only counterparts. Thus, 

combination equations may be utilized prior to utilizing demographic only equations in 

estimating pre-morbid functioning. 

 This study went beyond previous studies by decomposing the pre-morbid 

equations and analyzing the results based on the child’s age. These analyses provided 

information that will be useful in determining the appropriateness of the equation in 

specific age populations. In particular, some equations showed limitations in accurately 

estimating pre-morbid intellectual functioning, primarily for children aged 12 (seven 

equations total) and 14 (three equations total), although additional ages were represented 

with less than three equations resulting in significant differences in actual versus 

estimated scores (ages 5, 6, 7, 13, and 16). Analyses indicated that for 13 of the 17 

equations, predicted scores differed significantly from the actual CAS-Domain or CAS 

Full Scale IQ scores (p < .05) for certain ages. All of the ages (5, 6, 7, 12, 13, 14, and 16) 

had at least one equation for each CAS-Domain and CAS Full Scale Score that did not 

result in significant differences that would be appropriate to use in estimating pre-morbid 

intellectual functioning. For example, if the Attention Estimate Equation 1 resulted in 

significant differences in actual versus predict CAS-Attention scores for seven year olds, 

Attention Estimate Equations 2 and 3 are still valid options for estimating pre-morbid 

functioning in that age group). It should be noted that because all of these age groups had 
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a small sample size (n < 45), further validation of the equations will be necessary to 

determine any true age discrepancies among the equations. All of these results show 

promise in being effective methods of estimating pre-morbid intellectual functioning in 

children and adolescents. 

 It appears that all three equations created to estimate the Planning Domain are 

valid and appropriate to use when estimating pre-morbid intellectual functioning. 

Practitioners should use caution when interpreting the Planning Domain estimates for 

healthy individuals ages 12 and 14 until more information can be provided regarding the 

validity of these equations as they did produce significantly different values from 

estimated and actual scores (p < .05). 

 Two out of the three equations created to estimate the Attention Domain are valid 

and appropriate to use when estimating pre-morbid intellectual functioning as evidenced 

by their predictive value in estimating pre-morbid intellectual functioning on the non-

clinical validation sample. Attention Estimate Equation 1 resulted in significant 

differences between actual and predicted scores for non-clinical individuals (p < .05).  

Practitioners should use caution when interpreting the Attention Domain estimates for 

Attention Estimate Equation 1, particularly for healthy individuals who are seven years 

old, until more information can be provided regarding the validity of these equations as 

they produced significantly different values from estimated and actual scores (p < .05).  

 Overall, all three equations work well in estimating pre-morbid intellectual 

functioning in non-clinical individuals (p > .05) for the Simultaneous domain. As with 

the previous domains, practitioners should use caution when interpreting the 

Simultaneous Domain estimates for all estimate equations, particularly for healthy 
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individuals who are in the 12-16 year range, until further validation can be provided (p < 

.05). The results of the Simultaneous analyses support the initial hypothesis that Figure 

Memory and Visual-Spatial Relations would be significant predictors in estimating pre-

morbid intellectual functioning. This is consistent with Gutentag, Naglieri, and Yeates 

(1998) who found no significant difference in test performance between healthy controls 

and individuals with TBI on the Figure Memory and Visual-Spatial Relations subtests.  

Successive Domain equations appear to work well in estimating pre-morbid intellectual 

functioning in non-clinical individuals as a whole (p > .05). However, the equation did 

result in significant differences in the 14-year-old sample (p < .05), meaning that caution 

in interpretation should be utilized. The results of the Successive analyses are consistent 

with the initial hypothesis that Word Series would be significant predictor of pre-morbid 

intellectual functioning. This also comports with Gutentag et al. (1998) who found no 

significant difference in test performance between healthy controls and individuals with 

TBI on the Word Series subtests. 

 Both the Full Scale CAS-Subtest Estimate Equations and the Full Scale 

Demographic Estimate Equation work well in estimating pre-morbid intellectual 

functioning in non-clinical individuals (p > .05) in that the estimated score does not 

significantly differ from the actual score across all ages in the non-clinical validation 

sample. Practitioners should use caution when interpreting the results of the Full Scale 

CAS-Subtest Estimate Equations 1 and 2, particularly for healthy individuals who are 12 

years old until more information can be provided regarding the validity of these equations 

as they did produce significantly different values from estimated and actual scores (p < 

.05).   
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 Full Scale CAS-Domain Estimate Equations 1 and 2 work well in estimating pre-

morbid intellectual functioning in non-clinical individuals (p < .05) in that the estimated 

score does not significantly differ from the actual score across all ages in the non-clinical 

validation sample. Full Scale CAS-Domain Estimate Equation 1 appears to be less 

effective at predicting Full Scale scores on healthy individuals aged six, as it produced 

significantly different estimations from the actual score(p < .05). In addition, Full Scale 

CAS-Domain Estimate Equation 2 did not perform as well for healthy individuals who 

are 12 years old for the same reason as Full Scale CAS-Domain Estimate Equation 1(p < 

.05).    

 The additional cross-validation utilizing data from 22 individuals identified as 

having a TBI in the CAS standardization sample demonstrated the average predicted 

score across all age levels (domain and full scale) differed significantly on all but 10 

equations. Although these results are promising for estimating pre-morbid intellectual 

functioning in children who have experienced a TBI, the findings should be considered 

tentative as larger cross-validation samples are needed. 

 All pre-morbid intellectual functioning equations must meet basic methodology 

assumptions as set forth by previous researchers (i.e., Schoenberg et al., 2007) in order to 

be deemed appropriate in assessing pre-morbid functioning in both healthy and clinical 

populations. As mentioned previously, when using the equations with healthy 

individuals, Schoenberg et al. (2007) suggest that the difference between the actual and 

estimated IQ score should not be significantly different. Further, they suggest that when 

using the equation with neurologically impaired individuals the predictions should be 

greater than actual performance on IQ measures and the mean of the assumed predicted 
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IQ scores of the clinical sample should estimate the mean of actual Full Scale IQ scores 

of healthy individuals (i.e., mean = 100, standard deviation = 15). In this study, the non-

clinical validation sample confirmed the first component in validating a set of pre-morbid 

estimation equations by having no significant difference between estimated and actual 

scores. 16 out of the 17 equations resulted in no significant difference between the two 

scores (with the exception of the Attention Estimate Equation 1).  

Implications 

 There are substantial theoretical and practical implications of this study. 

Theoretically, prior efforts at estimating pre-morbid IQ have relied heavily on 

atheoretical approaches, such as the Wechsler scales and the Stanford-Binet. While new 

Wechsler scales have been developed, Naglieri and Kaufman (2001) contend that these 

refinements still fail to incorporate new theoretical approaches and only update the 

material based on presentation and standardization data.  

 Alternatively, the Das-Naglieri: Cognitive Assessment System (Naglieri & Das, 

1997) provides an assessment with strong theoretical underpinnings in neurological 

functioning, modeled after Luria’s model of cognitive processing. As such, it 

incorporates the assessment of three functional systems necessary for neurological 

processing, Planning, Attention, and Successive/Simultaneous processing (Luria, 1966, 

1973). 

 This study provides is the addition of utilized the Das-Naglieri: Cognitive 

Assessment System in estimating pre-morbid intellectual functioning offering estimation 

equations based on a more neurologically sound assessment to the field of estimating pre-

morbid intellectual functioning. This marks a great contribution to not only estimating 
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pre-morbid intellectual functioning, but to the field of assessment, evaluation and 

education as well. It provides one more approach to an ever growing field with hopes of 

linking assessment data to intervention, something that has yet to be accomplished in this 

domain.   

 The practice of estimating pre-morbid intelligence is slowly becoming more 

commonplace in the educational system and new benefits are still being discovered. 

There may be additional uses beyond the assistance for intervention selection in 

estimating pre-morbid intellectual functioning. Additional uses that have yet to be studied 

but hold promise include eligibility determination for special education and monitoring of 

recovery following a traumatic brain injury.  

Limitations  

 One limitation of the current study is the finding that children’s cognitive skills 

can progress rapidly during the first six months following a neuropsychological insult 

(Dykeman, 2009).  Thus, there is the chance of either over- or under-estimating the 

child’s pre-morbid intellectual functioning as the time since injury elapses increases 

(Schoenberg et al., 2007). The time elapsed between injury and CAS administration for 

the 22 individuals with a reported TBI used in this study is unknown, necessitating the 

need to continue validating the 17 equations derived in this study. In accordance with the 

previous limitation, a study incorporating time-elapsed since injury into pre-morbid 

estimation equations may prove beneficial in providing even more accurate estimates in 

children with TBIs.  

 Another limitation of the current study is that the equations developed cannot 

account for all variables that may impact the variance in an individual’s PASS cognitive 
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processes and overall cognition, such as location of injury, time elapsed since injury and 

severity of injury (Schoenberg et al., 2008; Harrington, 1990). Again, this can result in an 

over- or under-estimation of the child’s pre-morbid intellectual functioning and should be 

considered when interpreting the results from the equations.  

 Most significantly, the small size of the TBI validation sample for the pre-morbid 

intellectual estimation equations poses a significant limitation in the ability to generalize 

equation estimates to clinical populations. Additional studies may be warranted to 

validate the equations with children who have suffered a neuropsychological injury such 

as traumatic brain injury. 

Suggestions for Future Research 

 Future research should further refine methods of estimating pre-morbid 

intellectual functioning.  First, as is necessary with other pre-morbid equations utilizing 

the Wechsler scales, future research should continue to validate the equations using a 

clinical sample. Ideally, a larger sample of children who have experienced a TBI, ranging 

in age from 5 to 17, would be necessary to fully validate the equations proposed in this 

study. Information on variables including time elapsed since injury, pre-morbid data (if 

available), as well as location and severity of injury would be necessary to provide a 

comprehensive understanding of the utility of the equations in a clinical population. 

Analyses should include performance of the equation depending on the severity, the 

location, as well as time elapsed to determine the appropriate administration of the 

equations in determining pre-morbid functioning in school-aged children.  

 Finally, studies incorporating pre-morbid intellectual functioning in educational 

practices may yield valuable information for both clinicians and school practitioners in 
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education decision making and placement. With the new initiation of Response to 

Intervention (RTI) pre-morbid intellectual functioning may help in selecting and 

implementing evidence based interventions. Determining the usefulness of having pre-

morbid functioning data in the decision making process may allow practitioners to 

implement appropriate interventions more rapidly than applying interventions 

haphazardly that may or may not prove beneficial for the child.  In addition, having pre-

morbid functioning estimates may allow proper placements in special education to further 

validate the educational impact of a traumatic brain injury.  

Conclusion 

 This study set out to create pre-morbid functioning estimation equations using the 

Das-Naglieri: Cognitive Assessment System and will serve to augment the literature of 

estimating pre-morbid intellectual functioning in school-aged children. Evidence suggests 

that 16 of the 17 equations created in this study are valid and appropriate to use in 

estimating pre-morbid intellectual functioning as evidenced by the equations producing 

between estimated scores and that did not reliably differ from actual scores for CAS-

Domains and CAS Full Scale IQ. Further, it provides preliminary evidence that the 

equations may be effective in estimating pre-morbid intellectual functioning in clinical 

samples of children with a TBI.  

  



184 
 

References 

Barona, A., Reynolds, C., & Chastain, R. (1984). A demographically based index of 

premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical 

Psychology, 52(5), 885-887. doi:10.1037/0022-006X.52.5.885 

D’Amato, R., & Rothlisberg, B. (1996). How education should respond to students with 

traumatic brain injury. Journal of Learning Disabilities, 29(6), 670-683.  

 doi:10.1177/00222194900611 

Dennis, M., Wilkinson, M., Koski, L., & Humphreys, R. (1995). Attention deficits in the 

long term after childhood head injury. In S. Broman & M.E. Michel (Eds.), 

Traumatic head injury in children and adolescents (pp. 165-187). New York: 

Oxford University Press.  

Dykeman, B. (2009). Response to intervention: The functional assessment of children 

returning to school with traumatic brain injury. Education, 130(2), 295-300.  

Ewing-Cobbs, L., Fletcher, J. M., & Levin, H. S. (1986). Neurobehavioral sequalae 

following head injury in children: Educational implications. Journal of Head 

Trauma Rehabilitation, 1(4), 57-65. doi:10.1097/00001199-198612000-00011 

Ewing-Cobbs, L., Fletcher, J. M., Levin, H. S., Iovino, I., & Miner, M. E.  (1998).  

Academic achievement and academic placement following traumatic brain injury 

in children and adolescents: A two-year longitudinal study.  Journal of Clinical 

and Experimental Neuropsychology, 20, 769-781.   

 doi:1076/jcen.20.6.769.1109 



185 
 
Faul, M., Xu, L., Wald, M. M., & Coronado, V. G. (2010).  Traumatic brain injury in the 

United States: Emergency department visits, hospitalizations, and deaths. 

Retrieved from http://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf.   

Gutentag, S., Naglieri, J., & Yeates, K. (1998). Performance of the children with 

traumatic brain injury on the cognitive assessment system. Assessment, 5(3), 263-

272. 

Harrington, D. E. (1990). Educational strategies. In E. R. Griffith, & M. Rosenthal (Eds.), 

Rehabilitation of the adult and child with traumatic brain injury (pp. 476-492).  

Philadelphia: F. A. Davis Company.  

Hoffman, N., Donders, J., & Thompson, E. (2000). Novel learning abilities after 

traumatic head injury in children. Archives of Clinical Neuropsychology, 15(1), 

47-58. doi:10.1016/S0887-6177(98)00156-5 

Kaufmann, P., Fletcher, J., Levin, H., Miner, M., & Ewing-Cobbs, L. (1993). Attentional 

disturbance after closed head injury. Journal of Child Neurology, 8(4), 348-353. 

doi:10.1177/088307389300800410 

Luria, A. R. (1966). Human brain and psychological processes. New York: Harper & 

Row. 

Luria, A. R. (1973). The working brain: An introduction to neuropsychology. New York: 

Basic Books.  

Luria, A. R. (1980). Higher cortical functions in man (2nd ed., Revised and Expanded). 

New York: Basic Books.  

 



186 
 
Morris, P., Wilson, J. T., Dunn, L., & Teasdale, G. (2005). Premorbid intelligence and 

brain injury. British Journal of Clinical Psychology, 44(2), 209-214.  

 doi:10.1348/014466505X34174 

Naglieri, J. A., Das, J. P., & Jarman, R. F. (1990). Planning, attention, simultaneous, and 

successive cognitive processes as a model for assessment. School Psychology 

Review, 19(4), 423-442.  

Naglieri, J. A., & Das, J. P. (1997). Cognitive assessment system interpretive handbook. 

Itasca, IL: Riverside.  

Naglieri, J. A., & Kaufman, J. C. (2001). Understanding intelligence, giftedness, and 

creativity using the PASS theory. Roeper Review, 23(3), 151-156.  

 doi:10.1080/02783190109554084 

Russell, N. K. (1993). Educational considerations in traumatic brain injury: The role of 

the speech-language pathologist. Language, Speech, and Hearing Services in 

Schools, 24(2), 67-75.  

Schoenberg, M., Duff, K., Dorfman, K., & Adams, R. (2004). Differential estimation of 

verbal intelligence and performance intelligence scores from combined 

performance and demographic variables: The OPIE-3 verbal and performance 

algorithms. The Clinical Neuropsychologist, 18(2), 266-276.  

 doi:10.1080/13854040490501501 

Schoenberg, M., Lange, R., Brickell, T., & Saklofke, D., (2007). Estimating premorbid 

general cognitive functioning for children and adolescents using the American 

Wechsler intelligence scale for children-fourth edition: Demographic and current 

performance approaches. Journal of Child Neurology, 22(4), 379-388.  



187 
 
Schoenberg, M., Lange, R., Saklofske, D., & Suarez, M. (2008). Validation of the child 

premorbid intelligence estimate method to predict premorbid Wechsler 

intelligence scale for children – fourth edition full scale IQ among children with 

brain injury. Psychological Assessment, 20(4), 377-384. doi:10.1037/a0014010 

Suominen, P., Kivioja, A., Ohman, J., Korpela, R., Rintala, R., & Olkkola, K T. (1998). 

Severe and fatal childhood trauma. Injury, 29(6), 425–430.  

 doi:10.1016/S0020-1383(98)00070-9 

Vanderploeg, R., Schinka, J., & Axelrod, B. (1996). Estimation of WAIS-R premorbid 

intelligence: Current ability of WAIS-R premorbid intelligence: Current ability 

and demographic data used in a best-performance fashion. Psychological 

Assessment, 8(4), 404-411. doi:10.1037/1040-3590.8.4.404 

  



188 
 
Planning Estimation Equation 1: 
Planning domain = 43.914 + Matching Numbers Std. Score (2.972) + Planned Codes 
(2.537) + Gender + PEL + Race 
 
Gender  male (.337) female(nil) 
PEL >HS(nil) HS(1.103) Some College(.861) College grad(2.114) 
Race White(nil) Black(-2.281) Asian(-.544) Other(-.246)                 Native A. 
(2.180) 
 
Planning Estimate Equation 2: 
Planning domain = 59.211 + Matching Numbers Std. Score (4.073) + Gender + PEL + 
Race 
 
Gender  male (-1.791) female(nil) 
PEL >HS(nil) HS(1.444) Some College(1.095) College grad(2.799) 
Race White(nil) Black(-3.123) Asian(2.564) Other(.499)                Native A. 
(3.571) 
 
Planning Estimate Equation 3: 
Planning domain = 98.237 + Gender + PEL + Race 
 
Gender  male (-5.075) female(nil) 
PEL >HS(nil) HS(3.904) Some College(4.268) College grad(7.717) 
Race White(nil) Black(-4.181) Asian(10.113) Other(1.057)                Native A. (-
1.983) 
 
Attention Estimate Equation 1: 
Attention = 45.577 + Receptive Attention Std. Score (3.074) + Expressive Attention Std. 
Score (2.427) + Gender + PEL + Race 
 
Gender  male (-.552) female(nil) 
PEL >HS(nil) HS(.089) Some College(.109) College grad(.397) 
Race White(nil) Black(-.533) Asian(.024) Other(-1.276)                Native A. (-
.660) 
 
Attention Estimate Equation 2: 
Attention = 60.095 + Receptive Attention Std. Score (3.979) + Gender + PEL + Race 
 
Gender  male (-.702) female(nil) 
PEL >HS(nil) HS(.481) Some College(.888) College grad(2.265) 
Race White(nil) Black(-1.824) Asian(1.294) Other(.628)                Native A. (-
.781) 
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Attention Estimate Equation 3: 
Attention = 99.060 + Gender + PEL + Race 
 
Gender  male (-5.363) female(nil) 
PEL >HS(nil) HS(3.560) Some College(4.356) College grad(7.642) 
Race White(nil) Black(-3.542) Asian(8.267) Other(1.159)                Native A. 
(.810) 
 
Simultaneous Estimate Equation 1: 
Simultaneous = 45.975 + Figure Memory Std. Score (2.782) + Visual-Spatial Relations 
(2.493) + Gender + PEL + Race 
 
Gender  male (-.100) female(nil) 
PEL >HS(nil) HS(.649) Some College(1.125) College grad(2.207) 
Race White(nil) Black(-1.655) Asian(1.617) Other(.266)                Native A. (-
2.520) 
 
Simultaneous Estimate Equation 2: 
Simultaneous = 60.716+ Figure Memory (3.677) + Gender + PEL + Race 
 
Gender  male (-.082) female(nil) 
PEL >HS(nil) HS(1.913) Some College(3.215) College grad(5.561) 
Race White(nil) Black(-2.961) Asian(.390) Other(-.522)                 Native A. (-
4.330) 
 
Simultaneous Estimate Equation 3: 
Simultaneous = 95.814+Gender + PEL + Race 
 
Gender  male (-.237) female(nil) 
PEL >HS(nil) HS(4.250) Some College(6.474) College grad(12.577) 
Race White(nil) Black(-9.171) Asian(5.310) Other(-2.961)                Native A.(-
3.439) 
 
Successive Estimate Equation 1: 
Successive = 46.363 + Sentence Repetition (2.931) + Word Series (2.333) + Gender + 
PEL + Race 
 
Gender  male (.048) female(nil) 
PEL >HS(nil) HS(.515) Some College(.558) College grad(1.478) 
Race White(nil) Black(.637) Asian(.403) Other(-.547)                 Native A. (-
.209) 
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Successive Estimate Equation 2: 
Successive = 54.610 + Sentence Repetition Std. Score (4.411) + Gender + PEL + Race 
 
Gender  male (.277) female(nil) 
PEL >HS(nil) HS(.241) Some College(.447) College grad(1.509) 
Race White(nil) Black(1.293) Asian(1.636) Other(-.631)                Native A. 
(1.287) 
 
Successive Estimate Equation 3: 
Successive =  96.200 + Gender + PEL + Race 
 
Gender  male (-.823) female(nil) 
PEL >HS(nil) HS(3.461) Some College(6.146) College grad(11.464) 
Race White(nil) Black(-4.165) Asian(-1.319) Other(-6.063)               Native A. (-
1.393) 
 
Full Scale Demographic Equation 1: 
Full Scale = 96.090 + Gender + PEL + Race 
 
Gender  male (-3.765) female(nil) 
PEL >HS(nil) HS(5.001) Some College(7.050) College grad(13.028) 
Race White(nil) Black(-6.947) Asian(7.181) Other(-2.272)               Native A. (-
1.934) 
 
Full Scale CAS-Subtest Estimate 1: 
Full Scale = 21.584 +Matching Numbers Std. Score (1.090) + Planned Codes (.915) + 
Receptive Attention Std. Score (1.096) + Expressive Attention Std. Score (.863) + Figure 
Memory Std. Score (.983) + Visual-Spatial Relations (.906) + Sentence Repetition Std. 
Score (1.050) + Word Series (.836) + Gender + PEL + Race 
 
Gender  male (.276) female(nil) 
PEL >HS(nil) HS(.397) Some College(.374) College grad(1.112) 
Race White(nil) Black(-.780) Asian(-.319) Other(-.480)                   Native A. (-
.168) 
 
Full Scale CAS-Subtest Estimate 2: 
Full Scale = 33.727 + Matching Numbers Std. Score (1.620) + Receptive Attention Std. 
Score (1.589) + Figure Memory Std. Score (1.384) + Sentence Repetition Std. Score 
(1.916) + Gender + PEL + Race 
 
Gender  male (-.061) female(nil) 
PEL >HS(nil) HS(.514) Some College(.700) College grad(1.958) 
Race White(nil) Black(-1.131) Asian(.826) Other(.572)      Native 
A. (.467) 
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Full Scale CAS-Domain Estimate 1: 
Full Scale = -10.371 + Planning Domain Standard Score (.608) + Successive Domain 
Std. Score (.486) + Gender + PEL + Race 
 
Gender  male (-.279) female(nil) 
PEL >HS(nil) HS(.946) Some College(1.469) College grad(2.766) 
Race White(nil) Black(-2.381) Asian(1.674) Other(.031)               Native A. (-
.052) 
 
Full Scale CAS-Domain Estimate 2: 
Full Scale = 21.218 + Planning Domain Standard Score (.762) + Gender + PEL + Race 
 
Gender  male (-.279) female(nil) 
PEL >HS(nil) HS(2.025) Some College(3.797) College grad(7.146) 
Race White(nil) Black(-3.760) Asian(-.526) Other(-3.078)               Native A. (-
.423) 
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