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ABSTRACT 

 

 

Saaid, Jalal Abdalla.  Goodness of Fit Statistics for Mixed Effect Logistic Regression  

 Models.  Published Doctor of Philosophy dissertation, University of Northern 

 Colorado, 2013. 

 

Mixed effects logistic regression models have become widely used statistical 

models to model clustered binary responses.  However, assessing the goodness of fit 

(GOF) in these models when the cluster sizes and the number of clusters are small is not 

clear.  In this research, three GOF statistics were proposed and their performance in terms 

of Type I error rate and power was examined via simulation study.  The proposed GOF 

statistics were the logit residual, log-transformed residual, and the absolute residual GOF 

statistics.  The simulation study was applied on different cases of number of clusters, 

cluster sizes, and types of predictors.  The simulation results showed the performance of 

the logit residual and the log-transformed residual GOF statistics was poor.  The absolute 

residual GOF statistic performed well over most cases of the simulation.  It gave proper 

Type I error rates and high power for most cases.  It is recommended for use in mixed 

effects logistic regression models as long as the number of clusters is at least 10 and the 

cluster sizes are 10 or more.  However, the absolute residual GOF statistic can be affected 

by extremely small or large estimated probabilities and further research is recommended 

to avoid or reduce this restriction.   
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 The theory of linear models in statistics was extended by incorporating a random 

effect to the mixed effects linear model.  For example in ANOVA models, a predictor 

factor is a random variable with a specific distribution; in this case, including the random 

effect in the model is necessary.  In other cases, when we are dealing with longitudinal or 

repeated measures data sets, the response variable may be correlated within cases or 

subjects.  Incorporating the random effect is very important to avoid the effect of 

autocorrelation in the response variable.  Suppose we are interested in modeling the 

cholesterol levels on some independent variables for individuals over time.  In that case, 

the measurements of the cholesterol on an individual would be correlated. Therefore, we 

might include a random effect in the model to account for the individual source of 

variability.  

 Further extensions of models are the class of generalized linear mixed effects 

models.  In generalized linear mixed effects models, the response variables might be 

binary, categorical, continuous, or counts, i.e., the distribution of the response might not 

be a normal distribution.  The word “generalized” refers to the distribution of the 

response.  For example, a researcher is interested to determine whether an experimental 

teaching method is effective at improving math scores.  In that case, the response variable 

“effectiveness” might be a categorical variable.  Also, students from the same classroom 
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should be correlated since they are taught by the same teacher.  Classrooms within the 

same school might also be correlated.  Therefore, we could include random effects at 

school and class levels to account for different sources of variability.  This study focused 

on a special case of generalized linear mixed effects models where the response variable 

was a binary variable and its distribution was Bernoulli.  Suppose we are treating a 

specific disease of some patients over a period of time and interested in modeling the 

existence of this disease on some predictors of those patients.  In that case, the response 

variable would be binary and would take the value 1 if the disease exists and 0 if not. 

Also, the response variable of the same patient would be correlated.  Therefore, we 

should include the random effect (patients) in the model to account for this source of 

variability.  This type of model is known as mixed effects logistic regression model.  It is 

very commonly used model in analyzing clustered binary responses.  The mixed effects 

linear logistic regression model can be written, 

                ( )  

             (   )  

         

        ( )  

where   is a vector of the random effect parameter with covariance matrix  , and    is 

an distribution from the exponential family for the random effect vector.  The matrices   

and   are the design matrices for the fixed and random effects parameters, respectively, 

and   is a vector of the fixed effects parameters.  The systematic component   is equated 

to the “     ” transformation of the probability vector  ,       ( )     (  (   ).   

 Some methods of estimation developed in recent years can be used to estimate the 

parameters in such models.  These methods of estimation use different likelihood 
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functions such as pseudo-likelihood (Wolfinger & O’Connell, 1993), penalized quasi-

likelihood (Breslow & Clayton, 1993), and hierarchical likelihood (Lee & Nelder, 1996). 

Using one of the likelihood functions, statistical inference for the estimated fixed and 

random effect parameters is typically based on asymptotic normality of the estimators 

using the estimated fisher information matrix of the used estimation technique.  

 To assess the goodness of fit for these models, some methods have been 

developed in recent years.  However, there are advantages and disadvantages of using 

these methods.  One of the present goodness of fit statistics is the Hosmer and Lemeshow 

(1980) test statistic.  This test statistic groups the response variable into subgroups based 

on the estimated probabilities.  That means instead of dealing with single observations, 

we deal with a frequency of each group so the residuals of the model represent the 

differences between the actual frequencies and the estimated frequencies.  However, a 

recent study showed this test statistic is slightly conservative; it is not recommended for 

use in mixed effects logistic models (Evans & Hosmer, 2004). Furthermore, it might have 

low power to detect departure of model fit because it is only based on grouping the 

response while it ignores the predictors region (Hosmer, Hosmer, le Cessie, & 

Lemeshow, 1997; le Cessie & van Houwelingen, 1991).   

Another goodness of fit statistic proposed by Evans and Hosmer (2004) is based 

on estimating the moments of the Pearson chi square statistic and unweighted sum of 

squares. Evans and Hosmer applied some Taylor series approximations to write the 

estimated residuals in terms of the actual residuals.  The approximation for the estimated 

residuals’ moments can be obtained by taking the expectation and variance for the 

approximated expression to the estimated residuals.  These approximated moments of 
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residuals are used to approximate the moments of both Pearson chi square and 

unweighted sum of squares statistics.  Finally, Evans and Hosmer approximated the 

distributions of these statistics as chi square and normal distributions.  Evans and Hosmer 

concluded that using the chi square approximation for the unweighted sum of squares and 

Pearson chi square statistics had good results in terms of type I error rate and were 

recommended for use in mixed effects logistic models.  However, this recommendation 

was only for cluster sizes of 100 or greater and the model should have at least one 

continuous predictor (Evans & Hosmer, 2004).  

 Pan and Lin (2005) proposed graphical and numerical goodness of fit statistics for 

generalized linear mixed effects models.  These statistics used the cumulative sum of the 

residuals, which have a distribution that can be approximated as a zero-mean Gaussian 

process under the true model.  They generated the realizations of these processes by using 

Monte Carlo simulation and then compared the observed process of the model visually 

and analytically to the simulated realization.  For large samples, their test statistics gave 

good type I error rate and power.    

 A recent study was conducted by Sturdivant and Hosmer (2007) to develop a new 

test statistic.  This test statistic could be considered as an extension of Evans and 

Hosmer’s (2004) work.  They used the same idea of estimating the moments of the 

unweighted sum of squares and Pearson chi square statistics after smoothing the residuals 

by using cubic, uniform, and normal kernel functions.  The smoothed residuals test 

statistic gave an appropriate type I error rate and good power for cluster sizes of 20 or 

more.  They addressed a problem of selecting the optimal bandwidth for the kernel 
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functions used in the smoothing and recommended further study for the optimal 

bandwidth selection.  

 The estimated residuals in the logistic models are the differences between the 

actual response value, which is 0 or 1, and the estimated probabilities of the model.  The 

estimated residuals are fractions between -1 and 1.  Therefore, the sum of squares of the 

residuals will be negligible and cannot be approximated as a chi square distribution with 

degrees of freedom related to the whole summation (Agresti, 2002).  This situation is not 

an easy way to develop a goodness of fit test for mixed effects logistic models.  

 Hosmer and Lemeshow’s (1980) test statistic can handle this situation; however, 

as mentioned previously, it is slightly conservative.  Also the test statistic proposed by 

Evans and Hosmer (2004) is recommended for large samples only.  Sturdivant and 

Hosmer’s (2007) test statistic can be useful for cluster sizes of 20 or more but it needs to 

smooth the residuals before using a chi square or a normal distribution approximation. 

Furthermore, selecting the bandwidth for the kernel function used in the smoothing is not 

clear and needs further study.     

 In this dissertation, three goodness of fit statistics that could be used to test the 

model fit in mixed effects logistic regression models or usual logistic regression models 

are proposed.  Estimates of the moments of these statistics are given so their distributions 

could be approximated as a normal or a chi square distribution.  These test statistics could 

be valid for small cluster sizes. 

  The first test statistic is based on the residuals of the “     ” of the probabilities 

instead of the actual residuals, 

        (  )       ( ̂ )                 
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Since the “     ” of the probabilities is a continuous random variable that has values in 

the interval (    ), the unweighted sum of squares and Pearson statistics are 

approximated using a chi square distribution.  Taylor series approximations to the above 

residuals expression are applied to estimate the moments of these residuals.  The 

estimated moments are used to estimate the moments of the unweighted sum of squares 

and Pearson statistics.  However, the distributions of these statistics are approximated as 

a normal or a chi square distribution; the details for this test statistic are provided in 

Chapter III.  

 The second test statistic is based on transforming the actual residuals of the 

probabilities such that the new residuals would be a continuous variable in the 

interval (   ), with the same variability of the actual residuals.  The new transformed 

residuals are 

      (      )                      

where 

          

The moments of the transformed residuals are estimated using a Taylor series 

approximation.  The same idea of the previous proposed test statistics is applied to 

estimate the moments of the unweighted sum of squares and Pearson statistics and 

approximate their distributions.  

 The third test statistic is based on the absolute residuals instead of the actual 

residuals, and it is simply the sum of the absolute residuals. Assuming the residuals of the 

logistic models are approximately normally distributed, the moments of this fit statistic 

can be derived using a folded normal approximation, and then its distribution can be 

approximated.   



7 

 

 

 A simulation study is conducted in Chapter IV to examine the proposed test 

statistics and answer the following research questions: 

Q1 What is the sampling distribution of the logit residual goodness of fit  

 statistic?  

 

Q2 What is the sampling distribution of the log-transformed residual goodness  

 of fit statistic? 

Q3 What is the sampling distribution of the absolute residual goodness of fit  

 statistic? 

Q4 Do these proposed goodness of fit statistics have greater power than  

 existing goodness of fit statistics for small cluster sizes? 

 

Q5 Do these proposed goodness of fit statistics have proper type I error rate? 

 

 In Chapter II, logistic regression models, the method of maximum likelihood to 

estimate the parameters in these models, quasi-likelihood, assessing the goodness of fit in 

such models, and the overdispersion problem are presented.  Also, the mixed effects 

logistic regression models, methods of estimation including pseudo likelihood, penalized 

quasi-likelihood, and hierarchical likelihood are introduced.  Some goodness of fit 

statistics that have been developed in recent years for mixed effects logistic regression 

models are presented.  In Chapter III, the proposed new test statistics, the approximations 

for their moments, and how to approximate their distributions are introduced.  In Chapter 

IV, a simulation study to compare the proposed test statistics with Sturdivant and 

Hosmer’s (2007) test statistics is conducted.  The type I error rate and the power of each 

test statistic are considered in the comparison over some cases of cluster sizes and 

number of clusters.  In Chapter V, some conclusions about this work and some 

recommendations for the future work are presented. 



 

 

 

CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

 

Logistic Regression Models 

 Many practical studies in the medical sciences, social sciences, and other fields 

need to model binary response variables for which the response outcomes are success or 

failure.  For example, one might be interested in modeling the results of admission into 

graduate school on some observed variables of a sample of students, e.g., grade point 

average, GRE score, etc.  In this case, the response variable would take the value of 1 if a 

student is admitted and 0 if not.  One of the statistical models that could be used to deal 

with binary response data is the logistic regression model.  The binary random response 

can be defined as  

  {
                              
                              

}. 

 The above binary random response could be considered as a Bernoulli random 

variable with probability of success   and probability of failure (   ).  Similarly, the 

sum of the responses over a sample n would have a binomial distribution.  The general 

form for the logistic regression model can be written as 

      ( )     (
 

   
)      2.1 

The right hand side of the above equation is called the systematic component, where   is 

a (n x k) design matrix and   is a (k x 1) vector of parameters.   
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 The term       ( )     (
 

   
) is a logit transformation from probabilities to a 

continuous random response; it is called the link function.  From equation 2.1, we can 

write the probability of success vector as 

  
   

     
. 

Estimation  

 Maximum likelihood.  Let         be independent random variables such that 

   is the number of successes in the group or class i, ni is the number of trials in the i
th

 

class, and    is the probability of success in the i
th

 class.  In that case,    would have the 

binomial distribution with parameters (     ).  The likelihood function for the i
th

 

observation could be written as 

 (     )  (
  

  
)   

  (    )
        

 

For the independent observations, the likelihood function would be  

 

 (   )  ∏(
  

  
)   

  (    )
     

 

   

  

Therefore, the log likelihood function  ( ) could be written as 

 (   )  ∑[   (
  

  
)       (

  

    
)    (    )]

 

   

  2.2 

 

Using Equation 2.1, the log likelihood function in terms of the Xi’s and βi’s  could be 

written as follows: 

 (   )  ∑[   (
  

  
)    ∑   β 

 

   

       (     ∑   β 

 

   

)]  

 

   

 

 



10 

 

 To find the estimators for the coefficients  , we would derive the log likelihood 

function with respect to   and maximize this function.  First, the derivative of the log 

likelihood function 2.2 with respect to    is 

  

   
 ∑

       

  (    )

 

   

  

Using the relation    
                   

                       we can find  
   

   
.  

 By applying the chain rule, we can find the derivative of the log likelihood 

function with respect to    as follows: 

  

   
 

  

   
   
   

   
   

where  

  

   
 ∑

       

  (    )
 

 

   

 

and 

   
   

   
 

                   

[                     ] 
      

Therefore, the maximum likelihood estimator for the j
th

 coefficient could be obtained by 

solving the following score equations: 

  

   
 ∑

       

  (    )

 

   

   
                   

[                     ] 
        

 

These equations could be solved by applying the iterative method using a computer 

program.  The same procedure would be applied for all entire parameters.  

 For the vector of parameters  , the iterative equations could be derived by using 

Newton-Raphson method, which is derived by using Taylor expansions around initial 
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parameter for a function   ( ) of parameter  .  This procedure is based on the general 

iterative equation,  

        
  ( )

   ( )
  

where         (converges) when   ( )   .  

 Using this method, we can derive the iterative equations for the parameters    

vector as 

 ̂     ̂    [    ( ̂   )]
  

   ( ̂   ). 

 

The maximum likelihood estimators for the parameters would be efficient, consistent, 

and asymptotically normally distributed.   

 Quasi-likelihood.  It is known that when generalized linear models are applied 

using a distribution such as Binomial or Poisson, there is a specific relationship between 

the mean and the variance of the distribution.  In the case of binary response data, which 

follow a Bernoulli distribution, there is the mean-variance relationship, 

 ( )   (   )     

Normally the likelihood function is constructed using the assumption that the response 

distribution is fully specified, but unusual relationships between the mean and the 

variance of a response could occur.  In most real data situations, the above mean-variance 

relationship does not hold.  Extra variation usually exists with practical observations.  

The quasi-likelihood approach could deal with such problems; it needs only the 

specification of the mean-variance relationship rather than specifying the full distribution 

of the response.  In general, the quasi-likelihood function is constructed as follows 

(Wedderburn, 1974). 
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 Let          be independent responses with mean  (  )     and variance 

   (  )   ( ) (  ).  Assume    is a function of the unknown parameters        ,   

is a known function, and  ( ) is the dispersion parameter.  This method of estimation 

needs only a model for the mean with respect to the relationship between the mean and 

the variance of the data and does not need the full distribution of the data.  The quasi-

likelihood is defined as a function  (     ) such that 

 
  (     ) 

   
   

     

 ( ) (  )
  

This function is defined for one observation(  ).  For n independent observations, the 

quasi-likelihood function could be written as 

  ∑ (     )  ∑
     

 ( ) (  )
 

 

   

 

   

 

As    is a function of the regression coefficients, estimators for the regression 

coefficients could be obtained by solving the following equations: 

  

   
   

  

   
 
   

   
 

           ∑
  (     ) 

   

 

 

 

           
∑

   

   

     

 ( ) (  )
 

 

 

 

 

for         .  The above equations are full-data, quasi-likelihood functions for 

estimating    and can be written in matrix notation as follows: 
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   [

 

 ( ) 
]
  

(   )  

 

2.3 

where 
  

  
 is a (n x1) vector of the elements 

  

   
 ,   is a (n x p) matrix of the elements 

   

   
 , 

  is a (n x n) diagonal matrix with elements  (  ),  ( ) is the dispersion parameter,   is 

a (n x 1) vector of responses, and   is a (n x 1) vector of associated means.  Equation 2.3 

is called the quasi-score function and it has the general form of 

 ( )  
  

  
   [

 

 ( ) 
]
  

(   ). 

 

Therefore, the mean of the quasi-score function is 

 [ ( )]    [
 

 ( ) 
]
  

 (   )     

We find  ̂ by solving  [ ( )]   .  The covariance matrix of  ( ) can be obtained as 

follows: 

 

 McCullagh and Nelder (1989) showed that this matrix approximately played the 

same role as the Fisher information matrix of the ordinary likelihood functions.  Under 

some limitations on the eigenvalues of  ( ), the asymptotic covariance matrix of  ̂ could 

be written as 

   ( ̂)      ( )   ( )[      ]    

   [ ( )]     [
  ( )

  
] 

                          [
   

   
] 

                         
      

 ( )
 

                         ( )  
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One estimation procedure for the quasi-likelihood equations is called the iterative quasi-

scoring procedure; it is performed using the iteration approach on the quasi-score 

functions.  

 Using the Newton-Raphson method, 

 ̂     ̂    [    ( )]    ( )  

where 

  ( )  
  

  
   [

 

 ( ) 
]
  

(   )       (   ) 

and 

   ( )  
   

   
    [

 

 ( ) 
]
  

           

Thus, the iterative procedure for quasi-likelihood estimators would be   

 ̂     ̂    [      ]       (   )  

where D,     and   are calculated at    ̂     

 This estimation approach assumes that the variance function  ( ) (  ) is 

correctly specified.  Under this assumption, the estimates of the regression coefficients 

using this procedure are consistent, asymptotically unbiased, and asymptotically, 

normally distributed (Lee, Nelder, & Pawitan, 2006).  If the variance function is not 

correctly specified, the regression coefficients will not be efficient.  In other words, the 

estimated variance  ( )[      ]  will not be a consistent estimator of    ( ̂).  

 Huber (1967) and White (1980) proposed a new estimate for the covariance of 

parameter estimators.  This estimate is called the robust or “sandwich” estimator; it can 

be used for any specified variance function.  The sandwich estimator can be defined as 

   ( ̂)  (      )  (           )(      )    
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where   is a diagonal matrix consists of the elements 

    [   ]
     (  )  

 

Assessing Model Fit  

 In this section, I discuss some fit statistics that could be used to test the model fit 

in the logistic regression models.  

 Deviance.  The deviance is simply the twice difference between the log likelihood 

function under the actual sample and the log likelihood under the fitted observations of 

the model.  Therefore, the deviance function can be written as 

 (   ̂)   { (   )   ( ̂  )}  

That is,    

 

 (   ̂)   {∑[[   (
  

  
)           (     )    (    )]

 

   

 [   (
  

  
)         ̂   (     )    (   ̂ )]]} 

   ∑{     (
  

 ̂ 
)  (     )    (

    

   ̂ 
)}

 

   

  

  

where    
  

  
  is the probability of success calculated under the entire observations for 

group or category i and  ̂  is that probability estimated under the fitted model.  The 

deviance function can be written as 

 (   ̂)   ∑{     (
  

 ̂ 
)  (     )    (

     

    ̂ 
)}

 

   

                         ̂     ̂    

where    is the number of successes and  ̂  is the predicted number of successes in the i
th

 

group using the fitted model. 



16 

 

 In most situations, the deviance function has a behavior similar to the residual 

sum of squares or the weighted sum of squares in the usual linear models.  This test 

statistic is very useful as long as we have categorical or binary predictors in the model, 

i.e., this test statistic is designed for grouped responses and will not be useful if we have 

only continuous predictors.  Under the assumption of independence of the groups, the 

deviance statistic can be used to test the hypothesis that the model is fit or not by 

comparing the deviance statistic with the tabulated chi square distribution with degrees of 

freedom (m-p), where m is the number of groups and p is the number of parameters in the 

model. 

 Pearson sum of squares statistic.  The Pearson goodness of fit statistic is the 

sum of squares of the Pearson residuals; it can be written as 

   ∑ ̂ 
 

 

   

  

where 

 ̂  
(    ̂ )

√ ̂ (   ̂ )
 

is the i
th

 “studentized” Pearson residual. 

This statistic is assumed to have asymptotic chi square distribution with (n-p) degrees of 

freedom.  Hosmer et al. (1997) showed that the p-value of this statistic is usually 

conservative using a chi square distribution.  In other words, the value of this test statistic 

is usually negligible when compared with a chi square value, which leads us to fail to 

reject a model with poor fit. 
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 Unweighted sum of squares statistic.  The unweighted sum of squares test 

statistic is simply the sum of squares of the nonstandardized residuals, which can be 

defined as 

 ̂  (    ̂ )  

Thus, the unweighted sum of squares statistic is 

  ∑ ̂ 
 

 

   

 ∑(    ̂ )
  

 

   

 

This test statistic is assumed to have asymptotic chi square distribution with (n-p) degrees 

of freedom and can be used to test the hypothesis that the model is fit or not.  However, if 

the response variable is not grouped over the predictors, this test statistic is not useful and 

could be conservative. 

 Hosmer and Lemeshow’s test statistic.  Suppose we have a model with only 

continuous predictors.  In that case, the response observations could not be grouped into 

classes based on a categorical or binary predictor.  Therefore, the previous test statistics 

would not fit in such a situation because the calculated chi square would be negligible 

and then the test would be conservative.  Hosmer and Lemeshow’s (1980) test statistic 

grouped the response observations into subgroups based on percentiles of the estimated 

probabilities.  Usually 10 groups are chosen with 10 in each group; however, the number 

of groups is subjective to the researcher and depends on the sample size.  Each group has 

two pairs of counts: one for the observed counts of data falling into the group and the 

other for the predicted counts.  In the first group, the first pairs of counts have the highest 

decile estimated probabilities; the next second pairs have second decile estimated 

probabilities, and so forth.  After grouping the data, Hosmer and Lemeshow used a 
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Pearson test statistic to compare the observed counts with the fitted counts.  Therefore, 

their test statistic can be written as 

 ̂  ∑(    ̂ )
   ̂ 

  

   

  

where    and  ̂  are the observed and the predicted number of successes in the j
th

 group, 

respectively.  Depending on a simulation study, Hosmer and Lemeshow showed that this 

test statistic had approximately chi square distributed with degrees of freedom equal to 

number of groups minus 2.  This is approximately true when the model is a good fit and 

the estimated expected frequencies are large. 

 Smoothed residual-based tests.  Le Cessie and van Houwelingen (1991) noted 

that the Hosmer and Lemeshow’s (1980) test depended on a grouping technique in the 

response space and it ignored the “x” space.  They pointed that the Hosmer and 

Lemeshow test might lack power to detect departures from the model in regions of the 

“x” space, which might give the same predicted probabilities, i.e., the Hosmer and 

Lemeshow test might not be an appropriate fit statistic in detecting departures from 

linearity in the “x” space. 

 Le Cessie and van Houwelingen (1991) proposed a class of tests based on the 

smoothing of residuals with respect to “x” space.  The idea of using smoothed residuals 

was proposed by Copas (1980) and Azzalini, Bowman, and Hardle (1989) who applied it 

in the non-parametric regression.  They computed a smoothing value of the outcome 

variable for each subject, which is a weighted average of the response values for subjects 

near a subject, and compared it with the corresponding fitted probability. 
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 Hosmer et al. (1997) employed weight functions, using the uniform kernel for the 

“x” space as applied by le Cessie and van Houwelingen (1991) and a cubic weight in the 

“y” space.  To introduce these test statistics, the “x” space weight, which defines the 

distance between subject i and j, could be written as 

   
  ∏ (       )

 

   

  

where  (       )    if |       |      , and zero otherwise, and    is the sample 

standard deviation of the k
th

 predictor.  Based on a simulation study, le Cessie and van 

Houwelingen recommended that the cut point    should be chosen such that √  of the 

subjects had non-zero weights. 

 For the “y” space, the cubic weights were used and defined as 

   
 
   (| ̂   ̂ |)

  

if  | ̂   ̂ |     and zero otherwise.  The cut point    depended on i and was chosen 

such that √  of the subjects had non-zero weights. 

 The smoothed standardized residuals could be written as 

 ̂   ∑   
 
 ̂ 

 

   

           ̂  (    ̂ ) [⁄  ̂ (   ̂ )]   

for the “y” space and 

 ̂   ∑   
  ̂ 

 

   

           ̂  (    ̂ ) [⁄  ̂ (   ̂ )]   

for the “x” space. 

 Using the above smoothed residuals, the smoothed residuals-based test statistic 

could be defined as 
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 ̂  ∑
 ̂  
 

   ( ̂   )̂

 

   
  

They denoted the statistic as  ̂   in case of using the uniform kernel weights in the “x” 

space and as  ̂   in case of using the cubic space in the “y” space. 

 To apply this test statistic, we needed to estimate the mean and variance for each 

test statistic under the assumption that the fitted model was true.  Using the estimates of 

the moments, we used the normal approximation or chi square approximation by 

estimating its degrees of freedom.  

  Now to estimate the moments, Hosmer et al. (1997) assumed   was a (n x n) 

matrix of weights with i
th 

row   , which consisted of the weights for the distance of 

subject i to subjects 1 to n.  

 Let  ̂      [ ̂  (   ̂  )]  be an n x n diagonal matrix.  Thus, in matrix 

notation, the standardized residuals and the smoothed standardized residuals could be 

written as 

 ̂   ̂  ⁄  ̂ 

and 

 ̂    ̂    ̂  ⁄  ̂  

Therefore, in matrix notation, the smoothed residuals based test could be expressed as 

 ̂   ̂     
    ̂   ̂  ̂  ⁄ (    

   ) ̂  ⁄  ̂  

where    is a (n x n) diagonal matrix of the diagonal elements of the matrix    and 

represents a diagonal matrix of the variances of the smoothed residuals. 
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 This quadratic form cannot be simplified as a Pearson chi-square statistic because 

the matrix   
   in the middle includes only diagonal elements of the variances of the 

smoothed residuals; it is not a full covariance structure. 

 Using the first order Taylor’s approximation, le Cessie and van Houwelingen 

(1991) derived 

 ̂        

 ̂  (   )   

 ̂     

where     (    )      

 By substituting  ̂  (   )  and  ̂   , the test statistic could be written as 

 ̂    (   )    ⁄ (    
   )   ⁄ (   )         

where    (   )    ⁄ (    
   )   ⁄ (   )  

 Now, using the results for the moments of quadratic forms by Seber (1977), le 

Cessie and van Houwelingen (1991) derived the moments of the test statistic as 

 ( ̂ )       (   )  

   ( ̂ )  ∑    
   (     )         (       )

 

   

  

Estimates of the above moments could be obtained by substituting  ̂ in the formulas.  

 Based on a simulation study, Hosmer et al. (1997) concluded that for small 

samples, it was better to approximate the distribution of the smoothed residual based test 

as a scaled chi square distribution    
 .  The constant   and the degrees of freedom   

depended on the estimated mean and variance and could be estimated as 
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 ̂     
   

 ( ̂ )    (  
 )      

and 

   ( ̂ )       (  
 )        

 Solving the above moment equations, we could get 

  
   ( ̂ )

  ( ̂ )
            

 [ ( ̂ )]
 

   ( ̂ )
  

  ( ̂ )

   ( ̂ )
   ̂        

            
 [ ( ̂ )]

 

   ( ̂ )
  

Therefore, we could accept the hypothesis that the model is fit if 

 ̂   
   ( ̂ )

  ( ̂ )
    

           
 [ ( ̂ )]

 

   ( ̂ )
. 

Depending on a simulation study, Hosmer et al. (1997) found that these tests had power 

exceeding 90% to detect moderate departures from the model linearity when the sample 

size was 500 and over 50% when the sample size was 100. 

 From the previous review of the test statistics for the logistic regression models, 

each test statistic was not always appropriate to use.  The deviance, Pearson chi square, 

and the unweighted sum of squares statistics would not be useful if the response could 

not be grouped over the predictors, i.e., they would not be appropriate for models with 

only continuous predictors.  Hosmer and Lemeshow’s (1980) test statistic could be used 

for any situation of the model but a recent study by Evans and Hosmer (2004) showed it 

was a slightly conservative test.  Another study noted that it might lack power to detect 

departures from the model in regions of the “x” space.  Smoothed residual-based tests are 

appropriate for use with any model to detect a moderate departure of linearity since they 
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have power exceeding 50% with cluster sizes that are at least 100 and exceeding 90% 

with cluster sizes that are at least 500. 

Overdispersion 

 Overdispersion in binomial responses is the property of variance in the response 

   being larger than the variance indicated by the binomial model.  The overdispersion 

problem commonly occurs in practical applications when the responses are correlated or 

clustered as in the case of longitudinal data.  However, extra variation in the data causes 

both the Pearson and deviance statistics to be too large, which leads to a false conclusion 

of poor fit.  In ordinary linear models, there is no existence of such a problem because in 

a linear regression model, 

    (  
     )  

the variance    is estimated separately of the mean function   
  .  However, with discrete 

response variables, the variance is estimated by the mean.  The reason is that the 

Binomial and Poisson distributions specify particular relationships between the variance 

and the mean.  However, overdispersion is an undesired problem because it inflates the 

type 1 error rate in the model.  

 There are some approaches to deal with this problem.  One way is to specify a 

more dispersed distribution than the usual distribution I used.  For example, a binomial 

model could be changed to the beta-binomial model.  A more popular method for 

adjusting for overdispersion came from the theory of quasi-likelihood and different 

estimating equation techniques. 
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Mixed Effects Logistic Regression Models 

 In normal linear mixed models, we learned that we should incorporate a random 

effect into the model when we have a random sample of a grouping factor as a predictor.  

This adjusts the response variance to account for another source of variation. 

Furthermore, in dealing with repeated measures and longitudinal studies, the response 

observations are usually clustered or correlated within each subject.  Therefore, including 

the random effect in the model becomes important to account for different sources of 

variability.  The same situations might occur when we deal with generalized linear 

models.  The mixed effects logistic regression model is a special case of the generalized 

linear mixed model when the response variable is binary.  To introduce this model, let   

be a vector of Bernoulli observations with a vector of corresponding probabilities  .  The 

mixed effects logistic regression model probability could be defined as 

  
      

        
   

with the components of 

                 ( )  

             (   )  

         

        ( )  

where   is a vector of the random effect with covariance matrix  .  The distribution of 

the random effect    is an arbitrary distribution from an exponential family.  The link   

is the “     ” transformation of the probabilities vector  .  In subsequent sections, some 

methods of estimation for the parameters in such models are introduced. 
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Estimation of Parameters  

 Pseudo likelihood.  The pseudo likelihood was proposed by Wolfinger and 

O’Connell (1993); it is one of the methods that can be used to estimate the parameters in 

generalized linear mixed effects models.  The idea of this approach is to transform a 

nonlinear mixed model to a regular linear mixed effects model by using the first order 

Taylor approximation on the inverse of the link function.  Assume that we have the 

generalized mixed logistic effects model, 

      [     ( )]  

    [       (  )]    

         

   ( )  

where    and    are the distributions for the conditional response     and the random 

effect  , respectively.  The random effect   is a link transformation of  ,    ( ) and 

its distribution is assumed,     (   ). However, the random effect under the pseudo-

likelihood approach is assumed to be approximately normally distributed. 

 Using the link function of the above model information, the response mean can be 

written as 

     ( )     (     )  

Now if we expand the response mean in a first order Taylor series approximation about 

estimators of the fixed effect parameters   and the random effects  ,  
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     ( )      ( ̂)      (
    ( ̂)

  ̂
|
   ̂

)(   ̂) 

      ( ̂)   ̂(          ̂    ̂  )                           2.4 

where 

 ̂      (
    ( )

  
|
   ̂

)  

and 

 ̂    ̂    ̂  

 From equation 2.4, we can write 

       ̂  [     ( ̂)]   ̂   

Thus, we can write the pseudo response of 

   ̂  [     ( ̂)]   ̂ 

with a conditional mean of 

 (   )   ̂  [ (   )     ( ̂)]   ̂ 

   ̂  [     ( ̂)]   ̂         

and conditional variance of 

 (   )     ( ̂     ) 

   ̂     (   ) ̂   

   ̂    ̂    

 Using the conditional variance rule, we can derive the marginal variance and the 

marginal mean for the pseudo response: 
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 ( )    [ (   ) 

    [     ] 

         ( ) 

    , 

and 

 ( )      [ (   )]    [   (   )] 

      [     ]    [ ̂
    ̂  ] 

        ̂    ̂  . 

Now, we can write the linear pseudo model with an unobserved error term of 

          , 

where   

 (   )    

and 

   (   )   (   )   ̂    ̂     

 Wolfinger and O’Connell (1993) assumed  

    
  ⁄     

  ⁄   

where   
  ⁄

 was a diagonal matrix of the variance function of   for a specific generalized 

linear model under the study and     was unknown.  If we assume we are dealing with a 

logistic regression model, we have 
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 ̂        (
    ( )

  
|
   ̂

)

  

 

      (  [   ( ̂)]) 

      (  [ ̂]) 

      (
 

 ̂(   ̂)
)  

and 

       [ (   )]  

 Using  ̂ as an initial approximation of  , we can approximate the error 

conditional variance of 

 ̂    ̂
  ⁄     ̂

  ⁄   

Assuming that the error term has a normal distribution, we can specify the conditional 

distribution of the pseudo response of 

             [          ( ̂)  ̂
  ⁄     ̂

  ⁄   ( ̂)]  

 Now, suppose that the random effects are normally distributed      (   ).  We 

can treat the pseudo model as a normal linear mixed effects model.  Therefore, the 

marginal log likelihood function for the pseudo response could be written as 

 (        )   
 

 
  (  )  

 

 
       

 

 
(    )   

  (    )  

which could be maximized for  , where 

         ̂    ̂    

If the covariance matrices for the conditional response and the random effect had 

dispersion parameters  , they could be estimated using the marginal variance   .  To 
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estimate the dispersion parameters, Wolfinger and O’Connell (1993) derived the profile 

likelihood of 

 (   )  (   )   (    
   )  (  ⁄ )       ⁄  (  ) [    (   )]⁄⁄   

where 

     (      )        . 

The estimates of the dispersion parameter   could be done using numerical methods to 

estimate   and   from the profile likelihood through   , which gives 

 ̂   ̂   ̂   ̂   ⁄  

Using the profile likelihood estimates for  ̂ and  ̂, we could get simultaneous estimates 

for the parameters   and   by using the hierarchical joint log likelihood of the pseudo 

response and the random effect (Henderson, Kempthorne, Searle, & Krosigk,1959): 

 (   )  
 

 
(       )   ̂  (       )  

 

 
   ̂     

The derivatives would give two score equations that could be solved using iterative least 

squares of 

[ ̂
 ̂
]  [ 

  ̂      ̂   
   ̂      ̂     ̂  

]
  

[ 
  ̂   

   ̂   
]  

 Furthermore, the variance covariance matrix for the estimated fixed and random 

effects parameters could be estimated by the inverse of the Fisher information matrix: 

    [ 
  ̂      ̂   

   ̂      ̂     ̂  
]
  

  

The estimators of parameters using pseudo-likelihood are asymptotically consistent and 

normally distributed.   
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 Penalized quasi-likelihood.  In generalized linear mixed models, to estimate the 

parameters using maximum likelihood, we need to evaluate the full likelihood function 

under a hierarchical model.  This function usually includes high order integration, which 

is hard to evaluate in closed form.  The penalized quasi-likelihood is a method that 

approximates the likelihood function, which was proposed as a method of estimation in 

generalized linear mixed models by Breslow and Clayton (1993).  To introduce this 

method of estimation, consider the generalized linear mixed model of 

  ⁄      [     ( )]  

      [       (  )]    

         

   ( )  

where    and    are the distributions for the conditional response   ⁄  and the random 

effect  , respectively, and    ( ), has a distribution     (   ).  For the above 

model, the integrated quasi likelihood function could be written as 

  (   )        ⁄ ∫    [ 
 

  
∑   (  

 
      )  

 

 
      ]   , 

where   is the covariance matrix of the random effect  ,   is the canonical parameter, 

and  (   )    ∫
   

  ( )

 

 
     Now, after writing the above integrated quasi likelihood 

function as        ⁄ ∫    ( )  , Breslow and Clayton applied Laplace’s method for 

integral approximation to derive 

  (   )        ⁄    ( ̃)
 

√  ( ̃)
      

 

 



31 

 

where 

 ( )  
 

   
∑  (  

 

   

   )  
 

 
       

and  ̃ is the solution to   ( )   .  From the previous definitions, we have 

  (     )  
(     )

   (  )
 

and 

   (     )

   
  

(     )

   (  )
  
   

   
   

It follows that 

      (  )   

and 

   

   
 

 

  [   (  )]
 
   

   
 

 

  (  )
 
   

   
 

  
  (  )

  

Thus, 

 (   )   
 

 
       

 

 
       ( ̃)   ( ̃), 

where 

  ( )  
 [

 
  

∑   (  
 
      )  

 
       ]

  
  ∑

(     )  
  (  )  (  )

     
 

   
 

and 

 

   ( )    ∑ {[
 

  (  ) 
 (  )

 
 

   
 (     )  ] 

 

   
 [(     )   

 

   
 

 

  (  ) 
 (  )

]} 
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              ∑  
    

 

  (  )[ 
 (  )]

 
 

 

   
    ∑ (     )   

 

   
 

 

  (  ) 
 (  )

 

   
 

                        

The matrix   is an n x n diagonal matrix of the elements 

   {  (  )[ 
 (  )]

 }    

 McCullagh and Nelder (1989) showed that for the canonical link function, 

  ( )  [ ( )]   was satisfied: 

  [ ∑ (     )   
 

   
 

 

  (  )  (  )

 

   
]     

Now from the previous discussion and derivatives, we can write the approximation for 

the quasi likelihood function as 

  (   )   
 

 
       

 

 
   |        |  

 

  
∑   (  

 
      )  

 

 
       

                
 

 
            

 

  
∑  (  

 

   

   )  
 

 
 ̃     ̃                                              

where  ̃ maximizes the sum of the last two terms  ( )   Breslow and Clayton (1993) 

assumed that the iterative weights varied slowly or were not a function of the mean at all 

so they ignored the first term:  
 

 
              Now choosing   that maximizes 

 

  
∑   (  

 
      )  

 

 
 ̃     ̃, we have ( ̂  ̂)  ( ̂( )  ̂( )), where  ̂( )   ̃( ̂( )). 

These estimates jointly maximized the penalized quasi likelihood of 

 ̃(   )   
 

  
∑  (  

 

   

   )  
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To estimate the parameters (   ), we take the first derivative with respect to   and  , 

respectively, which yield the following score equations: 

∑
(     )  

  (  ) 
 (  )

  
 

   
  2.5 

and  

∑
(     )  

  (  ) 
 (  )

       
 

   
  2.6 

 As a solution for the above score equations, Green (1987) derived the Fisher 

scoring algorithm as a weighted least squares solution.  Using first order Taylor’s 

approximation for the link function at   , Green defined the pseudo response vector: 

    (   )  ( )  

with variance 

      ( )     ( )    ( )    ( )   ( ) 

           ( )               , 

where     is a diagonal matrix of the terms,   (  )[ 
 (  )]

  and    (  )    (  ). 

 Using the Fisher scoring algorithm, Breslow and Clayton (1993) derived the 

simultaneous solution to equations 2.5 and 2.6 as an iterative solution to the equations of 

[
        
            

] [
 
 
]  [

    
    

]. 

The estimates of parameters using this approach were asymptotically consistent and 

normally distributed. 

 Hierarchical likelihood.  Hierarchical likelihood is a method of estimation that 

can be used to estimate the parameters in generalized linear mixed models.  This 

technique was proposed by Lee and Nelder (1996) as an extension of the joint h-
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likelihood approach to estimate the parameters in the normal linear models with random 

effects (Henderson et al., 1959).   

To introduce this method of estimation, consider the following hierarchical 

generalized linear mixed model: 

  ⁄    [     ( )]  

    [       (  )]    

         

   ( )  

where    is the distribution for the response,    is an arbitrary distribution from the 

exponential family for the random component, and    ( ) are the random effects, 

which is a function of   related to the response canonical link.  Under this estimation 

technique, the distribution of the random effect is not necessarily normal distribution.  

Lee and Nelder (1996) defined the log hierarchical likelihood function as 

   (       )   (   )  

where   and   are the canonical and dispersion parameters, respectively, and   is the 

parameters vector of the distribution of  , considered as dispersion parameters.  

 To estimate the fixed and random effects parameters simultaneously, we can take 

the first derivative of   with respect to both fixed and random effects parameters:  

   

   
    

   

   
    



35 

 

The solution for these equations can be obtained using an iterative weighted least square 

approach.  For example, the response variable has a binomial distribution and the random 

effects have a Beta distribution with parameters    and   .  In this case, we have 

               (    )   

         (     )  

      ( )  

       ( )  

For this model, the hierarchical log likelihood function can be written as 

   (         )   (       )   (   )  

where      (
 

   
) is the canonical parameter and   is the dispersion parameter for the 

binomial distribution. 

 Now, since the conditional distribution of the response given   is a binomial, the 

log likelihood function for the conditional response distribution is 

 (       )     (
 
 )      (

 

   
)      (   )  

Using the canonical parameter      (
 

   
) and ignoring the constant    (

 
 ) yield, 

 (       )           (
 

    
)  

Also, by substituting the relation           and taking the sum over all sample 

observation across the groups for the above function, we can rewrite the log likelihood 

function as 

 (       )  ∑∑{

  

 

 

 

   (       )      [
 

          
]}  
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Now, the random effect   has a beta distribution with parameters    and   ; thus, its log 

likelihood function for one observation can be written as 

 (        )      (     )  (    )      (    )   (    )  

Again, by using the relation         (  ), we can write the log likelihood function over 

all observations as 

 (        )  ∑{ 

 

 

   (     )       (     )   (     )    [
   

(     ) 
]}  

Therefore, the log h-likelihood function for this model can be expressed as 

 (         )  ∑∑{

  

 

 

 

   (       )      [
 

          
]}   

∑{ 

 

 

   (     )       (     )   (     )    [
   

(     ) 
]}  

Using the log h-likelihood, we can get the estimates of the parameters vectors,   and  , 

by solving the following score equations simultaneously:  

  
   

    
 ∑ ∑ {          

  
 

 
     [

 
       

   
       

]}                                                

   

    
 ∑{    

  

 

  [
        

          
]     

 

   
 

(       ) 
  

(     )
 }                

The above equations can be solved simultaneously by using the Fisher scoring algorithm. 

Furthermore, the augmented model can be used as an alternative procedure to estimate 

these parameters using iterative weighted least squares.  The h-likelihood estimators are 

asymptotically efficient, consistent, and normally distributed. 
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Goodness of Fit Statistics 

 Hosmer and Lemeshow’s test statistic.  Hosmer and Lemeshow’s (1980) test, 

which was discussed as a goodness of fit statistic for the logistic models, could also be 

used in mixed effects logistic models.  It is a straightforward test to conduct in such 

models but choosing the number of groups is very subjective.  Some studies showed that 

this test was very sensitive to the number of groups since the cut point for this test 

statistic depended on the number of groups.  Furthermore, some studies indicated that the 

Hosmer and Lemeshow test might have low power for detecting a model departure of 

linearity because it only depended on grouping the response region and ignored the 

predictors region (Hosmer et al., 1997; le Cessie & van Houwelingen, 1991).  

 Statistics based on the estimated moments of Pearson and unweighted sum of 

squares statistics.  Evans and Hosmer (2004) developed a goodness of fit test statistic 

based on tests used in the usual logistic regression models.  They used first order Taylor 

approximations to estimate the mean and variance for both the Pearson and unweighted 

sum of squares statistics for the mixed effects logistic models.  For the estimation 

procedure, they used the pseudo likelihood approach to estimate the parameters 

(Wolfinger & O’Connell, 1993).  They considered the following mixed effects logistic 

regression model:  

                (  )   

      (   )  

         

       ( )  
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Under this approach, they assumed that the random effect   had  ( )    and  

   ( )   , where   was assumed to be unknown.  Also for the unobserved error 

vector      , they assumed that  (   )    and    (   )    
  ⁄     

  ⁄
, where                           

       [   (     )] and   is a matrix of unknown correlation parameters.  Using 

this estimation technique, the pseudo response vector for the iterative procedure was 

  (     )    ̂
  (   ̂) 

with a variance matrix of  

     
   ⁄     

   ⁄        

The idea of their work was that both the Pearson and unweighted sum of squares statistics 

could be written in terms of the estimated error vector so the moments for these statistics 

could be obtained using the moments of the estimated error vector.  To estimate the 

moments of the estimated error vector, they used a first order Taylor approximation to 

write the estimated error vector in terms of the actual error.  To explain their work, they 

first used a first order approximation to write the estimated probabilities about the true 

mixed parameters: 

 ̂( )   ( )     
 

  
 ( )    ( ̂   )  2.7 

where 

  [
 
 
] 

is the true vector of fixed and random effects parameters.  Let   [   ] be the design 

matrix for both fixed and random effects and assuming that    , we could write the 

estimation iterative equations under this estimation approach as 
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    ̂     

where  

    [
    ̂     ̂ 

    ̂     ̂   ̂  ] 

      ̂    , 

where 

   [
  
  ̂  ]     

and 

   [
      ̂ 

     ̂  
] 

       ̂ . 

Now, assume  ( ̂)     ̂      so the first order Taylor approximation of   about 

the true parameter vector   is 

 ( ̂)   ( )     
 

  
 ( )    ( ̂   )  2.8 

where 

     ( )        ( )        ( ) 

   (        )       [     
  (   )]         

         (   ). 

Thus, 

 

  
 ( )        

 

  
[      (   )]     
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(   )     

             . 

Putting the above expressions in equation 2.8, we can get 

( ̂   )  [         ]  [  (   )     ]  

 

2.9 

Also, it can be shown as 

 

  
 ( )         . 

Thus, equation 2.7 could be written as 

 ̂        [         ]
  

 [  (   )     ]  

 According to these approximations, the estimated error vector could be written as 

 ̂      ̂ 

           [         ]
  

[  (   )     ] 

   (    )   , 

where 

        [         ]
  

   

and 

       [         ]
  

       

To derive the moments for the Pearson statistic, this statistic could be written as 

   (    ̂)   ̂
   ̂     
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 After substituting the above approximations for the estimated probabilities and 

errors and then taking the expected value and variance for the Pearson statistic 

expression, Evans and Hosmer (2004) approximated the moments 

 (  )      ̂
         ̂

         ̂
            [  

   ̂
  (    )  ]   , 

and 

   (  )  (    ̂)   ̂
  (    )  (    )

   ̂
   

(    ̂)  

Using the same approximations, they derived the moments for the unweighted sum of 

squares statistic.  They approximated the distribution of Pearson statistic using two 

approximations: a normal distribution and a scaled chi square distribution: 

        ( )  

where  

     (  )    (  ) 

and 

     [ (  )]     (  ). 

Using the chi square distribution approximation, the hypothesis that the model was fit 

would be accepted if 

      [   (  )    (  )]    ( )              [ (  )]     (  ). 

 

For the distribution of unweighted sum of squares statistic, Evans and Hosmer 

approximated it as a normal distribution based on a simulated distribution.  Using a 

normal distribution approximation and the approximated moments of unweighted sum of 

squares statistic  , the test statistic could be written as 

  
   ( )

√   ( )
      (   )   
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Therefore, the hypothesis that the model is fit would be accepted if 

   ( )

√   ( )
              

 Based on an extensive simulation study, Evans and Hosmer (2004) concluded that 

the unweighted sum of squares statistic and Pearson statistic using a scaled chi square 

distribution had proper type I error rates.  They were recommended for use in such 

models when the cluster size was 100 or more observations.  For models with only 

discrete covariates, they noted that these statistics would not give good results with 

respect to type I errors.  Also, they recommended further research to determine the effect 

of the estimation techniques on these statistics because some estimation methods such as 

penalized quasi-likelihood, which was used in this study, could give biased estimates 

when cluster sizes were too small (Lin & Breslow, 1996).  

 A goodness of fit statistic based on smoothing the residuals.  Recent work was 

done by Sturdivant and Hosmer (2007) to develop a new goodness of fit statistic for 

mixed effects logistic regression models.  The idea of this test statistic was to apply the 

unweighted sum of squares statistic to the kernel smoothed residuals instead of the actual 

residuals of a fitted model.  They used the SAS GLMMIX macro for the estimation 

procedure, which used the pseudo-likelihood approach. 

  Sturdivant and Hosmer (2007) derived the moments of the unweighted sum of 

squares of the smoothed residuals test statistic depending on some approximations; they 

assumed its distribution was a normal distribution.  To introduce this test statistic, we 

know that the unweighted sum of squares test statistic could be written as 

  ∑ ̂ 
  ∑(    ̂ )
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Their test statistic was the same as the above statistic but instead of using the actual 

residuals, they used the smoothed residuals: 

 ̂     ̂  

where  

  [
      

 
      

] 

was the matrix of the weights.  Sturdivant and Hosmer used three kernel functions in 

smoothing the residuals: uniform, normal, and cubic kernel functions.  For the uniform 

and the cubic kernel functions, the kernel weights     for the above matrix could obtained 

using the same formulas in the smoothed residual-based tests section.  The kernel weights 

under the normal kernel function could be calculated as 

    
 (

 ̂   ̂ 

 
)

∑  (
 ̂   ̂ 

 
) 

   

  

 

where   is the bandwidth and  ( ) is the normal kernel function: 

 ( )  
 

√  
     (   )⁄                      

In their study, Sturdivant and Hosmer used the kernel weights depending on the “y-

space” because a recent study on the standard logistic models by Hosmer et al. (1997) 

showed no significant difference between using the “x-space” or the “y-space” to 

calculate the weights.  However, they suggested that further research might investigate 

the difference between using “x-space” or the “y-space” for this statistic in hierarchical 

logistic models.  
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 To derive the moments of the proposed test statistic, they used the same 

approximations as in the Evans and Hosmer (2004) study to write the estimated residuals 

in terms of the actual residuals.  Using the same notation of the Evans and Hosmer study, 

the estimated residuals could be approximated as 

  ̂  (    )     

where 

        [         ]
  

   

and 

       [         ]
  

        

The proposed test statistic could be written as 

   ∑ ̂  
 

 

   

  ̂ 
  ̂   ̂       ̂  

Substituting the above approximation of the estimated residuals yields, 

     [(    )   ]      [(    )   ] 

     (    )
     (    )          (    )            

Now by utilizing the properties of the quadratic forms and the linear combinations, the 

following approximations for the moments were derived: 

 (  )    [(    )   ]      [(    )   ] 

       [(    )
     (    )   ]          , 

and 

   (  )      [(    )   ]      [(    )   ] 

     (     )     (   )      (         )  
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where 

  (    )
     (    ) 

and 

          (    )  

Using the above approximations for the moments with the normal approximation for the 

test statistic, the final test statistic could be written as 

    
    (  )

√   (  )
        (   )  

The estimators of the above approximated moments could be obtained by substituting the 

matrix    ̂ instead of     in the above expressions.  The hypothesis that the model was fit 

would be accepted if 

    (  )

√   (  )
                 

 An extensive simulation study was done by Sturdivant and Hosmer (2007) to 

estimate the power of this test statistic along with the type I error rate.  They concluded 

that this test statistic was recommended to check the goodness of fit in hierarchical 

logistic regression models because it gave very good rates of type I error.  Also, it gave 

good power to detect departures in fixed effects with cluster sizes of 20 subjects per 

cluster.  For the power to detect the departures in random effects, further study was 

needed.  Also, they noted that the choice of the kernel density would not have any effect 

on the test statistic, while the choice of the bandwidth would have.  The best bandwidth 

choice was not clear and further research was recommended.  However, without further 

study, they recommended approximately ( 
 

 
√  ) as a bandwidth when the cluster sizes 
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were reasonable (20) and approximately ( 
 

 
√  ) when the cluster sizes were too small.  

Furthermore, Sturdivant and Hosmer mentioned that smoothing the residuals over “x-

space” might give good results in the context of power and type I error rate and improve 

the test statistic in some cases of cluster sizes and numbers.   

 From the previous review of the test statistics, I concluded that Hosmer and 

Lemeshow’s (1980) test statistic is a very simple test to use but might not be appropriate 

for use in mixed effects logistic regression models because it is a slightly conservative 

test (Evans & Hosmer, 2004).  The test statistic proposed by Evans and Hosmer (2004) is 

appropriate for use in such models but it needs a large sample of at least 100 observations 

within each cluster.  The test statistic developed by Sturdivant and Hosmer (2007), which 

used the same idea of Evans and Hosmer on the smoothed residuals, is a very good test 

statistic because it gives good results for cluster sizes of 20 or more.  However, it requires 

a smoothing method; thus, it is tedious to conduct without computer packages.  Also, it 

has an issue of selecting the optimal bandwidth for the kernel function, which requires 

additional research. However, goodness of fit statistics that can be applied for small 

cluster sizes are not well developed for mixed effects logistic regression models.         

 

 

 

 

 

 

 



   
 

 

 

 

 

CHAPTER III 

 

  

GOODNESS OF FIT STATISTICS FOR MIXED EFFECTS  

LOGISTIC REGRESSION MODELS 

 

 

In this chapter, goodness of fit statistics to test the model fit in the mixed effects 

logistic regression models are presented.  The idea of estimating the moments of 

unweighted sum of squares and Pearson chi square statistics and then approximate their 

distributions as a normal or as a chi square distribution are used (Evans & Hosmer, 

2004).  The first test statistic utilized the residuals of the logit variable and the second test 

statistic was based on a transformation of the actual residuals.  These test statistics used 

the pseudo-likelihood estimation technique.   

Logit Residual Goodness of Fit Statistic 

Most goodness of fit statistics that have been developed for mixed effects logistic 

models utilized the residuals of the estimated probabilities. These test statistics were 

designed to detect any change or departure in the model systematic component but this 

component was connected with these probabilities through the inverse of the link 

function.  Some approximations on the inverse link are needed to find an expression to 

the model residuals and then evaluate their distribution.  It might be more powerful if we 

connect the estimated residuals to the model equation without any approximations to 

evaluate the inverse link of the model equation.  To introduce the idea of this test statistic, 

consider the following mixed effects logistic model: 
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                 ( )  

            (   )  

         

        ( )  

 

 

 

3.1 

where   is a vector of the random effect parameter and has a normal distribution with a 

covariance matrix  .  The matrices   and   are the design matrices for the fixed and 

random effects parameters, respectively, and   is a vector of the fixed effect parameter. 

The systematic component   is equated to the “     ” transformation of the probability 

vector  .  

The logit of the binary response is assumed to be a continuous variable with the 

following assumptions: 

     ( [   ])        

and  

   [     ( [   ])]        ( [   ])  

Now we can approximate the conditional distribution of the logit variable as 

     ( [   ])      (              ( [   ]) )   

Thus, the conditional residuals of the logit variable could be written as 

             ( [   ])   [     ( [   ])] 

          ( [   ])      

where   [   ] and   [
 
 
]  

Accordingly, the distribution of the conditional logit residuals might be approximated as 

         (          ( ) )  
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To derive the variance of the logit conditional residuals, let us write 

      ( )    (   )      

Using the first order Taylor series approximations for both   ( ) and    (   ) 

around the true probability vector  , we can write 

  ( )     ( )  
   ( )

   
     (   ) 

     ( )      (
 

 
) (   )  

and 

  (   )     (   )  
   (   )

   
     (   )  

Therefore, the approximated conditional residuals can be written as 

         ( )    (   )      (
 

 (   )
) (   )     

      ( )    (   )     
  (   )       

where  

       [  (    )]  

which is the weight matrix for the estimation procedure under this model. 

 Substituting  ̂ instead of   in the above conditional residuals expression, we can 

write 

 ̂      ( )    (   )     
  (   )     ̂  

The conditional expected value for the above estimated residual vector is assumed to be 

zero.  We can approximate its covariance matrix as 
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   ( ̂  )     
     ( )   

    

     
      

    

     
    

To estimate the above covariance matrix of the estimated conditional residual vector, we 

can substitute   ̂ instead of    in the above result: 

   ( ̂  )̂      ̂
    

Using the approximated estimated residuals, we can write the following unweighted sum 

of squares statistic: 

   ̂  ̂  

Using the estimated moments of the estimated residuals, the estimated moments of this 

statistic could be derived from 

 (   )   ( ̂  ̂  ) 

       [   ( ̂  )̂ ]  [ ( ̂  )] [ ( ̂  )]  

       [  ̂
  ] 

and 

   (   )     ( ̂  ̂   ) 

         [   ( ̂  )̂ ]    [ ( ̂  )]  [   ( ̂  )̂ ][ ( ̂  )]  

         [  ̂
  ]  

Now if we use the normal distribution approximation for the approximated conditional 

residuals, 

         (       
  )  

 we can approximate the distribution of this statistic as follows:  
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       ( )
   

where 

  
   (   )

  (   )
  

  
 [ (   )] 

   (   )
  

According to this approximated test statistic, the hypothesis that the model is fit would be 

accepted if 

     
   (   )

  (   )
   (     )

            
 [ (   )] 

   (   )
   

Log-Transformed Residual Goodness of Fit Statistic 

The estimated residuals of the mixed effects logistic regression model have values 

in the interval (-1,1).  Therefore, the sum of squares of theses residuals would be small 

and could not be approximated as a chi square distribution with degrees of freedom equal 

to ( n - # of parameters ).  In this section, a new fit statistic based on a transformation of 

the actual residuals of the model is introduced.  The transformed residual variable was a 

continuous random variable on the interval (0,∞) with similar variability to the actual 

residuals.  To introduce this test statistic, let us consider the mixed effects logistic 

regression model in Equation 3.1 and propose the following transformation of the 

estimated residual vector: 

     (     )  

where  
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Based on this transformation, the new residuals would be a continuous random variable 

on the interval (0,∞).  

To derive the moments of the transformed residuals, a first order Taylor series 

approximation of the transformed residuals around the expected value of the absolute 

residuals was used.  Using a Taylor series approximation, we can write 

  
   (

 

   (   )
)  

 

    
  (

 

     
)       (   ) [      (   ) ] 

    (
 

   (   )
)      [

 

   (   )
] [     (   ) ]  

Now if we substitute  ̂     ̂ instead of   in the above expression, we can write 

 ̂    (
 

   (  ̂ )
)      [

 

   (  ̂ )
] [  ̂   (  ̂ ) ]  

Thus, we can derive the moments of the estimated transformed residuals as 

 ( ̂)    (
 

   (  ̂ )
) 

and 

   ( ̂)  (    [
 

   (  ̂ )
])      (  ̂ )  (    [

 

   (  ̂ )
])

 

  

The above approximated moments will depend on the probability vector   and the 

weight matrix   .  Therefore, we can get estimates of the above moments by substituting 

 ̂ and   ̂ in their expressions.  The unweighted sum of squares of the estimated 

transformed residuals would be 

   ̂  ̂  

If we use the estimates of the transformed residuals moments, we can derive the estimates 

of the unweighted sum of squares statistic as 
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 ( )     ( ̂  ̂) 

         [   ( ̂)]̂  [ ( ̂)̂] [ ( ̂)̂]  

and 

   ( )       ( ̂  ̂ ) 

           [   ( ̂)]̂     [ ( ̂)̂]  [   ( ̂)̂ ][ ( ̂)̂]  

The distribution of the unweighted sum of squares statistic might be approximated 

as a normal or as a chi square distribution.  However, initial simulation studies showed 

that the distribution of the unweighted sum of squares statistic, using this transformation, 

was approximated as a normal distribution.  Using the normal distribution approximation, 

we can write 

  
   ( )

   ( )
       (   )  

Therefore, the hypothesis that the model is fit would be accepted if 

   ( )

   ( )
             

For small sample sizes, we could use the t distribution. 

Sum of Absolute Residuals Goodness of Fit Statistic 

In this section, a new goodness of fit statistic for the mixed effect logistic models 

is introduced.  The statistic is simply the sum of the absolute residuals of the logistic 

model.  Assume that the estimated probabilities are a uniform random variable over the 

interval (0,1).  Under this circumstance, simulation studies showed that the distribution of 

the residuals of a logistic model could be approximated as a normal distribution: 
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       (   )  

where       and       [  (    )]   Using these assumptions, the absolute 

value of the residuals would have a half or folded normal distribution with mean and 

variance: 

 (   )     ⁄ (  )⁄   ⁄
  

   (   )    [       (  )] ⁄  

If use the Pearson residuals  

       ⁄     

the expected value and the variance for the absolute Pearson’s residuals could be derived:  

 (    )  (  )⁄   ⁄
  

   (    )   [       (  )] ⁄  

Using the Pearson residuals, the sum of absolute residuals goodness of fit statistic 

could be defined as 

  ∑    

 

   

  

Thus, the mean and variance of this statistic could be written as 

 ( )̂    (  )⁄   ⁄
   √(  ⁄ )  

   ( )̂       [       (  )]⁄    [  (  ⁄ )]. 

Therefore, we could write the distribution of this statistic as 

       [ ( )    ( )]. 

However, simulations studies showed that the distribution of this test statistic could be 

approximated as a normal distribution.  Using this approximation, we can write 

          [ ( )    ( )]. 
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To use this test statistic to test the goodness of fit of a logistic model, we can use 

the standardized version: 

     
   ( )

√   ( )
     

Using this test statistic, the hypothesis that a logistic model is fit would be accepted if 

                 

In Chapter IV, a simulation study is conducted to investigate the performance of 

these test statistics and answer the following research questions: 

Q1 What is the sampling distribution of the logit residual goodness of fit  

 statistic?  

Q2 What is the sampling distribution of the log-transformed residual goodness  

 of fit statistic? 

Q3 What is the sampling distribution of the absolute residual goodness of fit  

 statistic? 

Q4 Do the proposed goodness of fit statistics have greater power than existing  

 goodness of fit statistics for small cluster sizes? 

Q5 Do the proposed goodness of fit statistics have a proper type I error rate? 

The performance was evaluated according to the type I error rate and the power of 

each test statistic.  Also, the proposed test statistics were compared with the test statistics 

proposed by Sturdivant and Hosmer (2007).  

Data for the mixed effects logistic models were generated using the following 

fixed effect predictors: 

 One continuous predictor  

 One continuous and one categorical predictors 

 Two continuous and one categorical predictors 
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 Two continuous and one binary predictors 

The random effects variable was generated to follow a normal distribution.  However, the 

data were generated over different cluster sizes and number of clusters for each test 

statistic and model’s equation.  

To fit the generated data over all cases of cluster sizes, number of clusters, and 

model’s systematic component, the pseudo-likelihood approach was used (Wolfinger & 

O’Connell, 1993).  

The power of these test statistics was investigated with respect to the fixed effects 

component.  To examine the power of these statistics, one or two predictors were 

generated and were used in fitting a wrong model over the replications.  For example, 

data were generated under the following model, 

     (   )                              

and the following wrong models were fitted: 

     (   )                       

     (   )                

The power represented the proportion of rejecting a wrong model over the replications. 

 The results of type I error rate and the power are presented for each model and 

test statistic.  

 



  
 

 

 

 

 

 

CHAPTER IV 

 

 

SIMULATION AND DATA ANALYSIS 

 

In this chapter, the results of simulation studies applied to the proposed goodness 

of fit statistics are presented.  These studies were conducted to examine the performance 

of the proposed goodness of fit statistics and then answer the following research 

questions: 

 

Q1 What is the sampling distribution of the logit residual goodness of fit  

 statistic?  

Q2 What is the sampling distribution of the log-transformed residual goodness  

 of fit statistic? 

Q3 What is the sampling distribution of the absolute residual goodness of fit  

 statistic? 

Q4 Do these proposed goodness of fit statistics have greater power than  

 existing goodness of fit statistics for small cluster sizes? 

Q5 Do these proposed goodness of fit statistics have proper type I error rate? 

Simulation Study 

Simulation studies were conducted to investigate the performance of the proposed 

goodness of fit statistics.  Data for mixed effect logistic models were generated according 

to different model equations. The suggested model equations included one continuous 

predictor, one continuous and one categorical predictor, two continuous and one 

categorical predictor, and a model of two continuous and one binary predictor. 
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1.    

                        

            

     (   )           

where      is a continuous predictor and    is the random effect. 

2. 

                        

            

     (   )                    

where      is a continuous predictor,      is a categorical predictor, and    is the random 

effect. 

3.  

                        

            

     (   )                         

where      is a continuous predictor,      is a continuous predictor,      is a categorical 

predictor, and    is the random effect. 

4.  

                        

            

     (   )                      
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where      is a continuous predictor,      is a continuous predictor,      is a binary 

predictor, and    is the random effect. 

First, the random effect’s variable ( ) is generate to follow a normal distribution; 

the conditional response mean, which is probabilities (   ), was generated to be related to 

the generated random effect’s variable.  According to initial simulation studies, the 

residuals of the mixed effect logistic models can have an approximately normal 

distribution if the aggregation of the generated probabilities over the clusters or the 

subjects have an approximately uniform distribution on the interval (0,1).  Thus, to make 

the assumption of normality hold for some of the proposed test statistics, the probabilities 

were generated to have an approximated uniform distribution.  Second, a categorical 

predictor’s variable (  )--takes values 1, 2 and 3--was generated using the random 

uniform variable 

      (                  )  

 Also, a binary predictor’s variable (  )--takes the values 0 or 1--was generated to 

follow a             ⁄  .  In addition, a continuous predictor (  ) was generated to 

follow a normal distribution with zero mean and variance equal to 2.  To generate the 

second continuous variable (  ), the “     ” transformation of the generated probabilities 

was calculated.  Thus    is generated for each model equation using the following 

expressions, 

 1.            (   )      

2.             (   )                 

 

 



60 

 

3.            (   )                       

4.             (   )                   

The response variable ( ), which takes the value 0 or 1, was generated using a random 

Bernoulli variable with respect to the generated probabilities ( ).  The generated data 

were generated over different cluster sizes (4, 10, 20, 40, and 80) and different numbers 

of clusters (10, 20, 25, and 50).  

The pseudo-likelihood approach (Wolfinger & O’Connell, 1993) was used to fit 

the above correct models over all cases and the proportion of type I error was calculated 

for each proposed test statistic for all cases of models, number of clusters, and cluster 

sizes. 

To examine the power of the proposed goodness of fit statistics over all cases of 

models, number of clusters, and cluster sizes, some incorrect models for the generated 

data of the above models were fitted and the proportions of rejected incorrect models 

were calculated for all cases.  The fitted wrong models included the following systematic 

components:  

1.       (   )       {To detect     out of the model (1)}. 

2.       (   )               {To detect      out of the model (2)}. 

3.       (   )          {To detect      and      out of the model (3)}. 

4.       (   )               {To detect      out of the model (4)}. 

Logit Residual Goodness of Fit Statistic 

In this section, the results of some simulation studies applied to the logit residual 

goodness of fit statistic are presented. For the logit residual goodness of fit statistic that 

was introduced in Chapter III, 
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   ̂  ̂ 

 ̂                   
            ̂ 

where 

    ̂       [  ̂
  ] 4.1 

and 

      ̂          [  ̂
  ]  4.2 

The simulation results showed that the sampling distribution of this fit statistic could be 

approximated as a chi square distribution.  However, the empirical variance did not 

match the estimated variance using the above expression to estimate the variance. 

  Table 1 shows some simulated values of p-value of this test statistic, observed 

statistic, mean, and variance calculated according to equations 4.1 and 4.2 of this fit 

statistic under the correct fitted model: 

     (   )                         
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Table 1 

A Sample of Simulated Values of p-Value, Observed Statistic, and Moments of the Logit 

Residual Goodness of Fit Statistic under the True Model,      (   )            

            

Obs. P-Value Statistic Mean Variance 

1 0.70182 5336.05 5497.79 88933.73 

2 0.98143 4873.41 5447.95 80434.81 

3 0.86572 5220.23 5546.09 87457.15 

4 0.94490 4577.87 4966.50 61193.38 

5 0.99297 4558.80 5181.70 69053.84 

6 0.95497 4608.54 5023.98 62366.04 

7 0.96905 5182.35 5734.12 91629.65 

8 0.98969 4618.78 5208.40 69214.60 

9 0.94489 4510.59 4886.00 57069.33 

10 0.99706 4347.21 5016.52 64085.81 

11 0.97087 4858.04 5389.70 82841.28 

12 0.99031 4480.25 5073.66 68900.38 

13 0.88161 4941.71 5251.26 69295.03 

14 0.99998 5125.09 6852.27 70587.41 

15 0.93829 4468.40 4830.13 56821.11 
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Using 10000 replications and the true model,      (   )                     

  , the empirical mean for this test statistic was 4817.59 and the empirical variance was 

151731.88, which is larger than the simulated values of the variance in Table 1. 

Therefore, equation 4.2 always gives small estimates of the variance.  However, this 

expression was derived by using first order Taylor series approximations.  Further 

research might be needed to approximate or adjust this expression to estimate the 

variance of this proposed goodness of fit statistic using alternative or higher order 

approximation.   

Log-Transformed Residual Goodness of Fit Statistic 

 

The log-transformed residual test statistic was introduced in Chapter III,  

   ̂  ̂ 

 ̂          ̂    

with estimated moments 

    ̂               ̂  ̂      ̂ ̂  [   ̂ ̂]  4.3 

and 

      ̂                  ̂  ̂         ̂ ̂         ̂ ̂  [   ̂ ̂]  4.4 

The simulation results for this goodness of fit statistic showed that the sampling 

distribution of this statistic could be approximated as a normal distribution.  However, the 

empirical mean of this fit statistic is always larger than the estimated mean using 

equations 4.3.  The reason might be the first order Taylor series approximation that was 

applied to derive this expression.  
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 Table 2 shows some simulated values of p-value for the fit statistic, observed 

statistic, and moments of log-transformed residual test statistic under the true fitted 

model:  

     (   )                         

 

Table 2  

A Sample of Simulated Values of P-Value, Observed Statistic, and Moments of the Log-

Residual Goodness of Fit Statistic under the True Model,      (   )            

            

 

Obs. P-Value Statistic Mean Variance 

1 2.844E-11 438.201 344.479 204.634 

2 1.602E-10 435.747 345.329 206.734 

3 1.676E-14 435.092 329.940 192.238 

4 0 432.407 288.820 155.041 

5 0 432.761 313.881 177.686 

6 2.0586E-8 429.739 349.718 212.781 

7 0 436.444 312.721 174.949 

8 0 432.055 313.387 179.884 

9 8.966E-13 434.070 334.335 200.151 

10 0 433.474 311.136 177.098 

11 1.31E-14 433.182 327.523 192.441 

12 3.331E-16 434.032 324.345 184.365 

13 0 424.678 306.723 174.408 

14 3.829E-10 431.892 343.416 206.842 

15 1.11E-16 436.630 324.986 186.047 
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Using the same correct model      (   )                        and 10000 

replications, the empirical mean and variance of this test statistic were 400.005 and 

190.85, respectively.  That means the simulated means in Table 2, using equation 4.3 to 

estimate the mean, is always smaller than the empirical mean of this fit statistic.  

However, approximations or adjustments might solve this issue in future research. 

Absolute Residual Goodness of Fit Statistic 

 

The absolute residual goodness of fit statistic was introduced in Chapter III: 

  ∑    

 

   

  

       ⁄     

with estimated moments of 

    ̂    √   ⁄   

      ̂         ⁄     

The simulation results of the absolute residual goodness of fit statistic showed the 

distribution of this fit statistic could be consistently approximated as a normal distribution 

for most cases of cluster sizes, number of clusters, and model equations.  However, for 

very small cluster sizes of four observations per cluster and 10 clusters, the sampling 

distribution of this statistic could not be approximated as a normal distribution.  The 

simulation was applied over all cases.  It gave good results in terms of type I error rate 

and the power of this goodness of fit statistic in most cases.  

Tables 3 and 4 represent the empirical type I error rate and power for this fit 

statistic, respectively, using generated data under model 1.  The empirical power values 

were calculated by omitting the random effect   of the model statement while generating 
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the data under true model 1.  The results of type I error rates in Table 3 and Figure 1 are 

good for some cases of cluster sizes and number of clusters, especially when the cluster 

size is 20 or more observations and the number of clusters is 10 or more.  Also, the 

empirical power values for this test statistic in Table 4 and Figure 2 demonstrate this test 

statistic has power of 100% to detect omitting the random effect variable ( ) of the model 

equation for number of clusters of 20 or more and cluster sizes of four or more.  

However, when the number of clusters is 10 each of four observations, the distribution of 

this goodness of fit statistic cannot be approximated as a normal. 

 

Table 3 

Type I Error Rate Under the Correct Model,      (   )          

                                  Number of Clusters 

  10 20 25 50 

      

C
lu

ster sizes 

4 0.0822 0.0523 0.0605 0.0552 

10 0.0603 0.0542 0.0529 0.0535 

20 0.0565 0.0535 0.0525 0.0533 

40 0.0533 0.0521 0.0516 0.0527 

80 0.0540 0.0513 0.0510 0.0509 
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Table 4  

Power for Detecting the Random Effect ( ) Out of the Model,      (   )          

                                       Number of Clusters 

  10 20 25 50 

C
lu

ster sizes 

     

4 0.5130 0.9810 1.0000 1.0000 

10 1.0000 1.0000 1.0000 1.0000 

20 1.0000 1.0000 1.0000 1.0000 

40 1.0000 1.0000 1.0000 1.0000 

80 1.0000 1.0000 1.0000 1.0000 

      

 

  
 

Figure 1. Plot of type I error for different cluster sizes against the number of  

clusters using the model equation,      (   )          . 
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Figure 2.  Plot of power to detect  , for different cluster sizes against the number  

of clusters using the model equation,      (   )          

 

Tables 5 and 6 show the empirical type I error rate and power for this fit statistic, 

respectively, using generated data under model 2.  Using model 2, the results of the 

empirical type I error rates in Table 5 and Figure 3 are very proper as long as the cluster 

size is 10 observations or more.  Also, the results of power in Table 6 and Figure 4 to 

detect the fixed effect predictor (  ) demonstrate this fit statistic has good power of about 

60% for moderate sizes of number of clusters and cluster sizes.  For cluster sizes and 

number of clusters of 20 or more, the results of power are very good (0.801 – 1.000) and 

tend to be 100% for large samples.  The empirical power values in Table 6 were 

calculated by omitting the fixed effect predictor (  ) of the model statement with 

generating the data under true model 2. 
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Table 5 

Type I Error Rate Under the True Model,      (   )                   

                                    Number of Clusters 

C
lu

ster sizes 

 10 20 25 50 

4 0.0752 0.0515 0.0521 0.0476 

10 0.0520 0.0510 0.0518 0.0531 

20 0.0484 0.0495 0.0523 0.0519 

40 0.0520 0.0516 0.0512 0.0504 

80 0.0505 0.0511 0.0499 0.0521 

 

 

 

Table 6 

Power for Detecting    Out of the Model,      (   )                   

                                Number of Clusters 

C
lu

ster sizes 

 10 20 25 50 

    

4 0.1773 0.3344 0.3460 0.5021 

10 0.6234 0.7967 0.8954 0.9903 

20 0.5948 0.8010 0.8413 0.9972 

40 0.8147 0.9924 0.9985 1.0000 

80 1.0000 1.0000 1.0000 1.0000 
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Figure 3.  Plot of type I error for different cluster sizes against the number  

of clusters, using the model equation,      (   )                      

 

 

 

Figure 4.  Plot of power to detect   , for different cluster sizes against the  

number of clusters, using the model equation,     (   )                      
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Tables 7 and 8 represent type I error rates and power for the absolute residual 

goodness of fit statistic, respectively, using generated data under model 3.  The empirical 

power values were calculated by omitting the fixed effect predictors (   and   ) of the 

model statement and generating the data under true model 3.  The results of the empirical 

type I error rates in Table 7 and Figure 5 are good and very close to the theoretical type I 

error (        for number of clusters and cluster sizes of 10 or more.  The empirical 

power results in Table 8 and Figure 6 to detect the fixed effect predictors    and     

demonstrate the absolute residual GOF statistic has good power (0.5541 – 0.7526) for 

moderate sizes (10-20) of number of clusters and cluster sizes.  For large cluster sizes and 

number of clusters, the results of power demonstrate, this statistic is powerful to detect 

one continuous fixed effect predictor. 

 

Table 7 

Type I Error Rate Under the True Model,      (   )                        

 

                    Number of Clusters 
C

lu
ster sizes 

 
10 20 25 50 

4 0.0706 0.0479 0.0486 0.0499 

10 0. 0529 0.0502 0.0515 0.0501 

20 0. 0489 0.0520 0.0504 0.0487 

40 0.0509 0.0506 0.0496 0.0511 

80 0.0511 0.0509 0.0519 0.0505 
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Table 8 

Power for Detecting    and    Out of the Model,      (   )                     

   
 

                                   Number of Clusters 

C
lu

ster sizes 

 
10 20 25 50 

     

4 0.1344 0.2601 0.2776 0.4290 

10 0.5541 0.7503 0.7797 0.9540 

20 0.5946 0.7526 0.8215 0.9843 

40 0.7570 0.9387 0.9769 0.9995 

80 0.9360 0.9971 1.0000 1.0000 

 

 

 

Figure 5.  Plot of type I error for different cluster sizes against the number of  

clusters using the model equation,      (   )                        . 
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Figure 6.  Plot power to detect    and   , for different cluster sizes against the  

number of clusters using the model equation,      (   )                           

 

Tables 9 and 10 represent the empirical type I error rates and power percentages 

for this goodness of fit statistic, respectively, using generated data under model 4.  The 

empirical power values were calculated by omitting the fixed effect predictor (  ) of the 

model statement and generating the data under true model 4.  The results of type I error 

rates in Table 9 and Figure 7 are proper rates under the theoretical type I error (        

for cluster sizes of 20 observations or more over all applied number of clusters.  The 

empirical power percentages in Table 10 and Figure 8 are very good (0.4910 – 1.000) for 

cluster sizes of 20 observations or more over all applied number of clusters; the power 

tends to be 100% for large samples. 
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Table 9 

Type I Error Rate Under the True Model,      (   )                     

                                Number of Clusters 

C
lu

ster sizes 

 10 20 25 50 

4 0.0443 0.488 0.0532 0.0524 

10 0.0454 0.0467 0.0488 0.0518 

20 0.0479 0.0483 0.0481 0.0491 

40 0.0489 0.0504 0.0497 0.0512 

80 0.0507 0.0491 0.0511 0.0482 

 

 

Table 10 

Power for Detecting    Out of the Model,      (   )                     

                                Number of Clusters 

C
lu

ster sizes 

 
10 20 25 50 

    

4 0.1170 0.2191 0.2386 0.3875 

10 0.4469 0.7138 0.7830 0.9474 

20 0.4910 0.7200 0.7994 0.9795 

40 0.7161 0.9321 0.9838 1.0000 

80 0.9481 0.9959 1.0000 1.0000 
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Figure 7. Plot of type I error for different cluster sizes against the number of clusters 

using the model equation,      (   )                    . 
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Figure 8.  Plot of power to detect    for different cluster sizes against the number of 

clusters using the model equation,     (   )                        

 

Sturdivant and Hosmer (2007) applied the smoothed residual goodness of fit 

statistic, which was introduced in Chapter II, in some cases of model equations, cluster 

sizes, and number of clusters.  Some of their results of type I error using six suggested 

model equations and sample sizes similar to our work are presented in Table 11.  

However, the model equations they used were not clearly specified in their work; some 

were models of one continuous predictor with random intercept and slope, three 

continuous and two binary predictors with random intercept, and two random slopes for 

one of the continuous predictors and one of the binary predictors.   
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Table 11 

Empirical Type I Error Rates of Some Cases of Hosmer and Sturdivant’s Work 

Sample Sizes  Model Equations 

  1 2 3 4 5 6 

20 clusters and 20 observations  

in each cluster 

 
0.062 0.032 0.047 0.039 0.062 0.042 

50 clusters and 4 observations  

in each cluster 

 
0.04 0.055 0.049 0.048 0.051 0.04 

25 clusters and 4 observations  

in each cluster 

 
0.04 0.031 0.049 0.042 0.039 0.038 

 

 

 

Table 12 shows the results of power of Sturdivant and Hosmer’s (2007) work. 

These results are for two cases of the model equations and some cases of cluster sizes and 

number of clusters similar to our work.  However, these results of power were to detect 

moderate and significant quadratic terms in the models.  For example, consider the 

following model: 

                        

            
   

     (   )             

where    is a continuous variable.  Hosmer and Sturdivant use the quadratic terms 1.13  
  

and 2.13  
  for the moderate and significant quadratic detecting, respectively.   
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Table 12 

Power Results of Some Cases of Sturdivant and Hosmer’s Work 

Sample Sizes  Moderate Quadratic  Significant Quadratic 

  Case 1 Case 2  Case 1 Case 2 

20 clusters and 20 observations 

in each cluster 

 
0.156 0.238 

 
0.830 0.722 

50 clusters and 4 observations 

in each cluster 

 
0.102 0.036 

 
0.100 0.030 

25 clusters and 4 observations  

in each cluster 

 0.046 0.078  0.098 0.066 

       

 

The results of type I error rates in Table 11 were good for only some cases of the 

model equations.  The results of power in Table 12 demonstrated that Sturdivant and 

Hosmer’s (2007) test statistic did not have high power to detect a moderate quadratic 

term for the cases of model equations, cluster sizes, and number of cluster.  To detect 

significant quadratic terms, the results of power were very good (0.722 – 0.83) for 20 

clusters and 20 observations per cluster.  However, the exact model equations Sturdivant 

and Hosmer used were not used in our work because they were not clearly specified in 

their paper.  

In general, the absolute residual goodness of fit statistic gave good results in terms 

of type I error rates and power for all cases of cluster sizes of 10 observations or more 

and number of cluster of 10 or more.  The only restriction on this test statistic was that it 

could be affected by extremely small or large estimated probabilities.  This might be 

affected by the standardized Pearson’s residuals we used.  However, the estimated 

covariance matrix of the response depended on the estimated probabilities and could have 
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affected the Pearson residual distributions.  The optimal interval of the estimated 

probabilities, for which this goodness of fit statistic was valid, was not very clear.  Also, 

our simulation studies showed that choosing this optimal interval could be affected by the 

number of clusters and the cluster sizes.  However, depending on simulation studies, the 

previous results of our simulation were conducted by using the estimated probability 

intervals in Table 13.  

 

Table 13 

Probability Intervals for Different Number of Clusters and Cluster Sizes 

Cases 
Number of 

Clusters 

Cluster 

Sizes 
Probability Interval Limits 

1 10 4             ̂             

2 20 4            ̂             

3 25 4             ̂             

4 50 4             ̂             

5 10 10             ̂             

6 20 10             ̂             

7 25 10             ̂             

8 50 10            ̂             

9 10 20             ̂             

10 20 20             ̂             

11 25 20             ̂             

12 50 20             ̂             

13 10 40             ̂             

14 20 40             ̂             

15 25 40             ̂             

16 50 40             ̂             

17 10 80             ̂             

18 20 80             ̂             

19 25 80             ̂             

20 50 80             ̂             
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These probability intervals were chosen depending on some simulation studies for 

each case of our simulation.  For example, using one of the suggested models to generate 

data of 20 clusters and cluster size of 20 observations and based on simulation studies, 

the best interval of the estimated probabilities that made the absolute residual goodness of 

fit statistic give proper type I error size was (        ̂         . The simulation was 

applied to 1000 replications of data. This interval was chosen by first generating 

probabilities without restriction (   ̂     and then narrowing the predicted 

probabilities interval until the Type I error rate is within the interval (0.045 - 0.055). 

After choosing the predicted probabilities interval, this interval is applied to the rest of 

the simulation cases. That is, in practical application if a mixed effect logistic model was 

fitted for data of 20 clusters and cluster size of 20 observations, the absolute residual 

goodness of fit statistic would be appropriate to use as long as this restriction was 

typically satisfied.  Furthermore, the structure of the model equation had a slight effect on 

choosing the optimal interval.  That is, these intervals would be subject to adjustment or 

changed in future research and applications. 

Further research is recommended to make adjustments or approximations on the 

estimated covariance matrix of the response such that the distribution of Pearson’s 

residuals could always be approximated as a standardized normal.  Thus, this goodness of 

fit statistic could be valid for all values of the estimated probabilities.  

 

       

       

 



  
 

 

 

 

 

CHAPTER V 

 

 

CONCLUSIONS AND FUTURE STUDIES 

 

 

Conclusions 

In this research, three goodness of fit statistics for the mixed effect logistic 

regression model were proposed; their performance in terms of type I error rates and 

power was examined via simulation studies.  These simulation studies were applied to 

answer the following research questions and compare in general the results with 

Sturtevant and Hosmer’s (2007) work:  

Q1 What is the sampling distribution of the logit residual goodness of fit  

 statistic?  

 

Q2 What is the sampling distribution of the log-transformed residual goodness  

 of fit statistic? 

 

Q3 What is the sampling distribution of the absolute residual goodness of fit  

 statistic? 

 

Q4 Do these proposed goodness of fit statistics have greater power than  

 existing goodness of fit statistics for small cluster sizes? 

 

Q5 Do these proposed goodness of fit statistics have a proper type I error rate? 

 

The three proposed test statistics were the logit residual, log-transformed residual, 

and absolute residual goodness of fit statistics, which were introduced in Chapter III. 

According to the simulation studies, it was found that the sampling distributions of the 

logit residual, log-transformed residual, and absolute residual goodness of fit statistics 

could be approximated as a chi square distribution, a normal distribution, and a normal 
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distribution, respectively.  Also, it was noted that these approximated distributions were 

sensitive to the change in the model’s equation.  However, the absolute residual goodness 

of fit statistic was more sensitive than the other test statistics for any slight change in the 

model’s equation.  

Using the derived expression to estimate the variance of the logit residual 

goodness of fit statistic, the estimated variance was always smaller than the empirical 

variance; also, using the derived expression to estimate the mean of the log-transformed 

residual goodness of fit statistic, the estimated mean was always smaller than the 

empirical mean of this statistic.  Therefore, under these issues, the statistics could not 

give either proper type I error rates or good power (0.50 or more).  However, the 

expressions used to estimate the moments of both goodness of fit statistics were based on 

first order Taylor series approximations.  Further research might solve the issues of these 

goodness of fit statistics by using higher order Taylor series approximations.  This might 

help increase the precision of estimating the moments of these fit statistics; specifically, a 

second order approximation might be investigated. 

The estimated moments of the absolute residual goodness of fit statistic using the 

standardized Pearson residuals and a folded normal approximation were very close to the 

empirical moments of this fit statistic over all simulation cases.  Accordingly, this fit 

statistic gave proper size of type I error rates and very good power (0.72 – 1.00) over 

most cases of our simulation.  In general, the results were proper in terms of power and 

type I error rates for small sample size of 10 clusters and 10 observations per cluster.  For 

sample sizes of 20 clusters and 20 observations per cluster or more, the results of type I 

error rates were very close to the theoretical Type I error rate (5%).  The results of type I 
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error rates were proper for all model equations and sample sizes cases except the case of 

10 clusters each of four observations.  Based on our simulation studies, the distribution of 

the absolute residual goodness of fit statistic could not be approximated as a normal 

distribution.  Also, there were slight differences across various model equations results.  

Some models gave empirical type I error rates very close to 0.05 and others gave type I 

error rates slightly larger or smaller than the theoretical type I error of 0.05.   

The power to detect the random effect was 100% for small sample sizes of 10 

clusters and 10 observations per cluster or more.  Also, it was very good (0.981 - 1.000) 

for sample sizes of 20 or more clusters each of four observations.  The power to detect 

one or two fixed effects predictors was very good (0.4910 - 1.000) for sample sizes of 20 

clusters and 10 observations per cluster or more; it tended to be 100% as the sample size 

got larger. Generally, unless the number of clusters was 10 and the observations per 

cluster were four, the power results of detecting one or more fixed effect predictor were 

good (0.22 - 1.00) for all other cases.  

The absolute residual goodness of fit statistic was a straight-forward test; the 

derivative of its moments did not depend on any Taylor series approximations and any 

smoothing methods.  The only assumption this statistic needed was the normality 

assumption for the model’s residuals.  Also, the log-transformed goodness of fit statistic 

needed the assumption of normality the residuals held and the logit residual goodness of 

fit statistic assumed that the logit of the residuals was approximately normally 

distributed.  These two statistics had the additional restriction of a first order Taylor 

series approximation. 
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Furthermore, the simulation results of the absolute residual goodness of fit 

statistic were better than the results of Sturdivant and Hosmer’s (2007) work.  Most of the 

selected cases of their results of type I error in Table 11 were not consistent with the 

expected nominal type I error (      ).  Also, from Table 12, the power to detect a 

moderate quadratic term in the model was low.  However, most of the results of type I 

error rates were close to the theoretical type I error (      ) even if the sample sizes 

were small.  Also, if one considered detecting the fixed effect (  ) close to detecting the 

moderate or significant quadratic terms (      
  or       

  ) in the model equation, most 

of the results of power were higher than Sturdivant and Hosmer’s results even if the 

sample sizes were small.  However, according to the simulation, the absolute residual 

goodness of fit statistic is recommended to use in the mixed effect logistic models as long 

as the sample sizes are 10 clusters and 10 observations per cluster or more.  Also, it is 

recommended for use in the ordinary logistic models with same restriction on the sample 

sizes. 

The only restriction of the absolute residual goodness of fit statistic is that it could 

be affected by extremely small or large estimated probabilities of the model.  However, 

the results were presented under specific intervals of the estimated probabilities for each 

case of our simulation but it seemed that this issue could be solved in future work.  

Future Studies 

The goodness of fit statistics for the logistic model could be affected if the 

estimated probabilities were extremely large or small.  These probabilities would affect 

the estimated covariance matrix of the response.  However, except for Hosmer and 
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Lemeshow’s (1980) test statistic, all the present goodness of fit statistics had estimated 

moments based on the estimated covariance matrix of the response.  

The absolute residual goodness of fit statistic was based on standardized 

Pearson’s residuals.  The problem with this test statistic arose from extreme values of the 

estimated probabilities (close to 1 or close to 0).  However, the Pearson’s residuals could 

be affected by these extreme probabilities.  To reduce or avoid this problem in future 

research, the following techniques are recommended: 

1. Using scaled Pearson residuals instead of the standardized Pearson 

residuals.  The scaled Pearson residuals are similar to the standardized 

residuals in usual cases but they could control the overdispersion problem 

that might occur with the binary response.  However, overdispersion might 

arise due to extremely small or large probabilities. 

2. Applying some approximations on the estimated covariance matrix of the 

response such that the approximations have been used to estimate the 

confidence interval of the Binomial proportion in case of extreme 

probabilities.  These approximations might help to adjust the standardized 

residuals to be always approximately normally distributed.   

3. Smoothing the standardized Pearson residuals using the normal kernel 

smoothing function.             
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The following SAS program was used to generate data for the mixed effect logistic 

regression models.  It included two programs: one to fit the generated data using 

GLIMMIX Macro and other to calculate the proposed fit statistic, its moments, and p-

value.  

 

Dm 'log' clear; 

Dm 'output' clear; 

 

PROC PRINTTO  new 

LOG='C:\log.txt'   

print='C:\out.txt'; 

RUN; 

 

%Macro GOF(rep=, btwn=, wthn=, L= ); 

 

ODS RESULTS = off; 

 

*** Generate data for the mixed effect logistic regression models ***; 

 

%Do i=1 %TO &rep; 

 

data Test; 

 

do case=1 to &btwn; 

 

seed=5*case; 

seed1=3*seed; 

seed2=2*seed1; 

seed3=5*seed2; 

 

u1=ranuni(seed);              ** Generate the random component  

                                (Inverse link) **; 

 

Do withincase=1 to &wthn; 

 

cat=int((ranuni(seed1)*3)+1); ** Generate categorical predictor from  

                                 1-3 **; 

 

x0=1; 

 

x1= RAND ('NORMAL',0,2);       ** Generate continuous predictor **; 

 

bin= RAND('BERNOULLI',.5);     ** Generate binary predictor **; 

 

 

                            

 

U=1-&L;            ** Generate probabilities related to the  

                      random component on an interval (L,U) **; 

          

 

if 0 < u1 <= 0.5 then p = &L + (0.5-&L)*ranuni(seed2); 

 

else p = 0.5 + (U-0.5)*ranuni(seed3); 
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rand=log(u1/(1-u1));              ** Logit and the random effect  

                                     variables **; 

 

logit=log(p/(1-p)); 

 

 

x2=(logit-( x1 + (0.5*cat) +rand)); ** Generate other continuous 

                                       variable **;     

 

y=RAND('BERNOULLI',p);       ** Generate the binary response according 

                                to the probabilities **; 

 

keep case withincase rand x0 x1 x2 bin cat  y p logit; 

 

output; 

 

end; 

 

end; 

 

*** Fit the generated data using GLIMMIX Macro ***; 

 

%inc 'C:\glmm800.sas' / nosource; 

 

  %glimmix(data=Test,            

 

      procopt=info cl mmeq mmeqsol absolute  

                                    covtest,out=Pearson, 

      stmts=%str( 

          

                        class case  ; 

 

       model  y = x1 x2  cat / solution; 

  

                        random rand /s g gi solution sub=case; 

        

    ods output InvG=ginv MMEqSol=MMSol G=gdat; 

             ), 

            error=binomial, options=noprint; 

             ); 

 

*** Macro caculate fit statistic, moments and p-value **; 

 

%inc 'C:\fit3.sas' / nosource; 

%fit3 

 

%END; 

 

%mend; 

 

%GOF(rep=1000, btwn=50, wthn=20, L=0.0337); 
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The following SAS program is used to calculate the logit residual GOF statistic, its 

moments and the p-value, using the output data set (_ds) of the GLIMMIX Macro.  

 

Dm 'log' clear; 

Dm 'output' clear; 

 

%MACRO fit1; 

 

ODS RESULTS = off; 

 

PROC IML; 

 

 USE _ds; 

  read all var {_y} into yvec; 

  read all var {_w} into wvec; 

  read all var {mu} into probhat; 

  CLOSE _ds; 

 

*** Logit residuals ***; 

 

 ehat = yvec-probhat; 

 what = diag(wvec); 

 winv = inv(what); 

 n = nrow(probhat); 

      a=log(probhat); 

 b=log(1-probhat); 

  

 

elogit=a-b+(invwmat*ehat); 

 

 

*** Logit fit statistic and its moments **; 

 

pearson=t(elogit)*elogit; 

 

 

mean=trace(invwmat); 

variance=2*trace(invwmat*invwmat); 

 

 

*** P-value using chi approximation ***; 

 

C=VARIANCE/(2*MEAN); 

V=(2*(MEAN**2))/VARIANCE; 

 

 

stat=pearson/c; 

 

pvalue = 1-probchi(stat,v); 

 

 

*** Save p-value, statistic and its moments in file fit1 ***; 
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filename fit1 'C:\fit1.txt' mod; 

      file fit1;  

 put @1 pvalue @25 pearson  @45 mean @60 variance; 

 run; 

quit ; run ; 

 

%MEND ; 
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The following SAS program was used to calculate the log-transformed residual goodness 

of fit statistic, its moments, and the p-value using the output data set (_ds) of the 

GLIMMIX Macro.  

 

Dm 'log' clear; 

Dm 'output' clear; 

 

%MACRO fit2; 

 

ods results=off; 

 

 

PROC IML; 

 

 USE _ds ; 

 

  read all var {_y} into yvec ; 

  read all var {_w} into wvec ; 

       read all var {mu} into probhat ; 

 

 

      CLOSE _ds ; 

 

*** Calculate absolute residuals and their moments ***; 

 

ehat = yvec-probhat; 

 

what = diag(wvec); 

 

winv = inv(what); 

 

n = nrow(probhat) ; 

 

a=-log(1-abs(ehat)); 

 

sqrtwtmat=sqrt(what); 

 

constvec= j(n,1,sqrt(14/22)); 

 

constvec1= j(n,1,(14/22)); 

 

 

diagconst1=diag(constvec1); 

 

meanabs=sqrtwtmat*constvec; 

 

 

 

    varabs=wtmat-(wtmat*diagconst1); 

 

 

    cont1=(1/(1-meanabs)); 

 

 

    meane=log(cont1); 
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    matrix=diag(cont1); 

 

 

    vare=matrix*varabs*t(matrix); 

 

 

** Moments, the statistic and p-value using normal approx. ***; 

 

means=trace(vare)+(t(meane)*meane); 

 

variances=2*trace(vare*vare)+(4*(t(meane)*vare*meane)); 

 

stat=t(a)*a; 

 

stat1 = (stat-means)/(variances**0.5); 

 

pvalue = (1-probnorm(stat1)); 

 

 

*** Save p-value, statistic and its moments in file fit2 ***; 

 

  

filename fit2 'C:\fit2.txt' mod; 

      file fit2;  

 put  @1 pvalue  @20 stat  @40 means @60 variances; 

 run; 

 

quit; 

run; 

 

%MEND ; 
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The following SAS program was used to calculate the absolute residual goodness of fit 

statistic, its moments, and the p-value using the output data set (_ds) of the GLIMMIX 

Macro.  

 

Dm 'log' clear; 

Dm 'output' clear; 

 

%MACRO fit3; 

 

ods results=off; 

 

PROC IML; 

 

 USE _ds ; 

 

  read all var {_y} into yvec ; 

  read all var {_w} into wvec ; 

        read all var {mu} into probhat ; 

 

      CLOSE _ds ; 

 

*** Standardized residuals and moments of absolute std. residuals ***; 

 

    n = nrow(probhat); 

 

    wtmat=diag(wvec); 

 

    invwt=inv(wtmat); 

 

    ehat = (yvec-probhat); 

 

 

    stdehat=sqrt(invwt)*ehat; 

  

 

    meanabs=sqrt(14/22); 

 

    varabs=(1-(14/22)); 

 

    

*** Sum of absolute residual statistic ***; 

 

    r=abs(stdehat); 

 

    unitvec= j(n,1,1); 

 

    stat=t(unitvec)*r; 

 

 

*** Test statistic's moments and p-value ***; 

 

mean=n*meanabs; 
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var=n*varabs; 

 

 

stat = (stat-mean)/(var**0.5); 

 

 

pvalue =(1-probt(stat, n-1 )); 

 

 

*** Put p-value, statistic and moments in file fit3 ***; 

 

 

filename fit3 'C:\fit3.txt' mod; 

 

    file fit3; 

  

 put  @1 pvalue  @15  stat @30 mean @45 var ; 

 

    run; 

 

quit; 

run; 

 

%MEND ; 

 

 

 


	Goodness of fit statistics for mixed effect logistic regression models
	Recommended Citation

	Title and Signature Pages
	Preliminary Pages
	CHAPTER I
	CHAPTER II
	CHAPTER III
	CHAPTER IV
	CHAPTER V
	REFERENCES
	APPENDIX

