# University of Northern Colorado

# Scholarship & Creative Works @ Digital UNC

Master's Theses

Student Work

5-2021

# Synthesis of Functionalized Ionic Liquids for Coal Dissolution and Pretreatment

Michael Franklin University of Northern Colorado

Follow this and additional works at: https://digscholarship.unco.edu/theses

#### **Recommended Citation**

Franklin, Michael, "Synthesis of Functionalized Ionic Liquids for Coal Dissolution and Pretreatment" (2021). *Master's Theses*. 198. https://digscholarship.unco.edu/theses/198

This Thesis is brought to you for free and open access by the Student Work at Scholarship & Creative Works @ Digital UNC. It has been accepted for inclusion in Master's Theses by an authorized administrator of Scholarship & Creative Works @ Digital UNC. For more information, please contact Nicole.Webber@unco.edu.

© 2021

# MICHAEL SEAN FRANKLIN

ALL RIGHTS RESERVED

## UNIVERSITY OF NORTHERN COLORADO

Greeley, Colorado

The Graduate School

## SYNTHESIS OF FUNCTIONALIZED IONIC LIQUIDS FOR COAL DISSOLUTION AND PRETREATMENT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Michael Franklin

College of Natural and Health Sciences Department of Chemistry and Biochemistry

May 2021

This Thesis by: Michael Franklin

Entitled: Synthesis of Functionalized Ionic Liquids for Coal Dissolution and Pretreatment

has been approved as meeting the requirements for the Degree of Master of Science in the Department of Chemistry and Biochemistry in the College of Natural and Health Sciences.

Accepted by the Thesis Committee:

Hua Zhao, Ph.D., Chair

Michael D. Mosher, Ph.D., Committee Member

Richard W. Schwenz, Ph.D., Committee Member

Accepted by the Graduate School

Jeri-Anne Lyons, Ph.D. Dean of the Graduate School Associate Vice President for Research

#### ABSTRACT

# Franklin, Michael. Synthesis of Functionalized Ionic Liquids for Coal Dissolution and Pretreatment. Unpublished Master of Science thesis, University of Northern Colorado, 2021.

Brown coal (lignite) is a bulk organic mixture of conjugated hydrocarbons that are complexed together via hydrogen bonds. Coal [partial] dissolution is essential to the better utilization of low-rank coal for power sources because the direct combustion of brown coal is not energy efficient. To break hydrogen bonds of low-rank coal and make it partially soluble, this project evaluates a series of ionic liquids (ILs) with specific properties as non-volatile alternatives to conventional organic solvents. A series of nitrogen- and phosphorus-based cations have been synthesized via a nucleophilic substitution reaction, the resultant bromide-based IL being converted to an acetate-based IL through an ion-exchange procedure in methanol. Water concentration and viscosity measurements, along with thermogravimetric and nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C NMR) analyses, were conducted to confirm the IL structure and thermal stability. Hydrogen-bond acidity, basicity, and polarity of these ILs were measured using various dyes. We further determined the capability of these ILs for dissolving cellulose and pretreating brown coal at 100 °C. The IL-treated coal samples were analyzed by Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Through a combined analysis of our experimental results, we concluded that hydrophilic acetate-ILs dissolve both cellulose and lignite, the latter evidenced through thorough evaluation of FTIR, XRD, and SEM analysis.

# TABLE OF CONTENTS

| I.   | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| II.  | REVIEW OF LITERATURE<br>Ionic Liquids and How They Came to Mean So Much<br>Physiochemical Properties of Ionic Liquids<br>Coal and What it is Made Of<br>Use of Ionic Liquids to Pretreat (Dissolve or Swell) Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05 |
| III. | METHODOLOGY<br>Research Objectives<br>Synthesis of Ionic Liquids<br>Characterization of Ionic Liquids<br>Dissolution of a Model Coal Compound: Cellulose<br>Dissolution and Fragmentation of Lignite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 |
| IV.  | RESULTS<br>Synthesis of Ionic Liquids<br>Appel Reaction<br>Synthesis of Brominated Ionic Liquids<br>Ion Exchange<br>Structure Verification via Nuclear Magnetic Resonance<br>IL Characterization of Physicochemical Properties<br>Water Titration<br>Viscometry<br>Thermogravimetric Analysis<br>Kamlet-Taft Parameters of Polarity/Polarizability<br>Dissolution of a Model Coal Compound: Cellulose<br>Dissolution of Coal in Select Ionic Liquids<br>Thermogravimetric Analysis of Coal/Ionic Liquid Samples<br>Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Cellulose and<br>Coal Dissolution<br>Liquid Chromatography-Mass Spectrometry (LC-MS)<br>Scanning Electron Microscope (SEM) with Energy Dispersive X-ray<br>Spectroscopy (EDS)<br>X-ray Diffraction (XRD) Analysis | 34 |
| V.   | CONCLUSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87 |

| REFEREN | NCES                                                     | 90  |
|---------|----------------------------------------------------------|-----|
| APPEND  | IX                                                       |     |
| А.      | Reagent Specifications and Sources                       | 97  |
| В.      | Ionic Liquid Structures and Naming Schematic             | 99  |
| C.      | Comprehensive Physiochemical Properties of Ionic Liquids | 112 |
| D.      | Instrumental Analysis Spectra and Photos                 | 136 |
|         | FTIR Spectra for IL Structure Confirmation               |     |
|         | FTIR Spectra for Cellulose Dissolution                   |     |
|         | TGA Scans for Coal Dissolution                           |     |
|         | <sup>1</sup> H NMR Spectra for IL Structure Confirmation |     |
|         | LC-MS Spectra for Coal Dissolution Analysis              |     |
|         | SEM Images for Coal After Dissolution                    |     |
|         | EDS Analysis for Coal Samples After Dissolution          |     |
|         | XRD Spectra and Calculations                             |     |

# LIST OF TABLES

| 2.1 | Dynamic viscosities ( $\eta$ ) of selected ILs (in mPa·s)                                                                                                                                                                                                                                                                                                                                       |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.1 | The Chosen Ones. The five (5) ILs identified for cellulose and coal dissolution due to low viscosity, high temperature of degradation, and ideal hydrogen-bond basicity $(\beta)$ values                                                                                                                                                                                                        | 29 |
| 4.1 | Products of the Appel reaction synthesis. Sample AR01 is reacted with pyridine to produce sample R29, as outlined in section 4.1.2                                                                                                                                                                                                                                                              | 38 |
| 4.2 | Viscosity measurements for chosen ILs. IL A28 is much higher than preferred; however, it is a tried and tested IL that is found throughout the literature. Cellulose and coal are expected to dissolve very well in A28                                                                                                                                                                         | 44 |
| 4.3 | Comparison of TGA profiles for three ILs with the same cation. Anions $Tf_2N^-$ and $PF_6^-$ cause the IL to display hydrophobic characteristics. These ILs were synthesized and analyzed by Zhao et al. (2018)                                                                                                                                                                                 | 45 |
| 4.4 | Results of TGA for the five chosen ILs to be used for cellulose and coal dissolution. Char (wt %) is "the amount of carbon char residue determined from the relative mass remaining at 600 °C; a residue amount on the order of $\pm 1-2\%$ should be considered within the error of the measurement baseline" (Zhao et al., 2018). RG28 is the reagent grade [BMIM][OAc] for comparison to A28 | 50 |
| 4.5 | Literature values for Kamlet-Taft measurements of water, organic solvents, and select BMIM <sup>+</sup> ILs. $E_T^N$ , $\alpha$ , $\beta$ , and $\pi^*$ values were provided by Lee et al. (2008); $E_T(30)$ , $\lambda_{RD}(nm)$ , $\lambda_{NA}(nm)$ , $\upsilon_{NA}$ , $\lambda_{DENA}(nm)$ , and $\upsilon_{DENA}$ values were backwards calculated using Equations 2.2.1 through 2.2.5.   | 51 |
| 4.6 | Experimental values for the dissolution of cellulose. Samples A01, A12, A16, A28, and A30 were synthesized in lab and the corresponding $\beta$ values were derived from UV-Vis analysis discussed in section 4.2.4. <sup>(a)</sup> Literature value for $\beta$ for RG28 is found in Ladesov et al. (2015).                                                                                    | 54 |
| 4.7 | Masses of IL and coal used in the dissolution process and the mass of coal recovered after dissolution and washing                                                                                                                                                                                                                                                                              | 56 |
| 4.8 | FTIR peaks identified by the OMNIC FTIR software. Lignite (top) shows evidence of alkane, alkene, and alkyne stretching, as well as C-H bending and some C-O                                                                                                                                                                                                                                    | 64 |

|      | stretching. IL-dissolved samples show an increase in C-C, C=C, and C=C stretching, increased C-H bending, and more peaks in the fingerprint region                                                                                                                                                                                                                                  |    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.9  | Characteristics of lignite following IL pretreatment                                                                                                                                                                                                                                                                                                                                | 65 |
| 4.10 | LC-MS results for liquid portion of IL/coal dissolution. All peaks are reported in mass-to-charge (m/z) ratios. IL molecular weight are listed below each sample batch for reference.                                                                                                                                                                                               | 66 |
| 4.11 | EDS results for lignite and IL-pretreated lignite. Sample nomenclature uses CXX-<br>AXX naming scheme, with CXX referring to vial number and AXX referring to the<br>IL used to pretreat lignite. All samples were solid and dried prior to SEM/EDS<br>analysis. The first sample listed is the EDS spectrum for a particle, second sample<br>represents area analysis at 750× zoom | 73 |
| 4.12 | XRD analysis derived after the fit of two Gaussian distribution curves for the $20^{\circ}$ (100, $\gamma$ -band) and $26^{\circ}$ (002, $\pi$ -band) peaks                                                                                                                                                                                                                         | 75 |
| 4.13 | Analysis of UV-Vis measurements for Reichardt's dye using known organic solvents; literature values provided by Lee et al. (2008)                                                                                                                                                                                                                                                   | 80 |

# LIST OF FIGURES

| 1.1 | Nucleophilic substitution reaction (S <sub>N</sub> 2) between 1-methylimidazole and bromoethane                                                                                                                                           |    |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 2.1 | .1 Nucleophilic substitution between 1-methylimidazole and bromoethane in acetonitrile to form 1-ethyl-3-methylimidazolium bromide, abbreviated as [EMIM][Br], ~96% yield with 10% molar excess of bromoethane                            |    |  |
| 2.2 | Representative structures of cations and anions that are of interest to this study                                                                                                                                                        | 09 |  |
| 2.3 | <b>2.3</b> Model representations of chemical structures of various classes of coal. This model serves to represent the differences in aromatic carbons between the high ranked anthracite and that of the low ranked lignite (brown coal) |    |  |
| 2.4 | Lignin, a complex polymer found in the degradation process of plant material, is the second most abundant natural polymer                                                                                                                 | 17 |  |
| 3.1 | Synthesis of IL [BMIM][Br]                                                                                                                                                                                                                | 22 |  |
| 3.2 | Visual representation of ion exchange procedure                                                                                                                                                                                           | 25 |  |
| 4.1 | Appel reaction, converting diethylene glycol monomethyl ether into 2-bromoethyl 2-methoxyethyl ether. The Appel reaction is used to convert primary or secondary alcohols into brominated compounds to be used in IL synthesis            | 35 |  |
| 4.2 | Results of the three Appel reactions                                                                                                                                                                                                      | 36 |  |
| 4.3 | Results of the IL synthesis (left) and ion exchange (right). Color, physical state, and viscosity vary greatly depending on the cation used to synthesize each IL                                                                         | 40 |  |
| 4.4 | I.4 <sup>1</sup> H NMR spectrum comparison for the synthesis of R28. Top-left: <sup>1</sup> H NMR for 1-<br>ethylimidazole. Top-right: <sup>1</sup> H NMR for 1-bromobutane. Right: <sup>1</sup> H NMR for product<br>[BMIM][Br]          |    |  |
| 4.5 | Comparison of <sup>1</sup> H NMR for sample R28 (left) to sample A28 (right). The acetate functional group is shifted to the left (down field?) and interacts with the acidic proton of imidazole.                                        | 45 |  |

| 4.6  | Thermogravimetric analysis (TGA) of sample A30. " $T_{der}$ is determined from the maximum in the first-derivative profile of the TGA scan. $T_{dcp}$ is the decomposition temperature measured as the onset of decomposition, using the common criterion of 10% total mass loss".            |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.7  | Kamlet-Taft dyes. Top: Reichardt's dye. Bottom left: 4-nitroaniline. Bottom right: N,N-diethyl-4-nitroaniline                                                                                                                                                                                 |    |
| 4.8  | Cellulose monomer, otherwise known as cellobiose (Hamad, 2017)                                                                                                                                                                                                                                | 52 |
| 4.9  | Experimental set-up of dissolution of cellulose                                                                                                                                                                                                                                               | 53 |
| 4.10 | TGA scan of untreated lignite (left) and lignite treated with A30 (right)                                                                                                                                                                                                                     | 57 |
| 4.11 | TGA scans of the chosen ILs and RG28                                                                                                                                                                                                                                                          | 58 |
| 4.12 | FTIR scans for ILs                                                                                                                                                                                                                                                                            | 61 |
| 4.13 | FTIR scans for Cellulose and IL after dissolution                                                                                                                                                                                                                                             | 61 |
| 4.14 | FTIR scans of lignite before (top) and after dissolution with the specific ILs                                                                                                                                                                                                                |    |
| 4.15 | SEM images taken of lignite 30x (left) and 1000x (right) zoom. All samples were coated with ~15 nm of elemental gold (Au) to reduce charging, which is still evidenced in the brighter particles in each image                                                                                | 67 |
| 4.16 | SEM images of lignite before and after dissolution with ILs. Samples use a CXX-<br>AXX nomenclature, with CXX referring to the vial number and AXX referring to<br>the IL used for dissolution. Photos on the left are at 100× zoom and the photos on<br>the right were taken at 1,000× zoom. | 70 |
| 4.17 | 17 EDS analysis of KMnO <sub>4</sub> resulted in detection of oxidation of the sample. The experimental formula was determined to be KMnO <sub>5.22</sub> . Electron accelerating voltage was 15 kV, SS60, and the image was taken at 750x zoom                                               |    |
| 4.18 | 8 Graphical representation of the number of X-ray counts vs. angle measure detected via XRD. The gray data points represent raw data; the red and green curves were calculated via Gaussian distributions; the black curve is a linear combination of the two Gaussian distributions          |    |
| 4.19 | NMR spectra for sample A28 before (left) and after (right) modification of the ion exchange procedure                                                                                                                                                                                         | 77 |
| 4.20 | Thermogravimetric analysis of IL A01 before (left) and after (right) modification to the ion exchange procedure                                                                                                                                                                               | 79 |

| 4.21 | SEM images of coal dissolution of lignite (left) versus lignite after dissolution with A30 (right). Parameters of the SEM was an accelerating voltage of 15 kV, spot size of 60, and 1000x zoom. Fiduciary in the lower right corner of each image is scaled to $10 \ \mu m$ . | 83 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.22 | EDS analysis of Lignite, taken with accelerating voltage of 15 kV, spot size of 60, and 750x zoom. Spectrum 1 was performed on single mass of lignite, Spectrum 2 was an area analysis outlined in the above image                                                             | 85 |
| 4.23 | EDS analysis of Lignite after dissolution with IL A30, taken with accelerating voltage of 15 kV, spot size of 60, and 750x zoom.                                                                                                                                               | 86 |

#### CHAPTER I

#### **INTRODUCTION**

An ionic compound is defined as "a substance in which component species are cations and anions" (Masterton et al., 1985), examples of which include sodium chloride (NaCl), calcium hydroxide (Ca(OH)<sub>2</sub>), and ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>). Introductory students learn to distinguish between ionic and covalent-bonded organic compounds by comparing the included species: a cation (positively charged atom or molecule) and an anion (negatively charged atom or molecule) form an ionic compound, while carbon, hydrogen, nitrogen, and oxygen atoms combine to form organic species via covalent bonds. The definition of an ionic compound doesn't mention metals, nonmetals, or even carbon, hydrogen, and oxygen-containing compounds; rather the definition only refers to the formal charge of the ions present in the compound.

Consider an organic nucleophilic substitution reaction between a nitrogen-containing heterocyclic nucleophile, such as 1-methylimidazole, and a halogen-containing electrophile, such as bromoethane (Figure 1.1). A lone-pair of electrons from one of the imidazole nitrogen atoms reacts with the electrophilic carbon of the bromoethane, with the bromide ion acting as the leaving group. The resultant product is 1-ethyl-3-methylimidazolium ion, a cation that is stabilized via resonance. The leaving group, Br<sup>-</sup>, is then electrostatically attracted to the cation, and an ionic compound is formed. These ionic compounds have lower melting points (<100 °C) than traditional ionic compounds (i.e. NaCl) and are known as ILs.

Ionic liquids (ILs) have been at the forefront of chemical research since the 1990s, with the number of potential compounds numbering in the millions (Caminiti & Gontrani, 2014). IL refers to any ionic compound that exists as a liquid at or below 100 °C. Molten salts, for example, are ionic compounds that are liquids at very high temperatures, whereas RTIL refers to room-temperature ILs, examples of which include the 1-ethyl-3-methylimidazolium acetate compound. Of particular interest are some applications of ILs in various industries, specifically the coal and energy industry.





ILs have revolutionized research labs and industrial processes, due not only to their versatility, but also their potential for green chemistry. Green chemistry refers to the belief that advancements in science and technology should be done without harming or negatively impacting the environment (Rogers et al., 2002). Too many chemical processes require egregious amounts of organic solvents or produce entirely too much waste that is not disposed of simply. Toxic industrial chemicals and materials pose a significant threat to plants, animals, and water sources; significant advances in chemistry have been made to reduce these wastes. "… [I]t should be noted that one property of low vapor pressure does not make ILs green. If ILs are toxic and non-biodegradable, they are not green" (Plechkova & Seddon, 2008).

The first principle of green chemistry, as written by Anastas and Warner (1998) and endorsed by the ACS, is that "it is better to prevent waste than to treat or clean up waste after it is formed." There exist twelve (12) principles of green chemistry that establish basic guidelines for chemists and engineers to follow that will improve upon the efficiency of chemistry and protect the environment from needless waste and abuse. Seeing how IL research is a fundamentally new division of chemical research, researchers must consider all of these principles and adapt their research to best support this particular initiative.

ILs have the potential to be used in novel applications that would better develop chemical processes and uphold the principles of green chemistry. ILs as solvents could effectively reduce the number of solvents required for chemical reactions, thus keeping to the fifth principle: benign solvents and auxiliaries. With regards to laboratory safety, utilizing chemicals and procedures that are inherently benign reduces the risk to human health, as well as the use of chemicals that pose little threat to health and environmental risks, following the principles for green chemistry. Conforming to the twelve principles of green chemistry "is doing chemistry the way nature does chemistry – using renewable, biodegradable materials which do not persist in the environment" (Anastas & Warner, 1998).

Coal and other petroleum-based compounds are precious resources that researchers cannot seem to find a viable application that limits the amount of waste produced during consumption. It stands to reason that any advancement in the complete and effective usage of coal would be an ideal research topic to investigate and could very well contribute significant findings to the industrial applications of coal. By identifying the specific characteristics of some novel ILs, it is possible to identify suitable ILs to aid in the liquefaction, dissolution, or separation of coal and its substituents to better separate and consume the entirety of coal samples.

#### **Research Objectives**

- O1 Synthesize ILs by combining different cations and anions. Cost, ease of synthesis, and variations in physicochemical properties were considered during synthesis. Hydrophilic ILs were the primary focus of this project.
- O2 Characterize ILs to identify physical and chemical properties that assisted in the coal dissolution process. The focus was placed on water concentration, viscosity, degradation temperature, structure verification, and hydrogen bond donor/acceptor properties.
- O3 Dissolution and characterization of coal model compounds to determine the viability of specific ILs for coal dissolution.
- O4 Dissolution and characterization of brown coal (lignite) using select ILs. Identification of extent of dissolution, swelling, and fragmentation was verified via instrumental analysis of samples. Recovery of IL from coal was possible; however, it is not a primary task for this analysis.

#### CHAPTER II

#### **REVIEW OF LITERATURE**

#### Ionic Liquids and How They Came to Mean So Much

In 1914, a Russian/Latvian/German chemist named Paul Walden documented the formation of an ionic liquid via a neutralization reaction of ethylamine (CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> or EtNH<sub>2</sub>) and concentrated nitric acid (HNO<sub>3</sub>). The resultant compound, ethyl ammonium nitrate, [EtNH<sub>3</sub>][NO<sub>3</sub>], has a melting point of 13-14 °C and opened a realm of possibilities for chemistry and chemical engineering research and development (Plechkova & Seddon, 2008). Over the next half-century, researchers dabbled with molten salts, which are ionic compounds with melting points well above 250 °C, and decided that compounds with significantly lower melting points were necessary if they were to find suitable applications in industry and manufacturing processes (Welton, 2018).

The difference between conventional molten salts and ILs is the temperature at which the compound becomes a liquid. High-melting salts, or conventional molten salts, are considered ionic compounds with a melting point above 250 °C (e.g., sodium hydroxide, NaOH, 318 °C), low-melting ionic salts have a melting point between 100 °C and 250 °C (lithium aluminum chloride, LiAlCl<sub>4</sub>, 148 °C), while ILs have melting points below 100 °C (e.g., 1-ethyl-3-methylimidazolium bromide, [EMIM][Br], 79 °C) (Marcus, 2016).

Chloroaluminate molten salts, discovered by the Osteryoung group in 1975, fluctuate with regards to melting points depending on the molar ratio of their anion and cation. For

example, 100 mol% of AlCl<sub>3</sub> has a melting point of 192 °C, NaCl-AlCl<sub>3</sub> (considered as Na<sup>+</sup> and AlCl<sub>4</sub><sup>-</sup>) has a melting point of 151 °C, and LiCl-AlCl<sub>3</sub> (Li<sup>+</sup> and AlCl<sub>4</sub><sup>-</sup>) has a melting point of 144 °C (Plechkova & Seddon, 2008). It was determined that the stability/moisture-sensitivity of these compounds made them difficult to work with, as impurities from reactions with water required the use of a dry box (Welton, 2018).

The development of air and water-stable ILs began a new era of research. As an example, Wilkes, Evans, Magnuson, Pacholec, Poole, Seddon, and Osteryoung began investigating molten salts with lowered melting points and their respective physical properties, considering their applications in chromatography and synthesis (Welton, 2018). In 1992, the Wilkes' group investigated the preparation and characterization of low melting salts previously only predicted to exist (Wilkes & Zaworotko, 1992). Research by Welton (2018) discovered that there "appear[s] to have initiated a period of growth in the number and range of ILs." This period also saw a growth in the interest in ILs as solvents for chemical reactions, without necessarily "being a component of the reaction itself" (Welton, 2018).

To further understand these novel solvents, we must define certain terms regarding ILs. We begin by defining what an IL is and why it is important in this research. There is not a strict definition of an ionic liquid. A common understanding of an ionic liquid is that it is a pure compound consisting entirely of ions with a melting point below 100 °C; therefore, the first variable in defining an ionic liquid is to recognize that it has a low melting point. Sodium chloride has a melting point of 801 °C as compared [BMIM][Cl] which has a melting point of 73 °C; the former is the molten salt while the latter is an IL.

According to researchers at the Beijing Key Laboratory of Lignocellulosic Chemistry, an ionic liquid "is defined as a class of environmentally friendly organic salts with high thermal

stability, negligible vapor pressure, wide liquid range, and tunable solvation properties" (Pang et al., 2016). ILs are comprised of a cation and anion bound to one another through "the electrostatic attraction between the ions" (Daintith, 2008). Changing either ion will inevitably alter the physicochemical properties of the compound, a point of emphasis for this research project.

Generally referred to as RTILs, or room-temperature ILs, these are "salts with a melting point below room temperature at atmospheric pressure. They consist of an organic cation and an inorganic or organic anion" (Romich et al., 2012). Using the vernacular associated with organic chemistry, a second-order nucleophilic substitution reaction ( $S_N2$ ) between a nucleophile and electrophile has the potential of producing this type of ionic structure. Figure 2.1 illustrates the synthesis scheme of 1-ethyl-3-methylimidazolium bromide, [EMIM][Br], one of the many IL precursors that are of interest to this study. The reaction between 1-methylimidazole as nucleophile and ethyl bromide as the electrophile is the classical nucleophile. The resultant ionic compound consists of a cation [EMIM]<sup>+</sup> and an anion [Br]<sup>-</sup>, which attract each other via the electrostatic interaction forming an ionic network.





While some common ILs comprise an organic heterocyclic cation and either inorganic or organic anions, these are not the only ILs that can be produced (Seddon, 1997). Many ILs have non-heterocyclic cations, such as quaternary alkylammonium, phosphonium, and sulfonium, etc.

ILs have been nicknamed 'designer' solvents for their variations of cation and anion, with the creativity of the researcher being the only restriction of possible structures. There exist so many combinations of cation and anion that in 2000 an Advanced Research Workshop sponsored by NATO met to establish guidelines for research and development of ILs and the systematic accounting of structures and their properties (Plechkova & Seddon, 2008). This committee established ten criteria that must be met by the scientific community, one of which required "a public (free), verified, web-based database of physical, thermodynamic, and related data (*i.e.*, not process specific)" (Rogers et al., 2002).

The database required by the NATO-sponsored workshop was established in 2003 by the National Institute of Standards and Technology (NIST) in Boulder, CO, developed by A. Kazakov, J.W. Magee, R.D. Chirico, E. Paulechka, V. Kiky, C.D. Muzny, K. Kroenlein, and M. Frenkel. ILThermo, formally named NIST Standard Reference Database #147 (Kazakov et al., 2019), was established as a means of providing a current, worldwide database on ILs that provides information on types and structures of ILs, thermodynamic and thermochemical properties, as well as references to scientific journals pertinent to the characterizations of said ILs. As of July 14, 2020, the database included information on 706,888 pure, binary, and ternary mixtures of ILs (Dong et al., 2004; Kazakov et al., 2019).

Figure 2.2 is a representation of some common cation and anion constituents that will be the focus of this proposal. While not all cations consist of heterocyclic structures, they all contain either nitrogen or phosphorus with varying lengths of ether-functionalized or alkyl chains attached to the non-carbon heteroatom. Regarding anions, acetate will be the primary focus; however, dicyanamide, bromide, and chloride anions will be considered. **Figure 2.2**: Representative structures of cations and anions that are of interest to this study (Plechkova & Seddon, 2008).

|                                 |                                                                           | ÐN<br>R" ⊕N<br>R"                               |
|---------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|
| $(Et)_3 N - R$                  | $ \begin{array}{c} \bigoplus\\ (Et)_3 P \longrightarrow R'' \end{array} $ | ⊕<br>(Bu) <sub>3</sub> P──R"                    |
| [PF <sub>6</sub> ] <sup>-</sup> | $[BF_4]$                                                                  | [CH <sub>3</sub> CO <sub>2</sub> ] <sup>-</sup> |
| $[Tf_2N]^-$                     | $[N(CN)_2]$                                                               | [NO <sub>3</sub> ] <sup>-</sup>                 |
|                                 |                                                                           | [Br] <sup>-</sup> , [Cl] <sup>-</sup>           |
| Hydrophobic Anions              |                                                                           | Hydrophilic Anions                              |

#### **Physiochemical Properties of Ionic Liquids**

Physiochemical properties are important to the understanding of IL structures and their applications. These properties include the basics (i.e., formula weight, boiling point, melting point, and density, etc.) as well as other properties (i.e., viscosity, vapor pressure, crystallographic structure, thermal stability, and decomposition temperature/pattern, etc.). Many of these properties are simple to identify using established laboratory techniques in a controlled environment. Others are more difficult to ascertain due to the complexity of instrumentation and available resources; however, their results can speak volumes on the applicability and versatility of newly synthesized compounds.

ILs are designer compounds, meaning they can be "tailored to have a specific property or...be used in a specific application" (Corchero et al., 2019). Before discussing the surfeit of applications for which ILs have been applied, we should consider why and how ILs can be tailored to exhibit various properties. "Their physical and chemical properties (such as hydrophobicity, polarity, and miscibility) can be finely customized for a range of applications through varying the structures of cations or anions and their combinations" (Zhao, 2006). We will first consider a few highly important characteristics of ILs, followed by an evaluation of that elusive categorization as 'green' chemical agents.

Manipulation of the cation and anion results in different physicochemical properties of ILs. Instead of a traditional metal cation in an ionic compound, the use of "unsymmetrical organic cations depress the melting point to temperatures at or below room temperature" (Seddon, 1997). The use of symmetrical or long-chain alkyl groups on the cation will do the opposite, increasing the melting point and viscosity of the ionic liquid (Zhao et al., 2018). Manipulation of the structure of the anion will affect properties such as hydrophobicity, viscosity, and thermal stability of ILs.

In the case of all chemical analysis, the purity of our compounds can make a significant difference in our observations and conclusions. "Probably the most amateurish error present in unreliable ionic liquid papers is [the] failure to report the purity of the employed ionic liquid(s)" (Deetlefs & Seddon, 2006). There is no ignominy in accounting for impurities in reagents and products; however, it is improper not to disclose this information. Part of the scientific method is to allow for results to be reproducible and confirmable, and the lack of purity analysis undermines the value of these results (Deetlefs & Seddon, 2006).

The three most immediately recognizable physical properties of ILs include their physical state at room temperature, viscosity, and color. The color of the ionic liquid can be attributed to three phenomena: overheating of ILs, chromophores generated in isothermal reactions at room temperature, or chromophoric impurities resulting during synthesis. "Although the colored impurities might be aesthetically displeasing, there is no evidence that the chromophoric impurities affect either the chemistry or the physical properties of ILs," however spectroscopic

analysis of ILs can be impacted when the measurement relies on light absorption or emission, i.e., UV-Vis, FT-IR, and Raman spectroscopy (Earle et al., 2007).

Temperature-dependent properties, such as physical form and viscosity, must be considered during the analysis of ILs. As mentioned previously, RTILs are special ILs that are liquid at room temperature and atmospheric pressure. Viscosity is an important property of liquids, and thus an analysis of RTIL will take precedence over ILs that are liquids closer to 100 °C. Table 2.1 is a representation of many different ILs and their respective viscosity measurements, many taken from literature sources, while some ILs have been evaluated for this research project.

**Table 2.1**: Dynamic viscosities ( $\eta$ ) of selected ILs (in mPa·s) Note: Reference (1) is Fendt et al., 2011, and reference (2) is Zhao et al., 2019.

|     | Ionic Liquid                                                                             | Solvent Water Content<br>(% by mass) | Dynamic Viscosity<br>at 30°C (mPa·s) |
|-----|------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| (1) | [BMIM][PF <sub>6</sub> ]                                                                 | 0.01                                 | 205.8                                |
| (1) | [BMIM][Tf <sub>2</sub> N]                                                                | 0.01                                 | 41.4                                 |
| (1) | [BMIM][BF4]                                                                              | 0.03                                 | 85                                   |
| (1) | [BMIM][dca]                                                                              | 0.05                                 | 26                                   |
| (2) | [BMIM][dca]                                                                              | 0.012                                | 31                                   |
| (2) | [BMIM][OAc]                                                                              | 0.0085                               | 485                                  |
| (2) | [EMIM][OAc]                                                                              | 0.012                                | 17 (80°C)                            |
| (2) | [CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> -Et-Im][Tf <sub>2</sub> N]             | 0.01                                 | 33.1                                 |
| (2) | [CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> -Et <sub>3</sub> P][Tf <sub>2</sub> N] | 0.01                                 | 36                                   |

The dynamic viscosity measurements listed in Table 2.1 are representative of a small set of ILs that are considered during this project. "The viscosity of an ionic liquid influence[s] the solubility of cellulose-containing natural products. Undesirable high viscosity impedes [the] dissolution of biomass composites" (Fendt et al., 2011). As is the case with [CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>-Et<sub>3</sub>N][OAc], a viscosity around or above 100 mPa·s would not be an ideal compound to dissolve biomass, whereas [CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>-Et<sub>3</sub>P][Ac] has a significantly lower and thus preferred viscosity for the dissolution of biomass. Also, compounds with an acetate ion tend to have lower viscosities than those carrying halides, thereby "they hold promise as solvents for pretreatment of lignocellulosic biomass [before] enzymatic hydrolysis" (Fendt et al., 2011).

Another property that differentiates ILs from other organic solvents or compounds is their relatively low vapor pressure. At or near room temperature, vapor pressures of most ILs are immeasurably small; for this reason, they are often considered to be 'vapor-less' compounds. ILs can be heated well past the boiling point of traditional organic solvents, thus making them better reaction media for high-temperature reactions. Instead of boiling at atmospheric pressure, thermal decomposition might occur at elevated temperatures, a phenomenon that can be analyzed via thermogravimetric analysis (TGA) (Deetlefs & Seddon, 2006).

Viscosity measurements produce two values, one being absolute or dynamic viscosity and the other kinematic viscosity. Dynamic viscosity, measured in mPa·s, is "the tangential force per unit area required to slide one layer (*A*) against another layer (*B*)" (Viswanath et al., 2007). Dynamic viscosity is considered the fluids' amount of resistance to flow. Kinematic viscosity takes into consideration the density of the liquid at a temperature and pressure. Equal to the dynamic viscosity divided by the density, kinematic viscosity is measured in mm<sup>2</sup>/s. All values of viscosity will be reported for both dynamic and kinematic viscosity, however the dynamic viscosity and density were considered in results analysis.

Another important characteristic of ILs is a complex description of the ILs compatibility with water. A majority of ILs are hygroscopic, meaning they absorb water from the atmosphere. The ILs anions tends to form a complex with water molecules, creating an anion-water-anion interaction. Increasing concentrations of water lead to more complex micelles and aggregates, increasing the difficulty of extracting water from ILs to produce neat, otherwise known as dry, ILs. "The micellization and aggregation of ILs are dependent on the alkyl chain length, the type of cations, and the nature of the anions. ILs with longer alkyl chains or hydrophobic anions form aggregates more easily" (Chen et al., 2012). Removing water from ILs depends on many factors, the least of which is whether ILs are hydrophobic or hydrophilic.

Hydrophobic ILs are less likely to form complexes than hydrophilic ILs. "Hydrophobic ILs can be removed easily by organic solvent extraction owing to their poor solubility in aqueous solution. However, that is not suitable for hydrophilic ILs. Therefore, the removal or recovery of hydrophilic ILs is much more difficult in comparison to hydrophobic ILs" (Wu et al., 2016). Studies have shown that hydrophobic ILs will continue to have trace amounts of water complexed to the compound, however more research has been done regarding the separation of hydrophilic ILs from water, particularly in aqueous biphasic systems (ABS) (Palumbo, et al., 2019) or salting-out reactions using potassium phosphate (Wu et al., 2008).

Thus far, consideration has been given to the physical and chemical characteristics of ILs themselves. More important is the ability of ILs to solvate and interact with various other molecules, specifically lignocellulosic biomass and other biomass particles. Consideration of polarity and polarizability can be expressed by a complex formula using the solvatochromic parameters  $\alpha$ ,  $\beta$ , and  $\pi^*$  (Kamlet & Taft, 1976). The values for electron-accepting,  $\alpha$ , and electron-donating,  $\beta$ , abilities of a solvent and polarity/polarizability,  $\pi^*$ , are used to "describe the effect a solvent has on the properties and reactivity of dissolved compounds using the principle of the linear solvation energy relationships (LSER) in the Kamlet-Taft formalism." These three parameters were calculated using the following formulas:

$$E_T(30) = \frac{28591}{\lambda_{RD}(nm)}$$
 Equation 2.1  
 $E_T^N = \frac{E_T(30) - 30.7}{32.4}$  Equation 2.2

$$\pi^* = \frac{\tilde{v}_{DENA} - 27.52}{-3.183}$$
Equation 2.3  
$$\beta = \frac{(1.035) \cdot \tilde{v}_{DENA} - \tilde{v}_{NA} + 2.64}{2.8}$$
Equation 2.4  
$$\alpha = \frac{E_T(30) - 14.6 \cdot (\pi^* - 0.23) - 30.321}{16.5}$$
Equation 2.5

In these formulae,  $\tilde{v}_{NA}$  and  $\tilde{v}_{DENA}$  are the maximum absorption wavenumbers (cm<sup>-1</sup>) for 4nitroaniline and diethyl-4-nitroaniline, respectively. The value  $\lambda_{RD}$  is the absorption maximum wavelength for Reichardt betaine, a zwitterion compound with a quantized electron transition (Ladesov et al., 2015).

#### Coal and What it is Made Of

One particularly interesting application of ILs is the liquefaction and dissolution of coal. According to the U.S. Energy Information Administration, coal-based energy consumption for 2019 in the United States is valued at 11.3 quadrillion British thermal units (BTU)  $(1.13 \times 10^{16}$  BTU), making coal the third most consumed energy source after petroleum and dry natural gas (U.S. Energy Information Administration, 2020). "It is estimated that the world coal reserves are currently  $1.53 \times 10^{20}$  BTU or 71.4% of the total world fossil fuel resource" (Sekhohola et al., 2013). What is coal, what is it made of, and how can it be used more efficiently?

ASTM International, formerly known as American Society for Testing and Materials (ASTM), established a classification system to be used for coal that categorizes the material into ranks. Based on the calorific value, expressed as BTU per pound, coal can be classified as anthracite, bituminous, sub-bituminous, and lignite/brown coal (Sekhohola et al., 2013), the latter two classifications are considered the lowest ranks and thus the focus of this research project. Low-rank coal produces the least energy when degraded, 5500 to 8300 BTU/lb, compared to the higher-ranked anthracite that produces 13,500 to 15,600 BTU/lb, which results in more waste produced during consumption and an increase in organic pollutants (Sekhohola et al.

al., 2013). Non-combustible waste is created when hydrogen, oxygen, and nitrogen impurities strengthen the structure of coal, resulting in chemical bonds that are not broken during use.

Figure 2.3 illustrates the structures of four ranks of coal, designed to convey the complexity of each structure and to display their differences in connectivity between aromatic rings. Anthracite, being the highest rank and largest energy producer, contains 86 to 98% on a fixed carbon content scale, whereas lignite and sub-bituminous coal range from 46 to 60% fixed carbon content (Sekhohola et al., 2013). This fixed carbon content, FC, was derived as a means to relate the amount of aromatic carbon with non-volatile carbon, aromatic hydrogen, and nitrogen concentrations (Ahamed et al., 2019). As indicated in the figure, brown coal contains fewer aromatic rings and is connected via ether and hydroxy-based linkages. These linkages result in less energy consumption, and is, therefore, a focus for researchers in regards to increasing the efficiency of consumption of lignite and sub-bituminous coals.

The coalification process is a natural phenomenon studied rigorously by petroleum geologists. Two factors dictate the extent of the process and the rank of coal being formed: temperature and pressure. Lignite, low-rank brown coal, "one of the initial products of the coalification process formed under moderate temperature and pressure," is estimated to constitute roughly 45% of total global deposits (Ghani et al., 2015). When conditions become unfavorable for plant biodegradation, complex polymers are added to the coalification process. One such polymer from lignocelluloses, known as lignin (Figure 2.4), resembles some structural features of lignite, along with various silicon, oxygen, nitrogen, and sulfur-containing minerals (Ahamed et al., 2019).

Poor energy production and pollution during degradation implies that an alternative solution must be found to increase the efficiency of low-rank coal. Three techniques are used

today, each with its advantages and disadvantages. First, pretreatment of coal using organic solvents, nitric acid, or oxidizing agents like hydrogen peroxide or potassium permanganate can be used to cleave some of the bonds in lignin-like structure (Strzelecki et al., 2015). Reducing the number of oxygen atoms reduces the number of ether and hydrogen bonding linkages that interfere with chemical combustion. Second, biosolubilization via bacteria or fungi has shown promising advances in the liquification and biodegradation of low-rank coals (Sekhohola et al., 2013). Last, and most importantly for this project, ILs can be used to liquify and isolate low-rank coals for further use in energy or industrial applications (Lei et al., 2019).

**Figure 2.3**: Model representations of chemical structures of various classes of coal. This model serves to represent the differences in aromatic carbons between the high ranked anthracite and that of the low ranked lignite (brown coal) (Ghani et al., 2015).



Researchers state that "if the cross-link density of the network is high and the chains are relatively stiff, a significant portion of the soluble fraction can be trapped and inaccessible" (Painter et al., 2010). The primary dilemma associated with coal dissolution via organic solvents. Pyridine, a common organic solvent that solubilizes coal to an extent, lacks the ability to complex with cations that result from the cleavage of networked compounds, and thus falls short of maximizing the efficiency of coal dissolution.





Pretreatment of coal poses the same waste and pollution problems found when using organic solvents but play a role in the biosolubility of coal via bacterial or fungal liquification. Pretreatment of coal "enhances the brown coal biosolubilization process through oxidation and loosening of coal structure". Pretreatment of brown coal with hydrogen peroxide and nitric acid, followed by treatment with *F. oxysporum 1101*, resulted in 100% liquefication (Strzelecki et al., 2015).

#### Use of Ionic Liquids to Pretreat (Dissolve or Swell) Coal

Pretreatment of coal is used as a means of disrupting the intramolecular forces that bind various substituents of coal together. These forces, namely hydrogen bonds,  $\pi$ - $\pi$  interactions, and charge transfer complexes, have been found to dissociate with the pretreatment by [BMIM][C1] (Painter et al., 2010). Further testing has identified that this IL, among others, works to "fragment, swell, partially solubilize, and disperse some coals" (Lei et al., 2019). Continued investigation into the extent of swelling, fragmenting, and solubilizing is necessary to understand the limitations that ILs have, as well as to identify cost-effective and efficient dissociation techniques.

In 2019, researchers began investigating the dissociation behaviors of coal using ILs in model compounds. The complexity of coal makes it difficult to understand the limitations of the dissociation, while the use of model compounds, or complex organic species that model the chemical behavior of coal, gives insight into the ideal characteristics of ILs. According to Lei et al., [EMIM][OAc] (OAc being the shorthand notation for the acetate anion), [BMIM][C1], and [B(SO<sub>3</sub>H)MIM][OTf] (OTf is shorthand for the triflate group) had the highest conversion percentages for the dissociation of their model compounds (Lei et al., 2019).

Computer modeling has also been employed to predict the dissolution of lignite using ILs, utilizing the principle of hydrogen bond disruption to predict which ILs would have the greatest dissociation effect on lignite. Bhoi et al. (2014) determined two principles: first, the solubility of coal in ILs will increase with an increase in temperature, and second, nitrogen-containing rings that are not aromatic have higher solubilities than phosphorus or aromatic ring containing cations. Their results show that using [BMIM][Cl] will extract "mainly aromatic

structures" from lignite, "but it mainly contains more aliphatic alkyl structures in the [BMIM][PF<sub>6</sub>] extraction case.'

"Two key objectives of the pretreatment of coal are [1] softening, swelling and dissolution of coal particles and [2] removal of the extra elements" (To et al., 2017). Identifying the complexity of the coal matrix will open an avenue to understand what type of intramolecular forces need be disrupted to propagate the dissolution and extraction of impurities, which will then allow researchers to identify ideal IL properties that will maximize the dissolution process. Understanding which IL properties contribute to the dissolution of coal will allow for crosstesting of ideal IL(s) with coal samples from different physical locations with various physical characteristics.

#### CHAPTER III

#### METHODOLOGY

### **Research Objectives**

There exist millions of combinations of ILs, with only a handful of which have been tested against coal or coal model systems. Researchers have built a foundation of understanding of ILs and their applications to coal dissolution that must be built upon. The research objectives outlined in this section were used to design experimental parameters to synthesize and characterize various ILs, characterize available coal samples, and test the dissolution properties of select ILs on coal.

- O1 Synthesize ILs by combining different cations and anions. Cost, ease of synthesis, and variations in physicochemical properties were considered during synthesis. Hydrophilic ILs were the primary focus of this project.
- O2 Characterize ILs to identify physical and chemical properties that assisted in the coal dissolution process. The focus was placed on water concentration, viscosity, degradation temperature, structure verification, and hydrogen bond donor/acceptor properties.
- O3 Dissolution and characterization of coal model compounds to determine the viability of specific ILs for coal dissolution.
- O4 Dissolution and characterization of brown coal (lignite) using select ILs. Identification of extent of dissolution, swelling, and fragmentation was verified via instrumental analysis of samples. Recovery of IL from coal was possible; however, it is not a primary task for this analysis.

#### **Synthesis of Ionic Liquids**

General synthesis procedures for producing most ILs started with a "quaternization step

followed by a metathesis step-anion exchange" (Earle et al., 2007). Special considerations must

be made to produce "spectroscopic grade" ILs, which can be achieved "in four ways, notably (i) purification of starting materials, (ii) control of conditions for quaternization reactions, (iii) anion exchange, and (iv) cleaning of the ionic liquid" (Gordon et al., 2003).

Synthesis of the bromide type of ILs occurred in acetonitrile (CH<sub>3</sub>CN), an anhydrous polar organic solvent, which was easily evaporated from the IL via rotary evaporation at 50 °C and 50-100 mbar of vacuum. Ion exchange from the bromide ion to acetate ion was performed in an ion-exchange column filled with Amberlyst<sup>™</sup> A26 OH resin and required approximately 450 mL of methanol to fill, rinse, and perform the ion exchange. Regeneration of the resin required an additional 400 mL of methanol and one liter of one molar sodium hydroxide (NaOH) in water. Increasing the temperature of the water bath used with the rotary evaporator from 50 °C to 75 °C allowed for complete removal of methanol from the acetate-based ionic liquid; treatment of this ionic liquid in a vacuum oven at 80 °C at 25 mbar of vacuum for 2 or more days reduced the water concentration below 1%.

Commercially available compounds were used as the starting reactants for the nucleophilic substitution by direct displacement (S<sub>N</sub>2) reaction. The first two compounds reacted were 1-ethyl imidazole and 2-bromoethyl methyl ether, resulting in the ionic liquid 1-ethyl-3-(2-methoxyethyl) imidazolium bromide (R01, [MeOCH<sub>2</sub>CH<sub>2</sub>-Et-Im][Br]). Further reactions with 2-bromoethyl methyl ether occurred with 1-methyl imidazole, triethylamine, triethyl phosphorus, tributyl phosphorus, pyridine, N-methyl pyrrole, and N-methyl piperidine. Other brominated compounds reacted with this full set of nitrogen or phosphorus-based compounds included 2-bromoethyl ether, bromoethane, and 1-bromobutane.

Shorthand notation is used when describing ILs and IL synthesis. In general, [BMIM] represents 1-butyl-3-methyl imidazolium ion, [Br] is short-hand for bromide anion, [PF<sub>6</sub>] is

short-hand for hexafluorophosphate anion, and [OAc] represents the acetate anion. Figure 3.1 represents the synthetic process for [BMIM][Br] which also applies for the synthesis of [BMIM][PF<sub>6</sub>]. The method for synthesizing [BMIM][Br] was to combine 17.649 g (215.0 mmol) of 1-methyl imidazole with 32.440 g (236.8 mmol, 10% molar excess) of 1-bromobutane in 150 mL acetonitrile. The solution was refluxed at 55 °C for 24 hours, washed twice with 150 mL of diethyl ether and the remaining solvent was evaporated via a rotary evaporator (rotovap). This reaction produced 46.084 g of [BMIM][Br] (210.31 mmol), a 97.82% yield; the resultant compound was a light brown, relatively viscous liquid, stored at room temperature in a closed glass vial sealed with parafilm.

Figure 3.1: Synthesis of IL [BMIM][Br].



Zhao et al. studied the characteristics of glycol-functionalized ILs (Zhao et al., 2018) using hydrophobic anions instead of hydrophilic anions. In order to investigate similar ILs with hydrophilic anions, we must first synthesize more complex brominated glycols to then react with our other nucleophilic compounds. The Appel reaction is a basic reaction between an alcohol and carbon tetrabromide in the presence of triphenylphosphine to produce a brominated compound. Various glycols were reacted with 10% molar excess of CBr<sub>4</sub> and PPh<sub>3</sub> at room temperature for 24 hours to produce the brominated glycol that could further react to produce an ionic liquid. Copious washings of the product with hexane was used to remove unreacted CBr<sub>4</sub>, PPh<sub>3</sub>, and byproducts O=PPh<sub>3</sub> and CHBr<sub>3</sub>. NMR analysis was used to verify product formation and purity before further experimentation was conducted. Synthetically, 18.203 g (122.83 mmol) methyldiethylene glycol was added to a 250-mL Erlenmeyer flask with 150 mL acetonitrile, along with 37.883 g (114.24 mmol) carbon tetrabromide. The mixture was dissolved on a stir plate, to which 30.005 g (114.40 mmol) triphenylphosphine was added very slowly, ensuring the solution did not heat to the point of boiling. After 24 hours of stirring at room temperature, the solution was filtered, washed twice with *n*-hexane, and placed in a freezer for a minimum of 72 hours. The solution was filtered again, rotovapped at 55°C and 50 mbar of pressure, and the resultant oil was placed in a glass vial. This reaction yielded 15.965 g (87.22 mmol) of 1-(2-bromoethoxy)-2-methoxy ethane and translated into an 83.96% yield.

In order to perform the ion exchange to replace the bromide ion with a more complex anion, the relative solubility of the compound in organic solvents and water had to be understood. Addition of NaPF<sub>6</sub> to [BMIM][Br] in acetone, both of which are soluble, results in the exchange of Br<sup>-</sup> by PF<sub>6</sub><sup>-</sup>. The resultant NaBr, being insoluble in acetone, precipitated out of solution. Upon completion of the ion exchange, all NaBr will be precipitated, and the washed ionic liquid can be tested with AgNO<sub>3</sub> to verify Br<sup>-</sup> is no longer present in the ionic liquid.

Ion exchange was performed in a glass column filled with a slurry comprised of 50 grams of Amberlyst<sup>™</sup> A26 OH resin in methanol. A dissolved solution of 150 grams of ammonium acetate in 250 mL methanol was flushed through the column, followed by 200 mL methanol. Approximately 10 grams of brominated ionic liquid was dissolved in 100 mL methanol and slowly passed through the column. The collected solution was tested periodically with silver nitrate to verify the full exchange of bromide ion in the column (silver bromide precipitated in water if bromide ion was present). Figure 3.2 is a visual representation of the ion exchange process. The collected solution was concentrated via rotovap at 75 °C and 50 mbar for 2 hours, transferred to a glass vial, and heated in a vacuum oven at 80 °C and 25 mbar of vacuum for a minimum of 48 hours.

Verification of the water concentration in an IL was necessary before further characterization could occur. For example, IR analysis of a sample with too much water will give misleading absorption peaks, and the TGA will indicate the evaporation of water rather than the decomposition of the ionic liquid. A Karl Fischer titration method of chemical analysis using coulometric titration was used to determine the water concentration of ILs. Hydrophilic ILs absorb water from the atmosphere, so it was necessary that ILs be stored in either an inert or vacuum atmosphere and retested periodically to ensure neat (a.k.a. dry) samples were analyzed. Water concentration within the samples was analyzed using Karl Fischer (KF) titration via a Mettler Toledo C20X compact coulometric titrator with a detection limit of 1 ppm water. The titrator used Hydranal® Coulomat AG analyte. Adequately dry samples were stored in a vacuum desiccator at 50 mbar pressure and room temperature. Phosphorous pentoxide (P<sub>2</sub>O<sub>5</sub>) was placed in the vicinity of the sample during drying and storage to absorb atmospheric moisture before the hygroscopic ionic liquid became saturated with water.

#### **Characterization of Ionic Liquids**

In order of analysis, the techniques utilized in this research project included viscometry, thermogravimetric analysis (TGA), hydrogen bond acidity, hydrogen bond basicity, dipolarity/polarizability effects, structure and purity confirmation via NMR and IR analysis, LC-MS, SEM/EDS, and XRD. Each analysis method will be discussed in further detail, specifically relating to the predicted results of this project. Figure 3.2: Visual representation of ion exchange procedure.



The viscosity and density of a liquid were determined using an Anton Paar SVM 3000 viscometer set at 30 °C. The viscometer takes a 3 mL sample and determines the dynamic and kinematic viscosity as well as density at a specified temperature. The more viscous an ionic liquid, the more difficult it will be to treat solid biomass or coal samples. Detailed information regarding viscosity is typically required to better characterize ILs. The dynamic viscosity is reported in units of mPa·s and the density is reported in units of g·cm<sup>-3</sup>; kinematic viscosity, a function of both dynamic viscosity and density, was not be reported at this time.

Thermogravimetric analysis (TGA) is a destructive analysis that measures the  $T_{der}$  and  $T_{dep}$ , where the " $T_{der}$  is determined from the maximum in the first-derivative profile of the TGA scan and the  $T_{dep}$  is the decomposition temperature measured as the onset of decomposition, using the common criteria of 10% total mass loss" (Zhao et al., 2018). TGA analysis was completed by Dr. Gary Baker, collaborator and fellow IL specialist at the University of Missouri-Columbia.

Thermogravimetric analysis (TGA) scans were measured on a TA Instruments TGA Q50 under a nitrogen atmosphere (60 mL min<sup>-1</sup>) using Pt pans with a heating rate of 10 °C min<sup>-1</sup>.  $T_{der}$ is determined using the global maximum of the first-derivative profile of the TGA scan.  $T_{dep}$  is the decomposition temperature measured as the onset of decomposition, using the criterion of a 10% total mass loss. Uncertainties in the temperatures are estimated to be ±2–3 °C. The TGA mass loss behavior is qualitatively characterized on the basis of whether it occurs essentially in a single, discrete step (S) or exhibits multiple step (M) thermal decomposition. The designation S is thus applied if >90% of the weight loss occurs in a single, discrete step. The latter designation of M is typically associated with a significant mass loss step which occurs at a temperature 50– 100 °C above or below the primary event at  $T_{der}$ . It should be noted that, for this reason, profiles that display multi-step thermal decomposition behavior frequently exhibit lower effective  $T_{dcp}$  values. The amount of carbon char residue is determined from the relative mass remaining at 600 °C. A residual mass of ±0.5–2% at the upper temperature is within the error of the measurement's baseline and represents essentially quantitative mass loss over the thermal interval.

Nuclear magnetic resonance was used to confirm the structure and purity of the ILs. The NMR analysis was completed using a Bruker 400 MHz NMR paired with TopSpin processing software. The <sup>1</sup>H, <sup>13</sup>C/DEPT, COSY, HMBC, and HMQC spectra were used to verify each structure dissolved in CDCl<sub>3</sub> solvent. The CDCl<sub>3</sub> solvent was received from the manufacturer containing tetramethylsilane, or TMS, which acts as a reference peak to verify accurate NMR spectroscopic analysis.

Hydrogen bond acidity ( $\alpha$ ), hydrogen bond basicity ( $\beta$ ), and dipolarity/ polarizability effects ( $\pi^*$ ), known together as Kamlet-Taft parameters, were combined in a multi-parameter polarity scale that was used to evaluate the polarity of our ILs. The ionic liquid was mixed with a particular dye set and the resultant mixtures were analyzed using a UV-Vis spectrometer. This dye set includes Reichardt's Dye (2,6-diphenyl-4-(2,4,6-triphenylpyridin-1-ium-1-yl) phenolate), *N*,*N*-diethyl-4-nitroaniline, and 4-nitroaniline, all three of which are considered solvatochromic compounds, meaning they change colors depending on the other species they interact with.

The solvent dipolarity/polarizability,  $\pi^*$ , was calculated from the maximum wavelength of the lowest-energy band of *N*,*N*-diethyl-4-nitroaniline, the scale has dimethylsulfoxide ( $\pi^*=1.00$ ) and cyclohexane ( $\pi^*=0.00$ ) as fixed references. A one nanometer shift in maximum absorption of *N*,*N*-diethyl-4-nitroaniline gives an error in  $\pi^*$  of 0.02. The hydrogen-bondaccepting (HBA) basicity,  $\beta$ , was determined from the absorptions of 4-nitroaniline and *N*,*N*- diethyl-4-nitroaniline and the scale has hexamethylphosphoramide as  $\beta$ = 1 (now accepted to be 1.05) as a fixed reference. Compounding the error of a single nanometer error in each dye gives an error in  $\beta$  of 0.03. The hydrogen-bond-donating (HBD) acidity,  $\alpha$ , was calculated using the maximum absorption wavelength of Burgess' dye and *N*,*N*-diethyl-4-nitroaniline (Dolan et al., 2016).

Three dyes were added to each sample and the wavelength of maximum absorption was measured using UV-Vis spectroscopy, namely Reichardt's dye (RD), 4-nitroaniline (NA), and *N*,*N*-diethyl-4-nitroaniline (DENA). Each solution was prepared by dissolving 25.0 mg of the respective dye in 25.0 mL of chloroform. The resultant concentrations were 1.81 mM RD, 7.24 mM NA, and 5.15 mM DENA. A micropipette was used to transfer 20  $\mu$ L of each dye into a 2-mL conical vial, whereupon ambient air was blown over each vial to evaporate the chloroform. The vial was then filled with 2.0 mL of an IL and agitated for 30 minutes until all evidence of dye was dissolved. A 2 mm quartz cuvette was the sample holder for the UV-Vis spectrometer, the blank being the un-dyed IL. Wavelength of maximum absorption was determined by analyzing the full spectrum, from 300 to 4000 nm.

#### **Dissolution of a Model Coal Compound: Cellulose**

Five ILs were selected to evaluate the degree of pretreatment and dissolution of both cellulose and coal. Table 3.1 shows which ILs were chosen and provides the chemical structure, name, and basic information regarding molecular formula and weight. The Chosen Ones, as they were referred to, displayed the water concentration, viscosity, and Kamlet-Taft characteristics we considered most important in the dissolution process.

|      | IUPAC Nomenclature                                              | 1-ethyl-3-(2-methoxy                                                              | ethyl) imidazolium     | acetate         |  |  |  |  |
|------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|-----------------|--|--|--|--|
| A01  | Chemical Formula                                                | [CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> -<br>EIM][OAc]                  | Molecular<br>Weight    | 214.25<br>g/mol |  |  |  |  |
|      |                                                                 |                                                                                   |                        |                 |  |  |  |  |
|      | IUPAC Nomenclature         1-ethyl-3-methyl imidazolium acetate |                                                                                   |                        |                 |  |  |  |  |
| 4.10 | Chemical Formula                                                | [EMIM][OAc]                                                                       | Molecular<br>Weight    | 170.20<br>g/mol |  |  |  |  |
| A12  |                                                                 |                                                                                   |                        |                 |  |  |  |  |
|      | IUPAC Nomenclature                                              | N-(2-methoxyethyl)-N-                                                             | -methyl piperidiniur   | n acetate       |  |  |  |  |
|      | Chemical Formula                                                | [CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> -<br>MPip][OAc] | Molecular<br>Weight    | 231.32<br>g/mol |  |  |  |  |
| A16  |                                                                 |                                                                                   |                        |                 |  |  |  |  |
|      | IUPAC Nomenclature         1-butyl-3-methyl imidazolium acetate |                                                                                   |                        |                 |  |  |  |  |
|      | Chemical Formula                                                | [BMIM][OAc]                                                                       | Molecular<br>Weight    | 182.26<br>g/mol |  |  |  |  |
| A28  |                                                                 |                                                                                   |                        |                 |  |  |  |  |
|      | IUPAC Nomenclature                                              | 1-butyl-3-ethyl                                                                   | yl imidazolium acetate |                 |  |  |  |  |
| A30  | Chemical Formula                                                | [BEIM][OAc]                                                                       | Molecular<br>Weight    | 212.29<br>g/mol |  |  |  |  |
|      |                                                                 |                                                                                   |                        |                 |  |  |  |  |

**Table 3.1**: The Chosen Ones. The five (5) ILs identified for cellulose and coal dissolution due to low viscosity, high temperature of degradation, and ideal hydrogen-bond basicity ( $\beta$ ) values.

Emphasis was placed on measuring the quantity of cellulose dissolved in each IL as well as any fraction patterns measurable via FT-IR and LC-MS. A Teflon<sup>®</sup> stir-bar was added to a 10-mL Pyrex<sup>®</sup> glass vial, weighed, placed in a low temperature oil bath and heated to  $105 \pm 3$  °C. A 1.0 g sample of IL was carefully added to the bottom of the vial so as to avoid any residue from sticking to the top or sides of the vial. Avicell<sup>®</sup> PH-101 was added in 0.20 g aliquots to the IL and stirred until fully dissolved. Proper dissolution of cellulose in an IL happens gradually. When cellulose was initially added, the powder clumps, indicative of the hydrogen bonding of the cellulose resisting interaction with the organic IL. However, given time and agitation, the cellulose dissolved and dispersed throughout the IL. Dissolution was considered complete when the viscosity of the IL/cellulose mixture ceased movement of the stir bar.

The IL/cellulose mixture was transferred to a clean, dry, pre-weighed glass vial with a screw-top lid. The weight of the mixture was compared to the total IL and cellulose added, confirming that a maximized amount of the mixture was extracted from the vial. Percent dissolution was calculated for each trial. Further analysis of the IL/cellulose mixture was completed in-house via the FT-IR and submitted to Colorado State University-Fort Collins for LC-MS analysis.

#### **Dissolution and Fragmentation of Lignite**

Dissolution and fragmentation of lignite coal was completed using the five Chosen Ones. Lignite coal was obtained from Bowman, ND, USA, lot number 367025. The coal rocks were broken into smaller chunks and pulverized using a mortar and pestle. The pulverized coal was sifted through a 150  $\mu$ m sieve to ensure all particles are smaller in diameter than 150  $\mu$ . Following the procedure of Cummings et al. (2017), a 1:5 mass ratio of coal to IL was added to a clean, dry, pre-weighed glass vial with stir bar and placed in the same heating bath. The mixture was left to stir for 24 hours before reclaiming undissolved coal.

The reclamation process occurred in three steps. First, 8 mL of methanol was added to the mixture to aid in transferring the coal/IL mixture into a 15-mL conical vial. This mixture was centrifuged at 3000 rpm for 30 minutes. The liquid layer was decanted into a plastic syringe and filtered through an attached 0.4 µm filter, ensuring all free coal particles were removed from the liquid layer. The solid material was washed with water, centrifuged, and the eluent was collected in a separate flask. After three iterations of this washing, acetone was used to wash the coal to remove any remaining water from the solid material. Acetone was then used to transfer the coal material onto a 5-in diameter watch glass and the acetone was evaporated in the chemical hood. Each watch glass was left to dry at 60 °C for 48 hours before being weighed and saved in glass vials.

Instrumental analysis of the dissolution of coal includes analysis by FT-IR, LC-MS, optical microscopy, SEM/EDS, and XRD. The five ILs and one reagent-grade version of A28 (referred to as RG28) were used to produce both the reclaimed coal (RCC) and IL/coal (ILC) mixture used for analysis.

Fourier Transform Infrared Spectroscopy (FTIR) has proven to be an effective method of evaluating surface functional groups of coal samples (Zhang et al., 2019). A ThermoFisher Scientific Nicolet<sup>TM</sup> iS<sup>TM</sup>5 FTIR spectrometer with an iD5 ATR (Attenuated Total Reflection) accessory allowed for analysis of both solid and liquid materials. Each spectra required 32 scans at a resolution of 4 cm<sup>-1</sup> collected over one minute thirteen seconds, along with ATR correction and 5-point smoothing (2.411 cm<sup>-1</sup>) operation. FTIR spectra were collected for the six ILs, lignite, six RCC and six ILC samples. Initially, the GC-MS (Gas Chromatography-Mass Spectrometer) was used to evaluate the ILC mixtures for possible dissolution fragmentations. This effort was abandoned and replaced with LC-MS (Liquid Chromatography-Mass Spectrometer) due to the incompatability of the GC with non-volatile samples and the possible sloughing of the column due to the presence of IL. LC-MS analysis was completed in the instrumental facility at CSU-FC for a nominal fee.

Both optical microscopy and SEM (Scanning Electron Microscopy) were used to analyze the surface of solid samples. "Scanning electron microscopy provides morphologic and topographic information about the surfaces of solids that is usually necessary in understanding the behavior of surfaces" (Skoog et al., 1998). The surfaces of both untreated and treated coal samples were compared, and the effect of each IL on the surface chemistry of coal was evaluated. As coal has been shown to be susceptible to dissociation by IL, the extent and patterns of dissociation by each IL were of most import.

Scanning electron microscopy (SEM) analyzes the surface topography of a solid substance using "a raster pattern with a finely focused beam of electrons" (Skoog et al., 1998, p. 550). The two types of signals of import include (1) the "backscattered and secondary electrons" detected after the focused beam of electrons from the electron gun strike the surface of the sample, and (2) the X-ray emissions released by the sample resulting from the relaxation of an excited electron. The latter signal, detected using X-ray spectroscopy, allows the researcher to evaluate the atoms energy signature present in the sample.

The instrument used for analysis at the University of Northern Colorado was a JEOL JSM-6610LV Series Scanning Electron Microscope with backscattered electron detector, low vacuum secondary electron detector, and an energy dispersive X-ray analyzer (EDS). With a 300,000× magnification capability, 0.3 to 30 kV accelerating voltage, and 3.0 nm resolution, the

SEM is capable of producing clear topographic images of particles smaller than 150  $\mu$ m. Due to backscattering of the semi-conductive material, a 15 nm coating of gold was placed on each sample using an EMS 550 Sputter Coater.

Sample analysis began by coating of each sample to mitigate charging during analysis. SEM images were taken of each sample at 30×, 100×, 500×, and 1000× zoom. Image location was chosen to include the largest range of particle size to best represent the topographic structure of the coal sample. EDS analysis was performed twice for each sample at 15 kV accelerating voltage, 60 spot size (SS60), and 750× zoom. The first analysis was performed on a large particle of coal, the second analysis an area analysis on the same image. Average weight percent for C, O, Ca, and Br were used to determine an empirical formula for each sample. Proximate and ultimate analysis was not available, thus carbon, oxygen, calcium, and bromide were the suspected atoms with identifiable signatures provided by EDS software.

X-ray diffraction (XRD) was completed by Dr. Graham Baird, Professor of Geology and the XRD guru at the University of Northern Colorado. The XRD was a GBC MMA (Mini-Materials Analyzer) with a copper anode tuned to produce a wavelength of 1.54056 Å. Starting angle (20) was 10.00° with a 0.02° per minute step size up to 90.00°. Raw data was saved in a CPI file and converted to an Excel spreadsheet for further manipulation. The technician experienced minor power issues during analysis, visible in the spectrum for sample C05-A6. Angles 33.58° through 37.14° reported zero counts of X-ray when there was expected to be between 40 and 50 counts per degree. Each spectrum was fit with three Gaussian curves, the linear combination of these curves providing a best-fit to the original data.

#### CHAPTER IV

## RESULTS

Research results were separated into five individual sections: synthesis of ILs, characterization of ILs, dissolution of a model coal compound with select ILs, dissolution and pretreatment of lignite using select ILs, and the characterization and instrumental analysis of the dissolution of cellulose and coal. The experimental procedure for each step was outlined, in great detail, in Chapter III. The following sections describe the results for each section, while evaluation of the effectiveness and lessons learned from each step will be discussed in Chapter V.

## **Synthesis of Ionic Liquids**

The first step of this research endeavor was the synthesis of ILs. Nitrogen- and phosphorus-based ILs with varying functional groups were explored in order to best represent symmetrical and non-symmetrical hydrophilic ILs. The Appel reaction, discussed first, was used to synthesize complex brominated glycols that were not readily available from chemical manufacturers. The synthesis of brominated ILs used one of these products as well as several commercially available brominated compounds. The last step in the synthesis of ILs was the ion exchange necessary to replace the bromide ion with the hydrophilic acetate ion of interest in this research project.

#### **Appel Reaction**

The Appel reaction (Figure 4.1) is the synthetic process of exchanging the alcohol functional group of a glycol with a halogen, in this case bromine. Using carbon tetrabromide and triphenylphosphine in acetonitrile, the glycol was left to stir at room temperature for 24 hours. It

was imperative that CBr<sub>4</sub> and glycol were dissolved in acetonitrile before PPh<sub>3</sub> was added. Due to the exothermic process of dissolving PPh<sub>3</sub> in acetonitrile, the addition was performed in small aliquots, allowing enough time for all compounds to dissolve before adding more. An ice bath was held in reserve to prevent the mixture from overheating (defined as being too hot to hold the reaction vessel with your hand). Evidence of adequate mixing after 24 hours was the formation of PPh<sub>3</sub>=O precipitate and the occasional color change from colorless to light yellow.

**Figure 4.1**: Appel reaction, converting diethylene glycol monomethyl ether into 2-bromoethyl 2-methoxyethyl ether. The Appel reaction is used to convert primary or secondary alcohols into brominated compounds to be used in IL synthesis.



The reaction mixture was then filtered using a vacuum filtration apparatus with an 8  $\mu$ m, medium flow, Whatman Grade 40 ashless filter paper. Approximately 100 mL of *n*-hexane was

added to the filtrate and placed in the freezer for 48 hours. The precipitate was collected via vacuum filtration, the filtrate rotovapped at 50 °C and 50 mbar of pressure until the solvent was removed. The remaining liquid was washed with approximately 100 mL of *n*-hexane and placed in the freezer for 48 hours. This procedure was repeated until no precipitate formed after 48 hours of freezer time, upon which the solvent was rotovapped and the resultant liquid was collected in a vial for further testing.

Figure 4.2 is an image of the products of the Appel reaction. Table 4.1 summarizes the brominated-glycols synthesized. Referred to by the AR## nomenclature, only AR01 was used in the synthesis of ILs discussed in section 4.1.2. As shown in Figure 4.1, byproducts of this reaction included PPh<sub>3</sub>=O and CHBr<sub>3</sub>. Bromoform, like its chlorinated counterpart chloroform, is a liquid at room temperature with a boiling point of 147-151 °C and is soluble in water, ethanol, ether, and benzene (among other organic solvents not listed in the CRC) (Lide, 1995). Washing the mixture with *n*-hexane and rotovapping removes this impurity, as is evident in the NMR spectra discussed in section 4.1.4.

Figure 4.2: Results of the three Appel reactions



# Synthesis of Brominated Ionic Liquids

The synthesis of a quaternary ammonium or phosphonium compound was the preferred synthetic route for the synthesis of ILs. The lone pair of electrons of nitrogen or phosphorus reacts in a nucleophilic substitution reaction with the brominated compound. Heated to 50 °C under reflux conditions for 24 hours, 100 mmol of the nitrogen- or phosphorus-based nucleophile is reacted with 1.1 molar excess (110 mmol) of the brominated electrophile in acetonitrile. The resultant solution was rotovapped at 60 °C and 50 mbar of pressure until all solvent has been removed, at which time the remaining solution was washed twice with diethyl ether. Most ILs precipitated at this step. After a final rotovap to remove the ether, the sample was placed in a 50 mL beaker, topped with aluminum foil, and placed in the vacuum oven at 80 °C and 25 mbar of vacuum for a minimum of 48 hours.

Appendix B lists all synthesized ILs with their *R* or *A* designation. Bromide-based ILs are referred to by the *R* designation, whereas the acetate-based ILs all start with *A*. The nucleophilic substances used include 1-ethylimidazole, 1-methylimidazole, pyridine, triethyl amine, tributyl phosphine, *N*-methylpiperidine, triethyl phosphonium, and *N*-methylpyrrolidine. Brominated electrophiles included AR01 (see section 4.1.2), 1-bromo-2-methoxyethane, 1-bromo-2-ethoxyethane, bromoethane, bromobutane, and 1-chloro-2-methoxyethane. Sample R09 was a futile effort of reacting 1-methylpyridine with 1-bromo-2-methoxyethane to break the resonance of pyridine to favor the IL. Predictably, that experiment failed and the designations R09 and A09 were aborted.

A total of 28 bromide-based ILs and one (1) chloride-based IL were synthesized at 90-96% yield. Samples R10 and R27 produced similar ILs, differing only in the halogen coordinated with the (CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>)(Bu)<sub>3</sub>P cation. Sample R10 was treated with the ion exchange procedure outlined in section 3.2 to produce the acetate-based IL A10. Sample R27 was not treated similarly, as redundant samples of the same composition were not the focus of this project. Figure 4.3 includes all bromide-based ILs, pictured on the left, and the acetate-based ILs derived from the ion exchange, pictured on the right.

**Table 4.1**: Products of the Appel reaction synthesis. Sample AR01 is reacted with pyridine to produce sample R29, as outlined in section 4.1.2.



## Ion Exchange

Amberlyst<sup>™</sup> A26 OH Polymeric Catalyst is an industrial-grade resin that is a "microporous, polymeric catalyst based on crosslinked styrene-divinylbenzene copolymer containing quaternary ammonium groups." While the Product Data Sheet describes its use primarily as a catalyst in aldol condensation and carbonylation reactions, its unique porous structure and properties make it an ideal medium for both aqueous and non-aqueous ion exchange reactions. This resin has a Total Exchange Capacity (on a water-wet basis) greater than or equal to 0.80 eq/L and is compatible with water, methanol, ethanol, and acetone solvents. If used in acetone, the resin has a shrinkage of 34%, which in turn affects the available surface area for ion exchange to occur. After an initial ion exchange, the Amberlyst<sup>™</sup> A26 OH resin can be regenerated using 1 M NaOH solution, thus allowing multiple ion exchanges to occur for each quantity of resin used (DuPont de Nemours, Inc., 2019).

Using the Amberlyst<sup>TM</sup> A26 OH resin for ion exchange can be done in water, ethanol, methanol, or acetone. Since the resin shrinks in acetone, it is advised not to use acetone as the medium for ion exchange. Performing the ion exchange of hydrophilic ILs is most efficient in water; however, the removal of water after ion exchange presents a tremendous problem, as the water complexes with the ionic liquid and requires extreme amounts of energy and effort to remove (Shi et al., 2012). As ethanol forms an azeotropic with water (Faghihi et al., 2020), it too presents the same problem of water extraction after ion exchange. Methanol does not form an azeotropic mixture with water, which makes the extraction of methanol from the ionic liquid feasible in a rotovap, as well as the transition to a neat IL via drying of the IL in a vacuum oven.

Considerable amounts of time and effort were spent identifying and improving the ion exchange procedure. When performed with hydrophobic ILs, as was done by Zhao et al. (2018), water is a suitable solvent for the ion exchange to occur between the halogen-based IL and the new anion. Acetate, on the other hand, displays different solubility patterns with acetone and other organic solvents, and thus the ion exchange had to occur in a polar organic solvent. Water was initially used as the solvent for the ion exchange, as it dissolves all substances and is compatible with the Amberlyst<sup>™</sup> A-26 resin. However, as is explained in section 5.1, water forms a complex with hydrophilic ILs that is virtually impossible to break. Initial efforts using water as the solvent led to no lower than 3.5% water concentration in the final acetate-based IL. Thus, a new solvent had to be identified to rectify this problem.

**Figure 4.3:** Results of the IL synthesis (left) and ion exchange (right). Color, physical state, and viscosity vary greatly depending on the cation used to synthesize each IL.



Acetone and dichloromethane were not compatible with the resin, as well as being toxic to the environment (halogenated solvent). Ethanol was compatible with the resin, dissolved both ammonium acetate and the brominated IL, and was simple to rotovap. However, ethanol forms an azeotropic mixture with water. As the acetate-based IL is hygroscopic, water from the atmosphere was being absorbed into the product, and the ethanol prevented water from fully separating from the IL during the procedure. Methanol, on the other hand, does not form an azeotropic mixture with water. It displays the same compatibility with the resin and reactant species and was thus chosen for ion exchange.

As will be discussed in further detail in section 5.1, water must still be used on the ion exchange column in order to fully remove excess acetate ion from the resin beads. Loading of the column occurred by dissolving ammonium acetate in methanol and flushing the resin beads with the solution. Without water, the excess acetate clung to the resin and complexed with the IL as it passed through the column. Evaluation of the NMR (discussed in section 4.1.4) displayed a higher concentration of acetate in the sample than was expected. However, flushing the column with water after flushing the column with the ammonium acetate in methanol solution, followed by a copious amount of methanol, the resultant IL had a relatively low water concentration (around 0.5%) and zero acetate contamination.

This correction in the procedure was not enacted until after initial TGA and NMR results were obtained. Evaluation of the NMR led us to change the ion exchange procedure, whereas the five *Chosen Ones* were reanalyzed via TGA and NMR. The difference is considered in detail in section 5.1 of this manuscript. The silver nitrate test was performed during all ion exchange procedures to ensure the bromide ion was removed by the resin. Each sample was purified using the rotovap, set at 75 °C and 25 mbar of pressure, then dried in the vacuum oven for a minimum of 48 hours at 80 °C and 25 mbar of vacuum. The structure was verified via NMR and the water concentration was tested using a Karl Fisher titrator.

# Structure Verification via Nuclear Magnetic Resonance

A 400 MHz nuclear magnetic resonance (NMR) spectrometer was used to evaluate structure and product purity by evaluating the <sup>1</sup>H, <sup>13</sup>C, and COSY spectra. Proton NMR spectroscopy uses the magnetic property of the proton nucleus to evaluate the absorption of energy as a function of frequency, which is the foundation of the NMR spectrum. The nature of the functional group to which the proton is attached will dictate the frequency of energy absorption, and thus a shift of this signal corresponds to the specific functional group of interest.

Likewise, spin coupling, or the coupling of proton spins through intervening bonding electrons,

provides information on the chemical structure for which the observed protons are associated.

Carbon-13 (<sup>13</sup>C) behaves similarly when exposed to a magnetic field, however the "natural

abundance of <sup>13</sup>C is only 1.1% of <sup>12</sup>C and its sensitivity is only about 1.6% that of <sup>1</sup>H, [meaning]

the overall sensitivity of <sup>13</sup>C compared with <sup>1</sup>H is about 1/5700" (Silverstein et al., 2005).

**Figure 4.4:** <sup>1</sup>H NMR spectrum comparison for the synthesis of R28. Top-left: <sup>1</sup>H NMR for 1-ethylimidazole. Top-right: <sup>1</sup>H NMR for 1-bromobutane. Right: <sup>1</sup>H NMR for product [BMIM][Br].



**Figure 4.5:** Comparison of <sup>1</sup>H NMR for sample R28 (left) to sample A28 (right). The acetate functional group is shifted to the left (down field?) and interacts with the acidic proton of imidazole.



We began the NMR analysis by observing the spectrum of our pure compounds as received from the manufacturer. Figure 4.4 shows three NMR spectra associated with the synthesis of sample R28. The first image is that of the <sup>1</sup>H spectrum for 1-ethyl-imidazole, the nitrogen-containing nucleophile used to react with 1-bromobutane (<sup>1</sup>H NMR in the middle). The image on the bottom is the <sup>1</sup>H NMR for the product, [1-butyl-3-methylimidazolium][bromide] or [BMIM][Br]. Appendix D.i. lists all NMR spectrum, categorized by the R- and A- identification number, and is reported in proper NMR format.

The acetate-based IL NMR spectra are used in conjunction with the silver nitrate test performed after ion exchange to verify the presence of the acetate ion. Acetate, or  $CH_3CO_2^-$ , has two peaks on a <sup>1</sup>H NMR spectra. The first peak, ~3.8 ppm, corresponds to the three protons of the methyl group of acetate that has a singlet splitting pattern and integrates for 3. The other peak, ~10 ppm, corresponds with the protonated carboxylic acid of acetate that occurs when the acidic proton of imidazole interacts with the anion of the acetate ion. An integration value greater than one indicates an impure IL had indicates an excess quantity of acetate ion complexed in the

IL. Figure 4.5 exemplifies the presence of these two peaks and is the baseline for evaluation for all imidazole based ILs.

# Characterization of Ionic Liquid Physicochemical Properties

Upon the completion of structure verification via <sup>1</sup>H, <sup>13</sup>C, and COSY NMR, the physicochemical properties of acetate-based ILs were determined. Four analyses were used in the characterization process, starting with the determination of water concentration and viscosity measurements. Thermogravimetric analysis (TGA) was used to evaluate the decomposition profile of each IL, and finally the Kamlet-Taft parameters were analyzed via UV-Vis spectroscopy.

## Water Titration

Water concentration of each acetate-based IL was determined using Karl Fischer titration. To ensure the lowest water concentration was recorded, ILs were placed in a vacuum oven at 80 °C and 25 mbar of vacuum for at least 48 hours prior to testing. The Mettler Toledo C20 Coulometric KF Titrator generates iodine through electrochemical oxidation in the cell. Water concentration must be in the range of 1 ppm to 50,000 ppm (5% water by mass). The KF titration was performed using Hydranal<sup>TM</sup> solvent, specially formulated for analysis of water concentration.

Atmospheric water is sufficient to interfere with the KF titration, thus requiring speed and accuracy when adding the sample to the analyte. Water already present in the analyte must first be reduced such that a baseline voltametric reading is established. Minimum sample aliquots are inversely proportional to water concentration; that is, 1 ppm water concentration will require a minimum of 10 grams of substance to be titrated whereas 10,000 ppm (or 1% by mass) of water requires no less than 0.1 grams of analyte being tested. IL sample size ranged from 0.149 grams

to 0.514 grams with the average amount of IL was 0.383 grams of IL. Ideal water concentrations for ILs was 0.00%, but realistic/achievable concentrations for hydrophilic ILs were less than 0.250% water by mass. Sample A06 had the highest water concentration at 0.255% and sample A07 had the lowest water concentration at 0.014%. Appendix C(i) lists all ILs synthesized for this project, the mass tested via KF titration, and the measured water concentration.

#### Viscometry

Kinematic and dynamic viscosity and density were determined using a Stabinger Viscometer SVM 3000 at 30 °C, requiring 3.0 mL of sample that could be recovered and reanalyzed. Kinematic viscosity is a combination of dynamic viscosity and density and is not emphasized in this research. Instead, dynamic viscosity and density were determined and compared for all acetate-based ILs. The dynamic viscosity is reported in mPa·s while density is reported in g/cm<sup>3</sup>.

Dynamic viscosity measures the shearing resistance as two layers of compound pass over one another in opposite directions. Larger mPa s values indicate more resistance and thus indicate greater viscosity. While viscosity decreases as a measure of temperature, and our analyses using ILs will occur at relatively higher temperatures than viscometrical analysis was performed, ILs with lower viscosity measurements are considered as viable candidates for cellulose and coal dissolution. Appendix C lists dynamic and kinematic viscosities, as well as density, of all acetate-based ILs synthesized in this work. Low viscosity ILs took precedence moving forward with coal dissolution. Samples A20, A22, A24, and A26 were solid at room temperature, therefore neither water concentration nor viscosity were measured. Sample A03 reported the dynamic viscosity at 150.110 mPa s while sample A14 had the lowest viscosity at 19.162 mPa·s. Samples A01, A12, A16, A28, and A30 had viscosities of 36.620, 22.928, 49.889,

203.100, and 71.703 mPa $\cdot$ s, respectively.

**Table 4.2**: Viscosity measurements for chosen ILs. IL A28 is much higher than preferred; however, it is a tried and tested IL that is found throughout the literature. Cellulose and coal are expected to dissolve very well in A28.

| IL  | Dynamic Viscosity<br>(mPa·s) | Kinematic Viscosity<br>(mm <sup>2</sup> /s) | Density (g/cm <sup>3</sup> ) |
|-----|------------------------------|---------------------------------------------|------------------------------|
| A01 | 36.620                       | 33.498                                      | 1.0932                       |
| A12 | 22.928                       | 20.907                                      | 1.0967                       |
| A16 | 49.889                       | 47.197                                      | 1.0570                       |
| A28 | 203.100                      | 194.110                                     | 1.0463                       |
| A30 | 71.703                       | 69.299                                      | 1.0547                       |

#### **Thermogravimetric Analysis**

Thermogravimetric analysis (TGA) was conducted by Dr. Gary Baker, Associate Professor of Chemistry at the University of Missouri, using a TA Instruments TGA Q50 under a nitrogen atmosphere (60 mL/min flow rate). Chemical decomposition and phase transitions are monitored using TGA by measuring the mass of the sample as the temperature of the reaction chamber increases. A graph of percent mass remaining against time, as shown in Figure 4.6, is the decomposition profile of IL A30. The initial decrease in mass is attributed to the loss of water complexed within the IL, which occurs ~100°C.  $T_{dep}$  is the temperature of which 10% of the mass has decomposed, while  $T_{der}$  is the maximum in the first-derivative profile of the TGA scan.

The TGA profile of each of the acetate-based ILs provides information regarding the maximum temperature the IL can be exposed without fear of decomposition. As ILs decompose rather than evaporate, the maximum operating temperature for coal dissolution is set by the TGA analysis. Hydrophilic ILs have consistently lower decomposition temperatures than their hydrophobic counterparts. For example, consider the  $T_{der}$  and  $T_{dcp}$  for three ILs that all have the

same cation, as shown in Table 4.3. The anions  $Tf_2N^-$  and  $PF_6^-$  result in hydrophobic properties of the IL while acetate (OAc<sup>-</sup> or CH<sub>3</sub>CO<sub>2</sub><sup>-</sup>) anion results in a hydrophilic IL. The hydrophilic nature means more water complexes with the IL from the atmosphere, thus resulting in the large discrepancy between  $T_{dcp}$  and  $T_{der}$ , as well as the lower decomposition temperature. Appendix C lists the results of all TGA's performed for the acetate based ILs.

**Figure 4.6:** Thermogravimetric analysis (TGA) of sample A30. " $T_{der}$  is determined from the maximum in the first-derivative profile of the TGA scan.  $T_{dep}$  is the decomposition temperature measured as the onset of decomposition, using the common criterion of 10% total mass loss" (Zhao et al., 2018, p.36029).



**Table 4.3:** Comparison of TGA profiles for three ILs with the same cation. Anions  $Tf_2N^-$  and  $PF_6^-$  cause the IL to display hydrophobic characteristics. These ILs were synthesized and analyzed by Zhao et al. (2018).

| Ionic Liquid                | T <sub>der</sub> (°C) | $T_{dcp}$ (°C) | Transition Shape |
|-----------------------------|-----------------------|----------------|------------------|
| * [BMIM][Tf <sub>2</sub> N] | 464                   | 406            | Singlet          |
| * [BMIM][PF <sub>6</sub> ]  | 472                   | 424            | Singlet          |
| [BMIM][OAc]                 | 237                   | 191            | Singlet          |

Table 4.4 summarizes the TGA results for the five ILs chosen for dissolution of cellulose and coal. The ideal IL had higher  $T_{der}$  values and decomposed in a single phase. Residual char for sample A01 is outside of the error of the measurement baseline, inferring that not all the IL decomposes at 600 °C. Decomposition temperatures for acetate-ILs are notoriously lower than other ILs, particularly ILs with hydrophobic anions. ILs A01 and A30 are both imidazole based ILs with acetate anion, both have an ethyl substituent at the #3 position and a four-member chain on the #1 position. However, A01's four-member chain is -CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub> while A30 is a straight butyl chain. ILs A12 and A28 can be similarly compared, with both having an imidazole base, a methyl substituent at the #3 position, and A28 having a longer straight carbon chain. Very slight variations in decomposition temperature come from the symmetry and "stackability" of the cations, with less polar functional groups leading to more stability. IL A16 does not compare to the other four because it has a base group of piperidine, a non-conjugated six-membered ring containing nitrogen, and has a functional group that is more polar (-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub>). This compound has a lower decomposition temperature than the imidazole-based ILs.

## Kamlet-Taft Parameters of Polarity/Polarizability

Polarity and polarizability of traditional organic solvents is determined by the unequal sharing of electrons, or polarity, of the molecular compound. The existence of a polar moment that isn't offset by another polar bond of equal magnitude and opposite direction means a compound is polar. Dichloromethane, CH<sub>2</sub>Cl<sub>2</sub>, is a prime example: with a tetrahedral molecular geometry, the more electronegative chlorine atoms pull the electrons to one side of the molecule, which results in a polar molecule. However, ILs are comprised of two formally charged species, and thus the traditional comparison of electronegativity is insufficient in evaluating polar

properties. Thus, Mortimer J. Kamlet and Robert W. Taft developed a set of parameters that,

when used together, describe the polarity and polarizability of ILs (Crowhurst et al., 2003).

**Table 4.4:** Results of TGA for the five chosen ILs to be used for cellulose and coal dissolution. Char (wt %) is "the amount of carbon char residue determined from the relative mass remaining at 600 °C; a residue amount on the order of  $\pm 1-2\%$  should be considered within the error of the measurement baseline" (Zhao et al., 2018). RG28 is the reagent grade [BMIM][OAc] for comparison to A28.

| Ionic Liquid | $T_{\text{der}}$ (°C) | $T_{dcp}$ (°C) | Transition Shape | Char (wt %) |
|--------------|-----------------------|----------------|------------------|-------------|
| A01          | 237.5                 | 183.1          | S                | 3.0%        |
| A12          | 241.9                 | 170.8          | S                | 0.0%        |
| A16          | 199.5                 | 120.0          | S                | 0.0%        |
| A28          | 237.4                 | 190.8          | S                | 0.0%        |
| RG28         | 239.2                 | 193.7          | S                | 0.4%        |
| A30          | 254.6                 | 125.4          | S                | 0.0%        |

The Kamlet-Taft equation uses three distinct variables to measure a compound's overall polarity. These values,  $\alpha$ ,  $\beta$ , and  $\pi^*$ , are determined by a solvatochromic analysis of the interaction of the compound and an organic dye. "Parameter  $\alpha$  provides a measure of a solvent's hydrogen-bond-donating acidity (HBD), parameter  $\pi^*$  provides a measure of a solvent's dipolarity/polarizability ratio," and the parameter  $\beta$ , which measures the hydrogen-bond-accepting acidity (HBA), "was obtained by measuring the relative difference of solvatochromism between" the two dyes (Lee et al., 2008, P. 1474).

An Agilent UV-Visible ChemStation with an Agilent 8453 Spectrophotometer was programmed to analyze the full ultraviolet/visible spectrum using both a deuterium and a tungsten lamp. An Optical Glass cuvette has a transmission range of 340 to 2500 nm, so it is imperative to use a UV Quartz cuvette, which transmit between 190 and 2500 nm, in order to detect light transmission through the samples for all applicable wavelengths. Once obtained, the spectrum was analyzed for the wavelength of maximum absorbance, whose value was recorded as either  $\lambda_{RD}(nm)$ ,  $\lambda_{NA}(nm)$ , or  $\lambda_{DENA}(nm)$ . Wavelengths, measured in nanometers, for NA and DENA should be converted to wavenumbers (v) with the unit of kiloKeyser (1 kK = 10<sup>-3</sup> cm<sup>-1</sup>).





Emphasis was originally placed on reproducing literature values for water, select organic solvents, and ILs. Table 4.5 lists the literature values for water, four organic solvents, and four ILs with the BMIM<sup>+</sup> cation. Percent error was calculated before any mathematical permutations were applied to avoid compounding error. For example, the  $\lambda_{\text{DENA}}(\text{nm})$  was measured at 396 nm, a 0.253% error from literature wavelength values; conversion to  $\pi^*$  resulted in a 1.43% error.

Table 4.6 lists the standard samples used to evaluate methodology of the UV-Vis spectroscopic analysis of the Kamlet-Taft parameters. All ILs tested were reagent grade, sealed and stored at room temperature in the laboratory stock shelves. The largest percent error in measurement occurred with [BMIM][TfO] at 1.06% error. Wavelength of maximum absorption for Reichardt's dye is not included as all measurements were in excess of 200% error. Evaluation of Kamlet-Taft parameters were thus reduced to  $\pi^*$  and  $\beta$  values for analysis of synthesized ILs.

**Table 4.5:** Literature values for Kamlet-Taft measurements of water, organic solvents, and select BMIM<sup>+</sup> ILs.  $E_T^N$ ,  $\alpha$ ,  $\beta$ , and  $\pi^*$  values were provided by Lee et al. (2008);  $E_T(30)$ ,  $\lambda_{RD}(nm)$ ,  $\lambda_{NA}(nm)$ ,  $\upsilon_{NA}$ ,  $\lambda_{DENA}(nm)$ , and  $\upsilon_{DENA}$  values were backwards calculated using Equations 2.2.1 through 2.2.5.

| Compound                 | $\lambda_{\text{RD}}$ | $\lambda_{\scriptscriptstyle NA}$ | $\upsilon_{\text{NA}}$ | $\lambda_{\text{DENA}}$ | $\upsilon_{\text{DENA}}$ | E <sub>T</sub> (30) | $E_{T}{}^{N} \\$ | α     | β      | π*    |
|--------------------------|-----------------------|-----------------------------------|------------------------|-------------------------|--------------------------|---------------------|------------------|-------|--------|-------|
| Water                    | 453                   | 380                               | 26.35                  | 429                     | 23.29                    | 63.1                | 1.00             | 1.12  | 0.14   | 1.33  |
| Acetone                  | 680                   | 366                               | 27.29                  | 396                     | 25.28                    | 42.0                | 0.350            | 0.202 | 0.539  | 0.704 |
| Acetonitrile             | 627                   | 364                               | 27.45                  | 400                     | 24.98                    | 45.6                | 0.460            | 0.350 | 0.370  | 0.799 |
| Dichloromethane          | 702                   | 350                               | 28.55                  | 400                     | 25.01                    | 40.7                | 0.309            | 0.040 | -0.010 | 0.790 |
| Methanol                 | 516                   | 370                               | 27.01                  | 397                     | 25.20                    | 55.4                | 0.762            | 1.050 | 0.610  | 0.730 |
| [BMIM][PF <sub>6</sub> ] | 546                   | 368                               | 27.14                  | 413                     | 24.24                    | 52.4                | 0.669            | 0.634 | 0.207  | 1.032 |
| [BMIM][BF <sub>4</sub> ] | 546                   | 376                               | 26.62                  | 413                     | 24.19                    | 52.4                | 0.670            | 0.627 | 0.376  | 1.047 |
| [BMIM][TfO]              | 550                   | 377                               | 26.51                  | 411                     | 24.32                    | 52.0                | 0.656            | 0.625 | 0.464  | 1.006 |
| [BMIM][OAc]              | 581                   | 409                               | 24.48                  | 413                     | 24.21                    | 49.2                | 0.570            | 0.440 | 1.150  | 1.040 |

Validation of the UV-Vis spectroscopy procedure could only be attained for NA and DENA dyes. Appendix C lists all acetate-based ILs and their corresponding  $\lambda_{NA}(nm)$ ,  $\upsilon_{NA}$ ,  $\lambda_{DENA}(nm)$ ,  $\upsilon_{DENA}$ ,  $\pi^*$ , and  $\beta$  values. The five ILs chosen to proceed to dissolution of cellulose and coal include A01, A12, A16, A28, and A30. The values for these specific ILs can be found in Table 4.7. ILs with larger  $\pi^*$  values, or greater dipolarity/polarizability ratios, are predicted to dissociate cellulose and coal better than higher  $\beta$ , hydrogen-bond-donating acidity (HBA), would predict. Compounds that are high in both  $\pi^*$  and  $\beta$ , specifically sample A28 and A30, are predicted to dissociate the best of five samples.

#### **Dissolution of a Model Coal Compound: Cellulose**

Characterization of the physiochemical properties of all synthesized bromide- and acetate-based ILs provided ample information to make a decision regarding the five ILs with the highest likelihood of dissolving coal. These ILs, affectionately referred to as the Chosen Ones, exhibit lower viscosities, high TGA profiles, and strong hydrogen-bond-basicity properties that should work to weaken the hydrogen bonding of coal. Before pretreating coal, we are interested in the ability these Chosen Ones have in disrupting a known organic compound that resembles the complex coal structure. The five ILs that make up the Chosen Ones include: ILs A01, A12, A16, A28, and A30. Refer to Table 3.1 for names, formula, molecular weight, and structures of these compounds.





Cellulose (Figure 4.8) is "a polydisperse, linear, crystalline (polysaccharide) macromolecule of high molecular weight" and "a high degree of polymerization" (Hamad, 2017). More affordable and more readily available than coal, cellulose behaves similarly to low rank coal and can thus be used as a preliminary evaluation test for predicting IL behavior with lignite. "Coal-related compounds must be used to study the dissociation of ILs on coal under mild conditions" (Lei et al., 2019). Avicell<sup>®</sup> PH-101, a commercially available microcrystalline cellulose powder, was used to evaluate the dissolution properties of the chosen ILs.

Dissolution of cellulose was observed to predict the likelihood of dissociation of coal by our five select ILs. Cellulose is one of the components that, when exposed to pressure and temperature, will eventually transform into coal. Cellulose is used as a model coal compound due to the H-bond complex network resembling that of coal. Avicel<sup>®</sup> PH-101 is a microcrystalline cellulose powder with approximately 50 µm particle size. The cost is relatively low, abundance high, and ease of use particularly simple. The intent of this phase of the study was to determine (1) whether each of the five IL would dissolve cellulose, and (2) how much cellulose would dissolve per gram of IL.



Figure 4.9: Experimental set-up of dissolution of cellulose



The experimental set-up is demonstrated in Figure 4.9. A low temperature oil bath, rated at temperatures less than 250 °C, was centered on a stir/hot plate. A clamp system was used to hold the thermometer and two 5-mL Pyrex® glass vials in suspension in the oil bath. The bath was heated to  $107 \pm 4$  °C and constantly monitored for fluctuations in temperature. Approximately 1.0 g of IL was added to each vial, making sure that all IL was in the bottom of the vial and not stuck to the sides of the glass. The vials were placed back into the oil bath and allowed sufficient time for the IL to equilibrate temperature. Cellulose was added in 0.02 g aliquots and left to stir until all visible particulates had been dissolved. Dissolution is evidenced by initial clumping of the cellulose upon addition to the IL followed by slow dissolving and eventual disappearance of particulate matter. The IL/cellulose solution was considered saturated when the viscosity of the solution was too high for the stir bar to move. The solubility of cellulose in each IL was calculated by dividing the mass of IL by the mass of cellulose added. The results of these calculations are presented in Table 4.7, with two trials per IL having been recorded. RG28 corresponds with reagent grade [BMIM][OAc] used to measure the relative consistency of analysis between the synthesized IL and that which was purchased as pure. The Kamlet-Taft parameter,  $\beta$ , is included in this table to aid in examining of larger  $\beta$  values would correlate with larger dissolution of cellulose.

**Table 4.6:** Experimental values for the dissolution of cellulose. Samples A01, A12, A16, A28, and A30 were synthesized in lab and the corresponding  $\beta$  values were derived from UV-Vis analysis discussed in section 4.2.4. <sup>(a)</sup>Literature value for  $\beta$  for RG28 is found in Ladesov et al. (2015).

| IL   | Vial | Mass IL | Mass Cellulose | % Dissociation | β     |
|------|------|---------|----------------|----------------|-------|
| 4.01 | 1    | 0.996 g | 0.095 g        | 9.5%           | 0.767 |
| A01  | 2    | 1.005 g | 0.095 g        | 9.5%           | 0.707 |
| A12  | 3    | 0.990 g | 0.111 g        | 11.2%          | 1 000 |
| AIZ  | 4    | 1.019 g | 0.112 g        | 11.0%          | 1.000 |
| A16  | 7    | 0.873 g | 0.121 g        | 13.9%          | 1 270 |
| Alo  | 8    | 0.998 g | 0.135 g        | 13.5%          | 1.270 |
| 1 20 | 5    | 1.064 g | 0.184 g        | 17.3%          | 1.257 |
| A28  | 6    | 0.910 g | 0.163 g        | 17.9%          | 1.237 |
| RG28 | 9    | 1.061 g | 0.182 g        | 17.2%          | 1.257 |
|      | 10   | 1.256 g | 0.212 g        | 16.9%          | 1.237 |
| R30  | 11   | 1.328 g | 0.205 g        | 15.4%          | 1 254 |
|      | 12   | 1.255 g | 0.194 g        | 15.5%          | 1.254 |

#### **Dissolution of Coal in Select Ionic Liquids**

Dissolution of coal was conducted in the same apparatus described in section 4.3.1. Coal samples required processing in order to reduce the particle size from the hard chunk of coal 5-10 cm in diameter. A mortar and pestle was used to pulverize the coal until the particulate matter was consistent with dust. A sieve with 150  $\mu$ m stainless steel mesh screen was used to sift the particulate coal to ensure the diameter of coal particles do not exceed 150  $\mu$ m. A ratio of 5:1 IL to

coal was added to each vial with two trials per IL. On average, 1 g of IL was mixed with 0.2 g of coal and left to stir at 105 °C for 24 hours.

Upon the completion of 24 hours of stirring, methanol was added to the vial to facilitate the transfer of the coal/IL mixture to a plastic conical centrifuge vial. Each sample was centrifuged for 30 minutes, the supernatant was extracted from the vial and heated on a stir plate until methanol was completely removed. The solid material left in the conical vial was washed with deionized water, subjected to centrifugation for 30 minutes, and then the liquid was decanted once again. After three washings with water, the solid was washed once with acetone, centrifuged for 30 minutes, the liquid decanted into the same receptacle as the water washings. Acetone was used to transfer the solid material onto a glass watch plate, the acetone was evaporated in the laboratory hood, and then placed in an oven set at 65 °C for at least 48 hours. The solid material was scraped off the watch glass, collected in a glass vial, and weighed.

Table 4.8 shows the masses of each IL and the vial number, mass of coal added to the IL, and mass of recovered of coal after the drying process was complete. Characterization of the dissolution of coal occurred in five steps: TGA, FTIR, LC-MS, SEM/EDS, and XRD spectroscopy. TGA and LC-MS analysis were completed offsite; TGA was completed by Dr. Baker, and LC-MS was completed by Colorado State University-Fort Collins researchers. The results of each analysis will be reported in detail in the following sections.

# Thermogravimetric Analysis of Coal/Ionic Liquid Samples

Samples of dissolved coal were sent to the University of Missouri for Dr. Baker to analyze via TGA. The results of the scans were considerably different than those of IL as coal is an amalgam of monomers complexed together via ether linkages and hydrogen bonds. As such, the decomposition profile is not sharp and clean, nor is it complete at 600 °C. Figure 4.10 is a comparison of TGA scans for untreated lignite and that of lignite after treatment with IL A30. Whereas each IL decomposed by 600 °C, leaving only residual char, coal did not combust more than 50% of its mass. Lignite appeared to have more water, referencing the decomposition around 100 °C, while coal treated with A30 had a larger decomposition spike between 300 and 500 °C. Both samples reached 90% mass remaining at approximately 300 °C.

**Table 4.7:** Masses of IL and coal used in the dissolution process and the mass of coal recovered after dissolution and washing.

| IL   | Vial | Mass IL (g) | Mass<br>Coal (g) | Mass of Coal<br>Recovered | Mass of Coal<br>Dissolved | % Mass<br>Dissolved |
|------|------|-------------|------------------|---------------------------|---------------------------|---------------------|
| 1    | C01  | 1.072       | 0.208            | 0.158                     | 0.050                     | 24.0                |
| A01  | C02  | 1.240       | 0.246            | 0.198                     | 0.048                     | 19.5                |
| A12  | C03  | 0.998       | 0.206            | 0.151                     | 0.055                     | 26.7                |
| A12  | C04  | 1.011       | 0.211            | 0.164                     | 0.047                     | 22.3                |
| A16  | C05  | 0.997       | 0.194            | 0.159                     | 0.035                     | 18.0                |
| AIO  | C06  | 0.983       | 0.199            | 0.128                     | 0.071                     | 35.7                |
| 1 70 | C07  | 0.946       | 0.197            | 0.167                     | 0.030                     | 15.2                |
| A28  | C08  | 0.957       | 0.197            | 0.165                     | 0.032                     | 16.2                |
| RG28 | C09  | 1.163       | 0.235            | 0.220                     | 0.015                     | 6.38                |
|      | C10  | 1.308       | 0.263            | 0.228                     | 0.035                     | 13.3                |
| A30  | C11  | 1.144       | 0.232            | 0.200                     | 0.032                     | 13.8                |
|      | C12  | 1.115       | 0.225            | 0.182                     | 0.043                     | 19.1                |

All scans exhibit similar decomposition patterns consistent with dissolution or rearrangement of lignite. No evidence of residual IL is present, as each IL used in the dissolution of coal decomposes before 300 °C. Incomplete decomposition of coal indicates that any fragmentation caused by ILs is insufficient to produce readily-combustible materials. Figure 4.11 shows the TGA scans for all five chosen ILs and reagent grade [BMIM][OAc]. The relative values for  $T_{dcp}$  and  $T_{der}$  are close together, implying accurate representation of the decomposition analysis. Sample A28 and RG28 differ in  $T_{der}$  by 1.8 °C and 2.9 °C in  $T_{dcp}$ , establishing that the synthesized IL and reagent grade IL have similar physical characteristics. This leads to increased

reliability regarding analytical accuracy.

Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Cellulose

Figure 4.10: TGA scan of untreated lignite (left) and lignite treated with A30 (right)



The Thermo Scientific Nicolet iS5 FTIR with iD5 ATR attachment allows for analysis of both solid and liquid materials. FTIR analysis was performed on cellulose, cellulose dissolved in IL, untreated lignite, and the lignite solid retrieved after dissolution with ILs. Figure 4.13 shows FTIR scans of the cellulose/IL mixture presented as % Transmittance against Wavenumber (cm<sup>-</sup> <sup>1</sup>), whereas Figure 4.13 shows stacked spectra for lignite before and after dissolution with IL. Changes to the IR spectrum gives insight into the effect ILs have on cellulose and coal dissolution.

Figure 4.11 is a stacked comparison of the FTIR spectra for cellulose, before (top) and after dissolution in each of the ILs. Avicell<sup>®</sup> PH-101 is the undissolved cellulose for comparison with the other scans. Peak growth in the 3100-2800 cm<sup>-1</sup> range correspond with the ILs, as evidenced in the FTIR spectra of ILs in Figure 4.11. Similar peaks can be seen around 1550 cm<sup>-1</sup>

that can be attributed to the ILs. Figure 4.12 simply shows the presence of both cellulose and ILs in the sample, a phenomenon that should not be evidenced in the coal dissolution spectra.

Figure 4.11: TGA scans of the chosen ILs and RG28.



Figure 4.13 displays the accumulated spectra for lignite and the coal samples after dissolution with ILs. The naming scheme of these spectra use the CXX-AXX designation, with CXX referring to the vial number and AXX referring to the IL used in the dissolution process. Any changes to the IR spectra should be attributed to the changes in the coal conformation, as

each IL has been washed and removed prior to drying of the coal samples. Table 4.9 compares the noteworthy peaks identified during FTIR analysis, for lignite and all other IL dissolved coal samples. An increase in FTIR signals results from the disruption of C-O bonds in coal, resulting in more exposed C-C, C=C, and C=C bonds and C-H wagging, bending, and stretching. Dissolution of coal resulted in less complex structures and more free particles that can respond to FTIR analysis. This disruption in the complex is evidenced by the increase in FTIR signals and the change to the FTIR scan patterns.

To demonstrate the concept of coal dissolution in task-specific ILs, we conducted the lignite pretreatment by 6 ILs and compared their FT-IR spectra to one another (Figure 4.14). Several peaks of interest include 3420, 2920, and 1600 cm<sup>-1</sup> representing hydrogen bonds (-OH stretching), aliphatic C-H stretching, and aromatic ring stretching, respectively (Lei et al., 2019). We observed that all ILs could dissolve lignite (greater than 10 wt %). Table 4.10 compares some peak ratios to represent the lignite characteristics. It appears that IL A12 extracted more aliphatic components from lignite while the other ILs extracted more aromatic compounds. All ILs reduced hydrogen bonds in lignite to various degrees, with IL A28/RG28 being most effective in disrupting H-bonding.

## Liquid Chromatography-Mass Spectroscopy (LC-MS)

Two products were isolated after the dissolution of coal via IL: solid, reclaimed and washed coal particulates and a liquid with the dissolved coal and IL. Original characterization of the liquid substance involved Gas Chromatography-Mass Spectroscopy (GC-MS); it is apparent after TGA that vaporization of any coal material would not occur at temperatures less than 600 °C. Considering the GC column and oven would not endure temperatures above 325 °C, we settled on analyzing the liquid substance using Liquid Chromatography-Mass Spectrometry (LC-

MS). Samples were sent to Colorado State University-Fort Collins for analysis using an Agilent B-TOF LCMS 6230 instrument.

Evaluation of the LC-MS results occurs in two steps: first, identification of the known material, in this case our ILs, and second, identification of possible fragments arising from the dissolution of coal. Sample A01 has a molecular weight of 214.25 g/mol with 59.04 g/mol attributed to the acetate anion and 155.21 g/mol from the imidazolium cation. When analyzing the LC-MS spectra it is important to look in the mass-to-charge (m/z) range of these molecular weights to identify the IL. The scan for sample C01-A01 has a significant peak at 141.10258 and a smaller peak at 142.10569, most likely caused by fragmented IL A01. Notable peaks of more than 20 counts occurred at 157.09753, 158.10050, 449.33938, 450.34205, and 451.34512 m/z ratios, all most likely associated with the dissolved coal particulates. Table 4.11 presents the major peaks (peaks with counts greater than 20) from LC-MS analysis for all samples.

The molecular mass for each cation can be calculated by subtracting the mass of acetate anion, 59.04 g/mol. Coal fragments that register on the LC-MS detector have the general formula,  $C_xH_yO_mN_n$ , where subscripts x, y, m, and n range from 0 to 50. For example, the database used by the LC-MS program attributes the peak at 450.34235 as having a chemical formula of  $C_{24}H_{43}N_5O_3$ . It is conceivable for a polymeric structure like coal to fragment into particles of this magnitude. Smaller units (i.e., mass less than 100 g/mol) could and probably do exist in the IL/coal solution, however there is no evidence from LC-MS to validate or refute this speculation.







Figure 4.13: FTIR scans for Cellulose and IL after dissolution.





**Table 4.8**: FTIR peaks identified by the OMNIC FTIR software. Lignite (top) shows evidence of alkane, alkene, and alkyne stretching, as well as C-H bending and some C-O stretching. IL-dissolved samples show an increase in C-C, C=C, and C=C stretching, increased C-H bending, and more peaks in the fingerprint region.

| Sample  | Peaks >2000 cm <sup>-1</sup>         | Peaks<br><2000 cm <sup>-1</sup>                              |                                                                                                                                                 | Sample   | Peaks >2000 cm <sup>-1</sup>                 | Pea<br><2000                                         |                                                         |
|---------|--------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Lignite | 3345<br>2923                         | 1594<br>1495<br>1428<br>1262<br>1216                         | 1030<br>813<br>676<br>634                                                                                                                       |          |                                              |                                                      |                                                         |
| C01-A01 | 3568<br>3127<br>2924<br>2852         | 1582<br>1507<br>1435<br>1377<br>136<br>1272<br>1229<br>1163  | 1114<br>1080<br>1008<br>867<br>827<br>268<br>749<br>727<br>648                                                                                  | C07-A28  | 3564<br>3101<br>3027<br>2968<br>2925<br>2853 | 1581<br>1507<br>1435<br>1374<br>1338<br>1272<br>1228 | 1162<br>1091<br>1001<br>873<br>818<br>749<br>730<br>648 |
| C03-A12 | 3130<br>2925<br>2853<br>2786         | 1573<br>1507<br>1435<br>1376<br>1337<br>1272<br>1224<br>1163 | 1090<br>1002<br>867<br>819<br>766<br>749<br>730<br>648                                                                                          | C09-RG28 | 3102<br>3027<br>2968<br>2927<br>2853         | 1582<br>1506<br>1434<br>1374<br>1338<br>1272<br>1227 | 1163<br>1091<br>1003<br>873<br>819<br>749<br>731<br>648 |
| C05-A16 | 3228<br>3027<br>2968<br>2925<br>2853 | 1583<br>1506<br>1435<br>1375<br>1338<br>1272<br>1226<br>1162 | <ol> <li>1112</li> <li>1026</li> <li>1002</li> <li>937</li> <li>873</li> <li>813</li> <li>771</li> <li>756</li> <li>690</li> <li>644</li> </ol> | C11-A30  | 3102<br>3015<br>2968<br>2925<br>2852         | 1583<br>1557<br>1506<br>1436<br>1375<br>1338<br>1272 | 1160<br>1091<br>1002<br>873<br>818<br>749<br>730<br>645 |

| IR Spectrum     | Aliphatic/Aromatic Ratio <sup>1</sup> | H-Bonding <sup>2</sup> |
|-----------------|---------------------------------------|------------------------|
| No Pretreatment | 0.824                                 | 1.24                   |
| IL A01          | 0.826                                 | 1.05                   |
| IL A12          | 0.838                                 | 1.04                   |
| IL A16          | 0.728                                 | 0.831                  |
| IL A28          | 0.909                                 | 1.01                   |
| IL RG28         | 0.884                                 | 0.985                  |
| IL A30          | 0.823                                 | 0.972                  |

**Table 4.9**: Characteristics of lignite following IL pretreatment

Note: <sup>1</sup>Peak height (2920 cm<sup>-1</sup>) / peak height (1600 cm<sup>-1</sup>); <sup>2</sup>Peak height (3350 cm<sup>-1</sup>) / peak height (1600 cm<sup>-1</sup>)

# Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS)

Firing electrons at a solid material is a useful way to image microscopic materials. This method, known as SEM, accelerates electrons to a particular energy and an attached detector measures the reflection and deflection of these electrons to form topographical maps of the surface of the material. Considered a non-destructive qualitative technique, SEM allows researchers to view a material at 30× to 10,000× times magnification. Subsequently, striking a material with energized electrons results in the buildup and eventual release of energy from the material in the form of X-rays. EDS is an attachment to the SEM that detects and quantifies those X-rays and can be used to supplement the analysis of the atomic particles present in the observed material.

The University of Northern Colorado owns and operates a JEOL JSM-6610LV scanning electron microscope (SEM) with an Oxford Instruments X-Max 20 mm<sup>2</sup> energy dispersive X-ray spectroscope (EDS). Figure 4.15 includes images taken with the SEM, one at 30x zoom and the other at 1000× zoom. Charging "relates to the build-up of either positive or negative potential at

or near the surface of a sample while it is being irradiated by a particle beam" (Postek & Vladár, 2015) and occurs when a sample is not completely conductive. Evidence of charging was present in all images. To mitigate this effect, an EMS 550 Sputter Coater was used to coat each sample with an ~15 nm layer of gold (Au). As evidenced in Figure 4.15, charging, even after the Au coating, interferes with the contrast of the image.

**Table 4.10:** LC-MS results for the liquid portion of IL/coal dissolution. All peaks are reported in mass-to-charge (m/z) ratios. IL molecular weight are listed below each sample batch for reference.

|                    | 141.10258 |                                 | 111.09235 |                    | 172.17014 |
|--------------------|-----------|---------------------------------|-----------|--------------------|-----------|
|                    | 142.10569 |                                 | 112.09532 |                    | 173.17384 |
|                    | 157.09753 |                                 | 127.08684 |                    | 232.19131 |
| C01-A01            | 158.10050 | C03-A12                         | 128.09002 | C05-A16            | 233.19387 |
|                    | 449.33938 |                                 | 449.33915 |                    |           |
|                    | 450.34205 |                                 | 450.34235 |                    |           |
|                    | 451.34512 |                                 | 451.34505 |                    |           |
| A01 – 214.25 g/mol |           | A12 – 170.20 g/mol              |           | A16 – 231.32 g/mol |           |
|                    | 155.11862 |                                 | 213.17204 |                    | 169.13415 |
|                    | 156.12158 |                                 | 214.17546 |                    | 170.13700 |
|                    | 157.08716 |                                 | 309.22972 |                    | 227.18736 |
|                    | 213.17180 |                                 | 310.23265 |                    | 228.19047 |
| C07-A28            | 214.17484 | C09-RG28                        |           | C11-A30            | 449.33925 |
|                    | 279.16034 |                                 |           |                    | 450.34235 |
|                    | 280.16340 |                                 |           |                    |           |
|                    | 337.21327 |                                 |           |                    |           |
|                    | 338.21639 |                                 |           |                    |           |
| A28 – 182.26 g/mol |           | RG28 – 182.26 g/mol A30 – 212.2 |           | 2.29 g/mol         |           |
|                    |           |                                 |           |                    |           |

**Figure 4.15:** SEM images taken of lignite 30x (left) and 1000x (right) zoom. All samples were coated with ~15 nm of elemental gold (Au) to reduce charging, which is still evidenced in the brighter particles in each image.



The results of the SEM analysis can be seen in Figure 4.16. Two images are included per sample: one taken at 100× zoom and the other at 1,000× zoom. The images taken at 30× and 500× zoom can be found in Appendix D(vi). Morphology changes are evidenced when comparing the 1,000× zoom images of lignite (top) with the IL induced dissolution samples. Lignite appears to have larger fragments, whereas lignite fragments dissolved in ILs appear smaller in comparison. It appears as though the dissolved lignite fragments are more numerous in each image, another indicator that ILs disrupt the hydrogen-bond and ether linkages in coal.

Energy from the accelerated electrons is absorbed by the atoms and eventually released in the form of X-rays. Every atom has a unique energy signature as the energy released due to relaxation of an electron from an excited state to a ground state is unique to each atom's quantum state. As such, the EDS detector monitors the energy of X-rays releasing from the imaged material and analyzes the energy signature, comparing the patterns to the known energy states of all possible atoms. EDS analysis of all samples resulted in the detection of carbon, oxygen, calcium, and bromine in each of the coal and coal/IL dissociated samples. Before analyzing the coal/IL samples via EDS, an inorganic reagent of known molecular formula was analyzed and evaluated for accuracy. Potassium permanganate, KMnO<sub>4</sub>, is an aesthetically pleasing purple in color. A small mass of KMnO<sub>4</sub> crystals were reduced to powder bromine exist in trace amounts, which is expected in mined coal. Positive identification of these two atoms is not possible without proximate or ultimate analyses, therefore we consider the likelihood of calcium and bromine presence in coal. Carbon and oxygen, on the other hand, are known to be present in lignite. EDS analysis of lignite, unaltered by ILs, results in an average of 64.70% carbon and 34.34% oxygen. As determined by the KMnO<sub>4</sub> analysis, the oxygen concentration is expected to be higher for the EDS analysis than is actually present due to oxidation of the sample before and during SEM and EDS analysis. Via EDS calculations, the experimental formula for this sample was KMnO<sub>5.22</sub>, indicating oxidation had occurred with the sample prior to analysis. Without knowing when or how the oxidation took place, it must be assumed that a certain degree of oxidation will be detected with the EDS.

A comprehensive collection of images taken for all samples using the SEM, as well as results of EDS analysis of the six samples, can be found in Appendix D.iv. Each sample includes images taken with  $30\times$ ,  $100\times$ ,  $500\times$ , and  $1000\times$  zoom. The instrument was set with a 15 kV accelerating voltage and spot size (SS) of 60. Resolution scales range from 500 µm at  $30\times$  zoom to 10 µm at  $1000\times$  zoom. EDS analysis for each sample provided weight percent comparisons for all identified atoms, specifically carbon, oxygen, calcium, and bromine.

Table 4.11 is a summarization of EDS analysis for lignite and the six IL dissolved coal samples. The X-ray signature for hydrogen is not detectable to a reliable degree, so the four atoms identified in the EDS are carbon, oxygen, calcium, and bromine. Calcium and bromine are

commonly found in coal samples due to geological impurities collected during the mining process.

Dissolution of coal with ILs should not result in the loss or gain of carbon or oxygen, rather it should affect the arrangement of atoms. EDS analysis showed consistent measures of carbon and oxygen in each lignite sample, inferring no considerable loss in mass during dissolution. SEM analysis showed minor variations in the morphology of lignite, and EDS analysis implies a change in conformation occurred, not a change in the material.

## X-ray Diffraction (XRD) Analysis

The last method of instrumental analysis used to evaluate the dissolution of coal via ILs was that of X-ray diffraction (XRD). Sample holders were prepared by lightly packing the solid material to be analyzed flush with the top of the sample holder, smoothed to a flat surface. The sample holders were placed in a GBC MMA X-ray Diffractometer at the University of Northern Colorado. As the sample holder was tilted, the scattering of the X-rays was detected and measured in the number of counts received by the detector at the specified angle. X-rays with a wavelength ( $\lambda$ ) of 1.54056 angstroms (Å), ranging from 10° to 90° with a 0.02° step size, were used to evaluate the crystallographic structure of the solid material.

Microsoft Excel® was used for deconvolution and interpretation of the diffractograms. As evidenced in Figure 4.18, 4000 data points makes for a messy and difficult-to-read graph. To simplify the graph, two Gaussian distributions were fit to the original data points and the linear combination of those two curves was adapted to best-fit the original data points. The Gaussian distributions were centered around 20° and 26°, referred to as the  $\gamma$ -band and  $\pi$ -band, respectively. Integration of these two peaks provided the number of aromatic carbons (C<sub>ar</sub>) and the number of aliphatic carbons (C<sub>al</sub>). Application of Equations 4.1 through 4.7 provided information regarding aromaticity ( $f_a$ ), coal rank, lateral size ( $L_a$ ), stacking height ( $L_c$ ), number of parallel layers (N), and the average number of carbon atoms per aromatic lamellae (n) (Manoj & Kuniomana 2012)

& Kunjomana, 2012).

**Figure 4.16a:** SEM images of lignite before and after dissolution with ILs. Samples use a CXX-AXX nomenclature, with CXX referring to the vial number and AXX referring to the IL used for dissolution. Photos on the left are at  $100 \times \text{zoom}$  and the photos on the right were taken at  $1,000 \times \text{zoom}$ .



**Figure 4.16b:** SEM images of lignite before and after dissolution with ILs. Samples use a CXX-AXX nomenclature, with CXX referring to the vial number and AXX referring to the IL used for dissolution. Photos on the left are at  $100 \times \text{zoom}$  and the photos on the right were taken at  $1,000 \times \text{zoom}$ .



**Figure 4.17:** EDS analysis of KMnO<sub>4</sub> resulted in detection of oxidation of the sample. The experimental formula was determined to be KMnO<sub>5.22</sub>. Electron accelerating voltage was 15 kV, SS60, and the image was taken at 750x zoom.



"The structure of coal has also been characterized by XRD, and the existence of crystallites in coal structure has been proven by the appearance of the peaks corresponding to the 002, 100, and 110 reflections in graphite" (Maity & Mukherjee, 2006). The lower rank the coal the less similar the structure is to graphite's crystallographic structure. Evaluation of the two peaks using band) and 26° (002,  $\pi$ -band) peaks followed the formula:  $C = A * |\sigma| * \sqrt{2 * \pi}$ . Table 4.12 is a reporting of all calculations for lignite and the six IL/coal dissolution products. Appendix D.vi. show the spectrum and individual calculations for each of the samples.

| Coal Sample | Carbon | Oxygen | Calcium | Bromine |
|-------------|--------|--------|---------|---------|
| Liquita     | 63.73  | 35.47  | 0.50    | 0.30    |
| Lignite     | 65.68  | 33.22  | 0.78    | 0.33    |
| Mean        | 64.70  | 34.34  | 0.64    | 0.32    |
| Std. Dev.   | 1.38   | 1.59   | 0.19    | 0.02    |
| C01 A01     | 63.58  | 35.71  | 0.34    | 0.37    |
| C01-A01     | 63.72  | 35.60  | 0.32    | 0.37    |
| Mean        | 63.65  | 35.65  | 0.33    | 0.37    |
| Std. Dev.   | 0.10   | 0.08   | 0.02    | 0.01    |
| C02 A 12    | 69.68  | 29.80  | 0.31    | 0.21    |
| C03-A12     | 67.98  | 31.58  | 0.21    | 0.23    |
| Mean        | 68.83  | 30.69  | 0.26    | 0.22    |
| Std. Dev.   | 1.20   | 1.26   | 0.08    | 0.01    |
| 005 416     | 67.30  | 32.15  | 0.31    | 0.24    |
| C05-A16     | 66.51  | 32.98  | 0.30    | 0.21    |
| Mean        | 66.90  | 32.57  | 0.31    | 0.23    |
| Std. Dev.   | 0.56   | 0.59   | 0.01    | 0.02    |
| C07-A28     | 66.72  | 32.59  | 0.24    | 0.45    |
| C00 BC20    | 65.96  | 33.51  | 0.14    | 0.38    |
| C09-RG28    | 66.84  | 32.31  | 0.38    | 0.47    |
| Mean        | 66.40  | 32.91  | 0.26    | 0.42    |
| Std. Dev.   | 0.62   | 0.85   | 0.17    | 0.06    |
| 011 420     | 66.64  | 32.63  | 0.17    | 0.56    |
| C11-A30     | 65.03  | 34.18  | 0.32    | 0.48    |
| Mean        | 65.83  | 33.40  | 0.24    | 0.52    |
| Std. Dev.   | 1.13   | 1.09   | 0.10    | 0.06    |

**Table 4.11**: EDS results for lignite and IL-pretreated lignite. Sample nomenclature uses CXX-AXX naming scheme, with CXX referring to vial number and AXX referring to the IL used to pretreat lignite. All samples were solid and dried prior to SEM/EDS analysis. The first sample listed is the EDS spectrum for a particle, second sample represents area analysis at 750× zoom.

**Figure 4.18:** Graphical representation of the number of X-ray counts vs. angle measure detected via XRD. The gray data points represent raw data; the red and green curves were calculated via Gaussian distributions; the black curve is a linear combination of the two Gaussian distributions.



| $f(x) = A * e^{-\frac{(x-\mu)^2}{2*\sigma^2}}$        | Equation 4. 1 |
|-------------------------------------------------------|---------------|
| $f_{a} = \frac{C_{ar}}{C_{ar} + C_{al}}$              | Equation 4.2  |
| $\text{Coal Rank} = \frac{I_{26}}{I_{20}}$            | Equation 4.3  |
| $L_{a} = \frac{1.84*\lambda}{B_{a}\cos(\phi_{a})}$    | Equation 4.4  |
| $L_{c} = \frac{0.89*\lambda}{B_{c}\cos(\varphi_{c})}$ | Equation 4.5  |
| $N = \frac{L_c}{d_{\gamma}} + 1$                      | Equation 4.6  |
| $n = 0.32 * N^2$                                      | Equation 4.7  |

The values for  $C_{al}$  and  $C_{ar}$  correspond with the calculated quantity of aliphatic and aromatic carbons in each structure, respectively. Lignite is a low rank coal, meaning it inherently has fewer aromatic carbons and more oxygen in each substructure. The peaks at 20° (100,  $\gamma$ - band) and 26° (002,  $\pi$ -band) correspond with graphite's XRD profile; graphite is comprised entirely of carbon bound in a hexagonal arrangement of atoms. The measure of aromaticity is calculated as  $f_a$  and is the ratio of aromatic carbons to total measured carbons. Low rank coal should have a low  $f_a$  value as it contains less aromatic carbons than anthracene, a high rank coal.

The coal rank is calculated by taking the intensity of the peak at 26° and dividing it by the intensity of the peak at 20°; the larger the value of the gamma peak the higher rank coal. The values listed in Table 4.12 are extraordinarily low, as is expected for working with the low rank coal lignite. Without context, though, it is difficult to say whether experimental values are consistent with theoretical values regarding coal rank.

**Table 4.12:** XRD analysis derived after the fit of two Gaussian distribution curves for the 20° (100,  $\gamma$ -band) and 26° (002,  $\pi$ -band) peaks.

|                           | Lignite                 | C01-A01                 | C03-A12                 | C05-A16                 | C07-A28                 | C09-RG28                | C11-A30                 |
|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| C <sub>al</sub>           | 1.2622x10 <sup>8</sup>  | 1.2465x10 <sup>8</sup>  | 1.3430x10 <sup>8</sup>  | 1.4047x10 <sup>8</sup>  | 1.2448x10 <sup>8</sup>  | 1.2644x10 <sup>8</sup>  | 1.0603x10 <sup>8</sup>  |
| $C_{ar}$                  | 915.68                  | 1282.5                  | 1633.6                  | 1986.84                 | 1272.1                  | 681.23                  | 948.12                  |
| $\mathbf{f}_{\mathbf{a}}$ | 7.2547x10 <sup>-6</sup> | 1.0289x10 <sup>-5</sup> | 1.2164x10 <sup>-5</sup> | 1.4144x10 <sup>-5</sup> | 1.0220x10 <sup>-5</sup> | 5.3878x10 <sup>-6</sup> | 8.9420x10 <sup>-6</sup> |
| $I_\pi \; / \; I_\gamma$  | 0.20869                 | 0.14519                 | 0.13095                 | 0.11111                 | 0.11515                 | 0.21071                 | 1.4898                  |
| La                        | 1.1419                  | 1.1574                  | 1.0853                  | 1.1001                  | 1.4692                  | 1.5229                  | 1.4898                  |
| L <sub>c</sub>            | 1.0906x10 <sup>-6</sup> |
| n                         | 0.32000                 | 0.32000                 | 0.32000                 | 0.32000                 | 0.32000                 | 0.32000                 | 0.32000                 |

# Discussion

Synthesis of ILs and the subsequent characterization resulted in copious amounts of data that will contribute to the literature, whereas dissolution of both cellulose and coal left much to be desired. This analysis section will include detailed analysis of each phase of the research project, and the lessons learned throughout will help guide future researchers to maximize the efficiency of this same process. Preliminary findings corroborate the existing evidence in ILs ability to dissolve and pretreat coal. Current findings indicate how future projects should be amended to avoid problems encountered in this project.

Synthesis of ILs occurred in two steps: nucleophilic substitution of nitrogen- or phosphorus-containing organic compounds with an alkyl halide, followed by the ion exchange of the halogen with acetate ion. The key to the first step is the production of a quaternary ammonium or phosphonium cation that is electrostatically bound to the halogen anion from the alkyl halide. Ethyl amine (CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>) does not react to form an IL in sufficient yield or purity due to the hydrogen atoms attached to nitrogen reacting after formation of the quaternary nitrogen complex. Production of brominated-ILs was achieved in 92  $\pm$  6% yield for all ILs. Optimal reaction conditions typically use ~150 mL acetonitrile solvent, refluxed for 24 hours at 50 °C. Removal of acetonitrile is achieved via rotovap at 50 mbar of pressure and 55 °C. Washing the IL with diethyl ether will purify the IL product, followed by drying in a vacuum oven at 25 mbar of vacuum and 80 °C will ensure all solvent is completely removed from the solution. Each IL was stored in a glass vial, sealed with parafilm, and placed in a desiccant chamber with phosphorous pentoxide (P<sub>2</sub>O<sub>5</sub>) and Drierite® desiccant.

Ion exchange was performed in a 100-mL chromatography column packed with glass wool and Ambyrlest® A-26 hydroxide resin. Methanol proved most efficient as a solvent with the ion exchange due to several key properties. First, methanol does not form an azeotropic mixture with water, as ethanol does. Water complexes with hydrophilic ILs, which is near impossible to remove using available lab equipment and techniques. Second, methanol dissolves both the IL and ammonium acetate, the salt used to exchange bromide ions for acetate ions. Acetone and hexane react poorly with the resin, thus disqualifying them for use in ion exchange. The third reason methanol is used is for its ease of evaporation after the ion exchange procedure is complete. Removal of methanol from the IL is quick and easy with the same rotovap

procedure as before, and any excess solvent will evaporate in the vacuum oven.

**Figure 4.19:** NMR spectra for sample A28 before (left) and after (right) modification of the ion exchange procedure.



Ammonium acetate was initially added in significant molar excess compared to the IL. Loading of the column with acetate resulted in excess acetate ions available for ion exchange, and the resultant IL had too much acetic acid in the IL matrix. This was not noticed until the NMR of sample A28 was scrutinized and the integration values for the acetate hydrogens was three times higher than was expected. Modification to the ion exchange procedure, this time having the loaded column washed with water, then methanol, alleviated this complexing issue, as is evident in the NMR spectra found in Figure 4.19. The spectra on the left, taken before modification of the ion exchange procedure, has an integration value of 8.2 at  $\delta 1.794$  ppm and a peak integrating for 1.6 at  $\delta 13.775$  ppm. The spectra on the right was taken after the ion exchange procedure was modified, resulting in the peak at  $\delta 1.787$  ppm integrating for the expected 3.1 and the peak at 13.775 ppm disappearing. This evidence is indicative of the initial complexing of excess acetate ion in the IL being negated by the modified procedure. Unfortunately, water is still complexed in the IL after washing the column with methanol, as evidenced by the peak at  $\delta 5.5$  ppm, a problem that must be rectified in future research. The acetate-ILs were dried in the vacuum oven for 48 hours before water concentration and viscosity was determined. Samples tested after ion exchange using only methanol resulted in much lower water concentrations, i.e., 0.2%. Water as a solvent for the ion exchange resulted in 5% and higher water concentration, an inappropriate amount to consider our ILs neat. When methanol and water are used in conjunction the water concentration remains at 0.8%. Multiple methods were used to attempt to dry the ILs further, including MgSO4 and K<sub>3</sub>PO4, both of which have been shown to reduce the complexing of water in ILs to some degree (Palumbo et al., 2019). The nature of hydrophilic ILs and the propensity for ILs to complex with water results in extra steps being taken to mitigate absorption of water from the atmosphere when ILs are being stored. Operationally, the dissolution of cellulose and coal happen above the boiling point of water, therefore there is less concern with water absorption after characterization has been completed.

Thermogravimetric analysis (TGA), which will be discussed in greater detail shortly, was performed on several samples before and after modification of the ion exchange procedure. Each sample was tested for water concentration before submission for TGA, and Figure 4.20 shows the results of each TGA scan for sample A01. TGA analysis before the modified ion exchange procedure was performed on sample A01 with 0.058% water, left 3.6% residual char after TGA scan, and had  $T_{der}$  and  $T_{dcp}$  values of 251 °C and 153 °C, respectively. Analysis after the modified procedure was performed on a sample with 0.803% water, left 3.0% residual char, and had  $T_{der}$ and  $T_{dcp}$  values of 237.5 °C and 183.1 °C, respectively. The decomposition profile of the aftersample was more evident of water contamination and resulted in a higher temperature of decomposition for the first 10% of the sample. The decomposition profile did not change drastically, and the first derivative of the profile for the sample with a higher water concentration was only slightly lower than the original sample.



**Figure 4.20**: Thermogravimetric analysis of IL A01 before (left) and after (right) modification to the ion exchange procedure.

Kamlet-Taft parameters of polarity and polarizability for ILs requires significant work to produce credible results. Reichardt's dye, a complex conjugated poly-aromatic, nitrogencontaining compound, interacts poorly with ILs. Reproduction of known KT values for organic solvents and ILs was inaccurate and unreliable. The color of the ILs affected UV-Vis analysis, and further manipulation of testing strategy is required before analysis can be considered confident. A more detailed description of each of these dilemmas follows.

First, the color of the ILs interfered with UV-Vis analysis as the intensity of absorption for each IL was out of tolerance. Decolorization, as recommended by Earle et al. (2007), consisted of a chromatography column packed with activated charcoal, silica powder, and glass wool. This technique works well to remove the chromophores present in each IL that provided the color, but it was unclear whether any other changes to the IL also occurred that would alter the interaction between ILs and dyes, or ILs and cellulose and coal. Further experimentation is required to better understand the impact of decolorization of ILs.

Reichardt's dye is a conundrum: a new container was purchased and tested, and numerical values of  $E_T^N$  and  $E_T(30)$  were significantly off for the known organic solvents.

Acetone, dichloromethane, and methanol were analyzed using 0.362 nmol of Reichardt's dye. Table 4.13 shows the theoretical and experimental values for these analyses, and the percent error shows just how inaccurate the analysis was. Inaccuracies in measurements of Reichardt's dye excluded the use of  $E_T^N$  and  $E_T(30)$  and subsequently  $\alpha$ , the hydrogen-bond-donating acidity. Further evaluation of Reichardt's dye interaction with solvents and ILs is required before further analysis can be completed.

**Table 4.13**: Analysis of UV-Vis measurements for Reichardt's dye using known organic solvents; literature values provided by Lee et al. (2008).

| Organic Solvent | Literature $\lambda$ | Experimental $\lambda$ | % Error |
|-----------------|----------------------|------------------------|---------|
| Acetone         | 680 nm               | 321 nm                 | 52.8%   |
| Dichloromethane | 702 nm               | 312 nm                 | 55.6%   |
| Methanol        | 516 nm               | 310 nm                 | 39.9%   |

The first attempts at cellulose dissolution was the signal that something was wrong with the synthesized ILs. Addition of cellulose to a heated IL should result in an immediate clumping of the cellulose followed by gradual dispersion and dissolving in the IL. That was not happening; instead, the cellulose formed a colloidal suspension with the IL and did not dissolve. After reevaluating and modifying the ion exchange procedure, dissolution was attempted with the newly purified IL and success occurred. Approximately one gram of IL was heated in a vial and 20 mg aliquots of Avicell® PH-101 was added roughly every 30 minutes. Dissolution was complete when the viscosity of the solution was too high for the stir bar to move, and no further dissolving was evident. Table 4.6 includes the exact masses of IL and cellulose added to each vial and the corresponding  $\pi^*$  value for each IL.

ILs with lower viscosity and  $\pi^*$  close to or above 1.00 displayed greater percent dissolution of cellulose. This is correlation, not necessarily causation. To test the exact correlation between Kamlet-Taft values and dissolution of cellulose, better procedures for testing ILs must be determined for the KT values and more samples need be tested with cellulose. The intent of this portion of the research was to verify that our ILs do, in fact, dissolve cellulose, a precursor to the dissolution of coal. The results were successful in all five of the ILs dissolved greater than 9% by mass of cellulose. Samples were segregated for FTIR and LC-MS testing.

Complete FTIR spectra for cellulose dissolution via ILs can be found in Appendix D.ii. Figure 4.21 displays the FTIR spectra for all six samples collected after dissolution of cellulose had completed. Present in each sample should be the IL, trace amounts of undissolved cellulose, and the fragments resulting from dissolution of cellulose. Increased IR signals in coal samples tested after dissolution, both in the carbon-carbon and carbon-hydrogen bending and stretching regions, implies an increased number of particles and functional groups to absorb the signal from the infrared source. No evidence of IL remains in the coal sample, indicating successful extraction of the IL from the coal after dissolution. Therefore, all changes to conformation are evidenced in the FTIR analysis.

Having evidence of dissolution of our model compound in ILs gave us confidence going forward with the dissolution of coal. Instead of maximizing dissolution in each IL, instead a 1:5 ratio of coal to IL was heated and stirred for 24 hours before work-up commenced. The coal particles were particularly difficult to work with, as slight air movement or static would cause the powder to disperse. Not all the coal made it to the IL solution, which leads to inaccuracies in the calculations. Washing the coal/IL mixture with water, acetone, or methanol increased the likelihood of losing coal particles during the washing procedure. Any fragments of coal not trapped in the IL matrix will be washed away. Additionally, analytical techniques for transferring solutions to different containers can be improved upon to further reduce the possibility for error during the dissolution process. The results of coal dissolution were divided into two groups per IL: the IL/coal fragments recovered in liquid form, and the solid coal particulates remaining after the separation and washing procedures were complete. Both groups were tested via FTIR, the IL/coal solution was sent to CSU-Fort Collins for LC-MS analysis, and the solid sample was analyzed via SEM/EDS and XRD. GC-MS was initially tested in lieu of LC-MS, however two problems were insurmountable. First, not all of the coal fragments were prone to evaporation and thus would not pass through the GC, and second, the IL had a tendency to dissolve the silica-based column. Evidence of the latter phenomenon was in the form of silicon-based groups sloughing off the column and being analyzed in the mass spectrometer. Organic solvent, when tested using the same analysis profile, did not show evidence of column fragmentation. Thus, LC-MS was the analytical method of choice.

It was our intent to use the LC-MS to help evaluate the fragmentation patterns of the IL/coal mixture and extrapolate from that the extent of dissolution of coal. LC-MS provided little insight to either of these goals. Spectra provided by CSU-FC showed two basic sets of compounds separated by the liquid chromatography instrument, one belonging to the IL and the other to the coal fragmentation. Mass spectrometry results corroborated these results but gave us little insight beyond that. Mass-to-charge ratios for the IL peaks were in the approximate range of the cation for each IL, but did not match the anticipated peaks. This implies that some rearrangement or fragmentation of the IL itself is occurring during the dissolution process. Without proximate or ultimate analyses of coal, matching the much heavier fragments to possible structures was a futile effort. With mass-to-charge ratios well over 200, any combination of carbon, hydrogen, oxygen, nitrogen, and other atoms could be combined to produce suitable structures that match this profile. The LC-MS instrument's matching database contradicted the

results of our independent EDS analysis by reporting possible compounds with nitrogen, sulfur, and phosphorus, none of which were measured in the EDS analysis discussed momentarily. Further experimentation with LC-MS and coal dissolution is required to achieve more consistent and reliable results.

Solid samples were analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Using SEM images, ranging from  $30 \times$  to  $1000 \times$ zoom, topographical comparisons of lignite and post-dissolution coal samples could be performed on all samples. Considering the images in Figure 4.21, not much information can be gleamed from the image comparisons. Charging, evident by the bright contrast of some coal fragments, was a major problem in SEM and EDS analysis, even after a 15 nm thick gold coating was applied. Fragmentation is qualitatively evidenced by the reduced particle size, however initial grinding of the coal to  $\leq 150$  µm could explain the reduced particle size in each image.

**Figure 4.21**: SEM images of coal dissolution of lignite (left) versus lignite after dissolution with A30 (right). Parameters of the SEM was an accelerating voltage of 15 kV, spot size of 60, and 1000x zoom. Fiduciary in the lower right corner of each image is scaled to 10  $\mu$ m,



More reliable analysis was gathered via EDS analysis, detecting the X-ray particles released by the examined material during electron bombardment. Each atom has a unique X-ray energy pattern, and it was this pattern matching that allowed a crude and unconfirmed analysis of the composition of each material. According to the EDS database carbon, oxygen, calcium, and bromine were the only atoms with a detectable energy pattern. This does not include hydrogen atoms, and the ratios are known to be skewed due to oxidation observed during analysis of KMnO<sub>4</sub>. Suspected oxidation leads to inaccurate mass readings for both oxygen and carbon, requiring further analysis to determine the extent of oxidation before, during, and after the dissolution process. A proximate and ultimate analysis of lignite and the dissolution samples could shed light on the specific atoms found in coal and the extent of fragmentation by each IL.

X-ray diffraction was anticipated to be the most rewarding and informative analysis on the dissolution process and ended up being the biggest disappointment. Experimental results were contrary to the literature, resulting in wildly inaccurate and misleading data. Calculations used by Manoj & Kunjomana (2012) and results published by Maity & Mukherjee (2006) provided a suitable foundation for XRD data manipulation but doing so on our data proved problematic. Table 4.12 shows the results of the calculations after two Gaussian distributions were fit to the data points. Many samples displayed multiple peaks, not just those centered around 20° and 26° as described in each article.

The most reasonable explanation for these discrepancies in the data could be the rank of coal itself and the wildly different structure of lignite as compared to graphite, the model compound used by these other researchers. The lower rank coal deviates drastically from a crystalline structure, and thus crystallographic analysis falls short in analyzing lignite and IL treated coal fragments. Dissolution of higher rank coal and subsequent XRD analysis could shed light on this theory, possibly resulting in better quality and more consistent results.

**Figure 4.22**: EDS analysis of Lignite, taken with accelerating voltage of 15 kV, spot size of 60, and 750x zoom. Spectrum 1 was performed on single mass of lignite, Spectrum 2 was an area analysis outlined in the above image.



80µm

Electron Image 1

| Spectrum       | In stats. | C     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 63.73 | 35.47 | 0.50 | 0.30 | 100.00 |
| Spectrum 2     | Yes       | 65.68 | 33.22 | 0.78 | 0.33 | 100.00 |
| Mean           |           | 64.70 | 34.34 | 0.64 | 0.32 | 100.00 |
| Std. deviation |           | 1.38  | 1.59  | 0.19 | 0.02 |        |
| Max.           |           | 65.68 | 35.47 | 0.78 | 0.33 |        |
| Min.           |           | 63.73 | 33.22 | 0.50 | 0.30 |        |

Processing option : All elements analysed (Normalised)

All results in weight%

**Figure 4.23**: EDS analysis of Lignite after dissolution with IL A30, taken with accelerating voltage of 15 kV, spot size of 60, and 750x zoom. Spectrum 1 was performed on single mass of lignite, Spectrum 2 was an area analysis outlined in the above image.



80µm

**Electron Image 1** 

Processing option : All elements analysed (Normalised)

| Spectrum       | In stats. | C     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 66.64 | 32.63 | 0.17 | 0.56 | 100.00 |
| Spectrum 2     | Yes       | 65.03 | 34.18 | 0.32 | 0.48 | 100.00 |
| Mean           |           | 65.83 | 33.40 | 0.24 | 0.52 | 100.00 |
| Std. deviation |           | 1.13  | 1.09  | 0.10 | 0.06 |        |
| Max.           |           | 66.64 | 34.18 | 0.32 | 0.56 |        |
| Min.           |           | 65.03 | 32.63 | 0.17 | 0.48 |        |

All results in weight%

#### CHAPTER V

# CONCLUSIONS

The synthesis and application of acetate-based hydrophilic ILs in coal dissolution was studied thoroughly. Bromide-based ILs were synthesized by nucleophilic substitution reactions, followed by an ion exchange step to produce novel acetate-based ILs. The characterization of these ILs allowed for selection and application of ILs to the dissolution of lignite after experimenting with a model coal compound, cellulose. Results were analyzed at every step, and many lessons were learned that will contribute to the effective application of ILs in coal dissolution. The last analysis for this project includes an assessment of methodological pros and cons as well as implications of the results regarding the dissolution and pretreatment of lignite coal using ILs.

ILs were synthesized following a two-step process: first, the Appel reaction was used to synthesize brominated glycols that can be used to produce longer-chained cations in ILs, and second, the reaction of nitrogen- or phosphorus-containing nucleophiles with halogen-containing electrophiles. The Appel reaction, used for the conversion of an -OH functional group to -Br, resulted in triphenyl phosphonium oxide byproduct. The difficulty associated with removing Ph<sub>3</sub>P=O makes this reaction implausible for IL synthesis, for the inability to fully remove this byproduct would result in contamination of the synthesized IL. Alternative reactions, for example using thionyl chloride, would prove more beneficial in the preparation of harder-to-purchase halogen-containing materials.

The ion exchange procedure was amended to include water as a washing element after the resin had been charged with the acetate ion. Using ammonium acetate in methanol to load the resin resulted in excess acetate ion being transferred to the IL during the exchange process. Flushing the column with water removed this contaminant at the expense of increased water complexed with the IL. The dissolution of cellulose and coal was possible with slightly elevated water concentrations, but the increased water is not ideal. Therefore, further experimentation to decrease acetate contamination that doesn't lead to increased water is pivotal for future ion exchange procedures.

Polarity and polarizability parameters, measured using the Kamlet-Taft parameters, was successful in our experiments. The literature  $\beta$  and  $\pi^*$  values of known solvents matched with experimental values; the parameters that required Reichardt's dye were not so successful. All measurements were consistently off by 50% of the literature value. Therefore, while 4-nitroaniline and *N*,*N*-diethyl-4-nitroaniline dyes make for successful analysis of the Kamlet-Taft parameters, Reichardt's dye requires significant testing before it can be used to evaluate IL properties.

In-house instrumental analysis, including XRD, SEM/EDS, FTIR, NMR, and viscometry measurements were easier to analyze due to the accessibility of the instruments and people knowledgeable of their use. LC-MS and TGA, as well as other analytical techniques that would be useful but were not accessible, were performed by third-party organizations. While it was much appreciated for each facilities assistance, having to submit a set of samples and wait for results was not efficient. Accessing additional instruments, such as DSC and XRF, would contribute greatly to the analysis of coal dissolution, going so far as to shed light on how and to what extent the dissolution occurred. Ultimate and proximate analysis would provide information

regarding atomic composition. Comparisons of these analyses between non-pretreated and pretreated coal samples would provide additional information regarding changes to lignite internal and surface changes.

Regardless of improvements that can and should be made concerning the methods used in this project, evidence of dissolution of lignite and effects of pretreatment were evidenced via instrumental analysis. FTIR showed a general trend of increased aliphatic/aromatic ratio and decreased H-bonding after pretreatment. LC-MS results evidenced the extraction of non-volatile fragments from coal during pretreatment and dissolution. SEM analysis showed visible evidence in morphology changes and EDS suggests a slight increase in carbon. XRD analysis showed a general increase in aromaticity and a slight decrease in coal rank due to pretreatment.

The results all indicate an effect of ILs on the low rank coal lignite. Association of hydrophilic ILs with coal disrupts the hydrogen bond and ether complex inherent to coal, however the degree of dissolution is still unknown. Future steps in research include more detailed analysis of the IL/fragmentation solution and the morphology changes of the solid coal samples. Furthermore, the use of ILs for the dissolution/pretreatment of higher ranked coals could result in significant advancements in the uses of coal and a broader understanding of the limitations and usefulness of ILs as green solvents.

## References

- Ahamed, M., Perera, M., Matthai, S., Ranjith, P., & Dong-yin, L. (2019). Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions – A review article. *Journal of Petroleum Science and Engineering*, 180, 901-917. doi:10.1016/j.petrol.2019.06.007.
- Anastas, P., & Warner, J. (1998). *Green chemistry: Theory and practice*. Oxford: Oxford University Press.
- Bhoi, S., Dey, D., Banerjee, T., & Mohanty, K. (2014). Solid-liquid equilibria predictions for the dissolution of brown coal in ILs using a continuum solvation model. *Fuel Processing Technology*, 126, 112-121. doi:10.1016/j.fuproc.2014.04.019.
- Caminiti, R., & Gontrani, L. (2014). The structure of ionic liquids. Springer.
- Chen, Y., Ke, F., Wang, H., Zhang, Y., & Liang, D. (2012). Phase separation in mixtures of ILs in water. *ChemPhysChem*, 13, 160-167. doi:10.1002/cphc.201100782.
- Corchero, R., Rodriguez-Escontrela, I., Rodriguez, O., & Soto, A. (2019). Phase equilibria of 1hexyl-3-methylimidazolium acetate with water and oil. *Fluid Phase Equilibria*, 483, 144-152. doi:10.1016/j.fluid.2018.11.010.
- Crowhurst, L., Mawdsley, P., Perez-Arlandis, J., Salter, P., & Welton, T. (2003). Solvent-solute interactions in ionic liquids. *Physical Chemistry Chemical Physic: PCCP*, 5(13), 2790-2794.
- Cummings, J., Tremain, P., Shah, K., Heldt, E., Moghtaderi, B., Atkin, R., Kundu, S., &
   Vuthaluru, H. (2017). Modification of lignites via low temperature ionic liquid treatment.
   *Fuel Processing Technology*, 155, 51-58. doi: 10.1016/j.fuproc.2016.02.040

Daintith, J. (2008). A dictionary of chemistry (6th ed.). New York: Oxford University Press.

- Deetlefs, M., & Seddon, K. (2006). ILs: Fact and fiction. Chemistry Today, 16-23.
- Dolan, A., Sherman, D., Atkin, R., & Warr, G. (2016). Kamlet-Taft solvation parameters of solvate ILs. *ChemPhysChem*, 17, 3096-3101. doi:10.1002/cphc.201600361.
- Dong, Q., Muzny, C., Kazakov, A., Diky, V., Magee, J., Widegren, J., Chirico, R. D., Marsh, K. N., & Frenkel, M. (2004). ILThermo: A free-access web database for thermodynamic properties of ILs. *Journal of Chemical Engineering Data*, 52(4), 1151-1159. doi:10.1021/je700171f.
- DuPont de Nemours, Inc. (2019). *Amberlyst A26 OH polymeric catalyst*. Retrieved October 15, 2019, from DuPont: https://www.dupont.com/content/dam/Dupont2.0/ Products/ water/literature/177-03098.pdf.
- Earle, M., Gordon, C., Plechkova, N., Seddon, K., & Welton, T. (2007). Decolorization of ILs for spectroscopy. *Analytical Chemistry*, 79, 758-764. doi:10.1021/ac061481t
- Faghihi, E., Mokhtarani, B., Mortaheb, H. R., Heydar, K. T., Mirzaei, M., & Sharifi, A. (2020).
  Vapor liquid equilibria for ionic liquid/ethanol/water systems and the effect of anion hydrolysis. *Chemical Engineering & Technology*, 43(11), 2277-2285. doi: 10.1002/ceat.202000114.
- Fendt, S., Padmanabhan, S., Blanch, H., & Prausnitz, J. (2011). Viscosities of acetate or chloridebased ILs and some of their mixtures with water or other common solvents. *Journal of Chemical Engineering Data, 56*, 31-34. doi:10.1021/je1007235.
- Ghani, M., Rajoka, M., & Akhtar, K. (2015). Investigations in fungal solublization of coal:
   Mechanisms and significance. *Biotechnology and Bioprocess Engineering*, 20, 634-642.
   doi:10.1007/s12257-015-0162-5

- Gordon, C., McLean, A., Muldoon, M., & Dunkin, I. (2003). ILs as green solvents: Progress and prospects. (R. Rogers, & K. Seddon, Eds.) Washington, D.C.: American Chemical Society.
- Hamad, W. Y. (2017). *Cellulose nanocrystals: Properties, production, and applications* (1<sup>st</sup> Ed.) Chichester, England: Wiley.
- Kamlet, M., & Taft, R. (1976). The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. *Journal of the American Chemical Society*, 98(2), 377-383. doi:10.1021/ja00418a009
- Kazakov, A., Magee, J., Chirico, R., Paulechka, E., Diky, V., Muzny, C., Kroenlein, K., Frenkel, M. (2019, June 11). *NIST ILs Database (ILThermo)*. (National Institute of Standards and Technology) Retrieved from NIST Standard Reference Database 147: ilthermo.boulder.nist.gov
- Ladesov, A., Kosyakov, D., Bogolitsyn, K., & Gorbova, N. (2015). Solvatochromic polarity parameters for binary mixtures of 1-butyl-3-methylimidazolium acetate with water, methanol, and dimethylsulfoxide. *Physical Chemistry of Solutions, 89*(10), 1814-1820. doi:10.1134/S0036024415100167
- Lee, J. M., Ruckes, S., & Prausnitz, J. M. (2008) Solvent polarities and Kamlet-Taft parameters for ILs containing a pyridinium cation, *Journal of Physical Chemistry B*, 112, 1473-1476. doi: 10.1021/jp076895k.
- Lei, Z., Dong, L., Kang, S., Huang, Y., Li, Z., Yan, J., Shui, H., Wang, Z., Ren, S., & Pan, C.
  (2019). Dissociation behaviors of coal-related model compounds in ILs. *Fuel, 241*, 1019-1025. doi:10.1016/j.fuel.2018.12.117

- Lide, D. R. (Ed.). (1995). CRC Handbook of Chemistry and Physics (85<sup>th</sup> ed.). Boca Raton: CRC Press.
- Maity, S., & Mukherjee, P. (2006). X-ray structural parameters of some indian coals. *Current Science (Bangalore)*, 91(3), 337-340.
- Manoj, B. & Kunjomana, A. G. (2012) Study of stacking structure of amorphous carbon by Xray diffraction technique. *International Journal of Electrochemical Science*, 7, 3127-3134.
- Marcus, Y. (2016). *Ionic liquid properties: From molten salts to RTILS*. Switzerland: Springer. doi:10.1007/978-3-319-30313-0
- Masterton, W., Slowinski, E., & Stanitski, C. (1985). *Chemical principles*. Philadelphia: Saunders College Publishing.
- Painter, P., Pulati, N. C., Sobkowiak, M., Mitchell, G., & Mathews, J. (2010). Dissolution and dispersion of coal in ILs. *Energy Fuels*, 24, 1848-1853. doi:10.1021/ef9013955.
- Palumbo, O., Trequattrini, F., Brubach, J., & Paolone, A. (2019). Crystallization of mixtures of hydrophilic ILs and water: Evidence of microscopic inhomogeneities. *Journal of Colloid* and Interface Science, 552, 43-50. doi:10.1016/j.jcis.2019.05.034.
- Pang, J., Liu, X., Yang, J., Lu, F., Wang, B., Xu, F., Ma, M., & Zhang, X. (2016). Synthesis of highly polymerized water-soluble cellulose acetate by the side reaction in carboxylate ionic liquid 1-ethyl-3-methylimidazolium acetate. *Scientific Reports*, 6(1), 1-9. doi:10.1038-srep33725.
- Plechkova, N., & Seddon, K. (2008). Applications of ILs in the chemical industry. *Chemical Society Reviews*, *37*(1), 123-150. doi:10.1039/b006677j

- Postek, M. T., & Vladár, A. E. (2015). Does Your SEM Really Tell the Truth?-How Would You Know? Part 4: Charging and its Mitigation. *Proceedings of SPIE--the International Society for Optical Engineering*, 9636: 963605 (October 21, 2015).
- Rogers, R., Seddon, K., & Volkov, S. (Eds.). (2002). Green industrial applications of ILs. *NATO Science Series II: Mathematics, Physics, and Chemistry*.

Romich, C., Merkel, N., Valbonesi, A., Schaber, K., Sauer, S., & Schubert, T. (2012).
Thermodynamic properties of binary mixtures of water and room-temperature ILs: Vapor pressures, heat capacities, densities, and viscosities of water + 1-ethyl-3methylimidazolium acetate and water + diethylmethyl-ammonium methane sulfonate. *Journal of Chemical & Engineering Data, 57*, 2258-2264. doi:10.1021/je300132e.

- Seddon, K. (1997). ILs for clean technology. Journal of Chemical Technology and Biotechnology, 68, 351-356. doi:10.1002/(SICI)1097-4660(199704) 68:4<351::AID-JCTB613>3.0.CO;2-4
- Sekhohola, L., Igbinigie, E., & Cowan, A. (2013). Biological degradation and solubilisation of coal. *Biodegredation*, 24, 305-318. doi:10.1007/s10532-0012-9594-1.
- Shi, W., Damodaran, K., Nulwala, H. B., & Luebke, D. R. (2012). Theoretical and experimental studies of water interaction in acetate based ILs. *Physical Chemistry Chemical Physics*, 14, 15897-15908. doi: 10.1039/c2cp42975f.
- Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005) Spectrometric identification of organic compounds (7<sup>th</sup> Ed). Hoboken, N.J.: J. Wiley & Sons.
- Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998) Principles of Instrumental Analysis. Crawfordsville: Thomson Learning.

- Strzelecki, B., Kwiatos, N., & Bielecki, S. (2015). Effect of coal pretreatment on brown coal biosolubilisation by *Fusarium oxysporum* 1101. *PhD Interdisciplinary Journal*, 125-132.
- To, T., Shah, K., Tremain, P., Simmons, B., Moghtaderi, B., & Atkin, R. (2017). Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. *Fuel, 202*, 296-306. doi:10.1016/j.fuel.2017.04.051.
- U.S. Energy Information Administration (2020). Coal explained: Use of coal. https://www.eia.gov/energyexplained/coal/use-of-coal.php#:~:text=In%
  202019%2C%20about%20539%20million,of%20total%20U.S.%20energy%20consumpti on.
- Viswanath, D. S., Ghosh, T. K., Prasad, D. H. L., Dutt, N. V. K., & Rani, K. Y. (2007) Viscosity of liquids: Theory, estimation, experiment, and data. Dordrecht: Springer. doi: 10.1007/978-1-4020-5482-2
- Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., & Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. *Journal of Materials Research and Technology*, 4(1), 26-32. doi:10.1016/j.jmrt.2014.10.009
- Welton, T. (2018). ILs: a brief history. *Biophysical Reviews*, *10*(3), 691-706. doi:10.1007/s12551-018-0419-2
- Wilkes, J., & Zaworotko, M. (1992). Air and water stable 1-ethyl-3-methylimidazolium based ILs. *Journal of the Chemical Society-Chemical Communications*(13), 965-967.
- Wu, B., Zhang, Y., & Wang, H. (2008). Aqueous biphasic systems of hydrophilic ILs + sucrose for separation. *Journal of Chemical Engineering Data*, 983-985. doi:10.1021/je700729p

- Wu, H., Yao, S., Qian, G., & Song, H. (2016). Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ILs from aqueous solutoin. *Journal of Chromatography A, 1461*, 1-9. doi:10.1016/j.chroma.2016.06.081
- Zhang, W., Jiang, S., Qin, T., Sun, J., Dong, C., & Hu, Q. (2019). Effect of ionic liquid surfactants on coal oxidation and structure. *Journal of Analytical Methods in Chemistry*, 1-9. doi:10.1155/2019/1868265
- Zhao, H. (2006). Innovative applications of ILs as "green" engineering liquids. *Chemical Engineering Communications, 193*, 1660-1677. doi:10.1080/00986440600586537
- Zhao, H., Afriyie, L., Larm, N., & Baker, G. (2018). Glycol-functionalized ILs for hightemperature enzymatic ring-opening polymerization. *RSC Advances*, *8*, 36025-36033. doi:10.1039/c8ra07733a
- Zhao, H., Kanpadee, N., & Jindaret, C. (2019). Ether-functionalized ILs for nonaqueous biocatalysis: effect of different cation cores. *Process Biochemistry*, 81, 104-112. doi:10.1016/j.procbio.2019.03.018

### APPENDIX A

REAGENT SPECIFICATIONS AND SOURCES

#### **Starting Reagents**



Figure A.1: Nucleophilic compounds used to synthesize IL



Figure A.2: Electrophilic halogenated compounds used to synthesize IL



Figure A.3: Starting alcohols used in Appel reaction synthesis

### APPENDIX B

### IONIC LIQUID STRUCTURES AND NAMING SCHEMATIC



|     | IUPAC Nomenclature  | N-(2-methox                 | yethyl) pyridinium brom  | ide     |
|-----|---------------------|-----------------------------|--------------------------|---------|
|     | Chemical Formula    | [MOE-Pyr][Br]               | Molar Mass (g/mol)       | 218.09  |
| R05 |                     | +N                          | O<br>Br <sup>-</sup>     |         |
|     | IUPAC Nomenclature  | N-(2-methoxyeth             | nyl) triethyl ammonium b | oromide |
|     | Chemical Formula    | [MOE-Et <sub>3</sub> N][Br] | Molar Mass (g/mol)       | 240.18  |
| R06 |                     | N <sup>+</sup>              | Br-                      |         |
|     | IUPAC Nomenclature  | N-(2-ethoxyethy             | yl) triethyl ammonium br | omide   |
|     | Chemical<br>Formula | [EOE-Et <sub>3</sub> N][Br] | Molar Mass (g/mol)       | 254.20  |
| R07 |                     | N <sup>+</sup>              | Br-                      |         |
|     | IUPAC Nomenclature  | N-(2-ethoxy                 | vethyl) pyridinium bromi | de      |
|     | Chemical Formula    | [EOE-Pyr][Br]               | Molar Mass (g/mol)       | 232.11  |
| R08 |                     | +N                          | -OBr-                    |         |
|     | IUPAC Nomenclature  | P-(2-methoxyethy            | l) tributyl phosphonium  | bromide |
|     | Chemical Formula    | [MOE-Bu <sub>3</sub> P][Br] | Molar Mass (g/mol)       | 341.31  |
| R10 |                     |                             | O<br>Br <sup>-</sup>     |         |

|     | IUPAC Nomenclature | N-(2-methoxyethyl)          | -N-methyl piperidenium | n bromide |  |
|-----|--------------------|-----------------------------|------------------------|-----------|--|
|     | Chemical Formula   | [MOE-Me-Pip][Br]            | Molar Mass (g/mol)     | 238.16    |  |
| R11 |                    | +N                          | D Br                   |           |  |
|     | IUPAC Nomenclature | 1-methyl-3-e                | thyl imidazolium bromi | de        |  |
|     | Chemical Formula   | [EMIM][Br]                  | Molar Mass (g/mol)     | 191.06    |  |
| R12 |                    |                             | Br                     |           |  |
|     | IUPAC Nomenclature | 1,3-diethy                  | l imidazolium bromide  |           |  |
|     | Chemical Formula   | [EEIM][Br]                  | Molar Mass (g/mol)     | 205.09    |  |
| R13 | N Br <sup>-</sup>  |                             |                        |           |  |
|     | IUPAC Nomenclature | P-(2-methoxyethyl           | ) triethyl phosphonium | bromide   |  |
|     | Chemical Formula   | [MOE-Et <sub>3</sub> P][Br] | Molar Mass (g/mol)     | 257.15    |  |
| R14 |                    | P+                          | O<br>Br-               |           |  |
|     | IUPAC Nomenclature | N-(2-methoxyethyl)-         | N-methyl pyrrolidiniun | n bromide |  |
|     | Chemical Formula   | [MOE-Me-Pyrro][Br]          | Molar Mass (g/mol)     | 224.13    |  |
| R15 |                    | +N                          | Br <sup>-</sup>        |           |  |
|     |                    | `(                          | )                      |           |  |

|     | IUPAC Nomenclature | N-(2-ethoxyethyl)-N         | I-methyl piperidenium b | romide |
|-----|--------------------|-----------------------------|-------------------------|--------|
|     | Chemical Formula   | [EOE-Me-Pip][Br]            | Molar Mass (g/mol)      | 252.18 |
| R16 |                    | +N                          | O Br                    |        |
|     | IUPAC Nomenclature | P-(2-ethoxyethyl) t         | ributyl phosphonium bro | omide  |
|     | Chemical Formula   | [EOE-Bu <sub>3</sub> P][Br] | Molar Mass (g/mol)      | 355.33 |
| R17 |                    |                             | Br-                     |        |
|     | IUPAC Nomenclature | P-(2-ethoxyethyl) t         | riethyl phosphonium bro | omide  |
|     | Chemical Formula   | [EOE-Et <sub>3</sub> P][Br] | Molar Mass (g/mol)      | 271.17 |
| R18 |                    | P <sup>+</sup>              | OBr <sup>_</sup>        |        |
|     | IUPAC Nomenclature | N-(2-ethoxyethyl)-N         | -methyl pyrrolidinium b | romide |
|     | Chemical Formula   | [EOE-Me-Pyrro][Br]          | Molar Mass (g/mol)      | 158.25 |
| R19 |                    | +N                          | Br <sup>-</sup>         |        |
|     | IUPAC Nomenclature | Tetraethyl                  | ammonium bromide        |        |
|     | Chemical Formula   | [Et <sub>4</sub> N][Br]     | Molar Mass (g/mol)      | 210.15 |
| R20 |                    | N <sup>+</sup>              | Br <sup>-</sup>         |        |

|     | IUPAC Nomenclature             | Ethyl tribut               | yl phosphonium bro    | omide   |  |
|-----|--------------------------------|----------------------------|-----------------------|---------|--|
|     | Chemical Formula               | [Et-Bu <sub>3</sub> P][Br] | Molar Mass<br>(g/mol) | 311.28  |  |
| R21 |                                |                            | Br-                   |         |  |
|     | IUPAC Nomenclature             | Tetrabuty                  | l phosphonium bron    | nide    |  |
|     | Chemical Formula               | [Bu <sub>4</sub> P][Br]    | Molar Mass<br>(g/mol) | 339.33  |  |
| R22 | Br-                            |                            |                       |         |  |
|     | IUPAC Nomenclature             | Butyl triet                | hyl ammonium bror     | nide    |  |
|     | Chemical Formula               | [Bu-Et <sub>3</sub> N][Br] | Molar Mass<br>(g/mol) | 238.20  |  |
| R23 | N <sup>+</sup> Br <sup>-</sup> |                            |                       |         |  |
|     | IUPAC Nomenclature             | N-ethyl-N-me               | ethyl piperidenium b  | promide |  |
|     | Chemical Formula               | [Et-Me-Pip][Br]            | Molar Mass<br>(g/mol) | 208.13  |  |
| R24 |                                | +N Br                      |                       |         |  |
|     | IUPAC Nomenclature             | N-butyl-N-m                | ethyl piperidenium ł  | oromide |  |
|     | Chemical Formula               | [Bu-Me-Pip][Br]            | Molar Mass<br>(g/mol) | 236.18  |  |
| R25 | +N Br-                         |                            |                       |         |  |

|     | IUPAC Nomenclature             | Tetraethyl                           | phosphonium bromide      |          |  |
|-----|--------------------------------|--------------------------------------|--------------------------|----------|--|
|     | Chemical Formula               | [Et <sub>4</sub> P][Br]              | Molar Mass (g/mol)       | 227.12   |  |
| R26 | P <sup>+</sup> Br <sup>-</sup> |                                      |                          |          |  |
|     | IUPAC Nomenclature             | P-(2-methoxyethyl)                   | ) tributyl phosphonium ( | chloride |  |
|     | Chemical Formula               | $[(MOE)B_3P][C1]$                    | Molar Mass (g/mol)       | 296.86   |  |
| R27 |                                | P <sup>±</sup>                       |                          |          |  |
|     | IUPAC Nomenclature             | 1-butyl-3-methyl imidazolium bromide |                          |          |  |
|     | Chemical Formula               | [BMIM][Br]                           | Molar Mass (g/mol)       | 219.12   |  |
| R28 | N Br                           |                                      |                          |          |  |
|     | IUPAC Nomenclature             | N-(2-methoxye                        | thoxy) pyridnium brom    | ide      |  |
|     | Chemical Formula               | [(MOEOE)Pyr][Br]                     | Molar Mass (g/mol)       | 238.16   |  |
| R29 |                                | +N                                   | O<br>Br                  |          |  |
|     | IUPAC Nomenclature             | 1-butyl-3-etl                        | nyl imidazolium bromid   | e        |  |
|     | Chemical Formula               | [BEIM][Br]                           | Molar Mass (g/mol)       | 233.15   |  |
| R30 |                                |                                      | N Br                     |          |  |

|     | IUPAC Nomenclature | 1-ethyl-3-(2-methoxyethyl) imidazolium acetate  |  |  |  |
|-----|--------------------|-------------------------------------------------|--|--|--|
|     | Chemical Formula   | [Et-MOE-Im][OAc] Molar Mass (g/mol) 214.25      |  |  |  |
| A01 |                    |                                                 |  |  |  |
|     | IUPAC Nomenclature | 1-methyl-3-(2-methoxyethyl) imidazolium acetate |  |  |  |
|     | Chemical Formula   | [Me-MOE-Im][OAc] Molar Mass (g/mol) 200.23      |  |  |  |
| A02 | <b>\</b>           |                                                 |  |  |  |
|     | IUPAC Nomenclature | 1-methyl-3-(2-ethoxyethyl) imidazolium acetate  |  |  |  |
|     | Chemical Formula   | [Me-EOE-Im][OAc] Molar Mass (g/mol) 214.25      |  |  |  |
| A03 |                    |                                                 |  |  |  |
|     | IUPAC Nomenclature | 1-ethyl-3-(2-ethoxyethyl) imidazolium acetate   |  |  |  |
|     | Chemical Formula   | [Et-EOE-Im][OAc] Molar Mass (g/mol) 249.14      |  |  |  |
| A04 |                    |                                                 |  |  |  |
|     | IUPAC Nomenclature | N-(2-methoxyethyl) pyridinium acetate           |  |  |  |
|     | Chemical Formula   | [MOE-Pyr][OAc] Molar Mass (g/mol) 197.23        |  |  |  |
| A05 |                    |                                                 |  |  |  |



|     | IUPAC Nomenclature | 1-methyl-3                       | -ethyl imidazolium             | acetate       |
|-----|--------------------|----------------------------------|--------------------------------|---------------|
|     | Chemical Formula   | [MEIM][OAc]                      | Molar Mass<br>(g/mol)          | 170.20        |
| A12 | N                  | N<br>N                           |                                |               |
|     | IUPAC Nomenclature | 1-ethyl-3-                       | ethyl imidazolium a            | acetate       |
|     | Chemical Formula   | [EEIM][OAc]                      | Molar Mass<br>(g/mol)          | 184.23        |
| A13 |                    |                                  |                                |               |
|     | IUPAC Nomenclature | P-(2-methoxyeth                  | yl) triethyl phospho           | onium acetate |
|     | Chemical Formula   | [MOE-<br>Et <sub>3</sub> P][OAc] | Molar Mass<br>(g/mol)          | 236.29        |
| A14 |                    |                                  |                                |               |
|     | IUPAC Nomenclature | N-(2-methoxy                     | ethyl)-N-methyl pyr<br>acetate | rrolidinium   |
|     | Chemical Formula   | [MOE-Me-<br>Pyrr][OAc]           | Molar Mass<br>(g/mol)          | 203.27        |
| A15 |                    | V O-                             |                                |               |
|     | IUPAC Nomenclature | N-(2-ethoxyethy)                 | l)-N-methyl piperid            | inium acetate |
|     | Chemical Formula   | [EOE-Me-<br>Pip][OAc]            | Molar Mass<br>(g/mol)          | 231.32        |
| A16 |                    | +N 0                             |                                |               |

|     | IUPAC Nomenclature | P-(2-ethoxyethyl) tribut     | yl phosphonium        | acetate   |
|-----|--------------------|------------------------------|-----------------------|-----------|
|     | Chemical Formula   | [EOE-Bu <sub>3</sub> P][OAc] | Molar Mass<br>(g/mol) | 334.47    |
| A17 |                    |                              |                       |           |
|     | IUPAC Nomenclature | P-(2-ethoxyethyl) trieth     | yl phosphonium a      | acetate   |
|     | Chemical Formula   | [EOE-Et <sub>3</sub> P][OAc] | Molar Mass<br>(g/mol) | 250.31    |
| A18 |                    |                              |                       |           |
|     | IUPAC Nomenclature | N-(2-ethoxyethyl)-N-met      | hyl pyrrolidiniun     | n acetate |
|     | Chemical Formula   | [EOE-Me-Pyrr][OAc]           | Molar Mass<br>(g/mol) | 147.18    |
| A19 |                    | +N<br>0 -0                   | 0                     |           |
|     | IUPAC Nomenclature | Tetraethyl amn               | nonium acetate        |           |
|     | Chemical Formula   | [Et4N][OAc]                  | Molar Mass<br>(g/mol) | 189.29    |
| A20 |                    |                              |                       |           |
|     | IUPAC Nomenclature | Ethyl tributyl pho           | osphonium acetate     |           |
|     | Chemical Formula   | [Et-Bu <sub>3</sub> P][OAc]  | Molar Mass<br>(g/mol) | 290.42    |
| A21 |                    |                              |                       |           |

|      | IUPAC Nomenclature | Tetrabuty                   | l phosphonium ace     | etate     |
|------|--------------------|-----------------------------|-----------------------|-----------|
|      | Chemical Formula   | [Bu <sub>4</sub> P][OAc]    | Molar Mass<br>(g/mol) | 318.47    |
| A22  |                    |                             |                       |           |
|      | IUPAC Nomenclature | Butyl triet                 | hyl ammonium ac       | etate     |
|      | Chemical Formula   | [Bu-Et <sub>3</sub> N][OAc] | Molar Mass<br>(g/mol) | 217.34    |
| A23  | ,                  | N <sup>±</sup>              |                       |           |
|      | IUPAC Nomenclature | N-ethyl-N-me                | ethyl piperidenium    | a acetate |
| 1.24 | Chemical Formula   | [Et-Me-Pip][OAc]            | Molar Mass<br>(g/mol) | 187.27    |
| A24  | <                  | +N                          |                       |           |
|      | IUPAC Nomenclature | N-butyl-N-me                | ethyl piperidenium    | n acetate |
|      | Chemical Formula   | [Bu-Me-Pip][OAc]            | Molar Mass<br>(g/mol) | 215.32    |
| A25  | <                  | +N                          |                       | <         |
|      |                    | <u> </u>                    |                       |           |
|      | IUPAC Nomenclature | Tetraethyl                  | phosphonium ace       | etate     |
|      | Chemical Formula   | [Et <sub>4</sub> P][OAc]    | Molar Mass<br>(g/mol) | 206.26    |
| A26  |                    |                             |                       |           |

|     | IUPAC Nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P-(2-methoxyethy)            | l) tributyl phosphoniu | ım acetate |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|------------|--|
|     | Chemical Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [MOE-Bu <sub>3</sub> P][OAc] | Molar Mass<br>(g/mol)  | 304.45     |  |
| A27 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                        |            |  |
|     | IUPAC Nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-butyl-3                    | -methyl imidazolium    | n acetate  |  |
|     | Chemical Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [BMIM][OAc]                  | Molar<br>Mass (g/mol)  | 182.26     |  |
| A28 | A28 $\bigvee_{N} \bigvee_{N} \bigvee_{O} $ |                              |                        |            |  |
|     | IUPAC Nomenclature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-butyl-3-et                 | thyl imidazolium acet  | tate       |  |
|     | Chemical Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [BEIM][OAc]                  | Molar Mass<br>(g/mol)  | 212.29     |  |
| A30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                        |            |  |

## APPENDIX C

# COMPREHENSIVE PHYSIOCHEMICAL PROPERTIES OF IONIC LIQUIDS

| IL  | Mass (mg) | Water Conc. | IL  | Mass (mg) | Water Conc. |
|-----|-----------|-------------|-----|-----------|-------------|
| A01 | 514       | 0.058%      | A16 | 283       | 0.026%      |
| A02 | 466       | 0.049%      | A17 | 265       | 0.035%      |
| A03 | 360       | 0.096%      | A18 | 1280      | 0.069%      |
| A04 | 231       | 0.119%      | A19 | 149       | 0.252%      |
| A05 | 531       | 0.070%      | A20 | Solid     | @ R.T       |
| A06 | 442       | 0.255%      | A21 | 358       | 0.222%      |
| A07 | 503       | 0.014%      | A22 | Solid     | @ R.T       |
| A08 | 402       | 0.043%      | A23 | 48        | 0.050%      |
| A10 | 324       | 0.133%      | A24 | Solid     | @ R.T       |
| A11 | 412       | 0.037%      | A25 | 515       | 0.077%      |
| A12 | 503       | 0.020%      | A26 | Solid     | @ R.T       |
| A13 | 171       | 0.716%      | A27 | Solid     | @ R.T       |
| A14 | 485       | 0.030%      | A28 | 95        | 0.168%      |
| A15 | 425       | 0.160%      | A30 | 179       | 0.722%      |

Water Concentration via Karl Fisher Titration

| IL  | Dynamic Viscosity<br>(mPa·s) | Kinematic Viscosity<br>(mm <sup>2</sup> /s) | Density (g/cm <sup>3</sup> ) |
|-----|------------------------------|---------------------------------------------|------------------------------|
| A01 | 36.620                       | 33.498                                      | 1.0932                       |
| A02 | 44.851                       | 40.062                                      | 1.1195                       |
| A03 | 150.110                      | 137.070                                     | 1.0952                       |
| A04 | 59.141                       | 55.386                                      | 1.0678                       |
| A05 | 27.698                       | 24.958                                      | 1.1098                       |
| A06 | 99.636                       | 96.670                                      | 1.0307                       |
| A07 | 33.973                       | 33.114                                      | 1.0260                       |
| A08 | 28.279                       | 25.927                                      | 1.0907                       |
| A10 | 58.943                       | 59.944                                      | 0.9833                       |
| A11 | 57.527                       | 53.414                                      | 1.0770                       |
| A12 | 22.928                       | 20.907                                      | 1.0967                       |
| A13 | 39.318                       | 36.165                                      | 1.0872                       |
| A14 | 19.162                       | 18.282                                      | 1.0482                       |
| A15 | 62.955                       | 58.428                                      | 1.0775                       |
| A16 | 49.889                       | 47.197                                      | 1.0570                       |
| A17 | 52.534                       | 53.880                                      | 0.9750                       |
| A18 | 54.130                       | 52.408                                      | 1.0328                       |
| A19 | 43.235                       | 41.040                                      | 1.0535                       |
| A20 | S                            | olid @ Room Temperatur                      | e                            |
| A21 | 127.590                      | 133.890                                     | 0.9529                       |
| A22 | S                            | olid @ Room Temperatur                      | e                            |
| A23 | 58.497                       | 59.030                                      | 0.9910                       |
| A24 | S                            | olid @ Room Temperatur                      | e                            |
| A25 | 28.256                       | 28.119                                      | 1.0049                       |
| A26 | S                            | olid @ Room Temperatur                      | e                            |
| A27 | S                            | olid @ Room Temperatur                      | e                            |
| A28 | 203.100                      | 194.110                                     | 1.0463                       |
| A30 | 71.703                       | 69.299                                      | 1.0547                       |

Viscometry Measurements for Acetate-ILs

| IL  | T <sub>der</sub>                      | T <sub>dcp</sub> | Transition Shape      | Residual Char |  |
|-----|---------------------------------------|------------------|-----------------------|---------------|--|
| R01 | 325                                   | 105              | М                     | 0.00          |  |
| R02 | 347                                   | 201              | М                     | 0.00          |  |
| R03 | 323                                   | 250              | S                     | 0.08          |  |
| R04 | 328                                   | 263              | S                     | 0.13          |  |
| R05 | 286                                   | 51               | Μ                     | 0.00          |  |
| R06 |                                       | So               | lid @ Room Temperatur | e             |  |
| R07 |                                       | So               | lid @ Room Temperatur | e             |  |
| R08 | 279                                   | 217              | S                     | 0.00          |  |
| R10 | 395                                   | 247              | Μ                     | 0.00          |  |
| R11 | Solid @ R.T. – Did not submit for TGA |                  |                       |               |  |
| R12 | 329                                   | 253              | S                     | 0.00          |  |
| R13 | 310                                   | 252              | S                     | 0.00          |  |
| R14 | 411                                   | 100              | Μ                     | 0.00          |  |
| R15 |                                       | So               | lid @ Room Temperatur | e             |  |
| R16 |                                       | So               | lid @ Room Temperatur | e             |  |
| R17 | 385                                   | 48               | Μ                     | 0.00          |  |
| R18 |                                       | So               | lid @ Room Temperatur | e             |  |
| R19 | 280                                   | 222              | S                     | 0.00          |  |
| R20 |                                       | So               | lid @ Room Temperatur | e             |  |
| R21 |                                       | So               | lid @ Room Temperatur | e             |  |
| R22 |                                       | So               | lid @ Room Temperatur | e             |  |
| R23 |                                       | So               | lid @ Room Temperatur | e             |  |
| R24 |                                       | So               | lid @ Room Temperatur | e             |  |
| R25 |                                       | So               | lid @ Room Temperatur | e             |  |
| R26 |                                       | So               | lid @ Room Temperatur | e             |  |
| R27 | 392                                   | 208              | Μ                     | 0.00          |  |
| R28 |                                       | So               | lid @ Room Temperatur | e             |  |
| R29 |                                       | So               | lid @ Room Temperatur | e             |  |
| R30 |                                       | So               | lid @ Room Temperatur | e             |  |

Thermogravimetric Analysis of bromide-ILs

\_\_\_\_



Figure C.1: Thermogravimetric analysis of IL R01.

Figure C.2: Thermogravimetric analysis of IL R02.





Figure C.3: Thermogravimetric analysis of IL R03.

Figure C.4: Thermogravimetric analysis of IL R04.





Figure C.5: Thermogravimetric analysis of IL R05.

Figure C.6: Thermogravimetric analysis of IL R08.





Figure C.7: Thermogravimetric analysis of IL R10.

Figure C.8: Thermogravimetric analysis of IL R12.





Figure C.9: Thermogravimetric analysis of IL R13.

Figure C.10: Thermogravimetric analysis of IL R14.





Figure C.11: Thermogravimetric analysis of IL R17.

Figure C.12: Thermogravimetric analysis of IL R19.





Figure C.13: Thermogravimetric analysis of IL R27.

| IL  | T <sub>der</sub> | T <sub>dcp</sub> | Transition Shape       | Residual Char |
|-----|------------------|------------------|------------------------|---------------|
| A01 | 238              | 183              | S                      | 3.0%          |
| A02 | 240              | 157              | S                      | 1.8%          |
| A03 | 239              | 192              | S                      | 1.2%          |
| A04 | 252              | 184              | S                      | 3.0%          |
| A05 | 166              | 88               | Μ                      | 12.6%         |
| A06 | 202              | 156              | S                      | 0.0%          |
| A07 | 200              | 134              | S                      | 0.3%          |
| A08 | 171              | 116              | S                      | 14.4%         |
| A10 | 185              | 143              | Μ                      | 3.2%          |
| A11 | 211              | 144              | S                      | 0.1%          |
| A12 | 242              | 171              | S                      | 0.0%          |
| A13 | 103              | 67               | Μ                      | 0.2%          |
| A14 | 185              | 113              | Μ                      | 3.7%          |
| A15 | 190              | 150              | S                      | 0.0%          |
| A16 | 200              | 120              | S                      | 0.0%          |
| A17 | 180              | 135              | Μ                      | 3.5%          |
| A18 | 183              | 134              | Μ                      | 5.2%          |
| A19 | 187              | 145              | S                      | 0.2%          |
| A20 |                  | Sc               | olid @ Room Temperatu  | re            |
| A21 | 320              | 234              | S                      | 0.3%          |
| A22 |                  | Sc               | olid @ Room Temperatu  | re            |
| A23 | 208              | 165              | S                      | 0.1%          |
| A24 |                  | Sc               | olid @ Room Temperatu  | re            |
| A25 | 324              | 137              | Μ                      | 0.4%          |
| A26 |                  | Sc               | olid @ Room Temperatu: | re            |
| A27 |                  | Sc               | olid @ Room Temperatu  | re            |
| A28 | 237              | 191              | S                      | 0.0%          |
| A30 | 255              | 125              | S                      | 0.0%          |

Thermogravimetric Analysis of acetate-ILs



Figure C.14: Thermogravimetric analysis of IL A01.

Figure C.15: Thermogravimetric analysis of IL A02.





Figure C.16: Thermogravimetric analysis of IL A03.

Figure C.17: Thermogravimetric analysis of IL A04.





Figure C.18: Thermogravimetric analysis of IL A05.

Figure C.19: Thermogravimetric analysis of IL A06.





Figure C.20: Thermogravimetric analysis of IL A07.

Figure C.21: Thermogravimetric analysis of IL A08.





Figure C.22: Thermogravimetric analysis of IL A10.

Figure C.23: Thermogravimetric analysis of IL A11.





Figure C.24: Thermogravimetric analysis of IL A12.

Figure C.25: Thermogravimetric analysis of IL A13.





Figure C.26: Thermogravimetric analysis of IL A14.

Figure C.27: Thermogravimetric analysis of IL A15.





Figure C.28: Thermogravimetric analysis of IL A16.

Figure C.29: Thermogravimetric analysis of IL A17.





Figure C.30: Thermogravimetric analysis of IL A18.

Figure C.31: Thermogravimetric analysis of IL A19.





Figure C.32: Thermogravimetric analysis of IL A21.

Figure C.33: Thermogravimetric analysis of IL A23.





Figure C.34: Thermogravimetric analysis of IL A25.

Figure C.35: Thermogravimetric analysis of IL A27.





Figure C.36: Thermogravimetric analysis of IL A28.

Figure C.37: Thermogravimetric analysis of IL A30.



### APPENDIX D

INSTRUMENTAL ANALYSIS SPECTRA AND PHOTOS FTIR Spectra for IL Structure Confirmation



FTIR Spectra for Cellulose Dissolution



TGA Scans for Coal Dissolution























































|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260809.3                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | um% (Calc) ⊽≉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 157.09                                                                                    | 9715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4                                                                            | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 377   100                                                                                                                                   | ) 92                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 157.0                                                                                      | 9753 -2.4                                                                                                                               |                                                          | C                           | )1-A01                                                 | - 1           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|--------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22240.2<br>1909.9                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.8<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5<br>0.7                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 158.10<br>159.10                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.5<br>-1.9                                                                    | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.4 7.1<br>7 0.7                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            | 005 -2.9<br>039 -11.                                                                                                                    |                                                          |                             | 01-4101                                                |               |
| Best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V + ID Source<br>MFG                                                                                                                                                                                                                                                                                                                                                                                                                               | ▼-P Name ⊽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V P Score                                                                       | (RT) ▼+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RT Diff 🗸                                                                                                                                   |                                                                                                                                                   | + Score (Lit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) ⊽+¤ S                                                                                   | core (DB) 🔽                                                                                                                             |                                                          | MFG) 🖓 🖶 Num                | Spectra V P Note                                       | s 🛛 🕈 RT (T   |
| C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C12 H12<br>C2 H12 N4 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (M+H)+<br>)4 (M+H)+                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | 80.12<br>72.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | 23.55                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 80.12                                                    |                             |                                                        |               |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C11 H11 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (M+H)+                                                                                                              | 158.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0050                                                                                      | 65.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | -26.03                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 65.66                                                    |                             |                                                        |               |
| C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C7 H18 N4<br>C8 H8 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (M+H)+<br>(M+H)+                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6467<br>5462                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | -30.19<br>0                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 52.28<br>47.62                                           |                             |                                                        |               |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8 H8 N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (M+H)+                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | 47.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | 1.35                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 47.54                                                    |                             |                                                        |               |
| C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C7 H14 O4<br>C7 H12 O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (M+H)+<br>(M+H)+                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | 46.34<br>45.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | -7.01                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 46.34<br>45.47                                           |                             |                                                        |               |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C7 H15 N O<br>C8 H10 N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 (M+H)+<br>(M+H)+                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | 42.15<br>39.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             | 11.36                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 42.15<br>39.95                                           |                             |                                                        |               |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFG                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8 H 10 N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (M+H)+                                                                                                              | 163.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19062                                                                                     | 33.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | 13.6                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         | 33.35                                                    | I                           | I                                                      |               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atogram Results                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mass Calculat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or 🧭 Method E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ditor: Gener                                                                                                        | ate Formulas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • <u>1</u> 8                                                                              | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Identificatio                                                                   | on Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s: + Scan (1.8                                                                                                                              | 06-1.897 min)                                                                                                                                     | Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pectrum Results                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                          | _                                                                                                                                       |                                                          |                             |                                                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ‡   Q 🔁 🎗                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × 4                                                                             | 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 5<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C7 H12 N2 O2: + 9                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scan (1.806-1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97 min, 5 Scans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C01-A01_p                                                                                                           | os_r01.d Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | btract                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157.0975<br>(M+H)+                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 2-<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450 40050                                                                                                                                   |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                                                         |                                                          |                             |                                                        |               |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 153.0                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158.10050<br>(M+H)+                                                                                                                         | 159.10                                                                                                                                            | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                         | .08196                                                   | 162.11064                   | 163.09562                                              |               |
| 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (M-<br>152.5 15                                                                                                                                                                                                                                                                                                                                                                                                                                    | •H)+<br>3 153.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154 154.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     | 155.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 156                                                                                       | 156.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157                                                                             | 157.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M+H)+                                                                                                                                      | (M++<br>58.5 159<br>Counts                                                                                                                        | )+<br>159.5<br>s. Mass-to-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | harge (m/a                                                                                 | (1<br>160.5 1<br>:)                                                                                                                     | 4+H)+<br>61 161.5                                        |                             | (M+H)+<br>62.5 163 16                                  | 53.5 164      |
| est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (M-<br>152.5 15                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H)+<br>3 153.5<br>7 +2 Name ∀ +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Formula V-P<br>C7 H12 N2 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 155<br>Species ⊽ 4<br>(M+H)+                                                                                        | 155.5<br>m/z 文 4<br>141.10259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Score<br>99.66                                                                            | e⊽⊽+¤So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | core (RT) 🏹                                                                     | r+⊨ RT Dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (M+H)+<br>158 1!<br>ff ⊽-+ Diff (p<br>-2.52                                                                                                 | (M++<br>58.5 159<br>Counts<br>pm) ∀+₽ Score                                                                                                       | )+<br>159.5<br>s. Mass-to-Cl<br>(Lib) <b>V</b> + Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | harge (m/s                                                                                 | (1<br>160.5 1<br>:)<br>7-Þ Score (1<br>99.66                                                                                            | 4+H)+<br>61 161.5<br>MFG) <b>∀</b> -₽ №                  | 5 162 1<br>Num Spectra ⊽ 12 | (M+H)+                                                 |               |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M-<br>1525 15<br>▼+P ID Source 7<br>MFG<br>pecies ▼+P m/2<br>(M+H)+ 141.                                                                                                                                                                                                                                                                                                                                                                          | H)+<br>3 153.5<br>7 P Name ⊽ +<br>2 ∇ P Score  <br>10258   99.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Formula 文+<br>C7 H12 N2 O<br>(iso. abund) 文+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155<br>Species ♥ 4<br>(M+H)+<br>Score (mas<br>99.46                                                                 | 155.5<br>m/z マ+<br>141.10258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.66<br>e (MFG                                                                           | e⊽ <b>⊽≁</b> So<br>5<br>5, MS/MS) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | core (RT) ▼<br>▼-⊅ Score (<br>99.66                                             | r∔∎ RT Dif<br>(MS) \7+₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (M+H)+<br>158 19<br>ff ⊽+P Diff (p<br>-2.52<br>Score (MFG<br>99.66                                                                          | (M++<br>58.5 159<br>Counts<br>pm) ∇+> Score<br>) ∇ ∇-P Score<br>  99.9                                                                            | )+<br>159.5<br>s. Mass-to-Cl<br>(Lib) V+ Sc<br>(iso. spacing) '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | harge (m/2<br>core (DB) 1<br>⊽ -₽ Heig<br>2261                                             | (1<br>160.5 1<br>19.66<br>ht ⊽ -₽ lon<br>332 C7 1                                                                                       | M+H)+<br>61 161.9<br>MFG) ♥+₽ N<br>Formula ♥+₽           | 5 162 1<br>Num Spectra ♥ += | (M+H)+<br>62.5 163 16<br>Notes ⊽ +> RT (Tg             |               |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M-<br>152.5 15<br>▼-₽ ID Source 7<br>MFG<br>pecies ⊽-₽ m/                                                                                                                                                                                                                                                                                                                                                                                         | H)+<br>3 153.5<br>7 P Name ⊽ +<br>2 ∇ P Score  <br>10258   99.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Formula 文+<br>C7 H12 N2 O<br>(iso. abund) 文+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155<br>Species V -<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal                                                 | 155.5<br>m/z マ+<br>141.10258<br>i) マ+ Scon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.66<br>e (MFG                                                                           | e⊽ <b>⊽≁</b> So<br>5<br>5, MS/MS) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | core (RT) ▼<br>▼-> Score (<br>99.66<br>nDa) ⊽ +> H                              | r∔∎ RT Dif<br>(MS) \7+₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (M+H)+<br>158 19<br>ff ⊽+P Diff (p<br>-2.52<br>Score (MFG<br>99.66                                                                          | (M++<br>58.5 159<br>Counts<br>pm) ∇+> Score<br>) ∇ ∇-P Score<br>  99.9                                                                            | )+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ▼+ So<br>(Lib) ▼ + So<br>(Lib) ▼ + So<br>(Lib) ▼ + 1<br>(Lib) ♥ + 1<br>(L | harge (m/2<br>core (DB) 1<br>2261<br>: ▽ += Di<br>10258   -2                               | (1<br>160.5 1<br>))<br>7 ₽ Score (1<br>99.66<br>ht ⊽ ₽ lon<br>332 C7 I<br>332 C7 I<br>ff (ppm) ⊽ +<br>42                                | M+H)+<br>61 161.9<br>MFG) ♥ + N<br>Formula ♥ +<br>H13 N2 | 5 162 1<br>Num Spectra ♥ += | (M+H)+<br>62.5 163 16                                  |               |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M-<br>152.5 15<br>▼-9 ID Source T<br>MFG<br>Pecies ▼-9 m/2<br>(M+H)+t [141]<br>Height (Calc) 〒<br>1222813.5<br>189167.8                                                                                                                                                                                                                                                                                                                           | H)+<br>3 153.5<br>7 12 Name ⊽ 12<br>2 ∇ 12 Score  <br>10258   99.79<br>7 12 Height Sun<br>91.7<br>7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Formula ∇+9 :<br>C7 H12 N2 O<br>(iso. abund) ∇+9<br>1<br>1% (Calc) ∇+9 H<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155<br>Species ▼ -4<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal<br>00<br>5                                     | 155.5<br>m/z ⊽ +=<br>141.10258<br>) ⊽ += Scon<br>) ↓ = Scon<br>(<br>141.1<br>142.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Score<br>99.66<br>e (MFC<br>(Calc) 1<br>10224<br>10511                                    | e⊽マ+> So<br>6<br>3. MS/MS) 1<br>⊽+> Diff (n<br>-0.3<br>-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | core (RT) ▼<br>▼ -₽ Score (<br>99.66<br>nDa) ⊽ -₽ H<br>2<br>1                   | r + RT Dif<br>(MS) ⊽ +<br>Height ⊽ +<br>2261332<br>155430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (M+H)+<br>158 1:<br>158 1:<br>158 1:<br>158 1:<br>158 1:<br>107 105<br>100 6.9                                                              | (M++<br>58.5 159<br>Counts<br>) ∇ ∇ +2 Score<br>99.9<br>7 +2 Height Sun<br>93.1<br>6.4                                                            | )+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ♥ + So<br>iso. spacing) *<br>% ♥ = m/z<br>141.1<br>142.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | harge (mb<br>core (DB) \<br>2261<br>: \ → Heig<br>2261<br>: \ → Di<br>10258 -2<br>10569 -4 | (1<br>160.5 1<br>99.66<br>ht ⊽ -⊅ lon<br>332 C7 I<br>ff (ppm) ⊽ -≉<br>42<br>11                                                          | M+H)+<br>61 161.9<br>MFG) ♥ + N<br>Formula ♥ +<br>H13 N2 | 5 162 1<br>Num Spectra ♥ += | (M+H)+<br>62.5 163 16<br>Notes ⊽ +> RT (Tg             |               |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ▼-P         ID Source T           MFG         MFG           pecies         ∇-P           MFG         MFG           22283135         189167.8           11966.2         1                                                                                                                                                                                                                                                                           | H)+<br>3 153.5<br>7 P Name ∀ P<br>2 ∀ P Score  <br>10258 99.79<br>7 P Height Sun<br>91.7<br>7.8<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Formula ♥ +9<br>C7 H12 N2 0<br>(iso. abund) ♥ +9<br>s% (Calc) ♥ +9<br>1<br>8<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155<br>Species ▼ -1<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal<br>00<br>5<br>5                                | 155.5<br>m/z ∀+₽<br>141.10258<br>)) ∀+₽ Scon<br>) ∀+₽ Scon<br>(141.1<br>142.1<br>143.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Score<br>99.60<br>e (MFG<br>(Calc) 1<br>10224<br>10511<br>10734                           | e ∇ ♥ +> Sc<br>5<br>3, MS/MS) 1<br>♥ +> Diff (n<br>-0.3<br>-0.6<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | core (RT) ▼<br>99.66<br>nDa) ▽+2 H<br>2<br>1<br>1<br>1                          | r ↔ RT Dif<br>(MS) 文 ↔<br>Height 文 ≮<br>2261332<br>155430<br>12385.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M+H)+<br>158 1:<br>158 1:<br>4 ∀ +> Diff (p<br>2252<br>Score (MFG<br>9966<br>= Height % %<br>100<br>6.9<br>0.5                             | (M++<br>58.5 159<br>Counts +<br>pm) ∀+P Score<br>99.9<br>7+P Height Sun<br>93.1<br>6.4<br>0.5                                                     | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>99.66<br>ht ⊽ ≠ lon<br>332 C7 1<br>ff (ppm) ⊽ ≠<br>42<br>11<br>34                                                      | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 16<br>Notes ⊽ +> RT (Tg             | ) 🐨 🖚 RT (DE  |
| sst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ▼+         ID Source T           MFG         MFG           pacies         ∇+           MFG         MFG           2228313.5         189167.8           189167.8         19666.2           ∇+         ID Source T           MFG         MFG                                                                                                                                                                                                          | H)+<br>3 153.5<br>7 P Name ∀ P<br>2 ∀ P Score  <br>10258 99.79<br>7 P Height Sun<br>91.7<br>7.8<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Formula ∇+9 :<br>C7 H12 N2 O<br>(so. abund) ∇+9 H<br>1% (Calc) ∇+9 H<br>1<br>8<br>0<br>0<br>Formula ∇+9 :<br>C7 H12 O3<br>C7 H12 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155<br>Species ▼ 4<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal<br>00<br>5<br>5<br>Species ▼ 4<br>(M+H)+        | 155.5<br>m/z ▼+P<br>141.10258<br>) ▼+P Score<br>) ▼+P M/z (<br>141.1<br>142.1<br>143.1<br>143.1<br>143.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Score<br>99.66<br>e (MFG<br>(Calc) *<br>10224<br>10511<br>10734<br>Score<br>86.64         | e ⊽ ❤ 49 Sr<br>5<br>3, MS/MS) 1<br>♥ -⊅ Diff (n<br>-0.3<br>-0.6<br>0.5<br>e ∇ ❤ 49 Sr<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | core (RT) ▼<br>99.66<br>nDa) ▽+2 H<br>2<br>1<br>1<br>1                          | r ↔ RT Dif<br>(MS) 文 ↔<br>Height 文 ≮<br>2261332<br>155430<br>12385.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M+H)+<br>158 1<br>158 1<br>4 ∇ +D Diff (p<br>2.52<br>Score (MFG<br>99.66<br>H ∇ +D Oiff (p<br>100<br>6.9<br>0.5<br>H ∇ +D Oiff (p<br>-4.94 | (M++<br>58.5 159<br>Counts +<br>pm) ∀+P Score<br>99.9<br>7+P Height Sun<br>93.1<br>6.4<br>0.5                                                     | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ▼         ID Source T           MFG         MFG           pecies         ▼           MFG         141           Height (Calc)         ▼           1228313.5         189167.8           11666.2         ▼           ▼         ID Source T                                                                                                                                                                                                            | H)+<br>3 153.5<br>7 P Name ∀ P<br>2 ∀ P Score  <br>10258 99.79<br>7 P Height Sun<br>91.7<br>7.8<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Formula ∇+9 :<br>C7 H12 N2 O<br>(so. abund) ∇+9 H<br>1% (Calc) ∇+9 H<br>1<br>8<br>0<br>0<br>Formula ∇+9 :<br>C7 H12 O3<br>C7 H12 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155<br>Species ▼ -1<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal<br>00<br>5<br>5<br>Species ▼ -1                | 155.5<br>m/z ⊽+9<br>141.10259<br>)) ∇+9 Score<br>) ∇+9 m/z (<br>141.1<br>142.1<br>142.1<br>143.1<br>143.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Score<br>99.66<br>e (MFG<br>(Calc) *<br>10224<br>10511<br>10734<br>Score<br>86.64         | e ⊽ ❤ 49 Sr<br>5<br>3, MS/MS) 1<br>♥ -⊅ Diff (n<br>-0.3<br>-0.6<br>0.5<br>e ∇ ❤ 49 Sr<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | core (RT) ▼<br>99.66<br>nDa) ▽+2 H<br>2<br>1<br>1<br>1                          | r ↔ RT Dif<br>(MS) 文 ↔<br>Height 文 ≮<br>2261332<br>155430<br>12385.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M+H)+<br>158 1:<br>158 1:<br>252<br>Score (MFG<br>99.66<br>99.66<br>99.66<br>100<br>6.9<br>0.5<br>17→ Diff (p                              | (M++<br>58.5 159<br>Counts +<br>pm) ∀+P Score<br>99.9<br>7+P Height Sun<br>93.1<br>6.4<br>0.5                                                     | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>99.66<br>ht ∀-⊅ lon<br>332 C7 I<br>ff (ppm) ∀-*<br>42<br>11<br>14<br>47.+ Score (1                                     | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🛛 🗭 🕶 RT (D |
| est<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ▼+         ID Source T           MFG         MFG           pacies         ∇+           MFG         MFG           2228313.5         189167.8           189167.8         19666.2           ∇+         ID Source T           MFG         MFG                                                                                                                                                                                                          | H)+<br>3 153.5<br>7 P Name ∀ P<br>2 ∀ P Score  <br>10258 99.79<br>7 P Height Sun<br>91.7<br>7.8<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Formula ∇+9 :<br>C7 H12 N2 O<br>(so. abund) ∇+9 H<br>1% (Calc) ∇+9 H<br>1<br>8<br>0<br>0<br>Formula ∇+9 :<br>C7 H12 O3<br>C7 H12 O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155<br>Species ▼ 4<br>(M+H)+<br>Score (mas<br>99.46<br>eight % (Cal<br>00<br>5<br>5<br>Species ▼ 4<br>(M+H)+        | 155.5<br>m/z ▼+P<br>141.10258<br>) ▼+P Score<br>) ▼+P M/z (<br>141.1<br>142.1<br>143.1<br>143.1<br>143.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Score<br>99.66<br>e (MFG<br>(Calc) *<br>10224<br>10511<br>10734<br>Score<br>86.64         | e ⊽ ❤ 49 Sr<br>5<br>3, MS/MS) 1<br>♥ -⊅ Diff (n<br>-0.3<br>-0.6<br>0.5<br>e ∇ ❤ 49 Sr<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | core (RT) ▼<br>99.66<br>nDa) ▽+2 H<br>2<br>1<br>1<br>1                          | r ↔ RT Dif<br>(MS) 文 ↔<br>Height 文 ≮<br>2261332<br>155430<br>12385.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M+H)+<br>158 1<br>158 1<br>252<br>Score (MFG<br>9966<br>P Height % %<br>100<br>6.9<br>0.5<br>H ♥ +D Off (p<br>4.94<br>-6.12                | (M++<br>58.5 159<br>Counts<br>pm) ∀ 4 Score<br>99.9<br>7 4 Holp Score<br>99.9<br>7 4 Holp Score<br>99.9<br>7 4 Score<br>93.1<br>6.4<br>0.5<br>0.5 | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| st<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M-           152.5         15           MEO         MEO           pocies         V-4           MEO         2283135           119167.8         119167.8           119167.8         149167.8           MFG         MFG           MFG         MFG           MFG         MFG           MFG         MFG                                                                                                                                                | #0+         3         153.5           2         V +0         Score           2         V +0         Score           10258         99.79         Holpst Sun           917         7.8         0.5           7.4         Name ⊽ +4         91.7           7.5         0.5         7.4           10258         99.79         Name ⊽ +4           103         0.5         7.4           104         0.5         0.5           7.4         Name ⊽ +4         0.5           104         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         0.5         0.5           105         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Formula ♥ €<br>C7 H12 N20<br>iso. abund) ♥ €<br>% (Calc) ♥ € H<br>8<br>0<br>0<br>Formula ♥ €<br>(C7 H12 03<br>(C7 H12 03<br>(C7 H10 03)<br>(C7 H10 02)<br>(C7 | i, 1<br>155<br>Species ⊽ + 1<br>MiH}<br>Score (mas<br>spith % (Cal<br>species ⊽ + 1<br>MiH)+<br>MiH)+               | 155.5<br>141.10256<br>141.10256<br>) ♥ ♥ Scon<br>) ♥ ♥ Scon<br>) ♥ ♥ m/2 (<br>141.111<br>142.1<br>143.07<br>144.00669<br>143.07<br>114<br>145.00669<br>143.07<br>114<br>145.00669<br>143.07<br>114<br>145.00669<br>145.07<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00<br>145.00 | Score<br>99.66<br>(MFG<br>(Calc) 1<br>10224<br>10224<br>10511<br>10734<br>86.64<br>46.12  | e <sup>r</sup> ♥ + Sr<br>5. MS/MS) 1<br>-0.3<br>-0.3<br>-0.5<br>e <sup>r</sup> ♥ + Sr<br>4<br>2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | core (RT) ▼<br>99.66<br>nDo) ▼ H<br>1<br>1<br>1<br>core (RT) ▼<br>fication Resu | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (M+           152.5         15           MFG         MFG           pocies         V ← m2           (M+G)         141           Height (Colc)         7           11565.2         7           WFG         MFG           MFG         MFG           MFG         MFG                                                                                                                                                                                   | #0+         3         153.5           7 4         Name V+         153.5           z         V+P Score         10258           10258         99.79         16405 Sun           917         7.8         107.5           7.4         Name V+         107.5           7.5 </td <td>Formula ♥♥<br/>C7H12N20<br/>iso aband) ♥♥<br/>1<br/>1<br/>5% (Cale) ♥♥ H<br/>8<br/>0<br/>1<br/>0<br/>0<br/>1<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> <td>i, 1<br/>155<br/>Species V + 1<br/>(M+H)<br/>Score (mas<br/>spith % (Cal<br/>species V + 1<br/>(M+H)<br/>M+H)+<br/>M+H)+</td> <td>15555<br/>1002 ▼4 002 ▼4<br/>14110020<br/>) ♥ Φ 002 ▼4<br/>14111022<br/>) ♥ Φ 002 ▼4<br/>141<br/>1422<br/>14307114<br/>14307114<br/>14307114</td> <td>Scorr<br/>99.66<br/>e (MFC<br/>Calc) 1<br/>10224<br/>10511<br/>10734<br/>Scorr<br/>86.64<br/>46.12</td> <td>e <sup>™</sup> (∇ + 2 × 5<br/>5 . MS/MS) 1<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.</td> <td>Corre (RT) ▼</td> <td>-+2 RT Dr/<br/>(MS) ♥+3<br/>Height ♥ +<br/>Height ♥ +<br/>H</td> <td>(M+H)+<br/>155 1<br/>-2.52<br/>Score (MFG<br/>99.66<br/>99.66<br/>100<br/>6.9<br/>100<br/>6.9<br/>100<br/>6.9<br/>1.6.12<br/>-6.12</td> <td>(M++<br/>58.5 159<br/>Counts<br/>pm) ∀ + Score<br/>99.9<br/>10.7 ∀ - Score<br/>99.9<br/>10.7 ← Holpt Score<br/>93.1<br/>6.4<br/>0.5<br/>pm) ∀ + Score</td> <td>1+<br/>159.5<br/>s. Mass-to-Cl<br/>(Lib) ∇-4 Sc<br/>iso. spacing) *<br/>% ∇ = m/z<br/>141.7<br/>142.7<br/>143.7</td> <td>harge (mb<br/>core (DB) 5<br/>2261<br/>: ▽+⇒ Di<br/>10258 -2<br/>10569 -4<br/>10686 3.3</td> <td>(1<br/>160.5 1<br/>))<br/>7 → Score (1<br/>99.66<br/>ht ⊽ → Ion<br/>332 C7 1<br/>ff (ppm) ⊽ ÷<br/>42<br/>11<br/>11<br/>44<br/>7 → Score (1<br/>86.64</td> <td>MFG) ♥ + N<br/>Formula ♥ +</td> <td>5 162 1</td> <td>(M+H)+<br/>62.5 163 11<br/>• Notes ⊽ +₽ RT (Tgr<br/>1=A01</td> <td>) 🐨 🖚 RT (DE</td>                                                                           | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>(M+H)<br>Score (mas<br>spith % (Cal<br>species V + 1<br>(M+H)<br>M+H)+<br>M+H)+     | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 × 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| Si Sp<br>Si Sp<br>Si Sp<br>Si Si S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+         3         153.5           7 4         Name V+         153.5           z         V+P Score         10258           10258         99.79         16405 Sun           917         7.8         107.5           7.4         Name V+         107.5           7.5 </td <td>Formula ♥♥<br/>C7H12N20<br/>iso aband) ♥♥<br/>1<br/>1<br/>5% (Cale) ♥♥ H<br/>8<br/>0<br/>1<br/>0<br/>0<br/>1<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> <td>i, 1<br/>155<br/>Species V + 1<br/>(M+H)<br/>Score (mas<br/>spith % (Cal<br/>species V + 1<br/>(M+H)<br/>M+H)+<br/>M+H)+</td> <td>15555<br/>1002 ▼4 002 ▼4<br/>14110020<br/>) ♥ Φ 002 ▼4<br/>14111022<br/>) ♥ Φ 002 ▼4<br/>141<br/>1422<br/>14307114<br/>14307114<br/>14307114</td> <td>Scorr<br/>99.66<br/>e (MFC<br/>Calc) 1<br/>10224<br/>10511<br/>10734<br/>Scorr<br/>86.64<br/>46.12</td> <td>e <sup>™</sup> (∇ + 2 × 5<br/>5 . MS/MS) 1<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.</td> <td>core (RT) ▼<br/>99.66<br/>nDo) ▼ H<br/>1<br/>1<br/>1<br/>core (RT) ▼<br/>fication Resu</td> <td>-+2 RT Dr/<br/>(MS) ♥+3<br/>Height ♥ +<br/>Height ♥ +<br/>H</td> <td>(M+H)+<br/>155 1<br/>-2.52<br/>Score (MFG<br/>99.66<br/>99.66<br/>100<br/>6.9<br/>100<br/>6.9<br/>100<br/>6.9<br/>1.6.12<br/>-6.12</td> <td>(M++<br/>58.5 159<br/>Counts<br/>pm) ∀ + Score<br/>99.9<br/>10.7 ∀ - Score<br/>99.9<br/>10.7 ← Holpt Score<br/>93.1<br/>6.4<br/>0.5<br/>pm) ∀ + Score</td> <td>1+<br/>159.5<br/>s. Mass-to-Cl<br/>(Lib) ∇-4 Sc<br/>iso. spacing) *<br/>% ∇ = m/z<br/>141.7<br/>142.7<br/>143.7</td> <td>harge (mb<br/>core (DB) 5<br/>2261<br/>: ▽+⇒ Di<br/>10258 -2<br/>10569 -4<br/>10686 3.3</td> <td>(1<br/>160.5 1<br/>))<br/>7 → Score (1<br/>99.66<br/>ht ⊽ → Ion<br/>332 C7 1<br/>ff (ppm) ⊽ ÷<br/>42<br/>11<br/>11<br/>44<br/>7 → Score (1<br/>86.64</td> <td>MFG) ♥ + N<br/>Formula ♥ +</td> <td>5 162 1</td> <td>(M+H)+<br/>62.5 163 11<br/>• Notes ⊽ +₽ RT (Tgr<br/>1=A01</td> <td>) 🐨 🖚 RT (DE</td> | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>(M+H)<br>Score (mas<br>spith % (Cal<br>species V + 1<br>(M+H)<br>M+H)+<br>M+H)+     | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 × 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | core (RT) ▼<br>99.66<br>nDo) ▼ H<br>1<br>1<br>1<br>core (RT) ▼<br>fication Resu | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| Signature in the second | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+         3         153.5           7 4         Name V+         153.5           z         V+P Score         10258           10258         99.79         16405 Sun           917         7.8         107.5           7.4         Name V+         107.5           7.5 </td <td>Formula ♥♥<br/>C7H12N20<br/>iso aband) ♥♥<br/>1<br/>1<br/>5% (Cale) ♥♥ H<br/>8<br/>0<br/>1<br/>0<br/>0<br/>1<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> <td>i, 1<br/>155<br/>Species V + 1<br/>(M+H)<br/>Score (mas<br/>spith % (Cal<br/>species V + 1<br/>(M+H)<br/>M+H)+<br/>M+H)+</td> <td>15555<br/>1002 ▼4 002 ▼4<br/>14110020<br/>) ♥ Φ 002 ▼4<br/>14111022<br/>) ♥ Φ 002 ▼4<br/>141<br/>1422<br/>14307114<br/>14307114<br/>14307114</td> <td>Scorr<br/>99.66<br/>e (MFC<br/>Calc) 1<br/>10224<br/>10511<br/>10734<br/>Scorr<br/>86.64<br/>46.12</td> <td>e <sup>™</sup> (∇ + 2 × 5<br/>5 . MS/MS) 1<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.</td> <td>Corre (RT) ▼</td> <td>-+2 RT Dr/<br/>(MS) ♥+3<br/>Height ♥ +<br/>Height ♥ +<br/>H</td> <td>(M+H)+<br/>155 1<br/>-2.52<br/>Score (MFG<br/>99.66<br/>99.66<br/>100<br/>6.9<br/>100<br/>6.9<br/>100<br/>6.9<br/>1.6.12<br/>-6.12</td> <td>(M++<br/>58.5 159<br/>Counts<br/>pm) ∀ + Score<br/>99.9<br/>10.7 ∀ - Score<br/>99.9<br/>10.7 ← Holpt Score<br/>93.1<br/>6.4<br/>0.5<br/>pm) ∀ + Score</td> <td>1+<br/>159.5<br/>s. Mass-to-Cl<br/>(Lib) ∇-4 Sc<br/>iso. spacing) *<br/>% ∇ = m/z<br/>141.7<br/>142.7<br/>143.7</td> <td>harge (mb<br/>core (DB) 5<br/>2261<br/>: ▽+⇒ Di<br/>10258 -2<br/>10569 -4<br/>10686 3.3</td> <td>(1<br/>160.5 1<br/>))<br/>7 → Score (1<br/>99.66<br/>ht ⊽ → Ion<br/>332 C7 1<br/>ff (ppm) ⊽ ÷<br/>42<br/>11<br/>11<br/>44<br/>7 → Score (1<br/>86.64</td> <td>MFG) ♥ + N<br/>Formula ♥ +</td> <td>5 162 1</td> <td>(M+H)+<br/>62.5 163 11<br/>• Notes ⊽ +₽ RT (Tgr<br/>1=A01</td> <td>) 🐨 🖚 RT (DE</td>                                                                           | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>(M+H)<br>Score (mas<br>spith % (Cal<br>species V + 1<br>(M+H)<br>M+H)+<br>M+H)+     | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 × 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| S <br>S <br>S <br>S <br>S <br>S <br>S <br>S <br>S <br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+         3         153.5           7 4         Name V+         153.5           z         V+P Score         10258           10258         99.79         16405 Sun           917         7.8         107.5           7.4         Name V+         107.5           7.5 </td <td>Formula ♥♥<br/>C7H12N20<br/>iso aband) ♥♥<br/>1<br/>1<br/>5% (Cale) ♥♥ H<br/>8<br/>0<br/>1<br/>0<br/>0<br/>1<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> <td>i, 1<br/>155<br/>Species V + 1<br/>(M+H)<br/>Score (mas<br/>spith % (Cal<br/>species V + 1<br/>(M+H)<br/>M+H)+<br/>M+H)+</td> <td>15555<br/>1002 ▼4 002 ▼4<br/>14110020<br/>) ♥ Φ 002 ▼4<br/>14111022<br/>) ♥ Φ 002 ▼4<br/>141<br/>1422<br/>14307114<br/>14307114<br/>14307114</td> <td>Scorr<br/>99.66<br/>e (MFC<br/>Calc) 1<br/>10224<br/>10511<br/>10734<br/>Scorr<br/>86.64<br/>46.12</td> <td>e <sup>™</sup> (∇ + 2 × 5<br/>5 . MS/MS) 1<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.</td> <td>Corre (RT) ▼</td> <td>-+2 RT Dr/<br/>(MS) ♥+3<br/>Height ♥ +<br/>Height ♥ +<br/>H</td> <td>(M+H)+<br/>155 1<br/>-2.52<br/>Score (MFG<br/>99.66<br/>99.66<br/>100<br/>6.9<br/>100<br/>6.9<br/>100<br/>6.9<br/>1.6.12<br/>-6.12</td> <td>(M++<br/>58.5 159<br/>Counts<br/>pm) ∀ + Score<br/>99.9<br/>10.7 ∀ - Score<br/>99.9<br/>10.7 ← Holpt Score<br/>93.1<br/>6.4<br/>0.5<br/>pm) ∀ + Score</td> <td>1+<br/>159.5<br/>s. Mass-to-Cl<br/>(Lib) ∇-4 Sc<br/>iso. spacing) *<br/>% ∇ = m/z<br/>141.7<br/>142.7<br/>143.7</td> <td>harge (mb<br/>core (DB) 5<br/>2261<br/>: ▽+⇒ Di<br/>10258 -2<br/>10569 -4<br/>10686 3.3</td> <td>(1<br/>160.5 1<br/>))<br/>7 → Score (1<br/>99.66<br/>ht ⊽ → Ion<br/>332 C7 1<br/>ff (ppm) ⊽ ÷<br/>42<br/>11<br/>11<br/>44<br/>7 → Score (1<br/>86.64</td> <td>MFG) ♥ + N<br/>Formula ♥ +</td> <td>5 162 1</td> <td>(M+H)+<br/>62.5 163 11<br/>• Notes ⊽ +₽ RT (Tgr<br/>1=A01</td> <td>) 🐨 🖚 RT (DE</td>                                                                           | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>(M+H)<br>Score (mas<br>spith % (Cal<br>species V + 1<br>(M+H)<br>M+H)+<br>M+H)+     | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 × 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| Sp<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+         3         153.5           7 4         Name V+         153.5           z         V+P Score         10258           10258         99.79         16405 Sun           917         7.8         107.5           7.4         Name V+         107.5           7.5 </td <td>Formula ♥♥<br/>C7H12N20<br/>iso aband) ♥♥<br/>1<br/>1<br/>5% (Cale) ♥♥ H<br/>8<br/>0<br/>1<br/>0<br/>0<br/>1<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> <td>i, 1<br/>155<br/>Species V + 1<br/>MHD+<br/>Score (mas<br/>spith % (Cal<br/>species V + 1<br/>M+D+<br/>M+D+<br/>M+D+<br/>M+D+</td> <td>19555<br/>1002 ▼4 002 ▼4<br/>14110020<br/>) ♥ Φ 002 ▼4<br/>14111022<br/>) ♥ Φ 002 ▼4<br/>141<br/>1422<br/>14307114<br/>14307114<br/>14307114</td> <td>Scorr<br/>99.66<br/>e (MFC<br/>Calc) 1<br/>10224<br/>10511<br/>10734<br/>Scorr<br/>86.64<br/>46.12</td> <td>e <sup>™</sup> (∇ + 2 ≤ 5<br/>5 . MS/MS) 1<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.3<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.5<br/>- 0.7<br/>- 0.4<br/>- 0.4<br/>- 0.4<br/>- 0.5<br/>- 0.</td> <td>Corre (RT) ▼</td> <td>-+2 RT Dr/<br/>(MS) ♥+3<br/>Height ♥ +<br/>Height ♥ +<br/>H</td> <td>(M+H)+<br/>155 1<br/>-2.52<br/>Score (MFG<br/>99.66<br/>99.66<br/>100<br/>6.9<br/>100<br/>6.9<br/>100<br/>6.9<br/>1.6.12<br/>-6.12</td> <td>(M++<br/>58.5 159<br/>Counts<br/>pm) ∀ + Score<br/>99.9<br/>10.7 ∀ - Score<br/>99.9<br/>10.7 ← Holpt Score<br/>93.1<br/>6.4<br/>0.5<br/>pm) ∀ + Score</td> <td>1+<br/>159.5<br/>s. Mass-to-Cl<br/>(Lib) ∇-4 Sc<br/>iso. spacing) *<br/>% ∇ = m/z<br/>141.7<br/>142.7<br/>143.7</td> <td>harge (mb<br/>core (DB) 5<br/>2261<br/>: ▽+⇒ Di<br/>10258 -2<br/>10569 -4<br/>10686 3.3</td> <td>(1<br/>160.5 1<br/>))<br/>7 → Score (1<br/>99.66<br/>ht ⊽ → Ion<br/>332 C7 1<br/>ff (ppm) ⊽ ÷<br/>42<br/>11<br/>11<br/>44<br/>7 → Score (1<br/>86.64</td> <td>MFG) ♥ + N<br/>Formula ♥ +</td> <td>5 162 1</td> <td>(M+H)+<br/>62.5 163 11<br/>• Notes ⊽ +₽ RT (Tgr<br/>1=A01</td> <td>) 🐨 🖚 RT (DE</td>                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 19555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| Since the second | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 19555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159.5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.7<br>142.7<br>143.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>))<br>7 → Score (1<br>99.66<br>ht ⊽ → Ion<br>332 C7 1<br>ff (ppm) ⊽ ÷<br>42<br>11<br>11<br>44<br>7 → Score (1<br>86.64 | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 19555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>)<br>7 → Score (1<br>99.66<br>17 → Sore (1<br>99.66<br>17 → Sore (1<br>11<br>14<br>7 → Score (1<br>86.64               | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 19555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>)<br>7 → Score (1<br>99.66<br>17 → Sore (1<br>99.66<br>17 → Sore (1<br>11<br>14<br>7 → Score (1<br>86.64               | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| SI S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stopram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 19555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>)<br>7 → Score (1<br>99.66<br>17 → Sore (1<br>99.66<br>17 → Sore (1<br>11<br>14<br>7 → Score (1<br>86.64               | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| S Sp<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stogram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | -+2 RT Dr/<br>(MS) ♥+3<br>Height ♥ +<br>Height ♥ +<br>H | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>)<br>7 → Score (1<br>99.66<br>17 → Sore (1<br>99.66<br>17 → Sore (1<br>11<br>14<br>7 → Score (1<br>86.64               | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |
| S<br>lest<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M-           152 5         15           MEG         MEG           pocies         V=0           MEG         V           MEG         V           V2 10 Source 1         141           Height (Calc)         3           1199167.8         1199167.8           119967.9         1199167.9           MFG         MFG           MFG         MFG           Stogram Results         1           ectrum Results         1           2         Q         2 | #0+           3         153.5           7 ◆ Name ▽+           z         ▽+> Score i           10258         99.79           10258         99.79           1917         7.8           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1917           7 ◆ Name ▽+           1           4           4           1           7 ◆ Name ▽+           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula ♥♥<br>C7H12N20<br>iso aband) ♥♥<br>1<br>1<br>5% (Cale) ♥♥ H<br>8<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i, 1<br>155<br>Species V + 1<br>MHD+<br>Score (mas<br>spith % (Cal<br>species V + 1<br>M+D+<br>M+D+<br>M+D+<br>M+D+ | 15555<br>1002 ▼4 002 ▼4<br>14110020<br>) ♥ Φ 002 ▼4<br>14111022<br>) ♥ Φ 002 ▼4<br>141<br>1422<br>14307114<br>14307114<br>14307114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scorr<br>99.66<br>e (MFC<br>Calc) 1<br>10224<br>10511<br>10734<br>Scorr<br>86.64<br>46.12 | e <sup>™</sup> (∇ + 2 ≤ 5<br>5 . MS/MS) 1<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.3<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0.5<br>- 0.7<br>- 0.4<br>- 0.4<br>- 0.4<br>- 0.5<br>- 0. | Corre (RT) ▼                                                                    | ** RT Did<br>Height 7* 2251332<br>155430<br>123855<br>** RT Did<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (M+H)+<br>155 1<br>-2.52<br>Score (MFG<br>99.66<br>99.66<br>100<br>6.9<br>100<br>6.9<br>100<br>6.9<br>1.6.12<br>-6.12                       | (M++<br>58.5 159<br>Counts<br>pm) ∀ + Score<br>99.9<br>10.7 ∀ - Score<br>99.9<br>10.7 ← Holpt Score<br>93.1<br>6.4<br>0.5<br>pm) ∀ + Score        | 1+<br>159,5<br>s. Mass-to-Cl<br>(Lib) ∇-4 Sc<br>iso. spacing) *<br>% ∇ = m/z<br>141.,1<br>142.;<br>143.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | harge (mb<br>core (DB) 5<br>2261<br>: ▽+⇒ Di<br>10258 -2<br>10569 -4<br>10686 3.3          | (1<br>160.5 1<br>)<br>7 → Score (1<br>99.66<br>17 → Sore (1<br>99.66<br>17 → Sore (1<br>11<br>14<br>7 → Score (1<br>86.64               | MFG) ♥ + N<br>Formula ♥ +                                | 5 162 1                     | (M+H)+<br>62.5 163 11<br>• Notes ⊽ +₽ RT (Tgr<br>1=A01 | ) 🐨 🖚 RT (DE  |

## LC-MS Spectra for Coal Dissolution Analysis

| Specie                                                                                           | MFG                                                        |                                           | P Formula ♥+<br>C27 H40 N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (M+H)+                                                                                            | 449.33938 9                                                         | 9.55                      |                     |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.33                  |                  |                                     |                            | 99.55                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | ctra ∀+Þ   | Notes 🏹  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|---------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------|----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----------|
| (M+ł                                                                                             | H)+ 449.33                                                 | 938 98.98                                 | (iso. abund) ⊽ 中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.71                                                                                             |                                                                     |                           | 99.5                | 5                         | 99.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95                    | 9.94             | 3                                   | 78862.5                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| - 3                                                                                              | 362837.3                                                   | 72.8                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                               | 449.33872                                                           | -0.7                      |                     | 378862.5                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.1                  |                  | 449.33938                           | -1.47                      |                               | <b>a a</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | <b>A 1</b> |          |
|                                                                                                  | 115621.7<br>17834.4                                        | 23.2<br>3.6                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.9<br>4.9                                                                                       | 450.34169<br>451.34463                                              | -0.5                      |                     | 100561.1<br>16052.6       | 26.5<br>4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.2<br>3.2           |                  | 450.34205<br>451.34512              | -1.08                      |                               | C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-A     | .01        |          |
|                                                                                                  | 1773.7<br>+₽ ID Source ⊽+                                  | 0.4                                       | P Formula ⊽+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).5<br>₽ Species ⊽⊀                                                                               | 452.34756<br>■ m/z 文+■ S                                            |                           | Score (R            | 2590.9                    | 0.7<br>Diff 🔽 🖶 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                   |                  | 452.34786                           |                            | Score (N                      | IFG) 🔽 🖷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Num Spe | ctra ⊽-Þ   | Notes 🗸  |
| -                                                                                                | MFG<br>MFG                                                 |                                           | C26 H44 N2 O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 (M+H)+                                                                                          | 449.33938 9<br>450.34205 8                                          | 8.5                       |                     |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.16                  |                  |                                     |                            | 98.5<br>86.64                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| -                                                                                                | MFG                                                        |                                           | C29 H43 N3 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (M+H)+                                                                                            | 450.34205 8                                                         |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.06                  |                  |                                     |                            | 84.97                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| Spectr                                                                                           | rum Results                                                |                                           | Method Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |                                                                     |                           |                     |                           | an (5.952-6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>066 min) Sub     |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
|                                                                                                  |                                                            |                                           | nin, 6 Scans) C01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                     |                           | 49.33938            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 4-                                                                                               |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     | 4                         | (M+H)+              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 6-<br>4-                                                                                         |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 2 -<br>3 -<br>8 -                                                                                |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 6-<br>4-                                                                                         |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 2-                                                                                               |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 8-<br>6-<br>4-                                                                                   |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     | 450.34                    | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 2-                                                                                               |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     | 450.34<br>(M+H            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 8-<br>6-                                                                                         |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.34512               |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 4-2-                                                                                             |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M+H)+                 |                  |                                     |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 443.5                                                                                            | 444 444.5                                                  | 445 44                                    | 15.5 446 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5 447 44                                                                                        | 47.5 448 4                                                          | 48.5 449                  | 449.5               | 450 45                    | 0.5 451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 451.5 4               | 52 452.5         | 453 453                             | 5 454                      | 454.5                         | 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 455.5 4 | 56 456     | .5 457   |
| (M+H                                                                                             | ight (Calc) ⊽+₽                                            | ⊽ +¤ Score (i<br>84   99.98<br>Height Sum | % (Calc) ⊽ 🖷 He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Score (mass) 7<br>99.61<br>sight % (Calc) 7                                                       | 7 IP Score (MFG                                                     | i, MS/MS)<br>7 +⊐ Diff (m | 99.74<br>1Da) ⊽+⊨ H | leight ⊽+Þ                | 99.74<br>Height % *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.6<br>7+⊐ Height Su | 9<br>um % ⊽ 4⊐ n | 117<br>n/z ⊽+= C                    | 103.4 0                    | on Formul<br>26 H11 N2<br>7 H | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |            | -        |
|                                                                                                  | 17060.2                                                    | 92.7<br>6.8<br>0.4                        | 7<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                 | 127.08659<br>128.08937<br>129.09149                                 | -0.3<br>-0.6<br>-1        | 8                   | 17103.4<br>277.1<br>141.3 | 100<br>7.1<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.8<br>6.6<br>0.7    | 12               | 7.08684 -<br>8.09002 -<br>9.09246 - | .05                        |                               | C <b>O</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -A1     | 2          | Т        |
|                                                                                                  | 617.1                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inecies V-P                                                                                       |                                                                     |                           |                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                  | 3.03246                             | .56                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| 5                                                                                                |                                                            | Name ⊽+Þ                                  | Formula マ+ S<br>C4 H9 N5 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   | 28.09002 82.21                                                      |                           | core (RT) ⊽         | ⇔ RT Diff                 | ⊽ +¤ Diff (p<br>  23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pm) ⊽+¤ Sco           | ore (Lib) ⊽+¤    |                                     | _                          |                               | ⊽+¤ Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7+⊐ Notes  | ⊽†¤ RT   |
| 5                                                                                                | Þ ID Source ⊽-Þ                                            | Name 🖓 🕫                                  | C4 H9 N5 (<br>C7 H12 O2 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M+H)+ 12<br>M+H)+ 12                                                                              |                                                                     |                           | core (RT) V         | ⇔ RT Diff                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | ore (Lib) ⊽+¤    |                                     | ⊽+¤ Scor                   | 1<br>3                        | ⊽-⇔ Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7 + Notes  | RT       |
| st V+                                                                                            | P ID Source ♥ +B<br>MFG<br>MFG<br>MFG<br>MFG               |                                           | C4 H9 N5 (<br>C7 H12 O2 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M+H)+ 11<br>M+H)+ 11<br>M+H)+ 12                                                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83                  |                           |                     |                           | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | ore (Lib) V +    |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ∀-₽ Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7 +> Notes | • ⊽ + RT |
| omatogra                                                                                         | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H9 N5 (<br>C7 H12 O2 (<br>C3 H8 N6 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xre (Lib) ♥ ₽    |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ♥ + Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7 12 Notes | • ▼ + RT |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                               | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xe (Lib) ¥ +     |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | V → Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7 + Notes  | . ▼ + RT |
| omatogra                                                                                         | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xe (Lib) 🛛 +     |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ✓ +> Num       Image: state stat |         | 7 +> Notes |          |
| 5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xe (Lib) 🖓 🕈     |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |            |          |
| matogra<br>Spectru<br>→ ↓ C6 H1                                                                  | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xe (Lib) 🖓 🕂     |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ♥ ♥ Num<br> <br> <br> <br> <br> <br> <br> <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 7 + Notes  | · ₹ + RT |
| matogra<br>Spectru<br>↓ C6 H1                                                                    | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     | xe (Lib) 🖓 +     |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 7 & Notes  |          |
| 5 ▼ 4                                                                                            | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     |                  |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 7 1- Notes |          |
| matogra<br>Spectru                                                                               | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     |                  |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ▼ + Num<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 7 4 Notes  |          |
| 5 ▼ 4                                                                                            | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C4 H3 N5 (C7 H12 O2 (C3 H8 N6 (C3 H8 N6 (C4 H3 N6 (C4 H3 H8 H6 (C4 H3 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23.6<br>-7.78<br>-29.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                     |                  |                                     | 274⊐ Scor<br>82.2<br>77.2  | 1<br>3                        | ▼ + Sum<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |            |          |
| matogra<br>Spectru                                                                               | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C 4 19 15 [<br>C7 H12 O2 (<br>C3 H8 N6 | M-H)+ 1:<br>M-H)+ 1:<br>M-H)+ 1:<br>Cenerate For<br>Cenerate For<br>Cenerate For<br>A12_pos_r01 d | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | ults: + Scan              | 23 6<br>-7.78<br>-29 84<br>-29 84<br>-20 86<br>-20 86<br>-20<br>-20 86<br>-20 86<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | 6 min) Sub            |                  |                                     | ₹ 4 Score<br>82.22<br>57.8 |                               | ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |          |
| matogra<br>st V+                                                                                 | P ID Source ♥ +9<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG<br>MFG | s Calculator                              | C 4 19 15 [<br>C7 H12 O2 (<br>C3 H8 N6 | M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>M+H)+ 1:<br>r: Generate Forr                                  | 28.09002 82.21<br>29.09246 77.23<br>29.09246 57.83<br>mulas 15 Spec | trum Identif              | ication Res         | 128.00                    | 23 6<br>-7.78<br>-29 84<br>-29 84<br>-20 86<br>-20 86<br>-20<br>-20 86<br>-20 86<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | 6 min) Sub            |                  |                                     | 274⊐ Scor<br>82.2<br>77.2  |                               | ▼         Num           Image: Ima                    |         | 7 10 Notes |          |

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                           |                  | C6 H10 N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                 | 235 98.69               |                       |                             | -6.25                  |                          |                      |           | 1.69             |                |           |                 |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|-------------------------|-----------------------|-----------------------------|------------------------|--------------------------|----------------------|-----------|------------------|----------------|-----------|-----------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ecies ⊽+¤ m/z 5               |                  | iso. abund) 🔽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Score (ma<br>97.38                           | ss) <b>⊽</b> ≁¤ | Score (MF)              | G, MS/MS) ⊽+          | Score (MS) ⊽ +<br>98.69     | Score (MFG) ⊽<br>98.69 | '                        |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 35 99.84         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      | 2082077.8 | Сентп            | NZ             |           |                 | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Height (Calc) マ+<br>2054829.8 | Height Sum<br>93 | % (Calc) ∀+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Height % (C</li> <li>100</li> </ul> | alc) ⊽+¤        | m/z (Calc)<br>111.09167 | ▽-P Diff (mDa<br>-0.7 | ) マ+ Height マ+<br>2082077.8 | Height % ⊽ ≠<br>100    | Height Sum % ∀ ≠<br>94.2 | m/z ⊽+¤<br>111.09235 |           |                  |                |           |                 | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 93<br>6.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                                          |                 | 112.09445               | -0.7                  | 2082077.8                   | 6                      | 5.6                      | 112.09532            |           |                  | <b>C03</b> -   | -A12      | 2               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 0.2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                          |                 | 113.09712               | -1.2                  | 3863.2                      | 0.2                    | 0.2                      | 113.0983             | -10.45    |                  | 000            | ****      |                 |          |
| Dent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ▼+P ID Source ▼+P             |                  | Course of the local sectors of |                                              |                 |                         |                       |                             |                        |                          |                      |           | (MEC)            | TT IN March Co |           | Martine With In | DT (Tel  |
| lC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG                           | Name V P         | C6 H8 O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M+H)+                                       |                 | 102 43.28               |                       | (KI) Y P KI DIT             | -11.75                 | Y P Score (LID) Y        | Score (Dr            |           | ore (MPG)<br>128 | Num Sp         | ectra Y H | Notes Y 14      | r r (igt |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                           |                  | C6 H6 O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M+H)+                                       | _               | 543 42.82               |                       |                             | -12.51                 |                          |                      |           | .82              |                |           |                 |          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                           |                  | C7 H12 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (M+H)+                                       |                 | 830 36.4                |                       |                             | -19.71                 |                          |                      | 36        | .4               |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             | m                      |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ogram Results   Mass          | Calculator       | Method F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ditor: Generat                               | e Formula       | s uki Spe               | ctrum Identificat     | ion Results: + Scar         | (2 903-3 153 n         | nin) Sub                 |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ectrum Results                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trum Results                  | د 🛧 ۷            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 - 👖                                        | . 😝 R           | Р П.   Ж                | s % <mark>%</mark> 🎇  | 1 😽 🛃                       |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 € C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         | s % <mark>¾</mark> 🎇  | <b>8</b>                    |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C0<br>2.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | 3                           |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6<br>2.4 -<br>2.3 -<br>2.2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 |                         |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C0<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | <b>*</b>                    |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6<br>2.4 -<br>2.3 -<br>2.2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C0<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.1 -<br>2.1 -<br>2.1 -<br>2.1 -<br>1.9 -<br>1.8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C(<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.1 -<br>1.9 -<br>1.8 -<br>1.7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C(<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.1 -<br>1.9 -<br>1.8 -<br>1.7 -<br>1.6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.<br>1.9 -<br>1.8 -<br>1.7 -<br>1.6 -<br>1.5 -<br>1.4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ++ 1<br>10 6 C(<br>2.4<br>2.3<br>2.2<br>1.9<br>1.9<br>1.8<br>1.7<br>1.6<br>1.5<br>1.4<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ++ 1<br>10 6 C(<br>2.4<br>2.3<br>2.2<br>1.9<br>1.9<br>1.8<br>1.7<br>1.6<br>1.5<br>1.4<br>1.3<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 € C(<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.9 -<br>1.9 -<br>1.8 -<br>1.7 -<br>1.6 -<br>1.5 -<br>1.4 -<br>1.3 -<br>1.2 -<br>1.1 -<br>1.1 -<br>1.1 -<br>1.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | <u>.</u>                    |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 € CC<br>2.4 -<br>2.3 -<br>2.2 -<br>2.1 -<br>2.1 -<br>2.1 -<br>1.8 -<br>1.7 -<br>1.6 -<br>1.5 -<br>1.4 -<br>1.3 -<br>1.2 -<br>1.1 -<br>1.1 -<br>1.9 -<br>1                                                                                                    | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | <u>ی</u> ای ا               |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6<br>2.4<br>2.3<br>2.2<br>1.9<br>1.8<br>1.7<br>1.6<br>1.5<br>1.4<br>1.3<br>1.2<br>1.1<br>1.4<br>0.9<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | ف اهد ا                     |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 6 C(<br>2.4 -<br>2.3 -<br>2.2 -<br>1.9 -<br>1.8 -<br>1.7 -<br>1.6 -<br>1.5 -<br>1.4 -<br>1.3 -<br>1.2 -<br>1.1 -<br>1.3 -<br>1.2 -<br>1.1 -<br>1.9 -<br>0.8 -<br>0.8 -<br>0.7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | <u>م</u> ن ایک ا            |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>10 <sup>6</sup> 2.4 -<br>2.2 -<br>2.1 -<br>2.2 -<br>2.1 -<br>1.9 -<br>1.8 -<br>1.7 -<br>1.6 -<br>1.5 -<br>1.4 -<br>1.3 -<br>1.4 -<br>1.3 -<br>1.2 -<br>1.1 -<br>0.9 -<br>0.8 -<br>0.7 -<br>0.6 -<br>0.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | و ک                         |                        |                          |                      |           |                  |                |           |                 |          |
| ↔ 1<br>106 Cl<br>24<br>22<br>21<br>22<br>21<br>22<br>21<br>1.9<br>1.5<br>1.5<br>1.4<br>1.5<br>1.4<br>1.3<br>1.2<br>1.1<br>1.3<br>1.2<br>0.9<br>0.8<br>0.9<br>0.8<br>0.0<br>0.9<br>0.0<br>0.9<br>0.0<br>0.9<br>0.9<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       |                             | 2                      |                          |                      |           |                  |                |           |                 |          |
| ++ 1<br>106 CU<br>24<br>22-<br>22-<br>22-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-<br>1.5-<br>1.4-<br>1.5-<br>1.4-<br>1.5-<br>1.4-<br>0.9-<br>0.8-<br>0.7-<br>0.6-<br>0.5-<br>0.4-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3-<br>0.3 | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | 112.085<br>(M+H)            | 2                      | 113,00027                |                      |           |                  |                |           |                 |          |
| ↔ 1<br>106 Cl<br>24<br>22<br>21<br>22<br>21<br>22<br>21<br>1.9<br>1.5<br>1.5<br>1.4<br>1.5<br>1.4<br>1.3<br>1.2<br>1.1<br>1.3<br>1.2<br>0.9<br>0.8<br>0.9<br>0.8<br>0.0<br>0.9<br>0.0<br>0.9<br>0.0<br>0.9<br>0.9<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ‡   Q 🗊 😻 V                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                 | ract                    |                       | 112.0953                    | 2                      | 113.0993<br>(M+F)+       |                      |           |                  |                | 1         | 15.07626        |          |

| Spr       | acies ⊽+P m   | /z ⊽ # Soc    | C27 H40 N6                  | (M+H)+                                             | 449.33915<br>7-P Score (MF |               | 7-P Score (MS)             | V-P Score (M       | -1.05            | e (iso, spacing) |                | 99.6<br>₽ Ion Formula ⊽ | 6                              |               |               |               |          |
|-----------|---------------|---------------|-----------------------------|----------------------------------------------------|----------------------------|---------------|----------------------------|--------------------|------------------|------------------|----------------|-------------------------|--------------------------------|---------------|---------------|---------------|----------|
|           |               | 9.33915 98.   |                             | 99.82                                              |                            | 0, 1101110) 1 | 99.6                       | 99.6               | 99.9             |                  |                | C27 H41 N6              | _                              |               |               | _             |          |
|           |               |               | ium% (Calc) ⊽+=             | Height % (Calc) *                                  |                            |               |                            |                    |                  |                  |                | m) ∀+₽                  |                                | 202           | A 10          |               |          |
|           | 242845        | 72.8          |                             | 100                                                | 449.33872                  |               | 25307                      |                    | 75.9             |                  | .33915 -0.95   |                         | · ·                            | LU3-          | A12           |               |          |
|           | 77385         | 23.2          |                             | 31.9                                               | 450.34169                  |               | 67086                      |                    | 20.1             |                  | .34235 -1.48   |                         |                                |               |               | _             |          |
|           | 1187.1        | 0.4           |                             | 4.5                                                | 451.34463                  |               | 1944                       | 0.8                | 0.6              |                  | .34505 -0.32   |                         |                                |               |               |               |          |
|           | ▼+P ID Source | With Manual T | th Example                  | W.D. Consist W                                     | n                          | Course V We a | Cases (DT) TT              |                    | Diff (new) TT dt |                  |                | * I Score (MFG) ▼       | di Muse Canada                 | a Traba Matan | TT IN DT (Tw  |               | 77.0 De  |
| st        | MFG           | Y H Name 1    | C26 H44 N2 (                |                                                    | 449.33915                  |               | Score (HT) Y               | N RIDITY N         | -3.88            | Score (LID) Y    | + Score (DB) V | 98.72                   | <ul> <li>Num Spectr</li> </ul> | a v + Notes   | r v ₩ Ki (igt | ) Y H KI (UB) | Y SP PTE |
|           | MFG           |               | C23 H48 N2 (                |                                                    | 449.33915                  |               |                            |                    | 3.09             |                  |                | 98.57                   |                                |               |               |               |          |
|           | MFG           |               | C24 H50 O5                  | S (M+H)+                                           | 451.34505                  | 97.82         |                            |                    | 1.2              |                  |                | 97.82                   |                                |               |               |               |          |
|           | MFG           |               | C31 H44 O2                  | (M+H)+                                             | 449.33915                  | 97.34         |                            |                    | 5.2              |                  |                | 97.34                   |                                |               |               |               |          |
|           | MFG           |               | C24 H43 N5 (                |                                                    | 450.34235                  |               |                            |                    | 3.52             |                  |                | 97.34                   |                                |               |               |               |          |
|           | MFG           |               | C24 H44 N6 5                |                                                    | 449.33915                  |               |                            |                    | 5.9              |                  |                | 96.61                   |                                |               | _             |               |          |
|           | MFG           | _             | C25 H46 N4 0<br>C27 H47 N 0 |                                                    | 451.34505<br>450.34235     |               |                            |                    | 4.05             |                  |                | 96.28<br>95.37          |                                |               | _             | _             | -        |
| _         | MFG           | -             | C27 H47 N U                 |                                                    | 450.34235                  |               |                            | -                  | -2.69            |                  |                | 93.56                   |                                |               | _             | _             | _        |
| Spe       | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | ditor: Generate For<br>1 💌 🏦 🙀<br>03-A12_pos_r01.d | <br>                       |               |                            | "<br>Scan (6.046-6 | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
| Spe<br>C: | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         |                            |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
| Spe<br>Ci | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | 183 min) Sub     |                  |                |                         |                                |               |               |               |          |
| Spe<br>C: | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
| Spe<br>Ci | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
| Spe<br>C: | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
| Spe<br>C: | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | (183 min) Sub    |                  |                |                         |                                |               |               |               |          |
|           | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
|           | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i.183 min) Sub   |                  |                |                         |                                |               |               |               |          |
|           | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | i 183 min) Sub   |                  |                |                         |                                |               |               |               |          |
|           | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | <b>2</b><br>2 - 33915      |                    | 183 min) Sub     |                  |                |                         |                                |               |               |               |          |
| Spe<br>C  | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | 233915<br>233915<br>1441)* | Scan (6 046-6      | 183 min) Sub     |                  |                |                         |                                |               |               |               |          |
| Spe<br>C  | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | 233915<br>233915<br>1441)* | Scan (6.046-6      | 183 min) Sub     |                  |                |                         |                                |               |               |               |          |
| Spe<br>C  | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | 233915<br>233915<br>1441)* | Scan (6 046-6      | 183 min) Sub     |                  |                |                         |                                |               |               |               |          |
| ipe<br>1  | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | 233915<br>233915<br>1441)* | Scan (6.046-6      | 51,34005         |                  |                |                         |                                |               |               |               |          |
| Spe<br>C: | t I Q 🗈 🏞     | ¢ ک ا         | <u>⊿</u>   9 C              | 1 💌 🏦 🙀                                            | <br>                       | % % 🏂         | 233915<br>233915<br>1441)* | Scan (6.046-6      |                  |                  |                |                         |                                |               |               |               |          |

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C10 H21 N O                      | (M+H)+                 | 172.17014              |                                    |                   |            |                   | -3.46         |                          |           |                          | 99.27    |           |          |             |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|----------------------------------|------------------------|------------------------|------------------------------------|-------------------|------------|-------------------|---------------|--------------------------|-----------|--------------------------|----------|-----------|----------|-------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pecies ⊽+¤ m/z                                          |                       |                                  | core (mass) ⊽<br>8.82  | '+₽ Score (Mi          | FG, MS/MS) T                       | 7 + Sco<br>99.2   |            | Score (M<br>99.27 |               | icore (iso. spa<br>19.38 |           | Height ▼ +¤<br>1451603.5 |          |           |          |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                       |                                  |                        |                        |                                    |                   |            |                   |               |                          |           | _                        | C 10 H22 | ZINU      |          |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Height (Calc) ⊽≉<br>4401672.6                           | Height Sum%<br>89.1   | (Calc) V P Hei<br>100            |                        | 172.1695               |                                    | iUa) Y⊀           | 4451603.5  |                   | 90.1          | t Sum % Y ₽              | 172.17014 |                          |          | 0         | 1        | C           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 504967.8                                                | 10.2                  | 11.5                             |                        | 173.1728               | -                                  |                   | 462130.6   | 10.4              | 9.4           |                          | 173.17384 |                          |          | CU:       | 5-A1     | 0           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35405.9                                                 | 0.7                   | 0.8                              |                        | 174.1754               | 6 -0.3                             |                   | 28312.2    | 0.6               | 0.6           |                          | 174.17581 | -1.97                    |          |           |          |             |       |
| Best                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V + ID Source V ≉                                       | Þ Name ⊽+Þ            | Formula ⊽⊀                       | Species ∀ <sup>+</sup> | ⊨ m/z ⊽+¤              | Score⊽⊽≉                           | Score             | (RT) マ + R | T Diff マ ≠        | Diff (ppm) ⊽  | 7 🗢 Score (Li            | o)⊽+¤ Sco | re (DB) 🖓 I              | Score (  | (MFG) 🔽 I | Num Spec | tra ⊽+¤ Not | es ⊽+ |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     | 0                     | C8 H20 N4                        | (M+H)+                 | 173.17384              | 91.95                              |                   |            |                   | 13.2          |                          |           |                          | 91.95    |           |          |             |       |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C19 H26 O6                       | (M+2H)+2               |                        |                                    |                   |            |                   | 1.77          |                          |           |                          | 85.14    |           |          |             |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     | -                     | C12 H26 N6 O4 S                  | 1                      | 176.09310              |                                    |                   |            |                   | -1.36         |                          |           |                          | 83.66    |           |          |             |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C20 H22 N4 O2                    | (M+2H)+2               | 176.09310              |                                    |                   |            |                   | 5.44          | _                        |           |                          | 82.83    |           |          |             |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C15 H22 N6 O4                    | (M+2H)+2               |                        |                                    |                   |            |                   | -6.63         | _                        |           |                          | 82.67    |           |          |             |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C16 H30 O6 S<br>C17 H26 N4 O2 S  | (M+2H)+2<br>(M+2H)+2   | 176.09310<br>176.09310 |                                    | -                 |            |                   | 7.13          | _                        |           |                          | 82.32    |           |          |             | _     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C17 H26 N4 O2 5<br>C18 H30 N4 O3 | (M+2H)+2<br>(M+2H)+2   | 176.09310              | 78.2                               | -                 | _          |                   | -3.41         | _                        |           |                          | 77.01    |           | -        |             | _     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MFG                                                     |                       | C15 H30 N4 O3 S                  |                        | 176.12408              | 76.63                              |                   |            |                   | 6.2           |                          |           |                          | 76.63    | _         |          |             | -     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEG                                                     | -                     | C13 H30 N6 O5                    | (M+2H)+2               | 176,12408              |                                    | -                 |            |                   | -14.92        |                          |           |                          | 70.24    |           |          |             |       |
| MS Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | togram Results   Mas<br>ectrum Results<br>‡   Q 🕕 🎲   ' |                       | -                                |                        |                        |                                    |                   |            | n (5.532-5        | .669 min) Sub | >                        |           |                          |          |           |          |             |       |
| MS Spe<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | % % 🀝                              | 21   🍋            |            | n (5.532-5        | 669 min) Sub  | 2                        |           |                          |          |           |          |             |       |
| 4S Spe<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              |                   |            | in (5.532-5       | 669 min) Sub  | >                        |           |                          |          |           |          |             |       |
| 4S Spe<br>↔ 10 6 C<br>5-<br>1.75-<br>4.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sub  | >                        |           |                          |          |           |          |             |       |
| MS Spe<br>↔ 10 6 C<br>5-<br>1.75-<br>4.5-<br>1.25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sub  | 2                        |           |                          |          |           |          |             |       |
| MS Spe<br>↔<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>1.25-<br>4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sub  |                          |           |                          |          |           |          |             |       |
| MS Spe<br>↔ 10 6 C<br>5-<br>1.75-<br>4.5-<br>1.25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sub  |                          |           |                          |          |           |          |             |       |
| MS Spe<br>↔<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-     | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sub  |                          |           |                          |          |           |          |             |       |
| MS Spe<br>++<br>5-<br>10 6 C<br>5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>3.75-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>5.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3.5-<br>3 | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sut  | 2                        |           |                          |          |           |          |             |       |
| MS Spe<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>3.75-<br>3.5-<br>3.25-<br>3-<br>2.75-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sut  | 2                        |           |                          |          |           |          |             |       |
| MS Spe<br>++<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>3.75-<br>3.5-<br>3.5-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75                                                                                                 | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sub  | 2                        |           |                          |          |           |          |             |       |
| MS Spe<br>++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectrum Results                                          | <b>د</b> الج          | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sut  | 2                        |           |                          |          |           |          |             |       |
| MS Spe<br>++<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>3.75-<br>3.5-<br>3.5-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75-<br>3.75                                                                                                 | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sut  | 2                        |           |                          |          |           |          |             |       |
| 45 Spe<br>+→<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.25-<br>4.25-<br>4.25-<br>2.25-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.                              | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | in (5.532-5       | 669 min) Sub  | 2                        |           |                          |          |           |          |             |       |
| 4S Spe<br>← 3<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>1.25-<br>4-<br>3.75-<br>3.5-<br>3.25-<br>3.25-<br>3.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>2    | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 |            | n (5.532-5        | 669 min) Sut  | 2                        |           |                          |          |           |          |             |       |
| HS Spe<br>+→<br>10 6 C<br>5-<br>1.75-<br>1.25-<br>4.5-<br>1.25-<br>4.5-<br>1.25-<br>4.5-<br>1.25-<br>3.3-<br>2.25-<br>3<br>2.25-<br>2.25-<br>2.25-<br>2.25-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5                | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 | 173.       | 17384             | 669 min) Sut  | 3                        |           |                          |          |           |          |             |       |
| 45 Spe<br>+→<br>10 6 C<br>5-<br>1.75-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.5-<br>4.25-<br>4.25-<br>4.25-<br>2.25-<br>2.5-<br>2.5-<br>2.5-<br>2.5-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.75-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.                              | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | <b>≫ % <u>%</u> ;</b><br>172<br>(№ | 21   🍋<br>2.17014 | 173.       |                   | 669 min) Sub  |                          | 09866     | 176.093                  |          |           |          |             |       |
| HS Spe<br>+→<br>10 6 C<br>5-<br>1.75-<br>1.25-<br>4.5-<br>1.25-<br>4.5-<br>1.25-<br>4.5-<br>1.25-<br>3.3-<br>2.25-<br>3<br>2.25-<br>2.25-<br>2.25-<br>2.25-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.75-<br>2.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5-<br>1.5                | ectrum Results                                          | <b>د</b> ا <u>ج</u> ا | D C 1                            | - 1                    | ] #                    | 8 % 🐝                              | 21   🍋<br>2.17014 | 173.       | 17384             | 669 min) Sut  | 3                        |           |                          |          |           |          |             |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                           |                    |                        |                        |                 |                  | V-B Score  | (MS) 🖓 🖓 | <ul> <li>Score (M</li> </ul> | 1FG)⊽⊽+¤ S           | core (iso, spa | acing) 🖓 🕂 ∣ | Height 🏹 🕂 | Ion Formula 1 | 749         |           |            |             |           |           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|--------------------|------------------------|------------------------|-----------------|------------------|------------|----------|------------------------------|----------------------|----------------|--------------|------------|---------------|-------------|-----------|------------|-------------|-----------|-----------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | n/z ⊽+¤ :<br>12.19131   ! |                    |                        | core (mass) ∀·<br>9.62 | + Score (MF     | G, MS/MS)        | 99.26      |          | 99.26                        | 9                    | 7.98           |              | 427111     | C12 H26 N O3  |             |           |            |             | _         |           |           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Height (Calc)                | _                         |                    |                        |                        | an and a (Cala) |                  | 1          |          | _                            |                      |                |              |            |               |             | 0         | 0.5        | 110         |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 419546.7                     | 2 - Heig<br>86.8          |                    | aic) v ~ nei<br>100    |                        | 232.19072       |                  |            | 427111   | 100                          | /• v ⊶ heigh<br>88.3 | Coum /s iv H   | 232.19131    |            | 0.4.4         |             | - C       | 05         | A16         |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57719.2                      | 11.9                      |                    | 13.                    |                        | 233.19398       | 0.1              |            | 50070.1  | 11.7                         | 10.4                 |                | 233.19387    |            |               | _           |           |            |             |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6259.4                       | 1.3                       |                    | 1.5                    |                        | 234.19629       | 7.4              |            | 6344.2   | 1.5                          | 1.3                  |                | 234.18885    |            |               |             |           |            |             | _         | •         |           |
| Rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V-P ID Source                | V-D Nam                   |                    | ormula 🖂               | Species V-t            |                 | Secret           |            |          |                              | Diff (nom) S         | - Score (Li    | ih) 🖂 🗗 Soo  | re (DB) V  | Score (MFG)   | 7-D Num Sne | tra 🗸 🗛 N | otes V-D F | T (Tat) T a | RT (DR) V | - Precure |           |
| IC I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG                          | V W NGI                   |                    | H15 N5 O               | (M+H)+                 | 234,13693       |                  | - Score (/ | 17 4 4 1 |                              | -7.04                | - 30010 (L1    | 0, 1 4 300   | NG (DD) V  | 92.34         | - Hum Spo   |           |            | 11(190) # # |           | - Frecur  | 50        |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MEG                          |                           |                    | H19 N5 O S             | (M+H)+                 | 234,13693       |                  | -          |          |                              | 3.23                 |                |              |            | 90.85         |             |           |            |             |           | -         |           |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           |                    | ) H19 N O5             | (M+H)+                 | 234.13693       |                  | -          |          |                              | -12.23               |                |              |            | 86.06         |             |           |            |             |           | -         | -         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           |                    | 1 H28 O S              | (M+H)+                 | 233.19387       |                  |            |          |                              | 1.79                 |                |              |            | 78.04         |             |           |            |             |           |           | -         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           | C19                | H32 N6 O6 S            | (M+2H)+2               | 237.11076       | 76.26            |            |          |                              | 6.92                 |                |              |            | 76.26         |             |           |            |             |           |           | -         |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           | C16                | 6 H24 O                | (M+H)+                 | 233.19387       | 70.09            |            |          |                              | -12.64               |                |              |            | 70.09         |             |           |            |             |           |           | _         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           | C11                | H20 N4 S               | (M+H)+                 | 241.14776       | 66.51            |            |          |                              | -11.89               |                |              |            | 66.51         |             |           |            |             |           |           |           |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           |                    | H19 N S                | (M+H)+                 | 234.13693       |                  |            |          |                              | -26.55               |                |              |            | 65.33         |             |           |            |             |           |           |           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           |                    | ) H24 N4 O2            | (M+H)+                 | 233.19387       |                  |            |          |                              | 18.07                |                |              |            | 63.57         |             |           |            |             |           |           |           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFG                          |                           | C10                | ) H20 N4 S             | (M+H)+                 | 229.14791       | 47.56            |            |          |                              | 1.02                 |                |              |            | 47.56         |             |           |            |             |           |           |           |
| S Sp<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  |                        | L문 교 🕷          |                  |            |          | an (6.170-6                  | 6.216 min) Sut       | 2              |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectrum Results               | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          |                  |            |          | an (6.170-6                  | 5.216 min) Sul       | >              |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | % 🔧              | X 😽        |          | an (6.170-6                  | 5.216 min) Sul       | 2              |              |            |               |             |           |            |             |           |           |           |
| SSp<br>↔<br>)5 (<br>75-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 |            |          | an (6.170-6                  | 3.216 min) Sut       | 2              |              |            |               |             |           |            |             |           |           |           |
| SSp<br>↔<br>05 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | 19131      |          | an (6.170-6                  | 5.216 min) Sut       | 2              |              |            |               |             |           |            |             |           |           |           |
| SSp<br>↔<br>05<br>75-<br>1.5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | 19131      |          | an (6.170-6                  | 5.216 min) Sut       | 2              |              |            |               |             |           |            |             |           |           |           |
| S Spe<br>0 5 0<br>75-<br>4.5-<br>25-<br>4-<br>75-<br>75-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | 19131      |          | an (6.170-6                  | 3.216 min) Sul       | 2              |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>↔<br>1.5<br>25<br>4<br>75<br>1.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | 19131      |          | an (6.170-6                  | 3.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>→<br>15<br>1.5<br>-<br>25<br>-<br>4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 3.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| ↔<br>() 5 (<br>75-<br>1.5-<br>25-<br>4-<br>75-<br>1.5-<br>25-<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| SSp<br>→<br>15<br>15<br>25<br>4<br>-<br>25<br>-<br>4<br>-<br>25<br>-<br>3<br>-<br>75<br>-<br>3<br>-<br>75<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5216 min) Sul        |                |              |            |               |             |           |            |             |           |           |           |
| SSp<br>→<br>15<br>15<br>25<br>4<br>-<br>75<br>-<br>1.5<br>-<br>25<br>-<br>3<br>-<br>75<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| SSp<br>→<br>15<br>15<br>25<br>4<br>-<br>75<br>-<br>1.5<br>-<br>25<br>-<br>3<br>-<br>75<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>25<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| ↔<br>() 5 (<br>75 -<br>1.5 -<br>25 -<br>4 -<br>75 -<br>25 -<br>3 -<br>75 -<br>25 -<br>2                               | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sut       |                |              |            |               |             |           |            |             |           |           |           |
| S Specific Action of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| SSP<br>→<br>15<br>15<br>25<br>4<br>-<br>25<br>-<br>3<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | an (6.170-6                  | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| S Sp     O     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 0 0 1                  | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   | 233.15   | 9387                         | 5.216 min) Sul       |                |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>15<br>15<br>25<br>4<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>-<br>1.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | ▲ C                | 0 C 1<br>3 Scans) C05- | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   |          | 9387                         |                      |                |              |            |               |             |           |            |             |           |           |           |
| S Sp<br>15<br>15<br>25<br>4<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>25<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>1.5<br>-<br>-<br>1.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectrum Results<br>‡   Q, 💽 ‡ | \$ 1 <b>2</b>             | <mark>∱</mark> ⊿\€ | 91                     | - L H                  | L문 교 🕷          | <b>% 🔧</b><br>23 | <b>2</b>   | 233.15   | 9387                         | 234 13693<br>(M+H)+  |                |              |            | 227 11        | 776         |           |            |             |           |           | 241<br>(M |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1150          | 00.000                  |          | 455 449 77 | 07.01              |          |                         |                       |           | 07.0      |   |     |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|----------|------------|--------------------|----------|-------------------------|-----------------------|-----------|-----------|---|-----|-------|-------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C8 H11 N O              | (M+NH4)+ | 155.11862  |                    |          |                         | 5.37                  |           | 87.04     |   |     | _     | <br>  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFG           | C5 H15 N2 P             | (M+Na)+  |            | 85.2               |          |                         | 5.94                  |           | 85.2      | _ |     |       |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C8 H12 O3               | (M+H)+   |            | 84.45              |          |                         | 3.48                  |           | 84.45     |   |     |       |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H13 N2 P             | (M+H)+   |            | 82.25              |          |                         | 0.39                  |           | 82.25     |   | 007 | '-A28 |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H10 N P              | (M+NH4)+ | 157.08716  |                    |          |                         | 1.67                  |           | 82.25     |   |     | -A40  |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C3 H14 N4 Si            | (M+Na)+  | 157.08716  |                    |          | 3.                      |                       |           | 81.46     |   |     |       |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H16 Si2              | (M+H)+   | 157.08716  |                    |          |                         | 7.01                  |           | 79.22     |   |     | _     |       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C2 H12 N5 P             | (M+NH4)+ | 155.11862  | 78.73              |          | -1                      | 4.24                  |           | 78.73     |   |     |       |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C8 H14 O3               | (M+H)+   | 159.10200  | 77.63              |          | -6                      | 5.24                  |           | 77.63     |   |     |       |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H18 Si2              | (M+H)+   | 159.10200  | 75.75              |          | -5                      | 5.02                  |           | 75.75     |   |     |       |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C4 H14 N4               | (M+K)+   | 157.08716  | 74.25              |          | -2                      | 20.03                 |           | 74.25     |   |     |       |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C6 H16 N2 O             | (M+Na)+  | 155.11862  | 72.98              |          | -2                      | 23.84                 |           | 72.98     |   |     |       |       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H15 N2 P             | (M+H)+   | 159.10200  | 72.67              |          | 1                       | 2.34                  |           | 72.67     |   |     |       |       |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C7 H12 N P              | (M+NH4)+ | 159.10200  | 72.67              |          | 1                       | 3.82                  |           | 72.67     |   |     |       | <br>_ |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C2 H10 N3 O2            | (M+NH4)+ | 157.08716  | 72.31              |          | -1                      | 18.32                 |           | 72.31     |   |     |       | _     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFG           | C4 H16 N4               | (M+K)+   |            | 69.89              |          |                         | 17.1                  |           | 69.89     |   |     |       | <br>- |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEG           | C5 H12 N4 Si            | (M+H)+   | 157.08716  | 69.3               |          | 11                      | 8.95                  |           | 69.3      |   |     | _     | <br>  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEG           | C5 H9 N3 Si             | (M+NH4)+ | 157.08716  |                    |          |                         | 1.27                  |           | 69.3      |   |     | _     | <br>  |
| S Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctrum Results | alculator 📝 Method Edit |          |            | 🔭 % 🏂              | 副 🐖      | 3                       |                       |           |           |   |     |       |       |
| SSpe<br>↔ 1<br>)5 + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctrum Results | 1.00                    | 1 • 🏦    |            | ೫ % <mark>℁</mark> | ) XI 😸   | 3                       |                       |           |           |   |     |       |       |
| S Sper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    |          | 3                       |                       |           |           |   |     |       |       |
| S Sper<br>↔ 1<br>) 5 + 9<br>1.8 -<br>1.6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Sper<br>↔ 1<br>) 5 + 9<br>1.8-<br>1.6-<br>1.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    |          | 3                       |                       |           |           |   |     |       |       |
| S Spe<br>↔ 1<br>) 5 + 5<br>1.8-<br>1.6-<br>1.4-<br>1.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Sper<br>↔ 1<br>) 5 + 9<br>1.8-<br>1.6-<br>1.4-<br>1.2-<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spe<br>+ 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spe<br>→ 1<br>15 + 5<br>.8-<br>.4-<br>.2-<br>.3-<br>.8-<br>.4-<br>.4-<br>.4-<br>.4-<br>.4-<br>.4-<br>.4-<br>.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Specific (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spe<br>(+) 1<br>) 5 + 5<br>1.8-<br>1.6-<br>1.4-<br>1.2-<br>3-<br>2.8-<br>2.6-<br>2.4-<br>2.2-<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spec<br>S Spec<br>S Spec<br>S Spec<br>S S Spec<br>S Sp                                                                                                                                                                                | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spen<br>↔ 1<br>++++++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
| S Spen           ↔         1           15         + 3           3.8         -           3.4         -           3.4         -           2.4         -           2.4         -           2.4         -           8.8         -           .6         -           .8         -           .8         -           .8.6         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         - <tr tthtttr=""></tr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 |                         |                       |           |           |   |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                         |          |            |                    |          |                         |                       |           |           |   |     |       |       |
| S Spen           ↔         1           15         + 3           3.8         -           3.4         -           3.4         -           2.4         -           2.4         -           2.4         -           8.8         -           .6         -           .8         -           .8         -           .8.6         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         -           .8         - <tr tthtttr=""></tr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3                       |                       |           |           |   |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                         |          |            |                    |          |                         |                       |           |           |   |     |       |       |
| S Sper<br>↔ 1<br>3.6-<br>4.4-<br>2-<br>8-<br>.6-<br>.4-<br>2-<br>.8-<br>.6-<br>.4-<br>.4-<br>.6-<br>.4-<br>.6-<br>.4-<br>.6-<br>.4-<br>.6-<br>.6-<br>.6-<br>.6-<br>.6-<br>.6-<br>.6-<br>.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 |                         |                       |           |           |   |     |       |       |
| S Spen           ↔           ↔           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓           ↓ </td <td>ctrum Results</td> <td><u>କ</u> <u>ଜ</u>ାର ତ</td> <td>1 • 🏦</td> <td></td> <td></td> <td>55.11862</td> <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | <u>.</u>                |                       |           |           |   |     |       |       |
| S Spee<br>→ 1<br>5 + 5<br>6 -<br>1.4 -<br>2.2 -<br>3.3 -<br>8.8 -<br>6 -<br>4.4 -<br>2.2 -<br>1.8 -<br>1.6 -<br>1.4 -<br>1.2 -<br>3.3 -<br>8.8 -<br>1.4 -<br>1.4 -<br>1.2 -<br>1.4 -<br>1.8 -<br>1.4 -    | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 |                         |                       |           |           |   |     |       |       |
| S Spee<br>→ 1<br>5 + 5<br>6 -<br>1.4 -<br>2.2 -<br>3.3<br>8.8<br>6 -<br>1.4 -<br>2.2 -<br>1.8<br>8.6 -<br>1.4 -<br>1.2 -<br>1.4 - | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 | 3<br>15:12158<br>(M+P)* | 157 00716<br>M-Maha   |           |           |   |     |       |       |
| IS Spec<br>→ 1<br>0 5 + 5<br>3.8 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -<br>3.4 -<br>3.4 -<br>3.4 -<br>3.2 -<br>3.4 -      | ctrum Results | <u>କ</u> <u>ଜ</u> ାର ତ  | 1 • 🏦    |            |                    | 55.11862 |                         | 157 00716-<br>(M-H3)+ | 158.09156 | 159 10200 |   |     |       |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cies ⊽+¤ m/z                                                                   | 7         | C10 H20 N4 0               |                    | 213.17180               |          |                          | (MC) 77 5 | C                   |               | <i>C</i>              | 1.000         | 11-1-1-1-1-1-1-1 |                |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|----------------------------|--------------------|-------------------------|----------|--------------------------|-----------|---------------------|---------------|-----------------------|---------------|------------------|----------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                | 718 99.92 | iso, abund) Y A            | 98.36              | ) V + Score             | (MEG, MS | SIMS) ¥ + Sco<br>99.     |           | 99.09               |               | ore (iso, spac<br>.54 |               | 136868.1         | C10 H21 N4 O   |          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Height (Calc) ▽                                                                |           | 2/ (C-1-) == 10            |                    | -)                      |          |                          |           |                     |               |                       |               |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135440.3                                                                       | 88.1      |                            | 100                | c) v → m/2 (C<br>213.17 |          | - 0.8                    | 136868.1  | - Height %          | 89            |                       | 213.1718      | -3.79            | n) v 🕶         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17006.8                                                                        | 11.1      |                            | 12.6               | 214.17                  |          | -1.2                     | 15736.6   | 11.5                | 10.2          |                       | 214.17484     |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1263.2                                                                         | 0.8       |                            | 0.9                | 215.17                  | 605      | 4.7                      | 1105.6    | 0.8                 | 0.7           |                       | 215.17133     | 21.92            |                |          |
| est V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 + ID Source ⊽                                                                | + Name V+ | Formula V                  | Species V.         |                         | Score⊽   | V-P Score (R)            |           | iff 🛛 🕂 Dif         | iff (ppm) 🛛 🕂 | Score (Lib) 🔽         | - Score (     | (DB) 🔽 🖶 :       | Score (MEG) VH | Num Spec |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C13 H24 S                  | (M+H)+             | 213.17180               |          |                          |           |                     | 1.89          |                       |               |                  | 79.22          |          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C13 H25 P                  | (M+H)+             | 213.17180               | 77.52    |                          |           | 23                  | 3.37          |                       |               |                  | 77.52          |          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C12 H24 O Si               | 4                  | 213.17180               |          |                          |           |                     | 3.32          |                       |               |                  | 76.65          |          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C8 H18 N4 O                | (M+H)+             | 215.13084               |          |                          |           |                     | .47           |                       |               |                  | 75.48          |          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C9 H18 N4 S                | (M+H)+             | 215.13084               | 74.87    |                          |           |                     | .62           |                       |               |                  | 74.87          |          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C10 H19 N2 0<br>C12 H14 N4 | 0 (M+H)+<br>(M+H)+ | 215.13084<br>215.13084  | 70.6     |                          |           |                     | 0.05<br>8.02  |                       |               |                  | 70.6           |          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C12 H14 N4                 |                    | 215.13084               | 59.77    | _                        |           | -10                 |               |                       | -             |                  | 59.77          | -        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C11 H22 S Si               | (M+H)+             | 215.13084               | 55.78    |                          |           |                     | 1.84          |                       | _             |                  | 55.78          |          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG                                                                            |           | C10 H22 O Si               |                    | 215,13084               |          |                          |           |                     | 3.45          |                       |               |                  | 54.36          |          |
| Spect<br>⇔ ‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gram Results   Ma<br>trum Results<br>Q (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          |                          |           | ייי<br>in (3.168-3. | 282 min) Sub  |                       |               |                  |                |          |
| Spect<br>⇔ ‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       |               |                  |                |          |
| 5 Spect<br>↔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 5 <mark>%,</mark> XI - A |           |                     | 282 min) Sub  |                       |               |                  |                |          |
| 5 Spect<br>↔ \$<br>5 C10<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | _             | ~~~~             |                | _        |
| 5 Spect<br>5 C10<br>5-<br>4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | r             | C0               | 7-A28          | -        |
| Spect<br>↔<br>5 C10<br>5-<br>4-<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       |               | C0               | 7-A28          |          |
| Spect<br>↔<br>5 C10<br>5 -<br>4 -<br>3 -<br>2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | C             | CO               | 7-A28          |          |
| Spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       |               | CO               | 7-A28          |          |
| Spect 5 C10 5 C10 5 - 4 - 3 2 - 1 - 1 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | C             | CO               | 7-A28          |          |
| Spect  S  C10  5  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | C             | CO               | 7-A28          |          |
| Spect 5 C10 5 C10 5 4 - 3 - 2 - 1 - 1 - 9 - 8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | C             | C0               | 7-A28          |          |
| Spect 5 C10 5 C10 5 - 4 - 3 3 - 2 1 - 1 9 - 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       | C             | C0               | 7-A28          |          |
| Spect           ↓         ↓           5         C10           5-         -           4-         -           3-         -           2-         -           1-         -           9-         -           8-         -           7-         -           6-         -           5-         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           |                     | 282 min) Sub  |                       |               | CO               | 7-A28          |          |
| S Spect<br>⇒ \$ C10<br>5 C10<br>5 -<br>4 -<br>3 -<br>2 -<br>1 -<br>1 -<br>9 -<br>8 -<br>7 -<br>6 -<br>5 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>5 -<br>7 -<br>6 -<br>5 -<br>4 -<br>6 -<br>7 -<br>6 -<br>6 -<br>7 -<br>6 -<br>7 -<br>6 -<br>7 -<br>7 -<br>8 -<br>7 -<br>8 -<br>8 -<br>7 -<br>8 -<br>8 -<br>8 -<br>8 -<br>8 -<br>8 -<br>8 -<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                |           | in (3.168-3.        | 282 min) Sub  |                       |               | CO               | 7-A28          |          |
| S Spect           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓           ↓         ↓ | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                | 214       |                     |               |                       |               | CO               | 7-A28          |          |
| Spect 5 C10 5 C10 5 4- 3- 2- 1- 1- 9- 8- 7- 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trum Results                                                                   | لا 🛧 ک    | 00                         | 1 • 👖              | <u></u><br>             |          | 213.17180                | 214       | in (3.168-3.        | 282 min) Sub  | 216.                  | 14430<br>+H)+ | C0               |                | 8 13949  |

| Sor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFG             |               | 217 H18 N4                        | (M+H)+<br>Score (mass) |                  |                    | Score (MS) X       | B Score (M | 0.1<br>FG) ⊽ 文 中 Score (is | o spacino)⊽+P   | Height V-1  | 99.67          | ula 🖂 🕁      |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------------------------------|------------------------|------------------|--------------------|--------------------|------------|----------------------------|-----------------|-------------|----------------|--------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 16034 98.9    | , aboing, a                       | 100                    |                  |                    | 99.67              | 99.67      | 99.92                      | o. opdolingy a  |             | C17 H19 N4     |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Height (Calc) 🛛 | 🗢 Height Sum% | (Calc) マ+ H                       | eight % (Calc)         | ⊽ 🗢 m/z (Calc) 🤉 | 7 😐 Diff (mDa      | ) ⊽ ≠ Height ⊽     | 😐 Height % | % 🖙 🗢 Height Sum %         | ⊽+¤ m/z ⊽       | 🗢 Diff (ppn | n) ⊽+₽         |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 278095.1        | 81.9          |                                   | 00                     | 279.16042        | 0.1                | 287067.7           | 100        | 84.5                       | 279.1603        |             | -              |              | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55804.2         | 16.4          | -                                 | 0.1                    | 280.16335        | -0.1               | 45160.2            | 15.7       | 13.3                       | 280.1634        |             | C07            | A28          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5315            | 1.6           |                                   | .9                     | 281.16625        | -1.2               | 6483.6             | 2.3        | 1.9                        | 281.1674        |             | <b>U0</b> /-   | <b>A</b> 40  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 319.5           | 0.1           |                                   | .1                     | 282.16912        | -6.4               | 822.3              | 0.3        | 0.2                        | 282.1755        | _           |                |              | _       |
| Jest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▼+ ID Source ▼  |               |                                   |                        |                  |                    | Score (RT) VI      | RT Diff 🛛  | '+P Diff (ppm) \\ +P S     | icore (Lib) 🖓 🕈 | Score (DB)  |                | MFG) 🔽 🖶 Num | Spectra |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             |               | C9 H24 N6 P2                      | (M+H)+                 |                  |                    |                    |            | 1.92                       |                 |             | 99.26          |              |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             | -             | 16 H22 O4                         | (M+H)+                 |                  |                    |                    |            | -4.47                      |                 |             | 98.62          |              |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             | _             | 0 H22 N6 O2 15 H23 N2 O F         |                        |                  |                    |                    |            | -3.28                      |                 |             | 97.92<br>97.56 |              | _       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             |               | 2 15 H23 N2 O 1<br>28 H22 N6 O3 1 |                        |                  |                    |                    |            | -4.34                      |                 | _           | 97.56          |              | -       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MEG             |               | 16 H26 S Si                       | (M+H)+                 |                  |                    |                    |            | -3.23                      |                 |             | 97.12          |              |         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MEG             | -             | 12 H26 O5 Si                      | (M+H)+                 |                  | 97                 |                    |            | 5.89                       |                 |             | 97             |              |         |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             | C             | 13 H26 O4 S                       | (M+H)+                 |                  | 96.06              |                    |            | 7                          |                 |             | 96.06          |              |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFG             | C             | 15 H26 O Si2                      | (M+H)+                 | 279.16034        | 96.01              |                    |            | -4.22                      |                 |             | 96.01          |              |         |
| SSpe<br>↔ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t I Q 🗊 🚀       |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         |                    | tion Results: + Sc |            |                            |                 |             |                |              |         |
| S Spe<br>↔ 1<br>5 C1<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| 5 Spe<br>↔ 1<br>5 C1<br>2-<br>3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % 🍾 🕅              | 5034               |            |                            |                 |             |                |              |         |
| 5 Spe<br>↔ 1<br>5 C1<br>2-<br>3-<br>.8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| Spe<br>⇒ 1<br>5 C1<br>2-<br>3-<br>8-<br>6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| 5 Spe<br>5 C <sup>+</sup><br>2 -<br>3 -<br>8 -<br>6 -<br>4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| 5 Spe<br>5 C1<br>2-<br>3-<br>8-<br>6-<br>4-<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| S Spe<br>5 C <sup>+</sup><br>2-<br>3-<br>8-<br>6-<br>4-<br>2-<br>2-<br>2-<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| S Spe<br>3 C1<br>2 -<br>3 -<br>.6 -<br>.4 -<br>2 -<br>.8 -<br>.8 -<br>.6 -<br>.4 -<br>.8 - | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| S Spe<br>3 C1<br>2 -<br>3 -<br>.6 -<br>.4 -<br>2 -<br>.8 -<br>.8 -<br>.6 -<br>.4 -<br>.8 - | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| Spe         1           5         C1           2-         3-           8-         6-           4-         2-           2-         8-           6-         4-           2-         6-           6-         6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| S Spe           ↔         1           5         C'           3         -           6-         -           4-         -           2-         -           8-         -           6-         -           4-         -           2-         -           8-         -           6-         -           4-         -           6-         -           4-         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| S Spe       ↔     1       5     C'       2-     3-       8-     6-       4-     2-       2-     2-       8-     6-       4-     2-       2-     2-       2-     2-       2-     2-       2-     2-       2-     2-       2-     2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 5034               |            |                            |                 |             |                |              |         |
| Spe       t++     1       5     C1       2-     3-       8-     6-       4-     2-       2-     8-       6-     4-       2-     2-       1-     1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 288                | ).16340    |                            |                 |             |                |              |         |
| S Spe<br>S C <sup>1</sup><br>2-<br>3-<br>8-<br>6-<br>4-<br>2-<br>2-<br>2-<br>8-<br>6-<br>4-<br>2-<br>1-<br>8-<br>8-<br>8-<br>8-<br>8-<br>8-<br>8-<br>8-<br>8-<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 288                |            |                            |                 |             |                |              |         |
| Spe           5         C           2         3           8         6           4         2           2         4           2         1           8         6           6         4           6         6           4         6           6         6           6         6           6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 288                | ).16340    | 281 16742                  |                 |             |                |              |         |
| 5 Spe<br>↔ 1<br>5 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t Q 🚺 🚧         |               | 90                                | 1 - 👖 🛌                | ₩ LL   ≫         | % <mark>%</mark> 🎇 | 288                | ).16340    |                            |                 |             |                |              |         |

| •                                                                                                                                                                                              | MFG                                                |                  | C19 H24 N6    |                | (M+H)+        | 337.21327               |                       |                  |        |                    | 0.42                 |         |                   |                     | 99.7              |                |         |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------|---------------|----------------|---------------|-------------------------|-----------------------|------------------|--------|--------------------|----------------------|---------|-------------------|---------------------|-------------------|----------------|---------|----|
|                                                                                                                                                                                                | ecies ⊽+¤ m/z                                      |                  |               | Score<br>99.97 |               | Score (MFG              | . MS/MS) 🛛 🗗          | Score (1<br>99.7 |        | Score (MF)<br>99.7 | G) ⊽ 🖓 中 Sco<br>99 ( |         | acing) ⊽+¤        | Height V<br>80910.5 | Ion Fo<br>C19 H25 |                | 8-Þ     |    |
| 1                                                                                                                                                                                              |                                                    | 1327 99.2        |               | 1              |               |                         |                       |                  |        |                    | 1                    |         |                   |                     | C 19 HZ           | 0 146          |         |    |
|                                                                                                                                                                                                | Height (Calc) ▼<br>79810,7                         | Height S<br>79.5 | um% (Calc) ∀+ | Height         | % (Calc) \7 + | m/z (Calc)<br>337.21352 | 7 -⊨ Diff (mDa<br>0.3 |                  |        | Height %           | ☆ # Height S<br>80.6 | um % ∀+ | m/z ♥<br>337.2132 |                     |                   |                |         |    |
|                                                                                                                                                                                                | 18379.9                                            | 18.3             |               | 23             |               | 338.21631               | -0.1                  |                  |        | 19.8               | 15.9                 |         | 338.2163          |                     |                   | $\mathbb{C}07$ | -A2     | 8  |
|                                                                                                                                                                                                | 2024.5                                             | 2                |               | 2.5            |               | 339,21907               | -1.8                  |                  |        | 3.5                | 2.8                  |         | 339.2208          |                     |                   |                |         | V  |
|                                                                                                                                                                                                | 141.9                                              | 0.1              |               | 0.2            |               | 340.22179               | -0.4                  | 65               | 50     | 0.8                | 0.6                  |         | 340.2222          | 3 -1.29             | _                 |                |         | -  |
| est                                                                                                                                                                                            | ▼+ ID Source ▼                                     | '+■ Name マ       | -e Formula    | 7+             | Species V+    | - m/z ⊽+¤               | Score V V +           | Score (          |        | RT Diff 🟹 🕇        | Diff (ppm) 5         | - Score | (Lib) 🛛 🕂         | Score (DB           | ) ⊽ +P Scor       | e (MFG)        | ⊽+¤ Num | Sp |
|                                                                                                                                                                                                | MFG                                                | -                | C16 H33 O5 I  |                | (M+H)+        | 337.21327               |                       | 1                |        |                    | 1.68                 | -       |                   |                     | 99.6              |                |         |    |
| 3                                                                                                                                                                                              | MFG                                                |                  | C18 H28 N2 0  | D4             | (M+H)+        | 337.21327               | 99.14                 |                  |        |                    | -3.36                | -       |                   |                     | 99.1              | 4              |         |    |
| 5                                                                                                                                                                                              | MFG                                                |                  | C17 H29 N4 0  | 0 P            | (M+H)+        | 337.21327               | 97.86                 |                  |        |                    | 5.43                 |         |                   |                     | 97.8              | 6              |         |    |
| 3                                                                                                                                                                                              | MFG                                                |                  | C18 H32 N2 S  | S Si           | (M+H)+        | 337.21327               | 97.29                 |                  |        |                    | -2.58                |         |                   |                     | 97.2              | 9              |         |    |
| 2                                                                                                                                                                                              | MFG                                                |                  | C14 H32 N2 (  | D5 Si          | (M+H)+        | 337.21327               | 97.27                 |                  |        |                    | 5.03                 |         |                   |                     | 97.2              | 7              |         |    |
| 2                                                                                                                                                                                              | MFG                                                |                  | C17 H32 N2 0  | D Si2          | (M+H)+        | 337.21327               | 96.56                 |                  |        |                    | -3.38                |         |                   |                     | 96.5              | 6              |         |    |
| 7                                                                                                                                                                                              | MFG                                                |                  | C15 H32 N2 (  | D4 S           | (M+H)+        | 337.21327               | 96.41                 |                  |        |                    | 5.89                 |         |                   |                     | 96.4              | 1              |         |    |
| 2                                                                                                                                                                                              | MFG                                                |                  | C12 H29 N6 0  | 03 P           | (M+H)+        | 337.21327               | 96.34                 |                  |        |                    | -6.84                |         |                   |                     | 96.3              | 4              |         |    |
| 5                                                                                                                                                                                              | MFG                                                |                  | C20 H33 P S   |                | (M+H)+        | 337.21327               | 96.02                 |                  |        |                    | -6.5                 |         |                   |                     | 96.0              | 2              |         |    |
| Spe                                                                                                                                                                                            | togram Results   Ma<br>ectrum Results<br>‡   Q 🚺 🐼 |                  |               |                |               |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→                                                                                                                                                                                       | ectrum Results                                     | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ :                                                                                                                                                                                     | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ :<br>2 -                                                                                                                                                                              | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ :<br>5 C<br>2 -                                                                                                                                                                       | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -                                                                                                                                                                              | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>5 -                                                                                                                                                                | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -                                                                                                                                                                              | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2-<br>3-<br>3-<br>4-<br>2-                                                                                                                                                       | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ :<br>5 C<br>2 -<br>3 -<br>4 -<br>2 -<br>2 -                                                                                                                                           | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe 5 C 2 - 3 - 3 - 4 - 2 - 2 -                                                                                                                                                                | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>4 -<br>2 -<br>2 -<br>3 -<br>3 -<br>3 -<br>4 -<br>2 -<br>3 -                                                                                                        | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ C<br>5 C<br>2 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3                                                                                                                 | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→ C<br>2 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>4 -<br>4 -<br>4 -                                                                                                        | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         | % 🧏 🕅                 |                  |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>3 -<br>3 -<br>4 -<br>2 -<br>2 -<br>3 -<br>3 -<br>4 -<br>2 -<br>2 -<br>2 -<br>2 -<br>2 -<br>2 -<br>2 -<br>2                                                         | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         |                       | 1327             |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>4 -<br>2 -<br>3 -<br>4 -<br>2 -<br>1 -                                                                                                                             | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         | % <mark>%</mark> 🕅    | 1327             |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>3 -<br>4 -<br>2 -<br>2 -<br>3 -<br>4 -<br>2 -<br>2 -<br>3 -<br>4 -<br>3 -<br>3 -<br>4 -<br>3 -<br>3 -<br>4 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 -<br>3 | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         | % <mark>%</mark> 🕅    | 1327             |        | (5.195-5.3         | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>5 C<br>2 -<br>3 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4                                                                                                                 | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         | % <mark>%</mark> 🕅    | 1327             | 338.21 | 1639               | 09 min) Sub          |         |                   |                     |                   |                |         |    |
| Spe<br>→                                                                                                                                                                                       | t I Q 🚺 🐲                                          | ષ્ટ 🛧            | ▲ 9 ල         | 1 •            | 1 🖻 P         |                         | % <mark>%</mark> 🕅    | 1327             | 3      | 1639               | 09 min) Sub          |         |                   |                     |                   |                |         |    |

| -                                                                                                                                       | pecies ⊽+¤ m/z     | . ⊽+¤ Score        | (iso. abund) ⊽+¤ | Scor          | e (mass) 🗸 🕂   | Score (MFC | 6, MS/MS) 🔽 I | P Score (MS) マキ             | Score (MFG)        | v - P Score (      | iso. spacing) マ+Þ       | Height V*    | P Ion Formula ❤   | · 6                                    |               |            |    | _         |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------------|---------------|----------------|------------|---------------|-----------------------------|--------------------|--------------------|-------------------------|--------------|-------------------|----------------------------------------|---------------|------------|----|-----------|
|                                                                                                                                         |                    | 17204 99.86        |                  | 96.9          | -              |            |               | 98.22                       | 98.22              | 98.84              |                         |              | C10 H21 N4 O      |                                        |               |            |    | 1         |
|                                                                                                                                         | Height (Calc) V    | Height Sur<br>88.1 |                  | Height<br>100 | % (Calc) ∀ ≉   | m/z (Calc) | ⊽ ≄ Diff (mD  | a) ⊽ ≄ Height ⊽<br>175015.6 | Height % ∀<br>100  | Height Sum<br>89.4 | % ▽ + m/z ▽<br>213.1720 |              | n) ∇+₽            |                                        | <b>:09-</b> ] | RG2        | 28 |           |
|                                                                                                                                         | 21657.4            | 11.1               |                  | 12.6          |                | 214.17367  | -1.8          | 19493.8                     | 11.1               | 10                 | 214.1754                |              |                   |                                        |               |            | -  |           |
|                                                                                                                                         | 1608.6             | 0.8                |                  | 0.9           |                | 215.17605  | 2.3           | 1233.6                      | 0.7                | 0.6                | 215.1737                |              |                   |                                        |               |            | _  | •         |
| Peet                                                                                                                                    | V ≠ ID Source V    | T-D Mana 77.4      | Encode           |               | Consider TV II |            | Cases V TT J  | Seere (PT) 77 47            |                    | # (new) \[\]       |                         | _            | Zr≠ Score (MFG) ⊽ | An New Country VI                      | 7.47 Mates 77 | PT (Tel) 1 |    | T de Dese |
| IC.                                                                                                                                     | MFG                | ivalite v v        | C8 H28 Ca O3     |               | (M+H)+         | 213.17204  |               | Score (KI) V -              | 7.                 |                    | Score (Lib) V - 3       | score (DB) 1 | 96.59             | ······································ | I VOICS V     | - KI (190  |    | I - Hec   |
| C                                                                                                                                       | MEG                |                    | H28 N2 Na4 O4    |               | (M+H)+         | 213.17204  |               |                             |                    | .99                |                         |              | 92.86             |                                        |               |            |    |           |
| C                                                                                                                                       | MFG                |                    | Ca H32 N2 O5     |               | (M+H)+         | 213.17204  |               |                             | 3                  |                    |                         |              | 92.85             |                                        |               |            |    |           |
| C                                                                                                                                       | MFG                |                    | H30 N4 Na2 O     | S2            | (M+H)+         | 213.17204  | 90.81         |                             | 1.                 | 96                 |                         |              | 90.81             |                                        |               |            |    |           |
| C                                                                                                                                       | MFG                |                    | C7 H21 Ca N5     | -             | (M+H)+         | 216.14996  |               |                             | -1                 | .75                |                         |              | 87.33             |                                        |               |            |    |           |
| C                                                                                                                                       | MFG                |                    | C8 H21 N4 Na     | 0             | (M+H)+         | 213.17204  | 86.66         |                             | -1                 | 6.63               |                         |              | 86.66             |                                        |               |            |    |           |
| C                                                                                                                                       | MFG                |                    | Ca H30 N4 Na     | 02            | (M+H)+         | 213.17204  | 86.39         |                             | -1                 | 0.45               |                         |              | 86.39             |                                        |               |            |    |           |
| С                                                                                                                                       | MFG                |                    | C13 H17 N3       |               | (M+H)+         | 216.14996  | 85.48         |                             |                    | .78                |                         |              | 85.48             |                                        |               |            |    |           |
| С                                                                                                                                       | MFG                |                    | H28 N5 Na P2     |               | (M+H)+         | 216.14996  |               |                             | 4.                 |                    |                         |              | 85.23             |                                        |               |            |    |           |
| С                                                                                                                                       | MFG                |                    | H26 N5 Na O2     | S2            | (M+H)+         | 216.14996  | 84.97         |                             | -1                 | .17                |                         |              | 84.97             |                                        |               |            |    |           |
| 05 0                                                                                                                                    | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                |            |               | 123                         |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-                                                                                                                                      | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-                                                                                                                              | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   |               |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2 -<br>1.9 -<br>1.8 -                                                                                                                   | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.7-                                                                                                              | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-                                                                                              | C10 H20 N4 O: + Se | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-                                                                                      | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-<br>1.3-                                                                              | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.7-<br>1.6-<br>1.5-<br>1.4-<br>1.3-<br>1.2-                                                                              | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-                                                                              | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.6-<br>1.5-<br>1.4-<br>1.3-<br>1.2-<br>1.1-<br>1.1-                                                              | C10 H20 N4 O: + So | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1-<br>.9-                                                                 | C10 H20 N4 O: + So | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1.9-<br>1.8-                                                                     | C10 H20 N4 O: + So | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1-<br>.9-<br>.8-<br>1.7-                                           | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-<br>1.3-<br>1.2-<br>1.1-<br>0.9-<br>0.8-<br>0.6-<br>0.5-                              | C10 H20 N4 O: + Se | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-                       | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             | 214.17545          |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1.9-<br>.8-<br>1.9-<br>.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-<br>1.3- | C10 H20 N4 O: + Sc | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             | 214.1754<br>(M+H)+ |                    |                         |              |                   |                                        |               |            |    |           |
| 2-<br>.9-<br>.8-<br>.7-<br>.6-<br>.5-<br>.4-<br>.3-<br>.2-<br>.1-<br>1.9-<br>1.8-<br>1.7-<br>1.6-<br>1.5-<br>1.4-                       | 211.09603          | an (3.173-3.24     |                  |               |                | Subtract   | 213.17204     |                             |                    |                    | 215.1                   |              |                   | 216,14996                              |               |            |    |           |

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C14 H33 N2 O3                  |                  |                        |                                 |                      | .,                | 174 Diff (ppm) 74 S<br>1.64 |                    | 99            |           |            |                |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|--------------------------------|------------------|------------------------|---------------------------------|----------------------|-------------------|-----------------------------|--------------------|---------------|-----------|------------|----------------|--------------|
| Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ecies ⊽+¤ m/z                               | ∀+P Score   | (iso, abund) 🗸 🕫               | Score (mass) T   | 7- Score (MF)          | G. MS/MS) T                     | 7 + Score ()         | MS) ⊽ + Score     | (MFG) ⊽ ⊽ + Score (i        | so. spacino) ⊽+¤ I | leicht⊽+> Ion | Formula   | 7.0        |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             | 22972   100 |                                | 99.62            |                        |                                 | 99.8                 | 99.8              | 99.9                        |                    |               | 134 N2 O3 |            |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Height (Calc) V                             | Height Su   | m% (Cale) ⊽ # H                | eight % (Calc)   | ∵ + m/z (Calc)         | ∵ +e Diff (n                    | Da) 🔽 🖶 He           | eight ⊽-₽ Heig    | ht % 🐨 😐 Height Sum 1       | % ⊽+9 m/z ⊽+9      | Diff (ppm)    |           |            |                | _            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159026.2                                    | 84.4        |                                | 00               | 309.23016              | 0.4                             |                      | 58980.4 100       | 84.4                        | 309.22972          |               | -         |            |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26045.3                                     | 13.8        | 1                              | 6.4              | 310.2333               | 0.7                             | 25                   | 5983 16.3         | 13.8                        | 310.23265          | 2.1           | •         | 209-1      | <b>RG28</b>    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2980.8                                      | 1.6         |                                | .9               | 311.23577              | 2                               |                      | 959 1.9           | 1.6                         | 311.23378          |               |           |            |                | _            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 255.9                                       | 0.1         | 0                              | 2                | 312.2383               | 5.7                             | 38                   | 85.9 0.2          | 0.2                         | 312.23258          | 18.31         |           |            |                |              |
| est '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ▼ ID Source ▼                               | Hame V      |                                |                  |                        |                                 | + Score (R           | T) 🔽 🕈 RT Dif     | i⊽+¤ Diff (ppm) ⊽+¤ S       | Score (Lib) マ+ So  |               |           | 🖓 🖶 Num Sp | ectra 🖓 🕫 Note | is 🛛 🕫 RT (T |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C13 H33 Ca N4                  |                  | 309.22972              |                                 |                      |                   | 1.28                        |                    | 99            |           |            |                |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C19 H29 N2 Na<br>C12 H37 Ca Na |                  | 309.22972              |                                 | _                    |                   | -2.73                       |                    | 99            |           | _          |                |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MEG                                         |             | C12 H37 Ca Na<br>C16 H28 N4 O2 |                  | 309.22972<br>309.22972 |                                 |                      |                   | -3.83                       |                    | 99            |           |            |                |              |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C10 H32 Ca N6                  | 1                | 309.22972              |                                 |                      |                   | -4.19                       |                    | 98            |           |            |                |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C14 H36 Ca O4                  | (M+H)+           | 309.22972              | 98.07                           |                      |                   | 5.09                        |                    | 98            | .07       |            |                |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C17 H36 Ca Si                  | (M+H)+           | 309.22972              |                                 |                      |                   | -4.32                       |                    | 97            |           |            |                |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MFG                                         |             | C17 H30 N2 Na                  |                  | 309.22972              |                                 |                      |                   | -6.23                       |                    | 97            |           |            |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |             |                                | Si (M+H)+        | 309.22972              |                                 |                      |                   | 5.62                        |                    | 97            |           |            |                |              |
| 6 Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFG<br>ogram Results   Mi<br>ectrum Results |             |                                | or: Generate For | rmulas 🧏 Spe           | ctrum Identif                   |                      |                   | 1                           |                    |               |           |            |                |              |
| SSper<br>↔ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ogram Results   Ma                          | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spei<br>↔ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| 5 Sper<br>↔ 1<br>5 C1<br>6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spe<br>↔ 1<br>5 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| 6 Sper<br>↔ 1<br>5 C1<br>6-<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Sper<br>Sper<br>5 C1<br>6-<br>5-<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spectrum<br>5 C1<br>6-<br>5-<br>5-<br>5-<br>5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spec<br>→ 1<br>5 C1<br>6-<br>5-<br>5-<br>4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spec<br>→ 1<br>5 C1<br>6-<br>5-<br>5-<br>4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spec       5       5       6-       5-       5-       5-       5-       5-       5-       5-       5-       5-       5-       5-       5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| 5 Sper<br>↔ 1<br>5 C1<br>6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | ctrum Identif                   |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spectra Spect | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | t                               | äli ≈ I.             | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Sper<br>Sper<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | 5 % <sup>3</sup> / <sub>5</sub> |                      | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spec     Spec     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S           | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | 5 % <sup>3</sup> / <sub>5</sub> | <b>24</b>   <b>2</b> | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spec           Spec           S         C1           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S           S         S <tr< td=""><td>ogram Results   Ma<br/>Actrum Results</td><td><b>v</b> 🛧</td><td>r 🕑 Method Edito</td><td>or: Generate For</td><td>rmulas <u>此</u> Sper</td><td>5 % <sup>3</sup>/<sub>5</sub></td><td><b>24</b>   <b>2</b></td><td>its: + Scan (3.1)</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | 5 % <sup>3</sup> / <sub>5</sub> | <b>24</b>   <b>2</b> | its: + Scan (3.1) | 1                           |                    |               |           |            |                |              |
| Spectra Spect | ogram Results   Ma<br>Actrum Results        | <b>v</b> 🛧  | r 🕑 Method Edito               | or: Generate For | rmulas <u>此</u> Sper   | 5 % <sup>3</sup> / <sub>5</sub> | <b>24</b>   <b>2</b> | lts: + Scan (3.1) | 1                           |                    |               |           |            |                |              |

| )                                                                    | MFG                                                |                 | C9 H16 N2 O                    | (M+H)+                 | 169.13415    | 99.28                        |                  |                | -3.62          |                      |                     |                |         |             |         |            |     |
|----------------------------------------------------------------------|----------------------------------------------------|-----------------|--------------------------------|------------------------|--------------|------------------------------|------------------|----------------|----------------|----------------------|---------------------|----------------|---------|-------------|---------|------------|-----|
| Sp                                                                   | ecies ⊽+¤ m/a                                      | z ⊽+¤ Score (   | iso. abund) 🗸 🛱                | Score (mass) 🗸         | Score (MF    | G, MS/MS) 🔻                  | + Score (MS) V   | 中 Score (Mi    | G)⊽⊽‡ Score    | e (iso. spacing) 🗸 🕈 | Height 🗸 🕂 🛛        | on Formula 🛛 🗸 | 4       |             |         |            |     |
| (                                                                    | M+H)+ 169                                          | .13415 99.64    |                                | 98.73                  |              |                              | 99.28            | 99.28          | 99.95          | 5                    | 279590.4 CS         | 9 H17 N2       | _       |             |         |            |     |
|                                                                      | Height (Calc) 5                                    | ⊽ 🗢 Height Sum  | % (Calc) ⊽ 🖷 H                 | ight % (Calc) ⊽        | 🖶 m/z (Calc) | ⊽ 🗢 Diff (ml                 | Da) ⊽+¤ Height 1 | 7 ≠ Height %   |                | m%⊽≄ m/z ⊽           | 😐 Diff (ppm) 🔽      | •              | C       | 111         | 1 20    | <b>`</b>   |     |
|                                                                      | 277247.1                                           | 89.7            | 1                              | 0                      | 169.13354    | -0.6                         | 279590.          | 4 100          | 90.5           | 169.134              | 5 -3.62             |                | U U     | 211-        | AJ      | )          |     |
|                                                                      | 29661.1                                            | 9.6             |                                | ).7                    | 170.13652    |                              | 24745.8          |                | 8              | 170.137              | -2.81               |                |         |             |         |            |     |
|                                                                      | 2006.7                                             | 0.6             | 0                              | /                      | 171.13898    | -1.1                         | 4578.7           | 1.6            | 1.5            | 171.1400             | 6 -6.32             | _              |         |             |         |            |     |
| st                                                                   | ▼+P ID Source 1                                    | ⊽+¤ Name ⊽+¤    | Formula                        | '⇔ Species マ-          | e m/z ⊽+e    | Score⊽⊽⊀                     | Score (RT) ▼⊀    | RT Diff 🛛 ≠    | Diff (ppm) ⊽+¤ | Score (Lib) マ ₽      | core (DB) 🛛 🗭       | Score (MFG) 🏹  | + Num S | Spectra 🛛 🕂 | Notes 🗸 | 🕂 RT (Tgt) | 7-2 |
|                                                                      | MFG                                                |                 | C9 H14 O3                      | (M+H)+                 | 171.10202    |                              |                  |                | -1.27          |                      |                     | 96.66          |         |             |         |            |     |
|                                                                      | MFG                                                |                 | C9 H12 O3                      | (M+H)+                 | 169.08695    |                              |                  |                | -6.09          |                      |                     | 86.22          |         |             |         |            |     |
|                                                                      | MFG                                                |                 | C8 H15 N2 P                    | (M+H)+                 | 171.10202    |                              |                  |                | 16.39          |                      |                     | 85.29          |         |             |         |            |     |
|                                                                      | MFG                                                |                 | C5 H10 N6 O                    | (M+H)+                 | 171.10202    |                              |                  |                | -18.09         |                      |                     | 85.08          |         |             |         |            |     |
|                                                                      | MFG                                                |                 | C2 H12 N6 O S                  | (M+H)+                 | 169.08695    |                              |                  |                | -3.29          |                      |                     | 84.05          |         |             |         | -          |     |
|                                                                      | MFG                                                |                 | C8 H13 N2 P                    | (M+H)+                 | 169.08695    |                              |                  |                | 11.5           |                      |                     | 82.15<br>80.51 |         |             |         | -          |     |
| _                                                                    | MFG                                                |                 | C14 H30 N6 O2<br>C15 H31 N4 O3 |                        | 174.11480    |                              |                  |                | -3.66          |                      |                     | 80.51<br>80.31 |         |             |         | -          |     |
|                                                                      | MFG                                                |                 | C15 H31 N4 O3<br>C14 H32 N6 P2 | P (M+2H)+2<br>(M+2H)+2 | 174.11480    |                              |                  |                | -3.66          |                      |                     | 80.31          | _       |             |         | -          | -   |
| _                                                                    | MFG                                                |                 | C14 H32 N6 F2                  | · · · · · · · · · ·    | 169.08695    |                              |                  |                | -12.96         |                      |                     | 79.74          | _       |             |         |            | -   |
|                                                                      |                                                    |                 |                                | 10                     |              |                              | 1                |                |                |                      | I                   |                | -       |             | 1       |            |     |
| Spe<br>>                                                             | togram Results   N<br>ectrum Results<br>‡   Q, 💽 🎲 | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       |                              |                  | 6can (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | ectrum Results                                     | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| C                                                                    | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | 4 2              | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| C                                                                    | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| C                                                                    | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | .13415           | 6can (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| C                                                                    | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
|                                                                      | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 C                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 C                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 C                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u> (2</b><br>169. | .13415           | Scan (3.513-3. | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C                                                             | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 0                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | 13415<br>HHP+    |                | 627 min) Sub   |                      |                     |                |         |             |         |            |     |
| Spe<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | t 🔍 💽 🎲                                            | ا <b>د</b> الج  | 19 C                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | 13415<br>HH9-    | Scan (3.513-3. | 171 10202      |                      |                     |                |         |             |         |            |     |
|                                                                      | t 🔍 💽 🎲                                            | an (3513-3627 r | 19 C                           | - 🔳 🛏                  | ын П 渊       | <b>% <u>%</u>  2</b><br>169. | 13415<br>HH9-    | 70 13700       |                | 172 16428<br>(MHI)=  | 173.11658<br>(MHD)- | 5 174.1        |         | 175.098     | 388     | 176.09486  |     |

| •                                                                                                                                                                                                                                                                                                     |                                                     |                                                             |           |                  |                        |                 |                  |                    |                    |                    |              |                   |                     |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-----------|------------------|------------------------|-----------------|------------------|--------------------|--------------------|--------------------|--------------|-------------------|---------------------|---------------|
|                                                                                                                                                                                                                                                                                                       |                                                     | マ+P         Score (iso. abund)           8736         99.91 | 98.       |                  | Score (MP)             | а, мә/мә) ж     | 99.26            | 99.26              | 99.72              |                    |              | C11 H23 N4 O      |                     |               |
|                                                                                                                                                                                                                                                                                                       | Height (Calc) V4                                    | ⊨ Height Sum% (Calc) ⊽                                      | + Heigh   | nt % (Calc) ⊽    | 🗢 m/z (Calc)           | ∵ 🗢 Diff (mD    | )a) ⊽ 🗢 Height ⊽ | 7+= Height 3       | % ⊽+¤ Height Sum   | % ⊽+⊨ m/z ⊽+       | Diff (ppm)   | 7+₽               | C11-                | A 30          |
|                                                                                                                                                                                                                                                                                                       | 124467.5                                            | 87.2                                                        | 100       |                  | 227.18664              | -0.7            | 125640.3         | 3 100              | 88                 | 227.18736          | -3.16        |                   | <b>U</b> 11-        | AJU           |
|                                                                                                                                                                                                                                                                                                       | 17003.8                                             | 11.9                                                        | 13.7      |                  | 228.18938              | -1.1            | 15718.7          | 12.5               | 11                 | 228.19047          |              |                   |                     |               |
|                                                                                                                                                                                                                                                                                                       | 1333.8                                              | 0.9                                                         | 1.1       |                  | 229.19183              | -1.6            | 1446.2           | 1.2                | 1                  | 229.1934           | -6.84        |                   |                     |               |
| Best 1                                                                                                                                                                                                                                                                                                | V ID Source V I                                     | Þ Name ⊽ Þ Formul                                           | ∀#        | Species V        | ⊨ m/z ⊽+¤              | Score V V +     | Score (RT) V+    | RT Diff 🔽          | Þ Diff (ppm) マ+Þ : | Score (Lib) ⊽ + Sc | ore (DB) 🖓 🛱 | Score (MFG) V + N | lum Spectra 🗸 🗭 Not | es 🗸 🕫 RT (Tg |
| С                                                                                                                                                                                                                                                                                                     | MFG                                                 | C14 H26 S                                                   |           | (M+H)+           | 227.18736              | 80.51           |                  |                    | -20.46             |                    |              | 80.51             |                     |               |
| 0                                                                                                                                                                                                                                                                                                     | MFG                                                 | C14 H27 F                                                   |           | (M+H)+           | 227.18736              |                 |                  |                    | 22.1               |                    |              | 78.74             |                     |               |
| C                                                                                                                                                                                                                                                                                                     | MFG                                                 | C8 H19 N                                                    |           | (M+H)+           | 234.13898              |                 |                  |                    | 2.01               |                    |              | 76.6              |                     |               |
| 0                                                                                                                                                                                                                                                                                                     | MFG                                                 | C9 H20 N                                                    |           | (M+H)+           | 234.13898              |                 |                  |                    | -4.77              |                    |              | 75.4              |                     |               |
| 0                                                                                                                                                                                                                                                                                                     | MFG                                                 | C11 H15 P                                                   |           | (M+H)+           | 234.13898              |                 |                  |                    | -12.07             |                    |              | 70.41             |                     |               |
| 0                                                                                                                                                                                                                                                                                                     | MFG                                                 | C14 H20 M                                                   | -         | (M+H)+           | 234.13898              |                 |                  |                    | 12.89              |                    |              | 69.45<br>65.85    |                     |               |
| -                                                                                                                                                                                                                                                                                                     | MEG                                                 | C11 H23 M<br>C10 H20 C                                      |           | (M+H)+<br>(M+H)+ | 234.13898<br>234.13898 |                 |                  |                    | -13.87             |                    |              | 65.85             |                     |               |
| -<br>-                                                                                                                                                                                                                                                                                                | MFG                                                 | C10 H20 C                                                   |           | (M+H)+<br>(M+H)+ |                        | 64.33           |                  |                    | -3.9/              |                    |              | 62.05             |                     |               |
|                                                                                                                                                                                                                                                                                                       |                                                     | CIUNISI                                                     | 00        | (man)+           | 234.13030              | 02.00           |                  |                    | -11.66             |                    |              | 06.00             |                     |               |
| Spe<br>⇔ 1                                                                                                                                                                                                                                                                                            | t I Q 🗊 🚧                                           | C11 H24 1<br>ss Calculator I Method                         | Editor: G | • 11 🙌           | 년 대 🛪                  | ctrum Identific |                  | ""<br>can (3.513-3 | 27.13              |                    |              | 48.55             |                     |               |
| Spe<br>→ 1<br>5 C1<br>2-                                                                                                                                                                                                                                                                              | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | ctrum Identific |                  |                    |                    |                    |              | 48.55             |                     |               |
| Sper<br>→ 1<br>5 C1<br>2-<br>3-<br>8-                                                                                                                                                                                                                                                                 | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | ctrum Identific |                  |                    |                    |                    |              | 48.55             |                     |               |
| Sper<br>→ 1<br>5 C1<br>2-<br>3-<br>8-<br>6-                                                                                                                                                                                                                                                           | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | ctrum Identific |                  |                    |                    |                    |              | 48.55             |                     |               |
| Sper<br>→ 1<br>5 C1<br>2 -<br>3 -<br>8 -<br>4 -<br>2 -                                                                                                                                                                                                                                                | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | ctrum Identific |                  |                    |                    |                    |              | 48.55             |                     |               |
| Sper<br>→ 1<br>5 C1<br>3-<br>3-<br>8-<br>6-<br>4-<br>2-<br>2-<br>2-                                                                                                                                                                                                                                   | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | ctrum Identific |                  |                    |                    |                    |              | 48.55             |                     |               |
| S Spec           S Spec           S S C1           S S C1           S S C1           S S C1           S S S S S S S S S S S S S S S S S S S                                                                                                                                                           | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | 227.            |                  |                    |                    |                    |              | 48.55             |                     |               |
| Spec           1           3           5         C1           3         -           6         -           4         -           2         -           8         -           6         -           4         -           6         -           4         -           6         -           4         - | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | 227.            | 18736            |                    |                    |                    |              | 48.55             |                     |               |
| Spec           1           1           1           1           1           1           1           1           1           1           1           1           1                                                                                                                                      | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | 227.            | 18736            |                    |                    |                    |              |                   |                     |               |
| Spe<br>⇔ 1                                                                                                                                                                                                                                                                                            | togram Results   Mat<br>ectrum Results<br>‡   Q 🛐 💓 | ss Calculator 📝 Method                                      | Editor: G | ienerate Form    | ulas <u>내</u> Spe      | 227.            | 18736<br>HH)+    |                    |                    |                    | 231,1310     |                   |                     | 244 1385      |

|                                                                                                          | MFG                                                                                                    |              | C24 H49 O5 F |                  | (M+H)+           | 449.33925              |                |                         |                       | -0.3                         |                  |               | 99.98         |                |           |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|--------------|------------------|------------------|------------------------|----------------|-------------------------|-----------------------|------------------------------|------------------|---------------|---------------|----------------|-----------|
|                                                                                                          | ecies ⊽+¤ m/z<br>M+H)+ 449.3                                                                           | 33925 99.99  |              | Score (<br>99.98 | (mass) 🖓 🕫       | Score (MFG             | , MS/MS) 🏹 🕈   | Score (MS) ▼ 4<br>99.98 | 99.98                 | i) V V IP Score (ii<br>99.93 |                  |               | C24 H50 O5 P  | <b>∀</b> +₽    |           |
|                                                                                                          | Height (Calc) 🛛                                                                                        | ·⇔ Height Su | m% (Calc) ⊽≠ | Height %         | (Calc) ⊽≠        | m/z (Calc)             | 7+⊨ Diff (mDa) | ı) ⊽ ≠ Height ⊽ -       | Height % 1            | ⊽+⊨ Height Sum <sup>9</sup>  | (⊽+¤ m/z ⊽+      | Diff pm) 5    | 74            |                | _         |
|                                                                                                          | 263536.8                                                                                               | 75.9         |              | 100              |                  | 449.33904              | -0.2           | 263179.7                | 100                   | 75.8                         | 449.33925        |               | C11           | -A30           | - 1       |
|                                                                                                          | 70425.7                                                                                                | 20.3         |              | 26.7             |                  | 450.34246              | 0.1            | 69973.3                 | 26.6                  | 20.1                         | 450.34236        | 0.23          |               | 1100           | _         |
|                                                                                                          | 11747.7                                                                                                | 3.4          |              | 4.5              |                  | 451.34529              | -0.4           | 11639.4                 | 4.4                   | 3.4                          | 451.34571        |               |               |                |           |
|                                                                                                          | 1464.6                                                                                                 | 0.4          |              | 0.6              |                  | 452.34803              | 1.1            | 2037.8                  | 0.8                   | 0.6                          | 452.34691        |               | _             |                |           |
|                                                                                                          | 147.5                                                                                                  | 0            |              | 0.1              |                  | 453.35072              | 6.6            | 492.1                   | 0.2                   | 0.1                          | 453.34411        | 14.57         |               |                |           |
| st                                                                                                       | ▼+ ID Source ▼                                                                                         | Name V       |              |                  |                  |                        |                | Score (RT) 🔽 🖶          | RT Diff 🔽 🕫           | Diff (ppm) マ+ S              | Score (Lib) マ+ S | core (DB) 🖓 I |               | V P Num Spectr | ra ⊽+¤ No |
|                                                                                                          | MFG                                                                                                    |              | C27 H40 N6   |                  | (M+H)+           |                        | 99.57          |                         |                       | -1.24                        |                  |               | 99.57         |                |           |
| 2                                                                                                        | MFG                                                                                                    |              | C25 H45 N4 C |                  | (M+H)+           | 449.33925<br>449.33925 | 99.41<br>98.6  |                         |                       | 2.52                         |                  |               | 99.41<br>98.6 |                |           |
|                                                                                                          | MFG                                                                                                    |              | C26 H44 N2 C |                  | (M+H)+<br>(M+H)+ | 449.33925              | 98.59          |                         |                       | 2.87                         |                  |               | 98.59         |                |           |
|                                                                                                          | MFG                                                                                                    |              | C25 H53 P S2 |                  | (M+H)+           |                        | 98.18          |                         |                       | 0.85                         |                  |               | 98.18         |                |           |
|                                                                                                          | MFG                                                                                                    |              | C31 H44 O2   |                  | (M+H)+           |                        | 97.49          |                         |                       | 5.02                         |                  |               | 97.49         |                |           |
| -                                                                                                        | MFG                                                                                                    |              | C23 H50 N2 C | 02 P2 (          | (M+H)+           | 449.33925              | 96.95          |                         |                       | 6.29                         |                  |               | 96.95         |                |           |
| 5                                                                                                        | MFG                                                                                                    |              | C24 H44 N6 S | 6 (              | (M+H)+           | 449.33925              | 96.72          |                         |                       | 5.69                         |                  |               | 96.72         |                |           |
| Spec                                                                                                     | ogram Results   Ma<br>actrum Results<br>↓   Q. [] 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         |                |                         | III<br>an (6.019-6.17 | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🔧 🕅          |                         |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         |                | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Sper                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec<br>3<br>3<br>4<br>5<br>5<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec<br>3 C2                                                                                             | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 18 min) Sub                  |                  |               |               |                |           |
| Spec<br>3<br>3<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 18 min) Sub                  |                  |               |               |                |           |
| Sper<br>→ 1<br>5 C2<br>3 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-              | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 18 min) Sub                  |                  |               |               |                |           |
| Spec<br>3 C2<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -<br>4 -                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925                    |                       | 78 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C   2      | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925<br>-0+             | an (6.019-6.17        | 18 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C 1        | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925<br>-0+             | an (6.019-6.17        | 18 min) Sub                  |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C 1        | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925<br>-0+             | an (6.019-6.17        | 78 min) Sub                  |                  |               |               |                |           |
| Spec<br>3<br>3<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C 1        | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925<br>-0+             | an (6.019-6.17        | 45134571                     |                  |               |               |                |           |
| Spec                                                                                                     | trum Results                                                                                           | <b>لا ک</b>  | 9 C 1        | 1 -              | <u>n (+)</u> 1   | ₽ <u>□</u>   %         | % 🏂 🗱          | 3925<br>-0+             | an (6.019-6.17        |                              |                  |               |               |                |           |

SEM Images for Coal After Dissolution

**Figure D.iv.1**: SEM images of Lignite at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.2**: SEM images of C01-A01 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.3**: SEM images of C03-A12 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.04**: SEM images of C05-A16 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.5**: SEM images of C07-A28 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.6**: SEM images of C09-RG28 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.



**Figure D.iv.7**: SEM images of C11-A30 at 30x, 100x, 500x, and 1000x Zoom, accelerating voltage of 15 kV, and SS60.





### Coal Dissolution - Au Coated Samples - Lignite 750x

80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum       | In stats. | С     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 63.73 | 35.47 | 0.50 | 0.30 | 100.00 |
| Spectrum 2     | Yes       | 65.68 | 33.22 | 0.78 | 0.33 | 100.00 |
| Mean           |           | 64.70 | 34.34 | 0.64 | 0.32 | 100.00 |
| Std. deviation |           | 1.38  | 1.59  | 0.19 | 0.02 |        |
| Max.           |           | 65.68 | 35.47 | 0.78 | 0.33 |        |
| Min.           |           | 63.73 | 33.22 | 0.50 | 0.30 |        |

All results in weight%

### Sample: Lignite 750x

Type: Default

Lignite, 15 kV, SS60, x750 Zoom

## Coal Dissolution - Au Coated Samples - C01-A01 - 750x



80µm

Electron Image 1

0.33

0.02

0.34

0.32

0.37

0.01

0.37

0.37

100.00

| Processing               | Processing option : All elements analyzed (Normalized) |       |       |      |      |        |  |  |  |  |  |
|--------------------------|--------------------------------------------------------|-------|-------|------|------|--------|--|--|--|--|--|
| Spectrum                 | In stats.                                              | С     | 0     | Ca   | Br   | Total  |  |  |  |  |  |
|                          |                                                        |       |       |      |      |        |  |  |  |  |  |
| Spectrum 1<br>Spectrum 2 | Yes                                                    | 63.58 | 35.71 | 0.34 | 0.37 | 100.00 |  |  |  |  |  |
| Spectrum 2               | Yes                                                    | 63.72 | 35.60 | 0.32 | 0.37 | 100.00 |  |  |  |  |  |

35.65

0.08

35.71

35.60

63.65

0.10

63.72

63.58

All results in weight%

Mean

Max.

Min.

Std. deviation

Sample: C01-A01 - 750x

Type: Default

C01-A01, 15 kV, SS60, x750 Zoom

## Coal Dissolution - Au Coated Samples - C03-A12 750x



80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum       | In stats. | С     | 0     | Ca   | Br   | Total  |  |
|----------------|-----------|-------|-------|------|------|--------|--|
| Spectrum 1     | Yes       | 69.68 | 29.80 | 0.31 | 0.21 | 100.00 |  |
| Spectrum 2     | Yes       | 67.98 | 31.58 | 0.21 | 0.23 | 100.00 |  |
| Mean           |           | 68.83 | 30.69 | 0.26 | 0.22 | 100.00 |  |
| Std. deviation |           | 1.20  | 1.26  | 0.08 | 0.01 |        |  |
| Max.           |           | 69.68 | 31.58 | 0.31 | 0.23 |        |  |
| Min.           |           | 67.98 | 29.80 | 0.21 | 0.21 |        |  |

All results in weight%

Sample: C03-A12 750x

Type: Default

C03-A12, 15 kV, SS60, x750 Zoom

### Coal Dissolution - Au Coated Samples - C05-A16 750x Zoom



80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum       | In stats. | С     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 67.30 | 32.15 | 0.31 | 0.24 | 100.00 |
| Spectrum 2     | Yes       | 66.51 | 32.98 | 0.30 | 0.21 | 100.00 |
| Mean           |           | 66.90 | 32.57 | 0.31 | 0.23 | 100.00 |
| Std. deviation |           | 0.56  | 0.59  | 0.01 | 0.02 |        |
| Max.           |           | 67.30 | 32.98 | 0.31 | 0.24 |        |
| Min.           |           | 66.51 | 32.15 | 0.30 | 0.21 |        |

All results in weight%

Processing option : All elements analyzed (Normalized)

Sample: C05-A16 750x Zoom

Type: Default

C05-A16, 15 kV, SS60, x750 Zoom

# Spectrum 80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum           | In stats. | С              | 0              | Ca           | Br           | Total            |
|--------------------|-----------|----------------|----------------|--------------|--------------|------------------|
| Spectrum 1<br>Mean | Yes       | 66.72<br>66.72 | 32.59<br>32.59 | 0.24<br>0.24 | 0.45<br>0.45 | 100.00<br>100.00 |
| Std. deviation     |           | 0.00           | 0.00           | 0.00         | 0.00         | 100100           |
| Max.               |           | 66.72          | 32.59          | 0.24         | 0.45         |                  |
| Min.               |           | 66.72          | 32.59          | 0.24         | 0.45         |                  |

All results in weight%

Sample: C07-A28 750x

Type: Default

C07-A28, 15 kV, SS60, x750 Zoom



# Coal Dissolution - Au Coated Samples - C09-RG28 750x



80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum       | In stats. | С     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 65.96 | 33.51 | 0.14 | 0.38 | 100.00 |
| Spectrum 2     | Yes       | 66.84 | 32.31 | 0.38 | 0.47 | 100.00 |
| Mean           |           | 66.40 | 32.91 | 0.26 | 0.42 | 100.00 |
| Std. deviation |           | 0.62  | 0.85  | 0.17 | 0.06 |        |
| Max.           |           | 66.84 | 33.51 | 0.38 | 0.47 |        |
| Min.           |           | 65.96 | 32.31 | 0.14 | 0.38 |        |

All results in weight%

Sample: C09-RG28 750x

Type: Default

C09-RG28, 15 kV, SS60, 750x Zoom



### Coal Dissolution - Au Coated Samples - C11-A30 750x

80µm

Electron Image 1

Processing option : All elements analyzed (Normalized)

| Spectrum       | In stats. | С     | 0     | Ca   | Br   | Total  |
|----------------|-----------|-------|-------|------|------|--------|
| Spectrum 1     | Yes       | 66.64 | 32.63 | 0.17 | 0.56 | 100.00 |
| Spectrum 2     | Yes       | 65.03 | 34.18 | 0.32 | 0.48 | 100.00 |
| Mean           |           | 65.83 | 33.40 | 0.24 | 0.52 | 100.00 |
| Std. deviation |           | 1.13  | 1.09  | 0.10 | 0.06 |        |
| Max.           |           | 66.64 | 34.18 | 0.32 | 0.56 |        |
| Min.           |           | 65.03 | 32.63 | 0.17 | 0.48 |        |

All results in weight%

Sample: C11-A30 750x

Type: Default

C11-A30, 15 kV, SS60, 750 x Zoom





| <b>C</b> 01 | γ-          | А | 85.248 | π-band | А | 12.377                 | unk-   | А | 30.063 |
|-------------|-------------|---|--------|--------|---|------------------------|--------|---|--------|
| C01-<br>A01 | band<br>100 | μ | 20     | 002    | μ | 26                     | band   | μ | 32.863 |
| 1101        | (20°)       | σ | 6.0018 | (26°)  | σ | $4.0177 \times 10^{6}$ | (~34°) | Σ | 13.032 |

| C <sub>al</sub>        | Car    | $f_a$                   | $I_\pi \ / \ I_\gamma$ | La     | Lc                      | n       |
|------------------------|--------|-------------------------|------------------------|--------|-------------------------|---------|
| 1.2465x10 <sup>8</sup> | 1282.5 | 1.0289x10 <sup>-5</sup> | 0.14519                | 1.1574 | 1.0906x10 <sup>-6</sup> | 0.32000 |



| <b>G</b> 02 | γ-          | Α | 101.83 | π-band | А | 13.335                 | unk-   | А | 25.829 |
|-------------|-------------|---|--------|--------|---|------------------------|--------|---|--------|
| C03-        | band<br>100 | μ | 20     | 002    | μ | 26                     | band   | μ | 37.304 |
| A12         | (20°)       | σ | 6.4000 | (26°)  | σ | $4.0177 \times 10^{6}$ | (~34°) | σ | 11.064 |

| $C_{al}$               | $C_{ar}$ | $\mathbf{f}_{\mathrm{a}}$ | $I_\pi \ / \ I_\gamma$ | La     | Lc                      | n       |
|------------------------|----------|---------------------------|------------------------|--------|-------------------------|---------|
| 1.3430x10 <sup>8</sup> | 1633.6   | 1.2164x10 <sup>-5</sup>   | 0.13095                | 1.0853 | 1.0906x10 <sup>-6</sup> | 0.32000 |



| C05-<br>A16 | γ-          | А | 125.53 | $\pi$ -band | А | 13.948                 | unk-   | А | 26.008 |
|-------------|-------------|---|--------|-------------|---|------------------------|--------|---|--------|
|             | band<br>100 | μ | 20     | 002         | μ | 26                     | band   | μ | 43.679 |
|             | (20°)       | σ | 6.3143 | (26°)       | σ | $4.0177 \times 10^{6}$ | (~34°) | σ | 4.1262 |

| Cal                    | Car     | $f_a$                   | $I_\pi \ / \ I_\gamma$ | La     | Lc                      | n       |
|------------------------|---------|-------------------------|------------------------|--------|-------------------------|---------|
| 1.4047x10 <sup>8</sup> | 1986.84 | 1.4144x10 <sup>-5</sup> | 0.11111                | 1.1001 | 1.0906x10 <sup>-6</sup> | 0.32000 |





|                        | C09-<br>RG28 | ba<br>1         | γ-<br>and<br>00<br>20°) | Α<br>μ<br>σ       | 59.585         20         4.5611 | π-band<br>002<br>(26°) | Α<br>μ<br>σ |         | 12.555<br>26<br>0177x10 <sup>6</sup> | unk-<br>band<br>(~34°) | Α<br>μ<br>σ | 10.203<br>42.535<br>7.1627 |  |
|------------------------|--------------|-----------------|-------------------------|-------------------|----------------------------------|------------------------|-------------|---------|--------------------------------------|------------------------|-------------|----------------------------|--|
| Cal                    |              | Car             |                         | $f_a$             | $f_a$                            |                        |             | La      | Lc                                   |                        | n           |                            |  |
| 1.2644x10 <sup>8</sup> |              | 681.23 5.3878x1 |                         | ×10 <sup>-6</sup> | 0.2107                           | 1                      | 1.5229      | 1.0906x | x10 <sup>-6</sup>                    | 0.3200                 | 0           |                            |  |



|   |                        | γ-          |      | А    | 81.123                    | - 1               | А                      | 1   | 0.528               |                | А                 | 23.673  |        |
|---|------------------------|-------------|------|------|---------------------------|-------------------|------------------------|-----|---------------------|----------------|-------------------|---------|--------|
|   | C11-<br>A30            |             | band |      | μ                         | 20                | $\pi$ -band 002        | μ   |                     | 26             | unk-<br>band      | μ       | 32.754 |
|   |                        | 100<br>(20° |      | σ    | 4.6626                    | (26°)             | σ                      | 4.0 | 177x10 <sup>6</sup> | (~34°)         | σ                 | 13.242  |        |
|   |                        |             |      |      |                           |                   |                        |     |                     |                |                   |         |        |
|   | $C_{al}$               |             | Car  |      | $\mathbf{f}_{\mathrm{a}}$ |                   | $I_\pi \ / \ I_\gamma$ |     | La                  | L <sub>c</sub> |                   | n       |        |
| 1 | 1.0603x10 <sup>8</sup> |             | 94   | 8.12 | 8.9420                    | x10 <sup>-6</sup> | 0.1297                 | '8  | 1.4898              | 1.09062        | x10 <sup>-6</sup> | 0.32000 |        |

|                          | Lignite         | C01-A01         | C03-A12         | C05-A16         | C07-A28         | C09-RG28        | C11-A30         |
|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ca                       | 1.2622x10       | 1.2465x10       | 1.3430x10<br>8  | 1.4047x10<br>8  | 1.2448x10       | 1.2644x10       | 1.0603x10<br>8  |
| $\overset{1}{C_a}$       | 915.68          | 1282.5          | 1633.6          | 1986.84         | 1272.1          | 681.23          | 948.12          |
| $f_a$                    | 7.2547x10       | 1.0289x10       | 1.2164x10       | 1.4144x10       | 1.0220x10       | 5.3878x10       | 8.9420x10       |
| $I_{\pi}$ / $I_{\gamma}$ | 0.20869         | 0.14519         | 0.13095         | 0.11111         | 0.11515         | 0.21071         | 1.4898          |
| La                       | 1.1419          | 1.1574          | 1.0853          | 1.1001          | 1.4692          | 1.5229          | 1.4898          |
| Lc                       | 1.0906x10<br>-6 |
| n                        | 0.32000         | 0.32000         | 0.32000         | 0.32000         | 0.32000         | 0.32000         | 0.32000         |