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ABSTRACT 

Fang, Wei. Modeling Arbitrarily Interval-Censored Survival Data with External Time- 

Dependent Covariates. Published Doctor of Philosophy dissertation, University  

of Northern Colorado, 2015.  

Arbitrarily interval-censored survival data refer to the situation where the exact 

time of the occurrence of an event of interest is only known to have occurred within some 

two consecutive examinations. External time-dependent covariates refer to those whose 

values change during the periodic follow-up, and whose value at a particular time does 

not require individuals to be under direct observation. Regression modeling of survival 

data usually either handles arbitrarily interval-censored data alone (Farrington, 1996) or 

external time-dependent covariates alone (Cox, 1972; Therneau & Grambsch, 2000). In 

the current research, an adjustment has been made to the data augmentation used in 

Farrington’s estimation method for arbitrarily interval-censored data to accommodate 

external time-dependent covariates. The three approaches, regression analysis of 

arbitrarily interval-censored survival data by Farrington (1996), the extended Cox model 

(Cox, 1972; Therneau & Grambsch, 2000) for handling external time-dependent 

covariates, and the proposed model for handling both arbitrarily interval-censored data 

and external time-dependent covariates, were compared in terms of hypothesis testing 

performance. 

The simulation results revealed that the proposed model was more powerful than 

the other two models, and the type I error rate from the proposed model fluctuated around 

the nominal level .05, and was comparable to that from the extended Cox model.
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Moreover, the proposed model gave the smallest absolute relative bias of 

parameter estimates, and always gave the correct direction of the effect from the 

significant external time-dependent covariate. As such, the proposed model depicted the 

survival experience of subjects regarding the timing of the occurrence of an event more 

realistically. 

According to the results of the current research, the proposed model can be used 

in practice as an alternative to the popular extended Cox model (Cox, 1972; Therneau & 

Grambsch, 2000) for investigating what factors influence the survival times of subjects. 
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CHAPTER I 

 

INTRODUCTION 

 

Background 

Survival analysis is a class of statistical methods for studying the occurrence and 

timing of events. An event is defined as a qualitative change that can be situated in time 

(Allison, 2010). Timing refers to when the change occurred. Thus, survival analysis is 

extremely useful for studying many different kinds of events situated in time in both the 

social and natural sciences, such as disease onset, equipment failures, earthquakes, stock 

market crashes, and retirements. Different kinds of events include both those with 

increasing hazards and those with decreasing hazards. Increasing hazards refer to 

situations where, as time goes on, the hazard of the occurrence of an event of interest 

increases. Equipment failure is an example. Decreasing hazards refer to the hazard of the 

occurrence of an event of interest decreasing as time goes on. An example of decreasing 

hazards is survival of burned patients. The main feature of survival analysis that renders 

conventional statistical methods inappropriate is that survival data are frequently 

censored, which refers to when the occurrence of an event of interest has not been 

observed for a subject during a follow-up study. In other words, survival data contain 

incomplete information. It is worth mentioning that throughout the dissertation, the 

subject of survival analysis only refer to human subjects.
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In survival analysis, there are usually three basic goals. The first goal is to 

estimate and interpret the survival and/or hazard functions from a particular group, which 

may refer to a particular treatment group, as in experimental designs with manipulated 

independent variables, an age group, or a cohort of senior high school students. The 

survival function is defined to be the probability of a subject’s surviving beyond some 

time t, and the hazard function is defined to be the risk of experiencing an event of 

interest at some time t. The second goal is to compare the survival and/or hazard 

functions between different treatment groups. Comparison can also be made between 

distinct values of a covariate. The third goal is to assess the effect of independent 

variables on the hazard of an event. Independent variables can be factors or covariates, 

either alone or in combination (Collett, 2003). A covariate is a variable that takes 

numerical values that are often on a continuous scale of measurement, such as age or 

blood pressure. A factor is a variable that takes a limited set of values, which are known 

as the levels of the factor. For example, sex is a factor with two levels, or a treatment plan 

might include both the standard treatment and a new treatment. In this research, only 

covariates were considered. Regarding the first and second goals, estimating, interpreting, 

and comparing the survival and/or hazard functions is in the nature of descriptive 

statistics, while the third goal is analogous to regression analysis. The third goal was the 

focus of the current research. 

In survival analysis, although the most common type of survival data is right-

censored data, where the event time of interest is observed either exactly or is greater 

than the pre-specified study end time for all subjects, a special type of survival data is 

often encountered. Suppose researchers are interested in the onset of an event of interest, 
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such as AIDS. However, as the occurrence of the event of interest is occult, no one can 

know the exact time of its occurrence. Thus, researchers usually conduct periodic follow-

ups to keep track of the status of the event. Accordingly, it is only known that the true 

event time is greater than the last examination time at which the change of status has not 

occurred and less than or equal to the first examination time at which the change of status 

has been observed to occur; thus giving an interval that contains the real but unobserved 

time of occurrence of the change of status. Data in this form are known as interval-

censored data. 

Different censoring mechanisms produce different types of interval-censored data, 

such as current status data, arbitrarily interval-censored data, doubly censored data, panel 

count data, and truncated interval-censored data (Sun, 2006). For the current research, 

only arbitrarily interval-censored data were considered. In particular, for the ith subject, 

let τi0 = 0 be the starting time of a periodic follow-up, i.e., study entry, τim be the mth 

examination, τil be the final examination, m = 1,…, l – 1, and Ti be the unobservable time 

of the occurrence of an event of interest. Thus, when there are l examinations within the 

follow-up (τi0, τil] per subject, where l might vary across all subjects, and Ti is known to 

have occurred within some two consecutive examinations τim and τi(m+1), with τ0 < τim < 

τi(m+1) ≤ τil, arbitrarily interval-censored data arise. The use of different types of brackets 

indicates that the unobservable event time is greater than τi0, but less than or equal to τil, 

i.e., τi0 < Ti ≤ τil. In other words, the event has not occurred by τi0, but has occurred by τil. 

For example, suppose in one study, after 200 patients were discharged healthy from a 

hospital, they were examined periodically to ascertain their health status. For those who 

get sick between two examinations, all that is known is that the time when they are still 
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healthy is at least as long as the time of the earlier examination and is no longer than the 

time of the most recent examination. The exact time is not known, though. It is possible 

that across this cohort, each one kept the same series of examination times, thus making 

analysis much more straightforward, and the survival analysis methods of Prentice and 

Gloeckler (1978), including how to estimate regression coefficients and the survival 

function, would have applied. However, since event times may be censored into 

overlapping and non-disjoint intervals, these methods may not be directly applicable. The 

current research concentrated on the latter case. 

When analyzing arbitrarily interval-censored data, as when analyzing any other 

type of survival data, estimation of the survival function or the hazard function, 

analogous to descriptive statistics in ordinary statistical analysis, is perhaps the first task. 

In doing so, information is needed, such as the status of an event of interest during the 

course of a periodic follow-up, the examinations during which the status has changed, 

and the number of subjects who are still free of the occurrence of the event after the last 

examination. If researchers are interested in a more detailed analysis, such as quantifying 

the effect of independent covariates on the survival function or the hazard function, that 

is, conducting regression analysis, additional information from independent covariates 

needs to be collected during the periodic follow-up. 

Independent covariates can be either time-independent or time-dependent 

depending on whether they change in value over the course of a follow-up. Time-

independent covariates refer to those whose values are recorded at study entry and remain 

constant during the periodic follow-up. Examples include randomized treatment and race. 

On the other hand, there may be situations where one or more of the variables are 
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measured during the periodic follow-up and their values change over time. This type of 

covariate is known as time-dependent covariates. Blood pressure measured at different 

times is an example. Intuitively, if account can be taken of the values of covariates as 

they evolve, a more satisfactory model for describing the hazard of an event of interest at 

any given time should be obtained. For example, in connection with studies on heart 

disease, more recent values of blood pressure may provide a better indication of future 

life expectancy than the value at study entry. 

Time-dependent covariates are further classified as being either internal or 

external. An internal time-dependent covariate is one whose value is subject-specific and 

requires that the subject be under periodic observation. Typical examples of internal 

covariates are disease complications and measurements recorded at follow-up 

examinations. In contrast, an external time-dependent covariate is one whose value at a 

particular time does not require subjects to be under direct observation. A standard 

example of an external covariate is the time of day or the season of the year. Certain 

random covariates such as measurements of air pollution can also be considered as 

external. The reason why it is important to distinguish between internal and external 

time-dependent covariates is that an internal covariate requires special treatment 

compared to an external one. The current research concentrates on external time-

dependent covariates. 

Many regression models have been proposed for quantifying the effect of 

independent covariates on survival times. One way to classify these models depends on 

whether a particular form of probability distribution for the underlying survival times is 

assumed. As such these models can be classified into two broad categories: semi-
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parametric regression models and parametric regression models. If there is no need to 

assume a particular form of probability distribution for the underlying survival times, 

semi-parametric regression models are preferred, such as those based on the Cox 

proportional hazards (PH) model (Cox, 1972), and those based on the odds of the survival 

function, like the proportional odds model (McCullagh, 1980). On the other hand, if the 

assumption of a particular probability distribution for the underlying survival times is 

valid, a class of parametric regression models is preferred, such as the exponential model, 

the Weibull model, the gamma model, and the Gompertz model (Lindsey, 1998). Due to 

their flexibility and widespread applicability, semi-parametric regression models were 

chosen over parametric regression models for the current research. 

Among different semi-parametric models for regression analysis of survival data, 

which are proposed from different aspects of the association between the event time and 

independent covariates, those based on the Cox PH model are the most frequently used 

forms of the semi-parametric models due to the simplicity of implementation. Therefore, 

the one chosen for regression analysis of arbitrarily interval-censored data in the current 

research was based on the Cox PH model. 

Formally, the Cox PH model assumes that the hazard function at time t has the 

form 

 

 

ℎ(𝑡|𝑿) = ℎ0(𝑡)𝑒
(𝜷′𝑿), (1) 

 

given a vector of time-independent covariates X, where h0(t) denotes the unspecified 

baseline hazard function, that is, the hazard function for subjects with x = 0, or the 

infinite-dimensional nuisance parameter, and β denotes the vector of unknown regression 
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parameters, or finite-dimensional regression parameters. The corresponding survival 

function is 

 

 

𝑆(𝑡|𝑿) = [𝑆0(𝑡)]
𝑒(𝜷′𝑿)

. (2) 

 

In terms of the type of covariates assumed in Equation 1, it is restricted to time-

independent covariates alone. When external time-dependent covariates, which do not 

necessarily require a subject to be under direct observation, and whose values evolve 

along the course of a follow-up study, are incorporated into this model instead, the Cox 

PH in Equation 1 becomes the extended Cox model (Cox, 1972; Therneau & Grambsch, 

2000), as the hazards between different time-dependent treatment groups, or distinct 

time-dependent covariate values, are no longer proportional as time goes on. 

In terms of the form survival data could assume in Equation 1, the form is 

restricted to right-censored survival data alone, and thus the Cox PH model cannot be 

directly applied to arbitrarily interval-censored data. However, arbitrarily interval-

censored data, as described above, depict the survival experience of subjects regarding 

the timing of the occurrence of an event more realistically. 

Although external time-dependent covariates often arise in practice, most of the 

inference procedures developed for arbitrarily interval-censored data only apply to time-

independent covariates (Sun, 2006), such as Farrington’s (1996) model, which is based 

on the Cox PH model. Thus, from a theoretical perspective, there is a need to propose a 

new modeling approach to accommodate arbitrarily interval-censored survival data and 

external time-dependent covariates simultaneously. More importantly, in practice, the 

extended Cox model, Farrington’s model, and the new modeling approach actually share 
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the same data collection process. In particular, after each subject is recruited to a follow-

up study, the time of an examination, values of covariates of interest, and the status of a 

subject at various examinations are recorded. However, how the collected data are used 

in regression analysis is different among the three approaches. The extended Cox model 

uses almost all the collected data, except that the mid-point imputation method (Law & 

Brookmeyer, 1992) is used to create an exact event time from the last two examinations, 

as the extended Cox model requires one event time. The new modeling approach uses all 

the collected data. The data used for Farrington’s model is almost identical to those used 

for the new modeling approach, except that Farrington’s approach uses covariate values 

recorded at study entry instead of covariate values recorded at various examinations. 

The collected data for all three models contain a series of correlated binary 

responses, time-dependent covariates, and examinations. The extended Cox model 

accommodates external time-dependent covariates, a series of binary responses, and an 

event time created from the last two examinations. Farrington’s approach accommodates 

covariate values recorded at study entry, two correlated binary responses, and last two 

examinations. The proposed approach accommodates external time-dependent covariates, 

a series of correlated binary responses, and every examination. 

In summary, the proposed approach uses the most information from the collected 

data among the three approaches. In addition, the proposed approach considers 

correlation among serial binary responses and use external time-dependent covariates. As 

such, the proposed approach was expected to be more powerful than Farrington’s 

approach which partially uses the information from the collected data and time-

independent covariates alone, as compared to time-independent covariates, external time-
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dependent covariates are usually assumed to have closer connection to the response 

variable that evolves along the course of a follow-up study. Regarding the extended Cox 

model, it also accommodates close connection between external time-dependent 

covariates and the response variable, hazard. However, no comparison has been made 

regarding the power between the extended Cox model which describes a continuous 

response variable, and the proposed approach that models a binary response variable. 

Nonetheless, with the use of an imprecise, but more appropriate description of the time of 

the occurrence of an event, the proposed approach depicts the survival experience of 

subjects more realistically than the extended Cox model which uses a precise, but 

inappropriate description of the time of the occurrence of an event. 

Taken all together, in the current research, an attempt was made to model 

arbitrarily interval-censored survival data with external time-dependent covariates. 

Emphasis was placed upon the method of estimating regression parameters. 

There are two points worth mentioning for the current research. First, when time-

independent covariates are incorporated in the Cox PH model, the coefficient of a 

covariate in the Cox PH model is a log-hazard ratio, and so under this model, the hazard 

ratio is constant over time. If this ratio depends on time, i.e., from an external time-

dependent covariate, the log-hazard ratio is not constant, and as such a proportional 

hazards model no longer exists. 

Second, in non-parametric analysis of arbitrarily interval-censored data, one basic 

and important assumption that is commonly used is that the censoring mechanism is 

independent of or non-informative about the event of interest. An easier way to 

understand this assumption is that all that is known is the event of interest happened 
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between the two predetermined examination times. One possible scenario under which 

this assumption would not hold is, for instance, if the occurrence of the event of interest 

could be accompanied by symptoms, which would make one subject more likely to go for 

an examination. In this case, it would be reasonable to suspect that the event occurred 

closer to the right endpoint of the censoring interval. On the other hand, even if the 

occurrence of the event of interest could be accompanied by symptoms, and the subject 

does not change the predetermined examination times, this assumption would hold. This 

assumption applies to regression analysis of arbitrarily interval-censored survival data as 

well. 

In order to investigate the effect of external time-dependent covariates on 

imprecise but more appropriate survival times, i.e., arbitrarily interval-censored survival 

data, regression analyses were conducted using the extended Cox model, Farrington’s 

model, and the proposed approach in the current research. Besides investigating how 

parameters would be estimated and parameter hypothesis tests would be performed in the 

presence of arbitrarily interval-censored survival data with external time-dependent 

covariates in conducting regression analysis using the proposed approach, there were 

three main research questions. 

Research Questions 

The following research questions guided this research: 

Q1     How does absolute relative bias (ARB) of parameter estimates, that is, the 

          absolute value of the difference between parameter estimates and true 

          values of the coefficients divided by of the coefficients, and percent of 

          correct sign of parameter estimates (% CS) from the proposed approach 

          compare to those from Farrington’s model, and those from the extended 

          Cox model, as applied to arbitrarily interval-censored survival data with 

          external time-dependent covariates?  
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Q2     How does the power from the proposed approach compare to that from 

          Farrington’s model and that from the extended Cox model, as applied to 

          arbitrarily interval-censored survival data with external time-dependent 

          covariates? 

  

Q3     How does type I error rate from the proposed approach compare to that 

          from Farrington’s model and that from the extended Cox model, as applied 

          to arbitrarily interval-censored survival data with external time-dependent 

          covariates? 

Delimitations of the Research 

There were some limitations to the current study. First, due to the unique form of 

Farrington’s expression for response probability, the resulting baseline hazard function 

decreases monotonically. Consequently, the proposed model does not apply to real world 

examples where the resulting baseline hazard function increases monotonically. Second, 

the current research concentrated on the role of external time-dependent covariates in 

regression analysis of survival data, while the role of commonly used internal time-

dependent covariates played in modeling arbitrarily interval-censored data was not 

investigated. Third, the current research concentrated on arbitrarily interval-censored data 

alone, while in reality left-censored and right-censored survival data are collected as well. 

Fourth, the proposed model was based on the Cox PH model where there is a 

multiplicative relationship between the hazards and covariates. The additive hazards 

model, which accounts for an additive relationship between the hazards and covariates, 

was not investigated in the current study. 

The Organization of the Research 

The current research is organized as follows. In Chapter II, a literature review was 

conducted on survival analysis, arbitrarily interval-censored data, external time-

dependent covariates, and the current status of research in modeling survival data 
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regarding how to estimate parameters in models that account for either external time-

dependent covariates alone or arbitrarily interval-censored data alone. In Chapter III, the 

data structure for conducting the corresponding regression analysis using each of the 

three approaches was detailed, the rationale of employing the proposed model was 

presented, and the inference procedures for the proposed approach were detailed. The 

design for conducting the simulation study was discussed as well. In Chapter IV, the 

simulation design was reviewed, and the simulation results comparing properties of 

parameter estimates obtained from the three approaches were presented in tables and 

figures. In Chapter V, a discussion of the simulation results was presented, and 

limitations of the current research and directions for future research were discussed.  
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

In this chapter, the elements of the procedure for modeling arbitrarily interval-

censored data with external time-dependent covariates, including concepts and features of 

survival analysis, arbitrarily interval-censored data and external time-dependent 

covariates, and basic models used in regression analysis of survival data were detailed 

first. Then previous modeling procedures, either handling arbitrarily interval-censored 

data alone or external time-dependent covariates alone, were reviewed in order to find the 

gap to be filled by the current research. 

An Introduction to Survival Data Analysis 

Basic Concepts 

Survival data, or time to event data, take the form of times from a well-defined 

time origin until the occurrence of some particular event. Time means years, months, 

weeks, or days from the beginning of the follow-up of a subject until an event occurs. An 

event is defined as a qualitative change that can be situated in time, such as disease 

incidence, equipment failures, promotions, and retirements. Although survival data arise 

mainly in biology and medicine, they are observed in other application areas as well, such 

as sociology, education, epidemiology, engineering, economics, finance, and 

demography.
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Survival data present themselves in different ways, and the main feature of 

different types of survival data is incomplete observation of time (Hosmer, Lemeshow, & 

May, 2008), which is due to two mechanisms, namely censoring and truncation. 

Censoring, broadly speaking, occurs when a subject’s survival time is known to have 

occurred only in a certain period of time. There are three types of censoring mechanisms, 

namely right censoring, where all that is known is that the subject has not yet experienced 

the event of interest at a given time; left censoring, where all that is known is that the 

subject has experienced the event of interest prior to the first examination of a study; and 

interval censoring, where the only information is that the event of interest occurs within 

some time interval. The second mechanism, sometimes confused with censoring, is 

truncation. Truncation of survival data occurs when only those subjects whose event time 

lies within a certain observational window are observed (Klein & Moeschberger, 2005). 

A subject whose event time is not in this interval is not observed and no information on 

this subject is available. This is in contrast to censoring where there is at least partial 

information on each subject. An example would be a study of risk factors for time to 

diagnosis of colorectal cancer among subjects in a cancer registry with this diagnosis 

(Hosmer et al., 2008). If one subject would not enter the analysis until time 10, this type 

of incomplete observation of time is called truncation. If one subject entered the analysis 

from study entry and withdrew at time 10, this type of incomplete observation of time is 

called censoring. The current research only considered censoring. 

Analysis of Survival Data 

After survival data are collected, an initial step in the analysis is to present 

descriptions of the survival times for subjects receiving a particular treatment protocol. 
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For example, in one clinical trial, subjects are randomized to receive either a standard 

treatment or a new treatment. Researchers might be interested in the survival experience 

of subjects who receive the new treatment. Then, focus is shifted to investigating what 

factors influence the survival times. To do this, various models are built to explore the 

relationship between the survival times and independent variables. 

Descriptive methods. In describing survival data, there are two functions of 

central interest, namely the survival function and the hazard function. 

The survival function, denoted S(t), is defined to be the probability of a subject’s 

surviving beyond some time t. When the random variable associated with the survival 

time, denoted T, is continuous, the survival function is the complement of the cumulative 

distribution function of T, denoted F(t), representing the probability of a subject’s 

surviving less than or equal to t. That is, 

 

 

𝑆(𝑡) = P(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡). (3) 

 

The survival function is also the integral of the probability density function for T, 

denoted f(t), as 

 

 

𝑆(𝑡) = P(𝑇 ≥ 𝑡) = ∫ 𝑓(𝑠) 𝑑𝑠
∞

𝑡

. 
 

(4) 

 

Closely related to the survival function is the hazard function, denoted h(t), 

which, by definition, represents the risk or hazard of experiencing the event of interest at 

some time t, and is obtained from the probability that a subject experiences the event at 

some time t, conditional on that subject’s having survived to that time, written P(t ≤ T ≤ t 

+ Δt | T ≥ t), where Δt denotes a time interval. This conditional probability is then 
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expressed as a probability per unit time by dividing by the time interval, Δt, to give a rate. 

The hazard function is then the limiting value of this quantity, as Δt tends to zero, so that 

 

 

ℎ(𝑡) = lim
𝛥𝑡→0+

[
P(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡| 𝑇 ≥ 𝑡)

𝛥𝑡
]. 

 

(5) 

 

In Equation 5, the product of h(t) on the left hand side and Δt in the denominator 

may be viewed as the approximate probability that a subject experiences the event of 

interest in the interval (t, t + Δt), conditional on that subject’s having survived to time t. 

According to a standard result from probability theory, the probability of an event B, 

conditional on the occurrence of another event A, is given by P(B|A) = P(A∩B)/P(A), 

where P(A∩B) is the probability of the joint occurrence of A and B. Using this result, the 

conditional probability in the hazard function in Equation 5 takes the form 

 

 

P(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡| 𝑇 ≥ 𝑡) =
P[(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡) ∩ (𝑇 ≥ 𝑡)]

P(𝑇 ≥ 𝑡)
 

=
P(𝑇 ≥ 𝑡)

P(𝑡≤𝑇≤𝑡+𝛥𝑡)

P(𝑇≥𝑡)

P(𝑇 ≥ 𝑡)
 

=
P(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡)

P(𝑇 ≥ 𝑡)
 

=
𝐹(𝑡 + 𝛥𝑡) − 𝐹(𝑡)

𝑆(𝑡)
. 

 

 

 

 

 

 

 

 

 

 

Then, 

 

 

ℎ(𝑡) = lim
𝛥𝑡→0+

[
𝐹(𝑡 + 𝛥𝑡) − 𝐹(𝑡)

𝛥𝑡
]

1

𝑆(𝑡)
. 

 

 

Now, the definition of the derivative of F(t) with respect to t is, which is acutally f(t), 

takes the form 
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𝐹′(𝑡) = lim
𝛥𝑡→0+

[
𝐹(𝑡 + 𝛥𝑡) − 𝐹(𝑡)

𝛥𝑡
] , 

 

 

and therefore 

 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
. 

 

(6) 

 

It then follows that 

 

 

ℎ(𝑡) = −
𝑆′(𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
[log 𝑆(𝑡)], 

 

 

and therefore 

 

 

𝑆(𝑡) = 𝑒[−𝐻(𝑡)], (7) 

 

where 

 

 

𝐻(𝑡) = ∫ ℎ(𝑠) 𝑑𝑠
𝑡

0

. 
 

 

The function H(t) is called the cumulative hazard function.  

From the above, it can be seen that knowing any one of f(t), S(t), F(t), h(t), or H(t) 

is enough to specify the other four expressions, which greatly facilitates the descriptions 

of the survival experience of subjects during a follow-up study.  

Modeling survival data. After descriptive statistics for the survival times 

themselves are obtained, focus of analysis is shifted to investigating what factors might 

affect the survival times, that is, modeling survival data. Usually the first step of 
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modeling is to collect data. In most settings that give rise to survival data, in addition to 

the survival times and the censoring status, supplementary information is also recorded 

on each subject. For example, subjects may have demographic variables recorded, such 

as age, behavioral variables, such as smoking history, or physiological variables, such as 

blood pressure. Such variables may be used as independent variables in explaining the 

survival times.  

The next step of modeling survival data, as in ordinary linear regression analysis, 

is to create the specific likelihood function to be maximized. In ordinary linear regression 

analysis, data assume a particular form of probability distribution, while in regression 

analysis of survival data, usually no particular form of probability distribution is 

assumed. Hence, how to build the likelihood function for survival data is unique, as is 

discussed below. To see this, a natural place to begin is to build a likelihood function as if 

full knowledge of survival data were known. 

In survival analysis, regarding the survival experience of subjects in a particular 

study, each subject either undergoes the occurrence of the event of interest, or that 

subject’s observation is censored, which then contributes to the construction of the 

likelihood function accordingly. Let an indicator variable δi denote the censoring status of 

the ith subject, with δi = 1 for an occurrence case and δi = 0 for a censored case. 

Regarding the occurrence case, its role in constructing the likelihood function is 

represented by the density function f(t) (Hosmer et al., 2008), quantifying the probability 

that the ith subject undergoes the event of interest at time ti. According to the relationship 

shown in Equation 6, the density function is actually the product of the hazard function 

and the survival function, yielding 
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𝑓(𝑡) = ℎ(𝑡) × 𝑆(𝑡). 
 

(8) 

 

Regarding the censored case, its role in constructing the likelihood function is 

represented by the survival function S(t) (Hosmer et al., 2008), quantifying the 

probability the ith subject survives longer than some time ti. Taken together, under the 

assumptions of independent observations and absolutely continuous event times, the full 

likelihood function for N subjects, each with a vector of covariates Xi, is obtained by 

multiplying the respective contributions of the observed cases over the entire sample, 

 

 

𝐿(𝜷, ℎ0, 𝑆0|𝑿𝑖 , 𝑡𝑖) = ∏[ℎ(𝑡𝑖 , 𝜷, 𝑿𝑖) × 𝑆(𝑡𝑖 , 𝜷, 𝑿𝑖)]
𝛿𝑖[𝑆(𝑡𝑖 , 𝜷, 𝑿𝑖)]

1−𝛿𝑖

𝑁

𝑖=1

, 
 

(9) 

 

where ti denotes a particular time for the ith subject, and β denotes the vector of unknown 

regression regression parameters. It is interesting to notice that the construction of the 

likelihood function for survival data in Equation 9 is analogous to that for the familiar 

Bernoulli distribution, which actually makes sense, in that the survival experience of a 

particular subject is like one Bernoulli trial, with the outcome either being the censored 

case or the occurrence case. It was thus anticipated that this link between survival data 

and the familiar Bernoulli distribution might have the potential for simplifying the 

inference procedures for regression analysis of survival data. 

To assess the effect of independent variables on the survival experience of 

subjects, the method of maximum likelihood is applied to the likelihood function in 

Equation 9. The corresponding log-likelihood function of Equation 9 is 
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𝑙(𝜷, ℎ0, 𝑆0|𝑿𝑖 , 𝑡𝑖) = 𝛿𝑖 ∑{log[ℎ(𝑡𝑖 , 𝜷, 𝑿𝑖) × 𝑆(𝑡𝑖 , 𝜷, 𝑿𝑖)]}

𝑁

𝑖=1

 

                                + (1 − 𝛿𝑖)∑{log[𝑆(𝑡𝑖 , 𝜷, 𝑿𝑖)]}

𝑁

𝑖=1

. 

 

 

 

 

(10) 

 

To simplify calculations, Equation 10 is usually maximized, as the maximum of Equation 

9 and its corresponding log-likelihood function in Equation 10 occur at the same value 

for each component of β when the log function is monotone. 

In summarizing the survival times, except for a particular treatment protocol, 

supplementary information, such as weight and smoking history, recorded on each 

subject is not used in the survival function and the hazard function. However, in the 

context of modeling survival data, a set of independent variables needs to be included 

into the hazard function and the survival function, as in Equation 9, in order to explore 

the relationship between the survival times and independent variables. 

Different regression models can be built from different perspectives, i.e., different 

ways of describing how a set of independent variables is related to the survival times. In 

particular, depending on whether the underlying distribution of the survival times is 

specified, there are parametric models (Cox & Oakes, 1984) or semi-parametric models 

(Cox, 1972). Depending on whether the relationship between the baseline hazard function 

and the hazard function is multiplicative or not, there are multiplicative regression 

models or additive regression models (Aalen, 1989; Lin & Ying, 1994). If an event of 

interest can occur multiple times in the course of a subject’s follow-up, there are 

recurrent events models (Clayton, 1994). If there are factors other than the measured 

covariates that could significantly affect the distribution of the survival times, there are 

frailty models, which incorporate random effects into the models (Vaupel, Manton, & 
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Stallard, 1979). In the current research, survival data were modeled from the perspective 

of underlying distributions of the survival times. 

There are two groups of models depending on whether the underlying distribution 

of the survival times is specified. In particular, models in which a specific probability 

distribution is assumed for the survival times are known as parametric models, such as 

the exponential model, the Weibull model, and the Gompertz model (Lindsey, 1998). As 

an example, in the Weibull model, which allows for dependence of the hazard on time, 

the hazard function takes the form h(t) = λγt (g-1), where t denotes a specific point in time, 

λ denotes the scale parameter, and γ denotes the shape parameter. When γ > 1, the hazard 

increases monotonically. Therefore, for a particular study, if researchers firmly believe 

that the baseline hazard function increases monotonically as time goes on, the Weibull 

model with γ > 1 should be employed to model survival data.  

In general, if the assumption of a particular probability distribution of the survival 

times is valid, inferences based on such an assumption will be more precise because of 

fewer parameters (Klein & Moeschberger, 2005). Nonetheless, justification of using a 

parametric model in reality will be difficult unless the sample data contain a large number 

of event times (Collett, 2003). If a parametric model is chosen incorrectly, it may lead to 

inconsistent estimators of the quantities of interest. 

Models in which there is no need to specify a probability distribution of the 

survival times are known as semi-parametric models, among which the Cox proportional 

hazards (PH) model (Cox, 1972) is the most commonly applied methodology for 

assessing the effect of independent variables on the hazard of an event of interest. The 

term proportional hazards refers to the fact that, when values of all the other variables are 



22 

 

fixed at study entry, the hazard rates of two subjects, either with distinct values of the 

main treatment variable or a covariate, remain constant, independent of time. A key 

reason for the popularity of the Cox PH model is that, even though a probability 

distribution for the survival times is not specified, reasonably good estimates of 

regression coefficients and other quantities of interest, such as hazard ratios, can be 

obtained for a wide variety of data situations (Kleinbaum & Klein, 2011). In other words, 

the Cox PH model will closely approximate the results for the correct parametric model. 

For example, if the correct parametric model is Weibull, then use of the Cox PH model 

typically will give results comparable to those obtained using the Weibull model. 

In summary, researchers may not be completely certain that a given parametric 

model is appropriate. Thus, when in doubt, as is typically the case, the Cox PH model 

will give reliable enough results so that it is a “safe” choice of model, and researchers do 

not need to worry about whether the wrong parametric model is chosen. Therefore, the 

current research concentrates on the Cox PH model. 

There are other reasons for choosing the Cox PH model as the basis for regression 

analysis in this research. The Cox PH model, which accounts for time-independent 

covariates, assumes that the effect of a covariate acts multiplicatively on an unknown 

baseline hazard function, and coefficients are unknown constants whose value does not 

change over time. Covariates which do not act on the baseline hazard function in this 

fashion are modeled either by the inclusion of a time-dependent covariate or by 

stratification (Klein & Moeschberger, 2005). In other words, when external time-

dependent covariates are included, the hazards are not proportional across time. An 

alternative model that does not assume constant hazard ratios is the additive hazard 
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model, which is based on assuming that the covariates act in an additive manner on an 

unknown baseline hazard function. The unknown coefficients in this model are allowed 

to be functions of time so that the effect of a covariate may vary over time. 

Though the Cox PH model with external time-dependent covariates, i.e., the 

extended Cox model, and the additive hazard model share the similarity of accounting for 

varying hazard ratios across time, the former model was chosen over the additive hazard 

model in the current research for the following two reasons. 

First, multiplicative models are extremely useful in practice because either the 

estimated coefficients themselves or simple functions of them can be used to provide 

estimates of hazard ratios. To illustrate, in a hypothetical Cox PH model containing sex 

and age, h(t) = h0(t)e (b
1*sex + b

2*age), the estimated coefficient for β1, can easily provide 

estimate of hazard ratios at a particular age value between males and females using eβ̂1. 

While in the additive hazard model, the estimated coefficients, that is, those yielding a 

positive hazard function, are tightly constrained by the additive form of the model. As 

such, the hazard ratio from the additive hazard model might take the form, 
1+β1+β2a

1+β2a
, where 

a denotes a particular age value. One rather obvious problem with this model is that, if 

inferences are based on hazard ratios, it is impossible, except in a univariate model, to 

isolate the effect of a single covariate. Under this model, the difference in the hazard for 

males and females, at a particular age value a, is h0(t)β̂
1
, which depends on both the 

coefficient for sex and the unspecified baseline hazard function. Despite the possible 

clinical appeal of additive relative hazard models, they are not as practical as 

multiplicative models, which may be why they have not been used more frequently in 

applied research (Hosmer et al., 2008). 
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Second, most studies address multiplicative models. Moreover, statistical 

software is readily available and easy to use to fit the proportional hazards model, check 

model assumptions, and assess model fit. The widespread use of the proportional hazards 

model in applied settings is largely due to these factors (Hosmer et al., 2008). 

Formally, assume there are N independent observations. Each of the observations 

contains information on the length of observed time, the censoring status, and a vector of 

time-independent variables, that is, their values are determined at study entry, and remain 

at those values throughout the follow-up of the subject. For the ith subject, denote the 

triplet of observed time, a vector of variables, and censoring variable as (ti, Xi, di), i = 1, 

2,…, N, where Xi denotes a vector of p time-independent variables. Those independent 

variables typically include a variable indicating the main treatment group and other 

covariates. There are times when there is no experimentally manipulated treatment 

variable, that is, only covariates are used in modeling survival data (Collett, 2003). 

Moreover, the model also allows for non-manipulated grouping variables, such as sex, 

educational level, and ethnicity. Let h0(t) be the hazard function at time t for a subject for 

whom the values of all the independent variables that make up the vector Xi are zero, or 

the baseline hazard function. Then the corresponding hazard function at time t under the 

Cox PH model (Cox, 1972) for the ith subject can be written as 

 

 

ℎ𝑖(𝑡|𝜷, 𝑿𝑖) = ℎ0(𝑡)𝑒
(𝜷′𝑿𝑖), (11) 

 

where β denotes the vector of unknown regression parameters. In the current study, no 

treatment variable was used in the modeling procedure. The Cox PH model or the 

extended Cox model is capable of accommodating covariates alone, although 
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proportional hazards originally refer to hazards between different levels of a particular 

treatment. 

As mentioned above, the survival function can be specified through the hazard 

function. If the relationship shown in Equation 7 is used, then the corresponding survival 

function is 

 

 

𝑆𝑖(𝑡) = 𝑒[−𝐻𝑖(𝑡)], (12) 

 

where, under the Cox PH model, 

 

 

𝐻𝑖(𝑡|𝜷, 𝑿𝑖) = ∫ ℎ𝑖(𝑠) 𝑑𝑠
𝑡

0

 

= ∫ ℎ0(𝑠)𝑒
(𝜷′𝑿𝑖) 𝑑𝑠

𝑡

0

 

= 𝑒(𝜷′𝑿𝑖) ∫ ℎ0(𝑠) 𝑑𝑠
𝑡

0

 

= 𝑒(𝜷′𝑿𝑖)𝐻0(𝑡). (13) 

 

Substituting Equation 13 into Equation 12, the survival function becomes 

 

 

𝑆𝑖(𝑡|𝜷, 𝑿𝑖) = 𝑒[−𝑒(𝜷′𝑿𝑖)𝐻0(𝑡)]. (14) 

 

Thus, it follows that 

 

 

𝑆𝑖(𝑡|𝜷, 𝑿𝑖) = [𝑆0(𝑡)]
𝑒(𝜷′𝑿𝑖) . (15) 

 

Similarly, Si(t) denotes the survival function at time t for the ith subject, S0(t) denotes the 

baseline survival function for that subject for whom the values of all the independent 

variables that make up the vector Xi are zero, and β denotes the vector of unknown 
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regression parameters. There are two reasons for deriving the survival function from the 

hazard function. First, in addition to facilitating the descriptions of the survival 

experience of subjects during a follow-up study, the survival function, like the hazard 

function, is a component of the likelihood function in Equation 9. Second, practitioners 

tend to understand the survival experience of subjects better in that in most applied 

settings, practitioners are typically, though not always, more interested in describing how 

long the study subjects live, rather than the risk of how quickly they die. 

After independent variables are accommodated using the hazard function and the 

corresponding survival function under the Cox PH model, the log-likelihood function in 

Equation 10 becomes 

 

 

𝑙(𝜷, ℎ0, 𝑆0|𝑿𝑖 , 𝑡𝑖) = ∑{𝛿𝑖log[ℎ0(𝑡𝑖)] + 𝛿𝑖(𝜷
′𝑿𝑖) + 𝑒(𝜷′𝑿𝑖)log[𝑆0(𝑡𝑖)]}.

𝑁

𝑖=1

 

 

        (16) 

 

Unfortunately Equation 16 cannot be maximized without specifying the form for the 

baseline hazard function. The reason is, as discussed by Kalbfleisch and Prentice (2002), 

the log-likelihood function in Equation 16 is a function of finite-dimensional regression 

parameters and infinite-dimensional nuisance parameters, which refer to parameters that 

are present in a model but are not of direct inferential interest, i.e., the baseline hazard 

function. Moreover, to obtain estimates of regression parameters by maximizing over the 

infinite-dimensional parameters is difficult. 

Thus, to avoid specifying the baseline hazard function, Cox (1972) proposed 

using an expression based on the PH model in Equation 11, which he called a “partial 

likelihood function” due to the fact that the function does not actually use the full data: 

only the ordering of the survival times, not the actual times an event of interest occurs, is 
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important. In particular, as indicated earlier, assume there are N independent 

observations, or N subjects, each consisting of the triplet (ti, Xi, di), i = 1, 2,…, N. Among 

those observations or subjects there are r distinct event times in total, and N - r censored 

survival times, which are assumed right censored. In other words, each of N subjects 

either experiences the event of interest or is censored. For simplicity, it is assumed that 

no ties exist among the uncensored event times. The r ordered event times are then 

denoted by t(1) < t(2) < ⋯ < t(r), so that t(j) is the jth ordered event time. Define the risk set, 

R(ti), at the event time for the ith subject ti, as the set of all subjects, indexed by l, who 

have not experienced the event and thus uncensored at a time just prior to ti. Further, it is 

assumed that censoring is non-informative in that, given a vector of covariates, Xi, the 

event and censoring times for the ith subject are independent. Thus the partial likelihood 

(Cox, 1972) is given by 

 

 

𝐿(𝜷|𝑿𝑖 , 𝑡𝑖) = ∏[
𝑒(𝜷′𝑿𝑖)

∑ 𝑒(𝜷′𝑿𝑙)
𝑙∈𝑅(𝑡𝑖)

]

𝛿𝑖𝑁

𝑖=1

. 
 

(17) 

 

The corresponding log partial likelihood (Collett, 2003) function is given by 

 

 

𝑙[𝜷|𝑿𝑖 , 𝑡𝑖] = ∑𝛿𝑖

𝑁

𝑖=1

[𝜷′𝑿𝑖 − log ∑ 𝑒(𝜷′𝑿𝑙)

𝑙∈𝑅(𝑡𝑖)

]. 
 

 

 

  

Equation 17 is usually modified to exclude censored cases, that is, for cases with 

di = 0. Thus the modified partial likelihood function for r distinct ordered event times is 

 

 

𝐿[𝜷|𝑿(𝑗), 𝑡(𝑗)] = ∏
𝑒[𝜷′𝑿(𝑗)]

∑ 𝑒(𝜷′𝑿𝑙)
𝑙∈𝑅[𝑡(𝑗)]

𝑟

𝑗=1

, 
 

(18) 
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in which X(j) is a vector of independent variables for the subject who experiences the 

event of interest at the jth ordered event time, t(j). The summation in the denominator of 

this likelihood function is the sum of the values of e(b’X
l
) over all subjects who are at risk 

at time t(j). 

Equation 18 is actually derived by multiplying conditional probabilities over all 

event times, which could be seen from Equation 19 to Equation 21. First consider the 

probability, p*, that a subject experiences the event of interest at time t(j), conditional on 

t(j) being one of the r ordered event times. Using the standard result from conditional 

probability theory described above, P(B|A)=P(A ∩ B)/P(A), the conditional probability, 

given X(j), is expressed as 

 

 

𝑝∗ =
P[subject 𝑖 with  𝑿(𝑗) has event at 𝑡(𝑗)]

P[one event at 𝑡(𝑗)]
. 

 

(19) 

 

It can be seen that the numerator in Equation 19 is the hazard function for the ith 

subject. To see this, first replace the time point t(j) with the time interval [(t(j), t(j) + Δt)], 

where Δt denotes a time interval, and next divide the numerator by Δt, and then take the 

limiting value of the resulting expression as Δt → 0+. That is, 

 

 

ℎ𝑖[𝑡(𝑗)] = lim
𝛥𝑡→0+

(
P{subject 𝑖 with  𝑿(𝑗) has event in [𝑡(𝑗), 𝑡(𝑗) + 𝛥𝑡]}

𝛥𝑡
), 

 

          (20) 

 

which would replace the numerator in Equation 19. Regarding the denominator in 

Equation 19, since the event times are assumed to be independent of one another, the 

denominator is the sum of the probabilities of the event at time t(j) over all subjects who 

are at risk at that time. With R[t(j)] denoting the risk set, the denominator becomes {∑l∈ 
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R[t(j)] P[subject l has event at t(j)]}. In the same vein, it can be seen that if the time point t(j) 

in the expression for probability is replaced with the time interval [(t(j), t(j) + Δt)], the 

denominator is divided by Δt, and then the limiting value of the resulting expression is 

taken as Δt → 0+. The result is the sum of the hazard function at t(j) over all subjects who 

are at risk at that time. Therefore, the denominator in Equation 19 becomes {∑l∈ R[t(j)] hl 

[t(j)]}. Substituting Equation 20 and the new expression for the denominator into Equation 

19, the conditional probability p* becomes 

 

 

𝑝∗ =
ℎ𝑖[𝑡(𝑗)]

{∑ ℎ𝑙[𝑡(𝑗)]𝑙∈𝑅(𝑡(𝑗))
}
. 

 

(21) 

 

On using the Cox PH model in Equation 11, the baseline hazard function in the 

numerator and denominator in Equation 21 cancels out, and the part regarding 

conditional probabilities in Equation 18 is obtained. Finally, by taking the product of 

these conditional probabilities over the r distinct event times, Equation 18 above is 

obtained. That is, 

 

 

∏
ℎ𝑖[𝑡(𝑗)]

∑ ℎ𝑙[𝑡(𝑗)]𝑙∈𝑅(𝑡(𝑗))

𝑟

𝑗=1

= ∏
ℎ0[𝑡(𝑗)]𝑒

[𝜷′𝑿(𝑗)]

∑ ℎ0[𝑡(𝑗)]𝑒
(𝜷′𝑿𝑙)

𝑙∈𝑅[𝑡(𝑗)]

𝑟

𝑗=1

 

= ∏
ℎ0[𝑡(𝑗)]𝑒

[𝜷′𝑿(𝑗)]

ℎ0[𝑡(𝑗)] {∑ 𝑒(𝜷′𝑿𝑙)
𝑖∈𝑅[𝑡(𝑗)]

}

𝑟

𝑗=1

 

= ∏
𝑒[𝜷′𝑿(𝑗)]

∑ 𝑒(𝜷′𝑿𝑙)
𝑙∈𝑅[𝑡(𝑗)]

𝑟

𝑗=1

. 
 

 

The corresponding log partial likelihood function (Hosmer et al., 2008) takes the 

following form 
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𝑙[𝜷|𝑿𝑙 , 𝑡(𝑗)] = ∑𝜷′𝑿(𝑗)

𝑟

𝑗=1

− ∑log

𝑟

𝑗=1

{[ ∑ 𝑒(𝜷′𝑿𝑙)

𝑙∈𝑅[𝑡(𝑗)]

]}. 
 

(22) 

 

The maximum likelihood estimate of each component of β in the PH model can be found 

by maximizing Equation 22 using numerical methods, such as the Newton-Raphson 

algorithm. 

After regression parameter estimates are obtained, the next step naturally in 

inferential statistics is to estimate their standard errors, which are obtained in the same 

manner as standard error estimators are obtained in most maximum likelihood estimation 

procedures. In particular, the first step is to get the variance estimator by taking the 

inverse of negative second derivatives of the log partial likelihood at the value of the 

parameter estimator (Kalbfleisch & Prentice, 2002). Formally, letting I(β) be the p by p 

matrix of negative second derivatives of the log partial likelihood, where p is the number 

of parameters in the Cox PH model, the (g, h)th element of I(β) is 

 

 

𝐈(𝜷)𝑔,ℎ = −
𝜕2𝐿(𝜷)

𝜕𝛽𝑔𝜕𝛽ℎ
|
𝜷̂

, 𝑔, ℎ = 1,… , 𝑝. 
 

 

The matrix I(β) is called the partial likelihood observed information matrix. Thus the 

variance estimator is I-1(β̂), where β̂ is the vector of parameter estimates. And the 

estimator of the standard error, denoted SÊ(β̂), is the positive square root of each 

diagonal of the variance estimator. That is, 

 

 

SÊ(𝜷̂) = √𝐈−1(𝜷̂). 
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Letting w = 
e
(β̂

'
Xl)

∑ e
(β̂

'
Xl)

l∈R[t(j)]

, the above equation can be expressed in scalar notation (Klein & 

Moeschberger, 2005) as  

 

 

SÊ(𝜷̂) = √{∑[𝑤 ∑ 𝑋𝑙𝑔𝑋𝑙ℎ

𝑙∈𝑅(𝑡(𝑗))

]

𝑟

𝑗=1

− ∑[𝑤 ∑ 𝑋𝑙𝑔

𝑙∈𝑅(𝑡(𝑗))

]

𝑟

𝑗=1

[𝑤 ∑ 𝑋𝑙ℎ

𝑙∈𝑅(𝑡(𝑗))

]}

−1

 

= √{𝑤 ∑ ∑ 𝑋𝑙𝑔𝑋𝑙ℎ

𝑙∈𝑅(𝑡(𝑗))

𝑟

𝑗=1

− 𝑤2 ∑[ ∑ 𝑋𝑙𝑔

𝑙∈𝑅(𝑡(𝑗))

]

𝑟

𝑗=1

[ ∑ 𝑋𝑙ℎ

𝑙∈𝑅(𝑡(𝑗))

]}

−1

. 

 

 

Moreover, in inferential statistics, after the parameter estimates and their standard 

errors are obtained, hypothesis testing is performed to assess the significance of the 

parameter estimates. Still, as parameter estimates from the Cox PH model are obtained 

via the maximum likelihood method, hypothesis testing is based on large-sample 

likelihood theory. Three such tests are the partial likelihood ratio test, the Wald test, and 

the score test. 

The partial likelihood ratio test, denoted G, is calculated as twice the difference 

between the log partial likelihood of the model containing the independent variables and 

the log partial likelihood for the model not containing the independent variables. 

Formally, 

 

 

𝐺 = 2{𝐿(𝜷̂) − 𝐿(𝟎)},  

 

where β̂ is a vector of maximum log partial likelihood parameter estimates and 0 is a 

vector of zeroes.  Assuming large samples, this statistic follows an asymptotic chi-

squared distribution with p degrees of freedom under the null hypothesis that H0: β = 0, 
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where p is the difference in the number of parameters between the null model and the 

alternative model, and thus can be used to obtain p-values to test the significance of β. 

The Wald test, in its multiple variable version, is expressed as 

 

 

Z2 = (𝜷̂ − 𝟎)
′
𝑰(𝜷̂) (𝜷̂ − 𝟎),  

 

where β̂ is a vector of maximum log partial likelihood parameter estimates, 0 is a vector 

of zeroes, and the matrix I(β̂) is the observed information matrix evaluated at the vector 

of parameter estimates. Assuming the same mathematical assumptions required for the 

log partial likelihood ratio test stated above, the Wald statistic asymptotically follows a 

chi-squared distribution with 𝑝 degrees of freedom under the null hypothesis that H0: β = 

0. 

The score test is based on the efficient score statistics. Let U(β) be the p × 1 

vector of first derivatives of the log-likelihood function in Equation 22 with respect to 

each component of β. This quantity is known as the vector of efficient scores. Under the 

null hypothesis that H0: β = 0, the vector of efficient scores U(0) has a large-sample 

multivariate normal distribution with mean 0 and covariance matrix given by the 

information matrix evaluated at the coefficient vector equal to zero, that is, I(0). Thus the 

score test statistic is 

 

 

S2 = 𝐔(𝟎)′𝐈−1(𝟎)𝐔(𝟎).  

 

Again, assuming the same mathematical assumptions required for the log partial 

likelihood ratio test stated above, this statistic has an asymptotic chi-squared distribution 

with 𝑝 degrees of freedom under the null hypothesis that H0: β = 0. 
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Summary of Features of  

Survival Analysis 

 

A basic introduction to survival data analysis presented above reveals that there is 

one salient feature in survival data that is difficult to handle with conventional statistical 

methods, namely incomplete observation of time, i.e., censoring in the current research. 

Different mechanisms of censoring render survival analysis even more challenging. In 

modeling survival data, the popular Cox PH model, although it does not require a 

probability distribution for the survival times to be specified and still gives reliable 

enough results, allows for right-censored data alone. In other words, the Cox PH model 

cannot directly accommodate left-censored and arbitrarily interval-censored survival 

data. However, from the definition of arbitrarily interval-censored data, it is obvious that 

compared to the right-censoring mechanism, this type of censoring mechanism provides 

more information regarding when the event of interest occurs. 

Besides censoring, time-dependent covariates pose another challenge in survival 

analysis. Although the extended Cox model can handle external time-dependent 

covariates, it assumes survival data are right-censored alone. Thus, from a theoretical 

perspective, it is worth studying how to model arbitrarily interval-censored data with 

external time-dependent covariates. 

Interval-censored Data 

Right-censored Data under 

Scrutiny 

In the above introduction to regression analysis of survival data using the Cox PH 

model, it was assumed that survival data are right-censored, that is, the event time of 

interest is observed either exactly at or later than the pre-specified study end time for all 
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subjects. Regarding the data-generating process (DGP) for right-censored survival data, 

there are actually three scenarios. In the first scenario, for subjects, indexed by i, who 

have already experienced the event of interest by the end of the study, their event times 

are known exactly. The study end time is not restricted to the pre-specified study end 

time. For a particular subject, it might be the end of the follow-up period, which is prior 

to the pre-specified study end time. Using the indicator variable in Equation 9, cases with 

di = 1arise. In the second scenario, for subjects who have not experienced the event of 

interest at the pre-specified study end time, their survival times are not observed exactly, 

but are known to be greater than the pre-specified study end time, i.e., they are right-

censored. Thus, cases with di  = 0 arise. In the third scenario, for subjects who have not 

experienced the event of interest at their last follow-up, which is prior to the pre-specified 

study end time, all that is known is that their survival times are at least as long as the time 

associated with their last follow-up, and then they are either lost to follow-up or withdraw 

from the study for some reasons, i.e., they are deemed as right-censored. Similarly, cases 

also with di  = 0 arise. As a matter of fact, survival analysis is extremely useful for 

studying many different kinds of events including disease onset, equipment failures, 

earthquakes, automobile accidents, and stock market crashes. 

Justifying the Use of 

Interval-censored 

Data 

In constructing the partial likelihood function in Equation 18 above, cases with di  

= 0 were excluded. The reason is that Equation 18 is constructed from Equation 17, 

where each component of the product with di  = 0 is equal to 1, and thus there is no need 

to include cases with di  = 0 in Equation 18. So data from uncensored observations were 
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actually collected, that is, cases with di  = 1, which, under the right-censoring mechanism, 

contain for each uncensored observation, duration in survival time, an exact event time, 

which is the examination when the status of the event is found to have changed, and a 

vector of covariates. Among the three pieces of information, duration in survival time is 

incidental in nature as the partial likelihood function, relying on vectors of covariates at 

ordered exact event times, does not make direct use of the actual length of survival times. 

However, in reality, for each uncensored observation more detailed information than 

those two pieces actually used in the Cox PH model is collected. In particular, it is 

common practice to collect survival data on a regular basis from each subject after entry 

into a follow-up study. Suppose there are η
i
 examinations for the ith subject, which are 

denoted by t1  <  t2 < ∙∙∙ < tηi
, so that tηi

 is the ηth examination time. For each case with di  

= 1, the change of status for that subject is known to occur between two adjacent 

examination times, such as between t5 and t6. If the last examination time alone is used, 

such as t6, to specify when the event of interest occurs in order to rank event times, as in 

applying the Cox PH model above, the specification is not informative compared to if the 

event time is set between two adjacent examination times, that is, under the interval-

censoring mechanism, as using t6 will give a false impression that the event occurs at the 

time point t6 instead of between t5 and t6. 

As an example, consider one hypothetical study in which the aim is to model 

survival times among patients admitted to a hospital for a serious disease. Suppose 

patients who were discharged healthy from the hospital, with discharge deemed as study 

entry, were examined every three months to ascertain their health status. One patient was 

tested negative until the ninth month and positive at the 12th month. Apparently, the 
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status of the disease changed between the ninth and the 12th months, yet the exact time of 

change of status is not clear. Under the right-censoring mechanism, the information 

includes the length of 12 months in survival time, the 12th month as the exact event time, 

and a vector of covariates whose values are recorded at study entry and remain constant 

during the entire follow-up. The information obtained is good enough for using the Cox 

PH model in Equation 18. However, taking a closer look at the exact event time, i.e., the 

12th month, it is found that it is a simplified specification of the event time, as it is known 

that the status of the disease changed between the ninth and the 12th months, rather than 

at the 12th month exactly. Although this treatment does not provide a more informative 

picture of the survival experience of that patient in terms of the specified event time, it is 

still common practice in reality due to popularity of the Cox PH model which handles 

right-censored alone as well as reliability of the resulting parameter estimates. 

If the interval-censoring mechanism is used instead to specify the event time, that 

is, (9, 12], this advantage of describing the event time more informatively, conditional on 

the fact that the status of the event has not changed from study entry to the ninth month, 

leads to the problem that the Cox PH model in Equation 18 is unable to account for the 

more informatively specified event time. In particular, from Equation 22, it can be seen 

that when di  = 1, the ordered event time index j dictates specifically who is in the risk set 

at the jth ordered event time, which is from the original examination time, and the values 

of the independent variables to be used accordingly. If the alternative specification is 

used to denote an event time, two indices for specifying examination times must be 

employed, such as t5 and t6, which Equation 22, using distinct ordered event times, cannot 

handle, assuming some such time specifications may overlap and vary in length. It is 
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because of this difficulty and loss of information due to simplified specification of an 

event time under the right-censoring mechanism that motivate some new methods of 

modeling more informatively specified survival data. 

In summary, while it is common practice to monitor each subject on a regular 

basis to keep track of evolution of an event after entry into a follow-up study, how to 

specify the event time, that is, for cases with di  = 1, is handled differently. On one hand, 

under the right-censoring mechanism, when an event does occur prior to the pre-specified 

study end time, the last examination time is usually recorded as the exact event time for 

that subject. On the other hand, under the interval-censoring mechanism, the approach is 

to bind an unknown event time between the last two examinations when the status of the 

event is found to have changed. It is evident that while the alternative approach accounts 

for more informative information regarding when the event of interest occurs, at the same 

time it complicates the corresponding modeling procedures, as the standard partial 

likelihood function under the Cox PH model is not compatible with the new way of 

specifying the event time. 

Definition of Arbitrarily 

Interval-censored Data 

For an occurrence case, that is, di  = 1, let τi be the unobservable event time, Ai and 

Bi be two examination times forming the time-interval (Ai, Bi] for the ith subject, i = 1, 

2,…, N, where Ai might or might not be the first examination after study entry, and Bi 

another examination following Ai prior to or at the pre-specified study end time. Thus for 

di  = 1, if τi is bound in the time-interval (Ai, Bi], interval-censored survival data arise. 

Both left-censored survival data and right-censored survival data are actually special 

cases of interval-censored survival data. In particular, for di  = 1, if Ai = 0 and Bi ≠ ∞, left-
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censored survival data arise. For di  = 0, if Ai ≠ 0 and Bi = ∞, right-censored survival data 

arise. 

The values of Ai and Bi may or may not be the same across the cohort in a 

particular study. When it is further assumed that examination times may well be different 

for each subject in the study, arbitrarily interval-censored data arise. This type of survival 

data is the focus of the current research. 

Regression Analysis of Arbitrarily  

Interval-censored Survival Data 

Introduction 

In conducting regression analysis of arbitrarily interval-censored data, 

information is collected regarding independent variables, the status of an event, and 

examination times either for confined data, for left-censored data, or for right-censored 

data. 

For the time being, values of those independent variables are treated as time-

independent, that is, the values taken by such variables are those recorded at study entry 

and remain unchanged throughout the follow-up. 

As mentioned earlier, the Cox PH model is the most frequently used model in 

describing the relationship between the hazard of an event and independent variables. 

However, the primary problem in fitting the standard Cox PH model to arbitrarily 

interval-censored data is that the standard partial likelihood formulation in Equation 18 is 

not easily adapted. As information collected for a survival analysis will also include left-

censored and right-censored data, some integrated approach must be used to 

accommodate the advantage of describing an event time more informatively through an 

interval rather than through an exact examination time, introduced by arbitrarily interval-
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censored data on one hand, and to handle left-censored and right-censored data at the 

same time on the other hand. 

Review of Previous Approaches 

to Analyzing Arbitrarily 

Interval-censored Data 

In the mid-1980s, many articles about conducting regression analysis of 

arbitrarily interval-censored data began to appear (Sun, 2006). I reviewed some of those 

approaches, regarding how likelihood functions were constructed, what the estimation 

methods were used, what the properties of the estimators were, and how hypothesis 

testing was performed. 

Four types of approaches could be found in the literature. First, the seminal article 

by Finkelstein (1986) is the first that studied the use of the Cox PH model for interval-

censored data. Her method is based on the full likelihood under the Cox PH model and 

required estimation of the underlying baseline survival function. Regarding estimating 

regression parameters, the approach uses the difference in the survival functions, 

specified through the Cox PH model, at two consecutive examinations, as the basis for 

constructing the likelihood function for each subject. In particular, for i = 1, 2,…, N, 

letting (Li, Ri] denote the interval during which an event of interest occurred, the 

likelihood function is 

 

 

𝐿 = ∏[𝑆𝑖(𝐿𝑖) − 𝑆𝑖(𝑅𝑖)]

𝑁

𝑖=1

, 
 

(23) 

 

where Si(t) is the survival function in Equation 15. Let s0, s1, … , sm correspond to the 

examination times of a follow-up study. From the set of Li and Ri, the set of times, 0 = s0 
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< s1 < ∙∙∙ < sm = ∞, is determined, such that each Li and Ri is contained in the set. Define ξj 

= log[-log Sj(t)]. Using Equation 15, the likelihood function in Equation 23 can be 

rewritten as 

 

 

𝐿(𝜷|𝜉𝑗) = ∑log

𝑁

𝑖=1

∑𝛼𝑖𝑗

𝑚

𝑗=1

(𝑒
{−𝑒

[𝜷′𝑿𝑖+𝜉(𝑗−1)]}
− 𝑒

[−𝑒
(𝜷′𝑿𝑖+𝜉𝑗)

]
), 

 

(24) 

 

where αij = 1 if (s(j-1), sj] is a subset of (Li, Ri], and j = 1, 2, ... , m - 1. Then, the maximum 

likelihood method is applied. Unlike the partial likelihood function in Equation 18, 

however, the likelihood function involves both unknown regression parameters and the 

baseline survival function at consecutive examination times. In terms of the asymptotic 

properties of parameter estimates, they are consistent and efficient (Huang & Wellner, 

1997). With regard to the baseline survival function, it could be estimated either by the 

maximum likelihood method, or by some non-parametric approach, such as the Breslow 

estimator (1972), which takes the form 

 

 

𝑆̂0,𝐵 = ∏{1 −
𝑑𝑗

∑ 𝑒(𝜷̂′𝑿𝑙)
𝑙∈𝑅[𝑡(𝑗)]

}

𝑟

𝑗=1

, 
 

 

 

where β̂ is the maximum likelihood parameter estimates, r is the number of ordered event 

times, t(j) is the jth ordered event time, dj is the number of events at time t(j), and R[t(j)] is 

the risk set at time t(j). 

The method had several drawbacks, though. First, it relies on the grouped data 

assumption, that is, grouping intervals, the determination of which depends on observed 

data, are identical for all subjects. Second, this full likelihood approach directly estimates 
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the finite-dimensional regression parameters and the infinite-dimensional nuisance 

parameter simultaneously.  Moreover, since the number of parameters to be estimated 

may increase with the number of event times, this could be numerically unstable and 

computationally intensive for some data sets (Goggins, Finkelstein, Schoenfeld, & 

Zaslavsky, 1998). 

In a second method, called “the marginal likelihood approach,” each finite 

censoring interval is regarded as missing, and is replaced by an imputed exact event time. 

Then a standard method, such as the Cox PH model, is used to analyze the imputed data. 

In particular, the marginal likelihood approach was originally for right-censored data 

(Kalbfleisch & Prentice, 1973). In order to extend it into arbitrarily interval-censored 

data, observed censoring intervals must be converted to ranked event times, as required in 

the Cox PH model. Using the imputed set of rankings R, which are consistent with the 

observed censoring intervals, from the set of all possible such rankings of the ordered 

observations for subject i to N, denoted by φ, the marginal likelihood function ι takes the 

form, 

 

 

𝜄(𝑅|𝜷, 𝑿𝑖) = ∑ P(𝑅|𝜷, 𝑿𝑖)
𝑅∈φ

, 
 

 

 

where P(R|β, Xi) is the probability of the ranking R in the standard Cox PH model, given 

the vector of regression parameters β and a set of independent variables Xi, for all of the 

observations. 

Satten (1996) proposed a Gibbs sampler procedure for generating underlying 

rankings from the set φ. Gibbs sampler is a technique for generating random variables 

from a marginal distribution indirectly, without having to calculate the density (Casella & 
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George, 1992). Maximum marginal likelihood estimates of β could be obtained as usual 

by solving a score function. 

Satten, Datta, and Williamson (1998) used a parametric model for the imputation 

of missing exact or right-censored failure times, and then obtained parameter estimates 

by solving estimating equations through Monte Carlo techniques that are the partial 

likelihood score equations for the full-data Cox PH model, averaged over all rankings of 

imputed event times consistent with the observed censoring intervals. They presented a 

recursive stochastic approximation scheme that converges to the zero of the estimating 

equations. The resulting parameter estimates were proven to be consistent and 

asymptotically normal (Satten et al., 1998). 

Goggins, Finkelstein, Schoenfeld, and Zaslavsky (1998) proposed a Monte Carlo 

expectation maximization (MCEM) algorithm for fitting the Cox PH model for interval-

censored data. The basic idea of an EM algorithm is to replace one difficult likelihood 

maximization with a sequence of easier maximizations whose limit is the answer to the 

original problem, and this algorithm is guaranteed to converge to the maximum 

likelihood estimator (Dempster, Laird, & Rubin, 1977; Wu, 1983). The algorithm 

generates orderings of the events from their probability distribution under the model. 

Goggins et al. (1998) then maximized the average of the log-likelihoods from these 

completed data sets to obtain updated parameter estimates. As with the standard Cox PH 

model, this algorithm does not require the estimation of the baseline hazard function. 

Pan (2000) proposed a two-step approach where during the first step multiple 

imputation of missing event times based on the Breslow estimator of the survival 

function was conducted. Poor Man’s data augmentation (PMDA; Wei & Tanner, 1991) or 
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Asymptotic Normal data augmentation (ANDA; Wei & Tanner, 1991) was used to 

impute exact event times from the interval-censored data. During the second step a 

standard statistical procedure for right-censored data, such as the partial likelihood 

approach, was applied to imputed data to update the estimates. 

A disadvantage of combining multiple imputation and methods developed for 

right-censored data from the second approach is that they are highly computationally 

demanding and the fact that the procedures used to impute missing data have a relatively 

ad hoc nature. 

A third class of methods is a trade-off approach that lies between the first 

approach, which directly estimates the finite dimensional regression parameters and the 

infinite-dimensional nuisance parameter simultaneously, and the second approach, which 

focuses only on the finite-dimensional regression parameters (Betensky, Lindsey, Ryan, 

& Wand, 2002; Cai & Betensky, 2003). This approach approximates the infinite-

dimensional nuisance parameter using some smooth, finite-dimensional parameters. 

Betensky et al. (2002) considered approximating the baseline hazard function using some 

smooth, regression parameters by applying a local likelihood to fit the Cox PH model to 

arbitrarily interval-censored data. Interval-censored observations contribute to the 

baseline hazard function terms of the form 

 

 

ln {∫ ℎ𝑖(𝑡)𝑒
[−∫ ℎ𝑖(𝑢)𝑑𝑢

𝑡
0 ]

𝐵𝑖

𝐴𝑖

𝑑𝑡}, 
 

 

 

where (Ai, Bi], i = 1, 2,…, N, is the interval containing the event time τi. To obtain a 

smoothed estimate of the hazard function, Betensky et al. (2002) proposed a local EM 

algorithm. In particular, this algorithm iterates between the E-step, in which they 
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calculate the conditional expectations of the local log likelihoods, given the observed data 

and the current estimate of the hazard function, and the M-step, in which these expected 

log likelihoods are maximized with respect to their parameters. On the other hand, this 

method requires manual entry of a bandwidth parameter that determines the amount of 

smoothing for the hazard function estimate (Betensky et al., 2002). Further, the analytic 

standard errors are not derived, necessitating the use of the bootstrap, which is quite 

computationally intensive in this setting (Cai & Betensky, 2003). Lastly, there are 

numerical stability problems with local likelihood in regions of sparse data, such as the 

right-hand tail of the hazard function. For the same problem, Cai and Betensky (2003) 

proposed a penalized spline-based approach. Basically, they weakly parameterized the 

log-hazard function with a piecewise-linear spline and provided a smoothed estimate of 

the hazard function by maximizing the penalized likelihood through a mixed model-

based approach. One disadvantage of this approach is that the variability due to the 

estimation of the smoothing parameter for small samples seems out of reach in the 

frequentist framework from the data. 

An advantage of these methods is that predictive survival and hazard curves are 

directly available, and moreover, they are smooth rather than stepwise as in the case of 

non-parametric or semi-parametric estimation (Betensky et al., 1998; Cai & Betensky, 

2003; Kooperberg & Clarkson, 1997). 

A fourth class of approaches takes a different path than the other three classes, in 

that this class considers the occurrence of an event as a response from one Bernoulli trial 

with only two possible outcomes; thus having the potential for placing regression analysis 

of survival data under the framework of the binomial distribution and logistic regression, 
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which is conceptually simpler than the other three classes. Thus, this class of approaches 

was the focus of the current research. 

In particular, as mentioned earlier, in constructing the likelihood function for 

regression analysis of survival data, Equation 9 is analogous to that for the familiar 

Bernoulli distribution, which might have the potential for simplifying the inference 

procedures for survival analysis. Thus, the fourth class of methods treats the problem of 

how arbitrarily interval-censored data may be fit as a binary response regression problem. 

Carstensen (1996) and Farrington (1996) considered this approach from different 

perspectives regarding how to construct the likelihood function. Farrington’s method was 

illustrated in the current research. 

In particular, under the Cox PH model, Farrington (1996) constructed the 

likelihood function based on the familiar Bernoulli distribution. The occurrence of an 

event bound in a time interval is treated as a second Bernoulli trial conditional on the fact 

that there has been no occurrence of the event from a first Bernoulli trial until the start of 

that time interval. In this way, survival analysis of arbitrarily interval-censored data is 

connected with a binary response regression problem. Parameter estimates are obtained 

from the resulting generalized non-linear model. 

Suppose that the event time for the ith of N subjects is observed to occur in the 

interval (Ai, Bi], where the values of Ai and Bi may well be different for each subject. 

Further, in the context of regression analysis, the values of a number of independent 

variables are treated as time-independent. 

The survival function for the ith subject is denoted by Si(t), as in Equation 15, so 

that the probability of the event occurring in the interval (Ai, Bi], is Si(Ai) - Si(Bi). The 
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corresponding likelihood function for the N independent observations then takes the 

following form 

 

 

𝐿(𝜷|𝑿) = ∏[𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑁

𝑖=1

, 
 

(25) 

 

where β denotes the vector of unknown regression parameters, and Xi denotes a vector of 

covariates. Now suppose that the N independent observations consist of l left-censored 

observations, r right-censored observations, and a observations that are interval-censored, 

where N = l + r + a. For the purpose of illustration, it will be assumed that the data have 

been arranged in such a way that the first l observations are left-censored, i.e., Ai = 0, the 

next r are right-censored, i.e., Bi = ∞, and the remaining a observations are interval-

censored, i.e., 0 < Ai < Bi < ∞. Since Si(0) = 1 and Si(∞) = 0, the contributions of a left-

censored and right-censored observation to the likelihood function will be 1- Si(Bi) and 

Si(Ai), respectively. Thus the overall likelihood function, denoted L*, can be written as 

 

 

𝐿∗(𝜷|𝑿) = ∏[1 − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑙

𝑖=1

× ∏ [𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)]

𝑟

𝑖=𝑙+1

 

                × ∏ [𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑁

𝑖=𝑙+𝑟+1

, 

 

 

 

 

(26) 

 

or equivalently, 

 

 

𝐿∗(𝜷|𝑿) = ∏[1 − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑙

𝑖=1

× ∏ [𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)]

𝑟

𝑖=𝑙+1

 

                × ∏ 𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) [1 −
𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)
]

𝑁

𝑖=𝑙+𝑟+1

. 

 

 

 

 

(27) 
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It can be shown that this likelihood is equivalent to that for a corresponding set of 

N + a independent binary observations, y1, y2…, y(N + a), where the ith is assumed to be an 

observation from a Bernoulli distribution with the response probability pi, i =1, 2, ... , N + 

a. The likelihood function, denoted L**, for this set of binary data is then 

 

 

𝐿∗∗(𝜷|𝑿) = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖

𝑁+𝑎

𝑖=1

, 
 

(28) 

 

where yi takes the value 0 or 1, for i =1, 2, ... , N + a. The relationship can be established 

as follows. For left-censored data, the event of interest occurs before the first 

examination, and thus each of these l observations, which can be thought of as having 

one Bernoulli trial, contributes a binary observation with yi = 1 and 

 

 

𝑝𝑖 = 𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖) 

= 𝑆𝑖(0) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖) 

= 1 − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖), 

 

 

 

as each left-censored observation is confined between study entry and the first 

examination and Si(0) = 1, i =1, 2, ... , l. The contribution of these l observations can be 

expressed as 

 

 

∏𝑝𝑖

𝑙

𝑖=1

= ∏[1 − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑙

𝑖=1

. 
 

(29) 

 

For right-censored data, the event of interest does not occur until after the last 

examination, and thus each of these r observations, which can be thought of as having 

one Bernoulli trial as well, contributes a binary observation with yi = 0 and 
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𝑝𝑖 = 1 − [𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)] 
= 1 − [𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(∞)] 
= 1 − 𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖),  

 

as each right-censored observation will not experience the event of interest until after the 

end of the follow-up study and Si(∞) = 0, i = l + 1 , l + 2, ... , l + r. The contribution of 

these r observations can be expressed as 

 

 

∏ (1 − 𝑝𝑖)

𝑙+𝑟

𝑖=𝑙+1

= ∏ 𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)

𝑙+𝑟

𝑖=𝑙+1

. 
 

(30) 

 

For interval-censored data, two Bernoulli trials are needed for the occurrence 

within the interval (Ai, Bi], where Ai ≠ 0 and Bi ≠ ∞. The overall probability can be 

expressed as 

 

 

P(no event before 𝐴𝑖) × P(event from 𝐴𝑖 to 𝐵𝑖|no event before 𝐴𝑖). 
 

 

 

The first trial happens during the time interval (0, Ai], where the event of interest does not 

occur, that is, yi = 0 and the probability that no event occurs before Ai is 1 - pi = Si(Ai). 

The second trial happens during the time interval (Ai, Bi], where the event occurs, that is, 

yi + a = 1 and the corresponding probability pi + a can be expressed as 

 

 

P(event from 𝐴𝑖 to 𝐵𝑖|no event before 𝐴𝑖),  

 

which is actually a conditional probability. Since P(no event before Ai) = P(event after Ai) 

= Si(Ai), that is, the probability of a non-occurrence case before the time point Ai is equal 

to that of an occurrence case after the time point Ai, 
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P(event from 𝐴𝑖 to 𝐵𝑖|event after 𝐴𝑖) =
P[(event after 𝐴𝑖) ∩ (event after 𝐴𝑖)]

P(event after 𝐴𝑖)
 

=
P(event after 𝐴𝑖) ×

P(event from 𝐴𝑖 to 𝐵𝑖)

P(event after 𝐴𝑖)

P(event after 𝐴𝑖)
 

=
P(event from 𝐴𝑖 to 𝐵𝑖)

P(event after 𝐴𝑖)
 

=
[𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) − 𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)]

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)
 

= 1 −
𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)
. 

 

 

Combining these two terms leads to the expression of the form 

 

 

∏ (1 − 𝑝𝑖)𝑝𝑖+𝑎

𝑁

𝑖=𝑙+𝑟+1

= ∏ 𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) [1 −
𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)
]

𝑁

𝑖=𝑙+𝑟+1

, 
 

(31) 

 

where pi + a denotes the response probability for the second trial in each of the confined 

cases. 

Taken together, this shows that by suitably defining a set of N + a binary 

observations with response probabilities expressed in terms of the survival functions for 

the three possible forms of interval-censored observation, the likelihood function in 

Equation 28 is equivalent to that in Equation 27. Regarding how Equation 27 and 

Equation 28 are related to Equation 31, Equation 27 is the full likelihood function, which 

accounts for left-censored cases, right-censored cases, and interval-censored cases, while 

Equation 31 is one component that only accounts for interval-censored cases in Equation 

27.  As the full likelihood function in Equation 27 is equivalent to that for a 

corresponding set of independent binary observations from Bernoulli trials with the 

response probability pi, that is, Equation 28, Equation 31 corresponds to a component of 
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the likelihood function in Equation 28 of the form, ∏ (1 - p
i
)p

i + a
N
i = l + r + 1 . Accordingly, 

maximization of the log-likelihood function for N + a binary observations is equivalent to 

maximizing the log-likelihood for the interval-censored data. 

The next step is to construct expressions for the survival functions that make up 

the likelihood function in Equation 27. Recall Equation 15, 

 

 

𝑆𝑖(𝑡|𝜷, 𝑿𝑖) = [𝑆0(𝑡)]
𝑒(𝜷′𝑿𝑖) , 

 

 

 

where S0(t) is the baseline survival function and Xi is a vector of values of p independent 

variables for the ith subject, i = 1, 2, ... , N, with coefficients that make up the vector of 

unknown regression parameters, β. 

The baseline survival function will be modeled as a step function, where the steps 

occur at the k ordered censoring times, t(1), t(2),…, t(k), where 0 < t(1) < t(2) < ∙∙∙ < t(k), which 

are a subset of the times at which observations are interval-censored. This means that the 

t(g), g = 1, 2, ... , k, are a subset of the values of Ai and Bi, i = 1, 2, ... , N. Now define 

 

 

𝜃𝑔 = log
𝑆0[𝑡(𝑔−1)]

𝑆0[𝑡(𝑔)]
, 

 

(32) 

 

where t(0) = 0, so that θg ≥ 0, and at time t(g), it follows that 

 

 

𝑆0[𝑡(𝑔)] = 𝑒(−𝜃𝑔)𝑆0[𝑡(𝑔−1)], 
 

(33) 

 

for g = 1, 2, ... , k. 

Since the first step in the baseline survival function occurs at t(1), S0(t) = 1 for 0 ≤ t 

< t(1). From time t(1), the baseline survival function, using the above relationship, has the 
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value S0[t(1)] = e(-θ1)S0[t(0)], which, since t(0) = 0, means that S0(t) = e(-θ1), t(1)  ≤ t < t(2). 

Similarly, from time t(2), the survival function is S0[t(2)] = e(-θ2)S0[t(1)], that is, S0(t) = 

e[-(θ1+ θ2)], t(2)  ≤ t < t(3). Similar expressions for all times can be obtained, until S0(t) = 

e[-(θ1+ θ2 + ∙∙∙ + θk)], t ≥ t(k). Consequently, 

 

 

𝑆0(𝑡) = 𝑒(−∑ 𝜃𝑟
𝑔
𝑟=1 ), 

 

(34) 

 

for t(g)  ≤ t < t(g + 1), and so the baseline survival function, at any time ti, is given by 

 

 

𝑆0(𝑡𝑖) = 𝑒(−∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 ), 

 

(35) 

 

where dig = 1 if t(g) ≤ ti and dig = 0 if t(g) > ti, for g = 1, 2, ... , k. The quantities dig will be 

taken to be the values of k indicator variables, Di1, Di2, … , Dik, for the ith observation in 

the augmented data set (Collett, 2003). 

How the augmented data set is formed is detailed as follows. After collected 

survival data are organized in a data set such that information regarding covariates, left 

and right censoring times for an interval, and the binary response variable for each 

subject are recorded using one single line, the data set is expanded by adding a further 𝑎 

line of data, repeating the information for subjects whose intervals are confined, so that 

the revised data set has N + a observations. The values, for example, yi, of the binary 

response variable, Y, are then added. These are such that Y = 1 for a left-censored 

observation, and Y = 0 for a right-censored observation. For confined observations, where 

the data are duplicated, one of the pairs of observations has Y = 0 and the other 

observation Y = 1. The values of the Dig, g = 1, 2, ... , k, will differ at each observation 

time, ti. 
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Now combining the results together, the survival function for the ith subject, at 

times Ai and Bi, can now be obtained. In particular, 

 

 

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖) = 𝑆0(𝐴𝑖)
𝑒(𝜷′𝑿𝑖)  

= [𝑒(−∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 )]

𝑒(𝜷′𝑿𝑖)

 

= 𝑒{[−𝑒(𝜷′𝑿𝑖)] ∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, (36) 

 

where dig = 1 if t(g) ≤ Ai and dig = 0, otherwise. Similarly, 

 

 

𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖) = 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, (37) 

 

where dig = 1 if t(g) ≤ Bi and dig = 0, otherwise. 

From Equations 36 and 37 for Si(Ai) and Si(Bi), respectively, the response 

probabilities, pi, used in Expression 28, can be expressed in terms of the unknown 

parameters θ1, θ2,…, θK and the unknown coefficients of the p independent variables in 

the model, β1, β2,…, βp. In particular, for a left-censored observation, pi = 1 - Si(Bi), and 

for a right-censored observation, pi = 1 - Si(Ai). In the case of an interval-censored 

observation, pi = 1 - Si(Ai) for one of the two binary observations. For the other, 

 

 

𝑝𝑖+𝑐 = 1 −
𝑆𝑖(𝐵𝑖|𝜷, 𝑿𝑖)

𝑆𝑖(𝐴𝑖|𝜷, 𝑿𝑖)
 

= 1 −
𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑2𝑔
𝑘
𝑔=1 }

 

= 1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, (38) 

 

where d1ig = 1 if t(g) ≤ Bi and d1ig = 0 otherwise, and d2ig = 1 if t(g) ≤ Ai, and d2ig = 0 

otherwise. Consequently, the θ-terms in the numerator for which t(g) ≤ Ai cancel with 
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those θ-terms in the denominator, and this gives the probability expression for the other 

binary observation,  

 

 

𝑝𝑖+𝑐 = 1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)] ∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, (39) 

 

where dig = 1 if Ai < t(g) ≤ Bi and dig = 0, otherwise. It then follows that in each case, the 

response probability can be expressed in the form 

 

 

𝑝𝑖 = 1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, (40) 

 

where dig = 1 if t(g) is in each corresponding interval. In particular, for left-censored data, 

t(g) is in (0, Bi], for right-censored data, t(g) is in (0, Ai], and for confined data, t(g) is in (Ai-c, 

Bi-c], for g = 1, 2, ... , k, and dig = 0 otherwise. 

Thus, the likelihood function in Equation 28 becomes 

 

 

𝐿(𝜷|𝑿𝑖 , 𝑌𝑖) = ∏ (1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)] ∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 })

𝑌𝑖

[1

𝑁+𝑎

𝑖=1

− (1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 })]

1−𝑌𝑖

. 
 

 

This leads to a non-linear model for a set of binary response variables with values yi, and 

corresponding response probabilities pi, found from Equation 40, for i = 1, 2, ... , N + a. 

The model contains k + p unknown parameters, namely θ1, θ2,…, θk and β1, β2,…, βp. 

This model is actually known as a generalized non-linear model, since it is not possible to 

express a simple function of pi as a linear combination of the unknown parameters, 

except in the case where there are no explanatory variables in this generalized non-linear 

model (Collett, 2003). 
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For non-linear models, parameter estimates typically do not have closed form. An 

estimate can be obtained via the nonlinear least squares approach (Bates & Watts, 2007). 

The consistency and asymptotic normality of parameter estimates can be established 

using uniform laws of large numbers and the mean value theorem, respectively (Shi, 

2012). Alternatively, maximum likelihood estimation, implemented by either the 

Newton-Raphson procedure or the method of Fisher scoring, can be used, and the 

resulting parameter estimates are consistent, efficient, and asymptotically normal (Tang, 

He, & Tu, 2012). 

There are several advantages to Farrington’s approach. First, it is conceptually 

simpler to understand than the other three classes of methods, as construction of the 

likelihood function is based on the familiar Bernoulli distribution. Second, it uses an 

existing data set and does not need to impute data. Third, it does not introduce smoothing 

techniques or the MCEM. Therefore, for the current research, Farrington’s approach was 

adopted. 

Time-dependent Covariates 

Introduction 

In the Cox PH model introduced in Equation 11, it is assumed that the hazard 

depends only on time-independent covariates whose values are those recorded at study 

entry and remain constant throughout the course of the study, such as weight at baseline, 

gender, and randomized treatment. As is typical in many studies that generate survival 

data, subjects are monitored for the duration of the study. During this period, values of 

certain covariates may be recorded on a regular basis. If only time-independent covariates 

are used, for example, weight at baseline, recorded at the time origin of a two-year study, 
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this constant value may not provide a better indication of health condition than more 

recent values of weight, such as weight measured in the fifteenth month. In other words, 

if in a regression analysis time-dependent covariates whose values evolve along the 

course of the study are used, a more satisfactory model for the hazard of an event of 

interest at any given time would be obtained. Two previous studies showed through real 

data analysis that inclusion of external time-dependent covariates into the Cox model 

enabled a better understanding of predictors’ role in describing dynamically the survival 

experience of subjects in a follow-up study (Andersen, 1992; Christensen et al., 1986). 

Types of Time-dependent 

Covariates 

Time-dependent covariates are usually classified as being either external or 

internal (Kalbfleisch & Prentice, 2002). The reason why this classification is important is 

that an internal covariate requires special treatment compared to an external one. 

External time-dependent covariates. External time-dependent covariates do not 

necessarily require a subject to be under direct observation. A standard example is the 

time of the day or the season of the year, which does not require a subject to be under 

direct observation. A covariate process is external with respect to the outcome process if 

the covariate at time 𝑡 is conditionally independent of all preceding response 

measurements (Luo, 2011). Let T* denote the random variable of event times, xit denote 

the covariate vector at time t for the ith subject, and Xit = {xiu; 0 ≤ u < t} denote the 

covariate history up to t. The formal definition of external time-dependent covariates 

requires such covariates to satisfy the condition (Kalbfleisch & Prentice, 2002) 

 

 

P{𝑢 ≤ 𝑇∗ < 𝑢 + Δ𝑢|𝑿𝑢, 𝑇∗ ≥ 𝑢} = P{𝑢 ≤ 𝑇∗ < 𝑢 + Δ𝑢|𝑿𝑡 , 𝑇
∗ ≥ 𝑢} (41) 
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for all u and t such that 0 < u ≤ t, as Δu → 0. Hence, the hazard function at time u is 

influenced by the observed covariate history up to time u by the regression model, but its 

future path up to any time t > u is not affected by the occurrence of an event at time u 

(Kalbfleisch & Prentice, 2002). 

There are two types of external time-dependent covariates (Aalen, Borgan, & 

Gjessing, 2008). For a defined time-dependent covariate, the complete path of the 

covariate is given at the outset of the study, so that the covariate changes in such a way 

that its value will be known in advance at any future time. Examples include the age of a 

subject and a planned schedule of treatments. An ancillary time-dependent covariate is 

the observed path of a stochastic process whose development over time is not influenced 

by the occurrences of the event being studied. An example of such a covariate would be 

one that measures airborne pollution as a predictor for the frequency of asthma attacks. In 

all of these examples it is clear that the value of these external time-independent 

covariates at any time point is not affected by the true event time. 

Internal time-dependent covariates. In contrast, for an internal time-dependent, 

the condition implied in Equation 41 does not hold (Kalbfleisch & Prentice, 2002). 

Internal time-dependent covariates relate to a particular subject in a study, and can only 

be measured while that subject is still under direct observation. Such data usually arise 

when repeated measurements of certain characteristics are made on a subject over time. 

Examples include biomarkers and clinical parameters, such as white blood cell count, 

systolic blood pressure, and serum cholesterol level. There are three important features 

that complicate statistical analysis with such covariates (Rizopoulos, 2012). The first 

important characteristic is that internal time-dependent covariates typically require the 
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survival of the subject for their existence, so that the path of these covariates carries 

direct information about the event process. The second important characteristic is that 

internal time-dependent covariates are typically measured with error. This measurement 

error primarily refers to the biological variation induced by the subject rather than to the 

error induced by the procedure or machinery that determines the value of a covariate. The 

final important characteristic is that their complete path up to any time is not fully 

observed. That is, the levels of a time-dependent covariate for a subject are only known at 

some specific examination, and not in between these examinations. 

The nature of time-dependent covariates. How time-dependent covariates are 

handled in regression analysis of survival data using the extended Cox model, as is 

described shortly below, depends on the nature of the time-dependence. An internal time-

dependent covariate is one where the change of the covariate over time is related to the 

behavior of the subject. For example, the internal time-dependent covariate white blood 

cell count increases as one subject begins to eat more tomatoes. An external covariate is 

one whose path is generated externally (Zhang, 2005). A covariate of this sort, like an 

ancillary time-dependent covariate, can be the output of a stochastic process that is 

external to the subject under study and whose probability laws do not involve the 

parameters in the event time model under study (Kalbfleisch & Prentice, 2002). Ancillary 

covariates play the role of ancillary statistics for the event time model. 

However, the extended Cox model is not appropriate when the time-dependent 

covariates are of internal nature. To see this, external time-dependent covariates are 

discussed first. In particular, for external time-dependent covariates, using the same set of 
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notation as that in Equation 41, the conditional survival function for a given covariate 

history is defined in general by 

 

 

𝑆𝑖(𝑡|𝑿𝑖𝑡) = P(𝑇∗ ≥ 𝑡|𝑿𝑖𝑡) 

= 𝑒[−∫ ℎ𝑖(𝑠|𝑿𝑖𝑡) 𝑑𝑠
𝑡
0 ]

 

= 𝑒[−∫ ℎ0(𝑠)𝑒(𝑿𝑖𝑡) 𝑑𝑠
𝑡
0 ].  

 

By contrast, the conditional hazard function bears no relationship to the conditional 

survival function for internal time-dependent covariates, which in fact requires the 

survival of the subject for its existence. For an internal covariate Xi such as white blood 

cell count, Si[t|Xit] = 1 provided that Xi(t) does not indicate that the subject has died. A 

measurable value of white blood cell count indicates that the subject is still alive (Fisher 

& Lin, 1999). 

To account for the special features of internal time-dependent covariates, the joint 

modeling framework for longitudinal and survival data (Faucett & Thomas, 1996; 

Wulfsohn & Tsiatis, 1997) is needed, which, however, is beyond the scope of the current 

research. The current study only examined external time-dependent covariates. 

Regression Analysis with External 

Time-dependent Covariates 

A defined covariate can vary in a predetermined way, that is, its total path up to 

any time t, Xi(t), is determined in advance for each subject under study (Kalbfleisch & 

Prentice, 2002). Therefore, inference can be based on the partial likelihood conditioning 

on the covariates, as usually done in the case of time-independent covariates. Age of a 

subject is an example. An ancillary covariate, carrying more randomness covariates, can 

also be considered as external, since its stochastic process has a distribution that does not 

involve the parameters of the regression model for survival times (Cortese & Andersen, 
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2009). An example of such a covariate would be when studying how long someone 

remains employed, the inflation rate is essentially external to the subject’s employment 

duration. 

The classical estimation method. Recall that under an independent right-

censoring mechanism, the standard Cox PH model with a vector of time-independent 

covariates has the form 

 

 

ℎ𝑖(𝑡|𝜷, 𝑿𝑖) = ℎ0(𝑡)𝑒
(𝜷′𝑿𝑖),  

 

which can be extended to incorporate external time-dependent covariates. Letting Xit be a 

p-dimensional vector of values of independent variables at time t for the ith subject, β the 

p-dimensional vector of unknown parameters, and h0(t) the baseline hazard function, the 

corresponding extended Cox model is written as 

 

 

ℎ𝑖(𝑡|𝜷, 𝑿𝑖𝑡) = ℎ0(𝑡)𝑒
(𝜷′𝑿𝑖𝑡), (42) 

 

and the partial log-likelihood function of Equation 17 can be generalized to 

 

 

𝑙[𝜷|𝑿𝑖𝑡] = ∑𝛿𝑖

𝑁

𝑖=1

[𝜷′𝑿𝑖𝑡 − log ∑ 𝑒(𝜷′𝑿𝑙𝑡)

𝑙∈𝑅(𝑡𝑖)

], 
 

(43) 

 

in which R(ti) is the risk set at time t, the event time of the ith subject in the study, i = 1, 

2,…, N, and δi = 0 if the survival time of the ith subject is censored and δi = 1 otherwise. 

This expression can then be maximized to obtain parameter estimates. 

The estimates of the associated standard errors are obtained in a manner identical 

to the one described for the Cox PH model, using Equation 43 in place of Equation 22. 
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And the partial likelihood ratio test, the Wald test, or the score test can be conducted to 

assess the significance of the coefficient. 

However, while the extended Cox model accounts for external time-dependent 

covariates, it assumes right-censored survival data alone. Hence, in the case of regression 

analysis of other types of survival data, such as arbitrarily interval-censored or left-

censored survival data, with external time-dependent covariates, the extended Cox model 

is not appropriate. No previous studies have been conducted on modeling arbitrarily 

interval-censored survival data alone with external time-dependent covariates. For 

example, both Van Der Laan and Robins’ (1998) and Martinussen and Scheike’s studies 

(2002) investigated current status data. Chen, May, Ibrahim, Chu, and Cole (2014) 

developed a procedure that models left-censored survival data and internal time-

dependent covariates. Modeling arbitrarily interval-censored with external time-

dependent covariates was the focus of the current research. 

Other estimation methods. Besides the traditional maximum partial likelihood 

approach for estimating parameters for external time-dependent covariates in the 

extended Cox model, there are other estimation methods. 

Murphy and Sen (1991) used a sieve estimation procedure (Grenander, 1981) to 

estimate a time-dependent coefficient in a Cox-type parameterization of the stochastic 

intensity of a point process. Weak consistency and asymptotic normality for the sieve 

estimator were demonstrated by Murphy and Sen (1991). To show weak consistency, the 

idea is to expand the log-partial likelihood about a point which is close to the true 

parameter, instead of expanding about the true parameter. To show asymptotic normality, 

the idea is to use the Skorohod topology on 𝐷[0,1] (Billingsley, 1999). 
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Heinze and Dunkler (2008) used the bias reduction approach proposed by Firth 

(1993) to obtain the penalized maximum partial likelihood estimates for external time-

dependent covariates, such as CYCB1 gene expression, under the extended Cox model. 

Their approach works best whenever monotone likelihood is encountered, the number of 

events is unusually small or the number of covariates unusually large. Monotone 

likelihood occurs in the fitting process of the extended Cox model if at least one 

parameter estimate diverges to infinity. With very small data sets, their approach tends to 

underestimate strong effects as opposed to standard maximum likelihood estimation 

method. 

From a theoretical perspective, the above literature review showed that there was 

a need to model arbitrarily interval-censored data with external time-dependent 

covariates. From an applied perspective, practitioners also need such a modeling 

procedure, but one did not yet exist prior to the current study.     

As an example, in a study conducted by Hartmann et al. (2012), serial 

measurement of the cardiovascular biomarker midregion proadrenomedullin (MR-

proADM) was collected at study entry, days three, five, and seven, and then the extended 

Cox model was applied at day 30 to assess risk of lower respiratory tract infection. At the 

end of each subject’s follow-up, an overall status of the event for the subject, i.e., the 

event happened or did not happen, was recorded. Apparently, the study used day 30 as 

the event time for an occurrence case, which most probably was not true. Practitioners 

thus can only evaluate roughly the actually risk of lower respiratory tract infection at a 

particular day. As another example, Collett (2003) applied Farrington’s approach to 

investigate the effect of the combination of chemotherapy and radiotherapy on one type 



62 

 

of tumor. The exact time of occurrence of the event of interest was unknown, and the 

only information available concerned whether or not retraction was identified when a 

patient visited the clinic. Since the visit times, measured in months, were not the same for 

each patient, and a number of patients failed to keep appointments, the data are regarded 

as arbitrarily interval-censored. Moreover, at study entry, each patient was treated with 

either radiotherapy or the combination of chemotherapy and radiotherapy, and the 

treatment remained unchanged during the entire follow-up. The study lasted for 61 

months, but the status of one particular patient, even at 60th month, was modelled using 

the covariate value collected at study entry. As such, the connection between covariates 

and the responsible variable is in doubt more or less. Practitioners need a modeling 

procedures that can establish closer connection between covariates and the responsible 

variable. 

Regression Analysis of Arbitrarily Interval-censored Data with 

External Time-dependent Covariates 

  

From the literature review above, it is easy to see the advantages of collecting 

arbitrarily interval-censored survival data and using external time-dependent covariates 

instead of time-independent covariates from both theoretical and applied perspectives. In 

particular, compared to arbitrarily interval-censored survival data, right-censored survival 

data cannot provide a more informatively specified event time, as the status of an event 

might have changed well before the last examination. Further, external time-dependent 

covariates allow updating the hazard of an event for a subject according to the evolution 

of such covariates along the follow-up, thus providing a more informative description of 

the hazard of occurrence of an event of interest. Therefore, it is natural to deem 

regression analysis of arbitrarily interval-censored survival data with external time-
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dependent covariates as a powerful analytical tool for describing the survival experience 

of subjects. 

However, in practice, modeling with arbitrarily interval-censored data is often 

mimicked by methods developed for right-censored data for the sake of simplicity. For 

this, the interval needs to be replaced by an imputed time. For example, in one such 

method, mid-point imputation, the analysis is performed as though the mid-point of each 

subject’s interval were the exact event time (Law & Brookmeyer, 1992). For example, a 

cohort of subjects was initially uninfected and at risk of infection in the interval month 

one to month nine. Screening tests for evidence of infection occurred periodically over 

the interval, and subjects were followed for onset of AIDS. Mid-point imputation refers 

to imputing the date of infection by the mid-point of the interval which is the average of 

month one and month nine. Then the resulting imputed time is used as the infection time. 

Applying methods for right-censored data on the artificial fixed points can lead to biased 

and misleading results, such as biased estimation and underestimation of the true error 

variance (Odell, Anderson, & D’Agostino, 1992; Rücker & Messerer, 1988), and biased 

hazards and hazard ratios (Dorey, Little, & Schenker, 1993; Law & Brookmeyer, 1992). 

On the other hand, as for external time-dependent covariates, which are often essential 

predictors for the hazard, they are either disregarded or substituted for by the baseline 

values of time-independent covariates for the purpose of simplifying the corresponding 

analysis. Further, most of the inferential procedures developed for interval-censored data 

only apply to time-independent covariates (Sun, 2006). Although some exceptions exist, 

they are either for a model not based on the Cox PH model, such as the additive hazards 

regression model (Lin, Oakes, & Ying, 1998; Martinussen & Scheike, 2002), or for data 
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other than arbitrarily interval-censored data, such as current status data (Martinussen & 

Scheike, 2002; Van Der Laan & Robins, 1998). 

Review of Literature on Properties of Parameter 

Estimates from the Extended Cox Model 

To answer the three hypotheses in the current research, previous literature on 

properties of parameter estimates, such as absolute relative bias (ARB) of parameter 

estimates, that is, the absolute value of the difference between parameter estimates and 

true values of the coefficients divided by of the coefficients, percent of correct sign of 

parameter estimates (% CS), power, and type I error rate, from the extended Cox model 

and Farrington’s model was reviewed. However, regarding properties of parameter 

estimates from Farrington’s model, no one has yet conducted such research. In most 

research on regression analysis of interval-censored data (Ma & Kosorok, 2005; Muggeo, 

Attanasio, & Porcu, 2010), Farrington’s model was only introduced as one way of 

modeling interval-censored data. Even in Farrington’s article (1996) where Farrington 

proposed the model, he did not conduct a simulation study on properties of parameter 

estimates, either. 

Regarding properties of parameter estimates from the extended Cox model, bias 

can be as low as .001(Hendry, 2014; Xiao, Abrahamowicz, & Moodie, 2010). Power can 

be as high as .906 (Chen, Ibrahim, & Chu, 2011). Type I error rate, however, is inflated 

(Abrahamowicz, Mackenzie, & Esdaile, 1996). No one has yet conducted research on 

percent of correct sign of parameter estimates from the extended Cox model. 

Chapter Summary 

In summary, while methods of modeling right-censored data either with time-

independent or time-dependent covariates, and methods of modeling arbitrarily interval-
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censored data with time-independent covariates, are available in the literature, there is no 

estimation method of modeling arbitrarily interval-censored data and external time-

dependent covariates simultaneously yet. Moreover, in reality, practitioners need the 

results from the new modeling procedure that could help them diagnose the status of a 

particular event of a subject more realistically. Regarding properties of parameter 

estimates, only the extended Cox model was investigated in previous literature. Thus, a 

new method, which is based on the Cox PH model and which extends Farrington’s 

approach, was proposed and evaluated in the current study. The corresponding parameter 

estimation and inferential procedures were explored as well.   
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CHAPTER III 

 

METHODOLOGY 

 

The literature review presented in Chapter II has revealed that it is reasonable to 

incorporate arbitrarily interval-censored data and external time-dependent covariates into 

regression analysis of survival data. However, two challenges arising from the 

corresponding modeling procedure ensue due to such an inclusion. 

The first challenge is how external time-dependent covariates are handled under 

the framework of Farrington’s (1996) modeling procedure, as it employs time-

independent covariates alone. In particular, in the case of confined data, although one 

subject might have undergone more than two examinations after study entry, which form 

more than two intervals, only two intervals are used under Farrington’s approach, with 

one from study entry to A, and the other from A to B, where A denotes the left endpoint 

and B denotes the right endpoint of the censoring interval. As such, although values of 

covariates can be collected at each examination, Farrington’s approach does not have the 

mechanism to handle varying covariate values. Thus, when external time-dependent 

covariates are employed instead, Farrington’s modeling procedure has to be extended to 

such covariates. 

The second challenge is the resulting inferential procedure from such an 

extension. As Farrington’s approach has not been extended to external time-dependent
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covariates, how to infer from regression analysis of such a data situation, including 

estimation methods and hypothesis testing, has not been identified in the literature. The 

purpose of estimation is to investigate how the survival experience of a group of subjects 

depends on the values of one or more independent variables. The purpose of hypothesis 

testing is to test whether the null hypothesis that one or more coefficients is equal to zero 

is rejected or not. As such, an attempt was made to fill in this gap, which is the main 

purpose of the current research. In particular, I first proposed for the current study the 

non-likelihood-based estimation method, generalized estimating equations (GEE; Liang 

& Zeger, 1986; Zeger & Liang, 1986), and then conducted hypothesis testing and one 

simulation study to explore the properties of parameter estimates. 

In addition, there are three main research questions for the proposed study. 

First, how does ARB and percent of correct sign of parameter estimates from the 

proposed approach compare to those from Farrington’s approach, and those from the 

extended Cox model, as applied to arbitrarily interval-censored survival data with 

external time-dependent covariates? Second, how does the power from the proposed 

approach compare to that from Farrington’s approach and that from the extended Cox 

model, as applied to arbitrarily interval-censored survival data with external time-

dependent covariates? Third, how does type I error rate from the proposed approach 

compare to that from Farrington’s approach and that from the extended Cox model, as 

applied to arbitrarily interval-censored survival data with external time-dependent 

covariates? 

For the first research question, compared to Farrington’s model and the extended 

Cox model, lower ARB from parameter estimates for the external time-dependent 
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covariates was expected from the proposed approach. For the second research question, 

compared to Farrington’s model and the extended Cox model, greater power related to 

the external time-dependent covariate was expected from the proposed model. For the 

third research question, type I error rate related to external time-dependent covariates was 

expected to be close to the nominal level of .05 for the proposed model, but higher for 

Farrington’s model and the extended Cox model. 

Statistical Inference for the Extended 

Generalized Non-linear Model 

As described in Chapter II, Farrington’s approach is capable of converting the 

problem of regression analysis of arbitrarily interval-censored data to a binary response 

regression analysis. The resulting model is a logistic model with correlated binary 

responses and time-independent covariates. Since it is not possible to express a simple 

function of the probability of success as a linear combination of the unknown parameters, 

except in the case where there are no independent variables in the model, the resulting 

model is actually a generalized non-linear model (Collett, 2003) with a binary response. 

Various generalized linear models are in fact special cases of generalized non-linear 

models. 

When external time-dependent covariates, such as repeated measurements on the 

outdoor levels of air pollutants, are further incorporated in this binary response 

generalized non-linear model, the model becomes an extended generalized non-linear 

model (EGNM). Two difficulties regarding the corresponding inferential procedure arise. 

The first difficulty is how to formulate an expression which serves as the basis for 

parameter estimation and the corresponding hypothesis testing. The key point is the 

formulated expression must reflect that probabilities depend on time via external time-
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dependent covariates, which has not been explored under Farrington’s modeling 

framework. The second difficulty is how to estimate parameters for external time-

dependent covariates in the EGNM, which has not been explored, either. The first 

difficulty is discussed in the section, “Estimation Using GEE,” below. The second 

difficulty is discussed first. 

Estimation Methods for the Binary 

Response Generalized 

Non-linear Model 

In terms of estimation methods for the binary response generalized non-linear 

model that handles time-independent covariates, usually two classes of methods can be 

used. Depending on whether the response variable assumes a particular probability 

distribution, those methods can be classified into either a likelihood-based or a non-

likelihood-based method. 

When a likelihood-based method is applied to the estimation procedure, the joint 

probability distribution of the response variable is constructed first. The resulting joint 

likelihood function is then evaluated using numerical methods. 

Non-likelihood-based methods, such as generalized estimating equations (GEE; 

Liang & Zeger, 1986; Zeger & Liang, 1986), can also be used in estimating parameters 

for the binary response generalized non-linear model. These methods avoid constructing 

a likelihood function as the basis for estimation. In particular, in setting up GEE, 

assuming the distribution of the response variable is from an exponential family 

(McCullagh & Nelder, 1989), all that is needed is specification of a mean model and the 

mean-variance relationship in the response variable, and a working correlation structure, 

that is, the pairwise within-subjects association among the responses. Estimation may be 
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accomplished either via generalized weighted least-squares or through an iterative 

process (Zorn, 2001). 

The Data Structure 

Before discussing estimation methods, the data structure for arbitrarily interval-

censored data with external time-dependent covariates is described. Regarding the 

response, consider a survival study that gives rise to arbitrarily interval-censored data, 

 

 

{(𝐴𝑖(𝑡−1), 𝐵𝑖𝑡], 𝑿𝑖; 𝑖 = 1,… ,𝑁; 𝑡 = 1,… , 𝑇𝑖}, (44) 

 

for the event times of interest. In Equation 44, (Ai(t-1), Bit] denotes an interval formed by 

the (t - 1)th and the tth examinations for the ith subject, t = 1 ,…, Ti denotes the number 

of examinations after study entry, (t - 1) = 0 denotes study entry, Ai(t-1) and Bit denote the 

left endpoint and the right endpoint for the interval, respectively, and N denotes the 

number of subjects. Within each interval of this sequence, the event of interest for that 

subject is observed either to occur or not to occur. Let yi = [yi1,…, yiTi]ʹ be a Ti  by one 

vector of binary responses corresponding to the formed intervals for the ith subject, 

where yit = 1 denotes the occurrence of the event and yit = 0 otherwise. 

Regarding external time-dependent covariates, the associated design matrix for 

the ith subject, Xi, in Equation 44 takes the form 

 

 

𝑿𝑖 = [

𝑥𝑖11 ⋯ 𝑥𝑖1𝑃

⋮ ⋱ ⋮
𝑥𝑖𝑇𝑖1 ⋯ 𝑥𝑖𝑇𝑖𝑃

], 
 

 

where p = 1,…, P denotes different external time-dependent covariates. For the ith 

subject at the tth examination, the row vector xit = [xit1,…, xitP] gives the P covariate 
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values, and for the pth covariate for the ith subject the column vector xi.p = [xi1p,…, xTip] 

gives values for that covariate across all Ti examinations. Note that values collected at 

study entry are not included in the matrix, as they are not used in the modeling procedure, 

which is discussed below. For simplicity, the current research only used one external 

time-dependent covariate.   

Taken together, the full response vector for all N subjects is given by the column 

vector y = [y1,…, yN]ʹ, and the full design matrix is similarly given by X = [X1ʹ,…, XNʹ]ʹ. 

There are a few more assumptions made for the data situation in the current 

research. In particular, examination times differ across N subjects, who might have 

different numbers of examinations and hence different numbers of responses. The 

number of examinations at which the ith subject is observed is smaller relative to N, that 

is, Ti < N. Further, the between-subjects responses are assumed independent. Moreover, 

all intervals formed by consecutive examinations for a particular subject can be described 

using a sequence of (Ai(t-1), Bit]. 

As described in Chapter II, arbitrarily interval-censored data in fact entail three 

types: left-censored data with Ai = 0 and Bi ≠ ∞, right-censored data with Ai ≠ 0 and Bi = 

∞, and confined data with Ai ≠ 0 and Bi ≠ ∞. For left-censored data, there is only one 

examination after study entry, and thus there is only one response with yi = 1. For right-

censored data, there is at least one examination after study entry, and thus there is at least 

one response with yi = 0. For confined data, there are at least two examinations after 

study entry, and thus there is at least one response with yi = 0 and only one response with 

yi = 1, with the responses correlated. For simplicity, the current research only considers 

confined data. 
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Choosing an Estimation Method 

for the EGNM 

When it comes to estimation methods for the EGNM that handles external time-

dependent covariates, neither a likelihood-based method nor a non-likelihood-based 

method has been identified in the literature. While both classes of methods have the 

potential for incorporating this type of covariates, a non-likelihood-based estimation 

method, GEE, was chosen in the proposed study for the following reasons. 

First, a likelihood-based method could be computationally very burdensome. Two 

types of problems tend to occur. In some cases, the constructed likelihood function is 

extremely difficult to evaluate numerically with available computer technology. In other 

cases, the likelihood function must be maximized subject to a set of nonlinear constraints 

implied by the model, which further adds to the computational burden. Moreover, the 

successful implementation of a likelihood-based method depends greatly on good starting 

values (Vonesh & Chinchilli, 1996), which involves specifying initial estimates of the 

coefficients of the independent variables. If starting values are far from their optimal 

estimated values, then the corresponding optimization method may fail to converge. 

Second, the response probability under Farrington’s approach, pi, in Equation 40 

is actually identified through a generalized linear model using a complementary log-log 

link. Now that the distribution of the response variable is from an exponential family, i.e., 

the binomial distribution, and the mean model and the mean-variance relationship are 

readily specified, GEE is a natural candidate for the estimation method. 

Third, besides its computational simplicity compared with likelihood-based 

estimation methods, the GEE approach produces consistent parameter estimates even 

with misspecification of the working correlation structure (Zeger & Liang, 1986). 
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Although the estimates are not optimal compared to those obtained from likelihood-based 

estimation methods, a trade-off is attained between computation and statistical properties. 

In the current research, priority was given to computation. Therefore, the non-likelihood-

based estimation method GEE was applied in the current research. 

Estimation Using GEE 

Formally, the response probability of the EGNM, with one external time-

dependent covariate X, takes the form    

 

 

𝑝𝑖𝑡 = 1 − 𝑒{[−𝑒(𝛽0+𝛽1𝑋𝑖𝑡)] ∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, 

 

(45) 

 

where β0 denotes the parameter for the intercept constant to be estimated, β1 denotes the 

parameter for the covariate to be estimated, pit denotes the response probability and Xit 

denotes the external time-dependent covariate value at the tth examination for the ith 

subject, and θgdig is from Equation 40. Although this model in Equation 45 is only partly 

linearized using the complementary log-log link, that is, a weakly parametric generalized 

linear modeling framework (Farrington, 1996), GEE, designed to model correlated data 

under generalized linear models, can still be used. 

Decomposition of GEE. In using GEE, a mean model and the mean-variance 

relationship of the response variable, which is from the exponential family of 

distributions, and a working correlation structure representing the correlation believed to 

be present among responses within subjects must be specified. 

In particular, according to multivariate statistics theory, a variance-covariance 

matrix of data is expressed as  

 

 

𝐕𝑖 = 𝜙𝐀𝑖
1/2

𝐑𝑖𝐀𝑖
1/2

, (46) 
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where Vi is a matrix representing the marginal response variance-covariance for the ith 

subject, Ai is a diagonal matrix representing the response variance under the assumption 

of independence, Ri is the working correlation for the response, and ϕ is the 

overdispersion factor. Hence, the generalized estimating equations for the mean 

parameters β for N independent subjects take the form 

 

 

𝑈(𝜷) = ∑[
𝜕𝝁𝑖(𝜷)

𝜕𝜷
]

′𝑁

𝑖=1

[𝐕𝑖(𝜶)]−1[𝒚𝑖 − 𝝁𝑖(𝜷)] = 𝟎, 
 

(47) 

 

where mi = [mi1,…, miTi]ʹ and Vi denotes the mean and the variance-covariance, 

respectively, of the response yi = [yi1,…, yiTi]ʹ for the ith subject, and α denotes a s by one 

vector of correlation parameters that fully describes the working correlation structure. 

Solving these estimating equations provides parameter estimates β̂. Each coefficient in β 

can be interpreted similarly to that of the standard regression model, with the added 

condition that the autocorrelation has been accounted for (Zeger & Liang, 1992). 

Application of GEE to the current research. When it comes to the current 

research, the estimation method for the EGNM fits with the GEE scenario. When external 

time-dependent covariates are included, the response probability under Farrington’s 

approach in Equation 40 will be modified to reflect the resulting dynamic relationship 

between such type of covariates and the response variable. As such, the mean vector for 

the ith subject takes the form 

 

 

𝝁𝑖 = 𝒑𝑖 =

[
 
 
 
 

1 − 𝑝𝑖1

1 − 𝑝𝑖2

⋮
1 − 𝑝𝑖(𝑇𝑖−1)

𝑝𝑖𝑇𝑖 ]
 
 
 
 

, 
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where pit depends on time via the external time-dependent covariate, and the 

corresponding response variance is represented by the diagonal elements of Ai, that is, 

 

 

diag(𝐀𝑖) = diag[𝝁𝑖(𝑰𝑖 − 𝝁𝑖)] 
= diag[𝒑𝑖(𝑰𝑖 − 𝒑𝑖)] 

= diag

[
 
 
 
 
 

(1 − 𝑝𝑖1)𝑝𝑖1

(1 − 𝑝𝑖2)𝑝𝑖2

⋮
[1 − 𝑝𝑖(𝑇𝑖−1)][𝑝𝑖(𝑇𝑖−1)]

𝑝𝑖𝑇𝑖
(1 − 𝑝𝑖𝑇𝑖

) ]
 
 
 
 
 

, 

 

 

where Ii is an identity matrix.  

Constructing GEE for the current research. As mentioned previously, one of 

the difficulties regarding the corresponding inferential procedure for the current data 

situation is how to formulate an expression which serves as the basis for inference and 

reflects that probabilities depend on time. When GEE is used as the estimation method, 

the response probability vector, i.e., the mean vector, which is based on Farrington’s 

response probability in Equation 40, serves as the basis for inference and is constructed to 

reflect that each component of the probability vector depends on time. Moreover, an 

appropriate working correlation structure for the response variable is chosen to account 

for the inclusion of external time-dependent covariates. 

Constructing the expression for probabilities. Recall from Farrington’s approach 

that the basis of the likelihood function is the response probability 

 

 

𝑝𝑖 = 1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 },  

 

which does not depend on time due to time-independent covariates. When external time-

dependent covariates replace time-independent covariates, the number of intervals to be 



76 

 

used is greater than or equal to two to allow the collection of varying values of 

covariates. The resulting response probabilities based on Farrington’s approach become 

more complicated. The reason is except for the response probability during the first 

interval, all other responses are conditional on their precedents via varying values of 

covariates. As an example, the response probability for the fifth interval is conditional on 

all four response probabilities prior to it. It is evident that as time goes on each 

component of a mean vector has to account for more terms. 

To see how to construct a particular response probability, suppose for the ith 

subject, values of one single external time-dependent covariate collected at each 

examination are denoted as xi0, xi1, xi2, xi3,…, xiTi, respectively, where xi0 is the value 

collected at study entry. The symbol Wit
1  is used to denote an occurrence case, that is, yi = 

1, within the tth interval for the ith subject, and Wit
0  to denote a non-occurrence case, that 

is, yi = 0, within the tth interval for the ith subject. The event of interest is observed to 

occur between (Ti -1)th and Tith examination, where Ti is the number of examinations. 

The first response probability corresponding to the interval (τi0, τi1], where τit denotes an 

end time at the tth examination for an interval and τi0 = 0 denotes study entry, takes the 

form 

 

 

P(𝑊𝑖1
0) = 1 − [𝑆𝑖(𝜏𝑖0) − 𝑆𝑖(𝜏𝑖1)] 

= 1 − [1 − 𝑆𝑖(𝜏𝑖1)] 
= 𝑆𝑖(𝜏𝑖1) 

= 𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑𝑖𝑔
𝑘
𝑔=1 }, 

 

(48) 

 

where dig = 1 if the ordered censoring time t(g)  ≤ τi1, the right endpoint of the first 

interval, and dig = 0 otherwise. Equation 48 is also the mean of the response variable 

corresponding to the first interval. In Equation 48, the covariate value collected at τi0 is 
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ignored, which is discussed in the section, “Simulation Design,” below. Note that this 

mean is an unconditional mean. 

From the second interval, the response probability corresponding to the interval 

(τi1, τi2] becomes conditional on its precedent, P(Wi1
0 ), and takes the form 

 

 

P(𝑊𝑖2
0|𝑊𝑖1

0) =
P(𝑊𝑖1

0 ∩ 𝑊𝑖2
0)

P(𝑊𝑖1
0)

 

=
P(𝑊𝑖1

0) [1 −
𝑆𝑖(𝜏𝑖1)−𝑆𝑖(𝜏𝑖2)

P(𝑊𝑖1
0 )

]

P(𝑊𝑖1
0)

 

= 1 −
𝑆𝑖(𝜏𝑖1) − 𝑆𝑖(𝜏𝑖2)

𝑆𝑖(𝜏𝑖1)
 

=
𝑆𝑖(𝜏𝑖2)

𝑆𝑖(𝜏𝑖1)
 

=
𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

, 

 

 

 

 

 

 

 

 

 

 

 

 

(49) 

 

where d1ig = 1 if the ordered censoring time t(g)  ≤ τi2, the right endpoint of the second 

interval, and d1ig = 0 otherwise, and d2ig = 1 if t(g)  ≤ τi1, the left endpoint of the second 

interval and d2ig = 0 otherwise. Equation 49 is also the mean of the response variable 

corresponding to the second interval. 

In the same vein, the third response probability corresponding to the interval (τi2, 

τi3] is conditional on its precedents, P(Wi1
0 ) and P(Wi2

0 ), and takes the form 
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P(𝑊𝑖3
0|𝑊𝑖1

0 ∩ 𝑊𝑖2
0) =

P(𝑊𝑖1
0 ∩ 𝑊𝑖2

0 ∩ 𝑊𝑖3
0)

P(𝑊𝑖1
0)P(𝑊𝑖2

0|𝑊𝑖1
0)

 

=
P(𝑊𝑖1

0)P(𝑊𝑖2
0|𝑊𝑖1

0) [1 −
𝑆𝑖(𝜏𝑖2)−𝑆𝑖(𝜏𝑖3)

P(𝑊𝑖1
0 )P(𝑊𝑖2

0 |𝑊𝑖1
0 )

]

P(𝑊𝑖1
0)P(𝑊𝑖2

0|𝑊𝑖1
0)

 

= 1 −
𝑆𝑖(𝜏𝑖2) − 𝑆𝑖(𝜏𝑖3)

𝑆𝑖(𝜏𝑖1)
𝑆𝑖(𝜏𝑖2)

𝑆𝑖(𝜏𝑖1)

 

=
𝑆𝑖(𝜏𝑖3)

𝑆𝑖(𝜏𝑖2)
 

=
𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖3)] ∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)] ∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

, 

 

 

 

 

 

 

 

 

 

 

 

 

(50) 

 

where d1ig = 1 if the ordered censoring time t(g)  ≤ τi3, the right endpoint of the third 

interval, and d1ig = 0 otherwise, and the value d2ig = 1 if t(g)  ≤ τi2, the left endpoint of the 

third interval and d2ig = 0 otherwise. Equation 50 is also the mean of the response variable 

corresponding to the third interval. 

Suppose that the event of interest occurred in the fourth interval (τi3, τi4]. The 

fourth response probability corresponding to this interval is conditional on its precedents, 

P(Wi1
0 ), P(Wi2

0 ) and P(Wi3
0 ), that is, three consecutive non-occurrence cases, and takes the 

form 

 

 

P(𝑊𝑖4
1 |𝑊𝑖1

0 ∩ 𝑊𝑖2
0 ∩ 𝑊𝑖3

0) =
P(𝑊𝑖1

0 ∩ 𝑊𝑖2
0 ∩ 𝑊𝑖3

0 ∩ 𝑊𝑖4
1)

𝑃
 

=
𝑃 [

𝑆𝑖(𝜏𝑖3)−𝑆𝑖(𝜏𝑖4)

𝑃
]

𝑃
 

=
𝑆𝑖(𝜏𝑖3) − 𝑆𝑖(𝜏𝑖4)

𝑆𝑖(𝜏𝑖1)
𝑆𝑖(𝜏𝑖2)

𝑆𝑖(𝜏𝑖1)

𝑆𝑖(𝜏𝑖3)

𝑆𝑖(𝜏𝑖2)

 

= 1 −
𝑆𝑖(𝜏𝑖4)

𝑆𝑖(𝜏𝑖3)
 

= 1 −
𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖4)]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖3)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

, 

 

 

 

 

 

 

 

 

 

 

 

 

(51) 
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where P = P(Wi1
0 )P(Wi2

0 |Wi1
0 )P(Wi3

0 |Wi1
0 ∩Wi2

0 ), d1ig = 1 if the ordered censoring time t(g)  ≤ 

τi4, the right endpoint of the fourth interval, and d1ig = 0 otherwise, and d2ig = 1 if t(g)  ≤ τi3, 

the left endpoint of the fourth interval and d2ig = 0 otherwise. Equation 51 is also the 

mean of the response variable corresponding to the fourth interval. 

Thus, each response probability corresponding to that interval, or each component 

of the mean vector is constructed for the ith subject. Similarly, mean vectors for all other 

subjects can be established. These mean vectors are substituted into Equation 47 to obtain 

parameter estimates. 

More generally, the mean vector for the ith subject in the case of confined data 

takes the form 

 

𝝁𝑖(𝜷) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)] ∑ 𝜃𝑔𝑑𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)]∑ 𝜃𝑔𝑑1𝑖𝑔
𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖3)]∑ 𝜃𝑔𝑑1𝑖𝑔
𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

⋮

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−1)

)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−2)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

1 −
𝑒

{[−𝑒
(𝛽0+𝛽1𝑥𝑖𝑇𝑖

)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−1)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

 

 

 

 

 

 

 

 

 

 

(52) 

 

 

 

 

 

 

 

 

 

where xiTi is the covariate value collected at the last examination. The corresponding 

response variance under the assumption of independence is represented by the diagonal 

elements of Ai, that is, diag(Ai) =  
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑𝑖𝑔

𝑘
𝑔=1 } (1 − 𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑𝑖𝑔

𝑘
𝑔=1 })

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)] ∑ 𝜃𝑔𝑑1𝑖𝑔
𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)] ∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

(1 −
𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖1)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

)

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖3)] ∑ 𝜃𝑔𝑑1𝑖𝑔
𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)] ∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

(1 −
𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖3)]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝛽0+𝛽1𝑥𝑖2)]∑ 𝜃𝑔𝑑2𝑖𝑔
𝑘
𝑔=1 }

)

⋮

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−1)

)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−2)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

(

 
 

1 −
𝑒

{[−𝑒
(𝛽0+𝛽1𝑥

𝑖(𝑇𝑖−1)
)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−2)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

)

 
 

(

 1 −
𝑒

{[−𝑒
(𝛽0+𝛽1𝑥𝑖𝑇𝑖

)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−1)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

)

 
𝑒

{[−𝑒
(𝛽0+𝛽1𝑥𝑖𝑇𝑖

)
]∑ 𝜃𝑔𝑑1𝑖𝑔

𝑘
𝑔=1 }

𝑒
{[−𝑒

(𝛽0+𝛽1𝑥
𝑖(𝑇𝑖−1)

)
]∑ 𝜃𝑔𝑑2𝑖𝑔

𝑘
𝑔=1 }

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

(53) 

 

Choosing an appropriate working correlation structure for the response 

variable. To reflect the correlation present within the cluster of responses for the ith 

subject, a working correlation matrix, Ri, permitting dependence, such as the compound 

symmetry structure, is normally selected. Therefore, an identity matrix I which treats 

clustered responses as independent may be inappropriate to represent the true relationship 

among the responses. However, with external time-dependent covariates replacing time-

independent covariates, Hu, Goldberg, Hedeker, Flay, and Pentz (1998) and Pepe and 

Anderson (1994) have pointed out that the consistency of parameter estimates using GEE 

is not assured with arbitrary working correlation structures unless a subject’s repeated 

measurements are independent, i.e., the independent working correlation is satisfied. 

Pepe and Anderson (1994) thus recommended the use of the independent working 

correlation as a safe choice of analysis. Hence, in the current research, an identity matrix, 
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Ri (α) = I, with the number of its elements equal to the number of responses from the ith 

subject, was used to construct the score functions U(β) in Equation 47. 

Thus, GEE in Equation 47 is fully specified, that is, 

 

 

𝑈(𝜷) = ∑[
𝜕𝝁𝑖(𝜷)

𝜕𝜷
]

′𝑁

𝑖=1

[𝐕𝑖(𝜶)]−1[𝒚𝑖 − 𝝁𝑖(𝜷)] = 𝟎, 
 

 

where yi denotes the response vector, μi(β) was expressed in Equation 52, and 

 

 

𝐕𝑖(𝜶) = 𝜙𝐀𝑖
1/2

𝐑𝑖(𝜶)𝐀𝑖
1/2

,  

 

where the diagonal elements of Ai were expressed in Equation 53. Solving these 

estimating equations provides the parameter estimates. 

Investigating Properties of the 

Parameter Estimates 

Hypothesis Testing 

Typically, the first step following the fit of a regression model is the assessment 

of the significance of the estimated parameters, that is, hypothesis testing. Because the 

estimation method GEE does not have a likelihood function, likelihood-ratio methods are 

not available for conducting inference tests about the estimated parameters. Instead 

inference uses either the Wald test or generalized score tests (Boos, 1992). Both tests are 

based on the asymptotic normality of the estimators together with the empirically based 

standard errors. As the Wald test is reliable mainly for very large samples, generalized 

score tests are preferable to the Wald test (Agresti, 2007). Consequently, generalized 

score tests were employed. This test statistic, for a vector of responses, takes the 

following form 
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𝑄(𝝁; 𝒚) = ∑𝑄𝑖(𝝁𝑖; 𝒚𝑖)

𝑁

𝑖=1

, 
 

 

where 

 

 

𝑄𝑖(𝝁𝑖; 𝒚𝑖) = ∫ (𝒚𝑖 − 𝒕)′[𝜙𝑽𝑖(𝒕)]
−1𝑑𝒕

𝝁𝑖

𝒚𝑖

, 
 

 

where μi is the mean vector, and yi is the response vector for the ith subject. 

Simulation Design 

Other properties, such as power of hypothesis testing, type I error rate, ARB, and 

standard errors of the parameter estimates, were further investigated via a series of 

simulation studies. The significance level used was .05. The power used was .90, which is 

considered adequate power (Lachin, 2013; Loewy, 2015). However, the focus of this 

study was on simple descriptive comparisons of performance among the three methods. 

In conducting the simulation study for the current research, the data needed for the 

simulation study were generated first. Then results from the simulation study were saved 

and reported. 

Typical simulation design conditions for GEE. As in the current research the 

GEE approach is employed to obtain parameter estimates, typical simulation design 

conditions for GEE are discussed first. The purpose was to obtain the most commonly 

seen simulation design conditions for GEE, such as sample sizes, numbers of replicates, 

examination times and responses, true parameter values, and types of distributions of the 

independent variables and working correlation structures in order to help design the 

simulation design conditions for the current research. Depending on the purpose of a 
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particular simulation study where the GEE approach is employed, some simulation 

studies contain all the simulation design conditions, while other simulation studies do not. 

For example, Westgate (2014) conducted a simulation study to compare the quadratic 

inference function (QIF) approach to GEE for the marginal analysis of correlated data, 

where examination times were not employed in the design conditions. From prior 

empirical evidence, sample sizes have ranged from 20 to 4,077, with a majority ranging 

from 50 to 400 (Chen & Zhou, 2013; Touloumis, Agresti, & Kateri, 2013; Westgate, 

2014). The numbers of replicates have ranged from 100 to 10,000, with a majority 

ranging from 500 to 1,000 (Wang, Lee, Zhu, Redline, & Lin, 2013; Westgate & Braun, 

2013). The numbers of examination times have ranged from 3 to 10, with a majority 

ranging from 3 to 5 (Chen & Zhou, 2012; Shen & Chen, 2012). True parameter values for 

risk factors have ranged from - 4.5 to 5, with a majority ranging from -1 to 1(Mehrotra, 

Li, Liu, & Lu, 2012; Zhang & Paul, 2013). Distributions of the independent variables 

have included the binominal (Shen & Chen, 2012), uniform (Zhang & Paul, 2013), and 

normal (Westgate & Braun, 2013) distributions. Working correlation structures have 

included exchangeable (Chen & Zhou, 2013), autoregressive (Westgate & Braun, 2013), 

unstructured (Zhang & Paul, 2013), and independent (Paul & Zhang, 2014) structures. 

Typical simulation design conditions for survival analysis. As in the current 

research arbitrarily interval-censored survival data are modeled, typical simulation design 

conditions for survival analysis are discussed as well. Typical design conditions for 

regression analysis of survival data include sample sizes, the number of replicates and 

examination times, the censoring rate, true parameter values, distributions of the 

independent variables and survival times, and the length of the follow-up. Depending the 
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purpose of a particular simulation study, some simulation studies contain all the design 

conditions, while other simulation studies do not. For example, He and Schaubel (2014) 

conducted a simulation study to evaluate the finite-sample properties of the proposed 

estimators, where the censoring rate was not employed in the design conditions. From 

prior empirical evidence, sample sizes have ranged from 15 to 10,000, with a majority 

ranging from 50 to 600 (Combescure, Foucher, & Jackson, 2014; He & Schaubel, 2014; 

Wynant & Abrahamowicz, 2014). The numbers of replications have ranged from 50 to 

100,000, with a majority ranging from 100 to 1,000 (Bhatt & Tiwari, 2014; Pan, Bao, 

Dai, & Fang, 2014; Salim, Ma, Fall, Andrén, & Reilly, 2014). Censoring rates have 

ranged from 5% to 55% (Carlin & Solid, 2014; Wallace, 2014). The numbers of 

examinations have been less than or equal to 7, and have ranged between 2 and 7 (He & 

Schaubel, 2014; Shen, Anderson, Sinha, & Li, 2014). True parameter values for risk 

factors have ranged from - 4 to 9, with a majority ranging from -1 to 1 (Crowther, Look, 

& Riley, 2014; Schaubel, Zhang, Kalbfleisch, & Shu, 2014; Whitehead, 2014). 

Distributions of the independent variables have included the Bernoulli (He & Schaubel, 

2014), logistic (He & Schaubel, 2014), and normal (Carlin & Solid, 2014) distributions. 

Distributions of survival times have included the exponential (Whitehead, 2014), gamma 

and log normal (Bhatt & Tiwari, 2014), and Weibull (Crowther, Look, & Riley, 2014) 

distributions. The lengths of the follow-up have ranged from 60-240 days (Lyman, 

Reiner, Morrow, & Crawford, 2015) to 18 years (Molyneux, Birks, Clarke, Sneade, & 

Kerr, 2015). 

There are three studies that examined interval-censored data and time-dependent 

covariates. In Van Der Laan and Robins’ study (1998), which investigated current status 
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data, a special type of interval-censored data, the sample size was 500, the number of 

replicates was 625, and β = 2. The independent variables assumed the binomial and 

normal distributions. In Martinussen and Scheike’s study (2002), which also investigated 

current status data, the sample sizes were 100 and 200, the number of replicates was 

10,000, the numbers of examinations were 4 and 6, and β = .5. The independent variable 

assumed the uniform distribution. In Lin, Oakes, and Ying’s article (1998), which 

investigated the additive hazards regression model, the sample sizes were 100 and 200, 

the number of replicates was 10,000, and β = .5. The independent variable assumed the 

uniform distribution. 

The numbers of subjects, sample sizes, and the number of replications for the 

simulation study. As the current research involves both the GEE approach and 

arbitrarily interval-censored survival data, the corresponding simulation design 

conditions drew upon prior empirical evidence from the research using the GEE 

approach, survival analysis, and the research related to the regression analysis of interval-

censored survival data. 

In the current research, the term “the number of subjects” rather than “the sample 

size” was used to refer to the number of a cohort of subjects enrolled in a follow-up study 

for the following reason. Usually, the sample size of a data set refers to the number of 

subjects enrolled in a study, and information collected from one subject comprises one 

single row in the data set. However, in the current research, information collected from 

one subject for the three models was augmented to multiple rows. Thus, the number of 

rows in the data set did not match the number of subjects enrolled. In order to avoid the 

confusion, the term “the number of subjects” was used to refer to the number of a cohort 
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of subjects, and “the sample size” was used to refer to the number of rows in the resulting 

augmented data set. 

Recall from the above literature review, the optimal simulation design for this 

simulation study was found to be 50, 250, and 600 representing small, medium, and large 

numbers of subjects, respectively, and 1,000 representing the number of replications. 

However, the computers used for the simulation study do not have enough RAM 

(Random Access Memory) installed, which was found through trial and error. In 

particular, each time 600 subjects and 1,000 replications were used, the software package 

R (Version 3.2.2) stopped working and the computer gave the following warning 

message: 

R for Windows GUI front-end has stopped working. 

Through trial and error, it was found that when the number of replication was 150, the 

maximum possible number of subjects was 1,000; when the number of subjects was 350, 

the maximum possible number of replication was 500. As such, in order to show how the 

simulation results behaved as the number of subjects increased in the simulation study, 

two sets of simulation results were presented: in the first set, the number of replication 

was 150, and the numbers of subjects used were 50, 250, 500, and 1,000; in the second 

set, the number of replication was 500, and the numbers of subjects used were 50, 150, 

250, and 350. 

As the mean number of examinations was around 2.1, and the resulting mean 

number of rows in the augmented data set for each subject was 2.1 + 2 = 4.1, when the 

numbers of subjects used were 50, 250, 500, and 1,000, with one to six examinations, a 

total sample size of between 200 and 4,000 or so was obtained; when the numbers of 
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subjects used were 50, 150, 250, and 350, with one to six examinations, a total sample 

size of between 200 and 700 or so was obtained. 

The Data Generation Process 

Steps in the Data Generating Process 

The procedure for generating data for the simulation study was as follows. In 

summary, the first step was to simulate data for fitting the EGNM, which for each subject 

included 100 values each for the two external time-dependent covariates X1t and X2t, the 

status of an event of interest (whether an event of interest has occurred), an event time, a 

corresponding censoring interval where an event of interest was assumed to have 

occurred, and the number of follow-ups between study entry and the left endpoint of the 

censoring interval. The reason the number 100 was chosen is two-fold. The first is as no 

previous simulation studies have been conducted on the number of external time-

dependent covariate values used to simulate event times, the number 100 was chosen 

arbitrarily. The second is 100 values, without replacement, are enough to be assigned to 

each of the simulated examinations, the number of which for all subjects is less than 100. 

Then, the simulated data were modified for fitting the extended Cox model and 

Farrington’s model.   

Simulating data for fitting the EGNM. The procedure was as follows. Values of 

the significant external time-dependent covariate were generated first, as the 

corresponding process xit, xi(t + 1),…, xiTi, is not affected by the response yi(t - 1) at the (t - 

1)th examination, conditional on xi(t - 1), that is, it rules out feedback from the response 

process to the covariate process (Lai & Small, 2007), or the covariate process does not 

depend on the response process. Ti denotes the number of examinations, (t - 1) = 0 
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denotes study entry, and xit denotes the covariate value collected at the tth examination. 

Then, based on the simulated covariate process, the response process and the 

corresponding arbitrarily interval-censored data were generated. 

Simulating values for the external time-dependent covariates. The first step of 

the data generation process was to simulate external time-dependent covariate values. 

There are two statements made about generating the covariate process. The first 

statement is how many covariate values should be simulated for each subject, as numbers 

of examinations vary across the cohort. Since covariate values are collected at 

examinations, the number of simulated covariate values was based upon the number of 

simulated examinations. The second statement is values of external time-dependent 

covariates were assumed piecewise constant for the model, as was suggested by 

Farrington (1996), that is, they remain constant between two consecutive examinations. 

The significant external time-dependent covariate for the model, which was used 

to simulate event times, was denoted as X1t. Regarding the distribution X1t could assume, 

prior empirical evidence showed that independent variables assumed various 

distributions. As continuous time-dependent covariates were investigated in the current 

research, the normal distribution was chosen for X1t. By definition, external time-

dependent covariates do not depend on a subject’s survival. Thus, values of X1t to be 

simulated were based on national nitrogen dioxide concentrations (United States 

Environmental Protection Agency, 2013), assuming a normal distribution, X1t ~ N (79, 

484), where 79 is the mean, and 484 is the variance of the national nitrogen dioxide 

concentrations from 1980 to 2012. For the ith subject, 100 values of X1t were generated, 

and then the average of the 100 values was used to generate the corresponding event 
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time. The other external time-dependent covariate X2t, also assuming the normal 

distribution, though deemed as one potential factor influencing the hazard of 

experiencing the respiratory disease, bears no relation to simulating event times. The 

purpose of including X2t in the three models was to conduct the analysis of type I error 

rate. Still, this external time-dependent covariate X2t does not depend on a subject’s 

survival. Thus, values of X2t to be simulated were based on total precipitation in 

centimeters by state in the United States (National Climatic Data Center, 2001), assuming 

the normal distribution, X2t ~ N (94, 204), where 94 is the mean, and 204 is the variance 

of total precipitation in centimeters by state from 1971 to 2000. As most of the nitrogen 

dioxide comes from motor vehicle exhaust, X2t is independent of X1t. However, in order 

to help convergence in the algorithm used in GEE, the original distributions of both X1t 

and X2t had to be scaled, through trial and error, to N (0.3, 0.06) and N (0.3, 0.36), 

respectively, which would be discussed shortly. 

Simulating event times. The second step of the data generation process was to 

generate an event time for each subject using the values of X1t simulated for that subject. 

The event time variable was denoted by ϒ, 0 ≤ ϒ < ∞, and ϒ was measured in days. 

Three assumptions were made regarding simulating event times. First, the 

simulated event times are non-informative in the sense that given external time-

dependent covariates, an interval (Ai, Bi] is not influenced by the specific value of the 

event time confined in (Ai, Bi], that is, the occurrence of some particular event and the 

censoring time for the ith subject are independent. Second, the event times were assumed 

to follow the gamma distribution, ϒ ~ GAM (λ, ρ), λ > 0, ρ > 0, where λ is the scale 

parameter, and ρ is the shape parameter. The reason for choosing the gamma distribution 
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was two-fold. The first reason was the gamma distribution was used in prior empirical 

studies (Bhatt & Tiwari, 2014; Sastry, 1997). The second reason was the gamma 

distribution can accommodate a decreasing, monotonically baseline hazard function by 

letting ρ < 1, which is required in the current research. Third, it was assumed that the 

associated hazard h(t) in the current research decreases monotonically during the follow-

up, which was attained by letting ρ < 1. Here the scale parameter λ took the value of 50, 

and the shape parameter ρ took the partial form of Farrington’s response probability in 

Equation 40, 

 
𝜌𝑖𝑡 = 1 − 𝑒[−𝑒(𝛽0+𝛽1𝑋̅1∙)], (54) 

where the true parameter values β0 = 1.5 and β1 = -3.6, which were found through trial 

and error, and X̅1∙ refers to the mean of 100 simulated values of X1t. The simulated 

expected event time for the ith subject at the tth examination was the product of the scale 

parameter and the shape parameter, that is, 

 E(Υ) = 50 ∗ 𝜌𝑖𝑡. (55) 

In selecting λ and the true values of β0 and β1 for the shape parameter ρ in 

Equation 54 through trial and error, originally λ = 75, β0 = .04, and β1 = -.011. However, 

when the original distribution of X1t, that is, X1t ~ N (79, 484), together with λ = 75, β0 

= .04, and β1 = -.011, was used to generate event times via Equation 55, one unexpected 

situation occurred: the estimation of β0, β1, and β2 from the EGNM failed to converge. 

The reason was found to be that the values, which were calculated from Equation 54 and 

were required in GEE for obtaining the parameter estimates from the EGNM, were very 
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close to 0, which in turn produced noninvertible matrices. As such, in order to help 

convergence, the original distributions of both X1t and X2t were then scaled, through trial 

and error, to N (0.3, 0.06) and N (0.3, 0.36), respectively, and accordingly λ = 50, β0 = 

1.5, and β1 = -3.6. 

The expression for the shape parameter ρ, compared to Equation 40, actually 

dropped the term that summarized log ratios of the baseline survival functions at 

consecutive examinations. The reason was two-fold as well. On one hand, the parameters 

θgs for the indicator variables in the summation were nuisance parameters per se, which 

were not of direct inferential interest. On the other hand, no previous simulation studies 

were conducted on how these indicator variables were generated. As such, the response 

probability for the proposed model in Equation 40 that took the summation of log ratios 

of the baseline survival functions into account was different than the model used solely to 

generate event times in Equation 54. 

The reason λ = 50 was chosen was two-fold. First, it was assumed that the mean 

of all simulated expected event times in this simulation study was 40 days or so. Second, 

it was further assumed that a majority of the simulated events happened at a later time in 

the follow-up study. In other words, if all the simulated expected event times were 

represented by a histogram, the histogram would be left-skewed. 

There are three theoretical considerations and also empirical evidence for the 

choice of true parameter values β0 = 1.5 and β1 = -3.6. The first theoretical consideration 

is that true parameter values are chosen such that ρ < 1 is guaranteed, for when ρ < 1, the 

associated hazard function decreases monotonically. As the mean of event times is linked 

to true parameter values via the exponential function, which is invertible, there are one-
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to-one relationships between true parameter values and event times. Second, the follow-

up study was assumed to last for around 60 days. The length of 60 days was chosen for 

three reasons. The first reason is 60 days is a reasonable time length for a healthy infant 

to be infected with some chronic respiratory disease under polluted air due to 

environmental factors (Cherian, Simoes, John, Steinhoff, & John, 1988), such as nitrogen 

dioxide. The second reason is the length of 60 days is based on prior empirical evidence. 

The third reason is the 60th day, which denotes the end of the follow-up, is later than a 

simulated expected event time, which is around the 40th day, as the simulated expected 

event time is confined in the last two examinations. Third, the majority of events were 

assumed to occur later in the follow-up study, for it takes time for some chronic 

respiratory disease to develop, and the hazard of experiencing some chronic respiratory 

disease was assumed to decrease monotonically during the follow-up study. The 

empirical evidence for the choice of true parameter values is that, as was seen from prior 

empirical evidence, unstandardized true parameter values for risk factors have ranged 

from -4 to 9, with a majority ranging from -1 to 1. Thus for the current study, β1 = -3.6 

was chosen to have similar and also large enough magnitude. Regarding the coefficient 

for the intercept constant term, which was also unstandardized, β0 = 1.5 was chosen so 

that the mean of all simulated expected event times, via Equation 55, was 40 days or so, 

that is, 

 E(Υ) = 50 ∗ {1 − 𝑒[−𝑒(1.5−3.6∗𝑋̅1∙)]}.  

These simulated values were then rounded off to the nearest integer. Through trial and 

error, it was confirmed that the product of λ = 50 and the scale parameter ρ gave the 
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mean of all simulated expected event times around 40 days, and most of the simulated 

events were clustered near the end of the follow-up study. 

Simulating arbitrarily interval-censored survival data. The third step of the data 

generation process was to generate arbitrary intervals, where the simulated event times 

are confined, from the simulated event times. There are many ways to generate arbitrarily 

interval-censored survival data. For example, in Calle and Gómez’s (2005) method, the 

censoring mechanism of the event time mimics a longitudinal study in which there is a 

periodic follow-up with scheduled examinations, taking into account that subjects might 

miss some of their examinations. For the current research, Zhang’s (2009) naive way of 

simulating intervals was modified to generate arbitrarily interval-censored data. In 

particular, for the ith subject with a generated event time τi, which was rounded off, two 

random quantities, denoted by U (1) and U (2), respectively, were taken from a uniform 

distribution in the interval (0, c). These two quantities were then subtracted from or added 

to the simulated event time τi to form an interval (τi - Ui
(1)

, τi + Ui
(2)

], that is, Ai = τi - Ui
(1)

 

and Bi = τi + Ui
(2)

. However, this naive censoring interval is not non-informative, as the 

above uniform distribution is known to have bounded support. One way to go around this 

problem is by constructing Ai
*
= max(τi - Ui

(1)
, τi + Ui

(2)
 - c) and Bi

* = min(τi + Ui
(2)

, τi - 

Ui
(1)

 + c), where Ai
*
 denotes the left censoring point, and where Bi

* denotes the right 

censoring point for a censoring interval. Roughly speaking, the purpose of this 

modification is to ensure that the width of the censoring interval does not exceed c, which 

is the upper bound of the above uniform distribution used to generate U (1) and U (2). It 

can be shown that this modified censoring interval satisfies the non-informative 

condition. Thus, censoring intervals were generated. 
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The upper bound of the uniform distribution c dictates the width of a censoring 

interval in Zhang’s (2009) method. A comparatively wide censoring interval carries more 

uncertainty about when the event occurs than a comparatively narrow censoring interval. 

As such, how the width of a censoring interval affects the estimation of parameters 

becomes an interesting topic. Unfortunately, Zhang (2009) did not investigate this topic. 

Thus in the current research, both c = 2, which was thought to produce comparatively 

narrower censoring intervals, and c = 5, which was thought to produce comparatively 

wider censoring intervals, were investigated. 

Simulating the number of examinations for each subject. For the fourth step of 

the data generation process, after an event time and the corresponding censoring interval 

were generated, the number of examinations for each subject was generated. 

There were two questions associated with this step. The first question was: how 

many examinations should be simulated for each subject? In this simulation study, the 

numbers of examinations of all subjects were assumed to follow a binomial distribution, 

ranging from one to six randomly between study entry and the left endpoint of a 

simulated censoring interval. Four justifications were made for this choice of range. First, 

the range is similar to that in prior empirical evidence (He & Schaubel, 2014; Shen, 

Anderson, Sinha, & Li, 2014). Second, the range is reasonable as it considers both those 

who often have examinations and those who do not. Third, the range satisfies the non-

informative condition as the specific number for one subject is random. Fourth, the range 

guarantees that 100 simulated external time-dependent covariate values are enough to be 

assigned to each simulated examination. The generated examinations for each subject 

were bound in an interval (0, Ai), where Ai is the left endpoint of the censoring interval. 
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The second question was: how was the association between the external time-

dependent covariate X1t and the number of examinations established? As the response 

process, including that with all non-occurrence cases before the left censoring point Ai, 

and hence the number of examinations, is supposedly strongly associated with X1t in the 

current study, the mean of the simulated X1t values for each subject was used to generate 

the corresponding number of examinations.    

It is worth mentioning that as it usually took some time for an event of interest, 

such as a certain type of respiratory disease, to display syndrome, i.e., the event of 

interest has occurred, the left endpoint of the censoring interval for each subject was 

assumed to be at least seven days from study entry. The reason for using seven was two-

fold. The first reason was that six was the maximum possible simulated number of 

examinations for a subject. If six was simulated, the simulated sixth examination, where 

the event has not occurred, would be on the sixth day. When at least a one day gap was 

assumed between two consecutive examinations, the left endpoint of the censoring 

interval must be greater than six. The smallest possible left endpoint greater than six was 

seven. The second reason was when a simulated number of examinations was less than 

six, the left endpoint of a censoring interval could be any integer between two and six 

inclusive, which nevertheless caused the process of simulating censoring intervals across 

all subjects to be very complicated. In particular, if the left endpoint of a simulated 

censoring interval was six, the binomial distribution for the number of examinations per 

subject could not be used anymore as it might produce the sixth examination, which 

overlapped the left endpoint of the censoring interval. To avoid this situation, a new 

binomial distribution had to be employed for that subject. Thus, to facilitate the data 
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generation process, no matter how many examinations from the binomial distribution 

were simulated for each subject, seven was used as the smallest left endpoint. 

Arranging the sampled external time-dependent covariate values in descending 

order. After a number of examinations for each subject were simulated, the same number 

of X1t and X2t values were sampled without replacement from the 100 values of X1t and 

X2t that had been generated. The question was: how were the sampled X1t values assigned 

to the simulated examinations? Figure 1 showed the relationship between a series of 

hypothetical X1t values, represented by the x-axis, and the corresponding response 

probability, represented by the y-axis. 

  

 

Figure 1. Association between the response probability and a series of hypothetical X1t 

values. 
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The response probability was calculated via Equation 45, and β0 = 1.5, and β1 = -3.6, that 

is, 

 

 

𝑝𝑖𝑡 = 1 − 𝑒[−𝑒(1.5−3.6∗𝑋𝑖𝑡)]
. 

 

 

 

Figure 1 revealed an apparent monotonically decreasing pattern between X1t and 

the response probability. As the values of X1t increase, the corresponding response 

probabilities decrease. As such, sampled X1t values, which were in random order, had to 

be arranged in descending order in order to establish strong association between X1t and 

the response probability. However, the pattern shown in Figure 1 was too perfect to be 

true in reality. Besides the descending association, for example, the ascending association 

exists as well. Then how the probability of the descending association between X1t and 

the response probability affects the estimation of parameters becomes another interesting 

topic. Still no one has yet investigated this topic. In the current research, ϱ = .3 and ϱ = .7 

were investigated, where ϱ represents the probability of the descending association 

between X1t and the response probability. The reason for choosing ϱ = .3 and ϱ = .7 was 

both were equal distance from ϱ = .5. In particular, after X1t values were sampled for all 

subjects, X1t values of 30% or 70%, that is, ϱ = .3 or ϱ = .7, of all subjects were arranged 

in descending order within each subject. In this way, 30% and 70% of subjects, 

respectively, had the event at the smallest value of X1t.  

Organizing the Simulated Data for  

Fitting the Three Models 

Before the simulated data were used for fitting each of the three models, they had 

to be organized, respectively, which is required for analysis of such data. 

For the EGNM, the method of augmenting the collected data in Farrington’s 
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approach was modified accordingly, as Farrington’s approach further incorporates 

external time-dependent covariates. In particular, after simulated survival data were 

organized in a data set such that information regarding covariates, left and right censoring 

times for an interval, and the binary response variable indicating the status of an event for 

each subject was recorded using one single line, the data set was expanded by adding a 

further (∑ ai
N
i = 1 - a) line of data, repeating the information for subjects whose intervals 

were confined, so that the revised data set had (N + ∑ ai
N
i = 1 - a) observations, where ai 

denoted the number of line of data for a confined case, and a denoted the number of 

confined cases. Note that the use of ai referred to the fact that subjects had different 

numbers of examinations, and hence different numbers of responses. The values, for 

example, yit, of the binary response variable, Yit denoting the response at the tth 

examination for the ith subject were then added. For confined cases, where the data were 

duplicated, all examinations prior to the last one has Yit = 0 and the last examination 

where t = Ti has YiTi = 1. The values of the Dig, g = 1, 2, ... , k, differed at each 

examination time, ti. Regarding values of the external dependent covariate X1t, they were 

simply incorporated to each of (N + ∑ ai
N
i = 1 - a) lines of data accordingly. For the 

purpose of analyzing type I error rate, values of another external dependent covariate X2t 

were incorporated to the data similarly. 

The data modeled using the extended Cox model were from the simulated data, 

and were almost identical to those used for fitting the EGNM, including the use of ϱ = .3 

and ϱ = .7, which represented the probability of the descending association between X1t 

and the hazards associated with an occurrence case. The only difference lay in that the 

event time for the ith subject was imputed from the left and right endpoints of the 
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simulated censoring interval using the mid-point imputation method (Law & 

Brookmeyer, 1992), as the extended Cox model required an exact event time. 

The way the data for fitting Farrington’s model were organized from the 

simulated data is similar to that for fitting the EGNM. The major difference lay in that the 

data for each subject was augmented in two lines. One line was for study entry to the left 

endpoint of the censoring interval, and the other line was for the censoring interval. 

Moreover, in both lines, covariates assumed values simulated for study entry alone. 

Software Used for the Current Research 

The platform on which the simulated data were generated is the software package 

R (Version 3.2.2). The packages survival, bbmle, foreach, iterators, optimx, plyr, dplyr, 

and ggplot2 were used for the analyses. 

Data Analyses 

Steps in the Data Analyses 

After the data for fitting the three models in the simulation study were simulated 

and augmented, and the numbers of subjects, sample sizes and the number of replications 

were determined, the simulation study in the current research was conducted. In 

summary, the first step was to fit each of the three models to the simulated and organized 

data to obtain the parameter estimates. The second step was to evaluate properties of the 

obtained parameter estimates across the three models, including precision of the 

parameter estimates, power, and type I error rate.  

Fitting models. After the data needed for the simulation study were simulated 

and organized, they were fitted into three models, respectively, namely, the EGNM that 

accounts for both arbitrarily interval-censored data and external time-dependent 
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covariates, the extended Cox model that accounts for external time-dependent covariates 

but ignores arbitrarily interval-censored data, and Farrington’s model that accounts for 

arbitrarily interval-censored data but ignores external time-dependent covariates. 

Fitting the EGNM. The non-likelihood-based estimation method GEE was 

applied to estimate the parameters of the EGNM. GEE for the proposed model was, 

 

 

𝑈(𝜷) = ∑[
𝜕𝝁𝑖(𝜷)

𝜕𝜷
]

′𝑁

𝑖=1

(𝜙𝐀𝑖
1/2

𝑰𝐀𝑖
1/2

)
−1

[𝒚𝑖 − 𝝁𝑖(𝜷)] = 𝟎, 
 

 

where mi(β) represented the mean vector for the ith subject in the case of confined data, 

an identity matrix, I, represented the correlation present within the cluster of responses 

for one particular subject, the diagonal elements of Ai shown in Equation 53 represented 

the response variance under the assumption of independence, and yi represented the 

response vector, which referred to all responses during the follow-up for one subject, and 

took the form yi = [yi1,…, yiTi]ʹ. The mean vector for the 𝑖th subject mi(β) took the form, 

 

 

𝝁𝑖(𝜷) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑒{[−𝑒(𝜷′𝑿𝑖1)]∑ 𝜃𝑔𝑑𝑖𝑔

𝑘
𝑔=1 }

𝑒{[−𝑒(𝜷′𝑿𝑖2)] ∑ 𝜃𝑔𝑑1𝑖𝑔
𝑘
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where XiTi was the three-dimensional vector of the intercept constant and two time-

dependent covariates X1t and X2t collected at the Tith examination for the ith subject, β is 

the three-dimensional vector of unknown parameters β0, β1, and β2. Solving these 

estimating equations provided the parameter estimates. 

Fitting the extended Cox model. The extended Cox model in this simulation 

study took the form, 

 ℎ𝑖(𝑡̃|𝜷, 𝑿𝑖𝑡) = ℎ0(𝑡̃)𝑒
(𝜷′𝑿𝑖𝑡),  

where t ̃ was the imputed event time, Xit was the three-dimensional vector of the intercept 

constant and two external time-dependent covariates X1t and X2t collected at time t for the 

ith subject, β was the three-dimensional vector of unknown parameters β0, β1, and β2, and 

h0(t ̃) was the baseline hazard function. The corresponding partial log-likelihood function 

took the form 

 

 

𝑙(𝜷|𝑋𝑖𝑡) = ∑𝛿𝑖

𝑁

𝑖=1

[(𝜷′𝑿𝑖𝑡) − log ∑ 𝑒(𝜷′𝑿𝑙𝑡)

𝑙∈𝑅(𝑡𝑖)

], 

 

 

where δi = 0 if the survival time of the ith subject is censored and δi = 1 otherwise. This 

equation was then maximized using numerical methods to obtain parameter estimates. 

It is worth mentioning that the extended Cox model does not estimate an intercept 

term. This is because the parameter is unidentifiable, as the exponentiated intercept term 

is subsumed by the unknown baseline hazard function, thus any intercept term would 

simply change the baseline hazard function. As such, the inclusion of the intercept term 

in the EGNM would help estimation of parameters in general. 



102 

 

Fitting Farrington’s model. The likelihood function for Farrington’s model, 

denoted L** (β|X), took the form, 

 

𝐿∗∗(𝜷|𝑿) = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖

𝑁+𝑎

𝑖=1

,  

where yi was the binary response variable, for i =1, 2, ... , N + a, indicating the number of 

rows in the augmented data set, and the response probability took the form, 

 
𝑝𝑖 = 1 − 𝑒{[−𝑒(𝜷′𝑿𝑖)]∑ 𝜃𝑔𝑑𝑖𝑔

𝑘
𝑔=1 },  

where Xi was the three-dimensional vector of the intercept constant and two time-

independent covariates X1 and X2, β was the three-dimensional vector of unknown 

parameters β0, β1, and β2, θg was the log ratio of the baseline survival functions at the (g – 

1)th and the gth ordered examinations, and dig was the indicator variable for the gth 

ordered examination. The maximum likelihood estimation method via numerical methods 

was used to obtain parameter estimates. 

Evaluating properties of the parameter estimates. After the parameter 

estimates were obtained from each model, their properties were evaluated from four 

perspectives: ARB and percent of correct sign of the parameter estimates, power, and 

type I error rate. 

First, regarding precision of the parameter estimate, ARB of the parameter 

estimates from each model, that is, the absolute value of the difference between the 

parameter estimates and the true values of the coefficients divided by of the coefficients, 

was calculated. Smaller ARB means more precise parameter estimates. Although the 
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accepted bias in previous simulation studies on survival analysis ranged from -0.001 (He 

& Schaubel, 2014) to 0.014 (Schaubel, Zhang, Kalbfleisch, & Shu, 2014), the criteria 

used to evaluate ARB in the current study was the cutoff point 0.01, which was chosen 

due to that the computers used to conduct the simulation study were capable of 

accommodating 1,000 subjects and 150 replications, and 350 subjects and 500 

replications at most. 

Second, regarding the percent of correct sign of the parameter estimates, which 

represented the feasibility of the parameter estimates, eighty percent (McCombie & 

Thirlwall, 2004) was used as the criterion. Thus, in the current study, a model with 80% 

percent of correct sign or higher of the parameter estimates was acceptable, indicating the 

model fit the simulated data well. 

Third, regarding power of a model, which represented that model’s capability of 

detecting the significance of covariates when covariates are significant indeed, 

although .85 (Brendel, Janssen, Mayer, & Pauly, 2014) was acceptable, .90 (Whitehead, 

2014) was used as the criterion, which was the percent of the p-values of X1t obtained 

from the hypothesis testing in all replications less than or equal to .05. If the power from 

a model was greater than or equal to .90, the model fit the simulated data well. 

Fourth, regarding analysis of type I error rate, which meant the parameter 

estimates with the p-values less than or equal to .05 in hypothesis testing are not 

significant indeed, the nominal level of .05 (Pocock, Geller, & Tsiatis, 1987), also the 

typical choice, was used as the criterion, which was the percent of the p-values of X2t 

obtained from hypothesis testing in all replications less than or equal to .05. The model 

which gave type I error rate closer to the nominal level of .05 was preferable. 
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Chapter Summary 

In this chapter, I proposed the non-likelihood-based estimation method GEE 

(Liang & Zeger, 1986; Zeger & Liang, 1986) for the EGNM, which accommodates both 

arbitrarily interval-censored survival data and external time-dependent covariates 

simultaneously. However, it was found through trial and error that only when the 

distribution of the significant covariate X1t was scaled did the parameter estimation 

converge. 

In the simulation design conditions, for each subject, a censoring interval, a 

number of examinations and the corresponding number of X1t and X2t values, were 

simulated. Moreover, due to the unique form of the proposed expression for the response 

probability, ϱ, denoting probability the smallest X1t value is associated with the response 

probability, was introduced to establish strong association between X1t and the response 

probability, and c, dictating the width of simulated intervals, was also introduced. 

In order to show how the simulation results behaved as the number of subjects 

increased in the simulation study, two sets of simulation results were presented. 

Properties of the parameter estimates were evaluated from four perspectives: ARB 

and percent of correct sign of the parameter estimates, power, and type I error rate. The 

criterion used to evaluate ARB was the cutoff point .01. Eighty percent was used as the 

criterion to evaluate percent of correct sign of the parameter estimates. For power and 

type I error rate, the criteria used were .90 and the nominal level of .05.    
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CHAPTER IV 

 

RESULTS 

 

The simulation results are reported, and presented in tables and figures in this 

chapter, including selected descriptive statistics from the simulated data, precision of the 

parameter estimates of β0, β1, and β2, percent of correct sign of the parameter estimate of 

β1, confidence intervals of the parameter estimates of β1 and β2, power, and type I error 

rate. 

As in the simulation study, in addition to two different sets of numbers of subjects 

and replications, c = 2 and c = 5, and ϱ = .3 and ϱ = .7 were used to investigate the impact 

of the upper bound of the uniform distribution, which dictates the width of a simulated 

censoring interval, denoted by c, and the probability of the descending association 

between X1t and the response probability, or the hazards associated with an occurrence 

case, denoted by ϱ, respectively, on the estimation of the parameters. The simulation 

results are first represented and then summarized under each combination of the 

conditions.  

Moreover, at the end of this chapter, four comprehensive tables were created to 

show under each combination of c and ϱ, how ARB of the mean parameter estimate of β1, 

denoted by ARB(β̅̂
1
), power, and type I error rate behaved as the number of subjects 

increased.
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Simulation Results 

Descriptive Statistics 

To demonstrate correct data generation, selected descriptive statistics are reported 

first, including mean, maximum, and minimum of the left and right censoring points, the 

mean of the numbers of examinations from the simulated data for fitting the EGNM and 

Farrington’s model, and the mean of the event times from the simulated data for fitting 

the extended Cox model. These statistics are displayed in Table 1-Table 8. The selected 

statistics from 150 replications are shown first, followed by the selected statistics from 

500 replications.  

 

Table 1  

Selected Descriptive Statistics from the Simulated Data (R150, c = 2, ϱ =.3)  

S Min(l)a  Max(l)b Mn(l)c Min(r)d Max(r)e Mn(r)f Mn(e)g 

50 21 68 38 22 69 40 39 

250 18 68 38 19 69 40 39 

500 18 68 38 19 69 40 39 

1000 18 71 38 19 72 40 39 
Note. R = the number of replications. S = the number of subjects. 
aMin(l) refers to the minimum simulated left censoring point. bMax(l) refers to the maximum simulated left 

censoring point. cMn(l) refers to the mean of the simulated left censoring points. dMin(r) refers to the 

minimum simulated right censoring point. eMax(r) refers to the maximum simulated right censoring point. 

fMn(r) refers to the mean of the simulated right censoring points. gMn(e) refers to the mean imputed event 

time. 

 

Table 2  

Selected Descriptive Statistics from the Simulated Data (R150, c = 5, ϱ =.3)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 19 67 37 23 69 41 39 

250 16 67 37 20 69 41 39 

500 16 67 37 20 71 41 39 

1000 16 69 37 20 73 41 39 
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Table 3  

Selected Descriptive Statistics from the Simulated Data (R150, c = 2, ϱ =.7)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 21 68 38 22 69 40 39 

250 18 68 38 19 69 40 39 

500 18 68 38 19 69 40 39 

1000 18 71 38 19 72 40 39 

 

Table 4  

Selected Descriptive Statistics from the Simulated Data (R150, c = 5, ϱ =.7)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 19 67 37 23 69 41 39 

250 16 67 37 20 69 41 39 

500 16 67 37 20 71 41 39 

1000 16 69 37 20 73 41 39 

 

Table 5  

Selected Descriptive Statistics from the Simulated Data (R500, c = 2, ϱ =.3)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 19 66 38 20 67 40 39 

150 18 65 38 20 66 40 39 

250 18 68 38 19 69 40 39 

350 15 71 38 16 73 40 39 

 

Table 6  

Selected Descriptive Statistics from the Simulated Data (R500, c = 5, ϱ =.3)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 17 68 37 22 72 41 39 

150 17 68 37 21 72 41 39 

250 16 67 37 20 71 41 39 

350 16 70 37 20 74 41 39 
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Table 7  

Selected Descriptive Statistics from the Simulated Data (R500, c = 2, ϱ =.7)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 18 68 38 19 69 40 39 

150 18 68 38 19 69 40 39 

250 18 68 38 19 69 40 39 

350 18 71 38 19 72 40 39 

 

Table 8  

Selected Descriptive Statistics from the Simulated Data (R500, c = 5, ϱ =.7)  

S Min(l)  Max(l) Mn(l) Min(r) Max(r) Mn(r) Mn(e) 

50 16 67 37 20 69 41 39 

150 16 67 37 20 71 41 39 

250 16 67 37 20 71 41 39 

350 16 69 37 20 73 41 39 

 

Across all eight tables with various combination of conditions, the mean of the 

simulated expected event time was around 40 days, which lay between the mean left 

censoring point and the mean right censoring point, and thus satisfied the intended 

design. The maximum right endpoint was around 70 days, which roughly satisfied the 

intended design that this simulation study lasted for around 60 days. The mean imputed 

event time used for the extended Cox model was around 39 days, which was roughly in 

the middle of a censoring interval formed by the mean left censoring point and the mean 

right censoring point, and thus satisfied the intended design. 

Precision of the Parameter Estimates 

Regarding precision of the parameter estimates of β1 and β2, the mean parameter 

estimates of β1 and β2, denoted by β̅̂
1
 and β̅̂

2
, respectively, the corresponding mean 

standard errors of β̅̂
1
, denoted by se(β̅̂

1
), ARB(β̅̂

1
), and percent of correct sign of the 
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parameter estimate of β̂
1
, denoted by % CS(β̂

1
), for the three models are presented in 

Table 9-Table 16, and the confidence intervals for β̅̂
1
 and β̅̂

2
 are presented in Table 17-

Table 32. The simulation results regarding precision of β̅̂
0
, i.e., the mean parameter 

estimate of β0, are represented in Table 33-Table 40. 

To visually check the results regarding precision of the parameter estimate of β1, 

two figures were created for each table with each combination of the conditions to show 

ARB(β̅̂
1
) and % CS(β̂

1
), respectively. 

The results regarding precision from 150 replications are shown first, followed by 

the results from 500 replications. 

 

Table 9  

Precision of the Parameter Estimates of β1 and β2 (R150, c = 2, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1000 

β̅̂
1
(se) 

Ci 1.1286(0.6341) 0.9954(0.2649) 1.0145(0.1845) 0.9984(0.1303) 

Fj -0.0020(0.3474) -0.0108(0.1349) -0.0139(0.0944) -0.0184(0.0688) 

Ek -1.4187(0.6233) -1.4370(0.2757) -1.4481(0.1951) -1.4648(0.1378) 

β̅̂
2
(se) 

C 0.0023(0.2633) -0.0019(0.1100) -0.0022(0.0773) -0.0049(0.0546) 

F -0.0020(0.2408) -0.0089(0.0917) -0.0112(0.0647) -0.0150(0.0471) 

E 0.0125(0.2369) 0.0042(0.1059) 0.0007(0.0752) -0.0029(0.0532) 

ARB 

(β̅̂
1
) 

C 1.3135 1.2765 1.2818 1.2773 

F 0.9995 0.9970 0.9961 0.9949 

E 0.6059 0.6008 0.5977 0.5931 

% CS 

(β̂
1
) 

C 8.0 0 0 0 

F 78.7 100 100 100 

E 99.3 100 100 100 
Note. M = Model. se = Standard errors. The true value of β1 is -3.6. The true value of β2 is 0. 
iC refers to the extended Cox model. jF refers to Farrington’s model. kE refers to the EGNM. 
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Figure 2. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R150, c = 2, ϱ 

= .3). 
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Figure 3. Percent of correct sign of the parameter estimate β̂
1
 (R150, c = 2, ϱ = .3).  

 

When the number of replications is 150, and c = 2 and ϱ = .3, that is, the widths of 

simulated censoring intervals are comparatively narrow, and the probability of the 

descending association between X1t and the response probability, or the hazards 

associated with an occurrence case, is comparatively low, β̅̂
1
 from any model was far 

from the true value -3.6 and was substantially underestimated, but β̅̂
2
 from any model was 

close to 0, the true value of β2; ARB(β̅̂
1
) from any model was not acceptable at the .01 

level; % CS(β̂
1
) from the EGNM was acceptable at the 80% level, % CS(β̂

1
) from 

Farrington’s model was acceptable only when the number of subjects was greater than 

50, but % CS(β̂
1
) from the extended Cox model was not acceptable in any case. 
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Table 10  

Precision of the Parameter Estimates of β1 and β2 (R150, c = 5, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1000 

β̅̂
1
(se) 

C 1.0862(0.6195) 0.9637(0.2587) 0.9798(0.1800) 0.9635(0.1271) 

F 0.0069(0.3641) -0.0028(0.1544) -0.0078(0.1013) -0.0105(0.0674) 

E -1.4187(0.6233) -1.4392(0.2758) -1.4481(0.1951) -1.4648(0.1378) 

β̅̂
2
(se) 

C 0.0025(0.2617) -0.0164(0.1099) -0.0013(.0769) -0.0030(0.0543) 

F 0.0069(0.2522) -0.0025(0.1062) -0.0065(.0693) -0.0086(0.0462) 

E 0.0125(0.2369) -0.0001(0.1063) 0.0007(.0752) -0.0029(0.0532) 

ARB 

(β̅̂
1
) 

C 1.3017 1.2677 1.2722 1.2676 

F 1.0019 0.9992 0.9978 0.9971 

E 0.6059 0.6002 0.5977 0.5931 

% CS 

(β̂
1
) 

C 7.3 0 0 0 

F 8.0 86.7 100 100 

E 99.3 100 100 100 

 

 

Figure 4. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R150, c = 5, ϱ 

= .3). 
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Figure 5. Percent of correct sign of the parameter estimate β̂
1
 (R150, c = 5, ϱ = .3).  

 

When the number of replications is 150, and c = 5 and ϱ = .3, that is, compared to 

c = 2 and ϱ = .3, the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, is still 

comparatively low, but simulated censoring intervals are lengthened, the results were 

similar to those with c = 2 and ϱ = .3. However, % CS(β̂
1
) from Farrington’s model was 

acceptable at the 80% level only when the number of subjects was at least 250. 
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Table 11  

Precision of the Parameter Estimates of β1 and β2 (R150, c = 2, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1000 

β̅̂
1
(se) 

C 1.4385(0.7924) 1.3819(0.3344) 1.4020(0.2327) 1.4274(0.1641) 

F -0.0072(0.2963) -0.0140(0.1155) -0.0178(0.0808) -0.0240(0.0593) 

E -3.7621(0.7911) -3.6785(0.3623) -3.6681(0.2620) -3.6503(0.1856) 

β̅̂
2
(se) 

C 0.0105(0.2778) -0.0085(0.1145) -0.0041(0.0802) -0.0034(0.0567) 

F -0.0029(0.2407) -0.0088(0.0931) -0.0111(0.0648) -0.0151(0.0475) 

E 0.0099(0.2435) 0.0032(0.1100) -0.0013(0.0777) -0.0046(0.0551) 

ARB 

(β̅̂
1
) 

C 1.3996 1.3839 1.3894 1.3965 

F 0.9980 0.9961 0.9950 0.9933 

E 0.0450 0.0218 0.0189 0.0140 

% CS 

(β̂
1
) 

C 8.0 0 0 0 

F 80.0 100 100 100 

E 100 100 100 100 

 

 

Figure 6. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R150, c = 2, ϱ 

= .7). 
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Figure 7. Percent of correct sign of the parameter estimate β̂
1
 (R150, c = 2, ϱ = .7).  

 

When the number of replications is 150, and c = 2 and ϱ = .7, that is, compared to 

c = 2 and ϱ = .3, the widths of simulated censoring intervals are still comparatively 

narrow, but the probability of the descending association between X1t and the response 

probability, or the hazards associated with an occurrence case, becomes high, only β̅̂
1
 

from the EGNM was close to the true value of -3.6, and β̅̂
2
 from any model was close to 

0; ARB(β̅̂
1
) from the EGNM was acceptable at the .01 level with at least 500 subjects, but 

ARB(β̅̂
1
) from the other two models was not acceptable; % CS(β̂

1
) from both the EGNM 

and Farrington’s model was acceptable at the 80% level, but % CS(β̂
1
) from the extended 

Cox model was not acceptable in any case.  
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Table 12  

Precision of the Parameter Estimates of β1 and β2 (R150, c = 5, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1000 

β̅̂
1
(se) 

C 1.4580(0.7652) 1.3598(0.3201) 1.3957(0.2230) 1.4180(0.1571) 

F 0.0397(0.3097) -0.0034(0.1319) -0.0100(0.0866) -0.0134(0.0578) 

E -3.7621(0.7911) -3.6785(0.3623) -3.6681(0.2620) -3.6503(0.1856) 

β̅̂
2
(se) 

C 0.0089(0.2747) -0.0035(0.1131) -0.0022(0.0794) -0.0023(0.0562) 

F 0.0093(0.2514) -0.0025(0.1062) -0.0065(0.0694) -0.0086(0.0462) 

E 0.0099(0.2435) 0.0032(0.1100) -0.0013(0.0777) -0.0048(0.0551) 

ARB 

(β̅̂
1
) 

C 1.4050 1.3777 1.3877 1.3939 

F 1.0110 0.9990 0.9972 0.9963 

E 0.0450 0.0218 0.0189 0.0140 

% CS 

(β̂
1
) 

C 6.0 0 0 0 

F 6.0 84.7 100 100 

E 100 100 100 100 

 

 

Figure 8. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R150, c = 5, ϱ 

= .7). 
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Figure 9. Percent of correct sign of the parameter estimate β̂
1
 (R150, c = 5, ϱ = .7).  

 

When the number of replications is 150, and c = 5 and ϱ = .7, that is, compared to 

c = 2 and ϱ = .7, the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, is still 

comparatively high, but simulated censoring intervals are lengthened, the results were 

similar to those with c = 2 and ϱ = .7. However, % CS(β̂
1
) from Farrington’s model was 

acceptable at the 80% level only when the number of subjects was at least 250. 

Compared to c = 5 and ϱ = .3, that is, simulated censoring intervals are still 

comparatively wide, but the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, was low, the 

results with c = 5 and ϱ = .7 were similar to those with c = 5 and ϱ = .3. The only 
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difference lay in ARB(β̅̂
1
) from the EGNM with c = 5 and ϱ = .7 was acceptable at 

the .01 level with at least 500 subjects, but ARB(β̅̂
1
) with c = 5 and ϱ = .3 was not 

acceptable in any case. 

 

Table 13  

Precision of the Parameter Estimates of β1 and β2 (R500, c = 2, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

β̅̂
1
(se) 

C 1.0855(0.6316) 1.0356(0.3444) 0.9913(0.2643) 1.0086(0.2220) 

F 0.0010(0.3492) -0.0090(0.1798) -0.0108(0.1350) -0.0117(0.1118) 

E -1.4550(0.6200) -1.4634(0.3557) -1.4682(0.2766) -1.4694(0.2330) 

β̅̂
2
(se) 

C -0.0084(0.2648) 0.0024(0.1452) -0.0096(0.1104) 0.0007(0.0926) 

F -0.0028(0.2401) -0.0075(0.1235) -0.0088(0.0925) -0.0096(0.0764) 

E -0.0048(0.2355) 0.0026(0.1365) -0.0030(0.1063) 0.0036(0.0894) 

ARB 

(β̅̂
1
) 

C 1.3015 1.2877 1.2754 1.2802 

F 1.0003 0.9975 0.9970 0.9968 

E 0.5958 0.5935 0.5922 0.5918 

% CS 

(β̂
1
) 

C 7.4 0 0 0 

F 72.4 100 100 100 

E 99.6 100 100 100 
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Figure 10. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R500, c = 2, 

ϱ = .3). 
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Figure 11. Percent of correct sign of the parameter estimate β̂
1
 (R500, c = 2, ϱ = .3).  

 

When c = 2 and ϱ = .3, the results from 500 replications were similar to those 

from 150 replications.



121 

 

Table 14  

Precision of the Parameter Estimates of β1 and β2 (R500, c = 5, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

β̅̂
1
(se) 

C 1.0017(0.6091) 0.9802(0.3348) 0.9574(0.2578) 0.9703(0.2166) 

F 0.0390(0.3652) -0.0030(0.2072) -0.0032(0.1544) -0.0057(0.1255) 

E -1.4388(0.6189) -1.4504(0.3553) -1.4682(0.2766) -1.4742(0.2326) 

β̅̂
2
(se) 

C -0.0011(0.2605) -0.0029(0.1437) -0.0074(0.1100) 0.0031(0.0928) 

F 0.0125(0.2497) 0.0017(0.1406) -0.0026(0.1056) -0.0051(0.0857) 

E -0.0060(0.2364) 0.0009(0.1367) -0.0030(0.1063) -0.0034(0.0898) 

ARB 

(β̅̂
1
) 

C 1.2782 1.2723 1.2660 1.2695 

F 1.0108 1.0008 0.9991 0.9984 

E 0.6003 0.5971 0.5922 0.5905 

% CS 

(β̂
1
) 

C 6.8 0 0 0 

F 9.0 32.0 88.0 98.6 

E 99.6 100 100 100 

 

 

Figure 12. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R500, c = 5, 

ϱ = .3). 



122 

 

 

Figure 13. Percent of correct sign of the parameter estimate β̂
1
 (R500, c = 5, ϱ = .3).  

 

When the number of replications is 500, and c = 5 and ϱ = .3, the results were 

similar to those with 150 replications, c = 5 and ϱ = .3. It is worth mentioning that 

although the numbers of subjects used under 500 replications were 50, 150, 250, and 

350, % CS(β̂
1
) from Farrington’s model was acceptable at the 80% level only when the 

number of subjects was at least 250. 
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Table 15  

Precision of the Parameter Estimates of β1 and β2 (R500, c = 2, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

β̅̂
1
(se) 

C 1.4141(0.7936) 1.4226(0.4355) 1.3958(0.3333) 1.4020(0.2806) 

F -0.0008(0.2971) -0.0115(0.1540) -0.0139(0.1158) -0.0154(0.0966) 

E -3.8364(0.7898) -3.7318(0.4641) -3.6928(0.3663) -3.6758(0.3132) 

β̅̂
2
(se) 

C -0.0137(0.2754) -0.0046(0.1499) -0.0066(0.1148) 0.0118(0.0970) 

F -0.0021(0.2412) -0.0074(0.1238) -0.0088(0.0927) -0.0099(0.0771) 

E -0.0070(0.2437) 0.0025(0.1411) -0.0014(0.1099) 0.0052(0.0931) 

ARB 

(β̅̂
1
) 

C 1.3928 1.3952 1.3877 1.3895 

F 0.9998 0.9968 0.9961 0.9957 

E 0.0657 0.0366 0.0258 0.0211 

% CS 

(β̂
1
) 

C 7.2 0 0 0 

F 79.6 100 100 100 

E 100 100 100 100 

 

 

Figure 14. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R500, c = 2, 

ϱ = .7). 
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Figure 15. Percent of correct sign of the parameter estimate β̂
1
 (R500, c = 2, ϱ = .7).  

 

When the number of replications is 500, and c = 2 and ϱ = .7, the results were 

similar to those with 150 replications, c = 2 and ϱ = .7. It is worth mentioning that 

although ARB(β̅̂
1
) from the EGNM showed a decreasing trend as the number of subjects 

increased, and approached the acceptable level of .01, for example, 0.0211 from 350 

subjects, due to the fact that the largest number of subjects used was 350, none of 

ARB(β̅̂
1
) was acceptable at the .01 level.   
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Table 16  

Precision of the Parameter Estimates of β1 and β2 (R500, c = 5, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

β̅̂
1
(se) 

C 1.4376(0.7665) 1.4141(0.4175) 1.3774(0.3193) 1.3943(0.2686) 

F 0.0391(0.3095) 0.0032(0.1769) -0.0032(0.1321) -0.0072(0.1076) 

E -3.8364(0.7898) -3.7318(0.4641) -3.6928(0.3663) -3.6764(0.3131) 

β̅̂
2
(se) 

C -0.0140(0.2719) -0.0028(0.1484) -0.0066(0.1136) -0.0022(0.0956) 

F 0.0250(0.2509) -0.0019(0.1420) -0.0027(0.1057) -0.0050(0.0861) 

E 0.0070(0.2437) 0.0025(0.1411) -0.0014(0.1099) -0.0038(0.0930) 

ARB 

(β̅̂
1
) 

C 1.3993 1.3928 1.3826 1.3873 

F 1.0109 1.0009 0.9991 0.9980 

E 0.0657 0.0366 0.0258 0.0212 

% CS 

(β̂
1
) 

C 4.4 0 0 0 

F 6.2 32.6 86.2 98.8 

E 100 100 100 100 

 

 

Figure 16. Absolute relative bias (ARB) of the mean parameter estimate β̅̂
1
 (R500, c = 5, 

ϱ = .7). 
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Figure 17. Percent of correct sign of the parameter estimate β̂
1
 (R500, c = 5, ϱ = .7).  

 

When the number of replications is 500, and c = 5 and ϱ = .7, the results were 

similar to those with 150 replications, for c = 5 and ϱ = .7. Although the numbers of 

subjects used under 500 replications were 50, 150, 250, and 350, % CS(β̂
1
) from 

Farrington’s model was acceptable at the 80% level only when the number of subjects 

was at least 250, and although ARB(β̅̂
1
) from the EGNM showed a decreasing trend as 

the number of subjects increased, and approached the acceptable level of .01, for 

example, 0.0212 from 350 subjects, due to the fact that the largest number of subjects 

used was 350, none of the ARB(β̅̂
1
) was acceptable at the .01 level. 

In summary, across all eight tables regarding precision of the parameter estimates 

of β1 and β2, the simulation results with the same c and ϱ values were similar. 
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When c = 2 or c = 5 with ϱ = .3, that is, the probability of the descending 

association between X1t and the response probability, or the hazards associated with an 

occurrence case, is comparatively low, β̅̂
1
 from any model was far from the true value of 

β1, -3.6, but  β̅̂
2
 from any model was close to 0; ARB(β̅̂

1
) from any model was not 

acceptable at the .01 level; % CS(β̂
1
) from the EGNM was acceptable at the 80% level, % 

CS(β̂
1
) from Farrington’s model was acceptable at the 80% level only when the number 

of subjects was greater than 50 when c = 2 or at least 250 when c = 5, but % CS(β̂
1
) from 

the extended Cox model was not acceptable in any case. 

When c = 2 or c = 5 with ϱ = .7, β̅̂
1
 from the EGNM was very close to the true 

value -3.6, and β̅̂
1
 from the other two models were still far from -3.6, but β̅̂

2
 from any 

model was close to 0; ARB(β̅̂
1
) from the EGNM was acceptable overall, and was 

acceptable at the .01 level only with at least 500 subjects, and ARB(β̅̂
1
) from the other 

two models were still not acceptable; % CS(β̂
1
) from the EGNM was acceptable at the 

80% level, % CS(β̂
1
) from Farrington’s model was not acceptable at the 80% level only 

when the number of subjects was 50 when c = 5, but % CS(β̂
1
) from the extended Cox 

model was not acceptable in any case. Next, to see whether the confidence intervals 

constructed for β̅̂
1
 calculated from the three models include the true value of β1, -3.6, 

which is the coefficient for the significant covariate X1t, confidence intervals calculations 

for β̅̂
1
 follow. 
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Table 17  

The Confidence Intervals for β̅̂
1
 (R150, c = 2, ϱ =.3)   

M S = 50 S = 250 S = 500 S = 1,000 

 Ll              Um L              U L              U L              U 

C (-0.3735, 2.8427) (0.3513, 1.5997) (0.5518, 1.4984) (0.6544, 1.3350) 

F (-0.0093, 0.0101) (-0.0252, -0.0074) (-0.0306, -0.0094) (-0.0311, -0.0110) 

E (-2.5357, -0.4423) (-1.9375, -1.0348) (-1.7495, -1.1706) (-1.6952, -1.2583) 
lL refers to the 2.5th percentile of β̅̂

1
, i.e., the lower limit of a confidence interval. mU refers to the 97.5th 

percentile of β̅̂
1
, i.e., the upper limit of a confidence interval. 

 

Table 18  

The Confidence Intervals for β̅̂
1
 (R150, c = 5, ϱ =.3)   

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.1827, 2.2356) (0.4617, 1.4962) (0.5754, 1.3803) (0.6809, 1.2449) 

F (-0.8066, 0.4520) (-0.0074, 0.0031) (-0.0107, -0.0044) (-0.0128, -0.0080) 

E (-2.5357, -0.4423) (-1.9299, -1.0311) (-1.7495, -1.1706) (-1.6952, -1.2583) 

 

Table 19  

The Confidence Intervals for β̅̂
1
 (R150, c = 2, ϱ =.7)   

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.4866, 3.2219) (0.7353, 2.1808) (0.8737, 2.0181) (1.0030, 1.7545) 

F (-0.0109, 0.0053) (-0.0348, -0.0098) (-0.0386, -0.0124) (-0.0396, -0.0140) 

E (-5.4764, -2.5143) (-4.2692, -3.1614) (-4.0347, -3.3293) (-3.9137, -3.3739) 

 

Table 20  

The Confidence Intervals for β̅̂
1
 (R150, c = 5, ϱ =.7)   

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.2107, 3.1067) (0.7425, 1.9840) (0.9426, 1.8798) (1.0432, 1.6902) 

F (-0.7676, 0.7950) (-0.0093, 0.0042) (-0.0136, -0.0055) (-0.0164, -0.0102) 

E (-5.4764, -2.5143) (-4.2692, -3.1614) (-4.0347, -3.3293) (-3.9137, -3.3739) 
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Table 21  

The Confidence Intervals for β̅̂
1
 (R500, c = 2, ϱ =.3) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.4751, 2.6988) (0.1953, 1.8425) (0.3138, 1.6793) (0.4900, 1.5630) 

F (-0.0079, 0.0266) (-0.0120, -0.0057) (-0.0257, -0.0074) (-0.0279, -0.0085) 

E (-2.5411, -0.4254) (-2.0789, -0.9164) (-1.9197, -1.0230) (-1.8286, -1.0448) 

 

Table 22  

The Confidence Intervals for β̅̂
1
 (R500, c = 5, ϱ =.3) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.3904, 2.1832) (0.2834, 1.6427) (0.4089, 1.5584) (0.5099, 1.4155) 

F (-0.5056, 0.9095) (-0.0047, 0.0283) (-.0075, 0.0030) (-0.0092, -0.0011) 

E (-2.5697, -0.4689) (-2.1179, -0.8555) (-1.9197, -1.0230) (-1.8403, -1.0772) 

 

Table 23  

The Confidence Intervals for β̅̂
1
 (R500, c = 2, ϱ =.7) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.3247, 3.2242) (0.3787, 2.4910) (0.6787, 2.2182) (0.8253, 2.0524) 

F (-0.0105, 0.0269) (-0.0155, -0.0067) (-0.0338,-0.0099) (-0.0363, -0.0111) 

E (-5.5395, -2.6961) (-4.5231, -3.0714) (-4.2868, -3.1611) (-4.1663, -3.2026) 

 

Table 24  

The Confidence Intervals for β̅̂
1
 (R500, c = 5, ϱ =.7) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.1932, 3.0695) (0.5634, 2.3755) (0.7156, 2.0100) (0.8769, 1.9915) 

F (-0.6759, 0.8329) (-0.0052, 0.0305) (-0.0092, 0.0041) (-0.0116, -0.0009) 

E (-5.5394, -2.6961) (-4.5231, -3.0714) (-4.2868, -3.1611) (-4.1675, -3.2049) 
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In summary, across all eight tables the confidence intervals constructed for β̅̂
1
, the 

simulation results from 150 and 500 replications, with the same c and ϱ values, were 

similar. As the number of subjects increased, the confidence intervals became narrower. 

However, only the confidence intervals constructed for β̅̂
1
 from the EGNM using 𝜚 = .7 

contained the true value of β1, −3.6, which is the coefficient for the significant covariate 

X1t. Moreover, when the number of subjects was greater than 50, confidence intervals for 

β̅̂
1
 across the three models were non-overlapping. Next, to see whether the confidence 

intervals constructed for β̅̂
2
 calculated from the three models include the true value of β2, 

0, which is the coefficient for X2t, confidence intervals calculations for β̅̂
2
 follow. 

 

Table 25  

The Confidence Intervals for β̅̂
2
 (R150, c = 2, ϱ =.3) 

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.7120, 0.7247) (-0.2568, 0.2601) (-0.2201, 0.1992) (-0.1191, 0.1297) 

F (-0.0094, 0.0120) (-0.0181, -0.0054) (-0.0252, -0.0068) (-0.0268, -0.0086) 

E (-0.5238, 0.4638) (-0.2477, 0.1982) (-0.1482, 0.1642) (-0.1115, 0.1155) 

 

Table 26  

The Confidence Intervals for β̅̂
2
 (R150, c = 5, ϱ =.3) 

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.4732, 0.6561) (-0.3055, 0.2006) (-0.1792, 0.1645) (-0.1071, 0.1237) 

F (-0.2480, 0.1982) (-0.0065, 0.0028) (-0.0093, -0.0035) (-0.0109, -0.0063) 

E (-0.5238, 0.4638) (-0.2320, 0.2353) (-0.1482, 0.1642) (-0.1115, 0.1155) 
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Table 27  

The Confidence Intervals for β̅̂
2
 (R150, c = 2, ϱ =.7) 

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.5486, 0.5697) (-0.2474, 0.2253) (-0.1702, 0.1418) (-0.1232, 0.1042) 

F (-0.0100, 0.0063) (-0.0224, 0.0050) (-0.0254, -0.0068) (-0.0267, -0.0085) 

E (-0.5090, 0.4434) (-0.2632, 0.2546) (-0.1690, 0.1822) (-0.1134, 0.1099) 

 

Table 28  

The Confidence Intervals for β̅̂
2
 (R150, c = 5, ϱ =.7) 

M S = 50 S = 250 S = 500 S = 1,000 

 L              U L              U L              U L              U 

C (-0.5280, 0.5252) (-0.2347, 0.1887) (-0.1753, 0.1360) (-0.1188, 0.0988) 

F (-0.2400, 0.2967) (-0.0065, 0.0028) (-0.0093, -0.0035) (-0.0109, -0.0063) 

E (-0.5090, 0.4434) (-0.2632, 0.2546) (-0.1690, 0.1822) (-0.1134, 0.1098) 

 

Table 29  

The Confidence Intervals for β̅̂
2
 (R500, c = 2, ϱ =.3) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.6752, 0.6346) (-0.3396, 0.3542) (-0.3158, 0.2594) (-0.2290, 0.2197) 

F (-0.0100, 0.0237) (-0.0120, -0.0028) (-0.0205, -0.0050) (-0.0235, -0.0060) 

E (-0.4534, 0.4468) (-0.2679, 0.2900) (-0.2331,  0.2294) (-0.1653,  0.1960) 

 

Table 30  

The Confidence Intervals for β̅̂
2
 (R500, c = 5, ϱ =.3) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.6185, 0.5858) (-0.2858, 0.3221) (-0.2798, 0.2339) (-0.2043, 0.1935) 

F (-0.2532, 0.2832) (-0.0048, 0.0254) (-0.0074, 0.0027) (-0.0086, -0.0010) 

E (-0.4607, 0.5069) (-0.2514, 0.2850) (-0.2331, 0.2294) (-0.1649, 0.1716) 
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Table 31  

The Confidence Intervals for β̅̂
2
 (R500, c = 2, ϱ =.7) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.6148, 0.6178) (-0.3250, 0.3203) (-0.2391, 0.2449) (-0.1750, 0.2178) 

F (-0.0096, 0.0220) (-0.0119, -0.0027) (-0.0216, -0.0049) (-0.0249, -0.0059) 

E (-0.5304, 0.4989) (-0.3006, 0.3184) (-0.2256, 0.2422) (-0.1762, 0.1905) 

 

Table 32  

The Confidence Intervals for β̅̂
2
 (R500, c = 5, ϱ =.7) 

M S = 50 S = 150 S = 250 S = 350 

 L              U L              U L              U L              U 

C (-0.6042, 0.5801) (-0.2993, 0.3039) (-0.2345, 0.2163) (-0.1991, 0.1977) 

F (-0.2276, 0.3321) (-0.0048, 0.0226) (-0.0074, 0.0025) (-0.0086, -0.0008) 

E (-0.5304, 0.4989) (-0.3006, 0.3184) (-0.2256, 0.2422) (-0.1998, 0.1878) 

 

In summary, across all eight tables the confidence intervals constructed for β̅̂
2
, the 

simulation results from 150 and 500 replications, with the same c and ϱ values, were 

similar. As the number of subjects increased, the confidence intervals became narrower. 

However, the confidence intervals constructed for β̅̂
2
 from the extended Cox model and 

the EGNM included the true value of β2, 0, which is the coefficient for X2t, in all 

circumstances. The confidence intervals from Farrington’s model sometimes did not 

include the true value of β2, especially when the number of subjects was the largest with 

either 150 or 500 replications. Next, results of precision of the parameter estimate β̅̂
0
 

follow. 
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Table 33  

Precision of the Parameter Estimate of β0 (R150, c = 2, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1,000 

𝛽̅̂0(se) 
F 0.0936(0.1569) 0.0701(0.0614) 0.0617(0.0430) 0.0495(0.0313) 

E -0.9045(0.1735) -0.8933(0.0756) -0.8861(0.0532) -0.8807(0.0373) 

ARB 

(𝛽̅̂0) 

F -0.9376 -0.9533 -0.9589 -0.9670 

E -1.6030 -1.5956 -1.5907 -1.5871 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 0 0 0 0 
Note. The true value of β0 is 1.5. 

 

Table 34  

Precision of the Parameter Estimate of β0 (R150, c = 5, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1,000 

𝛽̅̂0(se) 
F 0.3643(0.1647) 0.0926(0.0703) .0788(0.0461) 0.0711(0.0307) 

E -0.9045(0.1735) -0.8913(0.0754) -.8861(0.0532) -0.8807(0.0373) 

ARB 

(𝛽̅̂0) 

F -0.7571 -0.9383 -0.9475 -0.9526 

E -1.6030 -1.5942 -1.5907 -1.5871 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 0 0 0 0 

 

Table 35  

Precision of the Parameter Estimate of β0 (R150, c = 2, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1,000 

𝛽̅̂0(se) 
F 0.1028(0.1569) 0.0699 (0.0616) 0.0618 (0.0430) 0.0488 (0.0315) 

E -0.4259(0.1794) -0.4451(0.0814) -0.4436(0.0579) -0.4461(0.0410) 

ARB 

(𝛽̅̂0) 

F -0.9315 -0.9534 -.9588 -.9674 

E -1.2839 -1.2967 -1.2957 -1.2974 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 1.3 0 0 0 
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Table 36  

Precision of the Parameter Estimate of β0 (R150, c = 5, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1,000 

𝛽̅̂0(se) 
F 0.3556(0.1643) 0.0926(0.0703) 0.0788(0.0461) 0.0712(0.0308) 

E -0.4259(0.1794) -0.4451(0.0814) -0.4436(0.0579) -0.4461(0.0410) 

ARB 

(𝛽̅̂0) 

F -0.7629 -0.9383 -0.9475 -0.9526 

E -1.2839 -1.2967 -1.2957 -1.2974 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 1.3 0 0 0 

 

Table 37  

Precision of the Parameter Estimate of β0 (R500, c = 2, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

𝛽̅̂0(se) 
F 0.1108(0.1576) 0.0753(0.0819) 0.0701(0.0615) 0.0676(0.0510) 

E -0.8942(0.1702) -0.8860(0.0971) -0.8818(0.0751) -0.8820(0.0635) 

ARB 

(𝛽̅̂0) 

F -0.9261 -0.9498 -0.9532 -0.9549 

E -1.5961 -1.5907 -1.5879 -1.5880 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 0 0 0 0 

 

Table 38  

Precision of the Parameter Estimate of β0 (R500, c = 5, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

𝛽̅̂0(se) 
F 0.3793(0.1646) 0.1177(0.0941) 0.0947(0.0703) 0.0849(0.0574) 

E -0.8977(0.1697) -0.8861(0.0974) -0.8818(0.0751) -0.8786(0.0633) 

ARB 

(𝛽̅̂0) 

F -0.7471 -0.9215 -0.9369 -0.9434 

E -1.5985 -1.5907 -1.5879 -1.5857 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 0 0 0 0 
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Table 39  

Precision of the Parameter Estimate of β0 (R500, c = 2, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

𝛽̅̂0(se) 
F 0.1078(0.1571) 0.0752(0.0820) 0.0700(0.0616) 0.0668(0.0515) 

E -0.4217(0.1774) -0.4347(0.1036) -0.4412(0.0814) -0.4467(0.0699) 

ARB 

(𝛽̅̂0) 

F -0.9282 -0.9498 -0.9533 -0.9555 

E -1.2811 -1.2898 -1.2941 -1.2978 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 1.0 0 0 0 

 

Table 40  

Precision of the Parameter Estimate of β0 (R500, c = 5, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

𝛽̅̂0(se) 
F 0.3624(0.1640) 0.1053(0.0942) 0.0945(0.0703) 0.0849(0.0573) 

E -0.4217(0.1774) -0.4347(0.1036) -0.4412(0.0814) -0.4436(0.0696) 

ARB 

(𝛽̅̂0) 

F -0.7584 -0.9298 -0.9370 -0.9434 

E -1.2811 -1.2898 -1.2941 -1.2957 

% CS 

(𝛽̂0) 

F 100 100 100 100 

E 1.0 0 0 0 

 

In summary, across all eight tables, precision of the parameter estimates of β0, 

across two sets of numbers of subjects and replications, with the same c and ϱ values, 

produced similar results. However, the results were very poor. β̅̂
0
 from the two models 

were far from the true value of β0, 1.5, and substantially underestimated; ARB(β̅̂
0
) from 

either model was not acceptable at the .01 level; % CS(β̂
0
) from the EGNM was not 

acceptable in any case, and % CS(β̂
0
) from Farrington’s model was acceptable at the 80% 

level. 

The reason why the extended Cox model does not estimate an intercept is the 

parameter is unidentifiable, as the exponentiated intercept term is subsumed by the 
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unknown baseline hazard function, thus any intercept term would simply change the 

baseline hazard function. As such, only results of precision of the parameter estimate β̅̂
0
  

from Farrington’s model and the EGNM were included.   

Hypothesis Testing of the Parameter Estimates 

Regarding each model’s capability of detecting the significance of covariates, the 

results of power analysis and analysis of type I error rate from the three models are 

presented in Table 41-Table 48. To visually check the simulation results, two figures 

were created for each table with each combination of the conditions to display the power 

curves and type I error rate, respectively. The results regarding hypothesis testing of the 

parameter estimates from 150 replications are shown first, followed by the results from 

500 replications. 

 

Table 41 

Power and Type I Error Rate for the Three Models (R150, c = 2, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1,000 

Power  

C 0.427 0.933 1.000 1.000 

F 0 0 0 0 

E 0.620 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.140 0.147 0.133 0.133 

F 0 0 0 0 

E 0.067 0.053 0.060 0.073 
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Figure 18. Power curves of the three models (R150, c = 2, ϱ = .3).  
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Figure 19. Type I error rates of the three models (R150, c = 2, ϱ = .3).  

 

When the number of replications is 150, and c = 2 and ϱ = .3, that is, the widths of 

simulated censoring intervals are comparatively narrow, and the probability of the 

descending association between X1t and the response probability, or the hazards 

associated with an occurrence case, is comparatively low, power from the extended Cox 

model and the EGNM were acceptable at the .90 level when the number of subjects was 

at least 250, and power from Farrington’s model was not acceptable in any case; the 

EGNM controlled type I error rate better than the extended Cox model, and type I error 

rate from Farrington’s model was 0. 
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Table 42 

Power and Type I Error Rate for the Three Models (R150, c = 5, ϱ =.3) 

 M S = 50 S = 250 S = 500 S = 1,000 

Power  

C 0.453 0.967 1.000 1.000 

F 0.060 0 0 0 

E 0.620 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.060 0.093 0.093 0.053 

F 0.013 0 0 0 

E 0.067 0.060 0.060 0.073 

 

 

Figure 20. Power curves of the three models (R150, c = 5, ϱ = .3).  
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Figure 21. Type I error rates of the three models (R150, c = 5, ϱ = .3).  

 

When the number of replications is 150, and c = 5 and ϱ = .3, that is, compared to 

c = 2 and ϱ = .3, the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, is still 

comparatively low, but simulated censoring intervals are lengthened, the power from the 

three models was similar to that with c = 2 and ϱ = .3. Type I error rate from the EGNM 

was similar to that with c = 2 and ϱ = .3, and type I error rate from Farrington’s model 

was almost 0. The EGNM controlled type I error rate slightly better than the extended 

Cox model when c = 2 and ϱ = .3.  
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Table 43 

Power and Type I Error Rate for the Three Models (R150, c = 2, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1,000 

Power  

C 0.507 0.980 1.000 1.000 

F 0.007 0 0 0 

E 1.000 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.067 0.067 0.067 0.060 

F 0 0 0 0 

E 0.073 0.100 0.093 0.067 

 

 

Figure 22. Power curves of the three models (R150, c = 2, ϱ = .7).  
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Figure 23. Type I error rates of the three models (R150, c = 2, ϱ = .7).  

 

When the number of replications is 150, and c = 2 and ϱ = .7, that is, compared to 

c = 2 and ϱ = .3, the widths of simulated censoring intervals are still comparatively 

narrow, but the probability of the descending association between X1t and the response 

probability, or the hazards associated with an occurrence case, become high, power from 

the EGNM was acceptable at the .90 level, and power from the extended Cox model was 

acceptable when the number of subjects was at least 250, but Farrington’s model did not 

have any power. The extended Cox model controlled type I error rate better than the 

EGNM, where type I error rate was slightly inflated, and type I error rate from 

Farrington’s model was 0.  
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Table 44 

Power and Type I Error Rate for the Three Models (R150, c = 5, ϱ =.7) 

 M S = 50 S = 250 S = 500 S = 1,000 

Power  

C 0.520 0.987 1.000 1.000 

F 0.087 0 0 0 

E 1.000 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.053 0.060 0.047 0.060 

F 0.020 0.006 0 0 

E 0.073 0.100 0.093 0.067 

 

 

Figure 24. Power curves of the three models (R150, c = 5, ϱ = .7).  
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Figure 25. Type I error rates of the three models (R150, c = 5, ϱ = .7).  

 

When the number of replications is 150, and c = 5 and ϱ = .7, that is, compared to 

c = 2 and ϱ = .7, the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, is still 

comparatively high, but simulated censoring intervals are lengthened, power and type I 

error rate from the three models was similar to that with c = 2 and ϱ = .7. The only 

difference lay in that the extended Cox model controlled type I error rate was slightly 

better than when c = 2 and ϱ = .7. 

Compared to c = 5 and ϱ = .3, that is, simulated censoring intervals are still 

comparatively wide, but the probability of the descending association between X1t and the 

response probability, or the hazards associated with an occurrence case, is low, the 
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EGNM became more powerful with 50 subjects than when c = 5 and ϱ = .3, power from 

the other two models was similar to that with c = 5 and ϱ = .3. The extended Cox model 

controlled type I error rate slightly better than when c = 5 and ϱ = .3, and type I error rate 

from the other two models was similar to that with c = 5 and ϱ = .3.  

 

Table 45 

Power and Type I Error Rate for the Three Models (R500, c = 2, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

Power  

C 0.428 0.788 0.920 0.986 

F 0.002 0 0 0 

E 0.676 0.996 1.000 1.000 

Type I Error 

Rate 

C 0.110 0.106 0.142 0.114 

F 0.002 0 0 0 

E 0.046 0.062 0.076 0.050 

 

 

Figure 26. Power curves of the three models (R500, c = 2, ϱ = .3).  
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Figure 27. Type I error rates of the three models (R500, c = 2, ϱ = .3).  

 

When c = 2 and ϱ = .3, the results regarding hypothesis testing of the parameter 

estimates from 500 replications were similar to those from 150 replications. 

 

Table 46 

Power and Type I Error Rate for the Three Models (R500, c = 5, ϱ =.3) 

 M S = 50 S = 150 S = 250 S = 350 

Power  

C 0.402 0.814 0.946 0.988 

F 0.058 0.004 0 0 

E 0.654 0.988 1.000 1.000 

Type I Error 

Rate 

C 0.086 0.070 0.094 0.068 

F 0.018 0.002 0 0 

E 0.068 0.056 0.076 0.038 
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Figure 28. Power curves of the three models (R500, c = 5, ϱ = .3).  
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Figure 29. Type I error rates of the three models (R500, c = 5, ϱ = .3).  

 

When the number of replications is 500, and c = 5 and ϱ = .3, the power from the 

EGNM and the extended Cox model was acceptable at the .90 level only when the 

number of subjects was at least 150 and 250, respectively, and power from Farrington’s 

model was not acceptable in any case. Overall, the EGNM controlled type I error rate 

slightly better than the extended Cox model, and type I error rate from Farrington’s 

model was not acceptable. 
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Table 47 

Power and Type I Error Rate for the Three Models (R500, c = 2, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

Power  

C 0.468 0.874 0.978 0.998 

F 0.006 0 0 0 

E 1.000 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.078 0.070 0.074 0.060 

F 0 0 0 0 

E 0.076 0.086 0.072 0.058 

 

 

 

Figure 30. Power curves of the three models (R500, c = 2, ϱ = .7).  
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Figure 31. Type I error rates of the three models (R500, c = 2, ϱ = .7).  

 

When the number of replications is 500, and c = 2 and ϱ = .7, power from the 

extended Cox model was acceptable at the .90 level when the number of subjects was at 

least 250, the EGNM was potentially overpowered even when the number of subjects was 

50, and power from Farrington’s model was not acceptable. Overall, the EGNM 

controlled type I error rate slightly better than the extended Cox model, and type I error 

rate from Farrington’s model was 0. 
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Table 48 

Power and Type I Error Rate for the Three Models (R500, c = 5, ϱ =.7) 

 M S = 50 S = 150 S = 250 S = 350 

Power  

C 0.492 0.916 0.990 0.998 

F 0.078 0 0 0 

E 1.000 1.000 1.000 1.000 

Type I Error 

Rate 

C 0.068 0.062 0.060 0.062 

F 0.020 0 0 0 

E 0.076 0.086 0.072 0.074 

 

 

 

Figure 32. Power curves of the three models (R500, c = 5, ϱ = .7).  
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Figure 33. Type I error rates of the three models (R500, c = 5, ϱ = .7).  

 

When the number of replications is 500, and c = 5 and ϱ = .7, the results were 

similar to those with 150 replications, c = 5 and ϱ = .7. The only difference lay in power 

from the extended Cox model was acceptable at the .90 level when the number of 

subjects was at least 150. The extended Cox model controlled type I error rate slightly 

better than the EGNM, and type I error rate from Farrington’s model was almost 0. 

 In summary, the simulation results regarding hypothesis testing of the parameter 

estimates from 150 and 500 replications, with the same c and ϱ values, were similar. 

When c = 2 or c = 5 with ϱ = .3, power from the EGNM was acceptable at the .90 

level when the number of subjects was at least 150, power from the extended Cox model 

was acceptable at the .90 level when the number of subjects was at least 250, and power 



153 

 

from Farrington’s model was not acceptable. Overall, the EGNM controlled type I error 

rate slightly better than the extended Cox model, and type I error rate from Farrington’s 

model was not acceptable. 

When c = 2 or c = 5 with ϱ = .7, power from the extended Cox model was 

acceptable at the .90 level when the number of subjects was at least 150, the EGNM was 

potentially overpowered even when the number of subjects was 50, and power from 

Farrington’s model was not acceptable. Overall, the extended Cox model controlled type 

I error rate better than the EGNM, and type I error rate from Farrington’s model was not 

acceptable. 

It is worth mentioning that overall type I error rate from the EGNM fluctuated 

around .05, even when the number of subjects was 1,000. There are two possible reasons 

for this situation. The first possible reason is there was greater variation in the scaled 

distribution of X2t, N (0.3, 0.36), than would be expected, and thus it was easier to claim 

that X2t was significant in describing the responsibility. The second possible reason is 

with repeated measures and nonnormally distributed responses, which were simulated for 

the EGNM, the EGNM is not robust (Oberfeld & Franke, 2013), that is, type I error rate 

from the EGNM showed clear deviations from the nominal type I error rate with the 

simulated data.    

Summarizing the Simulation Results 

Four comprehensive tables, Table 49-Table 52, were created to summarize the 

key simulation results under each combination of c and ϱ values and all numbers of 

subjects, including ARB(β̅̂
1
), power, and type I error rate, as the upper bound of a 

uniform distribution. Hence the width of a censoring interval, the probability of the 
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descending association between X1t and the response, and numbers of subjects were 

thought to have direct impact on the simulation results. 

Tables 49 and 50 show when c is fixed, how the key simulation results behave as 

ϱ and the number of subjects increase. Tables 51 and 52 show when ϱ is fixed, how the 

key simulation results behave as c and the number of subjects increase. 
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Table 49 

Comprehensive Table (R150c) 

 M  c = 2 c = 5 

   ϱ = .3 ϱ = .7 ϱ = .3 ϱ = .7 

ARB 

(β̅̂
1
) 

C 

S = 50 1.3135 1.3996 1.3017 1.4050 

S = 250 1.2765 1.3839 1.2677 1.3777 

S = 500 1.2818 1.3894 1.2722 1.3877 

S = 1000 1.2773 1.3965 1.2676 1.3939 

F 

S = 50 0.9995 0.9980 1.0019 1.0110 

S = 250 0.9970 0.9961 0.9992 0.9990 

S = 500 0.9961 0.9950 0.9978 0.9972 

S = 1000 0.9949 0.9933 0.9971 0.9963 

E 

S = 50 0.6059 0.0450 0.6059 0.0450 

S = 250 0.6008 0.0218 0.6002 0.0218 

S = 500 0.5977 0.0189 0.5977 0.0189 

S = 1000 0.5931 0.0140 0.5931 0.0140 

Power 

C 

S = 50 0.427 0.507 0.453 0.520 

S = 250 0.933 0.980 0.967 0.987 

S = 500 1.000 1.000 1.000 1.000 

S = 1000 1.000 1.000 1.000 1.000 

F 

S = 50 0 0.007 0.060 0.087 

S = 250 0 0 0.000 0 

S = 500 0 0 0.000 0 

S = 1000 0 0 0.000 0 

E 

S = 50 0.620 1.000 0.620 1.000 

S = 250 1.000 1.000 1.000 1.000 

S = 500 1.000 1.000 1.000 1.000 

S = 1000 1.000 1.000 1.000 1.000 

Type I Error Rate 

C 

S = 50 0.140 0.067 0.060 0.053 

S = 250 0.147 0.067 0.093 0.060 

S = 500 0.133 0.067 0.093 0.047 

S = 1000 0.133 0.060 0.053 0.060 

F 

S = 50 0 0 0.013 0.020 

S = 250 0 0 0 0.006 

S = 500 0 0 0 0 

S = 1000 0 0 0 0 

E 

S = 50 0.067 0.073 0.067 0.073 

S = 250 0.053 0.100 0.060 0.100 

S = 500 0.060 0.093 0.060 0.093 

S = 1000 0.073 0.067 0.073 0.067 
Note. M = Model. 
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Table 50 

Comprehensive Table (R500c) 

 M  c = 2 c = 5 

   ϱ = .3 ϱ = .7 ϱ = .3 ϱ = .7 

ARB 

(β̅̂
1
) 

C 

S = 50 1.3015 1.3928 1.2782 1.3993 

S = 150 1.2877 1.3952 1.2723 1.3928 

S = 250 1.2754 1.3877 1.2660 1.3826 

S = 350 1.2802 1.3895 1.2695 1.3873 

F 

S = 50 1.0003 0.9998 1.0108 1.0109 

S = 150 0.9975 0.9968 1.0008 1.0009 

S = 250 0.9970 0.9961 0.9991 0.9991 

S = 350 0.9968 0.9957 0.9984 0.9980 

E 

S = 50 0.5958 0.0657 0.6003 0.0657 

S = 150 0.5935 0.0366 0.5971 0.0366 

S = 250 0.5922 0.0258 0.5922 0.0258 

S = 350 0.5918 0.0211 0.5905 0.0212 

Power 

C 

S = 50 0.428 0.468 0.402 0.492 

S = 150 0.788 0.874 0.814 0.916 

S = 250 0.920 0.978 0.946 0.990 

S = 350 0.986 0.998 0.988 0.998 

F 

S = 50 0.002 0.006 0.058 0.078 

S = 150 0 0 0.004 0 

S = 250 0 0 0 0 

S = 350 0 0 0 0 

E 

S = 50 0.676 1.000 0.654 1.000 

S = 150 0.996 1.000 0.988 1.000 

S = 250 1.000 1.000 1.000 1.000 

S = 350 1.000 1.000 1.000 1.000 

Type I Error Rate 

C 

S = 50 0.110 0.078 0.086 0.068 

S = 150 0.106 0.070 0.070 0.062 

S = 250 0.142 0.074 0.094 0.060 

S = 350 0.114 0.060 0.068 0.062 

F 

S = 50 0.002 0 0.018 0.020 

S = 150 0 0 0.002 0 

S = 250 0 0 0 0 

S = 350 0 0 0 0 

E 

S = 50 0.046 0.076 0.068 0.076 

S = 150 0.062 0.086 0.056 0.086 

S = 250 0.076 0.072 0.076 0.072 

S = 350 0.050 0.058 0.038 0.074 
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Table 51 

Comprehensive Table (R150ϱ) 

 M  ϱ = .3 ϱ = .7 

   c = 2 c = 5 c = 2 c = 5 

ARB 

(β̅̂
1
) 

C 

S = 50 1.3135 1.3017 1.3996 1.4050 

S = 250 1.2765 1.2677 1.3839 1.3777 

S = 500 1.2818 1.2722 1.3894 1.3877 

S = 1000 1.2773 1.2676 1.3965 1.3939 

F 

S = 50 0.9995 1.0019 0.9980 1.0110 

S = 250 0.9970 0.9992 0.9961 0.9990 

S = 500 0.9961 0.9978 0.9950 0.9972 

S = 1000 0.9949 0.9971 0.9933 0.9963 

E 

S = 50 0.6059 0.6059 0.0450 0.0450 

S = 250 0.6008 0.6002 0.0218 0.0218 

S = 500 0.5977 0.5977 0.0189 0.0189 

S = 1000 0.5931 0.5931 0.0140 0.0140 

Power 

C 

S = 50 0.427 0.453 0.507 0.520 

S = 250 0.933 0.967 0.980 0.987 

S = 500 1.000 1.000 1.000 1.000 

S = 1000 1.000 1.000 1.000 1.000 

F 

S = 50 0 0.060 0.007 0.087 

S = 250 0 0.000 0 0 

S = 500 0 0.000 0 0 

S = 1000 0 0.000 0 0 

E 

S = 50 0.620 0.620 1.000 1.000 

S = 250 1.000 1.000 1.000 1.000 

S = 500 1.000 1.000 1.000 1.000 

S = 1000 1.000 1.000 1.000 1.000 

Type I Error Rate 

C 

S = 50 0.140 0.060 0.067 0.053 

S = 250 0.147 0.093 0.067 0.060 

S = 500 0.133 0.093 0.067 0.047 

S = 1000 0.133 0.053 0.060 0.060 

F 

S = 50 0 0.013 0 0.020 

S = 250 0 0 0 0.006 

S = 500 0 0 0 0 

S = 1000 0 0 0 0 

E 

S = 50 0.067 0.067 0.073 0.073 

S = 250 0.053 0.060 0.100 0.100 

S = 500 0.060 0.060 0.093 0.093 

S = 1000 0.073 0.073 0.067 0.067 
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Table 52 

Comprehensive Table (R500ϱ) 

 M  ϱ = .3 ϱ = .7 

   c = 2 c = 5 c = 2 c = 5 

ARB 

(β̅̂
1
) 

C 

S = 50 1.3015 1.2782 1.3928 1.3993 

S = 150 1.2877 1.2723 1.3952 1.3928 

S = 250 1.2754 1.2660 1.3877 1.3826 

S = 350 1.2802 1.2695 1.3895 1.3873 

F 

S = 50 1.0003 1.0108 0.9998 1.0109 

S = 150 0.9975 1.0008 0.9968 1.0009 

S = 250 0.9970 0.9991 0.9961 0.9991 

S = 350 0.9968 0.9984 0.9957 0.9980 

E 

S = 50 0.5958 0.6003 0.0657 0.0657 

S = 150 0.5935 0.5971 0.0366 0.0366 

S = 250 0.5922 0.5922 0.0258 0.0258 

S = 350 0.5918 0.5905 0.0211 0.0212 

Power 

C 

S = 50 0.428 0.402 0.468 0.492 

S = 150 0.788 0.814 0.874 0.916 

S = 250 0.920 0.946 0.978 0.990 

S = 350 0.986 0.988 0.998 0.998 

F 

S = 50 0.002 0.058 0.006 0.078 

S = 150 0 0.004 0 0 

S = 250 0 0 0 0 

S = 350 0 0 0 0 

E 

S = 50 0.676 0.654 1.000 1.000 

S = 150 0.996 0.988 1.000 1.000 

S = 250 1.000 1.000 1.000 1.000 

S = 350 1.000 1.000 1.000 1.000 

Type I Error Rate 

C 

S = 50 0.110 0.086 0.078 0.068 

S = 150 0.106 0.070 0.070 0.062 

S = 250 0.142 0.094 0.074 0.060 

S = 350 0.114 0.068 0.060 0.062 

F 

S = 50 0.002 0.018 0 0.020 

S = 150 0 0.002 0 0 

S = 250 0 0 0 0 

S = 350 0 0 0 0 

E 

S = 50 0.046 0.068 0.076 0.076 

S = 150 0.062 0.056 0.086 0.086 

S = 250 0.076 0.076 0.072 0.072 

S = 350 0.050 0.038 0.058 0.074 
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Tables 49 and 50, where different numbers of subjects and replications and the 

same combination of 𝑐 and 𝜚 values were used, produced similar results. In particular, 

when c = 2 or c = 5, as ϱ increased from .3 to .7, ARB(β̅̂
1
) from the extended Cox model, 

which was unacceptable, increased by around 0.10; ARB(β̅̂
1
) from Farrington’s model, 

which was unacceptable, remained similar; ARB(β̅̂
1
) from the EGNM decreased 

dramatically from around 0.60 to around 0.02. Power from the extended Cox model and 

the EGNM increased, although the EGNM was potentially overpowered. In other words, 

the EGNM is very sensitive and possibly would work with even smaller sample sizes and 

a smaller effect size; power from Farrington’s model was negligible. Type I error rate 

from the extended Cox model became closer to the nominal level .05 overall; type I error 

rate from the EGNM fluctuated around .05; type I error rate from Farrington’s model was 

negligible. 

Tables 51 and 52, where different numbers of subjects and replications and the 

same combination of 𝑐 and 𝜚 values were used, produced similar results. In particular, 

when ϱ = .3 or ϱ = .7, ARB(β̅̂
1
) and power at c = 2 in any model, with slight fluctuations, 

remained similar to ARB(β̅̂
1
) and power at c = 5. Type I error rate from the extended Cox 

model became closer to the nominal level .05 overall; type I error rate from the EGNM 

fluctuated around .05; type I error rate from Farrington’s model was negligible. 

Chapter Summary 

Key simulation results regarding precision and hypothesis testing of the parameter 

estimates, including ARB(β̅̂
1
), % CS(β̂

1
), power, and type I error rate are summarized. 

Regarding precision of the parameter estimate of β1, ARB(β̅̂
1
) from the EGNM was the 
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smallest among the three models. However, only when the number of subjects was at 

least 500 and ϱ = .7 and, i.e., higher probability of the descending association between X1t 

and the response probability, regardless of the values c assumed, did the EGNM produce 

ARB(β̅̂
1
) at the .01 level. Otherwise, ARB(β̅̂

1
) from the EGNM was not acceptable at 

the .01 level. % CS(β̂
1
) from the EGNM was always acceptable, and % CS(β̂

1
) in the 

extended Cox model was always unacceptable at the 80% level. Only when the number 

of subjects was at least 250 and c = 5, or greater than 50 and c = 2, did Farrington’s 

model produce % CS(β̂
1
) at the 80% level. 

Power from the EGNM was always acceptable at the .90 level either when ϱ = .7 

or when the number of subjects was at least 150. Power from the extended Cox model 

was acceptable only when the number of subjects was at least 250, with the exception 

of .916 power when c = 5 and ϱ = .7. Power from Farrington’s model was negligible. 

Type I error rate from the extended Cox model became closer to the nominal 

level .05 overall as either c or ϱ increased, and outperformed that from the EGNM except 

when c = 2 and ϱ = .3. Type I error rate from the EGNM fluctuated around .05. Type I 

error rate from Farrington’s model was negligible. 

In conclusion, ϱ and the number of subjects influenced ARB(β̅̂
1
) substantially 

among the three models. The number of subjects and 𝑐 had only some influence on % 

CS(β̂
1
) of Farrington’s model, and ϱ had no influence on % CS(β̂

1
) of the EGNM and the 

extended Cox model. Power from the three models was closely related to ϱ, and the 

influence from the number of subjects was not obvious. Type I error rate from the three 

models was loosely related to c and ϱ, and the number of subjects seemed to have no 

influence on type I error rate.  
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CHAPTER V 

 

DISCUSSION 

 

This chapter includes a review and discussion of the results, and is organized as 

follows. First, the simulation results are reviewed and discussed, and limitations of the 

current research and future research directions are discussed. Then, recommendations of 

usage among applied researchers are given. 

Discussion of the Simulation Results 

Summary of the Simulation  

Results 

The motivation for the research stemmed from two facts. The first fact is that the 

time of the occurrence of an event, as was used in the extended Cox model, is actually 

inappropriate. In particular, the extended Cox model uses the right-censoring mechanism, 

where for subjects who have already experienced the event of interest by the end of the 

study, the last examination time is usually recorded as the exact event time for a subject. 

The purpose of recording the last examination time as the exact event time is to create 

risk sets according to ordered exact event times for applying the partial likelihood 

approach (Cox, 1972). However, chances are slim that subjects would experience an 

event of interest exactly at the last examination. In other words, an exact event time, as is 

required in the extended Cox model, does not truly describe when a subject experience
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an event. The second fact is the association between time-independent covariates, as is 

used in Farrington’s model, and the status of an event is not strong. Thus the EGNM, 

which accommodates an imprecise, but more appropriate description of the time of the 

occurrence of an event and external time-dependent covariates, was thought to depict the 

survival experience of subjects in a follow-up study where subjects are examined 

intermittently more realistically than either the extended Cox model or Farrington’s 

model. The simulation study supported the supposition. 

However, the findings in favor of the EGNM from the simulation study are not 

unconditional. First, the unique form in Equation 54 for the response probability in the 

EGNM dictates the descending association between X1t and the response probability, as 

was illustrated in Figure 1. As such, the probability of the descending association affected 

the simulation results. Second, the width of a censoring interval dictates the degree of 

uncertainty about when the event occurs. As such, the upper bound of the uniform 

distribution c used to create a censoring interval affected the simulation results. 

In conclusion, ϱ, i.e., the probability that the smallest X1t value is associated with 

the event of interest, influenced ARB(β̅̂
1
) substantially among the three models. ARB(β̅̂

1
) 

from the EGNM was acceptable, and Farrington’s model was acceptable. ARB(β̅̂
1
) from 

the extended Cox model was not acceptable even when stronger association was 

established between the smallest X1t value and an imputed exact event time. The number 

of subjects had substantial impact on ARB(β̅̂
1
) for each model in that as the number of 

subjects increased, the corresponding ARB(β̅̂
1
) decreased. The number of subjects and 

interval width had only some influence on % CS(β̂
1
) of Farrington’s model, and the 

probability that the smallest X1t value is associated with the event of interest had no 
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influence on % CS(β̂
1
) of the EGNM and the extended Cox model. Power from the three 

models was closely related to the probability that the smallest X1t value is associated with 

the event of interest, and the influence from the number of subjects was not obvious. 

Type I error rate from the three models was loosely related to interval width and the 

probability that the smallest X1t value is associated with the event of interest. The number 

of subjects surprisingly seemed to have no influence on type I error rate, as usually as the 

number of subjects increases, type I error rate tends to get closer to the nominal level .05. 

Discussion of the Simulation Results 

ARB(β̅̂
1
) from the EGNM was acceptable, and Farrington’s model was not 

acceptable. The reason is stronger association between the smallest X1t value and the 

response probability was established in the EGNM, while association between the X1t 

value and the response probability was weak in Farrington’s model. However, ARB(β̅̂
1
) 

from the extended Cox model was not acceptable, even though stronger association 

between the smallest X1t value and an exact event time was also established. The reason 

is exact event times in the extended Cox model were created from the mid-point 

imputation method (Law & Brookmeyer, 1992), that is, regardless of how two censoring 

points were created, an exact event time is the middle point of two censoring points. 

Strong association between the smallest X1t value and the response probability improved 

the accuracy for the EGNM, but not the extended Cox model and Farrington’s model. 

% CS(β̂
1
) from the EGNM and Farrington’s model were acceptable, as 

association, either strong or weak, between the X1t value and the response probability was 

established. However, % CS(β̂
1
) from the extended Cox model was not acceptable, as the 

corresponding % CS(β̂
1
) pointed to the opposite direction of the effect from the 
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significant covariate X1t, even though stronger association between the smallest X1t value 

and an exact event time was also established. The reason is as the baseline hazard 

decreased, the hazard of occurrence of an event of interest increased. As such, the 

opposite direction of the effect from X1t reflected this inconsistency. 

Power from the EGNM and the extended Cox model was acceptable, as stronger 

association, between the X1t value and the response probability was established in the 

EGNM and the extended Cox model. However, power from Farrington’s model was not 

acceptable, as association between the X1t value and the response probability was weak in 

Farrington’s model.   

 Type I error rate from Farrington’s model was not acceptable, as association 

between the X2t value and the response probability was weak in Farrington’s model. 

However, type I error rate from the EGNM and the extended Cox model was not 

acceptable, as type I error rate from the two models did not stabilize and fluctuated 

around .05 even at the largest number of subjects, which was found through five 

simulation studies. The first possible reason is there was greater variation in the scaled 

distribution of X2t, N (0.3, 0.36), than would be expected, and thus it was easier to claim 

that X2t was significant in describing the responsibility. The second possible reason is 

with repeated measures and nonnormally distributed responses, both the EGNM and the 

extended Cox model are not robust (Oberfeld & Franke, 2013), that is, type I error rate 

from the two models showed clear deviations from the nominal type I error rate. 

The number of subjects influenced ARB(β̅̂
1
) subtly, as the ARB(β̅̂

1
) from 50 

subjects and 1,000 subjects when the probability that the smallest X1t value is associated 

with the event of interest is low was almost the same. The number of subjects influenced 
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power dramatically for the EGNM and the extended Cox model, but not Farrington’s 

model. The number of subjects did not seem to influence type I error rate for the three 

models dramatically. 

As the upper bound of the uniform distribution c changed, the resulting changing 

interval widths basically had no influence on ARB(β̅̂
1
), power, and type I error rate for 

the three models. 

The probability that the smallest X1t value is associated with the event of interest, 

influenced ARB(β̅̂
1
) substantially among the three models. Strong association, i.e., the 

probability that the smallest X1t value is associated with the event of interest is high, 

improved the accuracy for the EGNM, but not the extended Cox model and Farrington’s 

model. With strong association between the smallest X1t value and the response 

probability, the power for the EGNM increased substantially, but the power for the 

extended Cox model and Farrington’s model was almost the same. Strong association 

between the smallest X1t value and the response probability basically had no influence on 

type I error rate among the three models, with the exception that type I error rate for the 

extended Cox model changed substantially when the probability that the smallest X1t 

value is associated with the event of interest is low and the interval widths were narrow. 

As such, while it is common practice to collect survival data on a regular basis 

from each subject after entry into a follow-up study, and then apply the Cox model (Cox, 

1972), the extended Cox model (Cox, 1972; Therneau & Grambsch, 2000), or 

Farrington’s (1996) model to investigate what factors influence the survival experience of 

subjects regarding the timing of the occurrence of an event, the EGNM is a promising 

alternative modeling approach. Suppose in reality the practitioner, such as the medical 
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staff, tracks the occurrence of an event of interest. Instead of recording the last 

examination time as the exact time, as is used in the Cox model, or employing time-

independent covariates, as is used in Farrington’s model, the practitioner should record an 

imprecise event time bound in the last two examinations and employ evolving external 

time-dependent covariates. With the smallest parameter estimate bias, right direction of 

the effect, acceptable power, and comparable type I error rate, the EGNM depicts the 

survival experience of subjects regarding the timing of the occurrence of an event more 

realistically.    

Limitations of the Current Research and 

Future Research Directions 

 

Although GEE was successfully implemented to the EGNM, and the simulation 

study supported the supposition conditionally, there are still some limitations to the 

current research. First, in using Zhang’s (2009) naive way of simulating intervals, the 

upper bound used to generate censoring intervals was c = 2 and c = 5, respectively. 

Roughly speaking, the width of the resulting censoring intervals on average was two and 

five, respectively. Originally c = 5 was thought to produce comparatively wider censoring 

intervals. As the mean number of examinations before a left censoring point in all data 

situations was around 2.1, and the mean of the simulated left censoring points was around 

38, the width of each interval before a left censoring point was around 12. Thus the 

generated censoring intervals were narrower than the intervals before the left censoring 

points on average. When narrower censoring intervals created from c = 2 or c = 5 

contained more definite information regarding the time of the occurrence of events, it is 

of interest to investigate when, for example, c is greater than 12, and hence wider 

intervals and more uncertainty about when the event occurs, how different the results 
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from the corresponding simulation study would be than those from the current simulation 

study. 

Second, the algorithm for estimating the parameters in the EGNM, i.e., GEE, was 

very sensitive to the choice of the true values for the parameters and distributions of the 

two covariates used, due to the unique form of the proposed expression for the response 

probability. When alternative true values for the parameters and distributions of the two 

covariates were used, it was found through trial and error that convergence rates for the 

GEE were below 80%, which is not accepted as satisfactory in a simulation study. The 

reason was found to be that the values calculated from Equation 54, which was required 

in GEE, were very close to 0, which in turn produced noninvertible matrices. As such, 

generalization of the EGNM to applied settings has to be exercised with caution. In 

addition, the distribution of X1t, either the original N(79, 484), or the scaled N(.3, .06) 

lacked enough variation and thus caused overpowering and narrow confidence intervals 

when the number of subjects was greater than 250 for β̅̂
1
. More research is needed on 

how to modify the EGNM to accommodate more general data situations.  

Third, the simulated data sets used in the current research did not authentically 

mimic the data collection process in reality. For example, only arbitrarily interval-

censored data were modeled for the purpose of illustration. However, in practice, both 

left-censored and right-censored data are collected as well, which the EGNM could not 

yet accommodate. As such, future research is needed to find a unified approach which is 

capable of modeling the three types of interval-censored data simultaneously. Moreover, 

in the current research, information regarding the drop-out rate in each data situation was 

ignored. Drop-out rates can make a simulation study more authentic account. 
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Fourth, recall that event times for the EGNM follow the gamma distribution, ϒ ~ 

GAM (λ, ρ). The shape parameter ρ took the form in Equation 54, 

 
𝜌𝑖𝑡 = 1 − 𝑒[−𝑒(𝛽0+𝛽1∗𝑋̅1∙)],  

values of which fall between 0 and 1. As such, the resulting baseline hazard function 

decreased monotonically, as was described in Chapter III. Consequently, the EGNM 

applies best to real world examples such as patients’ sustainability after organ transplant, 

survival of burned patients, or incurrence of respiratory disease among newborn infants. 

In these examples, as time goes on, the hazard of the occurrence of events decreases. 

Future research is needed to find a modeling approach to accommodate event times with 

increasing baseline hazard function.  

Fifth, the current research concentrated on the role of external time-dependent 

covariates played in the modeling process based upon the classical Cox model, which 

relied heavily on the assumption of proportional hazards. In both the extended Cox model 

and the EGNM, the inclusion of external time-dependent covariates actually violated this 

assumption. That is, the hazard ratio was no longer constant over time. An alternative 

approach, which can also accommodate changing hazards over time due to the inclusion 

of external time-dependent covariates, is the use of additive models (Aalen, 1989; 

Breslow & Day, 1987). Although additive models have not been used more frequently in 

applied research, there are times when it may be clinically more meaningful to express 

survival experience and covariate effects in terms of an additive increase or decrease in 

the hazard ratio. As such, the additive hazard model might be used to model arbitrarily 

interval-censored data with external time-dependent covariates in future research. 
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Sixth, due to the EGNM’s inability to accommodate internal time-dependent 

covariates, the role of internal time-dependent covariates in modeling arbitrarily interval-

censored data was not investigated. Future research is needed to find a unified approach 

to modeling arbitrarily interval-censored data using both external and internal time-

dependent covariates together. 

Overall Recommendations of Usage 

The results of this simulation study were very revealing, and provided guidance 

on how to choose among the three models included in the current research. Suppose in 

reality the practitioner, such as the medical staff, tracks the occurrence of certain 

respiratory disease among newborn infants. In the course of follow-ups, in addition to the 

status of the disease, information supposed to be associated with the status is collected as 

well, such as environmental factors. Then, the collected information could be used in 

various analyses, such as regression analysis of survival data in the current research. 

Based on the simulation results in the current research, Farrington’s model should 

not be considered in the first place. Although % CS(β̂
1
) is acceptable at the 80% level 

when the number of subjects was greater than 50 or 150, there is essentially no power 

from the model, that is, under Farrington’s model, time-independent covariates could not 

explain variation in the response, and the true effect from X1t could not be detected; 

approximately 100% ARB(β̅̂
1
) makes β̅̂

1
 a very inaccurate estimate of the true value of 

β1; type I error rate from Farrington’s model is essentially zero, which actually becomes a 

problem, as the rate was far from the nominal level .05. 

The extended Cox model should not be considered, either. Although power from 

the extended Cox is acceptable at the .90 level when the number of subjects was at least 
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250, and type I error rate is close to the nominal level .05 under certain conditions, at 

least 125% ARB(β̅̂
1
) also makes β̅̂

1
 a very inaccurate estimate of the true value of β1. 

Moreover, % CS(β̂
1
) most gives the opposite direction of the effect from X1t. 

Although type I error rate from the EGNM is slightly inflated, the EGNM should 

still be adopted for regression analysis of such arbitrarily interval-censored survival data, 

which is supported by the simulation results. In particular, power from the EGNM is most 

acceptable at the .90 level, that is, under the EGNM, the time-dependent covariate X1t 

explains a significant portion of variation in the response, and the true effect from X1t can 

be detected. Approximately 1%-6% ARB(β̅̂
1
) when stronger association between the 

smallest X1t value and the response probability was established makes β̅̂
1
 a very accurate 

estimate of the true value of β1. Moreover, % CS(β̂
1
) almost always gives the correct 

direction of the effect from X1t. As such, the EGNM is capable of depicting the survival 

experience of subjects regarding the timing of occurrence of an event of interest more 

realistically. 

Overall Summary 

In the current research it was supposed that the EGNM, which accommodates an 

imprecise, but more appropriate description of the time of the occurrence of an event and 

external time-dependent covariates, depicts survival experience of subjects in a follow-up 

study where subjects are examined intermittently more realistically than either the 

extended Cox model or Farrington’s model. The simulation study supported the 

supposition. However, the findings in favor of the EGNM from the simulation study were 

not unconditional: in addition to the number of subjects, c, the upper bound of a uniform 

distribution, which dictates the width of a censoring interval, and ϱ, association between 
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the smallest X1t value and the response probability, or the hazards associated with an 

occurrence case, affected the simulation results directly. 
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######################################################################## 

#                                             ONE_THE EGNM                                                            # 

######################################################################## 

 

######################################################################## 

#                                   Part I Generate data                              # 

######################################################################## 

 

library(foreach) 

library(iterators) 

library(plyr) 

library(dplyr) 

 

NSub = 50 

NRep = 20 

tcoef_int = 1.5 

tcoef_x1 = -3.6 

mn = 0.3 

std = 0.254 

m_n = 0.3 

s_td = 0.6 

se_a = 3651 

se_b = 6323 
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###################### 

# Step I_Event times # 

###################### 

 

# Generate X1 

set.seed(se_a) 

tx1 <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% { 

rnorm(100,mn,std) 

} 

 

listindex<-matrix(c(1:(NSub*NRep)),NSub, NRep) 

 

tx1list<-list() 

foreach(i=1:(NRep*NSub), .combine='list') %do% 

{tx1list[[i]]<-tx1[,i]} 

tx1list 

set.seed(se_a) 

rg_c <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% 

{rgamma(1, shape=50, scale=1-exp(-

exp(tcoef_int+(tcoef_x1)*mean(tx1list[[listindex[j,i]]])))) 

} 
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rg<-matrix(rg_c, ncol=NRep) 

 

############################# 

# Step II_Random quantities # 

############################# 

set.seed(se_a) 

rnn <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% {runif(2,0,5)} 

head(rnn) 

rnnn <- foreach(i=1:NRep, .combine='cbind') %do% {rnn[,(NSub*i-(NSub-

1)):(NSub*i)]} 

rnnn_1 <- matrix(rnnn[1,],NSub,NRep) 

head(rnnn_1) 

rnnn_2 <- matrix(rnnn[2,],NSub,NRep) 

head(rnnn_2) 

 

###################### 

# Step III_Intervals # 

###################### 

intervals_left <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% 

{c(max((rg-rnnn_1)[j,i],(rg+rnnn_2-5)[j,i]))} 

left<-matrix(intervals_left,NSub,NRep) 
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left<-round(left) 

min(left) 

left<-ifelse(left>=(6+1),left,(6+1)) 

 

intervals_right <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% 

{c(min((rg+rnnn_2)[j,i],(rg-rnnn_1+5)[j,i]))} 

right<-matrix(intervals_right,NSub,NRep) 

right<-round(right) 

 

e_zero<-foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='cbind') %do% { 

ifelse(left[j,i]-right[j,i]==0,right[j,i]<-right[j,i]+1,right[j,i]) 

} 

head(right) 

 

############################################################# 

# STEP IV. Generating examination times for each individual # 

############################################################# 

P_avg <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='c') %do%{ 

              1-exp(-exp((tcoef_int+(tcoef_x1)*mean(tx1list[[listindex[j,i]]]))))} 

head(P_avg) 
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set.seed(se_a) 

numberofet <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:NSub, .combine='c') %do% {rbinom(1,(6-1),1-P_avg[j,i])+1} 

 

set.seed(se_a) 

tdcs_long <- do.call(rbind.fill, 

               lapply(1:NRep, function(i) 

                        do.call(rbind.fill, 

                            lapply(1:NSub, function(j) 

                               data.frame(rbind(sample(tx1list[[listindex[j,i]]], 

                                                  (numberofet[j,i]+2), replace=F))))))) 

 

colnames(tdcs_long) <- paste("x", 1:ncol(tdcs_long), sep="") 

 

## Generate X2. 

set.seed(se_b) 

stdcs_long <- do.call(rbind.fill, 

               lapply(1:NRep, function(i) 

                        do.call(rbind.fill, 

                            lapply(1:NSub, function(j) 

                                data.frame(rbind(rnorm((numberofet[j,i]+2),m_n,s_td))))))) 
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colnames(stdcs_long) <- paste("s", 1:ncol(stdcs_long), sep="") 

head(stdcs_long) 

## A series of event times for each subject. 

set.seed(se_a) 

numberofet_fill_long <- do.call(rbind.fill, 

               lapply(1:NRep, function(i) 

                        do.call(rbind.fill, 

                            lapply(1:NSub, function(j) 

                                data.frame(cbind(t(sort(c(0,sample(1:(left[j, i]-1), numberofet[j, i], 

replace=F), 

                                    c(left[j, i],right[j,i])))))))))) 

 

colnames(numberofet_fill_long) <- paste("E", 1:ncol(numberofet_fill_long), sep="") 

 

numberofet1 <- foreach(i=1:NRep, .combine='cbind') %do% 

{numberofet_fill_long[(NSub*i-(NSub-1)):(NSub*i),]} 

 

############################### 

# STEP VI. Generate responses # 

############################### 

responses_long <- do.call(rbind.fill, 

               lapply(1:NRep, function(i) 

                        do.call(rbind.fill, 
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                            lapply(1:NSub, function(j) 

                              data.frame(matrix(c(rep(0,(numberofet+1)[j,i]),1),nrow=1)))))) 

 

colnames(responses_long) <- paste("y", 1:ncol(responses_long), sep="") 

 

####################################### 

# STEP VII. Putting things together   # 

####################################### 

final_df <- foreach(i=1:NRep, .combine='cbind') %do% 

{cbind(numberofet_fill_long[(NSub*i-(NSub-1)):(NSub*i),], 

                       tdcs_long[(NSub*i-(NSub-1)):(NSub*i),],stdcs_long[(NSub*i-(NSub-

1)):(NSub*i),], 

                                   responses_long[(NSub*i-(NSub-1)):(NSub*i),]) 

} 

 

mylist <- list() 

listofdfs <- foreach(i=1:NRep, .combine='list') %do% 

{mylist[[i]]=cbind(numberofet_fill_long[(NSub*i-(NSub-1)):(NSub*i),], 

                                              tdcs_long[(NSub*i-(NSub-

1)):(NSub*i),],stdcs_long[(NSub*i-(NSub-1)):(NSub*i),], 

                                                        responses_long[(NSub*i-(NSub-1)):(NSub*i),]) 

} 
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gete_long <- foreach(i=1:NRep, .combine='rbind') %do% 

{mylist[[i]][,grepl( "E" , names(mylist[[i]]))]} 

head(gete_long) 

 

# k = NSub*NRep 

examinations_long <- foreach(k=1:(NSub*NRep), .combine='rbind') %do% 

{data.frame(cbind(rep(k,length(gete_long[k,][!is.na(gete_long[k,])])-1), 

gete_long[k,][!is.na(gete_long[k,])][1:length(gete_long[k,][!is.na(gete_long[k,])])-1], 

gete_long[k,][!is.na(gete_long[k,])][2:length(gete_long[k,][!is.na(gete_long[k,])])]))} 

 

colnames(examinations_long) <- c("id","e1","e2") 

 

######################################################################## 

getx_long <- foreach(i=1:NRep, .combine='rbind') %do% 

{mylist[[i]][,grepl( "x" , names(mylist[[i]]))]} 

 

timedcs_long <- foreach(k=1:(NSub*NRep), .combine='rbind') %do% 

{cbind(getx_long[k,][!is.na(getx_long[k,])][1:length(getx_long[k,][!is.na(getx_long[k,])]

)])} 

timedcs_long<-data.frame(timedcs_long) 

 

colnames(timedcs_long) <- c("x1") 
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######################################################################## 

getx2_long <- foreach(i=1:NRep, .combine='rbind') %do% 

{mylist[[i]][,grepl( "s" , names(mylist[[i]]))]} 

 

timedcs2_long <- foreach(k=1:(NSub*NRep), .combine='rbind') %do% 

{cbind(getx2_long[k,][!is.na(getx2_long[k,])][1:length(getx2_long[k,][!is.na(getx2_long[

k,])])])} 

timedcs2_long<-data.frame(timedcs2_long) 

 

colnames(timedcs2_long) <- c("x2") 

 

######################################################################## 

gety_long <- foreach(i=1:NRep, .combine='rbind') %do% 

{mylist[[i]][,grepl( "y" , names(mylist[[i]]))]} 

 

res_long <- foreach(k=1:(NSub*NRep), .combine='rbind') %do% 

{cbind(gety_long[k,][!is.na(gety_long[k,])][1:length(gety_long[k,][!is.na(gety_long[k,])]

)])} 

res_long<-data.frame(res_long) 

 

colnames(res_long) <- c("y") 

 

finaldataframe<-cbind(examinations_long,timedcs_long,timedcs2_long,res_long) 
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######################################################################## 

finaldataframe_1 <- foreach(i=1:NRep, .combine='rbind') %do% 

{finaldataframe[finaldataframe$id %in% c((NSub*i-(NSub-1)):(NSub*i)),]} 

 

######################################################################## 

newlist <- list() 

newlistofdfs <- foreach(i=1:NRep, .combine='list') %do% 

{newlist[[i]]=finaldataframe_1[finaldataframe_1$id %in% c((NSub*i-(NSub-

1)):(NSub*i)),]} 

newlist 

############################### 

# Clean the generated data    # 

############################### 

atdlist_c <- list() 

po <- foreach(i=1:NRep, .combine='list') %do% { 

atdlist_c[[i]]<-group_by(newlist[[i]], id) %>% 

mutate(check = ifelse(any(e1 == e2 | e1 > e2) == TRUE, 1, 0)) %>% 

filter(check == 0) %>% 

ungroup %>% 

mutate(id = cumsum(c(TRUE, diff(id) != 0))) %>% 

select(-check) 

} 

atdlist_c 
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atdlist_d<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

dc12<-atdlist_c[[i]][,c(1,4)] 

atdlist_d[[i]]<-dc12%>% 

  group_by(id) %>% 

      arrange(desc(x1))%>% 

         filter(id<= round(0.7*max(dc12[,1]))) 

} 

 

atdlist_e<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

dc15<-atdlist_c[[i]][,c(1,4)] 

atdlist_e[[i]]<-dc15%>% 

  group_by(id) %>% 

         filter(id > round(0.7*max(dc15[,1]))) 

} 

 

atdlist_f<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

atdlist_f[[i]]<-rbind(atdlist_d[[i]],atdlist_e[[i]]) 

} 

 

atdlist<-list() 
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foreach(i=1:NRep, .combine='list') %do% { 

atdlist[[i]]<-cbind(atdlist_c[[i]][,c(1:3)],atdlist_f[[i]][,2], 

atdlist_c[[i]][,c(5:6)]) 

} 

alh<-atdlist 

 

######################################################################## 

#                                   Part II Create IV's                                # 

######################################################################## 

ivlistdf<-list() 

foreach(i=1:NRep, .combine='list') %do% 

{ivlistdf[[i]]<-data.frame(cbind(atdlist[[i]]$id, atdlist[[i]]$e1,atdlist[[i]]$e2)) 

colnames(ivlistdf[[i]])<-c("subjectID","left", "right") 

} 

ivlistdf 

 

pl<-list() 

a<-foreach(i=1:NRep, .combine='c') %do% { 

df<-ivlistdf[[i]] 

foo <- df[order(df$right),] 

stop=1 

res <- c() 

while(stop>0){ 
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x <- min(foo$right) 

res <- c(res, x) 

pl[[i]]<-res 

foo2 <- subset(foo, left >= x) 

foo <- foo2 

if(length(foo$right)==0) 

stop=-1 

} 

} 

pl 

 

# Create iv's for each list and then combine the iv's. 

ivlist<-list() 

io<- foreach(i=1:NRep, .combine='list') %do% { 

zxlist<-list() 

ivlist[[i]]<-foreach(m=1:nrow(ivlistdf[[i]]), .combine='rbind') %do% { 

zxlist[[m]]<-ifelse(pl[[i]] <= ivlistdf[[i]][m,3], 1, 0) 

} 

zxlist 

} 

 

nhm<-ivlist 
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n <- list() 

foreach(i=1:NRep, .combine='list') %do% { 

n[[i]]=cbind(ivlistdf[[i]]$subjectID,ivlist[[i]]) 

} 

mmaxid <- c() 

foreach(i=1:NRep, .combine='c') %do% 

{mmaxid[i]=max(ivlistdf[[i]]$subjectID) 

} 

 

# Create iv's with all possible 1's. 

pw<-list() 

b<-foreach(i=1:NRep, .combine='list') %do% { 

newlist1 <- list() 

newlist1ofn <- foreach(m=1:mmaxid[i], .combine='list') %do% 

{newlist1[[m]]=n[[i]][which(n[[i]][,1]==m),] 

} 

pw[[i]]=newlist1 

} 

 

# Create NA's. 

pd<-list() 

b<-foreach(i=1:NRep, .combine='list') %do% { 

newlist2 <- list() 
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newlist2ofn <- foreach(m=1:mmaxid[i], .combine='list') %do% 

{newlist2[[m]]<-matrix(,nrow=nrow(pw[[i]][[m]])-1, ncol=length(pl[[i]]))} 

pd[[i]]=newlist2 

} 

 

pe<-list() 

c<-foreach(j=1:NRep, .combine='list') %do% { 

mdlist<-list() 

md <- foreach(i=1:mmaxid[j], .combine='list')  %do% { 

foreach(m=2:nrow(pw[[j]][[i]]), .combine='rbind')  %do% { 

foreach(w=2:(length(pl[[j]])+1), .combine='rbind') %do% { 

    ifelse((pw[[j]][[i]][m,w]-pw[[j]][[i]][(m-1),w])==0, pd[[j]][[i]][(m-1),(w-1)]<-0, 

           pd[[j]][[i]][(m-1),(w-1)]<-pw[[j]][[i]]  [m,w]) 

mdlist[[i]]<-pd[[j]][[i]] 

pe[[j]]=mdlist 

} 

} 

} 

pe 

} 

pe 

 

pf<-list() 
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d<-foreach(i=1:NRep, .combine='list') %do% { 

newlist3<-list() 

n1<- foreach(m=1:mmaxid[i], .combine='list')  %do% { 

newlist3[[m]] <-rbind(pw[[i]][[m]][1,2:(length(pl[[i]])+1)],pd[[i]][[m]]) 

} 

pf[[i]]=newlist3 

} 

 

pg<-list() 

e<-foreach(i=1:NRep, .combine='list') %do% { 

newlist4<-list() 

j <- foreach(m=1:mmaxid[i], .combine='list')  %do% { 

newlist4[[m]] <-cbind(pw[[i]][[m]][,1],pf[[i]][[m]]) 

} 

pg[[i]]=newlist4 

} 

 

ph<-list() 

f<-foreach(i=1:NRep, .combine='list') %do% { 

ph[[i]]<-foreach(m=1:mmaxid[i], .combine='rbind') %do% { 

pg[[i]][[m]] 

} 

} 
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######################################################################## 

#                                   Part III Combining data                             # 

######################################################################## 

y_binary<-list() 

f<-foreach(i=1:NRep, .combine='list') %do% { 

y_binary[[i]]<-cbind(atdlist[[i]]$id,matrix(data.frame(atdlist[[i]])[,6],ncol=1)) 

colnames(y_binary[[i]])<-c("subjectID","y") 

} 

 

## 

intercept<-list() 

g<-foreach(i=1:NRep, .combine='list') %do% { 

intercept[[i]]<-matrix(rep(1,nrow(atdlist[[i]])),ncol=1) 

} 

 

## The second column is the intercept. 

X_l<-list() 

h<-foreach(i=1:NRep, .combine='list') %do% { 

X_l[[i]] <- cbind(atdlist[[i]]$id,intercept[[i]],atdlist[[i]]$x1,atdlist[[i]]$x2, ph[[i]][,-1]) 

colnames(X_l[[i]])<-c("subjectID","int","x1","x2",paste("d", 1:ncol(ph[[i]][,-1]), 

sep="")) 

} 
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######################################################################## 

#                                   Part IV Analysis                                          # 

######################################################################## 

# Final full data set. 

# Two "subjectID"'s. 

newdat2<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

newdat2[[i]]<-cbind(X_l[[i]],y_binary[[i]]) 

} 

colnames(newdat2[[2]]) 

 

blh<-newdat2 

 

ssubjectID<-list() 

foreach(i=1:NRep, .combine='c') %do% { 

ssubjectID[[i]]<-as.vector(newdat2[[i]][,1]) 

} 

 

 

# Data containing d's and y alone. 

newdat3<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

newdat3[[i]]<-newdat2[[i]][,-c(1:4,(ncol(newdat2[[i]])-1))] 
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} 

 

######################################################################## 

#                                   TWO_FARRINGTON'S MODEL                                                # 

######################################################################## 

 

# after "colnames(newdat2[[2]])" 

fdata_1<-list() 

f<-foreach(i=1:NRep, .combine='list') %do% { 

fdata_1[[i]]<-cbind(ivlistdf[[i]],newdat2[[i]][,c(2:4, ncol(newdat2[[i]]))]) 

} 

 

g_b<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

g_b[[i]]<-group_by(fdata_1[[i]], subjectID)%>% 

filter(left==0|right==max(right)) 

} 

 

ug_b<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

ug_b[[i]]<-ungroup(g_b[[i]]) 

} 

 



206 

 

dhg<-ug_b 

 

change_right<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

for (e in 1:mmaxid[i]) { 

dhg[[i]][(2*e-1),3]<-dhg[[i]][(2*e),2] 

} 

change_right[[i]]<-dhg[[i]] 

} 

change_right 

change_tdc<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

for (e in 1:mmaxid[i]) { 

dhg[[i]][(2*e),c(5:6)]<-dhg[[i]][(2*e-1),c(5:6)] 

} 

change_tdc[[i]]<-dhg[[i]] 

} 

change_tdc   

 

newfdata<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

newfdata[[i]]<-data.frame(change_tdc[[i]]) 

} 
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ivflist<-list() 

ifo<- foreach(i=1:NRep, .combine='list') %do%{ 

zxflist<-list() 

ivflist[[i]]<-foreach(m=1:mmaxid[i], .combine='rbind') %do% { 

zxflist[[m]]<-rbind(ifelse(pl[[i]] <= newfdata[[i]][(2*m-1),3], 1, 0), 

ifelse(pl[[i]] <= newfdata[[i]][(2*m),3], 1, 0))} 

zxflist 

} 

ivflist 

 

fnhm<-ivflist 

 

freplace_row2 <- foreach(i=1:NRep, .combine='c') %:% 

foreach(m=1:mmaxid[i], .combine='c') %do% {ivflist[[i]][2*m,]<- 

replace(ivflist[[i]][(2*m),], ivflist[[i]][(2*m-1),]>=1 & ivflist[[i]][2*m,]>=1, 0) 

} 

 

aghlist<-ivflist 

 

foreach(i=1:NRep, .combine='list') %do% { 

colnames(aghlist[[i]]) <- paste("d", 1:ncol(aghlist[[i]]), sep="") 

} 
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# d's are from the extended method. 

fatdlist<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

fatdlist[[i]]<-cbind(newfdata[[i]],aghlist[[i]]) 

} 

######################################################################## 

library(bbmle) 

library(optimx) 

 

f_pe_se_pvalues_c<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

a<-mle2(y~dbinom(prob=1-(exp(-p)^exp(d+b*x1+c*x2)),size=1), 

          parameters=list(update(as.formula(paste("p ~ ", paste(paste("d", 1:(ncol(fatdlist[[i]] 

              [,c(7:ncol(fatdlist[[i]]))])-1),sep=""), collapse= "+"))), ~ .-1)),start=list(p=0.1, 

d=0.1, b=0, c=0), 

                 lower = c(rep(0,ncol(fatdlist[[i]][,c(7:ncol(fatdlist[[i]]))])-1),-Inf,-Inf,-Inf), 

                       upper = c(rep(Inf,ncol(fatdlist[[i]][,c(7:ncol(fatdlist[[i]]))])-1),Inf,Inf,Inf), 

                           optimizer="optimx",method="bobyqa", 

                               data=fatdlist[[i]]) 

f_pe_se_pvalues_c[[i]] <-c(coef(a),tail(sqrt(1/diag(a@details$hessian)),3),1-

pchisq((tail(coef(a),3)/ 

                                                   tail(sqrt(1/diag(a@details$hessian)),3))^2,1)) 

} 
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f_dcoef<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

f_dcoef[[i]] = f_pe_se_pvalues_c[[i]][-(length(f_pe_se_pvalues_c[[i]])-(8:0))] 

} 

f_dcoef 

 

pl_f<-list() 

a1<-foreach(i=1:NRep, .combine='c') %do% { 

df1<-newfdata[[i]] 

foo <- df1[order(df1$right),] 

stop=1 

res <- c() 

while(stop>0){ 

x <- min(foo$right) 

res <- c(res, x) 

pl_f[[i]]<-res 

foo2 <- subset(foo, left >= x) 

foo <- foo2 

if(length(foo$right)==0) 

stop=-1 

} 

} 

pl_f 
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# Create iv's for each list and then combine the iv's. 

ivlist_f<-list() 

io1<- foreach(i=1:NRep, .combine='list') %do% { 

zxlist_f<-list() 

ivlist_f[[i]]<-foreach(m=1:nrow(newfdata[[i]]), .combine='rbind') %do% { 

zxlist_f[[m]]<-ifelse(pl_f[[i]] <= newfdata[[i]][m,3], 1, 0) 

} 

zxlist_f 

} 

 

nhm_f<-ivlist_f 

 

n_f <- list() 

foreach(i=1:NRep, .combine='list') %do% { 

n_f[[i]]=cbind(newfdata[[i]]$subjectID,ivlist_f[[i]]) 

} 

 

mmaxid_f <- c() 

foreach(i=1:NRep, .combine='c') %do% 

{mmaxid_f[i]=max(newfdata[[i]]$subjectID) 

} 

 

# Create iv's with all possible 1's. 
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pw_f<-list() 

b1<-foreach(i=1:NRep, .combine='list') %do% { 

newlist11 <- list() 

newlist11ofn <- foreach(m=1:mmaxid_f[i], .combine='list') %do% 

{newlist11[[m]]=n_f[[i]][which(n_f[[i]][,1]==m),] 

} 

pw_f[[i]]=newlist11 

} 

 

 

# Create NA's. 

pd_f<-list() 

b3<-foreach(i=1:NRep, .combine='list') %do% { 

newlist22 <- list() 

newlist22ofn <- foreach(m=1:mmaxid_f[i], .combine='list') %do% 

{newlist22[[m]]<-matrix(,nrow=nrow(pw_f[[i]][[m]])-1, ncol=length(pl_f[[i]]))} 

pd_f[[i]]=newlist22 

} 

 

 

pe_f<-list() 

c<-foreach(j=1:NRep, .combine='list') %do% { 

mdlist<-list() 
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md <- foreach(i=1:mmaxid_f[j], .combine='list')  %do% { 

foreach(m=2:nrow(pw_f[[j]][[i]]), .combine='rbind')  %do% { 

foreach(w=2:(length(pl_f[[j]])+1), .combine='rbind') %do% { 

    ifelse((pw_f[[j]][[i]][m,w]-pw_f[[j]][[i]][(m-1),w])==0, pd_f[[j]][[i]][(m-1),(w-1)]<-0, 

           pd_f[[j]][[i]][(m-1),(w-1)]<-pw_f[[j]][[i]]  [m,w]) 

mdlist[[i]]<-pd_f[[j]][[i]] 

pe_f[[j]]=mdlist 

} 

} 

} 

pe_f 

} 

 

 

pf_f<-list() 

d1<-foreach(i=1:NRep, .combine='list') %do% { 

newlist33<-list() 

n2<- foreach(m=1:mmaxid_f[i], .combine='list')  %do% { 

newlist33[[m]] <-rbind(pw_f[[i]][[m]][1,2:(length(pl_f[[i]])+1)],pd_f[[i]][[m]]) 

} 

pf_f[[i]]=newlist33 

} 
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pg_f<-list() 

e<-foreach(i=1:NRep, .combine='list') %do% { 

newlist44<-list() 

j <- foreach(m=1:mmaxid_f[i], .combine='list')  %do% { 

newlist44[[m]] <-cbind(pw_f[[i]][[m]][,1],pf_f[[i]][[m]]) 

} 

pg_f[[i]]=newlist44 

} 

 

ph_f<-list() 

f<-foreach(i=1:NRep, .combine='list') %do% { 

ph_f[[i]]<-foreach(m=1:mmaxid_f[i], .combine='rbind') %do% { 

pg_f[[i]][[m]] 

} 

} 

 

aghlist_f<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

aghlist_f[[i]] = matrix(ph_f[[i]][,-1], nrow=2*NSub) 

} 

 

foreach(i=1:NRep, .combine='list') %do% { 

colnames(aghlist_f[[i]]) <- paste("d", 1:ncol(aghlist_f[[i]]), sep="") 
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} 

 

fatdlist_f<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

fatdlist_f[[i]]<-cbind(newfdata[[i]],aghlist_f[[i]]) 

} 

 

f_pe_se_pvalues_f<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

a15<-mle2(y~dbinom(prob=1-(exp(-p)^exp(d+b*x1+c*x2)),size=1), 

          parameters=list(update(as.formula(paste("p ~ ", paste(paste("d", 

1:(ncol(fatdlist_f[[i]] 

              [,c(7:ncol(fatdlist_f[[i]]))])-1),sep=""), collapse= "+"))), ~ .-1)),start=list(p=0.1, 

d=0.1, b=0, c=0), 

                 lower = c(rep(0,ncol(fatdlist_f[[i]][,c(7:ncol(fatdlist_f[[i]]))])-1),-Inf,-Inf,-Inf), 

                       upper = c(rep(Inf,ncol(fatdlist_f[[i]][,c(7:ncol(fatdlist_f[[i]]))])-

1),Inf,Inf,Inf), 

                           optimizer="optimx",method="bobyqa", 

                               data=fatdlist_f[[i]]) 

f_pe_se_pvalues_f[[i]] <-c(coef(a15),tail(sqrt(1/diag(a15@details$hessian)),3),1-

pchisq((tail(coef(a15),3)/ 

                                                   tail(sqrt(1/diag(a15@details$hessian)),3))^2,1)) 

} 



215 

 

f_dcoef_f<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

f_dcoef_f[[i]] = f_pe_se_pvalues_f[[i]][-(length(f_pe_se_pvalues_f[[i]])-(8:0))] 

} 

 

#################################################################### 

 

f_pe_se_pvalues<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

f_pe_se_pvalues[[i]] = f_pe_se_pvalues_f[[i]][length(f_pe_se_pvalues_f[[i]])-(8:0)] 

} 

f_pe_se_pvalues 

 

f_pe_se_pvalues_mat<-matrix(unlist(f_pe_se_pvalues), ncol=9, byrow=T) 

 

f_pe_mat<-f_pe_se_pvalues_mat[,1:3] 

f_pese_mat<-f_pe_se_pvalues_mat[,4:6] 

f_pvalues_mat<-f_pe_se_pvalues_mat[,7:9] 

 

mean(f_pe_mat[,1]) 

mean(f_pe_mat[,2]) 

mean(f_pe_mat[,3]) 
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f_int_bias<-(mean(f_pe_mat[,1])-tcoef_int)/(abs(tcoef_int)) 

f_b1_bias<-(mean(f_pe_mat[,2])-tcoef_x1)/(abs(tcoef_x1)) 

 

count_f_int_sign<-sum(f_pe_mat[,1] > 0) 

count_f_int_sign 

corrsign_f_int_percent<-count_f_int_sign/length(f_pe_mat[,1]) 

 

count_f_b1_sign<-sum(f_pe_mat[,2] < 0) 

count_f_b1_sign 

corrsign_f_b1_percent<-count_f_b1_sign/length(f_pe_mat[,2]) 

 

mean(f_pese_mat[,1]) 

mean(f_pese_mat[,2]) 

mean(f_pese_mat[,3]) 

 

count_f_int_pvalues=sum(f_pvalues_mat[,1]<=0.05) 

power_f_int_percent<-count_f_int_pvalues/length(f_pvalues_mat[,1]) 

count_f_b1_pvalues=sum(f_pvalues_mat[,2]<=0.05) 

power_f_b1_percent<-count_f_b1_pvalues/length(f_pvalues_mat[,2]) 

count_f_b2_pvalues=sum(f_pvalues_mat[,3]<=0.05) 

typeI_f_b2_percent<-count_f_b2_pvalues/length(f_pvalues_mat[,3]) 

 

################################################# 
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#   Step II_obtain the coefficient for the tdc  # 

################################################# 

yy_binary<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

yy_binary[[i]] <- cbind(newdat2[[i]][,1],newdat2[[i]][,ncol(newdat2[[i]])]) 

} 

 

XX_l<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

XX_l[[i]] <- newdat2[[i]][,1:(ncol(newdat2[[i]])-2)] 

} 

 

######################################################################## 

fx<-list() 

foreach(z=1:NRep, .combine='list', .errorhandling=c('pass')) %do% { 

 

y_binary<-yy_binary[[z]] 

X_E<-XX_l[[z]] 

subjectID<-ssubjectID[[z]] 

maxid<- mmaxid[z] 
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# INVERSE LINK FUNCTION # 

g_inv = function(x){1-exp(-exp(x))} 

 

# NORM: Euclidean distance # 

norm = function(x){sqrt(t(x)%*%x)} 

 

# MINIMIZE EE USING ITERATIVE METHOD OF LIANG / ZEGER / QAQISH # 

betaHat    = rep(0,3) 

deltaBeta  = rep(10,3) 

epsilon    = 0.0001 

 

while(norm(deltaBeta) > epsilon) 

{ 

 # INITIALIZE INDEX, VALUE # 

 index = 1 

 N = maxid 

 sumA = matrix(0,3,3) 

 sumB = rep(0,3) 

 

 # CONSTRUCT DELTABETA COMPONENTS BY SUBJECT # 

 for(i in 1:N) 

 { 

  # UPDATE RESPONSE, PREDICTORS, INDEX # 



219 

 

                y_binary_i = as.vector(y_binary[,-1][which(subjectID == subjectID[index])]) 

                X_E_i      = as.matrix(X_E[,2:4][which(subjectID == subjectID[index]),]) 

                index      = max(which(subjectID == subjectID[index]))+1 

 

  # SYSTEMATIC COMPONENT # 

  eta_i = as.vector(X_E_i[,1:3] %*% betaHat[1:3]) 

 

  # ESTIMATED VALUES # 

  p_i = as.vector(g_inv(eta_i)) 

   cat("Predicted probability:") 

   cat("\n") 

   print(p_i) 

 

  # RESIDUAL VECTOR # 

  b_i = y_binary_i - p_i 

   cat("Residual:") 

   cat("\n") 

   print(b_i) 

 

 

  # WORKING COVARIANCE STRUCTURE # 

  V_i = diag(p_i*(1-p_i))  # V_i is a diagonal matrix, with each 

diagonal element being the variance 
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                                         # of the mean. # 

    cat("WCS:") 

   cat("\n") 

   print(V_i) 

 

  # DERIVATIVE MATRIX # 

  D_i   = log(1/(1-p_i))*(1-p_i)*X_E_i[,1:3] 

    cat("d_beta:") 

   cat("\n") 

   print(D_i) 

 

 

  # UPDATE VALUES # 

  sumA = sumA + t(D_i) %*% solve(V_i) %*% D_i 

    cat("sumA:") 

   cat("\n") 

   print(sumA) 

  sumB = sumB + t(D_i) %*% solve(V_i) %*% b_i 

    cat("sumB:") 

   cat("\n") 

   print(sumB) 

 } 

 



221 

 

 # UPDATE BETAHAT # 

 deltaBeta = solve(sumA) %*% sumB 

   cat("deltaBeta:") 

  cat("\n") 

  print(deltaBeta) 

 betaHat   = betaHat + deltaBeta 

   cat("betaHat:") 

  cat("\n") 

  print(betaHat) 

} 

 

 deltaBeta 

 fx[[z]]<-betaHat 

} 

fx 

length(unlist(fx)) 

 

## 

e_pe_mat<-matrix(unlist(fx), ncol=3, byrow=T) 

mean(e_pe_mat[,1]) 

mean(e_pe_mat[,2]) 

mean(e_pe_mat[,3]) 
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e_int_bias<-(mean(e_pe_mat[,1])-tcoef_int)/(abs(tcoef_int)) 

e_b1_bias<-(mean(e_pe_mat[,2])-(tcoef_x1))/(abs(tcoef_x1)) 

count_e_int_sign<-sum(e_pe_mat[,1] > 0) 

count_e_int_sign 

corrsign_e_int_percent<-count_e_int_sign/length(e_pe_mat[,1]) 

 

count_e_b1_sign<-sum(e_pe_mat[,2] < 0) 

count_e_b1_sign 

corrsign_e_b1_percent<-count_e_b1_sign/length(e_pe_mat[,2]) 

 

 

 

## 

covEst<-list() 

foreach(r=1:NRep, .combine='list', .errorhandling=c('pass')) %do% { 

 

y_binary<-yy_binary[[r]] 

X_E<-XX_l[[r]] 

subjectID<-ssubjectID[[r]] 

maxid<- mmaxid[r] 

betaHat<-fx[[r]] 

 

# INVERSE LINK FUNCTION # 
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g_inv = function(x){1-exp(-exp(x))} 

 

# OBTAIN STANDARD ERRORS # 

## USE BETAHAT ## 

 

index=1 

N = maxid 

sumJ = matrix(0,3,3) 

sumK = matrix(0,3,3) 

 

for(i in 1:N) 

{ 

 # UPDATE RESPONSE, PREDICTORS, INDEX # 

   y_binary_i = as.vector(y_binary[,-1][which(subjectID == subjectID[index])]) 

   X_E_i      = as.matrix(X_E[,2:4][which(subjectID == subjectID[index]),]) 

       index      = max(which(subjectID == subjectID[index]))+1 

 

 # SYSTEMATIC COMPONENT # 

      eta_i = as.vector(X_E_i[,1:3] %*% betaHat[1:3]) 

 

 

 # ESTIMATED VALUES # 

 p_i = as.vector(g_inv(eta_i)) 
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 # RESIDUAL VECTOR # 

 b_i = y_binary_i - p_i 

 

 # WORKING COVARIANCE STRUCTURE # 

 V_i = diag(p_i*(1-p_i)) 

 

 # DERIVATIVE MATRIX # 

 D_i   = log(1/(1-p_i))*(1-p_i)*X_E_i[,1:3] 

 

 # UPDATE VALUES # 

 sumJ = sumJ + t(D_i) %*% solve(V_i) %*% D_i 

 sumK = sumK + t(D_i) %*% solve(V_i) %*% b_i %*% t(b_i) %*% 

t(solve(V_i)) %*% D_i 

} 

covEst[[r]]<- solve(sumJ) %*% sumK %*% solve(sumJ) 

} 

covEst 

 

seEst<-list() 

foreach(D=1:NRep, .combine='list', .errorhandling=c('pass')) %do% { 

cE<-covEst[[D]] 

seEst[[D]]<-sqrt(diag(cE)) 
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} 

seEst 

 

e_pese_mat<-matrix(unlist(seEst), ncol=3, byrow=T) 

e_pese_mat 

mean(e_pese_mat[,1]) 

mean(e_pese_mat[,2]) 

mean(e_pese_mat[,3]) 

 

## 

e_int_pvalues<-1-pchisq(((e_pe_mat[,1]/e_pese_mat[,1])^2),1) 

e_b1_pvalues<-1-pchisq(((e_pe_mat[,2]/e_pese_mat[,2])^2),1) 

e_b2_pvalues<-1-pchisq(((e_pe_mat[,3]/e_pese_mat[,3])^2),1) 

 

count_e_int_pvalues<-sum(e_int_pvalues<=0.05) 

power_e_int_percent<-count_e_int_pvalues/length(e_pe_mat[,1]) 

count_e_b1_pvalues<-sum(e_b1_pvalues<=0.05) 

power_e_b1_percent<-count_e_b1_pvalues/length(e_pe_mat[,2]) 

 

count_e_b2_pvalues<-sum(e_b2_pvalues<=0.05) 

typeI_e_b2_percent<-count_e_b2_pvalues/length(e_pe_mat[,3]) 
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######################################################################## 

#                                   THREE_THE EXTENDED COX MODEL                            #              

######################################################################## 

ncet_minx<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

dr1<-alh[[i]][,c(1,4)] 

ncet_minx[[i]]<-dr1%>% 

  group_by(id) %>% 

      filter(x1 == min(x1))  %>% 

             filter(id<= round(0.7*max(dr1[,1]))) 

} 

 

set.seed(se_a) 

rgc_c <- foreach(i=1:NRep, .combine='cbind') %:% 

foreach(j=1:(round(0.7*NSub)), .combine='cbind') %do% 

{rgamma(1, shape=50, scale=1-exp(-

exp(tcoef_int+(tcoef_x1)*as.numeric(ncet_minx[[i]][j,2])))) 

} 

 

rgc<-matrix(rgc_c, ncol=NRep) 

 

rgclist<-list() 

foreach(i=1:NRep, .combine='list') %do% { 



227 

 

rgclist[[i]]<-rgc[,i] 

} 

 

cdat1<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

dr2<-alh[[i]] 

cdat1[[i]]<-dr2%>% 

  group_by(id) %>% 

         filter(id<= round(0.7*max(dr2[,1]))) 

} 

 

ncet_r<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

tu<-cdat1[[i]] 

ti<-rgclist[[i]] 

tu$e2[cumsum(table(tu$id))]= c(ti) 

ncet_r[[i]]<-tu 

} 

 

cdat2<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

dr3<-alh[[i]] 

cdat2[[i]]<-dr3%>% 
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  group_by(id) %>% 

         filter(id > round(0.7*max(dr3[,1]))) 

} 

 

cdata<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

cdata[[i]]<-rbind(ncet_r[[i]],cdat2[[i]]) 

} 

 

cdata_c <- list() 

po1 <- foreach(i=1:NRep, .combine='list') %do% { 

cdata_c[[i]]<-group_by(cdata[[i]], id) %>% 

mutate(check = ifelse(any(e1 == e2 | e1 > e2) == TRUE, 1, 0)) %>% 

filter(check == 0) %>% 

ungroup %>% 

mutate(id = cumsum(c(TRUE, diff(id) != 0))) %>% 

select(-check) 

} 

 

library(survival) 

cdatacoef<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

cdatacoef[[i]] <-coef(coxph(Surv(e1,e2,y) ~ x1+x2, data=cdata_c[[i]])) 



229 

 

} 

 

## 

c_pe_mat<-matrix(unlist(cdatacoef), ncol=2, byrow=T) 

mean(c_pe_mat[,1]) 

mean(c_pe_mat[,2]) 

 

c_b1_bias<-(mean(c_pe_mat[,1])-(tcoef_x1))/(abs(tcoef_x1)) 

 

count_c_b1_sign<-sum(c_pe_mat[,1] < 0) 

count_c_b1_sign 

corrsign_c_b1_percent<-count_c_b1_sign/length(c_pe_mat[,1]) 

## 

cdatacoefse<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

cdatacoefse[[i]]<-diag((coxph(Surv(e1,e2,y) ~ x1+x2, data=cdata_c[[i]]))$var)^0.5 

} 

 

c_pese_mat<-matrix(unlist(cdatacoefse), ncol=2, byrow=T) 

c_pese_mat 

mean(c_pese_mat[,1]) 

mean(c_pese_mat[,2]) 
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## coef(summary(coxph(Surv(e1,e2,y) ~ x1+x2, data=cdata_c[[35]])))[,1:5] 

 

coxpvalues<-list() 

foreach(i=1:NRep, .combine='list') %do% { 

coxpvalues[[i]]<-coef(summary(coxph(Surv(e1,e2,y) ~ x1+x2, data=cdata_c[[i]])))[,5] 

} 

c_pvalues_mat<-matrix(unlist(coxpvalues), ncol=2, byrow=T) 

c_b1_pvalues<-c_pvalues_mat[,1] 

c_b2_pvalues<-c_pvalues_mat[,2] 

 

count_c_b1_pvalues<-sum(c_b1_pvalues<=0.05) 

power_c_b1_percent<-count_c_b1_pvalues/length(c_pe_mat[,1]) 

 

count_c_b2_pvalues<-sum(c_b2_pvalues<=0.05) 

typeI_c_b2_percent<-count_c_b2_pvalues/length(c_pe_mat[,2]) 

######################################################################## 

#                                   FOUR_SIMULATION RESULTS                                                # 

######################################################################## 

c_pesebscs<-c(NA, NA, 

mean(c_pe_mat[,1]),mean(c_pese_mat[,1]),mean(c_pe_mat[,2]),mean(c_pese_mat[,2]),N

A, c_b1_bias,NA,corrsign_c_b1_percent) 
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f_pesebscs<-c(mean(f_pe_mat[,1]), mean(f_pese_mat[,1]), 

mean(f_pe_mat[,2]),mean(f_pese_mat[,2]), 

mean(f_pe_mat[,3]),mean(f_pese_mat[,3]),f_int_bias,f_b1_bias,corrsign_f_int_percent,c

orrsign_f_b1_percent) 

e_pesebscs<-c(mean(e_pe_mat[,1]),mean(e_pese_mat[,1]), 

mean(e_pe_mat[,2]),mean(e_pese_mat[,2]), 

mean(e_pe_mat[,3]),mean(e_pese_mat[,3]),e_int_bias,e_b1_bias,corrsign_e_int_percent,

corrsign_e_b1_percent) 

pesebscs_results<-rbind(c_pesebscs,f_pesebscs,e_pesebscs) 

## 

c_pt<-c(NA, power_c_b1_percent,typeI_c_b2_percent) 

f_pt<-c(power_f_int_percent,power_f_b1_percent,typeI_f_b2_percent) 

e_pt<-c(power_e_int_percent,power_e_b1_percent,typeI_e_b2_percent) 

pt_results<-rbind(c_pt,f_pt,e_pt) 

## 

Simulation_results<-cbind(pesebscs_results,pt_results) 

colnames(Simulation_results) <- 

c("pe_int","pese_int","pe_b1","pese_b1","pe_b2","pese_b2","int_bias", 

                               "b1_bias","int_cs(%)", "b1_cs(%)", 

"int_power(%)","b1_power(%)","b2_typeI(%)") 

rownames(Simulation_results) <- c("Cox","Farrington", "Extended") 

Simulation_results 
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