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ABSTRACT 

 

 

Troup, Jonathan D. S., Students’ Development of Geometric Reasoning about the 

Derivative of Complex-Valued Functions. Published Doctor of Philosophy 

dissertation, University of Northern Colorado, 2015. 

 

 The purpose of this study was to explore the nature of students’ reasoning about 

the derivative of a complex-valued function, and to study ways in which they developed 

this reasoning while working with Geometer’s Sketchpad (GSP). The participants in this 

study were four students from one undergraduate complex analysis class. The 

development of participants’ reasoning about the derivative of a complex-valued function 

was captured via video-recording and screen-capture software in a four-day interview 

sequence consisting of a two-hour-long interview each day. This reasoning was 

interpreted through the theoretical perspective of embodied cognition. The findings 

indicated that students manifested embodied reasoning through gesture and speech, 

through algebraic and geometric inscriptions, and through interaction with the physical 

environment and the virtual environment provided by GSP. The findings further indicated 

that students needed to advance their geometric reasoning about the derivative of a 

complex-valued function in three essential ways in order to reason geometrically about 

the derivative as a local linear approximation. First, with help from gesture and speech, 

they recognized that they did not know how to characterize a linear complex-valued 

function. Second, with help from algebraic and geometric inscriptions, they reasoned that 

a linear complex-valued function 𝑓(𝑧) rotates and dilates every circle by the same 
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amounts 𝐴𝑟𝑔(𝑓′(𝑧)) and |𝑓′(𝑧)|, respectively. Finally, through embodied reasoning in 

both the virtual and physical environments, students recognized the need to focus on how 

a complex-valued function rotates and dilates small circles only.  

 These findings suggest that one approach to improving student learning about the 

derivative of a complex-valued function is to highlight these three geometric aspects of 

the derivative, and to offer students opportunities to reason about this geometry in 

embodied ways listed above. 
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CHAPTER I 

 

INTRODUCTION 

 

Imagine you could only think in terms of mathematical formulae to solve a 

mathematics problem. You could not think about shapes or color. You would have no 

access to such familiar concepts as “up” or “down.” Geometry would no longer be visual; 

it would be no less abstract than any other form of mathematics. In short, you could only 

calculate. Nonetheless, you could still perceive certain visual properties, even if you 

could not visualize them. You could calculate the volume of a sphere, because you know 

that a sphere is a thing with the volume formula 
4

3
𝜋𝑟3. You could derive the slope of a 

line knowing that slope is 
∆𝑦

∆𝑥
. You could even describe a tangent line to a function 𝑓 at 𝑥0 

by calculating its slope via the derivative value 𝑓′(𝑥0). However, you would have no idea 

what a sphere or a tangent line looked like, or how a steeper slope compares graphically 

to a more gradual one. You would not be able to “see” the mathematics; it might even 

appear just to be a collection of arbitrary rules. 

While undergraduate students might be capable of reasoning geometrically, they 

seem to use it disconnected from the algebraic formulae that describes the geometry 

(Danenhower, 2006; Panaoura, Elias, Gagatsis, & Giatilis, 2006; Presmeg, 2006; Sfard, 

1992). Without this connection, students may lack the mathematical guidance in 

approaching mathematical concepts that geometric reasoning seems to provide (Katz & 



2 
 

 
 

Barton, 2007; Núñez, 2004, Sfard, 1993). In contrast with students, experts regularly 

appear to rely upon geometric reasoning to guide their intuition, while they utilize algebra 

to establish precision (Kuo, Hull, Gupta, & Elby, 2013; Núñez, 2004; Sierpinska, 2000; 

Sfard, 1993; Szydlik, 2000). As such, the National Council of Teachers of Mathematics 

(NCTM, 2009) standards list the abilities to reason both algebraically and geometrically 

and to integrate different mathematical representations as essential facets of mathematical 

reasoning. 

Prior research indicates that certain forms of technology known as dynamic 

geometric environments (DGEs) might help students develop these forms of reasoning 

and connections between them by grounding students’ reasoning in the physical 

environment (Hollebrands, 2007; Olive, 2000). They may help students “see” the 

mathematics more clearly by emphasizing visual representations (Arcavi & Hadas, 2003; 

Barrera-Mora & Reyes-Rodríguez, 2013), or by making ideas expressed by abstract 

algebraic formulae more concrete (Hollebrands, 2007; Olive, 2000). Thus, such 

technology may help students refine their mathematical intuition and in justifying logical 

mathematical arguments, such as that required for developing or critiquing formal proofs 

(Arcavi & Hadas, 2000; Battista, 2007; Laborde, 1998; Mariotti, 2001, 2002; Marrades & 

Gutiérrez, 2000).  

Technology is not the only method past researchers have found to help students 

connect algebraic and geometric reasoning. The usage of inscriptions also appears to 

have aided students in this respect (Châtelet, 2000; de Freitas & Sinclair, 2012; Gibson, 

1998; Samkoff, Lai, & Weber, 2012; Zazkis, Dubinsky, & Dautermann, 1996). Dörfler 

(2001) describes three stages of diagrammatic reasoning: construction, experimentation, 
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and observation. Construction refers to the actual creation of an inscription. 

Experimentation involves manipulating pieces of the inscription, perhaps to explore 

intuitions or test conjectures. This manipulation can occur either literally within the 

context of the inscription or through the usage of other tools such as motion-based 

gestures or DGEs. Observation involves reflecting on properties of the inscription itself 

or on past experimentation. Movement through these stages may encourage a unification 

not only of algebraic and geometric reasoning, but also of inscriptions, gestures, and 

speech as they support algebraic and geometric reasoning through diagrammatic 

reasoning (Châtelet, 2000; Chen & Herbst, 2013; Roth & McGinn, 1998; Soto-Johnson & 

Troup, 2014; Zazkis et al., 1996). 

The nature of many of the connections between these aspects suggests that people 

learn in a way congruent with their experience with the physical environment. For 

example, Châtelet (2000) notes that diagrams (defined later in this chapter) can inform 

gestures and that gestures inform diagrams. Through real-world motion via gesture, new 

possibilities unfold for usages of the diagram. Through these discoveries regarding the 

nature of the diagram, perception of the diagram itself may change, thereby encouraging 

new gestures. He furthermore suggests that novel usages of a diagram to investigate an 

existing mathematical concept can only arise via gesture. This statement that learning is 

necessarily grounded in the experience of the learner within the physical environment is 

part of a learning theory known as embodied cognition. 

A learner might be encouraged to connect abstract mathematical concepts back to 

his more concrete real-world experiences through reasoning tools other than diagrams. 

Through a teaching experiment involving a physical representation of the complex plane 



4 
 

 
 

that used floor tiles as the coordinate system, dot stickers to represent points, and string to 

represent vectors, Nemirovsky, Rasmussen, Sweeney, and Wawro (2012) observed in-

service teachers learn that multiplying a point by a complex number rotates that point 

90°. Furthermore, this particular representation seemed to encourage their participants to 

notice discrepancies between their algebraic and geometric approaches, which past 

research suggests is non-trivial (Danenhower, 2006; Panaoura et al., 2006; Sfard, 1992; 

Tall & Vinner, 1981). 

Finally, while research on topics involving the teaching and learning of complex 

numbers also suggests that students tend to compartmentalize algebraic and geometric 

approaches (Danenhower, 2006; Panaoura et al., 2006), this research is sparse. 

Danenhower (2006), Panaoura et al. (2006), and Soto-Johnson and Troup (2014) 

administered clinical interviews to investigate their participants’ reasoning regarding 

complex numbers, while Nemirovsky et al. (2012) and Harel (2013) conducted teaching 

experiments to actively encourage their participants’ reasoning about complex numbers. 

Given that research is limited in the field related to the teaching and learning of complex 

numbers and variables, I wanted to investigate students’ algebraic and geometric 

reasoning about the derivative of a complex-valued function. 

Furthermore, I wanted to investigate the possibility that mathematics students’ 

usage of inscriptions created by GSP might help them develop geometric reasoning about 

the derivative of a complex-valued function. I designed my study to investigate the 

potential relationships between participants’ usage of this technology, their algebraic and 

geometric reasoning, and their usage of gesture. In particular, this dissertation study built 

on my proposal study to answer the following research questions: 
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Q1 What is the nature of students’ reasoning about the derivative of complex-

valued functions?  

 

Q2 What is the nature of the development of students’ reasoning about the 

derivative of complex-valued functions while utilizing Geometer’s 

Sketchpad (GSP)? 

To answer these questions, I developed a sequence of GSP-based tasks involving 

the derivative of a complex-valued function. I had four participants, which I placed into 

two groups of two. Using these tasks, I conducted a four-day interview sequence 

consisting of two-hour-long interviews each day for each of these two groups of 

participants. I video-recorded these interviews, then transcribed all gesture, speech, and 

technological data. Finally, I qualitatively analyzed these data to produce my findings.  

Through GSP, I hoped to help my students connect the algebraic definition of the 

derivative that they already knew to more geometric reasoning about the derivative. This 

connection could have helped students to “see” the mathematics involved in the 

derivative of a complex-valued function. This research was intended to discover new 

ways in which students could come to view the derivative of a complex-valued function 

as more than just an algebraically calculated limit. In this way, students were encouraged 

to see this particular mathematical concept as an actual meaningful entity, rather than just 

an arbitrary “rule.”  

 Findings from this study indicated that my participants reasoned in three distinct 

embodied ways and required three critical advancements in geometric reasoning to 

reason about the derivative of a complex-valued function as an amplitwist. That is, they 

grounded their reasoning in gesture and speech, they integrated their reasoning via 

algebraic and geometric inscriptions, and they embodied their reasoning in both the 

virtual and the physical environments. In the process, they reasoned that they needed to 
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characterize the geometry of a line in ℂ, they needed to realize that a linear complex-

valued function 𝑓(𝑧) rotates and dilates every circle by 𝐴𝑟𝑔(𝑓′(𝑧)) and |𝑓′(𝑧)|, 

respectively, and they needed to reason that this reasoning about rotation and dilation 

only applies to small circles for a general complex-valued function. 

To aid the reader in following chapters, I now discuss terms and definitions 

relevant to this research study. Furthermore, I provide a brief overview of mathematical 

concepts related to the derivative of a complex-valued function. 

Definitions 

 This study aimed to capture participants’ development of a geometric reasoning 

of the derivative of a complex-valued function. “Reasoning” is the word I use to describe 

a participant’s particular way of explaining a concept. Merriam-Webster defines the verb 

“reason” as follows: 

1. To think in a logical way 

2. To form (a conclusion or judgment) by thinking logically. 

As I could not directly observe the nature of my participants’ thoughts, instead of 

utilizing the word “reasoning” in a literal way in accordance with the definitions 

presented above, I use it to mean the chain of arguments my participants used to convince 

themselves or others of truth. This usage is in accordance with Focus in High School 

Mathematics: Reasoning and Sense Making (NCTM, 2009), which defined “reasoning” 

as “the process of drawing conclusions on the basis of evidence or stated assumptions” 

(p. 4). For my research, I was particularly interested in my participants’ algebraic and 

geometric reasoning. I use algebraic reasoning to mean a “process involved in solving 

problems that mathematicians can easily express using algebraic notation” (Carraher & 



7 
 

 
 

Schliemann, 2007, p. 670), and geometric reasoning to entail “the invention and use of 

formal conceptual systems to investigate shape and space” (Battista, 2007, p. 843). Note 

that these definitions of algebraic and geometric reasoning complement NCTM’s 

discussion of these terms, wherein algebraic reasoning involves algebraic manipulating 

equations, reasoning purposefully with formulae to solve problems, using symbols in a 

meaningful way, and integrating algebra with geometry. The National Council of 

Teachers of Mathematics (NCTM) states geometric reasoning is comprised of spatial 

elements of reasoning such as constructing geometric objects, modeling geometry with 

algebra, and conjecturing and critiquing geometric arguments.   

While I focused on students’ “reasoning” methods or approaches, other authors 

use different words since they are discussing slightly different—though related—

concepts. I use the authors’ wordings in the literature review to remain true to their 

original intentions. I use the word “representation” when discussing Panoura et al. 

(2006), and the word “form” while reviewing Danenhower (2006). Thus, “form” refers to 

the particular symbolic nature a written mathematical number takes, and 

“representations” are the means by which participants convey mathematical ideas. For 

example, Danenhower describes the Cartesian form 𝑎 + 𝑏𝑖 or the polar form 𝑟𝑒𝑖𝜃 of a 

complex number, and Panaoura et al. suggest that geometric diagrams or algebraic 

equations could function as mathematical representations.  

A diagram, as defined by Dörfler (2001), is not necessarily geometric in nature. 

Rather, a diagram is composed of elements spatially arranged in a specific, structural way 

in some physical medium. As such, learners can utilize a diagram to discover spatial 

relationships between these elements based on the diagram’s structure. Dörfler clarifies, 
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What is important is the spatial structure of a diagram, the spatial 

relationship of its parts to one another and the operations and 

transformations of, and with, diagrams. The constituent parts of a diagram 

can be any kind of inscription like letters, numerals, special signs, or 

geometric figures (Dörfler, 2001, p. 39).  

While Dörfler further notes, “diagrams are of such a wide variety that a generic 

definition appears both impossible and impractical” (p. 41), he does list several 

examples of diagrams. These include Cartesian graphs, geometric figures, arrows, 

fractions, matrices, systems of linear equations, arithmetic terms, algebraic terms, 

and function terms. Thus, it appears that a diagram is an inscription where the 

arrangement of its elements carries some meaning. 

 This sort of arrangement can be seen in a fraction where the uppermost 

position signifies the numerator, and the lower position signifies the denominator, 

or in a circle, which is a very specific arrangement of points. Without this 

separation of numerator and denominator, there is no fraction; if I take a set of 

points which are not equidistant from the center, it is not a circle. Furthermore, a 

diagram can be either algebraic or geometric in nature, as evidenced by the 

previous list of examples. Students may develop connections between algebraic 

and geometric inscriptions due to attendance to their respective spatial structures, 

the meanings inherently contained in their arrangement, and correspondences in 

meaning between the inscriptions. For example, a student might find new 

meaning in an algebraic formula by constructing, observing, and manipulating 

vectors within a graph that signify various components of the given formula 

(Soto-Johnson & Troup, 2014). Students’ usage of diagrams or inscriptions to 

discover or reason about mathematical concepts through construction, 



9 
 

 
 

observation, and experimentation of the diagrams or inscriptions is a process 

known as diagrammatic reasoning (Dörfler, 2001). 

Given these definitions, forms, representations, diagrams, or methods of 

reasoning can reasonably be algebraic or geometric nature. In my paper, I often refer to 

this nature as primarily algebraic, primarily geometric, both algebraic and geometric, or 

neither algebraic nor geometric. Algebraic forms, representations, and reasoning methods 

often correspond to the usage of symbolic mathematical equations, while geometric 

forms, representations, and reasoning frequently utilize more geometric diagrams. Forms 

and representations are encompassed by the idea of an “inscription,” which Roth and 

McGinn (1998) define as “signs that are materially embodied in some medium … and 

because of their material embodiment, inscriptions (in contrast to mental representations) 

are publicly and directly available, so that they are primarily social objects” (p. 37). Thus, 

inscriptions are things which are externally accessible, whether through some written 

representation or through a virtual environment such as a dynamic geometric 

environment (DGE).  

According to this definition, algebraic equations and diagrams are both examples 

of an inscription, regardless of whether they were handwritten or computer-generated. 

Thus, in the context of my research, I consider a “form” in Danenhower’s (2006) sense as 

a type of algebraic inscription, and that an inscription in Panaoura et al.’s (2006) sense 

could function as a “representation.” Their previously referenced examples of 

“representations”—namely geometric diagrams and algebraic equations—are both 

inscriptions; such a diagram is a geometric inscription and a written equation is an 

algebraic inscription. My study aimed to investigate how the usage of inscriptions 
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produced with GSP influences my participants’ geometric reasoning about the derivative 

of a complex-valued function. Thus, the mathematical concept of the derivative of a 

complex-valued function merits a more in-depth discussion. 

Derivative of a Complex-Valued Function as a 

 Local Linearization 

 Within the context of real-valued functions, the derivative function has a well-

recognized geometric interpretation. Namely, at a point 𝑥, 𝑓′(𝑥) is the slope of the line 

tangent to the graph of the function at the point (𝑥, 𝑓(𝑥)). However, as the graph of a 

complex-valued function is four-dimensional in nature, the generalization of this concept 

is not straightforward. To begin overcoming this problem, one can represent the graph of 

a complex-valued function with two separate planes. On one plane, we can plot a point 𝑧 

or a set of points. I refer to this plane as the input plane. The points we plot on the other 

plane—the output plane—is controlled by the points we chose to plot on the input plane: 

if we plotted a point 𝑧 in the input plane, then we plot the corresponding point 𝑓(𝑧) in the 

output plane. Note that this scheme is a generalization of the typical representation of a 

two-dimensional real-valued transformation 𝑔: ℝ → ℝ (an input line and an output line), 

rather than the more common representation of the graph of a function 𝑔(𝑥) on a single 

real plane (the plotted points (𝑥, 𝑔(𝑥))).  

 Now, as Needham (1997) points out in his book Visual Complex Analysis, we 

may consider an infinitesimal complex number emanating from a complex point 𝑧, and 

the effect of a complex-valued function on this infinitesimal. Informally, consider an 

extremely small circle centered on 𝑧 in the input plane. More formally, we may consider 

the effect of a complex-valued function 𝑓on a circle of radius 𝜖 centered around the point 

𝑧 in the input plane, where 𝜖 > 0 but is also arbitrarily small (i.e., smaller than every 
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positive real number, so 𝜖, being an infinitesimal, is not a real number). The derivative 

evaluated at 𝑧 describes the image of this circle of infinitesimal radius. In particular, “The 

length of 𝑓′(𝑧) must be the magnification factor, and the argument of 𝑓′(𝑧) must be the 

angle of rotation,” (p.197) a concept that Needham refers to as an “amplitwist.” That is, if 

we transform the infinitesimal circle around 𝑧 by dilating it by a factor of |𝑓′(𝑧)| and 

rotating it by the argument of 𝑓′(𝑧), we should obtain the proper shape of the image of 

this circle under the function 𝑓(𝑧). Thus, the value of the derivative of a complex-valued 

function at a given point geometrically describes how a small circle around a point will 

be expanded and rotated. Therefore, the derivative of a complex-valued function provides 

a linearization that locally approximates the function, as “‘expand and rotate’ is precisely 

what multiplication by a complex number means” (p.196). 

 With this understanding, I now briefly discuss the mathematical meanings of each 

item in a list (included in Chapter III) of relevant concepts related to the derivative that 

were captured in the interview tasks. This list is as follows: 

1. The behavior of a given function (e.g., how points, lines, or circles are 

transformed) 

2. 𝜖 −neighborhoods around a given point 

3. Local versus global properties 

4. The relationship between magnitude and dilation 

5. The relationship between argument and rotation 

6. The meaning of “linearization” or “linear” in the complex plane 

7. Conformality (circles are mapped to circles) 

8. Approximate conformality  
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 The first item in this list largely refers to the geometric objects I asked my 

participants to construct (described in Chapter III), though it also encompasses 

conjectures my participants made about how these objects were transformed under the 

functions I asked them to investigate. This may include investigations such as whether 

lines and circles are preserved, what sort of shapes lines and circles do map to, how the 

function transforms a single point, or how the function transforms the entire plane. By 

𝜖 −neighborhoods around a point 𝑧 I mean any reference my participants made to a small 

circle of radius 𝜖, which surrounds the point 𝑧, though formally an 𝜖 −neighborhood of 𝑧 

should be centered at 𝑧. Item 3 notes that I paid attention to my participants’ application 

of their reasoning about the derivative of a complex-valued function.  

Item 3 was particularly relevant in my participants’ attempts to generalize their 

reasoning about the derivative of a linear complex-valued function to the derivative of a 

non-linear complex-valued function. In the case of the linear function, it is possible to 

reason about the derivative in a global way. Namely, since the derivative is constant, a 

linear transformation will rotate and dilate every circle in exactly the same way 

regardless of its location or size. In particular, if the derivative is 𝑎 + 𝑏𝑖, then every circle 

will map to an image with a radius that is a factor of |𝑎 + 𝑏𝑖| larger, and rotated 𝐴𝑟𝑔(𝑎 +

𝑏𝑖) counterclockwise with respect to the pre-image. Since the derivative is variable in a 

non-linear function, this global reasoning strategy no longer applies. For a non-linear 

function, proper reasoning about the derivative is necessarily local. In particular, the 

derivative evaluated at a point 𝑧 now describes only how a sufficiently small circle 

around 𝑧 rotates and dilates under the transformation; it no longer describes how every 



13 
 

 
 

circle around 𝑧 is rotated and dilated. This distinction is encapsulated in Needham’s 

(1997) description of the derivative as a local linear approximation of the function.  

Items 4, 5, and 6 in the aforementioned list are also accounted for by Needham’s 

(1997) explanation of the derivative. The magnitude of the derivative evaluated at a point 

describes the dilation of a sufficiently small circle around that point, while the argument 

of the derivative describes its rotation, as previously discussed. A linearization, or linear 

approximation, of a complex-valued function 𝑓(𝑧) at a point 𝑧0 is a linear function 

𝑔(𝑧) = 𝑚𝑧 + 𝑏 which behaves similarly (though not identically; 𝑔 only approximates 𝑓) 

to 𝑓(𝑧) near the point 𝑧0. In the context of this project, the relevant point was that 

𝑓′(𝑧0) = 𝑔′(𝑧0) = 𝑚, which means that 𝑓(𝑧) transforms a sufficiently small circle 

around 𝑧0 in nearly the same way that 𝑔(𝑧) would transform this same circle. Since 𝑔 is 

only an approximation of 𝑓, this circle may transform to a slightly distorted circle under 

𝑓 instead of another perfect circle, much as a tangent line at 𝑥0 does not perfectly 

describe the nature of the curve it approximates near the point 𝑥0.  

In this light, items 7 and 8 are also relevant points; in linear functions my 

participants observe that circles always map to circles, and in 𝑓(𝑧) =
1

𝑧
 that circles map to 

circles unless they intersect the origin, in which case the circle “breaks.” This seems to be 

a relevant observation in reasoning about the derivative of a linear complex-valued 

function. Item 8, approximate conformality, is my summary of my participants’ attempts 

to generalize to the derivative of a non-linear complex-valued functions, where if a small 

enough circle is considered, it maps to another shape which resembles a circle, but may 

be slightly distorted as previously discussed. Thus, the ideas of conformality and 
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approximate conformality are strongly related to the meaning of a “linear approximation” 

to a complex-valued function.  

 Organization of the Dissertation 

 Chapter II further explores concepts related to the derivative of a complex-valued 

function by reviewing literature related to forms of reasoning, the teaching and learning 

of complex numbers, dynamic geometric environments, and gesture. Chapter II 

concludes with a discussion of a theoretical framework motivated by the literature. This 

theoretical framework guided this study. Chapter III presents data collection and analysis 

methods, and findings from my pilot study related to my participants’ patterns of 

development of reasoning about the derivative of a complex-valued function. Chapter IV 

provides results from my study. Particularly, it summarizes the ways in which students 

developed reasoning about the derivative of a complex-valued function as an amplitwist, 

as well as ways in which they developed reasoning about requisite mathematical 

concepts. Finally, Chapter V provides a discussion of my results, implications for 

research and teaching, limitations of my dissertation study, and directions for future 

research.  

 



 
 

 

 

 

CHAPTER II 

 

LITERATURE REVIEW 

 

 The purpose of my research was to extend the literature on students’ reasoning 

with inscriptions, specifically those inscriptions created with a dynamic geometric 

environment (DGE) in the field of complex numbers. In particular, I was interested in the 

nature of students’ reasoning as they explored the derivative of various complex-valued 

functions via a sequence of Geometer’s Sketchpad (GSP) labs designed to emphasize 

dynamic properties of the derivative. I was primarily interested in how undergraduate 

students’ reasoning about the derivative of a complex-valued function progresses 

throughout the interview, and in particular how the geometric and algebraic reasoning of 

the participants develop. I was additionally interested in tracking which aspects of the 

tasks and interview process potentially contribute to the development of this reasoning. In 

particular, the research questions that I addressed in this study were: 

Q1 What is the nature of students’ reasoning about the derivative of complex-

valued functions?  

 

Q2 What is the nature of the development of students’ reasoning about the 

derivative of complex-valued functions while utilizing Geometer’s 

Sketchpad (GSP)? 

 

Since my participants utilized GSP to help in developing a geometric reasoning 

about the derivative of a complex-valued function, this chapter centers on literature 

related to previous publications on the nature of algebraic, geometric, and diagrammatic 
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reasoning, the derivative of complex-valued functions, and finally the usage of DGEs to 

provide inscriptions which support reasoning. Comparatively little research has been 

conducted regarding complex-valued functions and pedagogy within the field of complex 

numbers in general, so it was natural to attempt to extend the extensive findings about 

reasoning and DGE usage into this domain.  

 In this chapter, I first discuss research on algebraic, geometric, and diagrammatic 

reasoning, as well as connections between these approaches. I additionally outline the 

nature of connections between inscriptions, speech, and gesture in the context of 

diagrammatic reasoning. I continue by summarizing the mathematics education literature 

on complex numbers, which currently appears sparse. After summarizing the literature on 

complex numbers, I transition to an overview of the usage of dynamic geometric 

environments (DGEs) and related computer software to create inscriptions and help 

students develop their reasoning methods. I additionally discuss gesture as a means of 

promoting learning, and as part of an integrated system together with speech. Finally, I 

overview various interpretations of the framework of embodied cognition, and outline my 

own view.  

Forms of Reasoning 

In this section, I focus on algebraic, geometric, and diagrammatic reasoning, as 

well as connections between each type of reasoning. I discuss research on students’ 

experiences with each form of reasoning, as well as their associated potential benefits and 

pitfalls. The National Council of Teachers of Mathematics (NCTM, 2009), defined 

reasoning and sense making together as “accurately carry[ing] out mathematical 

procedures, understand[ing] why those procedures work, and know[ing] how they might 
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be used and their results interpreted” (p. 3). They clarified that reasoning is “the process 

of drawing conclusions on the basis of evidence or stated assumptions” (p. 4) and that 

sense making is “developing understanding of a situation, context, or concept by 

connecting it with existing knowledge” (p. 4). This includes the ability to reason 

algebraically, the ability to reason geometrically, and the ability to integrate different 

representations
1
. If students can connect representations to each other and to their own 

existing knowledge, they may be more able to remember what they have learned 

(Hiebert, 2003, as cited by NCTM, 2009). This integration is important in that algebraic 

representations can inform geometric reasoning, and geometric representations can 

inform algebraic reasoning (Katz & Barton, 2007, as cited by NCTM, 2009). 

NCTM (2009) considered algebraic reasoning to involve mindful manipulation, 

reasoned solving, and connecting algebra with geometry. Mindful manipulation involves 

mentally visualizing calculations, understanding the arithmetic properties underlying 

algebraic manipulations, and purposefully selecting algorithms based on context. 

Reasoned solving consists of seeing solutions both in context and as a sequence of formal 

logical deductions. Finally, connecting algebra with geometry involves both the ability to 

translate algebraic and geometric inscriptions from one form to the other and the ability 

to integrate algebraic and geometric reasoning. Geometric reasoning includes forming 

conjectures about properties of geometric objects, construction and evaluation of these 

conjectures and associated arguments, and the ability to utilize multiple geometric 

approaches. Geometric reasoning was defined as “the invention and use of formal 

conceptual systems to investigate shape and space” (p. 843, emphasis in original). Spatial 

                                                           
1
 Even though my interest was in reasoning, while discussing related literature I use the authors’ 

terminology to remain true to the intention of their original work. For the purposes of this discussing this 

study, I consider an inscription to be a form of representation. 
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reasoning, a component of geometric reasoning, was further described as “the ability to 

observe geometric objects or processes, form conjectures about them, and use them to 

perform other operations” (p. 843). Goldin and Kaput (1996) defined an object as a thing 

on which a learner operates while reasoning, and a representation as something that 

stands in for some concept, object, or process. Thus in geometric reasoning “one reasons 

about objects; one reasons with representations” (NCTM, 2009, p. 844).  

Both algebraic and geometric reasoning can involve identifying representations, 

attending to structure and patterns, utilizing previously learned algorithms, forming 

conjectures, or reflection on a previously developed solution. NCTM (2009) claimed that 

reasoning progresses through three stages: empirical, preformal, and formal. In the 

empirical stage, claims are supported by cases; in the preformal stage, claims are 

supported by intuition and insight; in the final formal stage, claims are rigorously 

justified through logical proof. To stimulate this transition, NCTM suggested 

implementing tasks that “require students to figure things out for themselves,” “ask[ing] 

students questions that will prompt their thinking—for example, ‘Why does this work?’ 

or ‘How do you know?’” (p. 11), and “encouraging students to ask probing questions of 

themselves and one another” (p. 11). 

Carraher and Schliemann (2007) identified algebraic reasoning as “processes 

involved in solving problems that mathematicians can easily express using algebraic 

notation” (p. 670). This definition of algebraic reasoning complements NCTM’s 

aforementioned description. This particular system of reasoning may help students at all 

levels to make algebraic generalizations (Brizuela & Schliemann, 2004; Carraher, 

Schliemann, & Brizuela, 2000, 2005; Lee, 1996; Mason, 1996; Radford, 1996a/1996b; 
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Schliemann, Carraher, & Brizuela, 2006) and visualize novel structures of spatial objects 

(Boester & Lehrer, 2007, as cited by NCTM). That is, algebraic reasoning may inform 

geometric reasoning, and thus one can view an algebraic concept as both a process and as 

an object.  

However, many research studies (Danenhower, 2006; Dubinsky & Harel, 1992; 

Gray & Tall, 1994; Otte, 1993; Panaoura, Elias, Gagatsis, & Giatilis, 2006; Sfard, 

1991/1992/1995; Sfard & Linchevsky, 1994) suggested that students both 

compartmentalize algebraic and geometric approaches and tend to view mathematical 

concepts as either processes or objects, but not both. That is, students may believe that 

algebraic expressions are necessarily processes and thus not objects (David, Tomaz, & 

Ferreira, 2014). Carraher and Schliemann (2007) claimed, “some authors treat procedural 

approaches as inherently more primitive and thus in need of replacement by an object 

orientation; others treat procedural interpretations as different, yet nonetheless desirable 

even in advanced mathematical thinking” (p. 672). Sfard (1991, 1992) suggested that a 

learner must develop a procedural view before they can obtain an object view and that 

connecting these two views of a mathematical concept is inherently difficult. This 

difficulty may help explain why students sometimes do not recognize logical 

contradictions between different representations of the same mathematical concept 

(David et al., 2014; Lee, 1996; Harel & Sowder, 2005; Tall & Vinner, 1981). 

Tall and Vinner (1981) further reported that recognizing a contradiction between 

two distinct beliefs is inherently difficult. For example, while investigating how students 

reasoned about limits, they found that students tended to dismiss counterexamples as 

exceptions to a given statement rather than a disproof of it, a finding later corroborated by 
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Harel and Sowder (2005). Tall and Vinner theorized that a student would likely not even 

recognize the contradiction unless both contradictory notions are evoked into the 

student’s conscious mind simultaneously, causing a cognitive conflict. A similar 

phenomenon seems to have occurred in Danenhower’s (2006) and Panaoura et al.’s 

(2006) research (discussed later in this chapter), where students failed to notice a 

contradiction between disparate results simply because the results were expressed in 

different representations, or because one solution was obtained via geometric reasoning 

while the other was algebraically calculated. Furthermore, Tall and Vinner reported that 

their participants might have formed incorrect beliefs about the limit concept because 

they seemed to favor a dynamic intuitive notion of limit over the formal algebraic 

definition. For instance, Tall and Vinner found that some of their students felt strongly 

that a limit can never be attained by its function and that a limit bounds the function. 

Those participants that did appeal to the formal definition were more often able to answer 

questions correctly.  

Experts also appeared to rely on dynamic or geometric ideas to guide their 

reasoning, but were able to shift between types of reasoning more appropriately (Arcavi, 

1994; Kuo, Hull, Gupta, & Elby, 2013; Lithner, 2008; Núñez, 2004; Redish & Smith, 

2008; Sfard, 1993; Szydlik, 2000; Wertheimer, 1959). However, unlike Tall and Vinner’s 

(1981) participants, experts did not utilize these ideas exclusively. Instead, they used 

algebraic reasoning to reason about atypical cases and to keep their visualizations or 

geometric reasoning accurate with respect to formal mathematical definitions. In this 

way, algebraic reasoning appears to lend precision to geometric reasoning (Sierpinska, 
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2000; Tall & Vinner, 1981; Williams, 1991) and thus helps prevent unwarranted 

assumptions that may appear intuitive given a certain visualization or geometric model. 

Despite these potential problems, dynamic or geometric reasoning can still be 

helpful to help students reason strategically. Tall and Vinner (1981) found that even in 

the absence of a well understood formal definition of limit, students’ dynamic ideas still 

helped them guide their thoughts in beneficial ways, though not always entirely correct. 

Therefore, Tall and Vinner’s study provided some additional motivation for helping 

students connect formal definitions to their pre-existing intuitive ideas, often dynamic or 

geometric in nature. This finding is in keeping with other researchers’ (Danenhower, 

2006; Hiebert, 2003; Katz & Barton, 2007; Kuo et al., 2013; Panaoura et al., 2006; Sfard, 

1992; Sherin, 2001) claims that the ability to both translate between representations and 

meaningfully connect them is essential.  Without this integration, a student may have 

relatively little to guide their mathematical reasoning. As Sierpinska (2000) notes, “It is 

not enough to just make the structural content more concrete through working in low 

dimensions and using visualization. In fact, visualizations themselves are problematic in 

that they may lead to irrelevant interpretations which make the understanding more, not 

less difficult” (p. 244). While Sierpinska’s observations applied specifically to linear 

algebra content, it is possible that similar difficulties with visualization may arise in other 

contexts. In particular, because complex numbers are often visualized as vectors, her 

results on vectors in the context of linear algebra seem applicable to complex analysis. 

 While Tall and Vinner (1981) found that most of their participants did not appeal 

to the formal algebraic definition of limit to guide their reasoning, Williams (1991) 

reported that 10 students he interviewed professed a surprising amount of faith in graphs 
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and function formulas.  He commented that “It is as though problems of continuity, 

topological properties of the real line, and a myriad of other difficulties that they realize 

might arise in taking limits are magically taken care of for students in the process of 

drawing a graph” (p. 234).  So, it would seem that Lagrange’s (n.d.) concern that students 

would be deprived of mathematical learning opportunities because of dynamic tools was 

indeed valid. However, Lagrange thought in particular that computer programs would 

deprive students of the opportunity to interpret symbolic forms (Sherin, 2001), while in 

William’s study, it appeared that the students’ reliance on graphical tools and those same 

symbolic forms was depriving them of an opportunity to develop their algebraic 

reasoning about limits. The effects of computer programs on learning are discussed later 

in this chapter. 

 Rather than emphasize any one form of representation, physics education 

researchers Kuo, Hall, Gupta, and Elby (2013) argued that the ability to blend formal and 

conceptual mathematical reasoning is essential in problem-solving, that this blending can 

be described via symbolic forms, and that teaching students how to integrate these styles 

of reasoning is a feasible teaching goal. According to Kuo et al., conceptual analysis is 

the three-step process of qualitatively analyzing the context of the problem, selecting an 

appropriate solution strategy, and interpreting the answer obtained in context to check for 

validity. By formal mathematical reasoning they meant the manipulation of algebraic 

expressions. They noted that experts began with conceptual reasoning, while novices 

skipped this first step and immediately began manipulating equations without much 

thought for context (Larkin, McDermott, Simon, & Simon, 1980; Simon & Simon, 1978), 

much as David et al.’s (2014) participants applied the distributive property without much 
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regard for the actual structure of the presented algebraic statement. Two of their 

participants reflected this distinction; one attacked the problem directly with equations 

and algebra, while the other reasoned through the problem in context first. In this respect, 

the former participant’s problem-solving behavior more closely aligned with “standard 

problem-solving procedures advocated by researchers and taught to students” (p. 55), and 

the latter’s demonstrated a more complete grasp on the material. 

 Investigating students’ reasoning methods in solving a physics problem involving 

velocity and acceleration, Kuo et. al (2013) found that out of their 13 students, six 

students utilized either symbolic forms-based reasoning or blended processing. Sherin 

(2001) had previously reported that symbolic forms help students integrate algebraic 

equations with some physical situation. Kuo et al. reaffirmed Sherin’s results by reporting 

that symbolic forms and blended processing led to solutions which could be generalized 

more easily, and thus appeared to make their students’ reasoning more suited for a greater 

variety of tasks. However, they add a note of caution, stating,“constraining students to 

expert behavior may not be the road to expertise” (p. 53). In particular, they worry that 

conceptual blending or usage of symbolic forms may simply become another step in our 

already overly procedural solution strategies.   

 Kuo et al.’s (2013) novice participants’ tendency to ignore context and skip 

straight to solving problems algebraically may have been due to the way they thought 

about and approach mathematical representations.  In particular, Sierpinska (2000) 

suggested that students tend to think in practical rather than theoretical ways. She drew a 

parallel in this classification of practical and theoretical ways of thinking to Vygotsky’s 

(1962) distinction between spontaneous and scientific concepts, respectively. 
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Furthermore, she noted that scientific concepts, or theoretical thinking, is integrated into 

systems, and may thus make contradictions more apparent between distinct 

representations. Again, Sierpinska’s results concerned vectors in linear algebra, but as 

complex numbers are often positioned as vectors, these results seemed relevant for this 

study. For experts, this distinction is less clear-cut, since scientific reasoning is more 

familiar to them than to a novice, and is thus not entirely separate from their spontaneous 

reasoning
2
. Just as seen in previous research on algebraic reasoning (Tall & Vinner, 

1981; Williams, 1991), this theoretical or scientific reasoning is utilized by experts when 

they are confronted with an unfamiliar case or contradiction, or when they need to justify 

their chosen strategy in approaching a problem. 

 Sierpinska (2000) additionally observed the phenomenon of compartmentalization 

between types of reasoning, dubbing this issue “the obstacle of formalism” (p. 210). That 

is, her students seemed to view formal representations of a mathematical object as though 

the representation was the object it was representing. As such, they could not perceive the 

structure of the linear transformations they investigated with Cabri or integrate distinct 

representations. Some students even described what they saw with Cabri only in terms of 

the computer environment, and did not connect these rather literal observations back to 

any mathematical principles. 

 Despite these issues, Sierpinska (2000) suggested that inscriptions were able to 

help students advance their reasoning. She stated that “semiotic representation systems 

become themselves an object of reflection and analysis in theoretical thinking because 

they constitute the only medium through which theoretical thinking may prove its 

                                                           
2
 Compare to Zazkis, Dubinsky, and Dautermann (1996), who report that visualization and analysis become 

progressively more integrated as expertise is gained. This research is discussed more later in this chapter. 
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existence and convey its meanings” (p. 212). Furthermore, she found that students were 

able to overcome the obstacle of formalism when they were placed in pairs and assigned 

their own individual tutor. While a tutor may have helped students overcome this 

difficulty on a small scale, it remained an issue in the context of a classroom setting with 

a single instructor responsible for all students. The course content was specifically 

designed with an awareness of this problem in mind, and the course itself took place in a 

computer lab. However, even with these special arrangements, the obstacle of formalism 

remained. 

 David et. al (2014) observed a similar problem in their students’ treatment of the 

distributive property. In particular, they created a “shower” visualization to help them 

remember how to multiply through parentheses when distributing.  However, this 

visualization seemed to encourage students to associate all parentheses with the 

distributive property, causing them to distribute at inappropriate times during an algebraic 

procedure, or in contexts where the distributive property does not apply. Just as 

Sierpinska’s (2000) students failed to grasp the structure of linear transformations, so 

David et al.’s students could not understand the structure of the distributive property. 

Instead, they seemed to view a parenthesis as a command to multiply, even though David 

et al. reported that the students’ teacher had presented the distributive property in a 

structural way. Thus, visualizations such as the shower inscription can cause students to 

overgeneralize mathematical properties. Even so, David et al. suggested that these same 

visualizations could still help students recognize contradictions between the 

representations of a mathematical concept and the concept itself. In other words, 
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visualizations or geometric inscriptions might help students overcome the obstacle of 

formalism discussed by Sierpinska (2000). 

 Lee (1996) offered another example of overgeneralization in algebraic reasoning. 

When asked to produce an algebraic proof that two consecutive numbers always sum to 

an odd number, 49 of 113 high school students represented the sum algebraically either 

as 𝑥 + (𝑥 + 1) or 2𝑥 + 1. This first inscription led students to overgeneralize by 

assuming that 𝑥 represented an even number and that 𝑥 + 1 represented an odd number, 

perhaps due to the " + 1" contained within this inscription. While 49 students may have 

produced this inscription, only 8 students in the entire sample created solutions 

considered correct. Other difficulties the students experienced involved giving distinct 

names to the two consecutive numbers (i.e., 𝑥 and 𝑦), forming an incorrect algebraic 

inscription for two consecutive numbers (e.g. 1𝑥 and 2𝑥), or conflating even and odd 

with negative and positive.  

This behavior reflects other researcher’s (David et al., 2014; Kuo et al., 2013; 

Larkin et al., 1980; Simon & Simon, 1978) observation that students may ignore the 

structure or context of an inscription in favor of beginning algebraic manipulations 

immediately. It also serves as evidence for students’ tendency to over-generalize—they 

showed 2𝑥 + 1 was odd for a limited number of examples (Harel & Sowder, 2005; 

Mason, 1996; Radford, 1996a; Radford & Berges, 1988), thereby implying that these few 

examples substantiate the claim that 2𝑥 + 1 is always odd. Lee (1996) further noted that 

while students may have been able to see patterns, they had difficulty communicating the 

patterns they did see, utilizing inscriptions to represent these patterns, or identifying a 

mathematically useful pattern. Students’ ability to generalize may change greatly with 
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context. When Lee asked his participants to find the number of dots in a certain figure in 

a sequence of increasing rectangles, most students were able to perceive a pattern, though 

perhaps not a mathematically useful pattern. Even so, most participants provided a 

correct answer. Lee concludes that algebraic inscriptions appear to facilitate the ability to 

generalize. 

 Mason (1996) suggested that students are generally not aware of the depth of 

meaning contained in the question “Does it always work?” Furthermore, he implied that 

this may be because teachers and students both focus on techniques to manipulate 

equations and symbols rather than ways to generalize mathematical concepts. Finally, he 

suggested that computer software might help students and teachers alike refocus on to the 

meaning of and justifications for generalizations, as this software can quickly solve most 

traditional rote school problems immediately. It might also help students form 

conjectures, for which Mason outlined three approaches.  

 First, students can manipulate a representation in such a way as to make the claim 

apparent from the representation. Given computer software’s flexibility in generating 

representations, it may help the student find a representation that fits the claim. Second, 

students can find a local rule to build the next term from the previous. Again, the 

availability of computer software makes testing rules easier, and can accommodate 

testing rules in larger number. Third, students can find a pattern and extract a formula, 

mirroring Kuo et al.’s (2013) discussion of physics experts’ tendencies to first analyze a 

situation and then select an appropriate strategy. Computer software provides a greater 

abundance of examples and has a capacity to make abstract mathematical concepts more 

concrete, and thus may help students generalize patterns as well. Later in this chapter, 
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such computer software—particularly dynamic geometric environments (DGEs)—are 

discussed further.  

 Both Mason (1996) and Lee (1996) implied that generalization lies at the center 

of algebra based on their historical analyses, but Radford (1996a) contested this point. 

Rather than agree that the sole point of algebra is generalization, he included problem 

solving as another purpose that functions in tandem with algebra. To clarify, he stated 

that problem solving serves “as a primary need for knowledge” (p. 108), while 

generalization drives this need.  He was also aware of the potential pitfalls on which 

Mason (1996) and Lee (1996) commented. In particular, he noted that students often 

attempt to justify a universal claim with a single example, or attempt to establish a 

functional rule for a sequence by showing that it provides the correct value for a single 

“special” term. Despite his difference of opinion, he agreed that generalization is context-

dependent and that algebraic representations help students generalize their mathematical 

observations. 

 Algebraic inscriptions alone may not be able to facilitate students’ attempts to 

generalize in all contexts, but geometric inscriptions may help in this regard (Battista, 

2007). On the other hand, they may actually blockade students’ ability to generalize 

based on a diagram’s properties (Clements & Battista, 1992; Yerushalmy & Chazan, 

1993), since such pictures or diagrams typically only represent one single unique case 

(Presmeg, 1997). However, a learner may nonetheless appropriately classify them via 

perceptual abstraction as described by von Glasersfeld (1991, 1995), even without 

visualization. In perceptual abstraction, some experience is viewed as its own isolated 

entity. In the initial stage, the experience cannot be visualized. Once visualization 
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becomes possible, the entity is described as having been internalized (Steffe, Cobb, & 

von Glasersfeld, 1988). At this point, a learner can identify “structure, pattern, and 

operations from experiential things and activities” (p. 859) by reflecting upon a 

visualization for the purpose of determining its structure. At this level, the concept is 

separable from its context. Finally, at the second level of interiorization, “operations can 

be performed on the material without re-presenting [visualizing] it and symbols, acting as 

‘pointers’ to the originally abstracted material, can be used to substitute for it” (p. 860). 

 Students’ mathematical learning could additionally be positively influenced via 

DGEs (Arcavi & Hadas, 2000; Barrera-Mora & Reyes-Rodríguez, 2013; Cory & 

Garofalo, 2010; Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; Lagrange, n.d.; 

Olive, 2000; Tabaghi & Sinclair, 2013; Tall, 2003; Vitale, Swart, & Black, 2014). 

Mariotti (2001, 2002) claimed DGEs may help students approach geometric exploration 

and form meaningful conjectures. They may emphasize geometric properties by requiring 

some explicit specification of their properties to properly construct a figure. Jones (2000) 

distinguished between drawings and figures constructed in a DGE via a “drag test”. In 

particular, a figure retains its properties if moved within the DGE, and remains within the 

same classification. For example, a square would remain a square if dragged because the 

user constructed a shape utilizing properties of a square. A drawing has no such 

immutability. A square might be drawn free-hand within the DGE without any reference 

to properties of a square. Such a construction would likely cease to be a square the 

moment a single vertex was moved. In addition to emphasizing geometric properties and 

classifications, they also easily allow for creation of several objects of the same class 

with a single construction in a continuous and dynamic way. For example, if a circle were 
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to be constructed in Geometer’s Sketchpad (GSP), it could then be moved around the 

graph to various locations, and its radius could be increased or decreased, thereby 

representing a large variety of distinct circles.  

Marrades and Gutiérrez (2000) claimed that DGEs are primarily advantageous 

because with a DGE, students can easily construct complex geometric figures, perform a 

large variety of operations on these figures, and generate a large number of examples of a 

certain kind of figure. Battista (2007) and Laborde (1998) suggested that draggable 

figures help with geometric analysis and conceptualization by providing a representation 

that can be manipulated subject to certain movement constraints. Dörfler (1993) 

suggested that DGEs do not help students do something faster or better, but are in fact 

environments that require an entirely new “cognitive view than has been taken in 

traditional approaches to geometry instruction” (p. 883). Battista further cautioned that 

DGEs may de-emphasize formal proofs such as those found in high school geometry. The 

potential effects of DGEs on students’ mathematical learning are discussed in more detail 

later in this chapter. 

In addition to DGEs, diagrammatic reasoning as described by Dörfler (2001) may 

further encourage students to integrate their algebraic and geometric reasoning. 

According to Dörfler, there are three phases of diagrammatic reasoning: construction, 

experimentation, and observation. Diagrammatic reasoning can involve either algebraic 

or geometric inscriptions, as well as inscriptions created within DGEs. Learners can 

switch between and return to any of these phases; they do not have to occur in strict 

order.  
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In the construction phase, the learner creates or adds to an inscription. This could 

be an algebraic equation, geometric shapes, a graph, or any other written representation 

of a mathematical concept. In the experimentation phase, the learner manipulates parts of 

the inscription, potentially to test a conjecture or to prepare for a transition to the 

observation phase. This could involve, for example, applying algebraic operations to an 

equation or moving a vertex around within a graph. Finally, the observation phase 

involves reflecting on the inscription itself or a prior experiment with it for the purpose of 

discovering mathematical truths inherent in the inscription, or in their manipulation of the 

inscription. 

This manipulation of diagrams may positively influence mathematical reasoning. 

For example, both Samkoff, Lai, and Weber (2012), and Gibson (1998) found that 

diagrams helped their participants create proofs to justify mathematical statements. 

Gibson (1998) investigated students’ creation of diagrams to construct real analysis 

proofs. He reported that his students utilized diagrams for at least four different reasons: 

to help them comprehend the information available to them, to reason about whether a 

statement was true or false, to discover new ideas, and to help them communicate or 

write down their own ideas. Because Gibson was primarily interested in discovering why 

students might utilize diagrams, he did not explicitly ask them to create one, instead 

opting to investigate instances when the construction of diagrams might arise naturally in 

the course of students’ thinking about mathematical concepts. Unlike Gibson, I did 

explicitly ask my students to create several inscriptions with GSP. 

Samkoff et al. (2012) investigated eight mathematicians’ approaches to a proof 

involving the sine function and their usage of diagrams in order to classify and explore 
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ways in which these diagrams might be beneficial for developing proofs. One of the more 

common ways in which diagrams were used was to observe and investigate properties 

that might be true. While Samkoff et al. believed that a complete classification scheme 

for the ways in which mathematicians interact with diagrams may not exist; they did 

identify four ways in which diagrams might be used. This included: noticing properties 

and generating conjectures, estimating the truth of an assertion, suggesting a proof 

approach, and instantiating an idea or assertion.  

One mathematician drew more conviction from his diagram than from a more 

formal argument that he developed. In fact, his diagram convinced him that his formal 

proof was, in fact, incorrect. Rather than allowing an abstract formal proof to alter his 

reasoning, this mathematician found himself more convinced by his diagram, and perhaps 

a bit by prior experience as well. He further convinced himself of the truth of his diagram 

and the existence of a flaw in his proof by producing specific counterexamples to his 

proof.  Thus, the mathematician relied more on the reasoning produced via the creation of 

the diagram and its geometric properties than on any algebraic argument. Diagrammatic 

reasoning, in this case, took precedence over the formal mathematical argument. 

Furthermore, as discussed later, Châtelet (2000) argued that diagrams and gestures are 

inextricably linked, while Goldin-Meadow (2003) noted that gesture and speech are also 

inseparable. Diagrammatic reasoning and inscriptions may thus serve to unify not only 

students’ algebraic and geometric reasoning, but also their gesture and speech. The usage 

of gesture as a means of inferring the nature of students’ reasoning is discussed further 

later in this chapter. Here I limit my discussion to relationships between each of these 

aspects and diagrammatic reasoning or inscriptions.  
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Inspired by Châtelet (2000), de Freitas and Sinclair (2012) reported that diagrams 

and gestures are indeed linked. For these researchers as well as for Châtelet, diagrams 

were thought to “lock” or “capture” gesture:  

A diagram can transfix a gesture, bring it to rest, long before it curls up into a 

sign, which is why modern geometers and cosmologers like diagrams with their 

peremptory power of evocation. They capture gestures mid-flight; for those 

capable of attention, they are the moments where being is glimpsed smiling 

(Châtelet, 2000, p.10). 

Thus, diagrams can act as tools to depict gesture in a deeper way than mere 

representation. In addition to describing a gesture, a diagram may include both virtual 

and real aspects, both explicit and implicit facets, and kinematic features, all within the 

same diagram. Furthermore, de Freitas and Sinclair (2012) stated that simply “by adding 

a dotted line to the paper, a new dimension can be brought into being; an arrow might 

forge out new temporal relationships between objects. These excavations enable the 

virtual and the real to become coupled anew” (p. 138). 

According to Châtelet (2000), gestures and diagrams work together to open up 

new avenues of exploration and to make novel gestures and diagrams accessible. 

Furthermore, as pointed out by de Freitas and Sinclair (2012), this process never 

terminates, as gesture is too varied in form to be described by some finite set of 

algorithmic rules or classification scheme. Therefore, gestures and diagrams should not 

be considered separately. Châtelet claimed, “extracting one from the other is awkward 

and possibly misleading” (de Freitas & Sinclair, 2012, p. 137). Furthermore, Châtelet 

observed that the ability to apply a diagram in a novel way to an existing mathematical 

concept has led to many historical mathematical breakthroughs.  

For example, he described one such diagram utilized by Cauchy as part of his 

work in developing a method for integrating over singular points. The diagram depicts a 
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line through a singular point that bends into an upper semicircle to circumvent the 

singular point. Châtelet seemed to view this diagram in a very physical way, even writing 

“the plane is made flesh, as it were” (p. 34). Rather than view the point as abstract, 

Châtelet inferred that the diagram brings the point closer to a more real, more concrete 

existence. In de Freitas and Sinclair’s (2012) words, “…the diagram constitutes the point 

as a material bump on the surface of the page….Taking a very material, physical point of 

view, Châtelet reads [the point] as being made flesh by a ‘cut out’ in the complex plane in 

which the point is now enveloped” (p. 139).   

According to Châtelet, gesture must be somehow utilized, implicitly or explicitly, 

to create this kind of diagram. Thus, it seems that the creation of a diagram is inextricably 

linked to an embodied experience: “not a tentative deictic pointing at something on the 

surface, but an actual physical creasing or cutting out which marks up the surface and 

conjures its virtual folds” (de Freitas & Sinclair, 2012, p. 139). Other researchers (Chen 

& Herbst, 2013; Roth & McGinn, 1998) added that speech works together with gesture to 

give life to a diagram, and that in fact inscriptions provide a link between speech and 

gesture.  

Since algebra appears to be connected to verbal ideas, and geometry to visual 

ones (Barrera-Mora & Reyes-Rodríguez, 2013; Battista, 2007; Boester & Lehrer, 2007; 

Carraher & Schliemann, 2007; Cory & Garofolo, 2010; Goldin-Meadow, 2003; 

Sierpinska, 2000; Sfard, 1992; Zazkis, Dubinsky, & Dautermann, 1996), it seems natural 

to assume that speech could be predisposed toward algebraic ideas and gesture might be 

more adept at representing geometric ideas (Goldin-Meadow, 2003). Diagrammatic 

reasoning may thus also help students connect their algebraic and geometric reasoning. 
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 Similarly, Zazkis et al. (1996) observed that oscillating between visualization and 

analysis helped their students answer abstract algebra questions about the symmetry 

group of a square. They reported that most of their participants combined visual and 

analytic approaches into a single strategy. Based on their observations, they suggested a 

model for how learners may use these approaches. Initially, an individual may view 

visualization and analysis as two distinct strategies. They may use both approaches, but 

treat them as disconnected from one another. They may even be able to transition from 

one to the other within the same mathematical activity, albeit with immense mental 

effort. As time goes on and the individual moves more frequently between visualization 

and analysis, the individual may see these two approaches as progressively more 

integrated, and movement between strategies becomes more and more trivial. Finally, 

visual and analytic strategies may become so integrated that neither the individual nor 

any outside observer can reliably separate the two. 

Students’ difficulties integrating algebraic and geometric reasoning and 

generalizing mathematical concepts properly could be addressed via diagrammatic 

reasoning with algebraic and geometric inscriptions and dynamic geometric 

environments (DGEs) (Barrera-Mora & Reyes-Rodríguez, 2013; Châtelet, 2000; Chen & 

Herbst, 2013; Danenhower, 2006; David et al., 2014; de Freitas and Sinclair, 2012; 

Hollebrands, 2007; Lee, 1996; Olive, 2000; Panaoura et al., 2006; Sfard, 1995; Tabaghi 

& Sinclair, 2013; Tall, 2003; Tall & Vinner, 1981; Vitale et al., 2014; Zazkis et al., 

1996). Since reasoning necessarily involves the integration of algebraic and geometric 

representations, students should be encouraged to connect these approaches. While 

students typically experience difficulty in connecting algebraic and geometric reasoning, 
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experts appear to do so regularly to beneficial effect (Arcavi, 1994; Kuo et al., 2013; 

Lithner, 2008; Núñez, 2004; Redish & Smith, 2008; Sfard, 1993; Sierpinska, 2000; 

Szydlik, 2000; Wertheimer, 1959; Williams, 1991). In particular, geometric reasoning 

appears to provide guidance, while algebraic reasoning seems to encourage precision 

(Sierpinska, 2000; Tall & Vinner, 1981; Williams, 1991). Providing students with 

opportunities to transition between different forms of reasoning, thereby integrating these 

two approaches (Zazkis et al., 1996) may thus help them increase in mathematical 

proficiency and comprehension.  

As this section demonstrated, students’ difficulties in integrating algebraic and 

geometric approaches occur across a wide variety of contexts and mathematical domains. 

Since I researched students’ reasoning about the derivative of complex-valued functions, 

in the next section I review the math education literature on complex numbers. 

The Teaching and Learning of Complex Numbers 

There have not been a large number of educational studies that focus on complex 

numbers (Danenhower, 2006; Harel, 2013; Nemirovsky et al., 2012, Panaoura et al., 

2006; Soto-Johnson, 2014; Soto-Johnson & Troup, 2015). The studies involving clinical 

interviews appeared to suggest that students favor algebraic representations of complex 

numbers over geometric representations (Panaoura et al., 2006) and their Cartesian form, 

and have difficulty utilizing alternate mathematical forms of them efficiently 

(Danenhower, 2006). Furthermore, though most students do not seem to prefer geometric 

representations, research involving teaching experiments suggests that such reasoning 

may be encouraged through the use of a model complex plane (Nemirovsky et al., 2012) 
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or other embodied activities such as the usage of inscriptions and gestures (Soto-Johnson 

& Troup, 2014).   

In a study designed to identify problems that students in an introductory complex 

analysis course were likely to have, Danenhower (2006) observed that his participants 

had the ability to shift only between algebraic or Cartesian forms and polar form of 

complex numbers. A form is a particular way of representing a complex number. For 

example, the symbolic form uses the letter 𝑧 to refer to a single complex number, while 

Cartesian form represents complex numbers as 𝑥 + 𝑖𝑦. Other forms include polar form 

(𝑟𝑒𝑖𝜃) and exponential form (𝑟 cos 𝜃 + 𝑟 sin 𝜃). Most students compartmentalized these 

forms rather than viewing each piece as part of a larger coherent whole.  

Danenhower (2006) investigated students’ usages of Cartesian, polar, vector, and 

symbolic forms by asking students to convert various instances of 
𝑎+𝑖𝑏

𝑐+𝑖𝑑
 into either the 

form 𝑥 + 𝑖𝑦 or the form 𝑟𝑒𝑖𝜃, whichever the students preferred. He thought that students 

might recognize that some forms were more useful for certain operations than others. For 

instance, he expected that students would convert to polar form to divide two complex 

numbers, as division tends to be easier with polar form than with Cartesian form. Finally, 

Danenhower observed that while students were generally able to navigate between forms, 

they were still more proficient within each form than translating between them. 

Additionally, “nearly half did not have good judgment about when to shift to another 

form” (2006, p. 151). That is, contrary to expectations, students were not generally able 

to choose a form that simplified the problem, such as using Cartesian form for addition or 

polar form for multiplication. Instead, students seemed to choose an initial form and then 

switch between forms somewhat arbitrarily.  
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Danenhower’s (2006) claims were substantiated by Panaoura et al. (2006), who 

conducted a study that explored the ways in which high school students translated 

algebraic statements to geometric pictures and vice versa. For example, one of the tasks 

was set up to determine whether these students would recognize the algebraic equation 

|𝑧 − 1 + 𝑖| = √2 as a semicircle. Another corresponding task asked students to find the 

algebraic equation that defined a given semicircle. Panaoura et al. reported that “the 

geometric approach was used more frequently, while the pupils used the algebraic 

approach more consistently and in a more persistent way” (p. 681). This result suggests 

that the students were more often correct within their algebraic attempts at these 

conversion problems, or at least wrong in a more consistent way. Despite their apparent 

familiarity and comfort with their algebraic representations, they still attempted 

geometric lines of reasoning more frequently. Considering that students seem to favor 

algebra (Kuo et al., 2013; Panaoura et al., 2006), it is possible that students consider 

geometry to be an exploratory method, and thus appear to use geometric representations 

in exactly this fashion.  

 This assumption regarding the purpose of geometry may not even be harmful or 

incorrect.  Several researchers (Arcavi, 1994; Kuo et al., 2013; Lithner, 2008; Redish & 

Smith, 2008; Sfard, 1993; Sierpinska, 2000; Wertheimer, 1959) noted that mathematical 

experts relied on visual or geometric pictures to drive their intuition and overarching 

thought processes of a given mathematical topic or concept. It is therefore reasonable to 

suggest that students utilizing geometric thought processes in a discovery-oriented setting 

could have a similar effect. Szydlik (2000) also suggested that both experts and students 

with internal sources of conviction used algebra primarily as clarification for atypical 
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cases or disambiguation of these same cases. That is, geometry or metaphor drove their 

intuition and initial thought processes, and algebra served to increase precision of 

thought.  Under this frame of reference, it seems entirely natural to begin mathematical 

investigations with geometric representations and then transition back to algebraic 

reasoning over time. This benefit cannot be achieved, however, if students remain unable 

to integrate algebraic and geometric reasoning due to their tendency to compartmentalize 

these two modes of reasoning as separate from one another. 

Panaoura et al. (2006) found that “The phenomenon of compartmentalization 

indicating a fragmental understanding of complex numbers was revealed among pupils 

who implemented the geometric approach” (2006, p. 681). That is, their participants 

tended to treat geometric and algebraic representations as relatively separate systems, 

though they could occasionally extend a representation to a different form. For example, 

even after some students converted a geometric representation to an algebraic one, they 

still could not reverse this process to convert from algebraic back to geometric, even for 

the same complex number. Furthermore, like Danenhower’s (2006) students, Panaoura et 

al.’s participants did not seem to have a good idea of which representation they should 

have been working with at any given time, as they did not always utilize geometric 

reasoning productively.  

In light of Danenhower’s (2006) and Panaoura et al.’s (2006) work, I was 

interested in the development of my participants’ geometric and algebraic reasoning 

about the derivative of a complex-valued function. It has been noted, or at least implied, 

that geometric reasoning is often visual in nature, and that algebraic reasoning is more 

closely associated with verbal aspects (Barrera-Mora & Reyes-Rodríguez, 2013; Battista, 
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2007; Boester & Lehrer, 2007; Carraher & Schliemann, 2007; Cory & Garofolo, 2010; 

Goldin-Meadow, 2003; Sierpinska, 2000; Zazkis et al., 1996). Furthermore, Sfard 

suggested that thinking about a mathematical concept in an operational context is often 

verbal in nature, while thinking about this same concept as a structure rather than an 

operation is often visual. Sfard (1991) additionally stated that once a mathematical object 

is properly reified in a student’s mind, that student should be able to switch adeptly 

between operational and structural modes of thought, viewing each line of thinking as 

two sides of the same coin rather than two entirely different, disconnected, isolated ideas.  

However, Sfard (1992) pointed out that this reification of operational and 

structural viewpoints into a single mathematical entity seems to be inherently difficult for 

students to accomplish. Furthermore, she posited an association between algebraic and 

operational modes of thought, as well as between geometric and structural lines of 

reasoning. This conclusion was supported by Danenhower’s (2006) finding that students 

have difficulty translating between algebraic and geometric representations, and Panaoura 

et al.’s (2006) research suggesting that students compartmentalize geometric and 

algebraic representations rather than using them together effectively as a single system. 

Taking a historical perspective, Harel (2013) demonstrated via a sequence of 

teaching experiments that in-service teachers and pre-service mathematics education 

sophomores had difficulty viewing algebraic inscriptions such as 𝑥3 as a single number 

in certain contexts. However, through a sequence of activities based on the DNR (duality, 

necessity, repeated reasoning) framework and the historical development of complex 

numbers, his participants were able to learn how to extract a mathematical representation 

from a given context and to reason about the meaning of these representations. The 
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principle of duality refers to the interplay between the ways students reason 

mathematically, and the tools they use to understand mathematics such as theorems, 

conjectures, proofs, definitions, and problem solutions. Necessity refers to the idea that 

for students to learn a concept, they must have an intellectual need for it, much as Sfard 

(1992) suggested that for a student to transition from viewing a mathematical concept as 

a process to viewing it as an object (such as seeing a function as either a process or an 

object), students must have a reason to view the concept as more than a process. Finally, 

repeated reasoning is the principle that students must practice reasoning to learn and 

retain these concepts.  

Using these principles, Harel (2013) conducted a teaching experiment that 

consisted of work in small groups, discussions in which the whole-class took part, and 

lectures. In solving systems of cubic equations, most students adopted an approach based 

on trial and error, while some used algebra to reduce the equations to a more familiar 

quadratic form. However, Harel reported that students who used algebraic approaches 

abandoned their methods in favor of the trial-and-error approach introduced by other 

students in their working groups. Furthermore, students could not generalize the 

quadratic form to higher powers—they could not perceive that (𝑥3)2 + 𝐴𝑥3 + 𝐵 is 

quadratic with respect to 𝑥3. This suggests that they were unable to view 𝑥3 as a single 

entity, instead considering the representation as descriptive of the “cubing” operation. 

This observation is reflective of students’ difficulties in generalizing algebraic 

inscriptions observed in studies from other fields of mathematics, as discussed in a 

previous section in this chapter. 
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In keeping with these other studies, students also did not always seem aware of 

the meaning of certain algebraic inscriptions. In sharing a historically-based cubic 

formula, Harel (2013) expected students would be surprised that this formula did not 

yield all the roots of a cubic equation. However, he observed that the students did not 

show the expected surprise, and later determined that this was because they were not 

clear on certain logical principles such as the difference between necessary and sufficient 

conditions and the meaning of quantifiers. They were also not able to answer completely 

why numbers of the form 𝑎 + 𝑏√−1 could be considered a meaningful expression. The 

students simply stated that 𝑖 = √−1 to solve 𝑥2 + 1 = 0 “because that’s what we were 

told in school” (p. 30). Following a teacher prompt, they reflected that they were unsure 

why such a number was invented to solve an equation like 𝑥2 + 1 = 0 and no such 

number was invented to solve other equations with no solution such as 𝑥 = 𝑥 + 1. This 

further reflects students’ difficulties generalizing algebraic inscriptions and deriving 

structural meaning from them. 

In addition to these obstacles, students found it difficult to attach geometric 

meaning to operations such as addition and multiplication on complex numbers, and even 

to the assignment of a complex number 𝑎 + 𝑏√−1 to an ordered pair (𝑎, 𝑏). Harel (2013) 

determined that much of this difficulty was caused by students’ lack of understanding of 

the function concept, and the meaning of “one-to-one” and “onto”. Once this difficulty 

was addressed, students were able to produce a parallelogram rule for the addition of 

complex numbers and the proper way to rotate and dilate a vector representing a complex 

number under multiplication. 
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In another teaching experiment, Nemirovsky et al. (2012) demonstrated that 

embodied cognition helped students learn that multiplying by 𝑖 corresponds to a rigid 90° 

rotation of the entire complex plane. Their students used a “floor tile” as a representation 

of the complex plane in which students could physically move either themselves or stick-

on dots and string around to represent complex numbers. With this model, the students 

reasoned and tested ideas about multiplication by 𝑖, and eventually found that this 

operation corresponds to a 90° rotation of the entire complex plane. In addition to 

utilizing the “embodied” complex plane, students calculated algebraic equations 

corresponding to their embodied actions to test and corroborate their results. The 

students’ usage of embodied reasoning may have facilitated their cognitive development, 

as Nemirovsky et al. found that their students noticed when their corresponding algebraic 

reasoning and embodied actions disagreed. In contrast, previous literature suggests that 

students tend to have difficulty noticing when different styles of reasoning yield 

contradictory results.  

Similarly, Tall and Vinner (1981) stated that students can possess contradictory 

concept images of a single mathematical concept, and furthermore that it may often be 

difficult to make the contradiction apparent to the students. Danenhower (2006) found 

that students have difficulty translating between algebraic and geometric representations, 

possibly further obscuring the students’ ability to recognize a contradiction that might 

occur across the different types of reasoning two representations might naturally suggest. 

In the same vein, Panaoura et al. (2006) discovered that their students tended to view 

algebra and geometry as entirely distinct ways of thinking, suggesting that even if a 

student did notice a contradiction, it might be attributed to a change in the inscription 
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rather than any flaw in thinking (Soto-Johnson & Troup, 2014).  However, none of these 

projects utilized embodied reasoning in the style of Nemirovsky et al. (2012). Thus, it is 

possible that the students’ usage of the embodied complex plane itself helped them to 

recognize the discrepancy in reasoning between two representations. As a result of 

recognizing this inconsistency, these students managed to formulate a more correct 

understanding of multiplication by 𝑖 as a rotation rather than a reflection.  

 Since implementation of embodied cognition activities was helpful to 

Nemirovsky et al.’s (2012) students, I believed that allowing my participants to utilize a 

dynamic geometric environment (DGE) could help them connect algebraic and geometric 

reasoning more readily themselves. While I did not utilize a physical embodied complex 

plane, I did use computer software that has the capability to model transformations on the 

complex plane in real time, which allowed my participants to at least simulate potential 

embodied actions within a virtual environment. That is, they were able to interact with a 

virtual copy of the complex plane by moving the mouse with their hand, and thus in some 

sense manipulate a geometric inscription of an abstract environment through physical 

activity.  While this environment may not exactly be “embodied” in the proper sense of 

allowing for manipulation of an actual physical layout, it nonetheless allowed for an 

interactive, explorable environment via actual physical movement of the mouse. 

Furthermore, my findings suggest that this embodiment of their reasoning did help them 

integrate their reasoning in this way.  

As the DGE was not “embodied” as much as Nemirovsky et al.’s (2012) complex 

plane, it was possible that students may not have benefited from it as directly. That is, 

whereas embodied actions take place within the physical environment, interaction with a 
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DGE requires two levels of abstraction. First, a student needs to view their virtual motion 

within the DGE in tandem with their real world embodied action of moving the mouse. 

Second, the student needs to recognize a parallel between action they take regarding 

mouse movement and the corresponding actions they would take within the real world. 

Due to these extra layers of abstraction, it was possible that the benefits my participants 

derived from a DGE might not have paralleled the benefits experienced by Nemirovsky 

et al.’s students in using a physical representation of the complex plane. However, it 

seemed that my participants did benefit by grounding their reasoning via gesture, speech 

and inscriptions produced with the aid of GSP. 

On the other hand, I at least considered a DGE a few steps closer to an 

opportunity for an “embodied” experience, if still somewhat abstractly represented. It 

was considered a way to concretize certain “simulated” embodied actions (Alibali & 

Nathan, 2012; Bazzini, 2001; Botzer & Yerushalmy, 2008; Tall, 2003), to be discussed 

more in a later section.  A DGE allowed for testing of mathematical hypotheses and 

provides observable feedback as a direct result of the participants’ interaction with it. The 

nature of these tests was much more observable than any similar mental simulations the 

participants might otherwise have performed, and likely more reliable as well. Thus, 

Nemirovsky et al’s (2012) research functioned as further support for having included 

opportunities for my participants to actively manipulate a dynamic technological 

environment themselves during my formal interviews. Within this environment, my 

participants were guided toward developing reasoning about the derivative of a complex-

valued function. DGEs are discussed in greater detail in the following section. 
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Dynamic Geometric Environments 

In this section, I review research on the benefits of technology—DGEs such as 

Cabri, GeoGebra, or Geometer’s SketchPad (GSP)— in connecting differing 

representations and styles of reasoning as well as potential pitfalls to avoid in using this 

same technology. While students seem to have formed numerous misconceptions 

regarding foundational mathematical topics such as functions and limits, technology has 

been utilized with some success to curb these issues (Arcavi & Hadas, 2000; Barrera-

Mora & Reyes-Rodríguez, 2013; Cory & Garofalo, 2010; Heid & Blume, 2008; 

Hollebrands, 2007; Jones, 2000; Lagrange, n.d.; Olive, 2000; Tabaghi & Sinclair, 2013; 

Tall, 2003; Vitale et al., 2014). Some authors suggested that computer programs that 

provide dynamic construction tools seem to help these same students either correct 

previous misunderstandings or avoid them altogether (Arcavi & Hadas, 2000; Cory & 

Garofolo, 2010). Others warned of potential pitfalls of overemphasizing the usage of 

these programs, suggesting that computer over-usage may detract from the learning that 

naturally occurs within a traditional paper-and pencil environment (Kieran, 2007; 

Lagrange, n.d.; Olive, 2000). Much of the research included a caution that regardless of 

the choice of technology, the effects of the technology is dependent on how it is 

implemented in the classroom (Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; 

Vitale et al., 2014). At the very least, utilizing computers for pedagogical purposes does 

appear to change the nature of what is being learned. DGEs seem to emphasize different 

topics altogether than the physical environment, for better or for worse, but can still 

greatly benefit students if used appropriately (Arcavi & Hadas, 2000; Barerra-Mora & 
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Reyes-Rodríguez, 2013; Heid & Blume, 2008; Hollebrands, 2007; Lagrange, n.d.; Olive, 

2000; Pea, 1985; Salomon, 1990; Tabaghi & Sinclair, 2013; Vitale et al., 2014).  

Pea (1987) continued in this vein by describing various ways in which the 

existence of computer technology makes new mathematical teaching goals possible and 

gives students novel methods to explore concepts related to previously existing teaching 

goals. In particular, students manipulating computer programs may become more fluent 

in reasoning about mathematics, exploring mathematics, learning problem-solving 

methods, learning how to learn, and “integrating different mathematical representations” 

(p. 106) such as algebraic equations and diagrams. Pea claimed that “manipulable 

dynamically linked, and simultaneously displayed representations from different symbol 

systems are likely to be of value for learning translation skills between different 

representational systems” (p.110). The introduction of mathematical computer 

environments thus may provide rich opportunities for exploring the intuitive dynamic 

notions experts are already using to guide their mathematical thought (Fey, 1984; Sfard, 

1993). Along these same lines, Salomon (1990) suggested that DGEs might help students 

by providing interactivity, intelligent guidance, dynamic feedback, and multiple 

representations of mathematical objects.  

 Pea (1987) further stated that the usage of dynamic computer programs makes 

cognitive processes more visible within a clinical research setting. The problem that has 

always plagued any study of cognition still exists: thought processes are still invisible and 

can only be inferred. Fortunately, DGEs provide a new data source that contributes to the 

study of cognition. Within a dynamic environment set up with the express purpose of 

mathematical investigation, it was possible to observe participants’ activity within the 
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environment. Reasons for the ways in which they were exploring may have been inferred 

more reliably than within a paper-and-pencil setting, as the computer program 

encouraged input where a pencil could have easily been held unused.  

In addition, just as Vygotsky (1962) said that the zone of proximal development 

must involve progression of thought even with the removal of outside assistance, 

Salomon (1990) claimed that true cognitive change occurs when students’ thought 

processes are changed even outside the context of the computer program. Otherwise a 

risk of “deskilling” is present. That is, it is possible that a student could become 

dependent on the technology itself to drive his or her thought, and eventually may 

become altogether incapable of developing similar mental models without the technology 

upon which he or she has grown so reliant. Perhaps the positive effects a student 

experiences may simply fade with time. Still, computer technology provides more 

opportunities to expand a student’s zone of proximal development in areas where the 

technology allows the computer to function as a “more capable peer” who assists the 

learner.  

There were, however, concerns about what aspects of thought we might be in 

danger of losing due to the usage of technology in the teaching and learning of 

mathematics (Heid & Blume, 2008; Lagrange, n.d.; Kieran, 2007). For instance, Kieran 

(2007) worried that the shift in focus technology causes may come at the expense of more 

precise symbolic static forms. Heid (1984) found that students of a technology-intensive 

introductory calculus course failed to properly develop handwritten symbolic procedures 

over twelve weeks of working with muMath, graphing functions, and generating tables. 

These same students learned these procedures in three weeks with instruction focused 
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particularly on the procedures the students needed to learn. Heid and Blume (2008) 

suggested that technology such as spreadsheets may reduce students’ chances to 

manipulate symbolic forms, even while providing a new perspective on algebra.  

Nonetheless, technology may help overcome these same obstacles. While Heid’s 

(1984) students could not carry out the necessary symbolic manipulations by hand, they 

could still interpret and reason about the theoretical results. Given multiple 

representations of functions to consider, Yerushalmy’s (1991) eighth grade students 

could apply graphing techniques and solve related traditional problems, even though their 

instruction did not focus as much explicitly on graphing itself (as cited in Heid & Blume, 

2008). Technology expands students’ opportunities to investigate multiple 

representations, and offers a new perspective on mathematical conceptualization, 

representation, generalization, symbolic manipulation, and modeling. Even actions as 

simple as zooming, scaling, or scrolling can positively influence students’ reasoning.   

Used in the proper way, technology could present results in a way believable to 

the students and could help students discover firsthand in a dynamic way exactly why 

their intuitive notions can often be wrong. Students may be able to generalize more 

appropriately from a large number and variety of computer-generated examples (Heid & 

Blume, 2008). Technology provides students with the invaluable opportunity to see 

mathematics and discover it for themselves. Technological programs thus carry with 

them the hope of reducing students’ apparent reliance on teachers, textbooks, or other 

mathematical authority (Harel & Sowder, 2005). Instead of just being told by teachers 

how math works, they can investigate their theories and intuitions themselves, and maybe 

even discover why math works the way it does. Care must be taken, however, not to let 
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technology deprive students of other forms of reasoning (Heid & Blume, 2008; Kieran, 

2007; Lagrange, n.d.). 

Due to these concerns, much of the research made recommendations about how to 

use this technology in the proper way. For example, Arcavi & Hadas (2000) particularly 

recommended asking for predictions prior to events that are expected to feel counter-

intuitive to the students. In addition, they cautioned that students may not initially 

conduct worthwhile investigations with the provided tools without some guidance, and 

suggested asking the students questions that require predictions to prevent this problem. 

They added that under this scheme, dynamic geometric environments (DGEs) may help 

students build up or correct their own ideas, and refine their intuitions regarding the 

correctness or potential proofs of formal mathematical statements. 

Therefore, I gave my research participants opportunities to explore aspects of the 

derivative of a complex-valued function before interviewing them more thoroughly. This 

progression may have helped my participants to develop their reasoning regarding this 

topic and potentially allowed them to make more progress during the following task-

based interviews. Since the task-based interviews main intent was to observe how the 

students refine their reasoning about the derivative of complex functions over time, it 

seemed helpful to suggest potentially useful ideas or ask questions to encourage 

exploration of these ideas. This small amount of probing may have helped them avoid the 

potentially fruitless investigations against which Arcavi and Hadas (2000) warned, and 

possibly may have streamlined later interviews.  

Lagrange (n.d.) continued the cautionary theme by warning that computer 

programs may deprive students of learning how to interpret symbolic forms, as the 
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programs could lead the students to interpret symbols graphically rather than understand 

their original meaning. That is, he worried that computer programs could actually 

increase the gap between students’ algebraic and geometric reasoning, rather than help 

bridge it. He built a conceptual framework which assumes that students approach 

functions at three different levels of dependencies: “sensually-experienced” dependencies 

in a physical system, magnitudes, and various representations. Despite his previously 

noted concerns, Lagrange (n.d.) stated that technology can help students grasp the 

inherently difficult concepts of covariational reasoning provided that references to bodily 

activity are utilized, as he believed these are crucial to a proper understanding of 

functions. He did not resolve his and Kieran’s (2007) concern that symbolic forms would 

be interpreted graphically rather than dealt with, choosing simply to say that this is a 

valid concern worth keeping in mind when utilizing dynamic geometric environments.  

Thus, by grounding participants’ experience with DGEs via their real-world 

experiences, these DGEs may be able to render certain abstract mathematical ideas more 

concrete. This grounding seems to encourage a more vivid conceptual understanding of 

those abstract concepts. Tall (2003) noted that DGEs may encourage embodied reasoning 

about mathematical concepts. He connected features of DGEs to Bruner’s (1966) three 

modes of representations (as cited in Tall, 2003): symbolic, iconic, and enactive. 

Symbolic representations involve numerical, logical, or linguistic concepts; iconic 

representations provide visual or sensory information; enactive representations involve 

actions themselves as representation. 

 Tall (2003) noted that a DGE provides all levels of representation. The user’s 

experience with the interface itself provides an enactive representation, images 
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representative of selectable options constitute iconic representations, and keyboard input 

and the program’s internal processing are symbolic representations. He thus argued that 

such technology could support embodied reasoning through enactive and visual 

experiences such as “allow[ing] the user to interact in a physical way by pointing, 

selecting, and dragging objects onscreen to extend the embodied context of real-world 

calculus” (p. 9). However, Tall was also aware that there is a sense in which students’ 

experience with DGEs are not embodied, realizing that “applications have a largely 

symbolic interface, producing graphic output on the screen, but with little embodied 

input” (p.9, emphasis in original).  

It may further help students connect this form of reasoning with symbolic-

proceptual reasoning (the ability to see mathematical symbols as both a process and an 

object as in Sfard (1991)) and formal-axiomatic reasoning (the ability to argue logically 

towards a theorem from a set of axioms). Indeed, DGEs may be configured to support 

any form of reasoning (Tall, 2003), and provide warrants of truth for any form of 

reasoning. According to Tall, such warrants are established in embodied reasoning if 

behavior of an object is as expected, in symbolic-proceptual reasoning if a property of an 

object can be calculated to be as claimed, and in formal-axiomatic reasoning if a claim 

can be logically proved from the given set of axioms. Such reasoning can be supported 

via generic organizer programs or cognitive roots. Generic organizers allow students to 

manipulate and investigate examples and non-examples of some mathematical property 

or object. Cognitive roots are concepts salient to the student that also promote further 

development toward formal reasoning or embodied concepts. For example, local 
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straightness is a cognitive root for differentiation (Tall, 2003). Thus, Tall’s research again 

demonstrated that DGEs may support embodied reasoning. 

Some researchers (Hollebrands, 2007; Olive, 2000) further suggested that for 

pedagogical purposes, Geometer’s Sketchpad (GSP) in particular could help students 

ground their reasoning in the physical environment. Olive warned that GSP requires 

some basic knowledge of geometry to be used well, since it is possible to construct 

shapes, which either preserve or do not preserve its initial properties. The user must 

therefore possess the ability to decide which properties she wants her object to preserve 

before actually constructing it. He further noted that a computer makes it possible to test 

a large number of examples at once. This instantaneous feedback could be a major 

advantage of a dynamic geometric environment (DGE), possibly allowing students to test 

a previously overwhelming number of conjectures. This includes the ability to construct 

lines and circles and some proficiency in reading and using a two-dimensional graph. 

They should also be able to compare slopes of lines or areas and radii of circles. Overall, 

a typical high school geometry class should easily provide sufficient background to 

beneficially utilize GSP. My participants were all students who took an undergraduate 

complex analysis course, so it was expected that all of them had taken high school 

geometry at some point.   

Hollebrands (2007) catalogued high school honors geometry students’ usage of 

GSP and their associated strategies while they investigated geometric transformations. He 

reported that students used GSP measures to explore relationships, create and verify 

conjectures, and check the correctness of their constructions. He additionally found that 

strategies could be either reactive or proactive, and that GSP’s effects were related to the 
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types of strategies employed. Reactive strategies developed one step at a time, as students 

perform an initial action, then perform subsequent actions in reaction to what they see 

occur on screen. If a student expects something particular to occur for a given action, or 

makes predictions associated with a given action, he or she was said to be utilizing a 

proactive strategy. GSP appeared to hamper the reasoning of students who employed 

reactive strategies, while it supported the reasoning of students who employed proactive 

strategies.  

Thus, Hollebrands (2007) concluded that “the ability to measure and drag coupled 

with carefully crafted tasks and questions posed by the instructor is not enough to assist 

students in learning new mathematical concepts” (p. 190). He suggested directing 

students to reflect on the relevant relationships between these concepts and the 

technology they are using and make connections and distinctions between the 

mathematical and technological realms. He alluded to the importance of this distinction 

by noting that the GSP interface led students to believe that points can move, and are not 

simply locations in space, due to the fact that these constructed “points” can be labeled 

and then dragged around without changing their names. 

Jones (2000) agreed that to make progress with Cabri, his 12-year-old participants 

needed to be able to separate features of the software from mathematical geometric 

properties. Thus, he constructed three phases in his interviews to help his students form 

this distinction. In the first phase, he helped students gain familiarity with Cabri. In the 

second phase, he asked students to create a rhombus, a square, and a kite. Finally, he 

asked them to discover relationships between these quadrilaterals. He discovered that the 

DGE functioned as a link between their spontaneous reasoning (as in Vygotsky, 1962) 
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and their formal mathematical reasoning. That is, they began primarily with descriptions 

that did not involve any formal mathematical language, transitioned to explanations that 

utilized terminology that directly referenced the DGE, and finally arrived at a formal 

mathematical explanation that involved terminology independent of the DGE. This 

sequence mirrors the progression Tall (2003) detailed through the enactive, iconic, and 

symbolic modes of reasoning. 

A slightly different progression was demonstrated in Vitale et al.’s (2014) work, 

which reported on third- and fourth-graders usage of a dynamic geometric environment 

(DGE) to investigate their intuitions about geometric shapes. They began their interview 

by asking students assigned the “grounded integration” condition about “intuitive” 

concepts through familiar actions or problems. Following this, they attempted to help 

students ground their reasoning through embodied concepts. Finally, they presented the 

students with problems specifically designed to challenge students to distinguish between 

settings where it is or is not appropriate to apply their developed reasoning.  I followed a 

similar format for my dissertation study interviews. First, my students investigated 

familiar functions with GSP. They followed this with explanations of how the derivative 

is “rotated” and “dilated” with accompanying gestures. Finally, I challenged my 

participants to identify non-differentiable points, determine derivative values for a 

rational function, and reconstruct an algebraic formula for this rational function. 

In Vitale et al.’s (2014) research, students in the “numerical integration” condition 

were provided with symbolic measurements rather than embodied concepts. Vitale et al. 

noted that children tend to categorize objects based on characteristics which are 

noticeable, but do not distinguish them well from objects of a different type. In contrast, 
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adults or experts tend to classify the same objects based on less noticeable abstract 

properties that more properly distinguish between different types of objects. Heid and 

Blume (2008) observed a similar phenomenon in their students, who “frequently use[d] 

linear functions as prototypes for functions” (p. 79). They concluded that students could 

place overly restrictive criteria on a certain class of object by viewing certain properties 

of the presented example as though they were properties of the entire class.  

Vitale et al. (2014) found that students who were assigned the grounded 

integration condition were more likely to correctly identify the presented shapes than 

those assigned the numerical integration condition. They further felt that one of the most 

critical tasks given to the students in the grounded integration condition was the 

validation step, where students guided virtual hands into place to check that certain 

conditions were met. These hands simulated real-world gestures. For example, a student 

might place the two virtual hands at right angles to each other to check that a corner of a 

shape really was a 90° angle. Given that DGEs are two leaps of abstraction away from 

truly embodied actions, it is noteworthy that by the end of the study, most of the 

participants in this study actually performed the gestures represented by the virtual hands 

on the screen. Vitale et al. (2014) concluded that students need activities with salient 

intuitive ideas that nonetheless require formal reasoning. 

Furthermore, DGEs might help students bridge the apparent gap between the 

intuitive motion-oriented visual models of limit with the algebraic, motionless, formal 

definition. While Cory and Garofalo (2010) called the visual model naïve, even experts 

familiar with the formal algebraic definition often employ dynamic imagery when asked 

to describe how they think about limits (Presmeg, 2006). Cory and Garofalo (2010) used 



57 
 

 
 

a series of interactive, dynamic sketches “somewhat successfully” through the five stages 

of covariational reasoning about limits defined by Cottrill et al. (1996). While the 

students made progress through the stages of covariational reasoning, it remained unclear 

whether they strengthened the connections between their visual and verbal modes of 

thought.  

It is also possible that DGEs may emphasize geometric or visual representations 

and de-emphasize algebraic or verbal representations. Barrera-Mora and Reyes-

Rodríguez (2013) found that teachers working on problems in mathematical, 

hypothetical, and real-world contexts formed conjectures strongly based on visual 

representations (Arcavi & Hadas, 2003) they constructed in Cabri. However, they 

reported that these teachers, who were well-versed in either mathematics or engineering, 

did use Cabri in a beneficial way. The DGE in this case appeared to act as a reorganizer, 

essentially allowing teachers to formulate conjectures and create procedures with data 

and tools not available in most other non-technological contexts.  

Still, Barrera-Mora and Reyes-Rodríguez (2013) additionally found that not all 

teachers verified their constructions appropriately, contrasting Olive’s (2000) assertion 

that integration of algebraic and geometric representations emerges from a clash between 

conjecture and observation. Perhaps this integration did not emerge because the teachers 

were using different representations for different purposes, and thus did not realize 

contradictions that may have arisen. This possibility was substantiated by Dennis & 

Confrey’s (1996) assertion (as cited in Arcavi & Hadas, p. 40) that in the “coordination 

and contrast of multiple forms of representation…often one sees a particular form of 
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representation as primary for the exploration, whereas another may form the basis of 

comparison for deciding if the outcome is correct.” 

Heid and Blume (2008) added that while such technology could indeed help reify 

objects and processes as defined by Breidenbach, Dubinsky, Hawks, and Nichols (1992) 

by making multiple representations more accessible, representations developed by 

technology may advance students’ reasoning differently than representations developed 

by hand. However, they also noted that even physical representations can be unhelpful. 

They describe how Meira (1998) found that students do not grasp linear relationships any 

more easily when presented with a modeling winch or spring mechanism than when 

dealing with purely symbolic inscriptions.  

Heid and Blume (2008) further suggested that potential benefits a learner could 

enjoy from a dynamic geometric environment (DGE) may be dependent on the level at 

which the student allows the program to make decisions for him or her (Zbiek, 1998, as 

cited by Heid & Blume). For example, giving a student direct control over the parameters 

of a mathematical entity appears to allow him or her to identify invariant geometric 

properties. However, if a student does not consider the relationship between the actions 

he or she takes and the outcomes of those actions when dealing with multiple 

representations, those representations may remain compartmentalized (Schoenfeld, 

Smith, & Arcavi, 1993, as cited by Heid & Blume). In essence, the mathematical activity 

that students accomplish with a DGE, not the DGE itself, determines learning. 

Building on previous work (Sierpinska, 2000; Sinclair & Tabaghi, 2010), Tabaghi 

and Sinclair (2013) found that while interacting with an eigenvector sketch in Sketchpad, 

four undergraduate students and one graduate student were able to integrate the synthetic-
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geometric mode of thinking with the analytic-arithmetic mode. Synthetic-geometric 

reasoning corresponds roughly to reasoning about geometric figures or graphical 

representations of spatial objects, and analytic-arithmetic reasoning corresponds to 

reasoning via formulas. That is, synthetic-geometric reasoning is related to geometric 

reasoning as described by Carraher and Schliemann (2007) in that both involve reasoning 

about geometric properties of mathematical objects, while analytic-arithmetic reasoning 

is related to Battista’s (2007) algebraic reasoning due to the reliance of both on 

manipulation of algebraic symbols (Soto-Johnson & Troup, 2014).  

In summary, previous research suggested overall that technology can certainly be 

used to help students and teachers alike refine their mathematical ideas (Arcavi & Hadas, 

2000; Barrera-Mora & Reyes-Rodríguez, 2013; Cory & Garofalo, 2010; Heid & Blume, 

2008; Hollebrands, 2007; Jones, 2000; Lagrange, n.d.; Marrades & Gutiérrez, 2000; 

Mason,1996; Olive, 2000; Tabaghi & Sinclair, 2013; Tall, 2003; Vitale et al., 2014). 

With the help of Cabri, both teachers and students could more easily posit and test 

mathematical conjectures (Barrera-Mora & Reyes-Rodríguez, 2013; Jones, 2000). GSP 

helps students form a more vivid conceptual understanding of abstract ideas by making 

them appear more concrete (Hollebrands, 2007; Olive, 2000). Similar computer 

environments have additionally been found to aid students in determining whether their 

current mathematical intuitions are correct, as well as in evaluating or creating formal 

proofs (Arcavi & Hadas, 2000; Battista, 2007; Laborde, 1998; Mariotti, 2001, 2002; 

Marrades & Gutiérrez, 2000). Cory and Garofolo (2010) found that a series of dynamic 

sketches helped students advance their level of geometric reasoning, and Pea (1987) 

claimed that technology could naturally emphasize dynamic ideas more than static ones. 
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While it has been suggested that technology could damage students’ ability to learn 

mathematical concepts (Kieran, 2007; Lagrange, n.d.), it appears that many more 

researchers reported that technology could in fact be used to help students refine their 

intuitions of these concepts (Arcavi & Hadas, 2000; Barrera-Mora & Reyes-Rodríguez, 

2013; Cory & Garofalo, 2010; Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; 

Lagrange, n.d.; Marrades & Gutiérrez, 2000; Mason,1996; Olive, 2000; Tabaghi & 

Sinclair, 2013; Tall, 2003; Vitale et al., 2014). Finally, allowing students to use 

technology may help reduce students’ reliance on mathematical authorities such as 

teachers or textbooks (Pea, 1987).  

Not all effects of technology are necessarily positive, though. Computers can 

easily test large numbers of examples at once, so they could potentially exacerbate 

students’ existing issues with improper generalizations (Clements & Battista, 1992; 

David et al., 2014; Lee, 1996; Olive, 2000; Radford, 1996a; Yerushalmy & Chazan, 

1993). Furthermore, students may become reliant on the technology used to teach them to 

the extent that they cannot reason mathematically without that same technology 

(Salomon, 1990). Thus, technology should be used carefully, and students should be 

guided in its use. Used carefully, students can investigate aspects of mathematical 

thought that did not previously occur to them, and refine or correct their existing 

mathematical interpretations. Allowing my students to use technology may have even 

elucidated some aspects of their cognition that would not otherwise have been noticeable. 

In addition to utilizing technology to enhance my inferences about my participants’, I 

carefully attended to their produced gestures. This usage of gesture and technological 

action gave me a greater ability to determine whether my participants were utilizing 
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algebraic or geometric reasoning at certain points in time, for example. Literature on 

gestures and how they connect to thought and communication is discussed in the 

following section.  

Gesture 

In this section, I discuss research on the relationship between gesture and 

inscription usage, the effects of gesture on cognition, and the possibility of using gesture 

to help students bridge the conceptual gap between algebraic and geometric reasoning. 

Studies in gesture suggested various ways I could have complemented my planned study, 

such as connecting algebra to geometry via diagrammatic reasoning (Châtelet, 2000; 

Chen & Herbst, 2013; de Freitas & Sinclair, 2012; Dörfler, 2001; Roth & McGinn, 1998; 

Samkoff et al., 2012; Zazkis et al., 1996), or simply drawing stronger conclusions from 

the additional data that gesture provides. Gesture itself was considered by some to 

naturally arise due to thinking, and therefore has the capability of physically manifesting 

otherwise invisible cognitive processes, or at least providing more information than 

speech conveys alone (Alibali & Nathan, 2012; Goldin-Meadow, 2003; Keene, 

Rasmussen, & Stephan, 2012; Roth, 2001). As Keene et al. claimed, “gestures can be 

used as a window into what students in a classroom are thinking” (p.367). 

According to much of the previous gesture research, gestures can also inform 

inscriptions. Chȃtelet (2000), for example, suggested that certain gestures may be 

inherent in particular diagrams. A dotted line might convey motion that could then be 

expressed in a corresponding iconic hand gesture in the direction of the line. One vector 

could represent the way another vector rotates and dilates when the two are multiplied 

together; this motion could be expressed with a flick of the wrist to convey rotation 
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(Soto-Johnson & Troup, 2014). In this way diagrams can “capture” (Chȃtelet, p.10) or 

“transfix” (Chȃtelet, p. 10) gesture. Similarly, Sinclair and Tabaghi (2010) suggested that 

diagrams provide a link between gestures and speech for mathematicians reasoning about 

eigenvectors. Chen and Herbst (2013) further stated that diagrams and gestures can work 

together to bring a diagram to life, and Roth and McGinn (1998) reported that 

inscriptions can help coordinate speech and gesture.  

In contrast, Soto-Johnson and Troup (2014) stated that gesture served as the link 

between inscriptions and speech. Their participants initially reasoned just with words, 

then began building a diagram when this was no longer sufficient. Their algebraic 

inscriptions and gestures both served to support their construction of a geometric 

inscription of a mathematical equation involving complex numbers. As they constructed 

this diagram, they appeared to act out the gestures their diagrams may have captured. 

While Soto-Johnson and Troup’s (2014) participants ultimately integrated algebraic and 

geometric reasoning, students’ difficulties with viewing both types of reasoning as part of 

a single system is long-standing, well-documented, and exists across a variety of 

mathematical topics (Danenhower, 2006; David et al., 2014; Dubinsky & Harel, 1992; 

Gray & Tall, 1994; Kuo et al., 2013; Larkin et al., 1980; Otte, 1993; Panaoura et al., 

2006; Sfard, 1991, 1992, 1995; Sfard & Linchevsky, 1994; Sierpinska, 2000; Simon & 

Simon, 1978; Tall & Vinner, 1981; Vygotsky, 1962) as discussed earlier in this chapter.  

Gesture itself could be utilized to discover and describe the ways participants 

reason, both algebraically and geometrically (Alibali & Nathan, 2012; Goldin-Meadow, 

2003; Keene, Rasmussen, & Stephan, 2012; Roth, 2001). While Clement (2000) 

defended clinical interviews as a legitimate means to collect data on otherwise invisible 
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cognitive processes, Goldin-Meadow’s (2003) and others’ work (Alibali & Nathan, 2012; 

McNeill, 1992, 2005; Roth, 2001) made the case for including gesture along with speech 

in the analysis of these interviews. Much of this research strongly suggested that gesture 

and speech form a single, integrated system.  

In one study, (Goldin-Meadow, 2003) participants were asked to describe a 

picture or a short animated clip under two conditions: gesture permitted and gesture not 

permitted. Overall, those who were allowed to gesture were more easily able to recall and 

describe the picture or short they were shown, whereas those who were not allowed to 

gesture exhibited stilted, less natural speech patterns and apparently more difficulty 

remembering the information in some cases. That is, not allowing speakers to gesture 

negatively impacted their ability to speak. This phenomenon suggests that gesture and 

speech are essentially tied to the same system. Each facet of this system of 

communication depends on the other. This is not to say that gesture and speech always 

convey the same information. In fact, discrepancies between the information expressed in 

speech and the information communicated by co-occurring gesture arise fairly frequently. 

Goldin-Meadow dubbed these occurrences as gesture-speech mismatches. 

In another of her experiments, Goldin-Meadow (2003) observed teachers’ and 

students’ gestures as they interact with each other, paying particularly close attention to 

the production of gesture-speech mismatches. She found that both teachers and children 

produce these mismatches, and that children who mismatch more frequently seem to be 

more primed to learn new ideas than those students who reliably match gesture with 

speech. Furthermore, teachers were seen to modify their explanations based on the 

children’s produced gestures, often entirely unconsciously. It was not uncommon for 
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teachers to express one potential solution strategy in speech, and present an entirely 

disparate solution strategy in gesture for the exact same mathematical task. Sometimes 

the strategy presented in speech was correct and the strategy presented in gesture was not. 

The children would on occasion fixate exclusively on the strategy presented in gesture 

and ignore the speech-presented strategy altogether, regardless of whether these strategies 

were correct. Overall, however, the gesture utilized by both teacher and student seemed 

beneficial to the communication between them. 

While gesture seems to be primarily used for communication, Goldin-Meadow 

(2003) theorized that perhaps this is not in fact its reason for existence. She noted that 

while speakers gesture less frequently when alone than when talking to others, the 

difference between these situations in numbers of gestures produced is small (though 

statistically significant). She explained this by suggesting that gesture is primarily caused 

by thought, though its main function appears to be communication. Others might have 

said that there is no real difference between thought and communication, defining 

invisible thought merely as discourse with oneself (Sfard, 2008). Regardless of how we 

define communication, discourse, and thinking as a social construct, the fact remains that 

the occurrence of gesture certainly appears to reduce cognitive load.  

In yet another experiment on gesture, Goldin-Meadow (2003) asked participants 

to remember a random string of letters (or words for younger participants) under the same 

two conditions as before: gesture permitted and no gesture permitted. The participants 

were even given an unrelated task to perform between memorization and recall to prevent 

certain confounding variables. For example, requiring the participants to do something in 

between prevented them from storing physical information in some overly concrete way, 
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such as through a sustained hand shape or held gesture. Furthermore, it allowed for 

sufficient time lag for the experiment to test actual short-term memory. Without the time 

lag, participants might be able just to parrot back the proper words without ever really 

registering those words in any sort of memory, consciously or unconsciously.  

With these confounding variables accounted for, Goldin-Meadow’s (2003) results 

are compelling. Those who were allowed to gesture could more easily recall the string of 

letters or words they had memorized than those who were denied the ability to gesture. 

According to similar experiments (Keene, Rasmussen, & Stephan, 2012), gesture is 

capable of lightening cognitive load for both verbal and visual information. For example, 

taking the perspective that thinking and discourse are equivalent as Sfard (2001) outlined, 

Keene et al. detailed how taken-as-shared gestures affected their participants’ 

understanding of concepts related to differential equations. Within the context of my 

study, this suggested that allowing the participants the ability to gesture and create 

diagrams (which Châtelet (2000) refers to as “gesture captured mid-flight”) would 

reducee the cognitive strain, thereby allowing them to more easily explore and think 

about novel mathematical ideas. Interviewing my participants in pairs may have further 

increased the frequency with which they gestured, however slightly. Even if the increase 

was small, it seemed worthwhile to give my participants the opportunity to leverage the 

natural benefits that arise from gesture. Indeed, my participants seemed to benefit from 

producing iconic gestures of rotation and dilation when reasoning about how various 

complex-valued functions map circles, for example. 

As students become more familiar with a certain mathematical procedure, they 

may not need to gesture as much to support their reasoning (Alibali & DiRusso, 1999; 
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Marrongelle, 2007; Soto-Johnson & Troup, 2014). Both Marrongelle and Alibali and 

DiRusso investigated students’ usage of gesture, but reported contradictory findings. 

Alibali and DiRusso saw that students gestured less as they became more familiar with a 

counting task, while Marrongelle observed no such reduction in gesture while her 

participants investigated differential equations. However, Marrongelle did observe a 

shifting in the purpose of gesture. In particular, she reported that her participants 

appeared to utilize graphs and gesture mainly to support their reasoning while they 

attempted to develop an algorithm, but primarily to clarify their ideas when applying an 

algorithm they had already developed previously. In the latter situation, her participants 

appeared to use the algorithm itself to reason.  

In addition to noting a reduction in gesture as their undergraduate calculus 

students progressed through a series of tasks involving related rates, Garcia and Engelke 

(2012) also observed that their participants gestured more frequently when they were 

stuck on a problem. Soto-Johnson and Troup (2014) found that undergraduate complex 

variables students’ gestures did not reduce in frequency overall, but did change in 

character from predominantly iconic (representative gestures) to primarily deictic 

(pointing gestures). Vitale et al. (2014) reported that the purpose of gesture began 

primarily as a way to remind themselves of a geometric concept and that as this need 

faded, gesture’s primary purpose transitioned into a tool for validation. This suggested 

that Marrongelle’s (2007) and Alibali and DiRusso’s (1999) findings may not be entirely 

contradictory, as Soto-Johnson and Troup’s participants’ iconic gestures did reduce as 

they progressed through the tasks, but gestures overall did not. Furthermore, the purpose 

of the gestures in Soto-Johnson and Troup’s research appears to corroborate 
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Marrongelle’s findings regarding their purpose: the participants utilized iconic gestures to 

help them reason through novel tasks, while later they applied deictic gestures to better 

communicate their ideas to one another. 

Alibali and Nathan’s (2012) research provided further evidence that analysis of 

gestures naturally fits within an overarching framework of embodied cognition. For 

example, pointing gestures suggest that thought is grounded in the physical environment 

in some capacity, especially when Wilson’s (2002) moderate interpretation of embodied 

cognition is considered in conjunction with Alibali and Nathan’s writings. In particular, 

Wilson wrote: 

by doing actual, physical manipulation, rather than computing a solution in our 

heads, we save cognitive work. However, there is also a sense in which these 

activities are not situated. They are performed in the service of cognitive activity 

about something else, something not present in the immediate environment (p. 

629, 2002).  

Similarly, Alibali and Nathan (2012) argued that environments and actions may be 

simulated rather than directly experienced, such as when one may imagine walking down 

an aisle in an organized roomful of chairs, without actually being present in such a room. 

Drawing upon previous real-life experience, one may even imbue these imagined chairs 

with shape, feel, and texture, and perhaps even count the number of rows of chairs in this 

imaginary room. One could easily imagine a person actually pointing at various locations 

in space as he or she counts the chairs that exist only in his or her mind. In this way, 

representational gestures could arise from mentally simulated embodied actions. 

Metaphoric gestures and language, such as one feels of speaking “up,” “down,” or 

“blue,” could develop from environmentally based conceptual metaphors in a similar 

way. For example, the emotion of sadness could reasonably convey the idea of someone 
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in a posture which is not altogether upright, but rather somewhat slouched or literally 

“down”.  

 So, if an imaginary mental picture triggers a gesture, why would that gesture not 

also be imaginary? Should the individual not simply imagine pointing at rows of chairs 

within his or her mind rather than actually pointing at areas of empty space entirely 

unrelated to the purpose of the gesture? Alibali and Nathan (2012) felt that when a 

thinker is simulating or “reliving” an event, cognitive load may increase in response, to 

the point that the speaker produces a gesture to lessen this burden. This line of reasoning 

was backed by Goldin-Meadow’s (2003) claim that gesture can indeed lessen cognitive 

strain, and can therefore be produced as the result of thinking, rather than merely utilized 

for the purpose of facilitating communication between individuals. Like Alibali and 

Nathan, Goldin-Meadow also claimed that gesture can provide a window into the mind, 

for similar reasons. In particular, because gesture is often produced as a result of 

thinking, it could provide context clues to aid in inferences regarding the nature of the 

thought that triggered that gesture.  

 Alibali and Nathan (2012) further stated that a gesture triggered by a simulated 

event or mental image typically seems to be representational in nature, and that many of 

the produced representational and metaphorical gestures they observed implicitly utilized 

the linguistic phenomenon known as fictive motion. There may therefore be a natural 

connection between the use of gesture and the tendency to rely on language employing 

fictive motion, which also seems to be metaphoric or representational in nature. This 

relationship begins to feel stronger as one imagines an experienced hiker trying to 

describe to his or her friend the shape of the trail as it runs up the mountainside. It is easy 



69 
 

 
 

to imagine that his or her finger may really move upward in a somewhat winding 

trajectory as he or she recalls his previous experiences along the trail mentally. In 

producing this gesture, the hiker has converted the merely metaphoric phenomenon of 

fictive motion into the very real motion of his finger.  

 Even within the context of such a commonplace example we see a completely 

natural dynamic description of a mountainside trail that is entirely static and unmoving.  

However, when a hiker speaks of an unmoving trail and moves his or her finger to 

describe it, no one seems to have any trouble reconciling the fact that the described entity 

is static and the way in which it is described is dynamic. In this light it seems strange that 

students would so regularly have difficulty pairing dynamic geometric mathematical 

entities with their static algebraic definitions. Therefore, Alibali and Nathan’s findings on 

gesture serve to suggest that student-produced gesture itself could help bridge the 

conceptual gap between geometric and algebraic representations that seems to plague 

students so commonly.  

Núñez (2004) noted that there is a parallel conceptual gap between experts’ ideas 

of standard 𝜀 − 𝛿 definitions of continuity and students’ ways of thinking about the same 

topic. As discussed previously in this chapter, mathematical experts typically seem to 

view these very algebraically presented definitions in geometric, dynamic, or generally 

visual ways. In contrast, students appear to favor algebraic representations over 

geometric representations (Kuo et al., 2013; Panaoura et al., 2006). At first glance, it may 

feel somewhat surprising that experts would so commonly take a view that does not 

directly reflect the formal definition. That is, if the formal definition is so algebraic in 
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nature, why do experts consistently pursue geometric modes of thought? Núñez (2004) 

compared this phenomenon to the linguistic notion of “fictive motion.”  

Fictive motion (Talmy, 1988, 2003) occurs when a speaker refers to an unmoving 

object as though it were moving, such as when a native English speaker might say quite 

naturally that “the fence runs along the road,” or “the trails winds up the mountain.” 

Neither the fence nor the trail is actually moving, yet they are attached to active verbs, 

which inarguably convey a sense of motion. In the context of mathematics, a professor 

might speak of a graph that “approaches” or “gets closer to” an asymptote. Just as in the 

context of everyday speech, the professor does not mean to say that the points of the 

graphs themselves are jostling up and down or streaming steadily toward the limit value 

defined by the asymptote. Rather, the everyday English speaker is conveying that as one 

moves along the road, the traveler will find more of the fence, or that as a hiker winds up 

the mountain, they will be on some part of the same trail the entire way.  

Similarly, the mathematics professor is attempting to communicate the idea that 

for any error bound, one can always take a domain value large enough so that the 

associated range value is within that selected error bound. Formally, for every 𝜀 > 0 

there exists a 𝛿 such that if 𝑥 ≥ 𝛿 we have |𝑓(𝑥) − 𝑀| < 𝜀, where 𝑀 is the range value 

of the asymptote. In attempting to avoid any occurrence of fictive motion, we have 

algebraically defined what it means for a function to “approach” 𝑀 as 𝑥 approaches ∞. 

So, it would seem that algebraic and formal definitions could simply be the natural 

consequence of avoiding any reference to fictive motion. By purposefully attempting to 

be formal and precise and removing the intuitive, immediately understandable language 
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that involves fictive motion, we arrive at a formal, precise, and much less intuitive or 

dynamic algebraic definition.  

It could even be argued that this less intuitive definition is more mathematically 

correct; Núñez (2004) went so far as to say that points cannot actually move since points 

are not actually real. It could also be said that since points are defined as locations in 

space, once one moves (at all), he or she stops occupying the space where they once were 

and begin occupying a new space, and are thus at an entirely new and different point. 

Different locations means different points, so points, being defined by their location 

alone, do not and cannot move. However, Núñez also claimed that there is a metaphorical 

notion of something moving as successively larger values of 𝑥 are taken. Perhaps experts’ 

geometric lines of thought simply arise from their drive to restore the intuitive sense of 

the definition that was lost when fictive motion was removed from the language. The 

algebraic formal definition may supply precision and clarify ambiguous or pathological 

cases, but geometric ideas and the associated fictive motion could provide a powerful 

source of intuition and suggest natural ways of thinking about associated mathematical 

problems.  

 Thus, while there seems to be a conceptual gap between students’ use of algebraic 

and geometric reasoning, Núñez (2004) felt that fictive motion might help explain this 

chasm. He noted that while algebraic ideas and formal definitions provide precision and 

guidance, geometric ideas in conjunction with fictive motion provides a powerful source 

of intuition. Goldin-Meadow (2003) suggested that since gesture and speech form a 

single integrated system used for both thought and communication, gesture can be 

analyzed in addition to speech as a second source for inferring student’s thought 
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processes. Garcia and Engelke (2013), Alibali and DiRusso (1999), Marrongelle (2007), 

and Soto-Johnson and Troup (2014) all suggested that gestures can help support 

mathematical reasoning, particularly in novel contexts. Alibali and Nathan (2012) added 

that thought appears to be grounded in the physical environment or embodied experiences 

within it, even though these actions and the environment could sometimes merely be 

mentally simulated. Additionally, they noted that gesture occurring in tandem with a 

mental simulation tends to be representational in nature, echoing Núñez’s thoughts on 

fictive motion. Finally, many researchers (Chȃtelet, 2000, Chen & Herbst, 2013; de 

Freitas & Sinclair, 2012; Roth & McGinn, 1998; Sinclair & Tabaghi, 2010) suggested 

that inscriptions link words and gestures, while Soto-Johnson and Troup (2014) posited 

that gestures provide the connection between words and inscriptions. I chose to employ 

embodied cognition as my theoretical perspective for this project because it allows me to 

interpret both algebraic and geometric reasoning made apparent by gesture and actions 

taken within a dynamic technological environment such as Geometer’s Sketchpad (GSP). 

Theoretical Framework 

Due to the nature of my research questions, it was important for me to choose a 

framework that allowed me to connect reasoning and inscriptions. In this section, I detail 

the nature of each aspect of my framework as well as the connections between them. In 

particular, the framework of embodied cognition both served as the lens through which I 

interpreted my data and potentially aided my participants in developing geometric 

reasoning for the derivative of complex-valued functions. Furthermore, GSP provided 

inscriptions through which my participants investigated the derivative of these complex-

valued functions, and both their technological actions and their gesturing helped me infer 



73 
 

 
 

the nature of their reasoning and their usage of inscriptions. Finally, both gesture and 

inscriptions may have helped my participants bridge the gap so many students seem to 

experience (Danenhower, 2006; Panaoura, et al., 2006; Sfard, 1992) between their 

algebraic and geometric reasoning strategies (Alibali & DiRusso, 1999; Châtelet, 2000; 

Chen & Herbst, 2013; de Freitas and Sinclair, 2012; Gibson, 1998; Goldin-Meadow, 

2003; Roth & McGinn, 1998; Samkoff et al., 2012; Zazkis et al., 1996). In this section, I 

supply a brief summary of embodied cognition and connect this theoretical perspective to 

diagrammatic reasoning with dynamic geometric environments (DGEs). In each 

subsection, I additionally detail the utility of each within the context of my project. 

Embodied Cognition 

In essence, research under an embodied cognition perspective is fundamentally 

concerned with some relationship between reasoning and actions taken within the 

physical environment (Anderson, 2003). However, the nature of this relationship differs 

between researchers; thus these alternative views must be carefully considered 

(Anderson, 2003; Wilson, 2002). Particularly, some researchers suggested that an 

organism’s mental models are directly influenced by the organism’s experience with the 

physical environment (Alibali & Nathan, 2012; Lakoff & Nuñez, 2000; Wilson, 2002). In 

reviewing several claims made within the context of embodied cognition, Wilson noted 

that even cognition that occurs solely within the mind is still body-based. She referenced 

as evidence the quality of “reliving” (p. 633) certain memories, the progression of skills 

from deliberately applied to automatic, and the usage of mental imagery in problem-

solving tasks. She further stated that these “domains of cognition listed above are all 

well-established and non-controversial examples of offline-embodiment” (p. 634), and 
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additionally claimed the assumption that cognition must be analyzed as an inextricable 

part of the environment is “deeply problematic” (p. 1). Lakoff and Nuñez suggested the 

cognitive mechanism of metaphorical projection—doing mathematics with metaphors of 

mathematics that are based on our bodily interactions with our world, such as 

conceptualizing an abstract set as having physical existence, or envisioning a point 

moving along some path in space.  

To further describe embodied cognition, Soto-Johnson and Troup (2014) 

summarized how  

…other researchers (Châtelet, 2000; de Freitas & Sinclair; 2012; 

Nemirovsky et al., 2012) avoid referencing mental models in favor of 

discussing only the physical experience of the learner, choosing to view 

learning and experience within the environment as inherently inseparable. 

In other words this latter group of researchers view knowing as doing, 

which is observable unlike mental models. Nemirovsky et al. elaborate on 

this phenomenological view by describing how a learner might project 

some “realm of possibilities” (p. 291) onto some perceived environment. 

This realm of possibilities is fluid, potentially changing in real-time in 

response to interactions with the environment. The creation of 

inscriptions, interaction with inscriptions, and produced gestures could 

influence these realms of possibilities (p. 112).   

Under the view of cognition that relates mental models to an organism’s experience with 

the environment, DGEs, gestures, and inscriptions all function as tools to help a thinker 

lighten his or her cognitive load by manipulating the environment in beneficial ways. The 

existence of inscriptions saves work by allowing a learner to avoid storing certain 

information in short-term memory, while produced gesture may itself reduce cognitive 

load in a similar way (Goldin-Meadow, 2003).  Alibali and Nathan (2012) added that 

mental simulations (such as reliving an event as described by Wilson (2002)) may 

increase cognitive load to the point a gesture is produced to lessen it. Gesture can 

additionally provide a window into the mind, as gesture seems to be produced as a result 
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of thinking (Goldin-Meadow, 2003). In other words, gesture may serve as an external 

representation of an internal representation. Alibali and Nathan (2012) further stated that 

a gesture produced in this fashion typically seems to be representational in nature. Thus, 

student-produced gestures could help students bond the gap between geometric and 

algebraic representations that seems to exist in students’ minds.  

DGEs, gestures, and inscriptions do not merely serve to reduce cognitive load. 

Wilson (2002) noted that one of the most powerful and under-utilized claims that is made 

within the perspective of embodied cognition is that even “offline cognition is body 

based” (p. 632). That is, thought that occurs invisibly, outside the realm of the physical 

environment, is still strongly driven by bodily experience. Thus, while many cognitive 

theories positioned the body as a servant of the mind where mental schema are adapted 

based on perceived experience (Piaget & Cook, 1952; Sfard, 1992; von Glasersfeld, 

1995), this view of embodied cognition reverses these roles and places the mind as 

subservient to the body. Instead of mental schemas determining bodily actions, mentally 

simulated bodily actions are crucial to the functioning of the mind.   

Under the latter view, instead of functioning to reduce cognitive load or prime 

mental mechanisms, bodily experience is itself an inextricable part of the learning 

process. Because embodied reasoning is seen as fundamentally phenomenological, 

research under this view is primarily concerned with participants’ personal experience 

with mathematics, rather than the details of any particular cognitive mechanism. The 

focus of research on diagrams, gestures, and inscriptions might seek to discover the 

nature of participants’ personal experience with mathematics, utilizing their embodied 

actions as a means of inference.  



76 
 

 
 

Furthermore, diagrams, gestures, and inscriptions are interrelated and could act as 

a driving force in refining a learner’s projected realm of possibilities. The creation of a 

diagram could “capture” gesture (Châtelet, 2000), and alteration of a diagram could 

create new possibilities for further actions and previously unnoticed relationships 

between mathematical objects (de Freitas & Sinclair; 2012). Nemirovsky et al.’s (2012) 

work suggested that embodied actions might help students integrate algebraic and 

geometric reasoning. For example, an embodied complex plane such as the one used by 

Nemirovsky et al. may assist students in making connections between algebraic and 

geometric inscriptions. The usage of diagrams may aid students in accomplishing this 

same goal (Soto-Johnson & Troup, 2014). 

The difference in these views appears to be one of focus: one view is concerned 

with developing a formal theory of mental models and cognitive mechanism as 

influenced by embodied action, while the other, more phenomenological view focuses 

exclusively on lived, personal experience. Furthermore, the two views do not seem 

entirely incompatible: Nemirovsky et al. (2012) noted the existence of an “explanatory 

gap” (p. 2) between formal, more traditionally scientific accounts of a phenomenon and 

the subjective experience of the same phenomenon. An impersonal description of pain as 

“the firing of C-fibers” (p. 2) does not invalidate or even take precedence over someone’s 

personal experience with pain, nor vice versa. Similarly, postulations about the cognitive 

way the mind responds to bodily actions should not be seen as contradictory to inferences 

made about a learner’s personal experience with his mind and environment.  However, 

embodied cognition itself appears to be defined differently within each view. While all 

perspectives of embodied cognition appear to assert that a learner’s experience with the 
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physical environment is essential to the learning process, they differ regarding how this 

cognition takes place. Do embodied actions drive mathematical thought located within 

the mind, or do the embodied actions themselves constitute the mathematics? 

In either case, diagrams, gestures, and inscriptions seem to benefit students of 

mathematics, whether by “greas[ing] the wheels of the thought process” (Wilson, 2002, 

p. 629) or by helping students experience otherwise abstract mathematics within the 

physical environment. For my research, I viewed embodied cognition to include both 

bodily actions taken within the physical environment for the purpose of doing 

mathematics and reasoning about mathematics, which I assumed was based on our 

participants’ subjective experience with their world. I identified with Lakoff and Nuñez’s 

(2000) argument that students’ understandings of mathematics are based on their personal 

experience with the world. I additionally adopted Wilson’s (2002) view that reasoning is 

body-based, including that which does not take place within the immediate physical 

environment. This view seems to suggest that actions taken within a virtual environment, 

such as a dynamic geometric environment (DGE), could reasonably be abstracted back 

by students to actions taken within the real world.  

I further believed both that perceptuo-motor activity can influence reasoning and 

that this reasoning influences bodily actions. Thus, diagrammatic reasoning, produced 

gesture, inscriptions, and algebraic and geometric reasoning were all directly relevant 

under my views of embodied cognition, and their usage allowed me to make inferences 

regarding the nature of my participants’ reasoning methods. I acknowledged Nemirovsky 

et al.’s (2012) position that there is a “mechanistic” side and a phenomenological side to 

embodied cognition, and agreed that these two accounts are not necessarily contradictory. 
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I did not postulate any cognitive mechanisms driven by my participant’s embodied 

actions. Rather, I suggested a relationship between how my participants utilize DGEs, 

gestures, and inscriptions. As the view of embodied cognition that knowing is doing 

assists research projects intended to investigate the ways in which students utilize 

reasoning, DGEs, speech, gestures, and inscriptions, I chose to adopt this perspective for 

my research. To this end, I focused my analysis on my participants’ observable 

diagrammatic actions and produced gestures, particularly those actions which appeared to 

help them create diagrams justifying certain algebraic statements involving complex 

numbers.  

Recent research in the field of complex numbers suggested that this perspective 

possesses practical teaching applications. Nemirovsky et al.’s (2012) study demonstrated 

that allowing students to utilize a physical representation of the complex plane helped 

these students successfully reason geometrically about multiplication by the complex 

number 𝑖. Furthermore, while these students did not stop reasoning about this problem 

algebraically as well, they noticed when an inconsistency arose between the answer they 

obtained via algebra and the one obtained via embodied geometric reasoning. Other 

studies on both complex numbers (Danenhower, 2006; Panoura et al., 2006) and real 

numbers (Sfard, 1992; Tall &Vinner, 1981) have suggested that students typically have 

difficulty recognizing when a contradiction occurs, particularly when they utilized two 

different representations. Other researchers such as Cottrill et al. (1996) further claimed 

that much of previous literature on the limits of real-valued functions suggests that 

students tend to have significant problems learning associated concepts (Artigue, 1992; 

Cornu, 1981, Sierpinska, 1992), most commonly because students frequently seem to 
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believe that the limit of a function is never actually attained by the function (Cottrill et 

al., 1996; Tall & Vinner, 1981). 

However, none of these prior studies encouraged embodied reasoning in their 

participants as Nemirovsky et al. (2012) seem to have accomplished with their embodied 

complex plane. Therefore, it is possible that students reasoning in such an embodied way 

may have an easier time noticing inconsistencies between different representations or 

approaches to a given problem. Indeed, my participants seemed to more easily reason 

geometrically about the derivative of a complex-valued function because they were 

encouraged to think in some similarly embodied way. This embodied reasoning appeared 

to help them connect their algebraic and geometric reasoning about the derivative of 

complex-valued functions.  

Diagrammatic Reasoning and Dynamic  

Geometric Environments 

For my project, I took both algebraic and geometric representations produced by 

Geometer’s Sketchpad (GSP) to be inscriptions, and was thus able to consider my 

participants’ work with GSP a form of diagrammatic reasoning. As discussed previously, 

this form of reasoning appeared to help students integrate their algebraic and geometric 

reasoning. Furthermore, this usage of technology fit under my theoretical perspective of 

embodied cognition. The dynamic environment that GSP provides can be considered 

more concrete than the simulated actions and environments described by Alibali and 

Nathan (2012), but less concrete than Nemirovky et al.’s (2006) embodied complex 

plane. As my participants’ usage of GSP seemed to form some sort of middle ground 

between these two extremes, and both extremes fit under the embodied cognition 

perspective, my participants’ usage of GSP reasonably fit under this same perspective.  
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 It is thus reasonable to suggest that my participants’ experiences with GSP may 

have allowed them to connect their algebraic and geometric reasoning more easily and 

recognize inconsistencies between these two methods of reasoning due to an unidentified 

error in one, as embodied cognition did for Nemirovsky et al’s (2006) students. On the 

other end of the spectrum, it is similarly possible that the usage of this technology could 

have helped reduce cognitive load, just as Alibali and Nathan (2012) described that 

gestures produced during simulated actions within a simulated environment can reduce 

the cognitive strain these simulations create. A produced gesture (e.g. pointing at rows of 

imaginary chairs) represents simulated action and thus reduces cognitive load by 

introducing some aspect previously only imagined into the real physical environment. 

Similarly, an action taken in GSP could serve to represent a thought or action that was 

previously only abstract, and thus reduce cognitive load in a related way. In fact, in my 

study I found that GSP did support my students’ reasoning through its facilitation of 

mathematical investigation and the creation of inscriptions.  

Summary 

Overall, previous research suggested that students may be able to reason more 

effectively about mathematical concepts if they enhance their algebraic and geometric 

reasoning and develop connections between them (Carraher & Schliemann, 2007; 

Danenhower, 2006; Hiebert, 2003; Kaput, 1995, 1998; Katz & Barton, 2007; Kuo et al., 

2013; Panaoura et al., 2006; Sfard, 1992; Sherin, 2001; Sierpinska, 2000; Tall & Vinner, 

1981; Williams, 1991). Since experts appear to integrate different forms of reasoning into 

a single approach in a beneficial way (Arcavi, 1994; Kuo et al., 2013; Lithner, 2008; 

Núñez, 2004; Redish & Smith, 2008; Sierpinska, 2000; Sfard, 1993; Szydlik, 2000; 
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Wertheimer, 1959; Williams, 1991), it seems advantageous to find productive ways to 

encourage student to use both forms of reasoning together. With these two approaches 

working in concert, students may develop the ability to reason about mathematical 

concepts both intuitively and precisely.  Unfortunately, students appear to have difficulty 

integrating different forms of reasoning and representations (David et al., 2014; 

Danenhower, 2006; Dubinsky & Harel, 1992; Gray & Tall, 1994; Harel & Sowder, 2005; 

Kuo et al., 2013; Lee, 1996; Otte, 1993; Panaoura et al., 2006; Sierpinska, 2000; Sfard, 

1995; Sfard & Linchevsky, 1994; Tall & Vinner, 1981). In my study, I focused on my 

participants’ usage of algebraic and geometric reasoning to explore the development of 

these reasoning methods.  

There is some evidence to suggest that diagrammatic reasoning with both 

algebraic and geometric inscriptions may help students overcome this phenomenon of 

compartmentalization (Battista, 2007; Châtelet, 2000; Chen & Herbst, 2013; de Freitas 

and Sinclair, 2012; Gibson, 1998; Lee, 1996; Radford, 1996b; Roth & McGinn, 1998; 

Samkoff et al., 2012; Zazkis et al., 1996). Dynamic geometric environments such as GSP 

may also help in this regard (Arcavi & Hadas, 2000; Barrera-Mora & Reyes-Rodríguez, 

2013; Cory & Garofalo, 2010; Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; 

Lagrange, n.d.; Marrades & Gutiérrez, 2000; Mason,1996; Olive, 2000; Tabaghi & 

Sinclair, 2013; Tall, 2003; Vitale et al., 2014). Within the context of complex-valued 

numbers, researchers have discovered via clinical interviews that students strongly 

compartmentalize different lines of thought, particularly separating algebraic and 

geometric approaches (Danenhower, 2006; Panaoura et al., 2006). Through a teaching 

experiment, Harel (2013) reaffirmed students’ difficulties with generalization of algebraic 
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inscriptions and the successful integration of algebraic and geometric reasoning 

strategies. He additionally found that teachers were able to reduce novel algebraic 

expressions to a familiar form, though this approach did not always help them move 

toward a solution. Nemirovsky et al. (2006) found that allowing “a class of prospective 

secondary school teachers” (p.6) the ability to move around on a physically represented 

complex plane on his classroom floor, they were able to more proficiently connect their 

algebraic calculations with their graphical “embodied” explorations.  

Dynamic geometric environments (DGEs) can be used as well to help correct 

students’ flawed mathematical ideas, and perhaps to connect students’ algebraic and 

geometric reasoning (Arcavi & Hadas, 2000; Barrera-Mora & Reyes-Rodríguez, 2013; 

Cory & Garofalo, 2010; Heid & Blume, 2008; Hollebrands, 2007; Jones, 2000; Lagrange, 

n.d.; Marrades & Gutiérrez, 2000; Mason,1996; Olive, 2000; Tabaghi & Sinclair, 2013; 

Tall, 2003; Vitale et al., 2014). Programs like Cabri and GSP can help students and 

teachers make sense of some of the more abstract ideas, evaluate formal proofs, or even 

just check their own intuitions for correctness (Arcavi & Hadas, 2000; Barrera-Mora and 

Reyes-Rodríguez, 2013; Battista, 2007; Hollebrands, 2007; Jones, 2000; Laborde, 1998; 

Olive, 2000). Computers have additionally been found to help students refine their ability 

to reason geometrically and naturally emphasize dynamic or geometric ideas (Cory & 

Garofolo, 2010; Mariotti, 2001/2002; Marrades & Gutiérrez, 2000; Pea, 1987). As a 

result, some authors have worried that students will lose some of their ability to grasp the 

meaning of symbols and static concepts (Heid & Blume, 2008; Kieran, 2007, Lagrange, 

n.d.; Schoenfeld, Smith, & Arcavi, 1993).  
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Other potential problems include further confusing students about whether large 

numbers of examples constitute a complete formal proof, or risking students becoming 

too reliant on computers in their mathematical thinking. However, the potential gains to 

learning with technology appear to outweigh these inherent risks, provided such 

technology is used purposefully and carefully. Finally, the ways in which students use 

technology provide data regarding how they might be thinking about the problem on 

which they are working. In my study, I capitalized on the use of technology to explore 

my participants’ development of inscriptions in the context of complex-valued functions. 

In addition to the nature of students’ technological explorations, it appears that 

gesture can also be used to infer student thought processes (Alibali & DiRusso, 1999; 

Garcia & Engelke, 2013; Marrongelle, 2007). Furthermore, gesture appears to be 

connected to the notion in language known as fictive motion, and that both gesture and 

fictive motion could provide a means to help students connect the gap between their 

algebraic and geometric representations (Goldin-Meadow, 2003; Núñez, 2004). This 

power in inference comes from the observation that gesture and speech form a single 

integrated system, and that gesture seems closely tied to geometric ideas while speech 

seems related to algebraic ones. (Goldin-Meadow, 2003). Furthermore, gesture, speech, 

and inscriptions all appear linked within the context of diagrammatic reasoning (Chȃtelet, 

2000, Chen & Herbst, 2013; de Freitas & Sinclair, 2012; Roth & McGinn, 1998; Sinclair 

& Tabaghi, 2010). Finally, thought appears to be grounded in the physical environment 

(Alibali & Nathan, 2012). Thus, gesture as a data source informs researchers about 

student cognition under the framework of embodied cognition. Therefore, I catalogued 
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my participants’ produced gestures as an extra data source to help me code my 

participants’ reasoning method as either algebraic or geometric.  

In the next chapter, I discuss the methods utilized and procedures followed in my 

study, in addition to research leading me to select these particular protocols. In Chapter 

IV, I present findings from my dissertation study, organized by task and group. Finally, in 

Chapter V I provide answers to my research questions and their implications for teaching 

and research.  

 



 
 

 

 

 

CHAPTER III 

 

 METHODOLOGY 

 

 The purpose of this study is to contribute to the literature on algebraic and 

geometric reasoning about complex analysis, specifically as both kinds of reasoning 

relate to diagrammatic reasoning, inscriptions, and gestures. The relationship between 

reasoning, inscriptions, gestures, and speech is detailed in the previous chapter. This 

study seeks to answer the research questions: 

Q1 What is the nature of students’ reasoning about the derivative of complex-

valued functions?  

 

Q2 What is the nature of the development of students’ reasoning about the 

derivative of complex-valued functions while utilizing Geometer’s 

Sketchpad (GSP)? 

 

In this chapter, I detail the nature of the methodology I chose to employ for this 

study, including discussions regarding the type of study I chose to conduct, a description 

of my participants, the development of the GSP tasks, the structure of the interviews, and 

the nature of my data collection and analysis. I follow this chapter with results in chapter 

IV. Note that prior to conducting this study, I obtained approval from the Institutional 

Review Board (IRB) for the methods detailed below. My IRB form can be found in 

Appendix A.  
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Design Experiment 

As my research questions focus primarily on the nature of students’ reasoning, 

and not on any easily measurable quantity, a qualitative methodology was more 

appropriate for my study. Furthermore, I investigated the ways in which students advance 

their geometric reasoning about the derivative of a complex-valued function via tasks 

developed for this study. Therefore, a design experiment structure was chosen to capture 

the nature of my exploration, where this dissertation study constitutes iteration one of the 

design experiment. Before iteration one, I conducted a pilot study where I developed 

tasks intended to help participants explore potential meanings of the derivative of 

complex-valued functions. I referred to this pilot study as iteration zero of my design 

experiment. Iteration zero is thus the name for the first iteration of my design experiment, 

while my second iteration is called iteration one. In both iterations, I focused my analysis 

on isolating participants’ reasoning strategies within the context of these tasks, in 

accordance with my research questions stated at the beginning of this chapter.  

All design experiments share five common themes, according to Cobb, Confrey, 

diSessa, Lehrer, and Schauble (2003). First, their primary purpose is to answer questions 

about how students learn and possible ways to support this learning. My research 

question involves both the nature of students’ reasoning regarding the derivative of a 

complex-valued function and the ways in which the tasks I created support this reasoning. 

I developed the pilot study tasks particularly to provide my participants with the 

opportunity to develop geometric reasoning about the derivative of a complex-valued 

function as an amplitwist (Needham, 1997). Furthermore, the improvements I made to the 

task flow and task design for my dissertation study were in large part motivated by my 
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desire to find a way to address common difficulties my participants experienced in my 

pilot study. Thus, the study design itself was motivated in large part by observing and 

reflecting on how my pilot study and current participants learned and finding possible 

ways to support this learning, just as Cobb et al. described.  

Second, design experiments build on prior research to investigate potentially new 

educational opportunities and teaching methods. For my pilot study, the design and 

implementation of the tasks I utilized in my interviews were largely motivated by 

findings suggested in previous research studies. Namely, students may exhibit 

sophisticated reasoning about a particular mathematical object if they can view it both as 

a process and an object (Sfard, 1992), or via a synthesis of algebraic and geometric 

methods of reasoning (Danenhower, 2006; Panaoura et al., 2006). In my dissertation 

study, my pilot study results and the tasks I employed shared these motivations. In 

addition, I included one of Sfard’s (1991) observations regarding reification. In 

particular, she claimed that in cases of true reification of some mathematical 

process/object pair, the student should exhibit the ability to reason about the process in 

reverse. Thus, I included a fifth task in my dissertation study which requires students to 

produce a derivative value at a point of their choosing given geometric information 

garnered with the aid of GSP and produce a matching algebraic function formula. Thus, 

this new task reversed the process required by my other tasks, which provided a function 

formula and required students to relate the function’s geometric behavior to the derivative 

value at specified points. This last task additionally provided information which I did not 

obtain in iteration zero. A more detailed description of the purpose of each of these tasks 

follows in the Interview Structure section of this chapter. 
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Third, a design experiment must contain both prospective and reflective aspects to 

its methodology. Thus, before detailing my findings, I describe which aspects of 

reasoning about the derivative of complex-valued function I expected my participants to 

develop as a result of the tasks I placed before them. Furthermore, I improved the task 

design based on observations from my pilot study. I discuss the development of these 

tasks in the Task Development section of this chapter.   

The fourth aspect of a design experiment is iterative design. Thus, for my 

dissertation study, I conducted another iteration on this project, again interviewing 

students in four two-hour blocks, and asking them to complete similar but improved 

tasks. Based on the prospective and reflective aspects of the design experiment and the 

suggestions made to me by my dissertation committee, several weaknesses of the pilot 

study were identified, and improvements were made to the design of the study for this 

next iteration. These weaknesses included inconsistent group sizes, a relative lack of 

preparation in task flow and design, and a lack of data to differentiate reasoning 

developed in my participants’ complex analysis class from reasoning developed in my 

interview sequence. 

To address these identified weaknesses for my dissertation study, I ensured that 

all students were interviewed in pairs, improved the interview task flow and task design, 

and included observations from my participants’ complex analysis classes. I discuss each 

of these improvements in the relevant sections in this chapter. That is, the student pairing 

process and observations from the complex analysis classes are both included in Setting 

and Participants. A description of the methods involved in acquiring data from the 

classroom is provided under Data Collection, and a summary of the data collected from 
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the classroom is provided under the subheading Classroom Observations in the Setting 

and Participants section. Finally, I discuss improvements to the ordering and 

administration of the tasks in the Interview Structure section, while improvements to the 

tasks themselves are discussed under a heading of Task Development.  

The fifth aspect of a design experiment as outlined by Cobb et al. (2003) is that 

results from the study “informs prospective design” (p. 11). That is, these results must 

suggest a particular way of implementing the means used in the design experiment as part 

of some potential educational instruction. As such, in the summary of my findings at the 

end of Chapter IV, I include the mathematical concepts I felt each task emphasized, as 

evidenced by the nature of my participants’ reasoning within each task. I additionally 

detail some suggestions for the implementation of these tasks within the classroom.  

Within a qualitative study, the researcher should examine the data in a way that 

allows him or her to provide extensive and detailed information regarding that case 

(Patton, 2001). For a design experiment, data should “support the systematic analysis of 

the phenomenon under investigation” (Cobb et al., 2003, p.12), including data regarding 

how the students learned and what tools they utilized in facilitating this learning. Cobb et 

al. additionally list gesture, tasks, and the nature of the social interaction between 

participants as potential data sources. Thus, I collected data in a way that allows for such 

extensive investigation. In accordance with the IRB, I obtained signed permission from 

all participants affected by these data-gathering steps, as well as permission from the 

complex analysis professor to video-tape and attend his class. I asked the professor to 

identify the complex analysis classroom sessions that were related to the derivative 

complex-valued functions, and video-recorded these sessions. In addition, I kept notes of 
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concepts the professor taught in class, gestures and chalkboard drawings he employed, 

and questions and conversations that occurred between the students and the professor. 

 After the conclusion of the course, I conducted a four-day task-based interview 

sequence intended to guide participants through the development of geometric reasoning 

about the derivative of a complex-valued function. In accordance with the IRB, I again 

obtained signed permission from my participants to record them and report on their work 

in the interview. While detailing these findings in this dissertation paper, I utilize gender-

preserving pseudonyms. I additionally compensated participants for their time with their 

choice of a $25 Starbucks or iTunes gift card once they completed all the interviews. This 

compensation was also approved by the IRB.  

In accordance with the IRB, I recorded all interviews, utilizing a video recorder to 

collect audio and visual data, as well as screen-capture software to record the 

technological actions my participants took with GSP. I developed a sequence of tasks for 

my participants to complete during a four day sequence of two-hour-long interviews, as 

well as task worksheets that supplied instructions and questions for the first two tasks. 

These tasks are discussed in detail later in the Methods section. I only developed 

worksheets to pair with the first two tasks; I supplied the instructions verbally for later 

tasks. The reader must keep in mind that participants completed Task 1 and Task 2 

according to pre-written instructions, while they completed all subsequent tasks 

according to verbal instructions, which I supplied.   

All participants were paired to reduce potential mathematically induced stress, in 

accordance with the IRB. All participants completed the same sequence of tasks, so Task 

4, for example, for one participant pair was the same Task 4 completed by all other pairs. 
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For Tasks 1 and 2, I created worksheets for participants to follow as they learned how to 

use Geometer’s Sketchpad (GSP). However, later tasks had no worksheets associated, so 

that the participants could conduct a free-form exploration of the derivative of a complex-

valued function; the lack of specific direction theoretically allowed the students to 

investigate the phenomena on which they wished to focus.  

I purposefully selected participants to maximize potential progress through the 

tasks and development of geometric reasoning about the derivative of a complex-valued 

function. I selected students that the complex analysis professor recommended; the 

professor told me the students he suggested demonstrated geometric reasoning about 

complex numbers within his class. I placed students in a single pair when they knew each 

other well or the course professor felt they would work well together. In particular, I 

avoided pairing students who had rarely or never worked with each other before.  

Methods 

 The method for iteration one of my design experiment, my dissertation study, is 

discussed below. I first describe the setting and participants for my experiment, the 

manner in which I developed and improved the GSP tasks, and the structure of the 

interviews. I conclude this section with a discussion of my data collection and analysis 

techniques. 

Setting and Participants 

 In my pilot study, I collected data only from the interviews I administered. As 

such, I had no way of differentiating the advancements in reasoning my participants 

developed in their complex analysis class from the progression they experienced as a 

result of the interview sequence of my pilot study. Therefore, in an effort to document 
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this development better, I observed the parts of the participants’ complex analysis class in 

which the professor discussed the geometry and algebra of the derivative of a complex-

valued function. These records were intended to help me connect students’ experiences in 

my interview with their experiences in the classroom, and to give me a greater chance of 

determining in which setting various aspects of their reasoning about the derivative of a 

complex-valued function developed. The methods used to collect these data follow later 

under Data Collection, and the classroom observations are summarized in the following 

section. 

Classroom Setting 

Before selecting participants for my dissertation study, I attended part of a 

complex analysis course. I obtained permission for attending and recording these classes 

from both the professor and the students in class, in accordance with the IRB. I enlisted 

the professor’s help in identifying which class sessions most related to the derivative of a 

complex-valued function, and attended those days. Thus, I did not attend every day of the 

complex analysis class, but only those days the professor felt were relevant to my topic, 

as well as a few days leading up to the commencement of the topic of the derivative of a 

complex-valued function. While attending, I video-recorded the entire class session and 

kept handwritten notes of the concepts the professor discussed, the marks he made on the 

chalkboard, and the gestures he employed to explain these concepts. In addition to these, 

I took notes on questions students asked, and conversations that occurred between student 

and professor. Based on the professor’s recommendations, I attended all classes from the 

beginning of the semester up to the class the professor had informed me marked the end 

of their discussion of the derivative of a complex-valued function.   
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As the course was lecture-based, students listened and took notes, asking 

questions occasionally for clarity. Broadly, the content of the course was algebraically 

motivated, though the professor related the algebra to graphical phenomena at least some 

of the time, as discussed in the rest of this section. In discussing the occurrences of the 

course below, I refer to some of my participants by their pseudonyms, which are 

Christine, Zane, Edward, and Melody. My participants are described in more detail later 

in this section. 

In the course sessions leading up to the professor’s construction of the derivative 

of a complex-valued function, the professor defined 𝑖 = √−1 algebraically as the number 

such that 𝑖2 = −1, and graphically as a unit vector along the vertical imaginary axis. 

Following this introduction, the professor pointed left, then right while stating that 𝑖 and 

−𝑖 are differing values, and defined the Cartesian form of a complex number via the 

equation 𝑧 = 𝑎 + 𝑖𝑏 = (𝑎, 𝑏). He then drew coordinate axes and a vector (𝑎, 𝑏) in the 

first quadrant roughly at a 45° angle. Following this presentation, Zane asked if 

multiplying 3 + 2𝑖 by 𝑖 is equivalent to rotating the vector 3 + 2𝑖 by an angle of 90°, and 

the professor confirmed and clarified that the rotation must be counterclockwise.  

This class observation was particularly important when Zane’s development was 

explored. In this class session, Zane showed at least cursory geometric reasoning in class 

about how multiplication by a complex number can rotate and dilate a vector. Similarly, 

this class session’s observation notes provide a possible reason for some errors seen in 

my interviews: in the example (7 + 2𝑖)𝑧 = 7𝑧 + 2𝑖𝑧 the professor notes that the 7𝑧 

“stretches” the vector by 7 and that the 2𝑖𝑧 “turns 90°” and “doubles it.” This example 

may have motivated students’ reasoning that the real part of a complex-valued derivative 
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is the factor by which the input circle stretches, and the imaginary part is the factor by 

which the input circle rotates. A recollection of this classroom example may also explain 

Christine’s tendency to attempt geometric reasoning about the derivative of a complex-

valued function via vector addition.  

After covering multiplication as a stretch and rotation, the professor noted that 

conjugation corresponds to a reflection across the real axis. He also covered polar 

representation 𝑧 = 𝑅𝑒𝑖𝜃 and that 𝑅 is a “stretching factor.” In this same discussion, he 

noted that given 𝑧𝑖 = 𝑟𝑖𝑒
𝑖𝜃, we have 𝑧1𝑧2 = 𝑟1𝑟2(cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)), which 

is the algebraic statement indicating that if two complex numbers are multiplied, the 

resulting vector is obtained by multiplying the vector’s magnitudes and adding their 

arguments. Finally, the professor provided algebraically motivated presentations on 

DeMoivre’s formula, roots of unity, the triangle inequality, and how to represent complex 

numbers as two-dimensional vectors, and a geometric description that “complex 

multiplication is rotation followed by dilation.”  

At this point, the professor provided a short symbolic example of the derivative of 

a complex-valued function by stating that the derivative of 𝑒𝜙+𝑖𝜃 is (1 + 𝑖)𝑒𝜙+𝑖𝜃, and 

noted again that multiplication by 𝑧 = 𝑅𝑒𝑖𝜃 is geometrically equivalent to rotation by 𝜃 

and dilation by 𝑅. The professor drew a graph of a hand on a pair of planes to 

demonstrate. He placed the “input” drawing of a hand on the left plane, and its rotated 

and dilated image on the right plane. He further leveraged this example to explain that we 

“can’t really graph functions” when we consider complex-valued inputs and outputs, so a 

“split-screen view” must be utilized instead. In this discussion, the professor further 

clarified that “dilate” and “stretch” have equivalent graphical meanings. 
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At the beginning of the second week of the course, the professor began 

algebraically reasoning about limits of rational functions by considering the coefficients 

on the dominating terms. In this class, 𝜖 −neighborhoods were first referenced 

geometrically as a “little tiny ball,” and utilized to formally define a limit 𝐿 via a 

convergence of the sequence 𝑧𝑛 → 𝐿. The professor further clarified that 𝑧𝑛 → 𝐿 means 

that for every ball centered at 𝐿 of positive radius there is an 𝑀 such that if 𝑛 ≥ 𝑀, then 

𝑧𝑛 lies in that ball. In the professor’s words, every disk centered at 𝐿 eventually “ensnares 

the flea.” The professor further noted that polynomials exhibit “good behavior” inside a 

disk, or more precisely, there exists 𝑀 such that |𝑝(𝑧) − 𝑝(𝑧0)| ≤ 𝑀|𝑧 − 𝑧0|, and 

showed an example of “bad behavior” with 𝑓(𝑧) =
𝑧

𝑧

̅
. While he did also draw a graph of a 

𝛿 −neighborhood mapping to a corresponding 𝜖 −neighborhood and noted that the circle 

mapped to a circle, precise amounts of rotation and dilation were not discussed at this 

time. Rather, algebraic verifications of limit rules followed. This included the fact that 

limits preserve products, sums, and reciprocals, and that given 𝑓(𝑧) → 𝐿 for a continuous 

function 𝑓, if 𝑧 is close to 𝑧0, then 𝑓(𝑧) is always close to 𝐿. That is, if 𝑧 is in the input 

ball, 𝑓(𝑧0) is in the output ball.  

After discussing complex multiplication and constructing limits, the professor 

algebraically constructed the derivative in class, paralleling the real-valued definition. In 

particular, he defined the difference quotients 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 and 

Δ𝑤

Δ𝑧
=

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
, and then 

defined 𝑓′(𝑧) =  limΔ𝑧→0
Δ𝑤

Δ𝑧
= 𝐿, in the case where 𝐿 exists. Initially, the professor 

discussed algebraic verifications of derivative rules familiar from the real-valued case 

such as the product rule, quotient rule, and preservation of addition and scalar multiples. 
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 The professor additionally lectured about the derivative according to 

Caratheodory’s definition, culminating in an algebraic definition of the derivative as a 

local linearization. More precisely, the professor noted the derivative exists if and only if 

𝑓(𝑧) = 𝑓(𝑧0) + 𝑓′(𝑧0)(𝑧 − 𝑧0) + (𝑧 − 𝑧0)𝜎 , where 𝜎 → 0 as 𝑧 → 𝑧0. The geometry of 

linear complex-valued functions was not discussed at this time, though the professor did 

mention rotation and dilation again when discussing composition of functions. In 

particular, the instructor stated that the first function of the composition could be 

considered a rotation and dilation, and that the second function of the composition could 

be characterized as a second rotation and dilation that occurs after the first. That is, the 

first function rotates and dilates an input circle, and the second function rotates and 

dilates the resulting image.  

The class day after constructing the derivative formally, the professor reminded 

the class that 𝑓(𝑧) is differentiable at 𝑧0 if and only if a local linear approximation exists 

at 𝑧0. The professor leveraged this fact to derive the Cauchy-Riemann equations 

algebraically via matrices. He additionally mentioned that in conformal maps, that 

“global distortion can be weird, even though local behavior can be fine.” In the same 

lecture, the professor started with the real and imaginary parts 𝑢 = 𝑥 + 2𝑥𝑦 and 𝑣 =

7𝑥 + 3𝑦 to obtain the derivative 𝑓′(𝑧) = 3 + 7𝑖. He noted that the dilation factor is 

|3 + 7𝑖| = √9 + 49 and the rotation is 𝜃 = tan−1 7

3
.  Zane asked if it was true that if the 

dilation factor was less than 1, then the image would shrink, and the professor confirmed 

this was true. The professor continued by defining holomorphic functions as those which 

are differentiable on an open region, and algebraically calculated that for 𝑓(𝑧) = 𝑧2 + 2𝑧 

near 𝑖, the dilation factor is 2√2 and the angle of rotation is 45°. 
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Later, the professor promised to talk about how to visualize analytic complex-

valued maps. To begin, he reminded the class of rotation and dilation on a vector, and 

lectured about the multiple-valued nature of 𝐴𝑟𝑔(𝑧). He related 𝜃 to the physics concept 

of “phase,” and drew a contour map to demonstrate a phase portrait. He further 

mentioned that when 𝑓′(𝑧) = 0, dilation “destroys” and conformal geometry breaks 

down. The complex-valued function 𝑓(𝑧) = 3𝑖𝑧 + 𝑧2 demonstrates this behavior, so the 

professor noted that this function is quadratic and non-linear, the angles double, the radii 

square, and the map collapses.  

On the remaining class days before the professor informed me his instruction of 

the derivative was complete, he surveyed a few more uses for the derivative, such as 

deriving Laplace’s equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0, checking differentiability via the Cauchy-

Riemann equations, and investigating harmonic conjugates. In the first case, the professor 

related Laplace’s equations to the geometric reasoning that convexity in the 𝑥 and 𝑦 

directions “cancel exactly,” so the graph must resemble a “saddle” or “soap film.” This 

relationship allowed the professor to elaborate that “every soap film is related to a 

conformal map,” and that this relationship is a local property that involves rotation and 

dilation. Finally, he continued to use the “soap film” aspect of geometric reasoning to 

demonstrate stereographic projection. The final few topics covered involved linear 

fractional transformations. The professor first proved that if 𝑓 is holomorphic in region 𝐺 

and real-valued, then 𝑓 is constant in 𝐺. He additionally noted a relationship existed 

between linear algebra and linear fractional transformations of the form 
𝐴𝑧+𝐵

𝐶𝑧+𝐷
, where 

𝐴𝐷 − 𝐵𝐶 ≠ 0.  
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On the last class day I attended, the professor proved the chain rule and noted that 

1

0
= ∞, and that linear fractional transformations map circles and lines to circles and 

lines. He also listed the linear fractional transformations as dilation, translation, and 

reciprocation. Finally, he noted that in stereographic projection, reciprocation of the 

planes corresponds to a 180° rotation of the sphere about the 𝑥 −axis, which 

interchanges the north and south poles. At the end of this class day, the professor 

informed me his discussion of derivatives was complete. The events described in this 

section occurred over a total of ten class days, of which three days were spent introducing 

various forms of complex numbers and basic operations involving complex numbers, one 

day was devoted to constructing a definition of limit, and six days involved the derivative 

directly. 

Participant Selection 

In my pilot study, I selected four students, but one of them could not be scheduled 

for interviews due to logistical difficulties. Thus, I interviewed two together and one 

alone. This created a potential conflating factor and led to finding differences across 

groups which may or may not have resulted from the difference in group size alone. 

Therefore, one of the largest improvements for my dissertation study was the requirement 

that all students interviewed were placed in pairs. This prevented any one student from 

working alone, thereby mitigating both a potential conflating factor and possible 

frustration with the tasks themselves. 

Thus, I selected four undergraduate students who had recently completed an 

undergraduate course in complex analysis to participate in the interviews to complete the 

tasks in pairs and explored further questions that I posed. While I invited the whole 
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complex analysis course students to participate in these interviews, only four students 

agreed to be interviewed due to logistical constraints. The first group was interviewed 

after their final exam at the conclusion of the Spring 2014 semester, which was the same 

semester they took their undergraduate complex analysis course. One of these students 

identified as a physics major, while the other stated he was an applied math major with a 

focus on computer science. The second pair consisted of two applied math majors, one of 

which stated he had a focus on computer science and statistics. I interviewed this second 

group at the beginning of Fall 2014.  

Regarding the participants in the first pair, in accordance with the IRB, I will refer 

to the physics major as Christine, and the applied math major with a computer science 

focus as Zane. When discussing the second group, I refer to the applied math major with 

a focus on computer science and statistics as Edward, and the other applied math major as 

Melody. All four students had taken the same complex analysis course I had observed 

immediately prior to these interviews in the Spring 2014 semester.  

Due to the lecture-based nature of the course, all participants were relatively quiet 

in the complex analysis course itself, though some did occasionally ask questions. Zane 

in particular asked a question clarifying the nature of rotation and dilation involved in the 

mapping of a 𝛿 −neighborhood to an 𝜖 −neighborhood, as discussed previously in this 

section. Aside from this small clarification however, I did not observe any of my 

participants ask any questions about rotation, dilation, or the derivative of a complex-

valued function as it relates to local linearization. I did not observe them ask questions 

about the geometry of local linearization either, as the presentation of local linear 
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approximations remained largely algebraic in nature. Rather, they appeared attentive and 

took notes as the professor lectured as previously described in this section.  

Task Development 

 Task development was an ongoing process that spans the entirety of both my pilot 

study and dissertation study. That is, the development of the tasks used for my pilot study 

began before the onset of my dissertation study. Therefore, I begin my discussion at the 

initial creation of the tasks in the pilot study, include improvements to the tasks during 

the pilot study, and end with improvements to the tasks between the pilot study and 

dissertation study.  

 The overall goal of the tasks I developed for my interview sequences was to 

encourage reasoning about the derivative of a complex-valued function as described by 

Needham’s (1997) concept of an amplitwist. Needham describes an amplitwist as one 

possible way of reasoning geometrically about such a derivative. The construction of the 

amplitwist is as follows. Given a complex-valued function 𝑓(𝑧), first consider an 

𝜖 −neighborhood 𝒩around a point 𝑧0 = (𝑥0, 𝑦0) in the complex plane. Next, calculate 

the magnitude of the derivative 𝑀 = |𝑓′(𝑧0)| and the counterclockwise angle between 

the derivative and the positive real axis 𝜃 = 𝐴𝑟𝑔(𝑓′(𝑧0)). Finally, observe that the image 

𝑓(𝒩) of the 𝜖 −neighborhood is dilated by a factor of 𝑀 and rotated by a factor of 𝜃. 

This rotation and dilation resulting from the derivative of the complex-valued function 

forms the amplitwist. 

 My primary intent in both conducting the interviews and creating the interview 

tasks was guiding my participants toward reasoning geometrically about the derivative of 
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a complex-valued function as a local linearization as characterized by Needham’s (1997) 

description of the amplitwist. That is, I wanted them to develop the following ideas: 

1. The derivative describes how a given function transforms a small circle around a 

given point; in particular, small circles are mapped to shapes that are 

approximately circles.  

2. The magnitude of the derivative is the factor by which the function dilates the 

image of the small circle with respect to its pre-image. 

3. The argument of the derivative is the angle by which the function rotates the 

image of the small circle with respect to its pre-image. 

In order to develop these tasks, I adopted questions from Soto-Johnson (2014). 

Additionally, before my pilot study interviews commenced, I asked the participants’ 

complex analysis course professor for advice regarding the progression of the tasks and 

the content he felt might be desirable. He suggested that I direct the students first toward 

simple polynomial functions such as 𝑓(𝑧) = 𝑧2, and advance to more complicated 

functions such as 𝑓(𝑧) = 𝑒𝑧, perhaps even by building this latter function up through 

Taylor series and utilizing the knowledge gained from the polynomial functions.  

 Based on the complex analysis professor’s advice, the first task I developed was 

an exploration of the function 𝑓(𝑧) = 𝑧2 (see Appendix B) and the second was an 

exploration of the function 𝑓(𝑧) = 𝑒𝑧 (see Appendix C). The task worksheet I wrote for 

each function contained similar questions regarding how points and various circles were 

transformed by the given function. 

 Since I intended the interviews to last four days for two hours each day, before the 

pilot study, the complex analysis course professor suggested investigating the additional 
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function 𝑓(𝑧) =
1

𝑧
 if time allowed, on the basis that this function preserves circles. He 

suggested that students might reason about this function geometrically more easily in 

some ways than even simple polynomial functions. I did not write an additional 

worksheet for this function, but chose to include it in the pilot study interviews if there 

was time after the students explored the first two functions, 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. 

The worksheets associated with these first two functions are located in Appendix B and 

Appendix C, respectively. I placed the function 𝑓(𝑧) =
1

𝑧
 after the first two in my 

interview plan because it was the only function I had prepared for which the derivative 

did not exist everywhere. My participants of the pilot study finished all prepared tasks 

before the 8-hour interview sequence concluded, so I included an additional task 

involving 𝑓(𝑧) = |𝑧| to help participants investigate reasoning about a function with no 

derivative.  

 The overall goals of the tasks remained unchanged between the pilot study and 

dissertation study, though some improvements were made. First, due to a lack of rich 

findings and its tangential relationship to the amplitwist concept, I omitted the task 

𝑓(𝑧) = |𝑧| from my dissertation study’s interview sequence entirely. Second, some 

wording previously contained in the Task 1 and Task 2 worksheets caused some 

confusion in all my pilot study participants. These slightly modified worksheets are 

included in Appendix B and C, respectively. In particular, the question “What do you 

think the output will look like if the input is a circle that contains the point 1 + 𝑖?” led 

every student group in my pilot study to ask for clarification regarding whether I meant 

that the point must be on the circle itself, or within the region enclosed by the circle. 

Thus, for my dissertation study I changed some related wording on the Task 1 and Task 2 
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worksheets to minimize confusion. For example, I changed the aforementioned question 

to “What do you think the output will look like if the input is a circle where 1 + 𝑖 is 

within the area enclosed by the circle?” All wording changes were directly related to this 

particular source of confusion.  

 As an additional result of findings from the pilot study interviews, I included a 

task involving complex-valued linear functions to help students develop geometric 

reasoning about the derivative of a complex-valued function. This final task involved an 

unknown complex-valued rational function and was included to help participants develop 

reasoning about the derivative as a local property of a complex-valued function. For this 

task I used the function 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
, and its goals are more carefully discussed in 

the following section. 

Interview Structure 

 I interviewed four students total, grouped into two pairs in accordance with the 

IRB, with each pair progressing through the same four-day interview sequence, though 

because of my participants’ schedules, these four days were not consecutive for any 

participant pair. Each interview lasted approximately two hours. Although I had a 

planned schedule for each of the four days, each group did not necessarily complete all 

the same tasks on the same day, instead progressing at slightly different rates on different 

tasks. However, by the end of the four-day sequence both participant groups had 

completed all the same tasks in the same order, with the exception of the task involving 

the rational function, which only the second pair had time to fully address. Because of 

their different rates of progress through this itinerary, it became convenient to organize 

their interview around tasks rather than days to reduce the number of potentially 



104 
 

 
 

conflating factors between the two groups. Thus, my following discussion of the 

interview structure is organized by task and describes how the groups of my dissertation 

study actually progressed through the interviews. 

In the first task, students followed instructions on a lab worksheet to construct the 

function 𝑓(𝑧) = 𝑧2 with the aid of Geometer’s Sketchpad (GSP) and predict how the 

function maps points, lines, circles, and the entire complex plane (see Appendix B). The 

intended goals of this task were for participants to use these investigations help students 

establish proficiency with GSP and determine the mapping behavior of a complex-valued 

function, particularly as it relates to circles. Both the objectives and the instructions for 

the second task were similar to the first task, except that I asked students to construct 

another function 𝑓(𝑧) = 𝑒𝑧 (see Appendix C). Investigating another function allowed 

them to continue gaining proficiency with GSP as well as the opportunity to compare and 

contrast this new function with the behavior of the function of the previous task.  

For Task 3 in the pilot study, I had only planned on allowing for free exploration 

with and without GSP. However, during this free exploration in my pilot study, I found 

that both my groups required an investigation of linear complex-valued functions to 

continue developing their reasoning about the derivative of a complex-valued function. 

Thus, for my dissertation study I purposefully prepared a linear complex-valued function 

for my participants to investigate during this task in my dissertation study. For this task in 

my dissertation study I prepared a linear complex-valued function with a complex-valued 

derivative. I chose to construct a function with a complex-valued derivative because I 

found from my pilot study that participants incorrectly generalized from functions such as 

𝑓(𝑧) = 2𝑧 and 𝑓(𝑧) = 𝑖𝑧 with purely real or purely imaginary derivatives. In particular, 
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such functions appeared to lead them to reason that the real part of the derivative is a 

dilation factor and the imaginary part of the derivative is a rotation factor. Planning for a 

linear function with a complex-valued derivative allowed me to keep some of the free 

form feel of the pilot study while also more meticulously preparing for potential 

reoccurrences of these same previously unexpected developments of the pilot study. 

In my dissertation study, I administered Task 3 by removing access to GSP and 

asking participants to describe their current geometric reasoning about the derivative of a 

complex-valued function. After they suggested that the derivative gives the slope of the 

tangent line or provided other such reasoning, I suggested they apply their reasoning to 

the linear function I had previously prepared, namely 𝑓(𝑧) = (3 + 2𝑖)𝑧.  

I re-introduced GSP later at a point selected by me based on the nature of the 

participants’ discussion. For example, if the participants appeared to have seriously 

considered several aspects of their reasoning, made conjectures about what might happen 

in various situations regarding some particular function, and wanted to test their ideas 

with the aid of GSP, I might reasonably have reintroduced GSP at this point to allow 

them to verify or overturn these hypotheses. Alternatively, if no new advancements in 

reasoning seemed forthcoming and participant responses degenerated into a circle of 

previously voiced reasoning patterns, I re-introduced GSP at this point to encourage 

novel thought. In the remainder of Task 3 after GSP was reintroduced, I intended to allow 

participants to test their previously developed conjectures and continue to explore their 

geometric reasoning about the derivative of a complex-valued function with the aid of 

GSP. The intended purpose of this task was to help participants develop geometric 

reasoning about the analog of a line in the case of complex-valued functions, and to relate 
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the magnitude and argument of the derivative to the way the linear function dilates and 

rotates a circle. 

 In Task 4, I asked participants to generalize their geometric reasoning about the 

derivative of a complex-valued linear function in order to reason geometrically about the 

derivative of a general complex-valued function. To accommodate this goal, I suggested 

to participants that they use their previous GSP labs to investigate and test conjectures. In 

order to further substantiate the generality of the claims they produced, I suggested that 

they verify their geometric reasoning with the new function 𝑓(𝑧) =
1

𝑧
. Thus, in Task 4, 

participants primarily generalized and tested their reasoning with the aid of GSP via the 

functions 𝑓(𝑧) = 𝑧2, 𝑓(𝑧) = 𝑒𝑧, and 𝑓(𝑧) =
1

𝑧
. The intended goal of this exercise was to 

support students’ efforts to generalize the geometric reasoning they developed in Task 3 

to the general case.  

 Note that for the pilot study, I initially utilized 𝑓(𝑧) =
1

𝑧
 as a standalone task in 

the style of Tasks 1 and 2. However, I found in the pilot study that students needed to 

investigate linear complex-valued functions before they could adequately reason 

geometrically about the derivative of a non-linear complex-valued function. Thus, while I 

kept 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧 as the first two tasks in my dissertation study to introduce 

participants to GSP and expose them to a non-linear complex-valued function early in the 

interview sequence, I reserved 𝑓(𝑧) =
1

𝑧
 as a third non-linear function until after they had 

investigated a linear complex-valued function. After this investigation, I introduced 

𝑓(𝑧) =
1

𝑧
 in order to allow them to generalize their reasoning about complex-valued 
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linear functions to both familiar and unfamiliar complex-valued non-linear functions, as 

previously described.  

I developed a new task, Task 5 for the dissertation study and replaced the pilot 

study task involving investigation of the non-differentiable function 𝑓(𝑧) = |𝑧|. I 

included this task specifically to address a common weakness in geometric reasoning 

displayed in the pilot study. In particular, my pilot study participants experienced 

difficulty reasoning geometrically about the derivative of a complex-valued function as a 

local property. Reasoning geometrically with linear complex-valued functions with the 

aid of GSP appeared to allow them to reason geometrically about the derivative of a 

complex-valued function as an amplitwist in part, but did not appear to help them grasp 

that this reasoning applies only to small circles in the general case. As such, all my 

participants of the pilot study experienced difficulty generalizing that the amplitwist 

related geometric reasoning to the case of non-linear complex-valued functions such as 

𝑓(𝑧) = 𝑧2, 𝑓(𝑧) = 𝑒𝑧, and 𝑓(𝑧) =
1

𝑧
. In order to meet this goal, I created a new task, 

which required participants to determine the value of a derivative at a particular point in a 

pre-constructed unknown rational transformation. The rational transformation I utilized 

for this task was 𝑓(𝑧) =
(2𝑧+1)

(𝑧+𝑖)(1−𝑧)
. 

Given findings from my pilot study, the intended goal of Task 5 in my 

dissertation study was to encourage students to develop reasoning about the derivative as 

a local property and to develop reasoning about points of non-differentiability as they 

relate to the amplitwist concept. Note that for the other tasks in the interview sequence, I 

provided a known complex-valued function and asked my students to construct and 

investigate it with the aid of Geometer’s Sketchpad (GSP) in the hopes that they 
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developed geometric reasoning about how the derivative of the function relates to the 

way the function maps circles. In this task, I asked students to undertake this process in 

the reverse direction. That is, prior to the interviews, I constructed the rational function 

𝑓(𝑧) =
(2𝑧+1)

(𝑧+𝑖)(1−𝑧)
 with the aid of GSP. I did not provide this function formula to my 

participants, though I did tell them the function I constructed is of the form 𝑓(𝑧) =
𝑔(𝑧)

ℎ(𝑧) 
, 

where 𝑔(𝑧) and ℎ(𝑧) are polynomials. I gave them access to GSP and asked them to use 

it to choose a point and determine the value of the derivative of the function I had 

constructed at that point. I additionally asked them to reconstruct the function formula. In 

other tasks I gave my participants access to an algebraic function formula and asked them 

to discover geometric information. In contrast, in this final task I provided my students 

with the means to discover geometric information on their own with the aid of GSP and 

asked them to use this information to determine algebraic information.   

My hope was that this task would give them an opportunity to investigate non-

differentiability in a complex-valued function as well as an opportunity to develop 

reasoning about the derivative of a complex-valued function as a local property in 

general. I replaced 𝑓(𝑧) = |𝑧| due to the fact that 𝑓(𝑧) = |𝑧| is real-valued and the fact 

that this function does not map any circle to another circle. My reasoning in creating the 

new task was that by asking them to determine both non-differentiable points and 

derivative values at particular points, they would naturally consider smaller circles as a 

means of focusing on these particular points. In turn, the consideration of these smaller 

circles might lead them to develop geometric reasoning about why small circles were 

necessary to complete such a task, and thus why the derivative necessarily describes a 

local property in the general case. 
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Data Collection 

To collect data, I attended and video-recorded some of my participants’ complex 

analysis classes prior to their interviews, in accordance with the IRB. I asked their 

professor which classes he believed would be relevant to my dissertation study on the 

derivative of complex-valued functions, and he suggested I attend from the beginning of 

the semester to the point where he finished his discussion of the derivative of a complex-

valued function. During these classes, I first set up a camera at the back of the class to 

capture the professor, his board work, and student activity. I additionally attended these 

classes and took handwritten notes of the lecture material, gestures the professor 

employed, and student behavior. I utilized these notes and videos to provide the 

description of the setting earlier in this chapter, and to triangulate the reasoning students 

purportedly learned in class with the reasoning they displayed in the interview sequence I 

administered.  

I additionally video-recorded all interviews with one camera placed in front of the 

participants and utilized screen-capture software to record the work the participants 

performed with the aid of GSP. As such, the camera captured the participants’ gestures 

and boardwork, while the screen-capture software recorded the actions the participants 

carried out with the aid of GSP. This recording was approved by both the IRB and the 

participants I interviewed. I pointed the camera toward the computer and the participants 

while they worked on the computer, and I rotated the camera toward the chalkboard when 

they stood up to write something there. I collected all handwritten notes that participants 

created on paper, though only Zane and Christine produced such notes.  
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For both groups of students, I conducted four interviews, each of which lasted 

roughly two hours. For both pairs, I introduced them briefly to Geometer’s Sketchpad 

(GSP), and instructed them on how to build the transformation 𝑧 → 𝑧2 (mathematically 

equivalent to the complex-valued function 𝑓(𝑧) = 𝑧2) with the aid of GSP. The task 

worksheet contained many of the intermediary questions I wanted the participants to 

answer, so throughout the first two tasks I primarily provided technical support with 

GSP. This support included helping them find buttons, walking them through the 

construction of a transformation, and teaching them how to construct and move 

mathematical objects such as points, vectors, and circles. As only one mouse was 

available to each pair of participants, I ensured that all students had an opportunity to 

control the mouse, and thus the precise actions taken with the aid of GSP.  

I helped them frequently in these ways near the beginning of the interviews. 

However, their need for my assistance diminished as the interviews continued, as they 

began establishing proficiency with GSP and trading control of the mouse without 

prompting. I also probed the students to say more about the reasoning they offered about 

mathematical concepts such as the derivative of a complex-valued function or the 

geometric behavior of a particular function, to clarify something they had just said, or to 

justify their reasoning and explanations. I additionally sometimes asked one of the 

participants to explain what they thought the other participant was saying or to re-voice 

the other participant’s explanations. 

Data Analysis 

My analysis began by watching the videos in conjunction with the screen-

captured GSP recordings to determine which segments of the interview provided the most 
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relevant content related to my research purpose. In particular, I looked for places where 

the participants appeared to be making progress toward a conception of the derivative of 

a complex-valued function as a local linearization. This included times when the 

participants discussed prerequisite or related ideas, which include, but are not necessarily 

limited to: 

1. The behavior of a given function (e.g., how points, lines, or circles are 

transformed) 

2. 𝜖 −neighborhoods around a given point 

3. Local vs. global properties 

4. The relationship between magnitude and dilation 

5. The relationship between argument and rotation 

6. The meaning of “linearization” or “linear” in the complex plane 

7. Conformality (circles are mapped to circles) 

8. Approximate conformality  

I developed the tasks with these developments in reasoning in mind. Therefore, I 

looked particularly for the ideas listed above. For example, I particularly consider the 

first three items on this list to be important prerequisite concepts for a complete 

development of reasoning geometrically about the derivative as an amplitwist. The first 

few questions of each task are questions about function behavior, followed by questions 

about how circles of various sizes around a particular point in the domain were mapped 

into the image. Familiarity with a particular function’s behavior might help participants 

more easily connect their reasoning about its derivative to the function.  
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As the derivative is often described as a local linearization, the behavior of 

𝜖 −neighborhoods around particular points is essential to the development of reasoning 

geometrically about the derivative. Items 4, 5, and 7 are exactly the ideas I wanted my 

participants to develop as part of the four-day interview sequence. These items detail the 

particular characterization of the derivative of a complex-valued function towards which 

I guided my participants. That is, an 𝜖 −neighborhood around a point 𝑧 in the domain is 

mapped into the co-domain as follows: 

1. The associated image of the 𝜖 −neighborhood is approximately a circle (item 

7). 

2. The function rotates the image by the argument of the derivative of the 

function at 𝑧 (item 5). 

3. The function dilates the image by the magnitude of the derivative of the 

function at 𝑧 (item 4). 

I did not explicitly plan for items 6 or 8 in the pilot study, but they seemed to arise 

naturally during the progression of all participants through the interview tasks. Thus, I 

purposefully prepared for these ideas to arise once again in the dissertation study.   

For this iteration of the design experiment, I transcribed all recorded gesture, 

speech, and usage of inscriptions. These documented inscriptions include the drawings 

and equations students created on paper with a pencil, the drawings and equations 

students created on a chalkboard, and the constructions created with the aid of 

Geometer’s Sketchpad (GSP). For this research, I was particularly interested in segments 

where participants described the way in which they reasoned about the derivative of the 

complex-valued function, segments where participants struggled with some related 
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conceptual difficulty, segments where participants appeared to resolve a previous 

difficulty, and segments where participants suggested a new idea for the first time. After 

completing the transcription, I imported the ELAN file into an Excel spreadsheet for 

coding. I coded lines as algebraic based on speech and concurrent gesture if the speaking 

participant appeared to be reasoning about formulas or other formal symbolic 

representations of mathematical concepts.  

If a participant referred to the real part and imaginary part of a complex number 

while appearing to point successively at two pieces of an imagined complex number in 

addition to speaking the words “real” and “imaginary,” I coded this speech as algebraic. I 

coded the same speech as geometric if the participant said the same phrase while moving 

his or her hand horizontally (along the real axis) and then vertically (along the imaginary 

axis) or vice versa, in conjunction with speaking the words “real” and “imaginary,” or 

making these gestures while speaking these words. I coded lines as geometric based on 

speech and concurrent gesture if the speaking participant appeared to be reasoning about 

graphs, shapes, spatial transformations, or other similar abstract entities that a learner 

could potentially think of as hypothetically existing within some real space. (See Table 1 

for an example of this analysis.) 
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Table 1     

Coding Examples     

Verbiage Alg/

Geo 

Gestures Technology Task Progress 

Z: So when you get 

closer, keeps on 

curving, then bends in 

on itself, and it’s still 

never technically inside. 

Geo Points at screen with right 

index finger, traces screen 

in large clockwise loop. 

  

Z: Cause this function 

is doing the 𝑧2 of the 

𝑧2, right? Don’t we 

have the first function 

to find the circle 𝑧 to 𝑧2 

and now we’re doing 𝑧 

to 𝑧2 again from that 

other point 

Alg No produced gesture   

M: I don't know, that's 

what, so 𝑧, this one we 

want to look at just 𝑧, 

and then I want to map 

2𝑧 

 

 While moving arm right, 

right index finger flicks to 

the left, then twists 

clockwise as hand 

transforms to a C shape, 

with index finger held above 

and thumb below, pointing 

at 1st quadrant of right 

graph. Moves index finger 

up and down as hand drifts 

left 

 

  

M: So the 𝑖 is what’s 

doing the rotating. 

Which makes sense 

cause if we had 2 𝑖’s 

multiplied together that 

should rotate it 90 

degrees, I mean rotate it 

180 degrees, which is 

just the same as 

multiplying by negative 

1 

Alg Bounces right hand inward 

twice. Left index finger 

rotates in counterclockwise 

horizontal circle around 

right hand. Rotates left 

index finger 

counterclockwise again 

pointing down, and bounces 

right hand to the right then 

the left. Moves right hand in 

clockwise vertical arc 

 Still believes 

the 𝑖 is what is 

doing the 

rotating.  

Understands 

that 

multiplying by 

-1 corresponds 

to a rotation of 

180 degrees 

E: Yeah, it goes that 

way because the 

imaginary axis is the 

rotation, and so that's 

why it, it wraps around, 

because 2 pi would be a 

full rotation 

 Points at screen 

 

Spirals mouse 

counterclockwise 

around origin up to 

top of blue circle, 

then moves mouse 

down between origin 

and output twist 

 

Explains 

rotation with 

imaginary axis 

 

Note. Alg stands for algebraic, and Geo stands for geometric. 
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Usage of gestures or technology could help clarify the nature of the participant’s 

reasoning, as described in my theoretical framework. There were several lines I did not 

code as either algebraic or geometric due to a lack of compelling evidence in either 

direction for the nature of participants’ reasoning. For example, if a participant referred to 

the real and imaginary parts of a complex number, it is possible that they could have been 

referring either to the 𝑥 − and 𝑦 − values attached to the Cartesian form 𝑥 + 𝑖𝑦 or to the 

horizontal and vertical components of a graphical representation of a complex number. In 

some cases, gestures could be used to clarify the nature of participants’ reasoning, as 

described earlier in this chapter. However, in the absence of gesture this ambiguity 

between algebraic and geometric reasoning remained. 

 In addition to categorizing exchanges as algebraic or geometric, I looked 

particularly for places where the participants appeared to be making progress toward an 

idea of a derivative as a local linearization. This aspect of coding was similar to my prior 

description of particularly relevant segments. In this case, however, I additionally looked 

for ideas that specifically seemed to help the participants overcome previous 

misconceptions or appeared to lead them toward a completely developed ability to reason 

geometrically about the derivative as a local linearization. I described these events briefly 

in a column on an Excel spreadsheet labeled “Task Progress.” Finally, I wrote remarks 

for any miscellaneous comments the participants made or things they did that appeared to 

be interesting. For example, I often commented on whether I felt the participants’ stated 

reasoning was correct, and if not, I documented possible reasons for why the participant 

might have utilized their specific form of incorrect reasoning. Once the data were coded, 

I wrote summaries of each day for each set of participants. In each summary, I detailed 
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the events that had been selected as significant in the previous stage and any 

conversations that either appeared to lead up to these events or were somehow 

prerequisites to understanding the concepts contained in the selected events.  

Finally, I grouped my summaries by task and looked for common occurrences 

both within a single group’s interviews as well as similarities and differences between the 

two groups’ interviews. That is, I performed both a cross-case and within-case (Merriam, 

2009; Patton, 2001) analysis on the written summaries, referencing both the Excel 

spreadsheet and the actual raw data to obtain supporting evidence as necessary. For the 

cross-case analysis, I looked for aspects of progress toward reasoning about the 

derivative as a local linearization common to both interviewed groups, as well as aspects 

unique to a certain group or participant. For the within-case analyses, I looked for ideas 

that appeared essential in the participants’ progress, particularly those ideas which 

recurred within a group or were actually a conceptual part of reasoning about the 

derivative as a local linearization as described above. I also considered advancements in 

reasoning essential if they appeared to highlight or resolve a previous difficulty in 

reasoning. I summarize these developments in Chapter IV, where I discuss the nature of 

the development of geometric reasoning about the derivative as a local linearization for 

each set of participants.  

 



 
 

 

 

 

CHAPTER IV 

 

FINDINGS 

 

 In this chapter, I detail the progress of my four participants’ reasoning through a 

sequence of tasks modified as a result of previous analyses as part of my pilot study to 

address the research questions.  

Q1 What is the nature of students’ reasoning about the derivative of complex-

valued functions?  

 

Q2 What is the nature of the development of students’ reasoning about the 

derivative of complex-valued functions while utilizing Geometer’s 

Sketchpad (GSP)? 

 

 The results of analyses of data are grouped by task and analyzed across both pairs 

of participants. Some basic observations throughout this chapter are made regarding the 

participants’ usage of speech, gesture, and Geometer’s Sketchpad (GSP). The reader will 

note that to answer the questions posed in the task worksheets (see Appendix B and 

Appendix C) and the questions I asked, Melody and Edward utilized geometric reasoning 

and gesture more than Zane and Christine, who appeared to prefer algebraic reasoning 

and speech. That is, I coded a large amount of Edward’s and Melody’s reasoning as 

geometric, while I coded much of Christine and Zane’s reasoning as algebraic. This 

coding process was described in Chapter III. Furthermore, Melody and Edward produced 

more gestures than Zane and Christine. While this chapter details my observations of the 

participants’ behaviors throughout the tasks, a comparative analysis with a summary of 

recurring themes throughout the interview can be found in Chapter V. 
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 Each pair of participants began by exploring the behavior of the functions 

𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. Each groups’ work with the first function is reported under 

Task 1 below, and their work with the second is reported under Task 2. In Task 3, I 

removed GSP and asked the groups to describe their reasoning about the derivative of the 

complex-valued function. At this time I asked probing questions to clarify the 

participants’ responses, such as directing them to describe what the derivative of 𝑓(𝑧) =

𝑧2 tells them about the function near the point 1 + 𝑖. Later, in this same task I provided 

access to GSP and asked them again to describe their reasoning about the derivative, and 

again asked similar probing questions. At some point during this task, the groups decided 

they could not reason geometrically about a line in the complex plane, so I introduced 

linear functions organically as they arose in the participants’ discussion. Once the groups 

decided they could reason about a constant derivative, I asked them to generalize their 

reasoning to the non-linear functions 𝑓(𝑧) = 𝑧2, 𝑓(𝑧) = 𝑒𝑧 and 𝑓(𝑧) =
1

𝑧
. I report these 

results under Task 4. Finally, I asked one of the groups to determine where an unknown 

rational function is differentiable, to estimate the derivative at a point of their choosing, 

and to construct an algebraic inscription for this rational function. Progression through 

this task is detailed under Task 5, which completed the interview sequence. 

Task 1: Investigating 𝐟(𝐳) = 𝐳𝟐 

Zane and Christine 

 While Christine and Zane primarily utilized reasoning coded as algebraic, they 

used reasoning coded as geometric as well (see Table 2). At the beginning of Task 1, I 

helped Zane and Christine construct the function 𝑓(𝑧) = 𝑧2 with the aid of GSP. In 

particular, I showed them where to find the menus referenced by the task worksheet (see 
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Appendix B). This included helping them find the calculator, the button used to define a 

new transform, and the button used to construct a point based on algebraically calculated 

coordinates.  

Table 2      

Task 1 Codes for Zane and Christine   
Line # Verbiage Alg Geo Gesture Tech 

103 C: Okay so we had 𝑎 plus 𝑖𝑏 and we should 
have squared the whole thing, but we didn't, 

we squared 

x   writes on paper 

(calculates (𝑎 +
𝑖𝑏)2) 

216 Z: Well, you're squaring it, so x    

217 Z: That means there's two x    
218 C: So if we cubed it would go around three 

times? 

x    

396 C: Does it move the circle, or does it deform 
it? Probably deforms it a little bit 

    

407 C: Sucked in, looping in some way  x hitchhiker thumb on left 

hand, pointing left 

 

425 Z: Okay so it''s kind of like the whole, when 

we did the first one around the unit circle it 
looped around twice 

 x points at screen while 

moving hand in a 
clockwise circle. points at 

screen while moving hand 

in two small circular 
motions 

 

Note. Alg stands for algebraic and Geo stands for geometric. 

 I additionally reminded them to switch between mouse tools during construction 

of 𝑓(𝑧) = 𝑧2. This included reminding them to click the arrow tool before trying to drag 

a circle around the graph, or reminding them to click the circle construction tool to 

construct a circle. Furthermore, each time Zane and Christine opened a new GSP file to 

start a new task (see Appendix B and Appendix C), I requested that they construct a 

green unit circle around the origin for reference. I let Christine and Zane learn how to use 

GSP on their own primarily as they followed the worksheets (see Appendix B and 

Appendix C) but provided assistance if they seemed to become frustrated. This mostly 

involved reminding them to switch from the construct circle tool to the arrow tool when 

they had difficulty dragging their circle around the plane. I also occasionally reminded 

them to unselect certain objects. For example, a circle cannot be dragged in the GSP 

environment unless only the circle is selected, so sometimes I showed my participants 
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that they had more selected than they realized. As I provided this kind of help, they 

constructed their first GSP function: 𝑓(𝑧) = 𝑧2.   

 After constructing this function, Christine dragged 𝑧 around the plane and Zane 

noted the point labeled 𝑧2 moved as a result. Afterward, Christine read the first warm-up 

question: “Where do you expect the point labeled 𝑧2 to go if you put 𝑧 on 1 + 𝑖?” Zane 

and Christine answered this question by independently calculating that (1 + 𝑖)2 =

(1 + 𝑖)(1 + 𝑖) = 1 + 2𝑖 − 1 = 2𝑖. This and the following discussion was coded as 

algebraic due to their apparent reliance on symbolic calculation to answer the given 

questions. However, when they moved the point 𝑧 to 1 + 𝑖, they noted that the point 𝑧2 

was also at 1 + 𝑖, which led Christine to inspect her reasoning more closely: “Okay, it 

didn’t go anywhere. Did I do my math wrong?” While I pointed out that the function’s 

real and imaginary parts were 𝑥2 and 𝑦2, respectively, Christine and Zane calculated the 

correct real and imaginary parts themselves by calculating algebraically that (𝑎 + 𝑏𝑖)2 =

𝑎2 − 𝑏2 + 𝑖2𝑎𝑏, though not without some apparent recollection of a similar calculation: 

Christine: So what we want is a squared plus, isn't that minus cause of the i 

squared or does that go away? It’s a minus. 

Zane: plus 2iab. 

Christine: That’s weird, cause I could swear that in Algebra 2 it was something 

else. So it’s a2 plus 2iab plus b2. 

 I coded this reasoning as algebraic due to the fact that Christine and Zane were 

currently engaged in calculating (𝑎 + 𝑏𝑖)2 on paper through symbolic manipulation. 

When Christine asked me whether this is correct, I told her it was and she responded, 

“Okay, so ignore whatever we learned in Algebra 2.” This algebraic reasoning through 

(𝑎 + 𝑏𝑖)2 appeared to remind her of a previous class discussion, but somehow also 
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seemed to persuade her that what she learned in Algebra 2 was incorrect. It is not clear 

whether she decided that her prior reasoning was completely incorrect or merely did not 

apply in this current particular context. Regardless, once the participants algebraically 

calculated the real and imaginary parts they successfully reconstructed the function 

𝑓(𝑧) = 𝑧2 with relatively little guidance.  

 For the second question, “Where should you put 𝑧 to send 𝑧2 to 𝑖, Christine 

attempted to solve for 𝑎 and 𝑏 in the equation 𝑎2 − 𝑏2 + 2𝑖𝑎𝑏 = 0 + 𝑖. As before, this 

and the following calculations were coded as algebraic for similar reasons. Christine 

noted, “We should let the real part be 0, and the other part should be 1.” Thus, they broke 

this equation into real and imaginary parts, from which they obtained the two equations 

𝑏 =
1

2𝑎
 and 𝑎2 = 𝑏2. Zane started trying to reason about fractions algebraically, which 

seemed to allow Christine to solve this system of equations:  

Christine: Square root of one over square root of 2 which is the square root of 2 

over 2 which is on our unit circle I think like, is that one ninety? 

Zane: That one’s 45. 

Christine: Yeah, that’s what I meant. Half of 90.  

 So, once they found 𝑎 =
√1

√2
=

1

√2
, Christine and Zane identified the correct 

geometric point as the point on the unit circle rotated 45° counterclockwise from the 

positive 𝑥 −axis.  

 The next question they addressed utilized the green unit circle they had just 

constructed with the aid of Geometer’s Sketchpad (GSP). In particular, the question read 

“What do you think happens to 𝑧2 when you move around the green [unit] circle once? 

Test your theory.” Christine and Zane’s initial predictions were that 𝑧 would move “back 
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and forth through the circle”, or “to the origin and back”, though they did not explicitly 

clarify what they meant by this. Christine waved her index finger up and down through 

the center of the unit circle as she spoke “back and forth,” so perhaps she believed the 

output point would move up and down along the 𝑦-axis within the unit circle. However, 

they discovered through GSP that in reality the point 𝑧2 moves around the green circle 

twice. The following discussion was coded as primarily geometric, due to the fact that in 

this discussion Christine and Zane referred to the movement of a circle constructed with 

the aid of GSP through various points on the graph.  

Christine: Do you think it just bounces back and forth? 

Zane:…Wait are you talking about, like through the circle (moves finger up), or 

around it (drops arm)? 

Christine: Like, through it, if this was our circle it would just go like ‘tchu, tchu, 

tchu, tchu.’(moves finger back in forth in front of screen) Well okay, not that 

many times, but, no wait, hold on, cause if it starts here (point (1,0)) while we’re 

here (point (1,0)) and we move over here (point (−1,0), it should end up back 

here (point (1,0)), right?...Do you know what I’m saying though? Move our little 

z to here (point (0,1)). It should be like at the origin. 

Zane:…Wait why is it supposed to go to the origin when it’s up top? 

 As seen in the above exchange, Christine did not voice any particular reasoning 

for why the image point should go through the circle, or to the origin. As such, Zane 

questioned Christine’s reasoning about why the image point should go to the origin at all. 

Christine and Zane briefly attempted to reason algebraically but did not advance another 

hypothesis. At this point Zane suggested, “If we say it moves around the circle we can 

just do it.” Despite the lack of reasoning about why any of Zane’s or Christine’s 

predictions might make sense, Zane uttered a nearly correct theory, which omitted only 

the fact that the image point should travel twice around the unit circle. Perhaps he 

realized their reasoning had stopped progressing and he may have been anxious to see the 
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true behavior of the image point. Having suggested a theory, Zane proceeded to 

experiment with the aid of GSP by dragging the point 𝑧 around the circle, and observed, 

“So there it goes around once (at point(1,0)), wait because yeah, it looped around twice, 

didn’t it?” Christine did not seem to notice this fact until Zane pointed it out, after which 

she commented, “Did it? Yeah, you’re right!” 

 Because neither Zane nor Christine voiced much reasoning before their 

experimentation, I asked them to explain why the output point moved twice around the 

circle. 

Interviewer: Okay tell me why you think that happened? 

Christine: Because Zane moved his mouse? 

Zane: Why did it move around twice? Well, you’re squaring it, so that means 

there’s two. 

Christine: So if we cubed it, it would go around three times? 

Zane:…Coordinates grow faster and they shrink faster, was it the specific (trails 

off)? 

Christine: It made it halfway. 

Zane: Yeah, when it turned exactly once it’s halfway. Okay so, so, so as we’re 

moving around. Trying to think of the rate of change and that kind of stuff. 

 This exchange suggests that their geometric observation that an image point 

moves around the input circle twice for every time the corresponding pre-image point 

allowed them to connect to the algebraic inscription 𝑓(𝑧) = 𝑧2. However, for Zane and 

Christine, who told me later that they preferred to use algebra over geometry, it almost 

seemed enough to say that the image point moves around the origin twice because the 

function is 𝑧2, which has an exponent of 2 in it. Christine correctly extended this 

reasoning to 𝑧3, whose image point really would move three times around the unit circle 
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if the pre-image point moved around the unit circle once. That is, while they made a 

pertinent geometric observation, they did not really appear to connect this observation to 

any sort of geometric reasoning, preferring instead to connect it to algebraic reasoning 

about the formula 𝑓(𝑧) = 𝑧2. Still, without the geometric observation they made with the 

aid of GSP, they may not have made this particular connection to the algebraic formulae. 

This question also appeared to motivate Zane to start reasoning about rates of change as 

he reasoned about the rate at which the coordinates increase or decrease as the pre-image 

point moves. So, the participants’ reasoning here may suggest that these questions about 

function behavior really might help prime students’ reasoning about the derivative later, 

which describes a rate of change. 

 After answering these questions about point behavior, they began constructing 

and transforming circles. They colored the input circle blue and the output circle red, 

which they referred to as pink. Zane, who was manipulating GSP at this point, deferred to 

Christine for guidance: 

 Zane: Okay, what are we supposed to do, move the circle? 

 Christine: And watch how it moves the pink one. 

 Zane: Don't you think it's interesting how that part is flat? 

 Christine: Yes, it's not fully a circle. 

 The first thing they noticed while observing circles with the aid of GSP is that the 

image circle is distorted somewhat and is “not fully a circle” (see Figure 1). This seemed 

like an important characterization for Christine to make, given that the derivative of a 

complex-valued function is an approximation of how the function rotates and dilates a 

given circle. Since the derivative is an approximation, even for small circles, the image of 
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a circle transformed by a non-linear function is also “not fully a circle,” but is 

nevertheless a circle-like closed curve.  

 

Figure 1. Zane and Christine observe a “flattened” large pink output circle with the aid of 

Geometer’s Sketchpad 

 In another discussion that was coded as geometric, Zane made another similarly 

important observation while answering the next question, “What do you think the output 

will look like if the input is a circle where 1 + 𝑖 is in the area enclosed by the circle?” In 

particular, he observed an instance in which 𝑓(𝑧) mapped a circle to a non-circular curve. 

The following reasoning was coded as geometric due to the fact that they referred to such 

visual descriptions as “curly” and “loop,” as well as the idea that zero is inside a circle. 

Zane: Doesn’t that make the, that guy (the image of the input circle) get all curly, 

in on itself? 

Christine: Creates like a loop. 

Zane: One point one is within the circle, okay, yeah, makes it non-circular curvy. 

Let’s see. 

Christine: It looks like it just doesn’t want zero, zero to be in it. 

 As before, Zane and Christine did not really connect their geometric observations 

with their geometric reasoning, but these observations are nonetheless both correct and 

pertinent. Just as Christine noticed before that the image of a circle was “not fully a 
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circle,” in the previous exchange Zane pointed out that the image of the input circle 

became a “non-circular” kind of curve (see Figure 2).  

 

Figure 2. Pink output curve is curvy in a “non-circular” way 

 Christine followed up this comment by correctly noting that the output curve 

twists because “it looks like it just doesn’t want zero to be in it.” This development in 

reasoning was coded as geometric due to visual ideas such as the output curve twisting 

and that it did not “want zero to be in it.” After this development, Zane and Christine read 

the following question: “What happens when 0 is in the area enclosed by the circle?” 

Zane answered this question with geometric reasoning by stating, “Also the input has 

zero, zero in it, and that’s when it starts looping.” This reasoning was coded as geometric 

due to Zane’s reference to “looping.” Thus, by this point, Zane had correctly identified 

the origin as the point which causes the output curve to twist on itself, though he still 

offered no explanation about why this behavior occurred.  

 The next question required Zane and Christine to change the radius of their input 

circle and observe what happened to the output. After about one minute of 

experimentation in Geometer’s Sketchpad (GSP), Zane restated that when the input circle 

was small, the output was circular, and as the input circle grew, the output circle “runs 
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around the origin.” So, this question did not appear to introduce any new ways of 

reasoning for Zane and Christine, though it may have clarified their prior developed 

reasoning and cemented the fact that the origin is what causes the output circle to twist on 

itself. The following question, which asked them to center their circle on the complex 

number 2, may have helped them in a similar way. The following reasoning was coded as 

geometric, due to verbiage such as “oblong” and “loops around.”  

Zane: So we start small. 

Christine: Just a regular old circle. 

Zane: Well, it’s a little oblong I think. Grows until the origin, then loops around. 

 The additional questions about what happens when particular points are in the 

area enclosed by the input circle elicited similar responses. One such question was “What 

do you think the output will look like if 1 + 𝑖 and 2 are both in the area enclosed by the 

input circle?” Christine only responded with “I feel like it will mostly do what it did 

when 1 + 𝑖 was in there.” When centering the circle on the origin, they observed some 

measurement error in the input as a result of what the output looks like. 

Zane: Okay, so it’s still doubly looped….That’s not truly at the origin. 

Christine: It probably crosses, yeah, crosses at one point. 

 So, Christine and Zane noticed that the input circle was not perfectly centered 

because the output was not perfectly double looped. Christine felt that the output 

probably crosses only at one single point (see Figure 3). Thus, while they did not 

explicitly state that a circle centered at the origin should have an image that looks like 

two circles perfectly superimposed, they seemed to have at least some sense of what the 

image should have looked like to notice the measurement error.  
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Figure 3. Red output curve under 𝑓(𝑧) = 𝑧2 touches origin at a single point if input circle 

intersects the origin. 

 When I asked Zane and Christine about why the image looked the way it did, 

some incorrect algebraic reasoning surfaced about what the participants assumed GSP 

was really calculating. The following reasoning was coded predominantly as algebraic 

due to the participants’ repeated references to algebraic formulae. 

Interviewer: Why do you think overall it looks like that? 

Christine: I am not sure because the origin is special. 

Zane: Because this function is doing the z squared of the z squared, right? 

Because don’t we have the first function to find the circle z to z squared and now 

we're doing z to z squared again from that other point. 

Christine: Like if you brought that radius to a two would that go down to four? 

Yeah. So it's like squaring this (input circle), then squaring that. 

Interviewer: It's putting each point on the circle through the transform z to z 

squared. 

Zane: Well it’s this function to this function, so my circle is at the origin. Is that 

because there’s only one, what’s it called? (Extends index fingers, moves hands 

out and in laterally, touching tips of index fingers, holds fists together and extends 

and retracts index fingers together.) Singularity type thing. Kind of like the whole, 

when you’re doing square roots, you have the whole plus or minus to, er, what’s 

the b squared minus 4 ac? 

Interviewer: That’s the discriminant. 

Zane: That term, yeah, it’s got a name. Because then there’s only one discriminant 

as opposed to the two, because you’re subtracting zero. 
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 Christine and Zane seemed to reason that GSP squared the points on the input 

circle twice before it plotted the output circle. It is not clear what caused this error in 

reasoning about GSP’s behavior. I responded to this discovery by pointing out that GSP 

calculated the output by squaring each point on the input circle once only. Zane 

responded by reasoning algebraically that the output curve touches the origin but does not 

loop around it (see Figure 3) because the discriminant is zero, though he conflated the 

terms “discriminant” and “root” when he talked about “only one discriminant as opposed 

to the two”. This exploration of changing the radius of the input circle with the aid of 

GSP appeared to help Christine and Zane develop geometric reasoning about the role the 

origin plays in transforming circles under 𝑓(𝑧) = 𝑧2. In particular, they discovered that 

when the input circle contains the origin, the output twists around it, and when the input 

circle touches the origin, the output curve has a sharp point that also touches the origin 

(see Figure 3). 

 After changing the radius at various points, they read from the worksheet I 

provided them (see Appendix B) to predict what would happen if they moved the input 

circle along the real and imaginary axes. Christine wondered whether moving the input 

circle along the real axis would cause the output circle to move, or to become deformed. 

She decided that this action “probably deforms it a little bit.” As Christine referred to 

geometric properties of a shape, this reasoning was coded as geometric.  

 While experimenting with the aid of GSP, Christine and Zane employed further 

reasoning coded as geometric for similar reasons. They observed that moving the input 

circle along the real axis changed the radius of the output circle, and they claimed that 

moving the input circle along the imaginary axis “sucks the circle in” and that the circle 
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is “looping a little bit.” While the first observation that the input circle’s distance away 

from the origin changes the output curve’s radius is absolutely true, the second 

characterization of the output circle “looping a little bit” and getting “sucked in” seems 

odd. If the input circle is really centered on the imaginary axis, the output circle should be 

centered somewhere on the real axis, not spiraling toward the unit circle. The output 

circle should only look like it is getting “sucked in” while the input circle is being moved 

toward the origin. Perhaps this is exactly what they noticed, though associating this 

behavior with the input circle being moved anywhere along the axes seems strange 

because getting “sucked in” has more to do with the direction the circle moves than the 

locations through which it moves. 

 During this experimentation with the aid of Geometer’s Sketchpad (GSP), 

Christine and Zane also started to address the question about how the function transforms 

the plane by describing how the function maps the quadrants. In particular, Zane 

observed that one quadrant in the pre-image is mapped to two quadrants in the image and 

noted, “it’s kind of like the whole, when we did the first one around the unit circle it 

looped around twice.” This reasoning was coded as geometric due to Zane’s references to 

the unit circle and looping, but the following reasoning was coded as algebraic due to 

Zane’s references to characteristics of an algebraic inscription. In particular, he attempted 

to explain this behavior algebraically by stating that one quadrant maps to two because 

(𝑥 + 𝑖𝑦)2 has a 2 in the exponent, which suggests doubling something.  

 Zane may not have felt completely satisfied with this reasoning because he soon 

after attempted to justify this behavior by reasoning geometrically instead of reasoning 

algebraically. In this attempt, he stated that the output circle becomes more deformed as it 
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gets closer to the origin. This reasoning was coded as geometric because Zane referred to 

geometric properties like how “deformed” the circle became. Christine retorted that it 

actually starts getting deformed before it touches the origin. As these were pertinent 

observations toward developing reasoning about the derivative as a local property, I 

suggested that Christine and Zane construct and transform spokes to help the students get 

a sense of how exactly the function 𝑓(𝑧) = 𝑧2 deforms the transformed circle as the input 

circle approaches the origin. 

 Zane and Christine followed directions I provided for building the spokes. These 

directions resembled those found in the following lab for 𝑓(𝑧) = 𝑒𝑧 (see Appendix C), 

which also were intended to highlight the rotation and deformations of output curves. The 

construction of these spokes with the aid of GSP appeared to remind them of dilations 

and translations. 

Christine: Isn't there like a stretch factor and some other factor? 

Zane: Geez, what were all the things? There was stretch, there was. 

Christine: Wait, so like a stretch factor would take, if this was our origin, and this 

was our vertex, like a stretch factor of two would stretch it another one that wasn't 

just stretching, if it was just moving would move it, um, and there was like 

negating. So like if we combined all three of those we could get like other things. 

 As Christine referred to the geometric idea of “stretching” a vector, this exchange 

was coded as geometric. Christine and Zane added a third transformation of “negating” to 

their first two transformations “stretching” and “moving,” though she never referred to 

“negating” again, opting instead to talk about “reflection” in addition to dilations and 

translations. Rotation is notably absent from this list of transformations. It is possible 

Christine was cognizant of rotations as a potential linear transformation but had not yet 

connected her knowledge of such linear transformations to the field of complex numbers. 
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Thus, at this point she seemed to reason only about dilation, translation, and reflection. It 

is also possible that Christine was trying to recall the complex analysis discussion of 

linear fractional transformations, wherein her professor had listed the transformations as 

dilation, translation, and reciprocation. It is additionally possible that she may have 

recalled reciprocation first as “negation,” and later as “reflection.”  

 After this episode, Zane and Christine turned to the question of how the function 

transforms the plane. Zane tried to answer this question by breaking his investigations 

into cases—one case for each quadrant. Meanwhile, Christine calculated (𝑎 + 𝑏𝑖)2 on 

paper. Both participants’ methods of reasoning during this time were coded as algebraic 

due to the fact that they appeared to calculate (𝑎 + 𝑏𝑖)2 via symbolic manipulation. 

During these investigations, one of Zane’s previous errors returned, and Christine 

duplicated it with her algebraic calculations by calculating ((𝑎 + 𝑏𝑖)2)2 while Zane 

reasoned aloud. 

Interviewer: Why are you looking at z squared squared? 

Zane: Because that’s what we were supposed to do. 

Christine: Is that what the pink thing is? 

Zane: That’s what the pink circle is, yeah. 

 I again corrected this error, which manifested in both my participants’ algebraic 

reasoning and their geometric reasoning. In particular, Christine algebraically calculated 

((𝑎 + 𝑏𝑖)2)2 as Zane geometrically reasoned that the output curve displayed by GSP is 

the resulting transformation of the input circle under the mapping 𝑎 + 𝑏𝑖 →  ((𝑎 +

𝑏𝑖)2)2. Thus, Zane’s flaw in geometric reasoning corresponded exactly to Christine’s 

erroneous algebraic reasoning. This contrasts with previous research (Soto-Johnson & 

Troup, 2014) which describes examples of a mismatch between algebraic and geometric 
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reasoning when errors occur. Once Christine identified the flaw, she revoiced the correct 

description of how GSP mapped the circles. 

Christine: Okay, so the blue is equal, not equal but blue would be our z, and the 

pink would be our z squared. 

Interviewer: That’s right 

Christine: So I did that (her ((a + bi)2)2 calculation) for nothing….Can we play 

with z? 

Interviewer: Absolutely. 

 Thus, once Christine realized that her previous reasoning was fruitless, she turned 

once again to experimentation with the aid of GSP. Her previous reasoning was coded as 

algebraic due to her symbolic manipulation, and when she shifted to GSP, her reasoning 

was coded as geometric due to her focus on the properties of shapes displayed with the 

aid of GSP. Now that Zane and Christine developed their reasoning about how GSP maps 

functions, I again suggested they construct spokes. After constructing these spokes, Zane 

and Christine started discussing whether the transformation they observed was a rotation 

or a reflection (see Figure 4). After this experimentation and observation with the aid of 

GSP, they eventually decided that the transformation was a rotation and not a reflection. 

The following exchange produced codes for geometric reasoning. 

Christine: It like, flipped (starts with left hand below right hand, rotates hands 

around each other with left hand in front of right hand, ends with right hand below 

left hand) 

Zane: Rotates it (right hand’s fingers start pointing down, rotates hand clockwise 

until thumb points up) 

Christine: Did it rotate, or did it flip? 

Zane: well, like, rotates 180 degrees (repeats previous rotation gesture) because 

orange was down and to the left and now it's up and to the right. 

Interviewer: Did you mean is it a rotation or reflection? 
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Zane: That’s a good question. Well see these two are curving, and if it was just a 

reflection, then (trails off). I had some logic for that a moment ago. 

 

Figure 4. Pink output curve transformed from yellow input curve under 𝑓(𝑧) = 𝑧2 

 Initially Christine appeared to reason about the image as a reflection, while Zane 

stated the transformation was a rotation (see Figure 4). Note also that Christine caught the 

discrepancy between their reasoning where she suggested a reflection and Zane suggested 

a rotation. Christine may have noticed this due to the rotation gesture he produced, which 

was distinctly different from her own produced reflection gesture. However, when I 

repeated this question about whether the transformation was a reflection or a rotation, 

Zane tried to justify his reasoning in a way coded as geometric, but admitted he could not 

reason about now as he believed he had “a moment ago” in the past. 

Christine: if it were a rotation it would be, flip (clicks tongue twice) (right arm 

extends, middle three fingers curl into a fist, thumb and pinky extend left and 

right respectively) Yeah, does that make sense? 

Zane: Yeah, the clicking helps 

Christine: Yeah, I think when it goes to a loop that's when it's like coming, cause 

remember how orientation gets like flipped when it goes into the loop? 

 For the first time during the task, Christine used reasoning coded as geometric to 

attempt to explain the difference between a rotation and a reflection. In particular, she 
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incorrectly claimed that the orientation gets “flipped” when the output circle twists on 

itself. In contrast, she felt the orientation was not flipped when they dragged the circle 

around the origin instead of through it. Thus, a little later in this same discussion, 

Christine seemed to reason that whether this transformation was a rotation or reflection 

depended on the way they moved the input circle. The following reasoning was coded as 

geometric due to Christine’s references to the various paths through which they dragged 

their input circle. 

Zane: What were you saying before, reflection and rotation? 

Christine: It went around, it was like a rotation, but when it went through it was 

like a reflection 

 However, Christine had trouble justifying this reasoning, and when I asked her 

about it explicitly she seemed to decide that it really was incorrect. The following 

reasoning was coded as geometric as Christine continued to refer to potential paths 

through which she could move the input circle. 

Christine: If I start...here, the blue's on the right, and if I go like straight through 

the origin, and then I curve around, the origin, it’s still on the right. I forgot where 

I was going with this. Nope, totally lost me. Oh! When I go through…which one? 

Is it not the same thing? I don’t know. Math is hard.  

Interviewer: So you think, where, what the output is path-dependent? 

Christine: No, cause that didn't make any sense, and then I tested it and it 

definitely wasn't. Cause I mean it should just be like point-dependent. So that 

means if it's a reflection, it's a reflection, if it's a rotation, it's a rotation, but it's not 

both. 

Zane: So you have light blue, dark blue, orange on bottom, you go there, go 

there…. So if it was just flipped, then the blues would be on the same side. 

 After Christine realized her reasoning was incorrect, Zane correctly explained via 

geometric reasoning that the input circle was transformed via a rotation and not a 

reflection. As Zane referred to geometric properties such as the orientation of the circle to 
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determine whether the transformation was a reflection or a rotation, his reasoning was 

coded as geometric. Zane’s argument was essentially the same as Christine’s previous 

geometric reasoning. Particularly, the orientation of the circle did not change under the 

transformation. In contrast to Christine’s approach, he actually checked that the origin 

had not changed by checking where each spoke mapped on the output circle. 

 Despite Zane and Christine both correctly describing this transformation as a 

rotation, Christine nonetheless concluded this conversation by stating that the output 

circle is “just getting reflected and stretched.” At the end of this first task, she also stated 

that the output circle “gets really weird near the origin,” and Zane voiced some interest in 

why the circle becomes distorted before it touches the origin. Due to such geometric 

properties as distortion, reflection, and stretching, Zane’s concluding remarks were coded 

as geometric. 

Zane: Yeah, the origin seems to be the main factor that was distorting it, but there 

was also the whole, it gets oblong a little bit when it’s getting close to it, but 

(trails off). So yeah, I mean there because before we talked about it, it would just 

always like, it doesn’t contain it in the origin if it wasn’t a perfect circle. But if it 

was a perfect circle then I don’t think that would be there. So I don’t know why it 

gets flatter when we’re still nearing the origin but not containing the origin (holds 

palm flat facing computer, raises hand curling fingers, lowers hand uncurling 

fingers). 

Edward and Melody 

 In contrast to Christine and Zane, Melody and Edward seemed much more 

predisposed to reasoning coded as geometric (see Table 3). For example, Melody 

remarked that if 𝑧 was placed on the point 1 + 𝑖, then 𝑧2 should be on the circle. This is 

not correct, but it is notable that she turned first to reasoning coded as geometric, whereas 

Christine and Zane focused on algebra exclusively to answer the same question. Edward 

turned to reasoning coded as algebraic to determine where 𝑓(𝑧) = 𝑧2 maps 1 + 𝑖, much 
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as Zane and Christine did. Edward first determined that the real part of (1 + 𝑖)2 is 

1 − 1 = 0, so 𝑧2 should land on the imaginary axis. Thus, while Edward reasoned 

algebraically to determine the real part, he utilized this algebraic reasoning to inform his 

geometric reasoning and thereby concluded that (1 + 𝑖)2 is a point on the imaginary axis. 

Edward and Melody confirmed this fact with the aid of Geometer’s Sketchpad (GSP). 

Table 3      

Task 1 Codes for Edward and Melody   
Line # Verbiage Alg Geo Gesture Tech 

174 E: 𝑥 squared x  Underlines (𝑥 + 𝑖𝑦)(𝑥 + 𝑖𝑦) above 

with right index finger 

Writes (𝑥2 − 𝑦2) 

175 E: minus 𝑦 squared x  E Touches the two 𝑖𝑦's  

176 M: and you get two x  E Points at first (𝑥 + 𝑖𝑦) in above 

line, then places chalk after 

(𝑥2 − 𝑦2) in next line 

 

177 M: 𝑥 𝑦 𝑖 x  Has written 𝑧2 = (𝑥 + 𝑖𝑦)2 = (𝑥 +
𝑖𝑦)(𝑥 + 𝑖𝑦), touches these last two 
factors in order with right hand 

 

373 E: Oh, when you 

multiply, oh! 

    

374 E: They expand, and 
they twist, and rotate 

 x Extends left finger and moves hand 
and finger left 

 

375 M: They like rotate  x   

376 E: rotate and dilate  x Brings right index finger to his 
front, turns toward partner, and 

moves hand and finger up and right 

 

413 M: That's on the, on 
the circle 

 x  Moves 𝑧 down and left just inside unit 
circle, then up and right on unit circle at 

45° angle from positive real axis. 

Waves mouse up and left, then down 
and right, back and forth 

414 E: So, does that make 

sense? So that is 

 x M Points at screen, then places two 

fingers of right hand on table next 
to computer 

M mouse moves to origin, then to 1, 
then rotates ccw along right upper 

quarter circle to 𝑖, then moves down 
and right to bottom of GSP window 

Note. Alg stands for algebraic, and Geo stands for geometric. 

 Despite reasoning geometrically early on, both participants began primarily 

reasoning algebraically in answering the question, “Where do you think you should place 

𝑧 to send 𝑧2 to 𝑖?” Melody created the system 2𝑥𝑦 = 1 and 𝑥2 − 𝑦2 = 0 from the 

equation (1 + 𝑖)2 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 = 0 + 𝑖 and separating the real and imaginary parts, 

much as Christine and Zane answered this question. Edward and Melody, however, 

appeared to have much less success in solving this system. After they appeared to stop 
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progressing toward a solution for this system, I attempted to redirect them to more 

geometric reasoning. 

 Note that Edward’s reasoning is embodied through both his gesture in the case of 

dilation and his entire body’s motion in the case of rotation. As such, the following 

exchange is coded as geometric. 

Interviewer: Do you remember what happens to the geometry of two complex 

numbers when you multiply them? 

Edward: When you multiply, Oh! When you multiply, oh! They expand, they 

twist, and they rotate (points left and moves hand and finger left) (see Figure 5) 

 

Figure 5. Edward produces a dilation gesture 

Melody: They like rotate 

Edward: They rotate (turns toward partner) (see Figure 6) and dilate (flicks right 

index finger from pointing forward to pointing up while extending arm outward 

and up) (see Figure 7). 

 

Figure 6. Edward rotates his body while reasoning about rotation 
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Figure 7. Edward produces a dilation gesture while rotating his body 

 This redirection appeared to lead Melody and Edward back to experimentation 

with the aid of Geometer’s Sketchpad (GSP), and they noted that 𝑖 is mapped to −1 

under 𝑓(𝑧) = 𝑧2. They placed 𝑧 at the correct point on the unit circle to make 𝑧2 land on 

𝑖, at which point Edward asked Melody, “Does that make sense that it’s on the circle?” 

Melody responded “I don’t know why,” and Edward noted that the equation of the unit 

circle is 𝑥2 + 𝑦2 = 1. He claimed that this unit circle equation is “making 𝑥 and 𝑦 equal 

to 1 and they have to be equal, so that’s why we’re getting the 𝑖.” That is, Edward 

seemed convinced that the equation of the unit circle was the reason (
1+𝑖

√2
)

2

= 𝑖. He 

concluded the investigation of this question by stating, “I wouldn’t have guessed that 

without moving that around, okay.”  

 When Melody read the next question, “What do you think will happen to 𝑧2 if 

you move 𝑧 around the green unit circle once,” Edward began trying to reason what 

would happen as the point 𝑧 moved to the right following the circle, stating “𝑥 will get 

bigger, 𝑦 will get smaller,” and asked the poignant question, “but will it stay on the 

circle?” Edward started picking particular values for 𝑥 and 𝑦 to determine the real and 

imaginary parts of the corresponding output. Melody noted that if 𝑥 = 0, “the imaginary 

part would have to be zero.” As such, both Melody’s and Edward’s reasoning produced 
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algebraic codes. While they did not yet have a complete prediction, Edward suggested, 

“shall we just try that and just see if that part works,” and Melody agreed. This 

suggestion seems to mirror in some respects Zane’s suggestion of “if we just say it’ll 

move around the circle we can do it.” Perhaps both Edward and Zane felt that they had 

done what they could without GSP and wanted to transition back to GSP to further 

develop their reasoning, or at least check what predictions they had already made.  

 When Edward moved the point 𝑧 around the unit circle, Melody pointed out that 

the output 𝑧2 moved around the unit circle twice. Edward replied that he would not have 

noticed that behavior without Melody pointing it out, similar to how Christine claimed 

she would not have noticed the same behavior without Zane’s explicit observation. It may 

be that the fact that 𝑧2 travels around the unit circle twice when 𝑧 travels around the unit 

circle once is a subtlety that requires explicit and directed attention to notice. After 

answering this question, Edward read the next directions about further geometric 

experimentation with the aid of GSP after he and Melody constructed their circles. He 

then stated, “Okay, move your circle around the graph and observe the output….Okay, 

now let’s mess with this critter!” 

 Between Edward’s reading of the directions and his manipulation of the output 

“critter,” Edward and Melody constructed, transformed, and colored the input and output 

circles. They colored the input circle blue and the output circle red. During this time, 

Edward also realized he had an additional output shape (see Figure 8), as he “accidentally 

did the transform of the transform.” That is, he constructed 𝑓(𝑧) = (𝑧2)2. He correctly 

identified the extraneous output shape and deleted it. It is not clear what caused this error, 

though it is interesting that this incorrect reasoning was repeated in some respect by both 
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participant groups. Zane repeatedly reasoned about the output shape displayed by GSP as 

𝑓(𝑧) = (𝑧2)2 despite the fact that the output point was labeled 𝑧2, and Edward actually 

constructed the output corresponding to 𝑓(𝑧) = (𝑧2)2 with the aid of GSP. Perhaps this 

error was motivated in part by the transformation notation I used on the lab worksheets. 

In particular, the participants had to coordinate the transformation 𝑧 → 𝑧2 as written on 

the lab worksheet with the function 𝑓(𝑧) = 𝑧2 as they wrote the function. Given the 

potential problems with reasoning about function notation (Tall & Vinner, 1981), it is 

conceivable that both sets of participants believed that they were to square the input once 

for the transformation 𝑧 → 𝑧2 and once again for the function 𝑓(𝑧) = 𝑧2. However, once 

the participants realized that GSP squares the input only once, they did not repeat this 

error. 

 

Figure 8. The small blue input circle, the large red image circle of the small blue circle, 

and the elongated blue image curve of the large red image circle under 𝑓(𝑧) = 𝑧2 

 When Edward and Melody started experimenting with the aid of GSP again, 

Melody noticed that the output wraps itself around the origin, and expressed an interest in 

discovering why the output loops at the origin. With this question in mind, Melody and 

Edward started investigating the behavior of the output when specific points were in the 

area enclosed by the input circle.  
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 Edward read the first question of this type, “What does the output look like if the 

input is a circle with 1 + 𝑖 in the area enclosed by the circle?” Edward asked Melody if 

she expected that the center would be located at 2. Melody geometrically reasoned that 2 

would be in the area enclosed by the output circle, but not necessarily at the center.  

Melody: If you’re saying, if this center’s (points at screen) at 1 + i (Edward 

wiggles circle slightly centered at 1 + i), then the center will be at 2, but if it’s 

just enclosed in the area, then it’s not necessarily at 2. 

Edward: Oh, that’s right 

 Melody and Edward experimented and observed with the aid of GSP how 

𝑓(𝑧) = 𝑧2 transforms various circles with 1 + 𝑖 inside the circle. When I asked for an 

explanation, they did not offer any explicit theories about the behavior of the output 

circle beyond Edward ruminating, “What was our theory? I guess we knew it was going 

to be on the imaginary.” 

 Melody and Edward began trying to determine how 𝑓(𝑧) = 𝑧2 maps an input 

circle where the complex number 2 is in the area enclosed by the input circle. After 

experimenting with the aid of GSP, Edward concluded that they would expect the output 

to “sort of be in the real realm of things. At least for the center.” After this 

experimentation, they returned to the question that they had previously tried to skip. 

When Edward asked what the output would look like when the origin was in the area 

enclosed by the input circle, Melody claimed that “it’ll get all messed up,” and used GSP 

to demonstrate. Melody’s verbiage during this demonstration produced codes for 

geometric reasoning. It is not clear at what point in her investigations Melody noticed 

that the origin is a point that causes the output to behave atypically. She characterized this 

behavior as “wrapping around” while observing the geometry with the aid of GSP.  



143 
 

 
 

 After following the directions on the lab worksheet to observe what happens to 

the output when the radius of the input circle is changed, Edward noticed that “once we 

get past the origin it’s going to wrap around.” Edward and Melody appeared to remember 

this geometric discovery in the next question, “What does the output look like if 1 + 𝑖 

and 2 are in the area enclosed by the circle?” In particular, Melody claimed that 

“including the origin, the output won’t wrap around,” and demonstrated this behavior 

with the aid of GSP. Melody also noted that if the input circle was centered at the origin, 

the output circle should “loop twice,” a correct geometric prediction (see Figure 9). This 

episode included reasoning coded as geometric due to references to geometric features of 

the input and output circles, including when the output circle “wraps around,” “gets past 

the origin,” or “loops.” Melody and Edward did not yet notice any special relationship 

between the size of the input and the size of the output when they changed the radius of 

the circle centered at the origin. 

Melody: It’s still looping around twice, it just changes 

Edward: the magnitude. If it’s small we go smaller. If it’s big we go bigger. 

 

Figure 9. Red image curve under 𝑓(𝑧) = 𝑧2 twists if blue pre-image is a circle which 

includes the origin. 

 When asked about how the output curve changes as the input circle is dragged 

along the real axis, Edward guessed that “it should sort of unwrap itself, shouldn’t it?” 

This prediction is correct only under the additional assumption that the input circle is 
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dragged away from the origin. This mirrors Zane’s and Christine’s similarly limited 

prediction that the output circle would get “sucked in,” which is only true if the input 

circle is dragged toward the origin. However, Edward did clarify the cause of the output 

circle unwrapping itself, and demonstrated that he was correct with the aid of GSP. The 

reasoning in this exchange was coded as geometric. 

Edward: Once we get the blue circle to not include the origin it should just be 

another circle. (Edward demonstrates in GSP.) Now it’s a gigantic circle. 

Interviewer: It’s just a little bigger than one. 

Edward: Oh I forgot we’re really zoomed in (pinches index finger and thumb 

together) on one. That was one thing I was really not getting in class, that when 

we were talking about small stuff we’re talking about really (moves left hand up 

and right) small stuff. You’ve got one is huge. 

 So, not only did Edward reason that the origin is the cause of the output circle 

wrapping itself, but he also advanced his geometric reasoning to the point where he could 

say that “small” can mean “really small” (see Figure 10). It is telling that he could not 

establish this geometric reasoning in class, that even a number as “small” as one can be 

“huge.” It may be that the dynamic nature of Geometer’s Sketchpad (GSP) helped him 

advance his geometric reasoning in this way, or it may be that this particular aspect of the 

geometry was not emphasized in his complex analysis class.  

 

Figure 10. A “gigantic” blue pre-image circle with a radius slightly larger than 1 
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 Edward’s gesture is also notable in that he pinched his index finger and thumb 

together, possibly iconic of the concept of smallness, while noting they were “really 

zoomed in on one.” In contrast, he extended his left arm, possibly iconic of largeness, 

when referencing “really small stuff,” though this gesture could have been intended to 

match with the subsequent utterance “you’ve got one is huge.” Alternatively, the fact that 

he used a smallness gesture to reference an object that appeared large and a largeness 

gesture to refer to objects that previously seemed small may have been an external 

representation of his internal struggle to reify the precise mathematical meaning of 

“small” in his geometric reasoning.  

 When Edward and Melody dragged the input circle along the positive imaginary 

axis, they observed that the output “turns” or “flips,” though they did not argue about 

whether this “flip” is a rotation or reflection as Christine and Zane did. Melody correctly 

justified this geometric behavior by noting that algebraically, 𝑖2 = −1, so anything along 

the positive imaginary axis should map to the negative real axis. While dragging the input 

circle through different quadrants, Edward noticed that the output goes twice around the 

origin, and associated this behavior with the previous GSP experimentation where he 

moved a single point 𝑧 around the unit circle.  

Edward: Is it doing that twice thing, like before? So if we start here (moves circle 

from positive real axis to negative real axis, counterclockwise around outside of 

unit circle) 

Melody: I think it does. 

 During this experimentation and observation with the aid of GSP, Edward and 

Melody collectively stated a key advancement in reasoning regarding the behavior of 

𝑓(𝑧) = 𝑧2. This reasoning was coded as geometric due to references to circles and such 

geometric behavior as “wrapping” and “looping.”   
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Edward: So big small (Palms flat facing each other, moves hands toward and 

away from each other) will map to a big circle, or not necessarily a circle, kind of 

depending on where you are it’ll start wrapping.  

Melody: Small where you are. 

Edward: Let’s test that theory with this thing (Waves mouse up and down through 

center of input circle. Drags input circle up and right so center is just above the 

positive real axis). When you get really big (expands input circle to radius 5) 

there, then if we go through the origin then it loops around (Points at screen and 

traces one large counterclockwise circle) 

Melody: Go through the origin, loop around, and small circle will 

Edward: Small circle (Contracts input circle to radius 
1

2
) will just, will be a circle, 

another small circle (Contracts input circle to radius 
1

4
) 

Melody: Mhm. Unless you include the origin and it wraps around. 

 Thus, by experimenting and observing with the aid of GSP, Edward and Melody 

both advanced their geometric reasoning to the point where they could verbalize that 

𝑓(𝑧) = 𝑧2 maps a small circle to another small circle provided the pre-image circle does 

not include the origin and the image curve “wraps around.” This ability to notice a small 

circle mapping to a small circle is crucial for reasoning geometrically about the derivative 

of a complex-valued function, particularly in the non-linear case. Also note that while 

Melody only appears to partially revoice Edward’s reasoning, the portions of Edward’s 

reasoning she repeated seems to be the same ones he accompanied with gesture. 

 The last question on the Task 1 (see Appendix B) worksheet asked about how 

𝑓(𝑧) = 𝑧2 transforms the plane. I stated this question by comparing it with the example 

of how 𝑓(𝑧) = 𝑖𝑧 rotates the plane 90°, and asked for a similar geometric explanation for 

𝑓(𝑧) = 𝑧2. After I stated this question, Edward turned his right hand outward, so his 

palm faced away from him, and pushed outward along the table. He began manipulating 

GSP, first moving the mouse up and down through the input circle, then moving the 
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circle up into the first quadrant. He collapsed the circle nearly to a point, then expanded it 

again. He moved the mouse to the center of the circle before dragging the circle back 

down slightly, still in the first quadrant. In this minute of GSP experimentation and 

observation, Edward and Melody both remained silent, though both appeared to be 

watching GSP. Finally, Melody broke the silence by trying to summarize what was 

happening to the circle, though at this point she did not yet seem sure of herself. 

Melody: Isn’t it like (trails off)? Does it double the magnitude? I don’t know.  

Edward: Is it always? Oh why don’t we put this (input circle) in a place that we 

know (moves blue input circle so its center rests at 2). 

 In this observation, Melody had at least given part of the answer to the question I 

asked, at least with respect to circles, as 𝑓(𝑧) = 𝑧2 increases the magnitude by a factor of 

2𝑧 and rotates the angle an amount equal to 𝐴𝑟𝑔(2𝑧) = 𝐴𝑟𝑔(𝑧). Note that 𝑓(𝑧) = 𝑧2 

squares the magnitude of the point 𝑧, and additionally does not double the size of the 

input circle unless |𝑧| = 1 so that |𝑓′(𝑧)| = |2𝑧| = 2|𝑧| = 2. After about another minute 

of GSP experimentation, Edward agreed with Melody’s observation despite this 

inaccuracy. 

Edward:  Yeah, so it doubles the magnitude. Or it doubles the magnitude until we 

get through the origin doesn’t it? 

Melody: Mhm. 

 Thus, through geometric reasoning, Edward and Melody decided that 𝑓(𝑧) = 𝑧2 

doubles the magnitude of the input circle, and that the origin is in some way an atypical 

point for this function. Edward asked me whether I wanted them to talk about the 

orientation as well as the magnitude, suggesting that he felt to some degree that rotation 

was also an important geometric aspect of the function. I suggested to Melody and 

Edward that they should make spokes to highlight the amount the function 𝑓(𝑧) = 𝑧2 
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rotated the input circle. Melody initially predicted that the circle should rotate to 90°. 

However, when Edward placed the center of the input circle at 1 + 𝑖 and pointed the 

spoke right, Melody observed that the output spoke rested at a 45° angle rather than a 90° 

angle. This error might be a result of the relatively common conflation of how 𝑓(𝑧) = 𝑧2 

transforms points and how it transforms circles. The point 𝑧 = 1 + 𝑖 would indeed map 

to a point with argument 
𝜋

2
, but a short line segment emanating from the point 𝑧 = 1 + 𝑖 

would map to a nearly straight curve rotated 
𝜋

4
 from its original direction. At this point, 

Edward and Melody did not yet seem certain of how much 𝑓(𝑧) = 𝑧2 rotates a small 

circle. 

Edward: And when we multiply, am I doing this right? When we multiply (rotates 

arm about elbow to the left) two complex numbers together it’s adding the angles 

together? Is that right? Because if I move this (moves the center of the input circle 

closer to the real axis in the first quadrant) to a smaller angle here, you see how 

Melody: The line segments are almost like, really close together. 

Edward: They’re closer….(GSP experimentation here). Oh so this is making a 

little bit more sense, because we’re multiplying by the angle, then that’s why it’s 

going around twice. Cause we’re doing this angle times two. 

 Due to Edward’s and Melody’s experimentation and observation with the aid of 

Geometer’s Sketchpad, they synthesized both reasoning coded as algebraic and reasoning 

coded as geometric to explain that the point 𝑧2 or the output circle “goes around twice,” 

because they were multiplying by the angle, which doubles it. That is, they are 

algebraically multiplying the complex number’s argument by 2. After some additional 

experimentation with the aid of GSP, Edward tried to summarize how 𝑓(𝑧) = 𝑧2 

transforms circles, in a way coded as geometric. 

Edward: Is that somewhat of an explanation? That the orientation depends where 

you are, but the, a small circle goes to a small circle, it’s just how it’s oriented, 

isn’t it? So should be pretty close to we’re on the real line, the orientation, at all 
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Melody: That’s not rotated at all, and then it starts rotating as you go (points at 

screen with right hand, rotates right arm counterclockwise). 

 So, by this point, Edward and Melody correctly noted that a small circle maps to a 

small circle, its magnitude is doubled, and the amount it is rotated increases as the input 

circle travels counterclockwise through the quadrants. Edward summarized again by 

saying the function “reorients it (points at input circle) by double this (waves mouse 

along angle at which blue circle’s center is from the origin) angle.” Melody asked for 

clarification of which angle Edward meant. Edward indicated the angle again with the 

mouse, which Melody described as “from the real axis to the origin of the circle,” and 

Edward agreed with this description. After about 3 additional minutes of GSP 

experimentation, Edward and Melody tried to summarize how the function 𝑓(𝑧) = 𝑧2 

rotates the plane via geometric reasoning. His reasoning was coded as geometric due to 

the fact that he referred to the geometric idea of how the plane rotates. 

Edward: Generally, it’s how much the plane gets rotated to the left. 

Melody: It’s going to rotate 

 After this observation, Edward additionally mentioned that he thought it was 

“going to be twice.” 

Interviewer: What was it doing twice? 

Edward: I don’t know, for some reason I had it in my mind that was actually 

going to, that the plane was going to rotate twice. 

Melody: That the plane would rotate twice 

Edward: Or twice, twice the angle of the origin to the center of the circle, but it is 

obviously not doing that, so 

 I asked Edward how he knew that was not what was happening, and Melody 

retorted, “It is, it’s rotating the angle from the origin to the center of the circle.” This 
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characterization of the plane rotating twice is a reasonable description of how 𝑓(𝑧) = 𝑧2 

maps the points in the plane, as this 2 −to−1 function essentially wraps the plane over on 

itself. As such, it is not clear why Edward was so convinced this characterization is 

incorrect, while Melody reasoned that it is. One possibility is that Edward continued to 

conflate how points are mapped with how circles are mapped by 𝑓(𝑧) = 𝑧2. This 

function squares the magnitude of points and doubles their arguments, whereas it also 

doubles the radii of sufficiently small circles and, as Melody stated, “rotate[s] [the circle 

by] the angle from the origin to the center of the circle.”  

Task 2: Investigating 𝒇(𝒛) = 𝒆𝒛 

Christine and Zane 

 At the beginning of the second task, Christine and Zane constructed 𝑓(𝑧) = 𝑒𝑧 

with the aid of Geometer’s Sketchpad (GSP). While investigating this function, they 

utilized both algebraic and geometric reasoning (see Table 4). Zane and Christine 

answered the first several questions integrating algebraic reasoning. For example, Zane 

recalled 𝑒𝜋𝑖 = −1 and demonstrated with the aid of GSP that he was correct.  

Table 4      

Task 2 Codes for Christine and Zane   
Line # Verbiage Alg Geo Gesture Tech 

111 Z: 𝑒 to the 𝑥 cosine 𝑦, so, cosine of 

0 is 1, so you just get e to the 
whatever power. So either it'll 

approach zero or it'll go out, 

towards infinity as you grow 

x  index finger extended, 

moves hand up and right 

 

112 C: Yep, and then it just goes around 

the circle 

 x   

161 Z: Now make it a little bit off center  x  rotates 𝑧 ccw around unit circle 

roughly 2𝜋 away from origin, 
starting and ending at positive 
imaginary 

 

162 Z: Okay, see how it spirals?  x   
164 Z: then if you go to the outside of 

that 

 x points at screen, moves 

hand left and right 

 

165 Z: It just shrinks it, okay  x  moves 𝑧 into 1st quadrant, then 

down to 2 + 2𝑖 

 Note. Alg stands for algebraic and Geo stands for geometric. 
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 When discussing the behavior that occurs if 𝑧 is dragged along the axes, Christine 

and Zane correctly reasoned in a way that produced algebraic codes. Namely, they 

reasoned that if 𝑧 moves along the real axis, 𝑒𝑧 should approach ∞ or 0 depending on 

which direction they moved 𝑧, and that if 𝑧 moved along the imaginary axis, 𝑒𝑧 should 

go in a circle. Christine did not provide any reasoning for why 𝑒𝑧 moves along the unit 

circle when 𝑧 moves along the imaginary axis, although she was correct. 

Zane: Okay, well, if x stays positive, it will, so, e to the x, cosy, so cos of 0 is 1, 

so you just get e to the whatever power. So either it’ll approach zero or it’ll go 

out, towards infinity as you grow 

Christine: Yep and then it just goes around the circle. 

 Once Zane and Christine finished correctly predicting how 𝑓(𝑧) = 𝑒𝑧 maps the 

point 𝑧, they started experimenting with the aid of GSP to discover how this function 

transforms vectors. In particular, they attempted to answer questions on the worksheet for 

𝑓(𝑧) = 𝑒𝑧 (see Appendix C) about how 𝑓(𝑧) = 𝑒𝑧 maps line segments from the origin 

stretching into various quadrants. This worksheet provided instructions for how to 

construct the vector from the origin to the point 𝑧. After constructing this vector and 

sending it through the transformation 𝑓(𝑧) = 𝑒𝑧, Zane noted that the image curve spirals 

if the vector is “a little bit off center” (see Figure 11). 

 Given this reference to a geometric idea such as how centered a mathematical 

object might be, this observation was coded as geometric. While stretching the vector 

along the imaginary axis, Christine restated this observation, and added that the image 

curve creates circles if it is kept perfectly straight. Christine and Zane further noted that if 

the vector is in the first or fourth quadrant, the vector’s image spirals outward, and that in 

the second or third quadrant, the vector’s image spirals inward. They additionally noticed 



152 
 

 
 

that the direction of the spiral changes between the first and the fourth quadrant, or 

between the second and the third. Given the visually motivated reference to 

counterclockwise and clockwise spirals, these observations were coded as geometric. 

After successfully characterizing how the function transforms vectors, they started to 

construct and transform circles as directed in the Task 2 worksheet. 

 

Figure 11. Pre-image vector is transformed to a spiral under 𝑓(𝑧) = 𝑒𝑧 

 At first, Zane reasoned that the circle’s image would never be “less than the 

origin,” by which he may have meant on the left half of the plane. Under this 

interpretation, when Zane suggested afterward that the output could not be “doubly 

negative,” he may have meant to ask whether the output could have negative real and 

imaginary parts simultaneously. If this is indeed how Zane reasoned, it is consistent with 

algebraic reasoning about the real-valued function 𝑓(𝑥) = 𝑒𝑥 which never has a negative 

output. While Zane may have correctly described how 𝑓(𝑧) = 𝑒𝑧 maps the imaginary 

axis to a full unit circle around the origin (which intersects the left half of the plane), this 

instantiation of Danenhower’s (2006) Thinking Real, Doing Complex may have been too 

ingrained for Zane to ignore. It is possible that investigating how vectors are transformed 

felt similar enough to working with real-valued vectors that Zane may have temporarily 
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ignored the fact that he was working with complex numbers, and thus that 𝑒𝑧 = −1 has a 

solution. As such, Christine repeatedly surprised him by successfully carrying out actions 

with the aid of GSP Zane had declared impossible. 

Zane: You can’t get it anywhere less than the origin though, right? 

Christine: Mmm, whoa! Yeah, apparently I can! How did I get over there? 

Zane: Just not both doubly negative? Okay 

Christine: Basically whatever you say, Zane, I can do. 

While Christine was not sure of how she accomplished these supposedly impossible 

tasks, she seemed able to find counterexamples to Zane’s claims nonetheless. After 

experimenting a little more with the aid of GSP, Zane correctly noted that moving the 

input circle left and right changed the size of the output curve (see Figure 12), while 

moving the input circle up and down rotated the output curve (see Figure 13). Thus, 

investigating how the function transforms circles seemed to highlight rotation and 

dilation for both groups of participants. 

 

Figure 12. 𝑓(𝑧) = 𝑒𝑧 transforms small blue pre-image circle centered real axis to a 

dilated green image circle centered on real axis 
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Figure 13. 𝑓(𝑧) = 𝑒𝑧 transforms small blue pre-image circle along imaginary axis to 

green image circle rotated counterclockwise from the positive real axis by 𝑅𝑒(𝑧) radians. 

 When Zane and Christine first started investigating what the output of a circle 

would look like if 1 + 𝑖 was in the area enclosed by the circle, under the function 

𝑓(𝑧) = 𝑒𝑧 they did not offer much description except to say that the output of a circle 

around 1 + 𝑖 would be another circle. Christine described the output of a circle around 2 

geometrically by appealing to how the function maps points and vectors along the real 

axis. It is not clear whether Zane and Christine considered the point 𝑧 and the vector from 

the origin to 𝑧 as distinct mathematical objects, as I did not question them about this 

distinction. The following exchange was coded as geometric, due to verbiage about how 

the circle curves and possibly “gets weird when you go to the origin.” 

Christine: I think when we make it real, like it just, it just was a circle on the real 

that was getting bigger and bigger. 

Zane: What if you have a point that’s just, er, you just have 2 inside the circle as 

opposed to on the axis? The new circle’s going to be big, yeah? Don’t be 

ridiculous, it’s also curved weird. Does it get weird when you go to the origin? It 

just doesn’t go to the origin, that’s right. Okay. 

Christine: So it doesn’t curve around like the other one did. 

Zane: Right, it just shrinks. 
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 So, during this time, Christine and Zane discovered that when the circle becomes 

large, the output shape is “curved weird” (see Figure 14).  This appeared to remind Zane 

of 𝑓(𝑧) = 𝑧2 looping the output curves on themselves when the origin was in the area 

enclosed by the pre-image circle, so he asked a related question about this new function. 

However, he appeared to remember that 𝑓(𝑧) = 𝑒𝑧 is not 0 for any value of 𝑧, so he 

correctly reasoned geometrically that the output curve “just doesn’t go to the origin.”  

 

Figure 14. 𝑓(𝑧) = 𝑒𝑧 maps a larzge blue pre-image circle to a larger green image curve 

which self-intersects 

 Despite this discovery, in the subsequent episode Zane felt that if the origin was 

in the area enclosed by the input circle, then the output shape should become distorted. 

Christine’s observations with the aid of Geometer’s Sketchpad (GSP) disproved this 

conjecture once again. 

Zane: Okay. What do you think the output will look like if the input is a circle 

with the origin in the area enclosed by the circle? Yeah, it shrinks and gets 

misshapen. 

Christine: Well now it’s the circle. Like, it’s not misshapen 

Zane: So it depends how far away you are. 

Christine: You’re making the radius bigger and bigger. The circle ends up, like, it 

has to go past the zero so it loops around it instead. 
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 This exchange was coded as geometric, due to the references to geometric 

properties such as whether the output curve is misshapen, whether it shrinks, and whether 

it loops. While Zane tried to explain the distortion as related to how far away the input 

circle is from the origin, Christine correctly reasoned geometrically that this distortion is 

related more closely to the radius than the distance from the origin. Her last comment 

suggests a reason for why Zane felt the distortion was related to the origin. In particular, 

they observed that the image of the input circle loops around the origin rather than 

touching it. They may have seen this behavior as similar to how the image of an input 

circle enclosing the origin loops around the origin under 𝑓(𝑧) = 𝑧2. The origin is an 

important point in both cases, but in the case of 𝑓(𝑧) = 𝑧2 the origin in the input plane is 

the critical factor, while in the case of 𝑓(𝑧) = 𝑒𝑧, the image curve avoids the origin in the 

output plane. 

 As Zane and Christine moved through the Task 2 worksheet and started 

manipulating the radius of the circle, they observed that as the radius of a circle centered 

at zero becomes larger, the output curves twist. It is possible Christine or Zane may have 

still believed the origin plays a role in causing the twists under the function 𝑓(𝑧) = 𝑒𝑧 

partially because of the circle’s location at the origin. In truth, the output curve twists if 

the input circle has a radius of 𝜋 or greater, regardless of location, due to the vertical 

periodicity of 𝑓(𝑧) = 𝑒𝑧. Because it was not clear why Christine and Zane believed these 

twists occured, I asked them about why twists occurred in 𝑓(𝑧) = 𝑧2. In this case, 

Christine identified the origin as an important point. 

Interviewer: Did you tell me why the twists occurred in z squared? 

Zane: In the circles, there were points where the circles twisted in on itself.  
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Christine: Probably not directly, but I mean, it had something to do with the 

origin. 

 After some further GSP manipulation, Zane tried to correspond this reasoning 

with the behavior they observed for 𝑓(𝑧) = 𝑒𝑧, by stating, “it’s the same thing here.” 

Christine seemed skeptical, and asked Zane what would happen if the circle is small 

enough, or if the circle is large but away from the origin. The following exchange 

produced codes for geometric reasoning due to imagery such as being far away from the 

origin (rather than large in magnitude), looking like a circle, or warping due to being too 

close to zero (rather than due to being small in magnitude). 

Christine: So if you’re away from the origin, you won’t be able to create the 

twists? And we had a small enough circle, it would just look like a circle, right 

Zane?....What about a large radius? 

Zane: Well, if the radius is too large it’ll start to warp because it’s getting close to 

zero. 

 After experimenting with the location and size of the input circle, they 

constructed and transformed spokes in the circle and continued similar experimentation. 

By the end of this session, both Zane and Christine seemed to start experiencing doubt 

about their original claim that the origin caused the output circle to twist. Zane suggested, 

“Okay. You said the twists happen when the circle is close enough to the origin.” Despite 

some concentrated efforts with the aid of GSP, neither Christine nor Zane could make a 

small circle close to the origin map to an output curve with a twist, so they began to 

wonder why via geometric reasoning. This reasoning was coded as geometric due to 

references to geometric properties such as twisting or getting close to something. 

Christine: Then why won’t it twist when the small circle gets close? Because the 

small circle has such a small radius that the output, has such a small radius. But it 

never interferes with zero. 
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Zane: And when it finally does interfere with zero it’s like so small it becomes a 

point. 

 So, while they both realized that a small circle close to zero would not map to a 

curve with a twist, Christine’s and Zane’s geometric reasoning was not yet quite correct. 

Instead, they tried to geometrically reason that by the time the circle interferes with zero, 

the output is too small to twist. After further experimentation with the aid of GSP, they 

eventually discovered that the radius of the input circle itself is what causes the twists in 

the output circle. It appears they made this discovery by zooming in and out to find a 

twist in the small circle and failing.  

Christine: Probably, greater than π, maybe, my guess is at π, they touch, and then 

greater than π, it wraps. (Demonstrates in GSP that this is correct) 

Zane: So it looks like it doesn’t matter if we’re near the origin or not. 

 Thus, not only did Christine observe that once the radius of the input circle is 

greater than 𝜋, the output starts to wrap, but Zane finally advanced his geometric 

reasoning to the point where he could correctly state that the origin has nothing to do with 

why the output circle wraps. To conclude this task, I asked Christine and Zane to describe 

how 𝑓(𝑧) = 𝑒𝑧 mapped the whole plane, and they admitted to preferring algebraic 

reasoning to geometric reasoning. 

Christine: It’s really hard for me to picture things. 

Zane: Yeah, my mind doesn’t really work geometrically either. 

Christine: And this one’s harder than z squared I think 

Zane: I couldn’t even picture z squared really. 

 For the rest of the second day, I had Christine and Zane construct 𝑓(𝑧) =
1

𝑧
. As 

usual, they correctly calculated the real and imaginary parts via algebraic reasoning. Zane 

correctly noted that closer to the origin, the output is further away, and the output “flips” 
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near the origin. A limitation of Geometer’s Sketchpad (GSP) became apparent here. In 

particular, a small circle surrounding the origin was mapped to such a large circle that the 

output curve was represented graphically as a series of connected line segments forming 

a closed curve. That is, the output curve had sharp corners as a result of how GSP 

calculated the output curve (see Figure 15). This discussion reminded Zane of his 

numerical analysis class and he correctly explained the measurement error inherent in 

GSP, sketching the sharp corners on the output curve as he did so (see Figure 15). Shortly 

thereafter, they plotted spokes, and Christine asked me if the spoke showing outside the 

output curve was also a software bug. I assured her it was not, and she appeared surprised 

and expressed an interest in discovering why this inversion occurred. 

 

Figure 15. Zane illustrates sharp corners appearing on an output curve that should be 

smooth 

 For the rest of this task, Christine and Zane continued plotting and transforming 

spokes to attempt to discover why the spoke sometimes “flipped” outside the output 

curve, though they did not offer any explicit reasoning for such behavior at this time. 

This suggests that Zane and Christine might not yet have developed a geometric 

interpretation of the division of complex numbers. 

 Melody and Edward 

 Edward and Melody finished investigating 𝑓(𝑧) = 𝑧2 earlier than Zane and 

Christine. That is, Edward and Melody finished this investigation one hour and eleven 
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minutes into the first interview, while Zane and Christine did not finish this investigation 

until the end of the first interview. They correctly constructed the transformation, after 

which they moved on to answering the questions listed on the Task 2 worksheet. 

Examples of codes for this task are included in Table 5.  

Table 5      

Task 2 Codes for Melody and Edward   
Line # Verbiage Alg Geo Gesture Tech 

1343 E: When 𝑧 is real, 𝑒 to the 𝑧 is going to 
be real, so there should be no negative, 

right, there should be no imaginary 
part, part of it, so it's just going to be 

the 𝑥, so it'll just go along the real axis 

x  Waves flat hand up and down, 
palm face down. Points at 

screen, places right index finger 

on table and drags it right along 
table off the side. Drags index 

finger left to right again 

 

 

1347 M: but then when 𝑧 is, on the 

imaginary, that's when that 

    

1354 M: you just get the cosine y plus i sine 

y, which is a rotation 

x x Spins right index finger in two 

small ccw circles 
 

 

1406 E: What happens if the vector is 

stretched around the imaginary axis, 
well rotates along, counterclockwise 

 x   

1407 M: it just rotates  x Spins right index finger in 

several quick small ccw circles. 
E Spins right index finger in 

several large ccw circles 

 

1408 M: well, depending     Rotates 𝑧 ccw to 
negative imaginary 

Note. Alg stands for algebraic and Geo stands for geometric. 

 To answer the first question, “Where will the point 𝑒𝑧 be if the point labeled 𝑧 is 

at 
𝜋

2
,” Melody just positioned the point 𝑧 at 

𝜋

2
 with the aid of GSP and observed that the 

image point was “on the circle.”Edward may have initially felt the next question was a 

trick question, as it read, “𝑒𝑥 is always positive. Where does 𝑧 need to be for 𝑒𝑧 to be at 

−1?” Edward seemed to fixate on, “Always positive,” before furrowing his brows and 

trailing off. Given this behavior, I emphasized to him that the real-valued function is 

always positive, at which point he recalled that he wanted to use the formula 𝑒𝑧 =

𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦). He correctly identified this as Euler’s formula, and Melody 

commented that she was “really glad [Edward] remembered that.” With the aid of GSP, 

Melody and Edward observed that if the point 𝑧 was moved along the positive real axis, 
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the output point remained real and increased rapidly in magnitude. Edward generalized 

this observation to correctly reason that the output would tend to zero if the input was 

moved along the negative real axis away from the origin. Melody correctly predicted that 

if the input point moved along the imaginary axis, the output would “go around the 

circle.” When Melody asked why this behavior occurred, Melody and Edward discussed 

the particular parts of the algebraic equation that explains this geometric behavior. The 

following exchange was thus coded as predominantly algebraic. 

Melody: So we’re going on the real axis, then y is zero. So you don’t get any of 

the rotation because, right, er. 

Edward: Well, when we’re on the, when z is real (waves hand up and down in 

front of screen), e to the z is going to be real, so there should be no negative 

(drags index finger left to right along table), right, there should be no imaginary 

part, part of it, so it’s just going to be the x, so it’ll just go along the real axis 

(drags index finger left to right again). But then when z is on the imaginary, that’s 

when that 

Melody: Yeah, that rotation 

Edward: That rotation, that cosine,  

Melody: Yeah that rotation….Because x is zero, right….?And you just get the 

cosine plus i siny, which is a rotation.  

 Thus, Edward and Melody successfully employed reasoning coded as algebraic in 

conjunction with gesture to advance their geometric reasoning, to inform their 

experimentation and observation with the aid of GSP, and to offer explanations to the 

other partner. After this discovery, they constructed a vector and transformed it according 

to the Task 2 worksheet (see Appendix C). Melody and Edward experimented with this 

vector and its image with the aid of GSP and expressed some surprise about their 

observations. 

Melody: Really? So the farther away this is 
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Edward: So it spirals, but when we’re close to the, wait, go along the real. I want 

to see what it does there.  

 Melody even summarized what happens if the vector includes both real and 

imaginary components, by stating, “so when you have both, it’s just, it’s wrapping but 

it’s also getting large.” This seems to be a fairly reasonable description of an outward 

spiral, which is how 𝑓(𝑧) = 𝑒𝑧 maps a vector with a positive real component. So, just as 

for Christine and Zane, Geometer’s Sketchpad (GSP) appeared to encourage Edward and 

Melody to conduct their own investigations and come up with their own conjectures to 

test. While they primarily focused on the questions I gave them rather than generating 

their own, they developed their own methods for finding solutions to these questions. 

After this particular session of experimentation and observation, they were able to 

explain clearly how the function maps vectors.  

Edward: What happens if the vector is stretched around the imaginary axis, well, 

rotates along (see Figure 16) 

Melody: It just rotates 

Edward: Okay, what happens when you go along the real? 

Melody: It just, it gets larger that way. 

Edward: Larger if it’s positive (see Figure 17) and tends to zero if it’s negative 

(see Figure 18) 

 

Figure 16. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector along negative imaginary axis to green 

unit circle in clockwise direction 
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Figure 17. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector along positive real axis to stretched 

red output vector along real axis 

 

Figure 18. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector along negative real axis to red output 

vector “tending to zero” along positive real axis 

 Experimentation and observation with the aid of GSP as directed by the Task 2 

worksheet allowed Melody and Edward to discover that a vector in quadrants I and IV 

both map to an outward spiral, but the image of a vector in quadrant IV spirals in the 

opposite direction from the image of a vector in quadrant I (see Figure 19 and Figure 20). 

They additionally found that a vector in quadrants II or III maps to a spiral inside the unit 

circle rather than outside it (see Figure 21 and Figure 22).  

 

Figure 19. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector in quadrant I into red outward 

counterclockwise spiral 
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Figure 20. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector in quadrant IV into red outward 

clockwise spiral 

 

Figure 21. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector in quadrant III into red inward 

clockwise spiral 

 

Figure 22. 𝑓(𝑧) = 𝑒𝑧 transforms blue input vector in quadrant II into red inward 

counterclockwise spiral 
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 Once Melody and Edward correctly summarized how 𝑓(𝑧) = 𝑒𝑧 maps vectors, 

they constructed and transformed a circle as directed in the Task 2 worksheet (see 

Appendix C). During their experimentation with the aid of GSP, Edward observed that 

the output curve grows as the input circle moves away from the origin, which he justified 

by referencing the real part, 𝑒𝑥. This behavior only occurs if the input circle is moved 

away in the positive direction. If the input circle moves in the negative direction, the 

output curve becomes smaller. Given Edward’s geometric reasoning, which was coded as 

geometric, Edward decided he was incorrect when Melody moved the input circle into 

quadrant II from quadrant I. Perhaps to try to make sense of his previous reasoning, 

Edward reiterated how 𝑓(𝑧) = 𝑒𝑧 maps the axes by stating, “On the real, and on the 

imaginary it just stays the same, so, it goes, goes around, okay.” That is, he appeared to 

remember that the real axis maps to the real axis, and the imaginary axis maps to a circle.  

 To answer the questions of what the output looks like if particular points are 

included in the area enclosed by the input circle, Melody and Edward experimented with 

the aid of GSP extensively. During this time, Melody asked a very relevant question 

about the output looping on itself, possibly even identifying the reason why the looping 

occurs in her phrasing of the question (see Figure 23). The following exchange produced 

codes for geometric reasoning due to references to circles “looping” and “wrapping.” 

 

Figure 23. 𝑓(𝑧) = 𝑒𝑧 maps large blue input circle to “looping” red output curve 
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Melody: But if we make it larger, will it start going around in loops? 

Edward: It’s there, because you eventually get the whole 

Melody: It loops (demonstrates in GSP)  

Edward: Make it big, and it’s starting to wrap around, hold it, does z actually go 

into the unit circle eventually? Oh it does, okay. Oh, there, we have the whole 

plane. Yay! Almost 

Melody: Wrapped around itself. 

 Thus, Edward and Melody appeared to reason correctly that if the input circle is 

large enough, then the output plane would loop. It is worth noting that Edward and 

Melody made no mention of the origin in answering this question, while Zane and 

Christine were convinced for at least part of the same task that the origin caused the 

output to loop for 𝑓(𝑧) = 𝑒𝑧. Edward followed up this investigation by correctly 

reasoning that the output curve gets “real dinky,” as the input circle moves along the 

negative real axis.   

 While he answered the next question about what happens when the radius of the 

input circle changes, Edward and Melody introduced Zane and Christine’s error in 

reasoning when he claimed that the origin caused the output curve to twist. 

Edward: Investigate when you change the radius of the circle at these points. 

Okay, so 

Melody: The center until it crosses, oh, and then it, so it starts curving when it 

crosses the circle and then the origin. 

 Thus, mirroring Christine and Zane’s reasoning for this same question, Melody 

claimed that the output curve starts to twist when the input circle crosses into the unit 

circle and ultimately the origin. Edward read the next instructions off the Task 2 

worksheet (see Appendix C), which contained directions to center the circle at the origin 

and manipulate the radius. Melody and Edward noted that as the circle gets larger, the 
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output starts to twist, and further realized that the amount the function 𝑓(𝑧) = 𝑒𝑧 rotates 

the circle is dependent on where their input circle is located, though they did not 

explicitly describe exactly how much the function rotates the circle at a particular 

location. When I asked them for the angle of rotation, Melody responded it should be the 

angle from the positive real axis. I noted that if that were true, every circle along the same 

radial line from the origin should rotate by exactly the same amount. They saw with the 

aid of Geometer’s Sketchpad (GSP) that this was not the case.   

 Melody and Edward started experimenting further with the aid of GSP and made 

a series of observations that connected the amount the image circle rotates with respect to 

the pre-image to the imaginary coordinate more and more closely. Melody observed that, 

“Oh that probably has to do because, when you have, when we had like the real and 

imaginary, then you got the rotation from the line segment.” Edward decided a little later 

that, “oh, it’s doing the pi thing, isn’t it?” Melody correctly noted that when the 

𝑦 −coordinate became 
𝜋

2
, the output circle rotates 90° with respect to the input circle. 

Finally, Melody made the key observation, “so let’s just say like, 2 pi, would go all the 

way around.” With this discovery in mind, they were able to answer why twists in the 

output occurred, and Melody reasoned that it had nothing to do with the origin. 

Interviewer: What causes the twists in your circle? Before it was your input 

getting close to zero. 

Melody: It’s not moving it close to zero anymore. It’s when you get really large, 

isn’t it? Because it doesn’t do it when we this, like, small circle, doesn’t wrap.  

 Thus, Melody correctly identified that the reason the output circle wraps is related 

to the size of the input circle. This reasoning was coded as geometric due to references to 

geometric properties such as getting close to zero or twisting and wrapping. At the end of 
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Edward’s and Melody’s first interview, I asked them how large the circle needed to be to 

make the output wrap. Edward initially suggested that the radius had to be greater than 1, 

but with a small amount of experimentation with the aid of GSP and Melody’s explicit 

counting of the radius size when the output twisted allowed Edward to say, “Oh, exactly 

the, close to pi.” Edward and Melody again utilized algebraic reasoning by referencing 

the formula 𝑓(𝑧) = 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) in order to explain why a radius of 𝜋 in the 

input circle causes the output circle to wrap. In particular, they claimed that 𝑒𝑥 yielded 

the radius of the transformed curve and that “𝑒 to the 𝜋 is where it wraps around,” which 

is close to correct. This is not exactly precise because 𝑥 is a point, not a radius, and the 

wrapping of the image is due to the periodicity of cos 𝑦 + 𝑖 sin 𝑦, rather than a dilation 

factor of 𝑒𝜋. 

 Edward and Melody completed Task 2 during the beginning of their second 

interview. Edward recalled that I had previously asked them to explain why a radius of 𝜋 

caused a wrap in the output circle. Melody and Edward experimented with circles in GSP 

some more, dragging their input circle to various quadrants, changing its radius, and 

observing the results. Edward correctly explained the 𝜋 radius by recalling the geometric 

fact that the height on the imaginary axis of a circle determined the amount the circle 

rotated.  

Edward: Yeah, it goes that way because the imaginary axis is the rotation, and so 

that’s why it, it wraps around, because 2 pi would be a full rotation….That’s our 

guess, or, my guess anyway, of why it starts wrapping around. 

Melody:  I like your theory. 

 Edward thus offered correct reasoning coded as geometric for Task 2. Given this 

resolution, I asked them how the orientation of the circle’s image was determined. 
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Edward offered further reasoning coded as geometric due to his references to circles 

“wrapping” and “expanding” after producing an iconic gesture for rotation. 

Interviewer: Alright, and did you figure out how the orientation went? 

Edward: Well, Well I guess it kind of….(trails off) (Touches fingertips together, 

moves hands in a seesaw-like motion so that the base of palms are touching. 

Touches both hands together, palms facing each other, moves fingertips apart 

while turning palm outward again, touches palms together again. Rotates hands so 

palms face outward, back together sharply, then back outward again.) The plane 

kind of wraps around itself. It gets expanded more when farther away from the 

origin you get and then it wraps around.  

 Via gesture without speech, Edward appeared to reason geometrically that the 

function 𝑓(𝑧) = 𝑒𝑧 wraps the plane around itself, and claimed that moving away from 

the origin, the function expands the plane more and more until it finally coincides with 

itself. This reasoning is close to correct, though only if moving vertically. The function 

𝑓(𝑧) = 𝑒𝑧 can be described as a one-to-one function by “wrapping” the plane into a 

horizontally oriented cylinder with circumference 2𝜋, and on this cylinder points are 

rotated by an amount equal to their imaginary part, so there are at least two different 

ways 𝑓(𝑧) = 𝑒𝑧 can accurately be said to wrap the plane around itself. It seems here that 

Edward was referring to the latter. Edward’s gestures also appeared to play a role in 

allowing him to verbalize how he felt the function transformed the plane. In particular, he 

tried to start describing how the function transforms the circle, but trailed off, went silent, 

and started producing rotational gestures. After these rotational gestures, he verbalized 

that the “plane kind of wraps around itself.” It is possible that his silent gesturing allowed 

him to give voice to his geometric reasoning. 

 After this description, Melody reiterated that when the input circle’s radius is 

more than 𝜋, the output curve wraps around on itself, so I asked her if she knew which 

points map to the output’s self-intersection point. Edward asked me, “can we experiment 



170 
 

 
 

to find out,” and I let him know that they certainly can. Edward initially seemed to feel 

that the intersection had something to do with the wrapping of the plane they had just 

discussed, while Melody appeared to explain this behavior as a result of the real and 

imaginary “distances” being equal. The following exchange thus produced further codes 

for geometric reasoning due to references to circles rotating and the production of iconic 

gestures for rotation. 

Edward: Um, I’m thinking it has to do with the, the rotation, being a full, (moves 

finger as though tracing spokes of a circle through the air while speaking) 

Melody: They’re at the same distance on the imaginary and the real, which would 

make it rotate (Twists right wrist in clockwise rotation, traces circle with index 

finger) the same (third finger extends and moves index and third fingers like 

cutting scissors), the same distance (Faces right palm flat toward screen, turns 

palm to face left, and pushes right hand to the left) 

 Given their rather different theories, I asked Melody and Edward what would 

happen to the self-intersection point if the circle was left at the same size and in the same 

orientation and just moved off the origin. Melody predicted the points that map to the 

same point will change, and Edward offered no competing theory, so they experimented 

with the aid of Geometer’s Sketchpad (GSP) to determine the behavior. Despite their 

differing theories, both Melody and Edward seemed surprised when they observed that 

the relative locations of the points on their circle that mapped to the same point did not 

change. Edward correctly reasoned geometrically that this occurred because the relative 

location of the points on the circle are more relevant in determining which two points 

map to the same point than their distance away from the origin. Edward further stated that 

he originally felt that the distance from the origin was the controlling factor, but that GSP 

showed him otherwise. 



171 
 

 
 

 It is worth noting that both groups wanted to dynamically smoothly rotate the 

entire input circle, spokes and all. However, neither of the participant groups nor I could 

determine how to carry out this action with the aid of GSP. We attempted to select all the 

spokes inside the circle and rotate them as a group. However, this caused the spokes to 

rotate at different rates around the circle rather than in unison as desired. Though Edward 

and Melody made progress in their reasoning about when two points on a circle map to 

the same point, they never quite precisely verbalized the proper conditions. Edward 

concluded the second task by stating that “it has to have that full rotation and then have 

the same line…same radius from the center,” which is not quite accurate. In fact, for 

𝑓(𝑧) = 𝑒𝑧, if 𝑧1 and 𝑧2 are points on the same circle, 𝑓(𝑧1) = 𝑓(𝑧2) precisely when 𝑧1 

and 𝑧2 have the same real component and are vertically separated by some multiple of 𝜋. 

 Task 3: Investigating Linear Complex-Valued Functions 

 and the Derivative of Complex-Valued functions  

With and Without the Aid of  

Geometer’s Sketchpad. 

Christine and Zane 

  To begin Task 3, I asked the participants to describe how they reasoned 

geometrically about the derivative of a complex-valued function. Table 6 provides a 

sample of codes generated by participants’ reasoning during this task. Because this 

question was meant to establish a baseline of what the participants knew about the 

derivative of a complex-valued function, I did not initially allow them access to GSP. 

Instead, I informed my participants that the opening question was very broad and they 

should feel free to take it in whatever direction they wished. 
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Table 6      

Task 3 Codes for Christine and Zane   
Line # Verbiage Alg Geo Gesture Tech 

14 Z: as far as breaking it into real and 

imaginary 

x    

15 Z: You can uh...take partial derivative 

with respect to 

x    

16 Z: what is it? If you break the 𝑧 into 𝑥 

plus 𝑖𝑦 and do it with respect to 𝑥 or 𝑦 

x    

89 Z: the derivative is 3 plus 2𝑖, cause you 
just drop a 

x 89   

90 Z: 𝑧 essentially x 90   

234 C: so we did it in like three different 

steps. We did a stretch factor, and a 
stretch factor, and a rotate factor, and, 

one of the stretch factors, and then we 

added our two stretch factors together, 
so it gave us an angle that 

 x points at left middle of paper, 

then middle, then waves pen flat 
in a circle around middle of 

paper 

 

 

679 C: every single circle on, every single 

point on the bigger circle has been 
stretched and rotated by the factor that 

we multiplied by 𝑧 and then it's been 
translated 

 x   

Note. Alg stands for algebraic and Geo stands for geometric. 

 When I asked Christine and Zane what they knew about the derivative of a 

complex-valued function, Christine responded with, “I’m not even sure what thing we did 

when we found the derivative.” Zane asked me to repeat the question, then responded 

with many things they had done in class to determine properties of the derivative, though 

neither participant felt they had a good sense for the types of problems for which the 

derivative is actually utilized. 

Zane: Well you can use the Cauchy-Riemann equations to find out if they're 

holomorphic, where they’re complex differentiable so they’re not necessarily 

differentiable everywhere if they are differentiable. As far as breaking it into real 

and imaginary, you can, uh, take partial derivative with respect to, uh what is it?... 

it did ux + ivx 

Christine: Not really. I just kind of understood, "this is what you use when I ask 

this question," I barely got by. 

 Thus, Zane and Christine were both aware that they did not have a good sense of 

how to reason about the derivative of a complex-valued function beyond some basic 

procedural algebraic reasoning involving the Cauchy-Riemann equations. Zane even 

seemed to have difficulty recalling these equations. I asked Christine and Zane if they 
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could reason geometrically about the derivative, and they both told me they “never really 

worked with graphs,” except in the context of discussing singularities. The following 

exchange produced algebraic and geometric codes (see Table 6). In particular, references 

to algebraically motivated quantities such as rate of change were coded as algebraic (as 

opposed to the equivalent geometric idea of the slope of the tangent line), while invoking 

geometric properties such as determining whether a singularity was inside or outside a 

circle was coded as geometric. 

Interviewer: Tell me what you know about how, what the derivative tells you 

about the graph of the function, like what you were playing with yesterday 

Zane: So you mean the graph of the original function that you're taking the 

derivative of, or the graph of the derivative…? Okay, so, I mean derivative's just 

typically like the rate of change…. Cause we never really did too much 

interpretation from graphs. We'd pretty much always have a function that was 

defined and never have to really graph out too much. 

Christine: Yeah, the only time we really worked with graphs was when we looked 

at singularities and we were just trying to decide if the singularity was inside the 

circle or not. 

 While Christine and Zane may not have known how to reason about the graph of 

a function given the derivative, at least Zane had developed enough reasoning to 

distinguish the graph of the original function and the graph of the derivative. He 

additionally appeared to draw on his reasoning about the derivative of real-valued 

functions to say that the derivative usually describes the rate of change. When I asked 

Christine and Zane to described how they learned about the derivative, Zane listed a lot 

of typical complex analysis class concepts such as “holomorphicity, analyticity, 

homework problems, check if it’s holomorphic, check if it’s differentiable, or I guess 

where it’s differentiable if it’s harmonic.” They additionally noted that the derivative 

gives the slope of the tangent line.  
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 While trying to generalize this idea with a function, f(𝑧) = (3 + 2𝑖)𝑧—Zane 

noted within two minutes of the problem statement that such a generalization was 

difficult. Namely, he stated that the derivative of 𝑓(𝑧) is 3 + 2𝑖, “because you drop a 𝑧,” 

and he said he did not know how to reason about a rate of change of 3 + 2𝑖. This 

reasoning was thus coded as algebraic. However, he at least started reasoning in the right 

direction when he further stated that reasoning about this rate is difficult because he had 

to think of 𝑧 growing in multiple directions. That is, he started developing the geometric 

reasoning that leads naturally to investigating the ways in which circles are mapped by 

complex-valued functions. This progression may have occurred because circles provide a 

way to represent graphically precisely how 𝑧 grows in multiple directions. While trying 

to generalize, Zane indicated that such reasoning was not clear to him during the complex 

analysis course. 

Zane: I haven’t really thought too much about the behavior of that as far as on a 

graph, or geometrically, or anything like that, because I was just kind of “find the 

derivative.” “Oh, you found the derivative. Cool.” 

Interviewer: So just general impressions. What does that 3 + 2i tell you? 

Christine: Is it like the stretch factor of z….? [Our professor] used to say things 

about stretch factors from like one graph to another.  

Zane: Because that is based off like stretch, rotation. 

 So, while Christine and Zane may have felt convinced they possessed no 

geometric reasoning about the derivative, at least they remembered their complex 

analysis professor saying something about “stretch” and “rotation.” On the other hand, 

they did not appear to have well-developed geometric reasoning about this stretching and 

rotating. For example, when I asked them what was being stretched and rotated, Christine 

replied, “𝑧, whatever you plug in for 𝑧.” This reasoning that the point itself is stretched 
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and rotated, rather than an 𝜖 −neighborhood around the point, seems to be a common 

error throughout all sets of participants, including those in my pilot study.  

 Zane and Christine introduced a third transformation as well, when Christine 

claimed that the derivative is “imbue[d] with a displacement property.” She also voiced 

curiosity about whether the stretch or rotation transformation is applied first. When I 

asked them exactly how the point is stretched and rotated, Christine drew a vector and 

proceeded to transform the vector according to the function 𝑓(𝑧) = (3 + 2𝑖)𝑧 (see Figure 

24). While Christine’s reasoning immediately prior to the following exchange was coded 

as algebraic, her reasoning in the following exchange was coded as geometric. 

Christine: So then that, so I think that i is what rotates it, cause it, well it rotated 

and the 2 stretched it.  In this case if it's just 2i, cause it became 1 to 2i, so it got 

stretched to length 2 and then rotated like 90 degrees and then the 3, the 3 just 

stretched it….So we did it in like 3 different steps. We did a stretch factor, and a 

stretch factor, and a rotate factor, and, one of the stretch factors, and then we 

added our two stretch factors together, so it gave us an angle that, I mean I don't 

know, that's probably 45, but I can't. I don’t know what that is.  

 

Figure 24. Christine transforms a vector under the transformation 𝑓(𝑧) = (3 + 2𝑖)𝑧 

 It appeared that Christine was saying that she rotated her vector by 90° because 

that is what 𝑖 does, then stretched the result by 2, stretched the original vector by 3 and 

finally added the two stretched vectors together. This may be mostly correct geometric 
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reasoning motivated by the algebraic equation 𝑓(𝑧) = (3 + 2𝑖)𝑧 = 3𝑧 + 2𝑖𝑧, which is 

indeed the sum of the original vector stretched by a factor of 2 and rotated by 90° and the 

original vector stretched by a factor of 3. So, in attempting to reason about the derivative, 

Christine correctly transformed the vector based on the function equation itself. Also note 

that this way of transforming a vector mirrors an example her complex analysis professor 

covered in class. That is, her professor noted that for the function (7 + 2𝑖)𝑧 = 7𝑧 + 2𝑖𝑧, 

the 7𝑧 “stretches” the vector 𝑧 by 7, and that the 2𝑖𝑧 “turns 90°” and “doubles it.” This 

example was discussed in detail in Chapter III under Classroom Setting. Finally, I asked 

Zane and Christine to generalize their reasoning to 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧, and 

Christine noted that her procedure described above did not work for 𝑓(𝑧) = 𝑧2. Her 

procedure may have failed because 𝑓′(𝑧) = 2𝑧 is not quite as algebraically similar to 

𝑓(𝑧) = 𝑧2 as 𝑓(𝑧) = (3 + 2𝑖)𝑧 is to 𝑓′(𝑧) = 3 + 2𝑖.  

 As Zane and Christine did not seem able to make further progress by paper and 

pencil, I provided access to Geometer’s Sketchpad (GSP). Christine and Zane utilized 

GSP to construct the function 𝑓(𝑧) = (3 + 2𝑖)𝑧. During her GSP investigation, Christine 

claimed her described procedure only worked if 𝑧 was real, not complex. Given that her 

procedure was developed from the equation of a linear function, this statement is not 

quite true. Her procedure actually works only for linear functions, but for all 𝑧 within this 

context. When asked about how to reason geometrically about the derivative of a 

complex-valued function, Christine just correctly explained again via vector addition how 

GSP maps a vector under the function 𝑓(𝑧) = (3 + 2𝑖)𝑧, claiming she also had to take 

“displacement” of the vector into account. After verifying her procedure with the aid of 

GSP (see Figure 25), she stated, “Now I’m even more confident that it works at all 
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points. I just don’t understand why it’s not working for 𝑧2. " When I asked Christine and 

Zane to explain why their procedure did not work for 𝑧2, they did not seem sure how to 

respond, so I suggested they look at how 𝑓(𝑧) = (3 + 2𝑖)𝑧 transformed circles and 

vectors with the aid of GSP. 

 

Figure 25. 𝑓(𝑧) = (3 + 2𝑖)𝑧 transforms green input circle and spokes to blue output 

circle and spokes of corresponding color 

 While experimenting with the aid of GSP, Zane noticed that the output circle does 

not rotate as the input circle changes location, and Christine suggested that 𝑧2 might 

involve a reflection in addition to a stretch and rotation. Christine characterized circles as, 

“really just a bunch of points” during this time as well, suggesting she might still be 

reasoning about individual points being rotated and dilated by the function rather than 

𝜖 −neighborhoods. Perhaps to make some additional progress, Christine reasoned 

geometrically about how the function 𝑓(𝑧) = (3 + 2𝑖)𝑧 transforms squares on graph 

paper (see Figure 26), and finally admitted that she too was having trouble generalizing 

her geometric reasoning about the derivative of a real-valued function as the slope of a 

tangent line to the complex plane. She stated simply, “I don’t know like what slope 

means in complex world.” 
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Figure 26. Christine illustrates how 𝑓(𝑧) = (3 + 2𝑖)𝑧 transforms squares 

 When I asked them to describe the relationship between the input and the output 

circle, Christine provided further evidence that she was reasoning about individual points 

being rotated and dilated, and not how the circle was being rotated and dilated. That is, 

she noted, “Every single circle on, every single point on the bigger circle has been 

stretched and rotated by the factor that we multiplied by z and then it's been translated.” 

Therefore, this reasoning was coded as geometric. Since Christine was fixated on how the 

function transforms points, I asked them explicitly to construct spokes and tell me how 

the function rotates the circle itself. I suggested Zane and Christine look back at their 

linear function in GSP and identify properties of the function that do not change, since 

the derivative is constant.  

 At the end of the third task, Christine and Zane noted that in the linear function, 

the stretch and rotation factors do not change, which Christine seemed to take as 

confirmation of their earlier discoveries. However, they did not verbalize at this time 

which mathematical entities are stretching and rotating. Thus, it is possible that Christine 

and Zane were still viewing the individual points as being stretched and rotated by the 

function. The third task ended with Christine again describing how 𝑓(𝑧) = (3 + 2𝑖)𝑧 

transformed vectors, just as she had reasoned twice before. 
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Edward and Melody 

 After I removed access to GSP, I asked Edward and Christine to describe how 

they reasoned geometrically about the derivative of a complex-valued function. Edward 

and Melody first recalled rotation and dilation, though they initially had difficulty 

determining what object would rotate and dilate. See Table 7 for some coding examples 

from Edward’s and Melody’s progress in Task 3.  

Table 7      

Task 3 Codes for Edward and Melody   
Line # Verbiage Alg Geo Gesture Tech 

372 E: The amount it twists and 

the amount that it expands 
and dilates depends on that 

point, your function that 
you're 

 x Places thumb on table next to index finger. 

Extends index finger forward away from 
thumb and back. Retracts thumb and 

touches table at a point again. Touches table 
several more times, moves index finger left 

and backward, then back, touches table a 

few more times 
 

 

410 M: the, would it be the point  x   

411 E: this, this point here, no it, 

yeah 

 x Taps index finger on table  

412 M: rotates  x E moves right hand left, then points at 

partner. M Holds hands palms facing each 
other, fingers curled into C shape, rotates 

(imaginary ball) to the left while extending 

her fingers into a curled position  

 

344 E: Just the fact that it's the 

one point is kind of like 

doing a derivative with a 
constant. It just does the 

same thing to all the 𝑧's. 
Which is why when we're 

moving it around it doesn't 

change 

 x Holds left palm, fingers curled forward 

toward screen, holds right hand palm down 

near left hand, then moves outward and 
inward with both hands several times. 

Holds left palm toward screen, doorknob 

twists once left and right, raises hand 
slightly and clenches all fingers together 

Waves mouse up 

and down around 

top right of input 
circle. Moves mouse 

left to left side of 

input circle, back to 
origin 

345 E: the 𝑓 doesn't change size  x Extends and re-clenches fingers twice more 

(obscured by screen) 

 

Note. Alg stands for algebraic and Geo stands for geometric 

 The following episode produced geometric codes, due to references to geometric 

actions such as dilation, and twisting. 

Edward: I just remember rotate 

Melody: rotate and dilate something?...Does it rotate one eighty always, or, I don't 

remember 

Edward: Well I think that depends, it's kind of like, um, real number, it becomes a 

complex number that multiplies the point you’re looking at that you do the 

differentiation at… The amount it twists and the amount that it expands and 
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dilates depends on that point, your function that you're…So, it would differ, on I 

think different points that you're at. 

Interviewer: What do you think Melody? 

Melody: I don't even remember. I just remembered the rotation dilation. I thought 

I remembered something that rotated…one-eighty. Oh, circles to circles and lines 

to lines, right? 

Edward: That’s Mo, the Mubius, remember, Mobius 

Melody and Edward correctly recalled that something was rotated and dilated by an 

amount that depended on the location of the point of interest, though they could not fill in 

all the details. They further recalled Möbius transformations, which map circles and lines 

to other circles and lines. When I asked them what exactly rotated and dilated with 

respect to the derivative, Melody said “it would be the point,” and Edward agreed, though 

a little later, they amended their response to “the whole plane.” This response is not 

technically incorrect, as the derivative function describes how a small 𝜖 −neighborhood 

around a point rotates and dilates. Considering all points at once in some sense yields a 

description on how every 𝜖 −neighborhood across the whole plane rotates and dilates, 

though this reasoning is different from reasoning about the whole plane rotating and 

dilating consistently at each point, as it would under a linear transformation.  

 I asked them to demonstrate this rotation and dilation with the function 𝑓(𝑧) = 𝑧2 

on the blackboard so they could fill in the gaps in their reasoning before applying it to the 

linear complex-valued function I had prepared in advance. In response, they drew two 

sets of axes to represent two separate planes and started graphing circles (see Figure 27). 

On the left set of axes they graphed the input 𝑧 −plane, and on the right set of axes they 

graphed the output 𝑤 −plane as given by 𝑓(𝑧) = 2𝑧. Using these geometric inscriptions, 

Melody and Edward started reasoning geometrically about their pictured transformation 
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𝑧 → 𝑓′(𝑧). They first transformed a circle centered on the origin, which they noted 

dilated, but did not rotate from the input 𝑧 −plane to the output plane under 𝑓(𝑧) = 2𝑧, 

as one might expect. Edward calculated the real and imaginary parts of 𝑧2, but suggested 

afterward that maybe they just picked a circle that happened not to rotate. They 

transformed a circle centered on the complex number 1 under 𝑓′(𝑧) = 2𝑧, and then a 

circle centered around the complex number 2𝑖. Melody decided that the circles centered 

around the complex numbers 1 and 2𝑖 still just dilated, which is correct (see Figure 28). 

In fact, the function 2𝑧 itself has a constant derivative of 2, so the function just dilates 

every circle by a factor of 2. 

 

Figure 27. Edward transforms circle on leftmost graph to (undrawn) circle of radius 2 on 

rightmost graph 

 

Figure 28. Edward transforms a circle under 𝑧 → 2𝑧 
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 Melody appeared confused about why no rotation occurred, saying “I don’t get 

the rotation part I guess,” so I asked why they plotted the function 𝑧 → 𝑓′(𝑧) rather than 

𝑧 → 𝑓(𝑧). Melody stated simply that I asked them about the derivative, though Edward 

started wondering whether they should look at a different, but related function. Melody 

initially defended their choice of function, but eventually decided that looking at the 

“wrong” planes was the reason no rotation occurred. Thus, Melody directed Edward to 

plot the output plane under 𝑓(𝑧) = 𝑧2 on the left set of axes and the output plane under 

𝑓(𝑧) = 2𝑧 on the right, essentially creating the mapping 𝑓(𝑧) → 𝑓′(𝑧) (see Figure 29), 

repurposing the output plane under 𝑓(𝑧) = 𝑧2 as an input plane for this other function 

𝑓(𝑧) → 𝑓′(𝑧). In order to accomplish this, Edward first plotted the point 1 + 𝑖 and 

labeled it 𝑧2, then calculated algebraically that (1 + 𝑖)2 = 1 + 2𝑖 − 1 = 2𝑖. On the plane 

represented in the rightmost graph in Figure 29, he plotted a point at (0,2) labeled 𝑧.  

 

Figure 29. Edward maps 𝑧 = 1 + 𝑖 to 𝑧2 = 2𝑖 on the left graph and 2𝑧 = 2 + 2𝑖 on the 

right graph. 

 Note that despite Melody’s instructions, Edward in effect mapped the point under 

the function 𝑓(𝑧) = 𝑧2, rather than mapping a point transformed under 𝑧2 on the left 
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graph in Figure 29 and a point transformed under 2𝑧 on the right graph in Figure 29. 

Melody noticed this breach in her directive, so she stood up to go to the board with 

Edward. Because she wanted to map the point 1 + 𝑖 under 𝑓(𝑧) = 𝑧2, she instructed 

Edward to plot the point 2𝑖 on the left graph and the point 2 + 2𝑖 on the right graph (see 

Figure 30). Thus, she instructed Edward to plot 𝑓(1 + 𝑖) = (1 + 𝑖)2 = 2𝑖 = (0, 2) on the 

left graph and 𝑓′(1 + 𝑖) = 2(1 + 𝑖) = 2 + 2𝑖 on the right graph. 

 

Figure 30. Melody directs Edward to plot a point 𝑧 = 1 + 𝑖  transformed under 𝑧2 on the 

left graph and the same point transformed under 2𝑧 on the right graph 

 Once Edward and Melody finished constructing this 𝑧2 → 2𝑧 transformation on 

the blackboard, Edward said they were still stuck on how to reason about rotation. To 

address this problem, he converted their points from Cartesian to polar form, which he 

referred to as Euler’s form. Note that polar form does highlight the argument of a point 

better than Cartesian form, so perhaps Edward signified some ability to reason well about 

when to switch forms, in contrast to Danenhower’s (2006) findings. Edward started 

trying to explain the rotation in the context of the polar form, though without much 

success. Reasoning about the polar form was coded as algebraic, while reasoning about 
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how points rotated and dilated was coded as geometric. Thus, this episode produced 

codes for both algebraic and geometric reasoning.  

 To determine the proper rotation amount, Edward suggested multiplying 𝑧 = 1 +

𝑖 by 2 + 2𝑖. While doing so, he pointed first at the left-hand side of the equation 2 + 2𝑖 =

√8𝑒
𝜋

4
𝑖
, then at the point 𝑧 = 1 + 𝑖 in the left-hand plane (see Figure 31), and finally at the 

point 2 + 2𝑖 in the right-hand plane (see Figure 31). Melody objected to this reasoning, 

asking, “Why would you multiply?” Edward sighed and responded, “well, maybe I’m 

still trying to think too much real.” It is possible he connected rotation to the polar 

notation on the right-hand side of the equation 2 + 2𝑖 = √8𝑒
𝜋

4
𝑖
, and thus felt 

multiplication was appropriate. In addition, Edward may therefore be more aware of the 

dangers of “Thinking Real, Doing Complex,” (Danenhower, 2006) as he voiced this 

concern more directly than did the other participants, especially this early on in the 

interview sequence.  

 

Figure 31. Edward considers multiplying 𝑧 = 1 + 𝑖 by 2 + 2𝑖 to determine the rotation 

around 2 + 2𝑖 on the right-hand plane 
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 Given that Edward and Melody mapped 𝑓(𝑧) → 𝑓′(𝑧), that is 𝑧2 → 2𝑧, as well as 

the fact that they mapped points, not circles, the amount their point rotated did not 

correspond to the argument of the derivative. This also created some difficulty in 

discussing the function as they are really corresponding the output plane of 𝑓(𝑧) = 𝑧2 to 

the output plane of 𝑓(𝑧) = 2𝑧, though as seen in the following exchange, they appeared 

to consider the output plane of 𝑓(𝑧) = 𝑧2 as the input plane for the function 𝑓(𝑧) →

𝑓′(𝑧), and the output plane of 𝑓(𝑧) = 2𝑧 as the output plane. However, Edward still 

correctly summarized how a point changed from 𝑧2 to 2𝑧. The following exchange 

produced a code for geometric reasoning, though it was difficult to code much of this 

exchange as either algebraic or geometric. Rather, it seemed that the algebra informed the 

geometry. 

Edward: We’re mapping from, from the square of z to the derivative over there. In 

the process of doing that map, mapping it's rotating to the right and then it's, it's 

doing a dilation, expanding it out to whatever the square root. 

Interviewer: Alright, and how do you know how much you're rotating and dilating 

by? 

Edward: Is it doing it by the amount that it is? It’s doing it by 45°, 
π

4
, which is, 

which is this amount here (points at polar form of 2 + 2i = √8 (e
iπ

4 )) 

 Thus, Edward correctly described that from the output plane of 𝑓(𝑧) = 𝑧2 to the 

output plane of 2𝑧 a point 𝑧 rotates clockwise by the argument of 𝑧. Because 𝑧2 rotates 𝑧 

counterclockwise by the argument of 𝑧, essentially doubling the angle, and 2𝑧 has the 

same argument as 𝑧, moving from the output plane of 𝑓(𝑧) = 𝑧2 to the output plane of 

𝑓(𝑧) = 2𝑧 would effectively return the point 𝑧’s original argument. Following this 

realization, they further determined the point 𝑧 = 𝑖 rotated clockwise by 90 degrees from 

the 𝑧2 plane to the 2𝑧 plane. Through this experimentation and Melody’s subsequent 
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observations, Edward and Melody determined how points rotated from the output plane 

under 𝑓(𝑧) = 𝑧2 to the output plane under 𝑓(𝑧) = 2𝑧. References to geometric 

transformations like rotation was coded as geometric, though as before it was difficult to 

tell here whether Edward and Melody were reasoning geometrically or algebraically 

when referring to the real and imaginary parts of 𝑧 and 1 + 𝑖. They may have been 

referring to the 𝑥 − and 𝑦 − coordinates on the complex plane, or they may have been 

referring to the real and imaginary coefficients in the Cartesian representation of a 

complex number. The first case would have been coded as geometric due to the reliance 

on a graph, while the second would have been coded as algebraic due to the reliance on 

an algebraic inscription. Because Melody and Edward did not indicate whether they were 

utilizing the complex plane or an algebraic inscription in this part of their reasoning, I 

could not determine whether this reasoning should be coded as algebraic or geometric. 

Edward: I think, so, the rotation is whatever z is 

Melody: What the imaginary part of z, not the real part. 

Edward: Yeah, because, whatever, whatever this angle is here (indicates angle 

from origin to the vector 2z) 

Melody: Not necessarily the angle, but just the imaginary part of z, like the 

imaginary part of z was zero, and that wouldn’t, didn’t rotate. The imaginary part 

of z was i, that one rotated 90 degrees.  

Edward: Yeah, but the imaginary part of 1 + i is 

Melody: Was the, oh, that’s the 45, okay, yeah, you’re right. 

Edward: So let’s just pick another, and see if it verifies what we’re. 

 Edward correctly described the amount of clockwise rotation as the argument of 

the vector 𝑧. Furthermore, despite the fact that Melody was insistent that the amount of 

rotation was the same as the imaginary part of 𝑧, Edward eventually convinced her of his 
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geometric reasoning by appealing to the counterexample 1 + 𝑖, which rotated 45° 

clockwise from 𝑧2 to 2𝑧, and not 90°. Melody’s and Edward’s example seemed to 

convince them that their conjecture was indeed correct, and they still seemed very aware 

of which two planes they were relating to each other. The following exchange was coded 

as geometric due to the participants’ discussion of the angle of rotation while indicating a 

geometric inscription for this angle via gesture. 

Edward: Whatever z we choose, whatever the angle is from the positive real axis, 

whatever this angle is (indicates the argument of z), is how much 

Melody: The transformation from z2 to 2z will rotate. 

 However, after this correct summary, Edward expressed doubt about the direction 

in which the rotation occurred. To address this, Edward traced through an example with 

the point 𝑧 = −1 + 𝑖. He calculated (−1 + 𝑖)2 = −2𝑖 and plotted that point. Then he 

calculated 2(−1 + 𝑖) = −2 + 2𝑖 and plotted that point on a different plane. Throughout 

the discussion, Edward held his hand up to the plane and moved his hand 

counterclockwise in a twisting direction while trying to explain the transformation’s 

behavior. Toward the end of this episode, he twisted his hand clockwise and laughed, 

“well if you go this way it works,” but at this point Melody objected because −2𝑖 “is 

negative,” while before the points were above the real axis. Edward noted that he knew 

the angle was right but he was still uncertain about direction. Melody seemed to be able 

to alleviate whatever fears he was experiencing, though it is unclear how she did so. That 

is, it appears she just said that the clockwise rotation direction is indeed correct, and 

Edward said “okay cool,” and smiled, as shown in the following exchange, which was 

coded as geometric given the participants’ references to angles of rotation. 
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Melody: Oh, because, we were saying that the angle is from, the real, yeah it is 

right because it was at that this angle, because if it's rotating that way then it's 

going back up 

Edward: It is, it’s rotating that way (traces clockwise from −2i to positive real 

axis), it goes that way, okay cool. 

 Thus, I let them know that polar notation gives the amount of counter-clockwise 

rotation, and asked them why they thought the points rotated clockwise instead. In 

response, Melody suggested that the angle given in polar notation should be measured 

toward whichever part of the real axis is closer to the point, while Edward started 

searching his algebraic inscriptions for something that might have “switched the minus 

signs.” He reasoned that there must be a missing minus sign to account for a clockwise 

rotation rather than a counterclockwise one. This reasoning was coded as algebraic due to 

Edward’s focus on finding an algebraic error in his symbolic calculations. Edward asked 

Melody if he was missing a sign, and she responded, “I don’t think so, no, because we 

were measuring this way,” while sweeping her index finger counterclockwise. This is odd 

because immediately beforehand they had both agreed a moment before that the same 

rotation occurred in the clockwise direction. Edward appeared to remain unsatisfied, as 

he continued inspecting his algebra for a missing sign. Given that his reasoning was 

correct, he could find none. Thus, after a long silence and Edward noting “I’m having a 

brain freeze”, I assured him that his conversion was correct so he could continue 

attempting to answer the original question about why the rotation occurred clockwise for 

a positive exponent in polar notation. 
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 Edward and Melody looked at the point 𝑧 = 1 + 𝑖, so 𝑧2 = −2𝑖 = 2𝑒
3𝜋𝑖

2  to try to 

determine why the rotation went in the clockwise direction. After using algebraic 

calculations to plot the points at the appropriate locations, Edward determined that they 

were in fact rotating in the negative direction. These calculations were coded as algebraic 

due to their reliance on symbolic manipulation. Before Edward could offer an 

explanation for this behavior, Melody contradicted him, saying they were actually 

rotating counterclockwise by 
3𝜋

4
, which is incorrect. Moving from 𝐴𝑟𝑔(−𝑖) =

3𝜋

2
 to 

𝐴𝑟𝑔(1 + 𝑖) =
3𝜋

4
 requires a clockwise rotation of 

5𝜋

4
. However, Melody seemed able to 

convince Edward to abandon his own correct reasoning and adopt her incorrect reasoning 

through the use of gesture, apparently just by producing a counterclockwise rotation 

gesture in the following exchange. 

Edward: So we’re actually kind of looking backwards aren’t we? Or we were 

before. We actually showed just, so I think we’ve determined that it's not rotating 

positively, it's actually doing the negative by whatever the rotation in z is 

Melody: So wait, what, not negative. That's still positive 

Edward: But it’s doing the same 

Melody: It's positive rotating this way, right? (rotates hand ccw) 

Edward: That's the, usual way 

Melody: Yeah  

Edward: Oh, maybe I was misunderstanding your question in the first place. 

Counterclockwise is the usual 

Melody: So it’s rotating positive by whatever the angle of z 

Edward: is. 

 At the beginning of this exchange, Edward seemed to realize that they were 

considering the transformation in reverse, rendering the planes backward in some sense, 
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with 𝑧2 on the left and 2𝑧 on the right, which is much closer to an inverse function of 

𝑓(𝑧) = 𝑧2. However, Melody dissuaded Edward from his reasoning and seemed to 

convince him by the end of this exchange that the point did not in fact rotate backward. 

The question I asked that started the whole discussion was in particular about why they 

thought the point rotated the opposite direction, so it is interesting that they seem to have 

decided the premise of the question was flawed rather than actually trying to answer it. 

Another possibility is that Edward decided he had misunderstood my question, and 

adopted Melody’s reasoning. When I asked them if there was anything they were still 

confused about, Melody noted that she expected the whole plane to rotate by the same 

amount, but she discovered that the amount of rotation was dependent on 𝑧’s location. 

 The decision to map 𝑧2 → 2𝑧 caused further problems when I asked them what 

they knew about a function if they were told it had a constant derivative. Edward initially 

just said, “well, we wouldn’t rotate…real line, the constant would be on the real line” and 

I clarified that I meant a complex-valued constant derivative, at which point Edward 

noted that in that case rotations could occur. However, when I gave Melody and Edward 

the function 𝑓(𝑧) = (3 + 2𝑖)𝑧 to investigate, they continued their pattern of input and 

output planes and mapped (3 + 2𝑖)𝑧 → 3 + 2𝑖. Melody correctly noted, “so that means 

everything goes to that one point 3 + 2𝑖.” Edward seemed to forget about his previous 

statement that rotations could occur and again sided with Melody’s reasoning. To this 

end, he noted that “if the derivative is a constant it has to go to one place over there.” 

This observation may be true in the currently discussed context, but did not particularly 

seem to illuminate what a constant derivative describes about the original function.  
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 Because the first thing Melody and Edward told me about the derivative was that 

it described a rotation and dilation, I asked them to reason about how they would 

determine what they had to rotate by in the function 𝑓(𝑧) = (3 + 2𝑖)𝑧. Melody 

dejectedly stated, “I don’t think we know what we meant,” but Edward correctly 

reasoned geometrically that any point they picked in the output plane under the function 

𝑓(𝑧) = (3 + 2𝑖)𝑧 had to rotate by the amount required to get to 𝐴𝑟𝑔(3 + 2𝑖). This 

reasoning was coded as geometric due to indications via deictic gestures of points in the 

plane while discussing geometric ideas such as rotation. Melody noted after this 

explanation that “the rotation wouldn’t be constant for everything either.” Because she 

pointed out the rotation would not be constant but the derivative was, I pointed out that if 

this was true, the derivative could not possibly describe this rotation. I asked her what it 

did describe, and at this point she seemed relatively convinced that it did not describe a 

rotation at all, stating blandly, “it’s just a mapping.”  

 A little later, Melody reasoned that to get from (3 + 2𝑖)𝑧 to 3 + 2𝑖, the amount of 

the rotation would have to be 𝐴𝑟𝑔(𝑧), which is correct if the rotation is clockwise. 

Edward commented that he was “on the cusp of understanding it,” though I suspected at 

the time that significant confusion had arisen due to mapping 𝑓(𝑧) → 𝑓′(𝑧) instead of 

𝑧 → 𝑓(𝑧). To help alleviate this potential source of confusion and to redirect them back 

to a setting more closely related to the concept of an amplitwist, I asked them why, 

exactly, they were mapping 𝑓(𝑧) → 𝑓′(𝑧). Melody responded that this choice was 

appropriate because they are supposed to look at the derivative, and to obtain 𝑓′(𝑧) from 

𝑓(𝑧) one would have to take a derivative, so it makes sense to plot 𝑓(𝑧) alongside 𝑓′(𝑧) 

to visually see how taking a derivative changes the function.  
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 Thus, in effect, Melody and Edward were reasoning fairly correctly about the 

geometry involved in the change from the 𝑓(𝑧) plane to the 𝑓′(𝑧) plane, though they 

both admitted that this investigation of how the derivative 𝑓′(𝑧) differs from 𝑓(𝑧) told 

them little about the original function 𝑓(𝑧). In fact, I asked Edward and Melody why the 

derivative is so important that they covered finding derivatives in detail in their complex 

analysis class, and Edward’s response was striking. He said that given the importance 

placed on it in class that “the derivative’s got to do something. It’s actually nothing.” 

That is, though class led him to believe that the derivative is an essential mathematics 

concept, he felt at this stage in the task progression that the derivative really was not quite 

so important as his complex analysis class implied. 

 I provided access to GSP to Edward and Melody and asked them again to 

determine how to reason geometrically about the derivative. Melody decided to construct 

a circle and transform it in GSP, while Edward suggested adding spokes to the circle. 

Once they had this plan established, they constructed the function 𝑓(𝑧) = (3 + 2𝑖)𝑧 with 

the aid of GSP, the same linear function they investigated previously on the chalkboard. 

Many of their previous problems simply disappeared because they used GSP to map 

𝑧 → 𝑓(𝑧) as I originally intended, so Melody and Edward did not have to worry about 

whether they should map 𝑓(𝑧) → 𝑓′(𝑧) or 𝑧 → 𝑓′(𝑧) as they had previously. Of course, 

they could have duplicated these with the aid of GSP, but that would have required more 

intentional construction of these transformations than it did with the blackboard. In 

particular, I am not certain they were particularly conscious of the fact that they were 

considering more than one of these transformations during their blackboard 

investigations. They just told me they were constructing the function 𝑓(𝑧) = 𝑧2 by 
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plotting a point 𝑧 and a corresponding point 𝑧2 on one plane and another corresponding 

point 2𝑧 on a different plane. This suggests that they did not realize they were 

considering three different possible transformations with this method of graphing. 

 Perhaps due to this set-up, Edward and Melody were inconsistent in which point 

they considered the input and which point they considered the output. Duplicating this 

setup with the aid of GSP would have required Melody and Edward to be more 

purposeful in constructing these transformations. They would at least have had to 

construct the two distinct transformations 𝑧 → 𝑧2 and 𝑧 → 2𝑧, whereas before they 

thought they only had one transformation to consider, but three points to plot. Thus, just 

using Geometer’s Sketchpad (GSP) to construct the transformation may have removed 

the considerable obstacles introduced by trying to investigate the highly related 

transformations 𝑧 → 𝑧2, 𝑧 → 2𝑧, and 𝑧2 → 2𝑧, allowing them to focus exclusively on 

𝑧 → 𝑧2 as originally intended. 

 While experimenting and observing with the aid of GSP, Edward made the 

critical observation that the input circle is rotated the same amount, regardless of 

location, in stark contrast to what they had discovered previously about the rotation 

amount’s location dependence under the mapping (3 + 2𝑖)𝑧 → 3 + 2𝑖. He made 

additional important observations that the output circle is never deformed or twisted, and 

that the dilation is also always the same relative to the circle (see Figure 32). These 

observations were coded as geometric and allowed him to precisely state what a constant 

complex-valued derivative told him about how a circle was transformed under the 

associated linear function. 
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Figure 32. Edward observes that a circle is mapped to another circle under 𝑓(𝑧) =
(3 + 2𝑖)𝑧 

 In particular, Edward stated, “the derivative is rotating this consistently wherever 

it is and then it’s expanding it out whatever the length of the derivative is. I guess we can 

see if that’s true.” This reasoning was coded as geometric due to references to geometric 

actions such as rotating and expanding. Melody and Edward verified this fact in GSP and 

Edward commented that he did not know if there was anything more they needed to do 

with this function. On the other hand, Melody felt that they had not yet really considered 

the derivative. It is possible she wanted to consider the transformation 𝑓(𝑧) → 𝑓′(𝑧) as 

she had on the blackboard previously, rather than just 𝑧 → 𝑓(𝑧), which does not 

explicitly involve the derivative.  

 While Melody seemed to have difficulty letting go of reasoning about 𝑓(𝑧) →

𝑓′(𝑧) mapping as she had previously, Edward seemed to realize that the derivative says 

something about how the transformation 𝑧 → 𝑓(𝑧) “twists” and “amplifies” the circle. 

Also note that Edward produced a gesture iconic of an amplitwist in the following 

exchange. Furthermore, in this exchange, Melody’s reasoning was coded as primarily 

algebraic, as her main objection was essentially that the transformation 𝑧 → 𝑓(𝑧) did not 

include the symbol 𝑓′(𝑧), and she additionally referred to the symbolic derivative 

𝑓′(𝑧) = 3 + 2𝑖, for which Melody had not yet offered a geometric interpretation. On the 
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other hand, Edward’s reasoning was coded as geometric due to references to geometric 

properties such as twisting and the fact that the output circle “doesn’t change” when 

dragging around the input circle. 

Melody: Well I guess we only really looked at f of z, to like f of z. We didn’t 

really look at the derivative 

Edward: Well I think the derivative is doing, is doing that twisting, twisting the 

amplification part 

Melody: even though it's just going to one point? Cause the derivative of f of z is 

just the 3 plus 2 i. 

Edward: Just the point. I think, just the fact that it's the one point is kind of like 

doing a derivative with a constant. It just does the same thing to all the z's. Which 

is why when we're moving it around it doesn't change. (Edward both moves the 

mouse in GSP here and moves his hands in a circle and then away from each 

other). The f doesn’t change size… and then it’s twisting it by whatever that 

angle, because the derivative is that, that, what 3 

Melody: 3+2i, mhm 

 Notice that while Edward talked about the mathematical objects that the function 

does not change, he produced a dynamic gesture which may signify rotation and dilation. 

This gesture suggests that at least some aspect of Edward’s reasoning successfully related 

the derivative of a complex-valued function to a local linearization as described by an 

amplitwist. It is particularly significant that Edward produced a gesture signifying the 

relevant types of changes related to the derivative in order to explain why no change 

occurred in their current situation. In contrast, note that in this same episode Melody was 

still experiencing difficulty reasoning about the mappings she was considering, as she 

claimed she and Edward were investigating the identity mapping 𝑓(𝑧) → 𝑓(𝑧), which 

does not make sense in conjunction with their discussion about how the mapping twists 

and amplifies circles.  
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 However, not only did Edward convince Melody that they had correctly reasoned 

about the argument and magnitude of the derivative as describing the rotation and 

dilation of the circle, respectively, but he also related their previous chalkboard 

investigations to their current discoveries. Namely, he noted that in 𝑓(𝑧) → 𝑓′(𝑧), 

everything mapped to the single point 3 + 2𝑖, and corresponded that discovery with their 

observation with the aid of GSP that under the mapping 𝑧 → 𝑓(𝑧), all circles rotate and 

dilate by the same amounts; amounts that were given by the derivative 3 + 2𝑖. Melody 

finally agreed that the transformation 𝑧 → 𝑓(𝑧) informs us about rotation and dilation 

better than the transformation 𝑓(𝑧) → 𝑓′(𝑧) after some further experimentation with 

rotating spokes with the aid of GSP. 

Melody: So are you saying here, are you saying because like, from z to f of z, 

since that’s like, like a constant in preserving. That’s why it goes to the one point? 

Edward: Well I think that because the derivative’s constant, that whatever it’s 

mapping from the z to the f 

Melody: 3 + 2i, mhm. 

Edward: It’s always doing the same thing to every z in the f plane, so that’s why 

we’re getting the same rotation no matter where we are. So when we move 

around, it doesn’t matter, I mean this doesn’t get smaller or bigger and it doesn’t 

twist while we’re moving around, cause it’s constant, I guess 

Melody: Okay. That makes sense. 

 Edward’s reasoning in the exchange above was coded as geometric for the same 

reasons as before: he referred to geometric properties such as rotating, getting “smaller or 

bigger,” and not twisting or dilating when the input circle is moved. I asked them once 

again to find the rotation and dilation factors, and this time Melody and Edward 

calculated the length of the vector corresponding to the point 3 + 2𝑖 as √32 + 22 = √13, 

and experienced difficulty calculating 𝜃 = 𝐴𝑟𝑔(𝑧), so I let them know they could use 
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𝜃 = tan−1 𝑦

𝑥
 , which seemed to satisfy them. Afterward, Melody and Edward summarized 

what the derivative told them about 𝑓(𝑧). The following reasoning was coded as 

geometric. 

Melody: So just that the derivative, is, basically, how much it dilates and rotates 

Edward: The original  

Melody: The original z 

Edward: That object thingamajiggy. That’s where we finally got the twists from. 

 Thus, despite the fact that for the entirety of the task up to this point, Melody and 

Edward investigated how 𝑓(𝑧) transformed circles, Melody still felt the rotation and 

dilation applied to the point 𝑧. However, Edward’s geometric reasoning seemed to 

advance during his GSP investigations to the point where he could say the “object 

thingamajiggy” is what is being rotated and dilated. His pointing suggests the 

“thingamjiggy” he referenced is the input circle itself. As he did not just echo Melody’s 

phrasing, it could be that he is was in fact beginning to develop geometric reasoning that 

the derivative describes how 𝑓(𝑧) rotates and dilates a circle. 

Task 4: Investigating the Derivative of Non-Linear Complex-Valued  

Functions 𝒇(𝒛) = 𝒛𝟐, 𝒇(𝒛) = 𝒆𝒛, and 𝒇(𝒛) =
𝟏

𝒛
  

Christine and Zane 

 At the beginning of Task 4, I asked Christine and Zane to generalize their 

geometric reasoning about the derivative of linear complex-valued functions back to the 

non-linear functions 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. Table 8 provides a selection of codes 

from this task for Zane and Christine. Recall that Zane and Christine never explicitly 

verbalized how to reason geometrically about the derivative of a linear complex-valued 

function. For 𝑓(𝑧) = 𝑧2, Christine simply summarized, “Last time we found out that it 
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was like that the stretching and rotating thing gave us twice the point we were looking 

for.” They opened their Geometer’s Sketchpad (GSP) lab for 𝑓(𝑧) = 𝑒𝑧 as well and noted 

that 𝑓(𝑧) = 𝑒𝑧 is not typically a nice value, so they focused on values such as 𝑧 = 𝜋𝑖 for 

which they knew the value of 𝑒𝑧. After some experimentation with the aid of GSP on 

𝑓(𝑧) = 𝑒𝑧, Christine lamented, “I mean before there was a nice pattern. In this one it’s 

not a nice pattern.” Given their difficulty with 𝑓(𝑧) = 𝑒𝑧, Christine and Zane returned 

their attention to 𝑓(𝑧) = 𝑧2, using GSP once again to investigate. Christine noted that the 

center point of the input circle does not always map to the “center” of the output curve. 

This fact is due to the way a non-linear function distorts large circles, though Christine 

did not seem to know this, as she asked Zane why it occurs. Zane said he wasn’t sure why 

those points were special. 

Table 8      

Task 4 Codes for Christine and Zane   
Line # Verbiage Alg Geo Gesture Tech 

461 C: I mean, like that whole unit 
circle is just like folded in on 

itself, right? 

 x traces unit circle ccw with index finger, 
extends third finger alongside index finger 

and moves both fingers in a ccw upper 

semicircle 
 

 

465 C: the whole unit circle goes to 

itself, but just like if we'd flipped 

it over the 𝑥 −axis 

 x  moves point over 

to −1 and traces 
lower semicircle 

of unit circle 
 

490 Z: Okay, so the definition of 

derivative 

    

491 Z: 𝑓 of 𝑧 plus ℎ x   tries to calculate 

derivative via 
difference 

quotient on paper 

521 I: What are you calculating?     
522 Z: oh just the derivative, the 

𝑓 plus 𝑧 ℎ minus 𝑓 𝑧 over, er, 

quantity over ℎ 

x    

Note. Alg stands for algebraic, and Geo stands for geometric. 

 I suggested to Zane and Christine that they explore how 𝑓(𝑧) =
1

𝑧
 maps a small 

circle around two different points with the same derivative with the aid of GSP. During 

this investigation, Zane correctly observed that the function transformed each of these 
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circles in the same way. He continued trying to determine how to predict where the 

“center” of the output curve would be, attempting to reason geometrically. 

Zane: Yeah, just trying to think of how to determine where the center would be, 

or where the center would translate to. Just, kind of the opposite, where if you’re 

outside the unit circle the point that’s furthest away is going to have the shortest 

distance inside of the new circle. 

 Given their relative lack of progress, I tried to have Zane and Christine change 

tactics. Because they had previously suggested that the derivative is the slope of the 

tangent line and the rate of change, and these are ideas from real-variable calculus, I 

attempted to help them generalize these ideas. To do so, I wrote the limit definition of the 

derivative 𝑓′(𝑧) = limℎ→0
𝑓(𝑧+ℎ)−𝑓(𝑧)

ℎ
, and asked them what this algebraic inscription 

meant to them in a geometric context with respect to the function 𝑓(𝑧) =
1

𝑧
. Zane referred 

to the limit definition as a ratio that became more and more precise as ℎ became smaller. 

Afterward, Zane started calculating the derivative of 𝑓(𝑧) =
1

𝑧
 algebraically while 

mumbling something about how GSP rotated the circles. Near the end of the fourth task, I 

let them know a derivative of 1 at a point means that a small circle around that point 

would not stretch or rotate, in the hopes that they might be able to reason geometrically 

about the derivative at a different point. They chose to look at a point with derivative −1 

(see Figure 33) and described the circle as either inverting itself or rotating by 180°, a 

distinction with which they previously had difficulty. For example, in the following 

exchange, Christine seemed to believe the transformation inverts the circle, while Zane 

was initially unsure. The following exchange was coded as geometric due to Christine’s 

references to geometric transformations such as reflection or folding a circle on top of 

itself. 
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Figure 33. Zane and Christine describe a circle around a point with derivative value −1 

as either inverting or rotating. 

Christine: The whole unit circle goes to itself, but just like if we’d flipped it over 

the x −axis. See what I’m saying? 

Zane: No 

Christine: No? Really? 

Zane: I guess you could just say it again?( points at right side of unit circle and 

places left thumb on right side and left index finger on left. Retracts fingers to fist 

in front of origin and places hand above unit circle, pointing right, palm down) 

Christine: So like if we took this arc (moves hand down and places palm flat 

underneath circles) and we just like took this and folded it down, if you fold it on 

top of itself, so everywhere is z on this side (traces upper half of circle clockwise 

starting at right side) 

Zane: Okay, yeah, I see what you’re saying. 

 Thus, despite the fact that the transformation is in fact rotating the circle, both 

Christine and Zane became convinced during this episode that the transformation instead 

reflects the circle about the 𝑥 −axis. Afterward, I asked them what they thought would 

happen to a circle that encloses 1 + 𝑖, and told them incorrectly that the derivative at that 

point was 2𝑖. This error was not purposeful, and was close to correct, as the derivative at 

1 + 𝑖 is in fact −
1

2𝑖
. Furthermore, as I was unaware of the error at the time, I did not 
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correct it. Zane claimed a circle around this point would magnify 2 and rotate 90° which 

is correct assuming the slightly flawed derivative value I gave him. Christine, on the 

other hand, said that in GSP “it looked like it halved it and then rotated it by 90 I think.” 

This is correct given the actual derivative value, and Zane agreed with Christine’s 

assessment. They tested derivative values and geometric behaviors around 𝑧 = 1 − 𝑖 

where the derivative is 
1

2𝑖
 and 𝑧 = 2𝑖 where the derivative is −

1

4
. Around 𝑧 = 1 − 𝑖, Zane 

correctly claimed that a circle around 1 − 𝑖 maps to a circle rotated 90° and dilated to 

about half the radius, and Christine verified this claim with the aid of GSP. Around 

𝑧 = 2𝑖, Zane claimed incorrectly that the derivative is −4 and that the function does not 

rotate the circle, though he did correctly note that the function dilates the circle to a 

quarter of the radius. 

 At this point, we were close to the end of our two-hour time allotment for the final 

task, so I concluded the task and let them ask me questions. During this time, I explained 

that the derivative of a function describes how the function rotates and dilates a small 

circle around a particular point. I told them that the amount of rotation was given by the 

argument of the derivative and the amount of dilation was given by the magnitude of the 

derivative, and Christine commented, “we almost got there.” Finally, I let them know that 

this geometric reasoning about the derivative only applied to very small circles, and they 

nodded. I concluded the task by showing them a GSP lab I had previously constructed of 

a rational function. They moved circles around in it briefly, commented that the output 

shapes were “cool,” as they were oddly distorted in some cases, and informed me they 

were glad I did not ask them to work with this last rational function (see Figure 34 and 

Figure 35). This rational function formed the basis of Task 5 for my second group. 
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Figure 34. Zane and Christine investigate a rational function’s behavior in transforming 

circles 

 

 

Figure 35. Christine and Zane use a small circle near (0, −1) to locate roots and zeroes of 

a rational function 

Melody and Edward 

 For Task 4, I asked Edward and Melody to generalize their discoveries about the 

derivative of a linear complex-valued function to the derivative of non-linear complex-

valued functions such as 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. For sample codes from this section of 

the interview, refer to Table 9. Similar to Zane and Christine, Melody and Edward opted 

to begin with the function 𝑓(𝑧) = 𝑧2. They tried to reason geometrically about the 

derivative 𝑓′(𝑧) = 2𝑧 without picking a point 𝑧 on which to focus. As such, Melody felt 

that the dilation that occurred would always be by a factor of 2, and only the rotation 
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should depend on the point 𝑧. Edward corrected her by noting that the dilation also 

depends on the point 𝑧. 

Table 9      

Task 4 Codes for Melody and Edward   
Line # Verbiage Alg Geo Gesture Tech 

494 M: Yeah. Mhm. Dilating by 2, 
and rotating 

 x Slides hands along table closer together 

(reforming circle) and pulling back apart. 
E Raises hands, left hand palm down 

fingers point right and forward, right hand 

palm up fingers point right and forward 

 

495 E: And then, I'm trying to 

remember, (we didn't?) determine 

what rotated, I'm trying to 
remember this 

 x Windshield wipes hands twice (from 

pointing up to pointing right) Drops right 

hand and leaves left hand in pointing up 
position, palm right. M Points at screen 

with right hand 

Moves mouse to 

right end of blue 

circle, up ccw 
along circle 

slightly, back to 

right end (of 
circle and spoke) 

496 M: Is it, not (but?), oh it rotated 

twenty degrees, right? 

 x Points at screen with right hand. Points 

again at screen with right hand 

Rotates blue 

spoke ccw so it 
points left 

643 M: So basically here the 
derivative tells us that it dilates 

 x  E Moves center 
up (expands) and 

back down 

(contracts). 
Moves blue 

circle cw into 

first quadrant 

644 For like, from 𝑧 to 𝑓 of 𝑧 it 

dilates by 2𝑧 and it rotates by the 

angle of wherever 2𝑧 is at 

  E Points at screen with left index finger. 

M Taps index finger on table twice (once 

in front of her and once slightly right), 
places fists on table and extends second 

fingers forward and thumbs toward each 

other 

 

Note. Alg stands for algebraic and Geo stands for geometric. 

 During the following exchange, which was coded as geometric due to references 

to geometric transformations such as rotations and dilations, Edward explicitly admitted 

that he did not remember exactly which “thing” rotated and dilated. 

Melody: So that would mean that it would, what did that mean? It’s the, it’s 

dilating by 2? 

Edward: By 2 whatever the length of z is wherever you’re at at the time. 

Melody: Yeah. Mhm. Dilating by 2, and then rotating 

Edward: And then, I’m trying to remember, we didn’t determine what rotated, I’m 

trying to remember this. 

 Melody algebraically reasoned that the rotation is dependent on 𝑧 because the 

derivative 2𝑧 has a 𝑧 in it. Afterward, Edward and Melody experimented with the aid of 
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GSP to try to determine precisely what the function rotates and dilates. At first, they 

conjectured again that the vector 𝑧 rotates and dilates by the argument and length of 2𝑧, 

respectively. Melody then suggested moving the input circle away during their 

investigations by stating, “what if you move it so it’s not wrapping around?” This 

suggestion may have been motivated by previously established geometric reasoning 

about how the origin causes strange mappings to occur under the function 𝑓(𝑧) = 𝑧2. 

This suggestion was coded as geometric due to references to geometric actions that could 

be taken with the aid of GSP and the geometric idea of “wrapping.”  

 However, after Melody used Geometer’s Sketchpad (GSP) to verify that this 

prediction did not match what she observed, she made the critical observation that when 

the circle’s center has an argument of 45°, the circle itself rotates 45°. Given that this 

observation involves the geometric property of how a circle rotates, this observation was 

coded as geometric. Edward followed up this observation by suggesting that if the input 

circle’s center stays on the same radial line from the origin, the amount the function 

rotates the circle should remain constant. Both Melody and Edward verified this 

conjecture by experimenting with the aid of GSP (see Figure 36). 

 

Figure 36. Edward moves blue pre-image circle along ray from origin and observes that 

rotation of red image circle does not change 
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 After this episode, Melody seemed to reason geometrically in a way that 

successfully distinguished the rotation and dilation of the circle with the way the function 

maps the point 𝑧 itself. However in the following exchange, Edward seemed to conflate 

the rotation and dilation of the point with that of the circle, though he seemed to feel that 

something in his geometric reasoning did not quite make sense. 

Melody: So basically here the derivative tells us that it dilates, for like, from z to 

f(z) it dilates by 2z and it rotates by the angle of wherever 2z is at. 

Edward: So z is 1, so it would get amplified to 2. See, that’s what I’m, that’s what 

I’m confused about, because I was, if, that this would be at 2 

Melody: Like the center (points at (2,0)) would be at 2? So the center of the 

circle doesn't necessarily depend on the derivative. Like where the output one is 

located doesn't depend on the derivative (curls fingers slightly into claw, beats 

toward screen while moving arm counterclockwise in an upper circular arc) The 

output one is just the size (hand makes claw shape, extends fingers outward and 

back in) of it and (twists hand first clockwise like a doorknob then back 

counterclockwise) the rotation not the, like the location would depend on the z 

squared. 

 During the entirety of the exchange above, Edward used GSP to move circles 

around on the screen, while Melody tried to explain her reasoning to him via a gesture 

signifying dilation and a variety of rotational gestures. These exchanges were indications 

that the participants were utilizing geometric reasoning. For example, Melody repeatedly 

retracted and extended her fingers to and from a claw-like hand position to signify 

dilation (see Figure 37). She both twisted her hand like a doorknob and moved her entire 

hand counterclockwise to signify rotation (see Figure 38). It is further possible that the 

beat gestures directed toward the screen that occurred while Melody swept her hand in an 

upper counterclockwise arc were in fact also small extensions and retractions. If so, this 

particular gesture could have indicated simultaneous dilation and rotation. Thus, 

Melody’s reasoning here was coded as geometric. 
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Figure 37. Melody produces a “claw-like” gesture for dilation 

 

Figure 38. Melody produces a “doorknob” gesture for rotation 

 Melody additionally noted that their large circle enclosing 1 + 𝑖 rotates and 

dilates more oddly than a small circle. Edward expressed confusion about this distortion, 

but Melody offered a reasonable geometric justification. That is, she observed, “Well 

wouldn't it like technically dilate differently in different places because the dilation 

depends on z, so like here, is going to dilate out farther than like here. It only goes like.” 

 She clarified later that she meant that each part of a large circle would rotate and 

dilate differently because there was a different 𝑧 there. This is essentially an accurate 

justification for why the derivative of a complex-valued function only provides a local 

linear approximation of the function. As this property is a discovery that Christine and 

Zane seemed to experience difficulty making, I encouraged Melody and Edward to 

continue advancing their reasoning in this direction by asking them how this behavior 

compares to the way a small circle rotates and dilates. Melody correctly noted that if the 
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circle is small, each point is very close together so each part of the circle would dilate 

mostly the same way. She further elucidated that large circles have points farther away 

from the origin, and instead of offering a further explanation, she asked to use GSP to 

investigate a large circle centered at the origin.  

 This desire provides further evidence that Geometer’s Sketchpad (GSP) seems to 

help students develop their geometric reasoning about the derivative of a complex-valued 

function. Furthermore, while Melody previously distinguished rotation and dilation of a 

point from rotation and dilation of a circle, during this episode she seemed to interchange 

these two terms of circles and points. This suggests that differentiating a point from an 

𝜖 −neighborhood is in fact a somewhat subtle distinction given how small an 𝜖 − 

neighborhood is, and that speaking of rotation and dilation of a point as Zane and 

Christine did during the associated task is not so much incorrect as it is out of context.  

 Despite the fact that the distinction is subtle, it appears that the ability to reason 

correctly about the difference is critical to reasoning geometrically about the derivative of 

a complex-valued function. Christine and Zane never quite made this distinction, and 

similarly did not quite ever identify what entity the function rotates and dilates. In 

contrast, Melody appeared to make this leap, and successfully generalized rotation and 

dilation of a large circle as rotation and dilation of several different small areas of the 

circle. While she spoke of rotation and dilation of points, she previously voiced that the 

location where 𝑧 maps depends on the function 𝑓(𝑧) = 𝑧2 rather than the derivative. 

Furthermore, if we take her rotation and dilation of points to mean rotation and dilation of 

several smaller 𝜖 − neighborhoods, her description of why larger circles distort more 
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under 𝑓(𝑧) = 𝑧2 is entirely accurate—because there are 𝜖 −neighborhoods which are far 

apart and thus rotate and dilate by noticeably different amounts. 

 When Melody looked at a large circle centered on the origin with the aid of GSP, 

she repeated her reasoning, saying that when the circle is large and not around the origin, 

different parts of the circle rotate and dilate differently. I asked Edward and Melody if 

their previous geometric reasoning about the derivative applied to 𝑓(𝑧) = 𝑧2. Edward 

suggested, “let’s calculate,” and asked, “which point will be easy?” They experimented 

and observed how various circles transformed under 𝑓(𝑧) = 𝑧2 in GSP, but had not yet 

said anything definite, so I asked them what they were wondering. Melody asked why a 

circle around the origin did not dilate by 2, and ended up reasoning geometrically that the 

circle wrapping around the origin twice basically is a dilation by a factor of 2, as if the 

radius is twice as large, so is the circumference. This reasoning was coded as geometric 

due to Melody’s justification. Edward did not seem to have any questions he wished to 

ask or was able to vocalize. At this point, the third interview concluded, though Task 4 

was as yet unfinished. 

 At the beginning of their fourth and final interview, Melody and Edward started 

by investigating 𝑓(𝑧) = 𝑒𝑧 armed with their new geometric reasoning about the 

derivative of linear complex-valued functions and of 𝑓(𝑧) = 𝑧2. They noted that 

𝑓′(𝑧) = 𝑒𝑧 as well, and revoiced their previous discoveries about this function, such as 

the fact that moving in the real direction changes the magnitude of 𝑒𝑧, and moving in the 

imaginary direction changes the argument of 𝑒𝑧. These repetitions of previous reasoning 

again involved references to geometric ideas such as moving circles and points away 

from the origin, or along the axes, and thus again produced primarily codes for geometric 
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reasoning. Edward and Melody switched to symbolic manipulation to try to determine 

why this movement along the imaginary axis rotates the point, which appeared to remind 

Edward of Euler’s equation 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) if 𝑧 = 𝑥 + 𝑖𝑦. As such, this 

reasoning was coded as algebraic. 

 On the other hand, Melody recalled that the argument of 𝑧 was given by the 

arctangent of some quantity, though she seemed to have trouble remembering the precise 

equation and she appeared to reason that this calculation would give a different result 

than Euler’s equation. However, Melody correctly summarized how 𝑓(𝑧) = 𝑒𝑧 

transforms 𝑧 by stating, “I would just say the rotation is 𝑒𝑖𝑦 and you just plug in the, 

whatever 𝑧, like the 𝑦 part of 𝑧 is and that’s the rotation.” This reasoning was coded as 

both algebraic and geometric. They attempted to check this prediction with the aid of 

GSP with the point 𝑧 = 1 + 𝑖, but had difficulty calculating the argument of 𝑒𝑖. To obtain 

an approximate value for 𝑒𝑖, they plotted the point (cos 𝑦, sin 𝑦), which was the point on 

the unit circle with argument 𝑦. This extra measurement of the proper argument allowed 

them to verify their prediction with the aid of GSP. Melody also eventually correctly 

reasoned in a way coded as algebraic that the proper amount of rotation of 𝑧 under 

𝑓(𝑧) = 𝑒𝑧 is tan−1(tan 𝑦), and I helped her reason that tan−1(tan 𝑦) = 𝑦, but I did not 

explain the intricacies of branch cuts and multiple rotations around the circle. Melody 

revoiced her discovery while working on this same task: 

 Melody: Your y’s are going to be close if it’s a small circle, and then if you have 

a large circle, your y’s are going to be farther apart and so if you have a line 

segment here then over here they’re going to rotate different ways. They’re going 

to rotate differently.  
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 This reasoning was coded as geometric due to references to geometric objects 

such as line segments and circles and geometric actions such as rotating, and geometric 

properties such as being far apart. Even Edward, who appeared to have difficulty 

advancing his geometric reasoning in this respect, seemed to begin to follow Melody’s 

reasoning. He noted the difference between a point and an 𝜖 −neighborhood by reasoning 

aloud, “I was just trying to picture really small. But even if it’s really small it’s more than 

zero.” So, at the same point in the task progression as Zane and Christine ended, Edward 

and Melody were able to distinguish the rotation and dilation of points and vectors from 

the rotation and dilations of 𝜖 −neighborhoods around those points. The ability to make 

this distinction may be the primary reason Melody and Edward managed to advance their 

geometric reasoning about the derivative of complex-valued functions so much further 

than Zane and Christine. Given that they finished this last task with time to spare in their 

final interview, while Zane and Christine did not, I administered one final task for the 

remainder of Melody and Edward’s final interview. This task was administered only to 

Edward and Melody.  

Task 5: Investigating an Unknown  

Rational Function 𝒉(𝒛) =
𝒇(𝒛)

𝒈(𝒛)
 

 For Melody’s and Edward’s final task, I told them I had constructed some 

function of the form 
𝑓(𝑧)

𝑔(𝑧)
 where 𝑓(𝑧) and 𝑔(𝑧) are polynomials. I asked them to 

determine where this function was differentiable, and furthermore to determine the value 

of the derivative at a point of their choosing. Finally, I asked them to construct an 

algebraic inscription for this rational function. As discussed in Chapter III, this task was 

primarily motivated by my previous observations of students’ repeated difficulties in 
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developing geometric reasoning about the derivative of a complex-valued function, 

particularly in reasoning about it as a local transformation. 

 That is, I noticed that all my previous tasks involved a given function and an 

easily calculated derivative. As part of the tasks, participants described the relationship 

between the value of the derivative at certain points and how the function transforms 

small circles around those points. For samples of codes generated during this task, see 

Table 10. Given that Sfard (1992) suggests that well-developed reasoning necessarily 

includes the ability to consider mathematical operations in reverse, I decided to include a 

task that required them to identify both the function and the derivative given only 

geometric data gleaned with the aid of GSP. That is, GSP could be used to determine how 

the function transforms small circles around a given point. In essence, the set-up of this 

task asks the same question as Tasks 1 and 2 in the reverse direction. 

Table 10      

Task 5 Codes for Edward and Melody   
Line # Verbiage Alg Geo Gesture Tech 

71 M: That can't be differentiable 
there 

    

74 M: It is weird  x   

76 E: Well that's, that's doing an 
interesting shape right there 

 x   

92 E: okay, so to know if this is 

differentiable, we want 

    

93 E: to kind of know when there     

94 E: goes to, small circle goes to 

small circle 

 x   

132 M: So that should still be okay 

because it's just wrapping around 

itself I think 

 x   

133 E: That's differentiable?     

134 M: I think that is, cause that's like 

inside, and it's just wrapping 

 x   

Note. Alg stand for algebraic, and Geo stands for geometric. 

 Melody and Edward first constructed and transformed a circle, and used 

Geometer’s Sketchpad (GSP) to determine places where the function transforms their 

circle in an unusual way. For example, Edward once remarked, “why is it doing the 

flippy thing,” while Melody noted a location where the image of the circle “blows up.” 
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Given this visual imagery, these observations were coded as geometric. Throughout this 

task, Melody and Edward appeared to utilize predominantly geometric reasoning such as 

this. One possible reason for this is that the task itself provided a geometric inscription, 

and thus motivated participants to reason geometrically. This suggestion thus 

complements Soto-Johnson and Troup’s (2014) hypothesis that providing an algebraic 

inscription to participants sways them toward reasoning algebraically.  

 Before they made any definitive predictions, they constructed and transformed 

spokes on their circle, after which Melody and Edward started further developing their 

geometric reasoning through a series of observations with the aid of GSP. First, Melody 

associated strange output behavior with non-differentiability by claiming, “that can’t be 

differentiable there…It’s weird.” Edward seemed to tacitly agree by continuing to search 

for locations with odd outputs, and eventually found another while commenting, “Well, 

that’s, that’s doing an interesting shape right there” (see Figure 39). These observations 

were again coded as geometric due to various references to geometric properties such as 

circles being “weird” or “doing an interesting shape.”  

 

Figure 39. Edward and Melody observe with the aid of Geometer’s Sketchpad that the red 

image curve “explodes” as the blue pre-image circle approaches 1 
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 At this point, Edward was able to verbally reason geometrically about what made 

a point differentiable, by stating, “okay, so to know if this is differentiable, we want to 

kind of know when, where, goes to, small circle goes to small circle.” This utterance is an 

atypically precise geometric description of the fact that the derivative is a local property. 

Thus, this reasoning was coded as geometric. Through this reasoning, Melody suggested 

making the circle smaller, possibly to identify points where the circle did not map to a 

circle more precisely. Through this experimentation and observation with the aid of GSP, 

she identified (1,0) and (−1,0) as non-differentiable points, perhaps due to the slight 

deformation in the output curve that she observed (see Figure 40). 

 

Figure 40. Melody observes a deformation in the red output curve when the blue input 

curve is centered at −1 

  In contrast, Edward correctly noted that (−1,0) was in fact a differentiable point, 

possibly by observing that when the input circle is small, the deformation in the output 

curve diminishes (see Figure 41). Melody later claimed that she had simply misspoken 

and that she meant (1,0) and (0, −1) were non-differentiable, which was a correct 

identification. She came to this conclusion by noting that the output curve “explodes” 

when the input circle is small and centered around these points (see Figure 42 and Figure 

43). Melody and Edward also found that near 𝑧 = .7 − .7𝑖, the output was odd in that it 

wrapped around itself similar to how a circle around the origin under 𝑓(𝑧) = 𝑧2 mapped 

to a curve that wrapped around itself (see Figure 44). 
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Figure 41. Edward observes a less deformed red output curve when the blue input circle 

is smaller 

 

Figure 42. Edward and Melody observe red image curve “explodes” as blue-preimage 

circle approaches −𝑖 

 

 

Figure 43. Melody observes red output curve “explode” when small blue input circle is 

centered at 1 
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Figure 44. Blue pre-image circle around 𝑧 ≈ .7 − .7𝑖 maps to image curve that wraps 

around twice 

 This similarity did not appear to be lost on Melody and Edward. The following 

exchange generated mainly geometric codes due to references to circles “wrapping.” 

Melody: So that should still be okay because it's just wrapping around itself I 

think 

Edward : That's differentiable? 

Melody: I think that is, cause that's like inside, and it's just wrapping 

Furthermore, Edward incorrectly identified a point near (1,0) as non-

differentiable, but Melody correctly countered this claim with her own developing 

geometric reasoning. 

Melody: I think that’s still differentiable, it’s just huge. 

Edward: Did that one blow up yet? Yikes, it still looks (trails off). 

Melody: It’s still a circle, it’s just starting to get close to one….It’s still a circle 

but right when you hit one, I think that’ s when it 

Edward: Still makes, still a circle. When it goes crazy, pkow (explosion 

sound)….So that must mean the g(z) is…z − 1 and z + i 

 Thus, Edward utilized Melody’s geometric reasoning to develop his own to the 

point where he could correctly identify 𝑔(𝑧) as containing the factors 𝑧 − 1 and 𝑧 + 𝑖, 

because they had found that the rational function was not differentiable at the points 
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(1, 0) and (0, −1) (see Figure 42 and Figure 43). Both participants’ reasoning methods 

were coded as geometric due to their references to geometric ideas such as “blowing up” 

or creating a circle. Edward even noted that this task was particularly helpful in 

developing his reasoning. 

Edward: Now I have to say that this part of the exercise really makes it a little bit 

easier to understand the whole, you have to keep on shrinking that circle smaller 

and smaller, to show the differentiable 

Melody: The small circle 

Edward: I was not getting that in class whatsoever. 

Interviewer: So what do you think it was that cemented the necessity of a small 

circle for you  

Edward: Oh, that it has to be a really, well, I, that even when you're…that even 

though the circle's gigantic here, that we can keep making this one so small that 

this will eventually be a small circle. 

 Edward recalled a class conversation that did not make sense to him at the time, 

but did now. He said he was doing a project where he had a large circle mapped to a 

“weird thing,” and his professor asked him whether a smaller circle might map to a more 

circular shape. The following exchange was coded as geometric given the references to 

such geometric imagery as “clover shape” and “shrinking” a circle until it is small 

enough to map to an image which is also nearly a circle. 

Edward: I didn't quite get it. But, for the particular function, I remember it was 

kind of like a clover shape, so I was, well, it's a clover shape, because I thought 

one was small enough, but it isn't small enough because once we start shrinking 

this down, it gets more and more like a circle.” 

Interviewer: So what is small enough? 

Edward: Small enough to make it a circle, I guess, because it, you know we just 

get closer and closer and closer to that point. That means just infinitesimal for 

some things, but not necessarily all things. It just depends on where you are. 

Interviewer: Okay, so if you put it on like one 
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Edward: one, that blows up and you’ll just never be able 

Melody: Unless like, you’re barely off of one, if you’re not quite at one 

 Since Melody and Edward had successfully determined the two points at which 

the rational function was non-differentiable, and furthermore actually constructed 𝑔(𝑧), I 

asked them to find the value of the derivative at a particular point. In response, Melody 

and Edward shrunk their input circle down to radius one half and started talking about the 

rotations and dilations they observed in the output circle. Eventually I realized they were 

trying to find an actual equation for the derivative, so I asked them once again just to 

focus on the derivative at a single point.  

 Edward noted that he was trying to pick an easy point and settled on 𝑧 = 0. He 

elucidated their strategy to me by saying, “All we have to figure out is for that point, how 

much it rotates and how much it expands.” Melody used Geometer’s Sketchpad (GSP) to 

measure how much the output circle dilated with respect to the input circle, and claimed 

that the input circle had radius . 05, while the output circle had radius . 15. Edward 

correctly summarized this by saying the dilation occurred by a factor of 3. Melody also 

noted that the rotation was “a little more than 3 pi over 2,” which is not a bad estimation, 

as my function ℎ(𝑧) =
(2𝑧+1)

(𝑧+𝑖)(1−𝑧)
 has ℎ′(𝑧) =

2𝑧2+2𝑧−(1−3𝑖)

(1−𝑧)2(𝑧+𝑖)2 , so ℎ′(0) = −
1−3𝑖

𝑖2 = 1 − 3𝑖. 

I let them know that the dilation should be √10 and that the rotation should be whatever 

the angle of 1 − 3𝑖 is.  

Edward: One minus 3 i, oh yeah, that's exactly what we have. Yay! 

Interviewer: And your dilation is root 10 

Edward and Melody together: which is? 

Interviewer: Just a little bit bigger than 3 
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Melody: Okay, yeah 

Edward: Okay, wow 

Melody: Amazing 

Edward: but you have to get that darn circle small 

Melody: Yeah 

 I asked them what questions they would like to ask about this task. Melody asked 

what the expression for the numerator was, so I asked them to determine a formula. 

Edward stated they would have to find the zeroes, but algebraically calculated 𝑓(0) 

instead. After some further experimentation with the aid of GSP, they determined that 

𝑓 (−
1

2
) = 0, which is correct. Melody algebraically constructed the polynomial 𝑧 + 0.5, 

which also has a root at −
1

2
, so I let them know that this was the correct numerator up to 

a multiplicative constant, as I had used 2𝑧 + 1 = 2(𝑧 + 0.5). 

 As they had successfully constructed the function, I asked them about some 

observations they had made previously in GSP. In particular, I asked them why they 

thought the output circle double twisted on itself at about . 7 + .7𝑖. Initially, Melody 

reasoned that this twisting occurs when the input circle is large, though they showed with 

the aid of GSP that the double twist forms regardless of the size of the input circle. Thus, 

Melody and Edward turned their attention to the derivative of that point. Melody 

suggested calculating the derivative algebraically, while Edward suggested that the 

derivative should be bigger than 2, because “there’s something in the derivative that must 

be a, um, doubles it up. Doubles up the rate that it rotates.” Finally, Melody recalled that 

the derivative of 𝑓(𝑧) = 𝑧2 is 0 at the point where the output twists and asked, “so 

whenever the derivative is zero, it wraps around?” Edward did not provide a response.  
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 At the end of the task, I asked Melody and Edward if their reasoning held for the 

function 𝑓(𝑧) =
1

𝑧
. They correctly noted that 𝑓(𝑧) is not differentiable at zero because a 

small circle around zero should “blow up.” 

 Interviewer: This is one over z, just tell me if anything unexpected happens here 

 Melody: Well let's see, when z is zero, it wouldn't be differentiable, right? 

 Edward: Yeah, should blow up 

 Melody: I guess we should make it small, right? Yeah. 

 Edward: It’s blowing up…So it’s not differentiable at z 

 Melody asked Edward for which points 𝑧 the derivative of  −
1

𝑧2 is zero. Edward 

correctly replied, “nowhere,” from which Melody reasoned that “it should never wrap 

around,” which is accurate. Due to such references to geometric actions such as 

“wrapping around” or “blowing up,” this reasoning and the above exchange were both 

coded as geometric. Finally, Edward and Melody constructed and transformed a circle 

with spokes and both told me that they would expect the magnitude of the derivative to 

be the factor by which the circle dilates and the argument of the derivative to be the 

amount the circle rotates, which is again correct.  

 However, at the end of the final task, when I asked if there were any questions 

they would like to ask me, Melody still did not seem sure about the rotation, despite 

correctly verbalizing correct geometric reasoning just a moment before.  

Melody: So, for each function will the derivative, like derivative, the rotation 

always depend on the  argument of…(taps left index finger on table)?  

Interviewer: Mhm. 
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 Because she tapped her finger on the table without finishing her question, I 

assumed she meant to ask whether the rotation is always dependent on the argument of 

the point a small circle encloses. Therefore, I answered in the affirmative and added that 

the dilation depends on the magnitude. The full interview sequence concluded with 

Edward again praising GSP for its dynamic nature by saying, “I know you can do some 

of this stuff in Mathematica a little bit but not quite as interactive as this.” 

Summary 

Comparison Between Groups 

 While the first group appeared to favor algebraic reasoning, the second group 

seemed to prefer reasoning geometrically. This distinction alone may provide a partial 

explanation for why Melody and Edward appeared to advance their geometric reasoning 

about the derivative of a complex function further than Christine and Zane. Zane and 

Christine typically began by reasoning algebraically, then used their algebraic discoveries 

to reason about the geometric behavior they observed in GSP. While Melody and Edward 

also displayed this progression of reasoning from algebraic to geometric reasoning at 

times, more often they appeared to begin a new question by reasoning geometrically at 

first, then transitioning to algebraic reasoning when they wanted to investigate why some 

specific geometric behavior occurred.  

 As such, Melody’s and Edward’s algebraic reasoning often seemed more directed 

than Zane’s and Christine’s, though less precise. For example, Melody and Edward 

referenced the unit circle 𝑥2 + 𝑦2 = 1 as an explanation for why 𝑧2 = 𝑖 when 𝑧 =
1+𝑖

√2
, 

though these equations are related only in that 𝑖 and 
1+𝑖

√2
 are both on the unit circle. This 

more apparently purposeful use of algebra may have helped Edward and Melody connect 
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their geometric reasoning to their algebraic reasoning. In contrast, Zane and Christine 

suggested at times that algebraic reasoning was preferable to geometric reasoning, almost 

as though algebra was particularly useful as a way of avoiding geometric reasoning 

altogether. 

 Neither group could reason geometrically about the derivative of a complex-

valued function at first, though the second group did initially remember the words 

“dilate” and “rotate,” but admitted they did not recall how to reason about the derivative 

of a complex-valued function via rotations and dilations. Zane and Christine lamented 

that they knew how to find the derivative, but did not know how or when to use it. By the 

end of the four-day interview sequence, Melody and Edward characterized the derivative 

by reasoning geometrically that the argument of the derivative at a point is how much the 

function rotates a small pre-image circle, and the magnitude of the derivative at a point is 

how much the function dilates this circle. Christine and Zane, however, never quite 

verbalized the amplitwist reasoning described in Needham’s Visual Complex Analysis 

book, though they did investigate various other stretches and rotations, along with 

translations and reflections to advance their geometric reasoning.  

 While Christine and Zane did not advance quite as far as Edward and Melody in 

either tasks or the development of their reasoning, Melody and Edward may just have 

possessed more advanced geometric reasoning about the derivative of a complex-valued 

function than did Zane and Christine at the beginning of their respective tasks. In terms of 

Geometer’s Sketchpad (GSP) usage, Christine and Zane seemed to utilize GSP to answer 

questions when they were unable to predict, or check conjectures motivated by their 

algebraic reasoning. In contrast, Melody and Edward appeared to use GSP to advance 
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their geometric reasoning about the behavior of the functions with which they 

experimented, to give them direction about new conjectures to make and new ideas to 

explore, and to corroborate their geometric conjectures.  

 Finally, both groups provided additional evidence that students can typically 

distinguish function behavior from measurement error with the aid of GSP, though not 

always. For example, they both noticed at one point when looking at 𝑓(𝑧) = 𝑧2 that their 

pre-image circle was not quite centered on 0 because the image curve was not two 

perfectly superimposed circles. The image curve was a little off-center, so the students 

were able to infer that the pre-image circle was also a little off-center. On the other hand, 

while investigating 𝑓(𝑧) =
1

𝑧
, the image curve became so large that the computer started 

approximating this image curve with a series of contiguous line segments instead of a 

smooth curve, and both groups expressed interest in discovering the mathematical reason 

that 𝑓(𝑧) =
1

𝑧
 maps a smooth curve to a curve that is not smooth. Furthermore, after being 

told this was a limitation of GSP, both groups asked me whether it was a bug when they 

observed 𝑓(𝑧) =
1

𝑧
 mapped a circle with an internal spoke to a circle with a spoke that 

appeared to be outside the circle.  

Task 1: Investigating 𝒇(𝒛) = 𝒛𝟐 

 In Task 1, there was a single participant in each of the two groups that noticed 

with the aid of GSP that if a pre-image point 𝑧 was dragged around the unit circle once, 

the image point 𝑧2 moved around the unit circle twice. In both cases, the other participant 

commented that they would not have noticed that the image point moved twice around 

the unit circle; they just noticed that it stayed on the circle. As such, it seems that working 

with the aid of GSP in pairs instead of by themselves may have helped them focus on 
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more precise details than they could have on their own. Zane and Christine noticed first 

that 𝑓(𝑧) = 𝑧2 maps circles to curves, which are somewhat “oblong,” and “not fully a 

circle.” So, though they did not progress as far as the other group, they did verbalize at 

the beginning of the interview sequence that they had noticed an important detail of a 

circular shape mapping to a shape, which was not quite a circle, but was still in some 

sense circle-like. 

 Christine and Zane also recalled that 𝑓(𝑧) = 𝑧2 maps certain circles to a circle 

twisted on itself, though they could not at first reason about which circles were mapped in 

such a way. Through GSP investigation, they discovered that circles around the origin are 

mapped in this way by 𝑓(𝑧) = 𝑧2. Melody and Edward additionally discovered that the 

image curve does not loop if the pre-image circle does not contain the origin. Near the 

beginning of this task, Christine and Zane partly reasoned about the derivative as a local 

property, apparently one of the hardest advancements in reasoning for my students to 

make in this interview sequence. Particularly, they noted that 𝑓(𝑧) maps a small circle to 

a “regular old circle,” but the image curve becomes much more distorted when the pre-

image circle is large.  

 Later, when trying to reason geometrically about how 𝑓(𝑧) = 𝑧2 maps circles, 

Christine and Zane seemed to have difficulty distinguishing a rotation from reflection, 

and required experimentation and observation with the aid of GSP before they reasoned 

geometrically about which transformation they observed. Even after this investigation, 

they appeared to continue to struggle separating rotations from reflections. At the end of 

the final task, Zane and Christine expressed curiosity about why the output curve “gets 

really weird near the origin” even before the input curve touches the origin. 
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 Melody and Edward first reasoned geometrically to determine how 𝑓(𝑧) = 𝑧2 

maps various points. Their first noticeable attempt to employ algebraic reasoning was to 

determine which point 𝑧 mapped to 𝑖 under 𝑓(𝑧) = 𝑧2. However, both their algebraic and 

geometric reasoning methods were originally incorrect, so they initially had difficulty 

developing their reasoning on this front. When I suggested they go back to geometry, 

they recalled that expansion, twisting, and rotation were important geometric attributes to 

observe, but admitted that they did not know what object they should expand, twist, or 

rotate.  

 Both groups of participants experienced some confusion about how to map the 

function 𝑓(𝑧) = 𝑧2. Christine and Zane originally calculated algebraically 𝑧 → 𝑧2 →

(𝑧2)2, because in their words, “that’s what they were supposed to do.” Edward and 

Melody also constructed exactly this transform at one point accidentally in GSP, but 

seemed to realize that their extra step was unnecessary. However, before using GSP, 

Melody and Edward originally mapped on the chalkboard the transformation 𝑧 → 𝑓′(𝑧). 

They noticed that this transformation did not rotate any circles, as 𝑓′(𝑧) = 2𝑧, so they 

decided that instead they should map 𝑓(𝑧) → 𝑓′(𝑧) to see what the derivative does to the 

function. Even when using GSP, Edward and Melody voiced concern about looking at 

the function 𝑧 → 𝑓(𝑧) because this mapping does not seem to involve the derivative 

function at all.  

 Melody and Edward verbalized the key observations that a small circle maps to a 

small circle unless it contains the origin, in which case the image will wrap around the 

origin. They additionally noted that 𝑓(𝑧) maps an input circle to an output curve about 

double the input circle’s size, and suggested finding the amount of rotation next, 
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suggesting they had good judgment about how to advance their geometric reasoning. 

Edward and Melody even characterized a circle of radius 1 as “gigantic” while they 

forgot they were zoomed in. Rather than dismiss the point, they took this experience as a 

learning opportunity to observe that in certain contexts, even a radius of 1 can be “huge”. 

 Throughout all the tasks, both groups continually conflated rotation and dilation 

of a single point with the rotation and dilation of a circle or 𝜖 −neighborhood around the 

point. As such, both groups predicted that 𝑓(𝑧) = 𝑧2 maps a circle around 1 + 𝑖 to a 

circle rotated 90° because 𝑓(𝑧) maps 1 + 𝑖 to a point with argument 90°. However, 

Edward and Melody began to make this distinction near the end of the interview 

sequence. At the end of the first task, Christine and Zane characterized 𝑓(𝑧) = 𝑧2 as 

rotating the entire plane twice. 

 Finally, both groups sometimes over-generalized their observations made with the 

aid of Geometer’s Sketchpad (GSP). In particular, both groups gave geometric 

explanations about how the image curve moved when the pre-image circle was dragged 

along either the real or imaginary axis that were only true under certain conditions. In 

particular, Melody and Edward said that as the input circle moves along an axis, the 

output curve should “unwrap itself,” which is only true while the circle is moved away 

from the origin. As such, when they moved the circle toward the origin, they saw that the 

circle wrapped itself more and decided their geometric reasoning was completely 

incorrect, rather than simply incomplete. Similarly, Christine and Zane claimed that the 

output curve should get sucked in as the input circle moved along the axis, which is only 

true if the input circle is moved toward the origin. 
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 Thus, investigating 𝑓(𝑧) = 𝑧2 could potentially lead to the following 

advancements in geometric reasoning related to the derivative of a complex-valued 

function. 

1. 𝑓(𝑧) = 𝑧2 maps circles around the origin to curves which twist on themselves. 

2. 𝑓(𝑧) = 𝑧2 maps circles which are not around the origin to curves which are not 

quite circles. 

3. 𝑓(𝑧) = 𝑧2 distorts large circles more than small circles. 

4. 𝑓(𝑧) = 𝑧2 distorts circles close to the origin more than circles away from the 

origin. 

5. 𝑓(𝑧) = 𝑧2 wraps the plane around itself twice. 

6. How 𝑓(𝑧) = 𝑧2 rotates and dilates circles are relevant characteristics of the 

mapping to observe. 

Task 2: Investigating 𝒇(𝒛) = 𝒆𝒛 

 While Christine and Zane successfully predicted how 𝑓(𝑧) = 𝑒𝑧 maps points and 

used GSP to verify their predictions, Edward and Melody just used GSP to answer the 

question directly. On the other hand, Zane and Christine used GSP directly to discover 

how 𝑓(𝑧) = 𝑒𝑧 maps the axes and various vectors, while Edward and Melody correctly 

predicted how this function mapped the axes and generalized to a correct description of 

how the function maps an arbitrary vector. Both groups discovered that 𝑓(𝑧) = 𝑒𝑧 =

𝑒𝑥𝑒𝑖𝑦 maps 𝑧 by dilating the associated vector by a factor of 𝑒𝑥 and rotating it 

counterclockwise by an angle equal to 𝑦 if 𝑧 = 𝑥 + 𝑖𝑦. Additionally, both groups 

discovered that 𝑓(𝑧) = 𝑒𝑧 maps circles to twisted output curves sometimes, and both 

assumed that the origin was the cause of the twist in the output, just as the origin was the 
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cause of the twist of some output curves in 𝑓(𝑧) = 𝑧2. GSP experimentation and 

observation appeared to be necessary for both groups to discover that the origin was not 

in fact the cause of such twists, and Christine and Zane actually credited their work with 

the aid of GSP with this discovery. Through this same investigation, both groups 

correctly reasoned that the output curve would have a twist in it when the input circle is 

large enough.  

 Even after this discovery, both groups felt the origin might still be the cause of the 

twists and reasoned geometrically that a small enough circle stayed far enough away 

from the origin to avoid being mapped in this way. Neither group verbalized that the 

origin was not the cause of the twist until they discovered that a twist would occur in the 

output if the input has radius 𝜋 or greater. At this point, both groups noted that the twist 

was not in fact dependent on the input circle’s location as they had originally assumed. 

Zane and Christine offered no explanation for why a radius of 𝜋 in the input circle causes 

the output to twist, though Melody and Edward correctly reasoned geometrically that 

𝑓(𝑧) = 𝑒𝑧 rotates circles by an amount equal to the 𝑦 −coordinate of the center of the 

input circle, and argued that two points on the same circle vertically separated by a 

distance of 2𝜋 should map to the same point. Only Edward and Melody successfully 

reasoned geometrically about how the function 𝑓(𝑧) = 𝑒𝑧 rotates circles. Before reaching 

the correct conclusion, however, they originally reasoned that 𝑓(𝑧) = 𝑒𝑧 rotates circles 

by an amount equal to the argument of the center of the input circle, just as 𝑓(𝑧) = 𝑧2 

rotates circles. With the aid of GSP, Edward and Melody determined that this rotation 

amount did not match their observations, and afterwards no longer claimed that the origin 

caused twists in the output of 𝑓(𝑧) = 𝑒𝑧.  
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 Melody and Edward characterized 𝑓(𝑧) = 𝑒𝑧 as wrapping the plane around itself, 

which is very similar to its description of how 𝑓(𝑧) = 𝑧2 transforms the plane. Zane and 

Christine did not offer an explicit description, saying that they did not feel they had a 

good description for 𝑓(𝑧) = 𝑧2 and that the equivalent question for 𝑓(𝑧) = 𝑒𝑧 felt even 

harder. Thus, at the end of Zane’s and Christine’s task, I had them construct the 

transformation 𝑓(𝑧) =
1

𝑧
, and they observed the output “flips” near the origin. Melody 

and Edward also constructed this function, though at a different time. At one point both 

groups shrank the input circle origin so small around the origin that the output curve 

became too large for GSP to render it as a smooth curve. As a result, both groups 

expressed interest in why the output curve had so many sharp corners. I told them there 

should not be corners and that it was just a limitation of the software. Unfortunately, after 

this discussion, both groups suspected that 𝑓(𝑧) mapping a spoke inside the input circle 

to a spoke “outside” the output circle was also a software limitation or bug, so I assured 

them that this particular mapping was correct. 

  Thus, investigating 𝑓(𝑧) = 𝑒𝑧 could potentially lead to the following 

advancements in geometric reasoning related to the derivative of a complex-valued 

function. 

1. 𝑓(𝑧) = 𝑒𝑧 maps a small circle to a circle-like image curve rotated by 𝐴𝑟𝑔(𝑦) 

with respect to the pre-image circle. 

2. 𝑓(𝑧) = 𝑒𝑧 maps a small circle to a circle-like image curve dilated by 𝑒𝑥 with 

respect to the pre-image circle. 

3. 𝑓(𝑧) = 𝑒𝑧 maps a circle to an image curve with a twist if the pre-image circle 

has radius ≥ 𝜋. 
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4. 𝑓(𝑧) = 𝑒𝑧 does not map a circle around the origin to a circle with a twist 

unless the pre-image circle’s radius is large enough. 

5. As with 𝑓(𝑧) = 𝑧2, how 𝑓(𝑧) = 𝑒𝑧 rotates and dilates circles is an important 

aspect of the function’s behavior 

 

 

Task 3: Investigating Linear Complex-Valued Functions  

and the Derivative of Complex-Valued Functions  

With and Without the Aid of Geometer’s Sketchpad 

 While Geometer’s Sketchpad (GSP) was temporarily unavailable, both groups 

stated they did not know how to characterize the geometric properties of the derivative of 

a complex-valued function. Zane and Christine stated that they knew how to find the 

derivative but did not know what to use it for, while near the end of this task, Melody and 

Edward claimed that the derivative was “just a mapping” that did not actually tell them 

anything about the function. Christine and Zane additionally mentioned that the only time 

they looked at graphs in class was when they were supposed to identify singularities, 

though they were able to distinguish between the graph of a function and the graph of the 

function’s derivative enough to ask me which of these graphs I wanted them to consider. 

 During this time, Christine and Zane also mentioned that they thought of the 

derivative as a rate of change and the slope of the tangent line, and stated they had 

difficulty reasoning about what a rate of change or slope of 3 + 2𝑖 means geometrically. 

Zane and Christine eventually recalled that their professor said something about rotations 

and dilations, but could not expand on this idea. As with other participants, they initially 

felt the function’s derivative described the rotation and dilation of the point 𝑧 itself. In 
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contrast, Melody and Edward recalled rotation and dilation at the beginning of this 

segment of Task 3 before discussing slopes of tangent lines or rates of change. Similar to 

Zane and Christine, they could not remember what they should rotate and dilate, but they 

did state that they knew the amount of rotation and dilation that occurred was dependent 

on the location of the point 𝑧. Similar to Edward and Melody, Zane and Christine did not 

consider 𝜖 −neighborhoods as rotating and dilating originally. Rather, they felt that the 

rotation and dilation referred either to a single point 𝑧 or how a function 𝑓(𝑧) transforms 

the entire plane. 

 While investigating the function behavior of 𝑓(𝑧) = (3 + 2𝑖)𝑧 without the aid of 

GSP, Christine and Zane added a “displacement” to their stretch and rotation. In 

particular, they stated that because the derivative 𝑓′(𝑧) = 3 + 2𝑖, a point 𝑧 should map to 

a point constructed by multiplying 𝑧 by 3, “rotating” a unit vector up to 90° because 

𝐴𝑟𝑔(𝑖) = 90° and doubling its magnitude, and adding these two vectors together to 

“displace” 𝑧 by the proper amount. That is, they geometrically described the vector 

arithmetic involved in calculating 3𝑧 + 2𝑖𝑧 = 𝑓(𝑧). Because this describes the mapping 

of a point and not of an 𝜖 −neighborhood, this reasoning does not actually involve the 

derivative 3 + 2𝑖. As such, Zane and Christine could not successfully generalize this 

reasoning to 𝑓(𝑧) = 𝑧2, even after I returned 𝐺𝑆𝑃 to them. They even stated they were 

certain of their geometric reasoning about the derivative of 𝑓(𝑧) = (3 + 2𝑖)𝑧 and were 

therefore surprised that the same logic did not appear to hold for 𝑓(𝑧) = 𝑧2. They 

constructed the linear function 𝑓(𝑧) = (3 + 2𝑖)𝑧 with the aid of GSP and noted that the 

amount this function rotates and dilates an input circle does not change at all regardless 

of its location. Similar to Christine and Zane, Melody and Edward also noticed at this 
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point in the task that 𝑓(𝑧) = (3 + 2𝑖)𝑧 rotates the input circles by the same amount 

regardless of location and furthermore that the function dilates the circles by a factor of 

|𝑓′(𝑧)|. 

 During the portion of this task where GSP was unavailable, Edward’s and 

Melody’s experiences differed significantly from that of Zane’s and Christine’s. While 

Zane and Christine asked me which function’s graph I wanted them to consider, Melody 

and Edward became focused on the graph of 𝑧 → 𝑓′(𝑧), the graph of the derivative 

function as discussed in the Task 1 summary above, and correctly noted that this function 

just dilates every circle by a factor of 2. As stated before, they decided this lack of 

rotation was incorrect and graphed 𝑓(𝑧) → 𝑓′(𝑧) instead. Edward graphed 𝑧 → 𝑓(𝑧) as I 

intended, but Melody corrected him and changed his transformation to reflect the 

mapping 𝑓(𝑧) → 𝑓′(𝑧) accurately. Melody and Edward even verbalized at one point that 

they were drawing a diagram of a “transformation from 𝑧2 to 2𝑧.” 

 Edward and Melody seemed to use algebraic reasoning and inscriptions fairly 

proficiently to determine how to map 𝑓(𝑧) → 𝑓′(𝑧) on a chalkboard, and converted to 

polar form while trying to determine rotations, suggesting they had a better idea of which 

form to use for certain complex analysis tasks than is typical. Melody and Edward even 

seemed aware of the difficulty of generalizing from real variable calculus, uttering 

phrases such as “maybe I’m still thinking too much real.” They correctly determined that 

𝑧2 → 2𝑧 transforms a point 𝑧2 in the 𝑧2 plane by rotating it clockwise by 𝐴𝑟𝑔(𝑧) and 

dilating it by 2.  

 During this discussion, before reaching the correct conclusion, they repeated a 

common error in this interview sequence by claiming that the rotation is given by the 
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imaginary part of 𝑧. Melody was adamant that this was correct, and was not deterred until 

Edward provided a concrete counterexample by pointing out 1 + 𝑖 has real part 𝑖 but is 

only rotated 45°, not 90°. Furthermore, when I asked Melody and Edward why the 

rotation was measured clockwise, not counterclockwise as usual, they resolved this 

conflict incorrectly by stating that actually they were measuring counterclockwise all 

along, at which point they no longer recognized the same contradiction in their reasoning 

I had asked them to explain a moment before. Still without GSP, Edward and Melody 

stated that for a constant derivative, the mapping 𝑓(𝑧) → 𝑓′(𝑧) would send everything to 

a single point, which is certainly true. They correctly determined that therefore, this 

function rotates every point 𝑓(𝑧) by 𝐴𝑟𝑔(𝑧) clockwise, and could not explain why a 

function with a constant derivative rotated each point by a non-constant amount. 

 Returning Geometer’s Sketchpad (GSP) to the participants allowed Melody and 

Edward to make some advancements in their reasoning as it essentially forced them to 

concentrate their reasoning on 𝑧 → 𝑓(𝑧) as I intended, and not on the derivative function 

𝑧 → 𝑓′(𝑧) or the stranger mapping 𝑓(𝑧) → 𝑓′(𝑧). Even so, one participant felt that she 

was looking at the wrong function with the aid of GSP, as 𝑧 → 𝑓(𝑧) does not appear to 

involve the derivative function 𝑓′(𝑧). Nonetheless, the other participant correctly noted 

that a constant derivative describes how the function 𝑧 → 𝑓(𝑧) rotates and dilates the 

input circle, citing the fact that for this function 𝑓(𝑧) = (3 + 2𝑖)𝑧, every circle is 

amplified and twisted by the same amount.  

 At the end of this task, Melody and Edward noted correctly that 𝑓(𝑧) = (3 + 2𝑖)𝑧 

dilates a circle by a factor of √13 and rotates it by an angle of 𝐴𝑟𝑔(3 + 2𝑖). The 

participants’ utterances did not agree on which object rotates and dilates, as one 
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participant talked about rotating and dilating a point, while the other suggested rotating 

and dilating “that object thingamajiggy,” by which he may have meant the input circle. 

 Thus, investigating linear functions with and without GSP could potentially lead 

to the following advancements in geometric reasoning related to the derivative of a 

complex-valued function. 

1. The argument and magnitude of the derivative describes how small circles 

rotate under the function 𝑧 → 𝑓(𝑧) as opposed to the functions 𝑧 → 𝑓′(𝑧) and 

𝑓(𝑧) → 𝑓′(𝑧) 

2. The argument of the derivative, not the imaginary part, describes how the 

function rotates and dilates the input circle 

3. A linear complex-valued function 𝑓(𝑧) rotates and dilates every circle by the 

same amount regardless of location 

4. A linear complex-valued function 𝑓(𝑧) rotates every circle by 𝐴𝑟𝑔(𝑓′(𝑧)) 

regardless of location. 

5. A linear complex-valued function 𝑓(𝑧) dilates every circle by a factor of 

|𝑓′(𝑧)| regardless of location 

6. The derivative of a linear complex-valued 𝑓(𝑧) describes the function rotates 

and dilates circles, not points. 

Task 4: Investigating the Derivative of Non-Linear  

Complex-Valued Functions 𝒇(𝒛) = 𝒛𝟐, 

 𝒇(𝒛) = 𝒆𝒛, and 𝒇(𝒛) = 𝟏/𝒛 

 Overall, Melody and Edward were much more successful than Christine and Zane 

in generalizing their geometric reasoning about the derivative of linear complex-valued 

functions to geometric reasoning about the derivative of non-linear complex-valued 
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functions. During this last task, Christine and Zane noted that the function 𝑓(𝑧) = 𝑧2 

transforms two different circles each centered around different points with the same 

derivative value in similar ways. However, they became focused on determining which 

point in the input plane is mapped to the “center” of the output curve, and appeared to 

make little progress answering this question.  

 Near the end of Task 4, I informed Christine and Zane that 𝑓(𝑧) = 𝑧2 did not 

rotate or dilate a small circle around a point with derivative 𝑓′(𝑧) = 1. After receiving 

this new information, they correctly reasoned geometrically about the derivative values 

−1 and 2𝑖. They noted at a point of derivative 2𝑖, their circle would rotate by 90° and 

stretch by a factor of 2, and that at a point of derivative −1, their circle would either 

invert on itself or rotate 180°. Zane and Christine were not sure which transformation 

would take effect, just as earlier on they had difficulty distinguishing rotations from 

reflections. Thus, they could not determine for themselves how the function rotates and 

dilates small circles, but once I explained a single derivative value to them, they correctly 

generalized this reasoning to different derivative values. 

 Melody and Edward originally tried to geometrically reason about the derivative 

values at all points 𝑧 in the input plane simultaneously. Because 𝑓′(𝑧) = 2𝑧, they 

claimed that the rotation amount should be dependent on 𝑧 and the dilation factor is 2. 

Note that this is partially incorrect, as a small circle centered around 𝑧 should dilate by a 

factor of |2𝑧|, which is only equal to 2 if 𝑧 is on the unit circle. Initially, Edward and 

Melody verbalized that they were not sure which thing they should be rotating or dilating. 

However, they did seem to have some good geometric reasoning about how to use GSP. 

In particular, they suggested that they should move their input circle to a point where the 
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output does not “wrap around.” During this experimentation, they observed that the 

function rotates and dilates the circle itself, when they saw that if the center of the input 

circle had an argument of 45°, the function mapped the circle to an output curve that was 

rotated 45° with respect to their input circle. Furthermore, Melody and Edward noted that 

if this observation is true in general, then the output circle should be rotated by the same 

amount with respect to the input circle if their input circle is located anywhere on the 

same radial line the origin. Edward and Melody moved their input circle along a single 

radial line from the origin and verified that the amount of rotation of the output circle 

indeed did not change. 

 During this same experimentation and observation with the aid of GSP, Melody 

again conflated how 𝑧 maps to 𝑧2 with how a circle around 𝑧 maps to a curve around 𝑧2. 

Edward successfully distinguished between the way the point is mapped from the way the 

circle around the point is mapped, noting that the point is mapped in accordance with 

𝑓(𝑧) = 𝑧2, while the way the circle rotates and dilates can be extracted from the function 

𝑓′(𝑧) = 2𝑧. Perhaps due to this development of geometric reasoning, Melody and 

Edward further reasoned that 𝑓(𝑧) = 𝑧2 distorts large circles more than small circles 

because large circles contain very different points 𝑧 within the same large circle. As such, 

the function 𝑓(𝑧) = 𝑧2 rotates and dilates each small part of the large circle in its own 

unique way. Over large distances, this difference in dilation and rotation is noticeable. 

Thus, in addition to correctly reasoning geometrically about the derivative of linear 

complex-valued functions, the ability to distinguish a point 𝑧 from an 𝜖 −neighborhood 

around the same point 𝑧 may be essential to developing geometric reasoning about the 

derivative of a complex-valued function. In particular, it seems to be important to have 
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the ability both to reason about how a complex-valued function 𝑓(𝑧) maps both a point 𝑧 

and an 𝜖 −neighborhood centered on 𝑧. 

 Once Melody and Edward felt they could reason about the points 𝑧 in 𝑓(𝑧) = 𝑧2 

that did not cause a twist in the output, they attempted to extend their reasoning to 𝑧 = 0. 

They did not check the derivative value at this point. Instead, they reasoned that 𝑓(𝑧) =

𝑧2 should transform a circle around 𝑧 = 0 by dilating it by a factor of 2, perhaps 

repeating their previous error of claiming that because 𝑓′(𝑧) = 2𝑧, the function 𝑓(𝑧) 

should dilate all circles by a factor of 2. They decided this reasoning was correct after 

observing with the aid of GSP that the output circle was twisted twice around the origin, 

so it had twice the circumference, and that therefore the output was indeed dilated by a 

factor of 2 with respect to the input. 

 At the end of this task, Edward and Melody verified that their reasoning 

developed for 𝑓(𝑧) = 𝑧2 held for 𝑓(𝑧) = 𝑒𝑧 in that the derivative value 𝑓′(𝑧) = 𝑒𝑧 at a 

point 𝑧 seemed to predict how the function rotates and dilates a circle around that point 𝑧, 

and that the amount of rotation was given by 𝑦 and the amount of dilation was given by 

𝑒𝑥. Edward said he made progress in his geometric reasoning about how this function 

transforms circles by “trying to picture really small,” but “more than zero.” Thus, without 

directly referring to 𝜖 −neighborhoods, he seemed to make good progress toward 

reasoning geometrically about them, bringing to mind infinitesimals from the historical 

development of calculus. 

 Thus, generalizing geometric reasoning about the derivative of a linear complex-

valued function to geometric reasoning about the derivative of a non-linear complex-
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valued function could potentially lead to the following advancements in geometric 

reasoning related to the derivative of a complex-valued function. 

1. A non-linear function 𝑓(𝑧) distorts large circles more than small circles 

because there are many different 𝜖 −neighborhoods within a large circle that 

all rotate and dilate by different amounts.  

2. A non-linear function 𝑓(𝑧) rotates a small circle counterclockwise by an 

amount equal to 𝐴𝑟𝑔(𝑓′(𝑧)) 

3. A non-linear function 𝑓(𝑧) dilates a small circle by a factor of |𝑓′(𝑧)| 

4. The derivative 𝑓′(𝑧) does not describe how large circles rotate and dilate. 

Rather it describes how “small pieces” of this large circle rotate and dilate 

5. An 𝜖 −neighborhood is in some sense a circle which has a radius that is 

“really small,” but “more than zero.” 

Task 5: Investigating an Unknown Rational  

Function 𝒉(𝒛) =
𝒇(𝒛)

𝒈(𝒛)
 

 For Task 5, I had previously constructed the transformation 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
 with 

the aid of Geometer’s Sketchpad (GSP) and asked Edward and Melody to determine 

where 𝑓(𝑧) is differentiable, and then to reason geometrically about what the derivative 

value should be at a point of their choosing. There was not enough time for Zane and 

Christine to perform this task, but I showed them the function nonetheless. Christine and 

Zane simply remarked that they were glad I did not ask them to do this task, as they felt 

they had their hands full with all the functions I had already introduced to them. Melody 

and Edward, however, vocalized the opinion that this exercise really helped them reason 

geometrically about why the derivative of a complex-valued function is a local property. 
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For example, Edward uttered, “Even though the circle’s gigantic here, that we can keep 

making this one so small that this will eventually be a small circle.” He further recalled a 

class conversation with his complex analysis professor where he did not realize his circle 

was too large and that now he could reason that he needed to “make that circle darn 

small.” 

 At the beginning of this exercise, Melody and Edward remarked that circles 

around non-differentiable points should map to outputs that “look weird,” and further 

characterized “differentiable” to mean that a small circle around that point maps to 

another small circle. They matched this geometric reasoning with the aid of GSP by 

making their input circle small while looking for strange-looking outputs. Using this 

method, they correctly identified the two non-differentiable points and additionally 

noticed a point that mapped to an output that wrapped around itself in the manner of a 

circle around the origin transformed under 𝑓(𝑧) = 𝑧2. They did not yet identify this third 

odd point as a place where the value of the derivative is 0. 

 When I instructed Edward and Melody to find an actual derivative value, they 

again made their circle small and started discussing rotation and dilation amounts at 

various points, another good geometric strategy. As they seemed to be trying to 

determine the derivative function, I informed them they could focus on a single value. 

They correctly reasoned geometrically once again and uttered that all they had to do was 

figure out for that single point, how much a small circle around the point rotates and how 

much it expands. Using this method, they correctly estimated the magnitude and 

argument of the derivative value. 
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 Melody and Edward had more difficulty determining the zeroes of the function 

than the derivative value, though with some leading questions I helped them determine 

that they needed to find the points 𝑧 where 𝑓(𝑧) = 0. At this point they related the twists 

in this function with the twists in 𝑓(𝑧) = 𝑧2, and decided that a derivative value of zero 

means the output twists. While this is not always true, it was true in the few examples 

with which they experimented with the aid of GSP, so the generalization seemed 

reasonable.  

 However, this generalization does suggest that if GSP is to be used as a teaching 

tool, the teacher must guard against the dangers of overgeneralization from a small 

number of examples. Requiring explanations for the geometric reasoning, rather than just 

allowing my participants to look for patterns in observations, seemed to protect my 

participants somewhat from overgeneralizing too much, so this may also be a reasonable 

strategy in the classroom. Thus, the ability to reason geometrically about why certain 

behaviors occur may be essential in preventing students from overgeneralizing patterns 

they merely observed occuring. Regardless, by looking for places where the output 

twists, Melody and Edward correctly identified where 𝑓(𝑧) = 0, and thereby completed 

their construction of the function 𝑓(𝑧) =
(2𝑧+1)

(1−𝑧)(𝑧+𝑖)
. 

 Finally, Edward and Melody verified their geometric reasoning about the 

derivative of a complex-valued function up to this point for 𝑓(𝑧) =
1

𝑧
. They noted that a 

circle around 𝑧 = 0 “blows up,” and thus 𝑓(𝑧) is not differentiable at 𝑧 = 0. They also 

correctly pointed out that because 𝑓′(𝑧) = −
1

𝑧2 is never zero, the output curve should 

never twist. 
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  Thus, constructing a rational function from experimentation and observation with 

the aid of GSP could potentially lead to the following advancements in geometric 

reasoning related to the derivative of a complex-valued function: 

1. 𝑓(𝑧) maps circles around non-differentiable points in a strange way. 

2. 𝑓(𝑧) maps small circles around differentiable points to other small circles. 

3. If 𝑓′(𝑧) = 0 at some point 𝑧, a circle around that point may map to an output 

that self-intersects. 

4. The magnitude and argument of 𝑓′(𝑧) at a point 𝑧 does not give the dilation 

and rotation amounts, respectively, of a large circle around a point 𝑧. 

5. The derivative of a complex-valued function 𝑓(𝑧) at a point 𝑧 can be used to 

construct a local linearization of the function 𝑓(𝑧) near that same point 𝑧. 

Conclusion 

 In this chapter, I discussed results of a four-day interview sequence with two sets 

of participants. Each interview was approximately 2 hours long, and both sets of 

participants progressed through the same set of five tasks in roughly the same order. 

However, the second group spent a great deal more time on the final task, while the first 

group casually experimented with it and observed results with the aid of GSP briefly at 

the end of their final interview. 

 In Chapter V, I explore implications of this research for teaching and 

contributions to existing research. Finally, I discuss limitations of this study and suggest 

possible directions for future research. 



 
 

 

 

 

CHAPTER V 

 

DISCUSSION 

 

The purpose of this study was to contribute to the literature on algebraic and 

geometric reasoning about complex analysis, specifically as both kinds of reasoning 

relate to inscriptions and gestures. In particular, this study explored students’ reasoning 

with inscriptions created with a dynamic geometric environment (DGE) in the field of 

complex numbers. More precisely, it aimed to address the research questions;  

Q1 What is the nature of students’ reasoning about the derivative of complex-

valued functions?  

 

Q2 What is the nature of the development of students’ reasoning about the 

derivative of complex-valued functions while utilizing Geometer’s 

Sketchpad (GSP)? 

 

In chapter IV, I reviewed findings from a four-day interview sequence for two 

groups of students. To summarize briefly, I found that Melody and Edward generally 

seemed to develop a more complete reasoning about Needham’s (1997) amplitwist 

characterization of the derivative than Zane and Christine. This may have been due to 

Edward’s and Melody’s strong geometric focus in their reasoning, as this focus appeared 

to create more opportunities to develop reasoning about the derivative than Christine’s 

and Zane’s predominantly algebraic reasoning afforded.  

In this chapter, I interpret my findings from Chapter IV in light of the research 

questions and highlight the ways in which my chosen theoretical perspective of embodied 

cognition guided these interpretations. After interpreting these findings, I discuss the 
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implications of these findings for teaching and how this study contributes to research in 

mathematical education. Finally, I conclude with limitations of the study and directions 

for future research.  

Overall, I answer the two research questions listed above in the following ways. 

To answer the first research question, I argue that my participants reasoned about the 

derivative of a complex-valued function via embodied cognition in three distinct ways. In 

particular, they grounded their algebraic and geometric inscriptions via gesture and 

speech (see leftmost cycle in Figure 45), integrated their algebraic and geometric 

reasoning methods via these inscriptions (see center cycle in Figure 45), and further 

grounded these reasoning methods in both the real and virtual environments (see 

rightmost cycle in Figure 45). To answer the second research question, I detail three 

developments in reasoning which arose during their work with GSP, and seemed critical 

to my participants’ reasoning about the derivative of a complex-valued function. 

 

Figure 45. Integration through Embodied Cognition 

Students’ Development of Reasoning via Embodied Cognition 

 Throughout this project and the progression of the tasks, the theoretical 

perspective of embodied cognition was leveraged by participants on three fronts (see the 

three cycles in Figure 45), and capitalized on by the usage of GSP. These three types of 

embodied cognition address the first research question. Thus, in this section, I first 

elaborate on the three ways in which embodied cognition occurred.  
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 Furthermore, three particular developments in geometric reasoning appeared 

essential for my participants’ developing reasoning about the derivative of a complex-

valued function as an amplitwist. These three developments in reasoning address the 

second research question. Thus, in this section, I additionally elaborate on these three 

critical developments in my participants’ geometric reasoning. I continue by offering 

support for the conclusion that these three developments in reasoning are indeed an 

essential part of my participants’ reasoning about the derivative of a complex-valued 

function as an amplitwist.  

 Finally, my participants displayed the three types of embodied cognition (see 

Figure 45) throughout these three developments in reasoning. Therefore I additionally 

offer support throughout this section for the occurrence of at least one of these three 

kinds of embodied cognition in each of the three critical advancements in reasoning. I 

conclude this section by discussing each participant group’s progress toward reasoning 

geometrically about the derivative of a complex-valued function as an amplitwist. 

Three Types of Embodied Cognition  

and Three Essential Advancements  

in Reasoning 

 As a result of my dissertation study, I found that my participants’ reasoning about 

the derivative of complex-valued functions leveraged embodied cognition in three 

distinct ways (see Figure 45). These three ways address the first research question. 

Furthermore, each of these distinct ways supported three critical developments towards 

reasoning geometrically about the derivative as an amplitwist. These three developments 

in geometric reasoning also help in addressing the second research question. Overall, 

these three types of embodied reasoning (see Figure 45) provide an explanation for 

participants’ usage of GSP that seemed not only to help the development of the 
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participants’ reasoning but also may have strengthened the participants’ abilities to 

generalize across distinct contexts.  

 The first type of embodied cognition displayed by participants was their 

grounding of algebraic and geometric inscriptions via gesture and speech (see leftmost 

cycle in Figure 45). The second type of embodied cognition occurred when participants 

integrated their algebraic and geometric reasoning through a combination of algebraic 

and geometric inscriptions (center cycle in Figure 45). Finally, students demonstrated the 

third type of embodied cognition by grounding their algebraic and geometric reasoning 

methods through a combination of the physical and virtual environments (rightmost cycle 

in Figure 45). These three types of embodied cognition describe the nature of students’ 

reasoning about the derivative of complex-valued functions, and thus address the first 

research question. Furthermore, they occurred throughout the interview tasks. Therefore, 

I offer support for these types of embodied cognition while discussing my students’ 

developments in geometric reasoning. That is, I provide support for both research 

questions simultaneously throughout the following section.  

 My participants’ development of each type of embodied cognition appeared to 

occur as follows. First, algebraic and geometric inscriptions were grounded via the 

integrated system of gesture and speech (Goldin-Meadow, 2003). Second, the well-

documented gap between algebraic and geometric reasoning (Danenhower, 2006; 

Dubinsky & Harel, 1992; Panaoura et al., 2006; Sfard, 1991, 1992, 1995; Sfard & 

Linchevsky, 1994) was bridged via these integrated algebraic and geometric inscriptions 

(Soto-Johnson & Troup, 2014). Finally, this algebraic and geometric reasoning was 

grounded in both the physical and virtual environments as both kinds of reasoning take 



245 
 

 
 

place over both kinds of environment. This cross-environment reasoning may also 

partially explain why my participants used their experience with Geometer’s Sketchpad 

(GSP) to make sense of related past class discussions. That is, grounding reasoning 

across a physical and virtual environment simultaneously may have encouraged them to 

integrate reasoning from the third environment of their complex analysis classroom as 

well. Thus, usage of GSP or some similar dynamic geometric environment (DGE) may 

strengthen students’ abilities to generalize across distinct contexts, which helps address 

another long-standing problem in educational mathematics research (Danenhower, 2006; 

Dubinsky & Harel, 1992; Panaoura et al., 2006; Sfard, 1991, 1992, 1995; Sfard & 

Linchevsky, 1994). That is, utilizing a DGE seemed to help my participants ground their 

reasoning in the physical environment via gesture and speech, the virtual environment via 

algebraic and geometric inscriptions, and their past mathematical experiences (e.g., 

classroom discussions) via their experiences with the physical and virtual environments 

in tandem. 

  The second research question is addressed by the three critical developments in 

geometric reasoning my participants seemed to require in order to reason about the 

derivative of a complex-valued function as an amplitwist. These developments address 

the second research question due to the fact they were all supported by GSP as well as at 

least one type of embodied cognition. These three critical developments are as follows. 

First, my participants recognized a need for a geometric characterization of linear 

complex-valued functions, which was supported by grounding algebraic and geometric 

inscriptions via gesture and speech. Many of these inscriptions were displayed by GSP. 

This development allowed participants to begin extending their reasoning about real-
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valued functions to the complex-valued case. Before investigating linear complex-valued 

functions, both groups had difficulty moving beyond reasoning geometrically about how 

points rotate and dilate.  

 Second, my participants reasoned geometrically that a linear complex-valued 

function rotates and dilates every circle by the same constant amounts 𝐴𝑟𝑔(𝑓′(𝑧)) and 

|𝑓′(𝑧)|, respectively. They accomplished this while integrating their algebraic and 

geometric reasoning through a combination of algebraic and geometric inscriptions. 

Again, a large portion of these inscriptions wasfor created with the aid of GSP. Melody 

and Edward developed this reasoning with the aid of GSP, while Zane and Christine 

continued to focus on how points rotate and dilate even after correctly observing how 

circles rotate and dilate. Melody’s and Edward’s eventual focus on how circles rather 

than points rotate and dilate may be a main reason why Edward and Melody seemed to 

develop relatively complete reasoning about Needham’s (1997) amplitwist, while 

Christine and Zane did not develop their geometric reasoning quite as far.  

 Finally, the participants observed that for an appropriate definition of “small,” 

small circles map to small circle-like objects under any complex-valued function. This 

observation seemed to be largely supported by my participants’ developing ability to 

ground their reasoning in both the physical and virtual environments. Edward and 

Melody developed this reasoning most completely, while Zane and Christine had no 

discussion about what “small” means or even that a “small enough” circle was necessary, 

though they did at one point observe that circles seem to map to circles. With this final 

advancement in geometric reasoning, Melody and Edward appeared able to reason 

geometrically about the derivative as a local property. 
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 By the end of these three critical developments in reasoning, Melody and Edward 

were able to verbalize the derivative of a complex-valued function as an amplitwist fairly 

completely, as described in Chapter IV. As Christine and Zane did not develop reasoning 

about the geometry of constant derivatives completely, or reasoning about smallness at 

all, they simply verbalized the derivative as a rotation and a dilation of circles, and did 

not reason about the derivative as a local property.  

 In the following subsections, I provide examples from both groups’ developments 

in reasoning relative to the three critical developments listed above, as well as offer 

support for each of the three types of embodied cognition displayed in Figure 45. I 

additionally discuss my participants’ developments in reasoning during the first two tasks 

of my interview sequence for the sake of completeness. I included these two tasks in my 

interview sequence to help my students familiarize themselves with Geometer’s 

Sketchpad (GSP) and with the geometric behavior of complex-valued functions in 

general. As such, my participants’ work with these first two tasks may have contributed 

to my participants’ realization that they first needed to develop geometric reasoning about 

linear complex-valued functions. Furthermore, within the context of embodied cognition, 

these initial tasks afforded my participants the opportunity to discuss how to create 

functions given an algebraic formula and access to a computer program that aided them 

in investigating the geometry. That is, my participants had the tools required to 

communicate with each other via gesture and speech and create both algebraic and 

geometric inscriptions. Thus, in the creation of these first two functions 𝑓(𝑧) = 𝑧2 and 

𝑓(𝑧) = 𝑒𝑧, my participants may have begun integrating their algebraic and geometric 

inscriptions with the aid of GSP.  
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 Given that my participants’ development of their reasoning in these first two tasks 

may have led directly to their realization that they needed to develop geometric reasoning 

about a linear complex-valued function, I first discuss students’ developments in 

reasoning before they investigated linear complex-valued functions. I continue by 

discussing my students’ progress toward the three critical developments in reasoning 

discussed above, and conclude this section by summarizing my participants’ progress 

toward developing reasoning about the derivative of a complex-valued function as an 

amplitwist.  

 Developing Reasoning Prior to Considering Linear Complex-Valued 

Functions. While both groups appeared to make beneficial developments in reasoning 

prior to investigating linear complex-valued functions, neither group could reason about 

the way circles rotate and dilate under 𝒇(𝒛) = 𝒛𝟐 or 𝒇(𝒛) = 𝒆𝒛 before investigating the 

derivative of a linear complex-valued function. Additionally, although both groups 

recalled that the derivative was related to “rotation” and “dilation,” neither group seemed 

able to reason about the amount a circle rotates and dilates given the derivative value 

until after investigating the derivative of a linear complex-valued function. After 

investigating the derivative of a linear complex-valued function, these difficulties 

appeared to lessen in both groups.  

 Within the context of embodied cognition, this may have occurred because 

participants had possibly not yet sufficiently integrated their algebraic and geometric 

reasoning to connect the algebraic definition of the derivative with which they were 

familiar to the associated geometric behavior. That is, while they seemed aware that the 

derivative 𝑓′(𝑧) = lim𝑧→𝑧0

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
, they could not yet reason that the derivative was 
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related to the geometry of small circles under the function 𝑓. If their algebraic and 

geometric reasoning had truly been integrated completely, they potentially could have 

reasoned that in taking the limit in the derivative definition, they would necessarily have 

to restrict their attention to a small circle around 𝑧0. Thus, it is likely that participants 

either did not reason algebraically about the limit definition of the derivative at all at this 

early stage, or they had not yet integrated their algebraic and geometric reasoning 

completely enough to connect the algebraic definition with the expected geometric 

outcome. As discussed later, this integration appeared to develop while my participants 

investigated a linear complex-valued function with the aid of GSP. 

 During these initial stages of the interview, my participants reasoned about the 

functions 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. During this time, Zane and Christine repeatedly 

demonstrated an apparent lack of integration between their algebraic and geometric 

reasoning. For example, they told me directly they preferred algebra to geometry. In 

accordance with this self-observation, they consistently relied upon algebra to determine 

how a complex-valued function maps points, vectors, circles, and line segments. They 

never converted the Cartesian form to the polar form of complex numbers when 

determining rotation. Rather, they plotted the Cartesian point and estimated the angle 

from the real axis based on its location in the plane.  

 Therefore, Zane and Christine exhibited behavior reflective of Danenhower’s 

(2006) observation that students did not exhibit good judgment when deciding which 

representation of complex numbers to utilize. This algebraic focus may have thus limited 

Zane’s and Christine’s opportunities to develop their geometric reasoning about the 

derivative of a complex-valued function, particularly at this early stage. They attributed 
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this algebraic focus to their complex analysis class, wherein they discussed how to find 

the derivative algebraically, how to test analyticity, and how to find non-differentiable 

points.  

 Zane and Christine further stated that the only time they looked at graphs in class 

was to identify singularities. This claim is not true, as documented in the classroom 

observations detailed in Chapter III. I attended a class where their instructor used a graph 

to reason geometrically about how a complex-valued function rotates and dilates a small 

circle with respect to the derivative of that function. However, it seems Zane and 

Christine did not recall this discussion explicitly and thus could not reproduce this 

geometric reasoning from memory, though they did state they vaguely recollected a class 

discussion about rotation and dilation. This memory was so vague that they could not 

even initially recall these two transformations explicitly, first considering stretches, 

reflections, and translations instead.  

 Despite this apparent lack of integration, Zane and Christine did seem proficient 

in the usage of algebra to avoid geometric reasoning. For example, Christine and Zane 

utilized algebra to explain to me and to each other various geometric aspects they 

discovered with the aid of Geometer’s Sketchpad (GSP), such as using GSP to explain 

why 𝑓(𝑧) = 𝑒𝑧 maps the imaginary axis to the unit circle. However, while they seemed 

generally able to use algebra to explain and predict basic function behavior such as how 

points and vectors are mapped, Christine and Zane seemed less skilled in utilizing algebra 

to explain or predict geometric behavior related to the derivative of a complex-valued 

function.  
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 In contrast, from the beginning of the interview sequence, Melody and Edward 

demonstrated proficiency with the algebraic forms in a way Christine and Zane never did. 

In particular, Edward and Melody converted a complex number from Cartesian form to 

polar form specifically to consider rotation. Given that polar form highlights how a 

function rotates and dilates a vector from the origin, this conversion offers evidence that 

Edward and Melody possessed good judgment about when to use alternative 

representations of complex numbers. This ability likely helped Melody and Edward 

integrate their algebraic and geometric reasoning more readily than Zane and Christine. 

This particular episode additionally provides a direct contrast to Danenhower (2006) 

research, which suggested that students could not purposefully decide when to convert 

between such forms as an element of good strategic mathematical reasoning. Thus, my 

study produced mixed results regarding Danenhower’s finding that students exhibited 

poor judgment about which representation of a complex number to utilize for a given 

task. The main difference between the groups in this regard appeared to be that Zane and 

Christine preferred algebraic reasoning, while Melody and Edward favored geometric 

reasoning. 

 Melody’s and Edward’s predilection toward geometric reasoning may have 

informed their choices about which form of a complex number to utilize. For example, 

when Melody and Edward attempted to determine how much a circle rotated from 

𝑧 → 𝑧2, Edward noted specifically that the polar notation 𝑧 = 𝑅𝑒𝑖𝜃 includes information 

about the angle a vector from the origin would have to be rotated from the real axis to 

point in the same direction as the vector associated with 𝑧. This is not to say that Melody 

and Edward always made such strategic choices. For example, Edward and Melody did 
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not exhibit good judgment about which transformation to investigate while developing 

geometric reasoning about the derivative by attempting to construct the transformation 

𝑧 → (𝑧2)2 rather than the transformation 𝑧 → 𝑧2. As discussed below, their reasoning for 

constructing this transformation appeared to fit under Danehower’s (2006) classification 

of Thinking Real, Doing Complex.  

 Thus, while Melody and Edward may have integrated their algebraic and 

geometric reasoning more than Zane and Christine and Zane at this stage, they still 

exhibited some incompleteness in this integration. Note also that graphing 𝑧 → (𝑧2)2 for 

the transformation 𝑓(𝑧) = 𝑧2 also suggests an incomplete integration between their 

algebraic and geometric inscriptions. Therefore, in these initial two tasks, both sets of 

participants appeared to lack some connection between algebraic and geometric 

inscriptions. Furthermore, through discussion via gesture and speech during these first 

two tasks, they began to integrate the provided algebraic inscriptions with the geometric 

inscriptions they constructed with the aid of GSP. Furthermore, as discussed below, both 

groups appeared to generalize their geometric reasoning about complex numbers 

incorrectly from their geometric reasoning about real numbers.  

 Given how much teaching in complex analysis courses harkens back to the 

behavior of real numbers, it should not be surprising that both groups experienced 

significant difficulties related to real number behavior over the course of their GSP-

driven investigations, especially before investigating a linear complex-valued function. In 

particular, they demonstrated Danenhower’s (2006) theme of Thinking Real, Doing 

Complex on multiple occasions and contexts. For example, upon seeing instructions to 

construct the transformation 𝑧 → 𝑧2 with the aid of GSP, both groups constructed the 
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function 𝑓(𝑧) = (𝑧2)2, albeit in different ways. Zane and Christine calculated (𝑥 + 𝑖𝑦)4 

algebraically before realizing that they only had to calculate (𝑥 + 𝑖𝑦)2. Melody and 

Edward transformed a circle twice with the constructed transformation 𝑧 → 𝑧2.  

 It is possible that this error is simply a case of misunderstood notation in the 

algebraic expression 𝑧 → 𝑧2, and the fact that both groups committed the same error may 

have been caused by the presentation of this expression. It is alternatively possible that 

this error resulted from each group trying to graph the complex-valued transformation 

𝑧 → 𝑧2 in the same way that they would graph a similar real transformation 𝑥 → 𝑥2, and 

something was lost in translation from the field of real numbers to the field of complex 

numbers. 

 In the real case, only one graph would be required, with two axes: the input 𝑥 

along the horizontal axis and the output 𝑥2 along the vertical axis. Both groups knew that 

a complex-valued transformation 𝑧 → 𝑧2 requires two planes to graph, as 𝑧 is a two-

dimensional value itself. However, I believe they may have tried to duplicate the real-

valued way of reasoning and reasoned about plotting 𝑧 as input in one of the planes, and 

𝑧2 as output on the same plane. This reasoning would have left the second plane empty, 

and so they may have considered the function 𝑓(𝑧) = 𝑧2 and reasoned that they should 

transform the output 𝑧2 on the first plane to another output 𝑓(𝑧2) = (𝑧2)2 to graph on the 

second plane.  

 Thus, this strange error could even have resulted from a combination of 

Danenhower’s (2006) Thinking Real, Doing Complex and a failure to realize that 

𝑓(𝑧) = 𝑧2 and 𝑧 → 𝑧2 are equivalent expressions. Regardless of the true reason this error 

occurred, Melody and Edward exhibited similar reasoning later on in another 
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circumstance. In particular, they argued about what to include on their two planes, further 

suggesting that they are not entirely sure how to graph a complex-valued function. It is 

therefore likely that they did in fact draw on their experience reasoning about real-valued 

functions to answer this unresolved question.  

 As one final possibility, perhaps because of Danenhower’s (2006) Thinking Real, 

Doing Complex, Edward and Melody plotted both the input 𝑧 and the corresponding 

output 𝑧2 on the same plane, and after deciding 𝑓(𝑧) = (𝑧2)2 was incorrect, they plotted 

the output of the derivative function 2𝑧 on the second plane. This setup is even more like 

the case of relating a real-valued function to its real-valued derivative, where a calculus 

class might consider the graph of a function on a single plane, and graph next to it the 

derivative function on a second plane. Thus, in the context of embodied cognition, this 

method of graphing may have been motivated by Edward’s and Melody’s previously 

established embodied reasoning about real numbers. That is, a typical way of introducing 

the geometry of the derivative of a real-valued function is to graph 𝑓(𝑧) on one Cartesian 

plane and 𝑓′(𝑧) on an adjacent Cartesian plane for the purposes of comparison.  

 Given this education, it is not so odd that Melody and Edward created a nearly 

equivalent construction for a complex-valued function by graphing the output of 𝑓′(𝑧) 

alongside the output of 𝑓(𝑧). As their reasoning was likely strongly grounded in past 

classes about real-valued functions, Edward and Melody spent considerable time 

discussing whether this was in fact the appropriate way to graph a function. After 

tentatively deciding that it was, Edward felt convinced that their investigations in this 

respect that the derivative “doesn’t actually tell you anything.” That is, he felt that 

graphing 𝑧2 → 2𝑧 did not greatly help him in using the derivative to inform him about 
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the function or vice versa. Thus, without graphing the derivative of a linear complex-

valued function, Edward and Melody concluded that there was no meaningful way to 

reason geometrically about the derivative, despite their complex analysis class’ heavy 

focus on calculating the derivative of a complex-valued function in a variety of contexts. 

This way of graphing essentially vanished once they returned to investigating with the aid 

of GSP, as discussed further below.  

 While Melody and Edward seemed to experience considerable confusion as a 

result of graphing 𝑧2 → 2𝑧, Christine and Zane experienced no similar confusion, as they 

asked me directly whether I wished them to graph the derivative 𝑓′(𝑧) = 2𝑧 of the 

function 𝑓(𝑧) = 𝑧2, or to graph the function itself. Given that I interviewed Zane and 

Christine before Edward and Melody, I answered this question straightforwardly and they 

wasted no more time on graphing the derivative function. However, while Christine and 

Zane appeared to be more directed about how to graph a complex-valued function, 

Edward and Melody still seemed more aware of the potential dangers of engaging in a 

style of reasoning reminiscent of Danenhower’s (2006) Thinking Real, Doing Complex. 

For example, Edward muttered “Maybe I’m trying to think too much real,” when Melody 

challenged his attempt to connect the rotation of a point about the origin under the 

function 𝑓(𝑧) = 𝑧2 to a conversion between Cartesian and polar forms. He had converted 

to polar notation to determine the amount of rotation as discussed previously, but also 

suggested finding the rotation by multiplying the input point by the value of the 

derivative at that point in Cartesian form.  

 This particular reasoning could have been adapted from the expression of the 

derivative as a local linearization at a point (𝑥0, 𝑦0): 𝑓(𝑥) = 𝑓′(𝑥0)(𝑥 − 𝑥0) + 𝑦0. Note 
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that the appropriate way to construct this function is to multiply the value of the 

derivative at 𝑥0 by the distance between 𝑥 and 𝑥0. Thus, it is possible that Edward was 

simply trying to extend this kind of real-valued formula to the complex setting, but did 

not recall much of the detail beyond multiplying a point value by a derivative value. 

Alternatively, his suggestion of multiplying the point by the derivative value at that point 

may have been motivated by the polar form itself, and the recollection that multiplying 

two complex numbers adds the angles and multiplies the magnitudes. Whatever the case, 

Edward in particular portrayed an unusual awareness in the dangers of associating too 

closely with the real-valued ways of reasoning about similar concepts.  

 It is strange, however, that Melody and Edward did not repeat their error of 

referring to the mapping 𝑧2 → 2𝑧 as the function 𝑓(𝑧) = 𝑧2 while working with 

Geometer’s Sketchpad (GSP), as they certainly could have just as easily done this with 

the aid of GSP as they did previously on the chalkboard. While working on the 

chalkboard, neither Melody nor Edward seemed particularly aware of the fact that the 

derivative informs us more readily about the behavior of the transformation 𝑧 → 𝑧2 than 

about the behavior of the transformation 𝑧 → 2𝑧 or the transformation 𝑧2 → 2𝑧. Rather, 

they were insistent that they should graph the output of 𝑧 → 2𝑧 somewhere precisely 

because I asked them to reason about the derivative, and 𝑧 → 2𝑧 is the derivative function 

associated with 𝑧 → 𝑧2. This error was thus likely driven both by Danenhower’s 

observed theme of Thinking Real, Doing Complex and the nature of the question itself of 

reasoning geometrically about the derivative of a complex-valued function. This 

awareness provides further evidence that Edward and Melody were attempting to ground 

their reasoning about the derivative of a complex-valued function in both their past class 
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discussions about real-valued functions and their current experiences with GSP and the 

physical environment, but had difficulty accomplishing this goal while their algebraic and 

geometric reasoning were still disparate. 

 While Danenhower’s (2006) Thinking Real, Doing Complex summarized a 

significant barricade to my participants’ development of their geometric reasoning about 

the derivative of a complex-valued function, the usage of GSP may have provided ample 

support to overcome this difficulty. That is, GSP may have helped my participants 

ground their reasoning about the derivative of a complex-valued function in the virtual 

environment, the physical environment, and their past experiences with real-valued 

functions. In particular, it may have helped them accomplish this goal by first providing 

them with an opportunity to integrate their algebraic and geometric reasoning via the 

tandem usage of algebraic and geometric inscriptions that GSP requires.  

 For example, in one episode, Zane made a string of claims based on the function 

formula about the behavior of the complex-valued function 𝑓(𝑧) = 𝑒𝑧 that Christine 

immediately disproved with the aid of GSP. In this episode, when Zane suggested that 

𝑓(𝑧) = 𝑒𝑧 could not take on a negative real value because 𝑒𝑥 “couldn’t be negative,” 

Christine positioned an input point 𝑧 so that the corresponding output point 𝑒𝑧 had a 

negative real value. Despite the fact that Zane’s comment did not particularly make 

sense, as complex numbers cannot appropriately be considered positive or negative, 

Christine still felt she had produced a counterexample to Zane’s statement. Christine even 

laughed and quipped, “basically, whatever you say, Zane, I can do.”  

 Both this particular finding and my participants’ interactions with GSP as a whole 

provide supporting evidence for Salomon’s (1990) claim that dynamic geometric 
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environments (DGEs) help students by providing interactivity, intelligent guidance, 

dynamic feedback, and multiple representations of mathematical objects. For example, in 

the above episode, Christine disproved many of Zane’s claims as a direct result of the 

dynamic geometric feedback provided via GSP. Without this instantaneous feedback, 

Zane and Christine may not have disproved these claims quite so quickly. Salomon’s 

claim is further supported by Edward’s observation at the completion of the tasks: “I 

know you can do some of this stuff in Mathematica a little bit but not quite as interactive 

as this.” Furthermore, the barricade posed by participants’ tendency to engage in 

Danenhower’s Thinking Real, Doing Complex appeared to be significantly reduced by 

their investigations of a linear complex-valued function with the aid of GSP. As such, 

GSP appeared to help them integrate their algebraic and geometric reasoning by helping 

them coordinate their algebraic and geometric inscriptions. 

 Thus, my students’ reasoning about the derivative of a complex-valued function 

may have been supported by Geometer’s Sketchpad’s (GSP) high level of interactivity. In 

particular, it seemed to provide them with an opportunity to integrate their reasoning 

about the geometry of a linear complex-valued function with their previously embodied 

algebraic reasoning. Without this dynamic feedback, my students may not have quite as 

easily noticed discrepancies between their algebraic reasoning and their associated 

geometric reasoning. Thus, dynamic feedback in particular may be an essential 

characteristic of a DGE in furthering students’ geometric reasoning about the derivative 

of a complex-valued function. This observation is supported by Salomon’s (1990) 

suggestion that dynamic feedback is one particular aspect of DGEs that seems to support 

students’ mathematical reasoning.  
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 Just as algebraic and geometric inscriptions provided by GSP may have helped 

my participants connect their algebraic and geometric forms of reasoning, gesture may 

have helped my participants ground their embodied experiences in both the physical and 

virtual environments. In particular, gesture appeared to help my participants reason in an 

embodied way about the geometric behavior observed with the aid of GSP. For example, 

Zane and Christine both employed iconic gestures to reason geometrically about whether 

𝑓(𝑧) = 𝑧2 rotated or reflected their input circle. Christine believed the transformation 

was a reflection. While stating this belief she produced a reflection gesture by starting 

with her left hand below her right hand with palms facing inward, then switching the 

position of her hands by bringing her left hand up in front of her right hand and above. In 

contrast, Zane suggested the transformation was a rotation. While explaining his 

reasoning, he produced a rotation gesture by pointing his right hand’s fingers downward, 

then rotating his hand clockwise until his thumb pointed upward.  

 In addition to helping Christine and Zane embody their geometric reasoning, this 

distinction in gesture may have helped Zane and Christine recognize the discrepancy in 

their reasoning and begin to geometrically reason more purposefully about whether the 

transformation was in fact a rotation or reflection. Nonetheless, Christine and Zane did 

not seem to notice that the amount the circle rotated and dilated was directly connected to 

the derivative value at the points in the area enclosed by the circle. Without investigating 

linear complex-valued functions, they seemed limited to reasoning simply that the circle 

rotated rather than flipped, and not reasoning about how much the circle rotated in the 

context of the derivative value at the appropriate point. 
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 Just as Zane and Christine used gesture to embody their reasoning, Edward 

similarly embodied his geometric reasoning about how to multiply two complex 

numbers. In particular, he demonstrated his reasoning about dilation through hand gesture 

by holding his hands together and then widening them apart (see Figure 5 in Chapter IV).  

In the same sentence, he embodied geometric reasoning with his entire body when he 

spoke of how multiplication of two complex numbers rotates the numbers while he 

turned toward his partner (see Figure 6 in Chapter IV). He again gestured for dilation 

during this process by pointing forward and extending his arm while stating that 

multiplying two complex numbers dilates the numbers (see Figure 7 in Chapter IV).  

 My participants’ reasoning about the derivative of a complex-valued function was 

further supported by gesture’s ability to help my participants communicate with each 

other and themselves (Goldin-Meadow, 2003) when they lacked the appropriate words. 

In many instances when my participants trailed off a sentence or did not speak at all, they 

moved their hands around during the silence, often with a contemplative or thoughtful 

expression showing on their faces. These gestures may not have always been iconic of 

the concept they were trying to recall. For instance, while Zane attempted to explain why 

a circle intersecting the origin maps to a curve with a sharp point, he moved his hands 

laterally apart and together, touching his index fingers’ tips together. Still silent, he held 

his fists together and extended and retracted his index fingers. Finally, he stated the 

behavior was because there was only one “singularity type thing.” He further clarified 

that he meant the mathematical entity represented by the algebraic inscription 𝑏2 − 4𝑎𝑐, 

whereupon I informed him he was speaking of the discriminant. Thus, the usage of 

gesture helped Zane communicate his reasoning that the output curve possesses a sharp 
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point because the discriminant is zero due to the fact that their input circle intersects the 

origin. This episode provides further support for the claim that gesture and speech helped 

my participants integrate their algebraic and geometric inscriptions. 

 In summary, during the first two tasks, my participants mainly seemed engaged in 

integrating their algebraic and geometric inscriptions via gesture and speech with the aid 

of GSP. On the other hand, they struggled in integrating their algebraic and geometric 

reasoning in these early stages, even with the aid of GSP. For example, while my 

participants made many intriguing algebraic and geometric observations, they also 

verbalized that they could not adequately reason about a complex-valued function before 

considering functions such as 𝑓(𝑧) = (3 + 2𝑖)𝑧 in detail. They further mentioned that 

they felt this difficulty arose because they did not understand what a “line” is in the field 

of complex numbers. They seemed to arrive at this impasse by first considering that the 

derivative of a real-valued function describes the slope of a tangent line. This recollection 

led them to consider reasoning about the tangent line of a complex-valued function, 

which in turn led them to realize that they could not verbalize the meaning of “tangent” 

or “line” in this new context.  

 As discussed below, participants began to reason about the amount circles rotate 

and dilate under a given function after investigating complex-valued linear functions with 

the aid of Geometer’s Sketchpad (GSP). In particular, they characterized complex-valued 

linear functions as functions, which always rotate and dilate a given circle by the same 

values, regardless of the size or location of the circle. Thus, participants could not 

adequately reason geometrically about the derivative of a complex-valued function 

geometrically prior to investigating complex-valued linear functions with the aid of GSP. 
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Therefore, investigation of linear functions with GSP was a critical development of 

reasoning about the derivative of a complex-valued function. In the context of embodied 

cognition, it seemed that the investigation of linear complex-valued functions helped my 

participants integrate their algebraic and geometric reasoning via inscriptions provided by 

GSP. 

Reasoning Geometrically about the Derivative of a Linear Complex-Valued 

Function. Christine and Zane did not appear able to completely integrate their algebraic 

and geometric reasoning even while investigating a linear complex-valued function 

𝒇(𝒛) = (𝟑 + 𝟐𝒊)𝒛. Rather, Christine reasoned geometrically about the derivative value 

𝟑 + 𝟐𝒊 by stating that this derivative value tells us that 𝒇(𝒛) = (𝟑 + 𝟐𝒊)𝒛 = 𝟑𝒛 + 𝟐𝒊𝒛 

rotates an input vector 𝟗𝟎°, stretches it by a factor of 𝟐, and adds on the vector obtained 

by stretching the input vector by a factor of 𝟑. This is a correct explanation of the vector 

addition of 𝟑𝒛 and 𝟐𝒊𝒛, and thus works for the case of linear complex-valued function, 

but does not appear to generalize easily to the non-linear case without restricting the 

investigation to vectors within small circles. Indeed, after investigating 𝒇(𝒛) = (𝟑 + 𝟐𝒊)𝒛 

with the aid of GSP, Christine stated she was confident her process would work in 

general, but could not understand why it did not seem to hold for 𝒇(𝒛) = 𝒛𝟐. Of course, 

her process would work approximately if she restricted 𝒇(𝒛) = 𝒛𝟐 to some small enough 

disk, as then 𝒇(𝒛) = 𝒛𝟐 would appear approximately linear within the area of that disk.  

 Zane and Christine did eventually notice with prompting that a linear function 

always rotated and dilated their input circle by the same amount regardless of location, 

but Christine seemed to focus on how the function transforms individual points on the 

circle, rather than the circle itself. Thus, Zane’s and Christine’s apparent failure to gain 
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insight on how derivative values relate to the rotation and dilation of circles in the case of 

linear complex-valued functions may have contributed significantly to their continued 

difficulty in developing their geometric reasoning further about the derivative of a 

general complex-valued function.  

 In contrast, once Edward and Melody appeared to make further progress 

integrating their algebraic and geometric reasoning while investigating a linear complex-

valued function. In fact, once they actually mapped the appropriate function 𝑓(𝑧) =

(3 + 2𝑖)𝑧 with the aid of GSP, they discovered that the input circle rotates and dilates the 

same amount, regardless of location. Unlike Zane and Christine, once Melody and 

Edward focused on the appropriate transformation, they integrated their geometric 

reasoning and algebraic reasoning about the derivative 3 + 2𝑖 of this linear complex-

valued function. In particular, Edward stated that the function rotates every circle by 

𝐴𝑟𝑔(3 + 2𝑖) and dilates every circle by a factor of |3 + 2𝑖| = √13. Melody initially felt 

that 𝑧 → (3 + 2𝑖)𝑧 was the inappropriate function to consider, and that they should 

instead consider the transformation (3 + 2𝑖)𝑧 → 𝑧. Edward appeared to convince Melody 

that his reasoning was correct through a combination of gesture, speech, information 

from GSP, and a prior discussion during this interview sequence. Thus, informed by his 

own grounded reasoning, Edward helped Melody embody her reasoning by providing her 

the means to ground it in his gesture and speech.   

 In particular, Edward moved the mouse cursor around a linear complex-valued 

function constructed via Geometer’s Sketchpad (GSP), then moved his hands in a circle 

and then apart from each other, likely signifying rotation and dilation. Simultaneously, he 

claimed that having the same derivative at every point results in the function doing the 
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same thing to every circle. He also related this observation to their previous 

investigations of the constant derivative function (3 + 2𝑖)𝑧 → (3 + 2𝑖) that sent 

everything to the single point 3 + 2𝑖 by noting that because the derivative is constant, the 

function 𝑧 → (3 + 2𝑖)𝑧 always rotates and dilates every circle the same way. He 

additionally noted that as a result of a constant derivative, the function does not cause 

twists such as those seen in 𝑓(𝑧) = 𝑧2 or 𝑓(𝑧) = 𝑒𝑧.  

 Therefore, while investigating a linear complex-valued function, Edward and 

Melody utilized their algebraic and geometric inscriptions provided via GSP to integrate 

their algebraic and geometric reasoning. After this breakthrough, Edward and Melody 

precisely related the derivative value 3 + 2𝑖 to the rotation and dilation of an input circle 

by noting that an input circle would rotate by 𝐴𝑟𝑔(3 + 2𝑖) and dilate by a factor of √13 

under 𝑓(𝑧) = (3 + 2𝑖)𝑧. Possibly as a result of their ability to make this connection, 

Edward and Melody were able to develop their geometric reasoning about the derivative 

as a local property further than Christine and Zane.  

 Developing Reasoning that Small Circles Map to Small Circles. Another 

critical advancement in reasoning geometrically about the derivative involved the 

realization that a function always maps a small enough circle to a circle-like output. 

Algebraically, if 𝒇′(𝒛) = 𝐥𝐢𝐦𝒛𝟎→𝟎
𝒇(𝒛)−𝒇(𝒛𝟎)

𝒛−𝒛𝟎
, then rearranging this formula gives us 

𝒇(𝒛) ≈ 𝒇′(𝒛)(𝒛 − 𝒛𝟎) + 𝒇(𝒛𝟎) + 𝝐(𝒛), where 𝐥𝐢𝐦𝒛→𝒛𝟎
𝝐(𝒛) = 𝟎. That is, 𝒇(𝒛) =

𝒇′(𝒛)(𝒛 − 𝒛𝟎) + 𝒇(𝒛𝟎) as 𝒛 → 𝒛𝟎. Geometrically, this means that 𝒇(𝒛) is approximately 

linear in the neighborhood of 𝒛𝟎. Therefore, this development in geometric reasoning is 

needed to notice that the derivative of a complex-valued non-linear function evaluated at 

a particular point only describes how the associated function rotates and dilates small 
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circles. Thus, without this realization, participants could not reason about the derivative 

as a local property. This realization is also meaningful in that it helped Edward integrate 

his GSP investigations with a prior class discussion between him and his instructor about 

small circles, as discussed below.  

  Melody and Edward seemed to first make steps toward the realization that small 

circles map to small circles while investigating 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
. During this 

investigation, Edward recalled a lab in class when he investigated a function that mapped 

his input circle to a clover shape. He noted that when he asked his instructor about this 

behavior in class, his instructor asked him what might change if his input circle was 

smaller. Edward claimed he did not really understand at the time, but said using 

Geometer’s Sketchpad (GSP) to quantify geometric behavior for the purpose of 

reconstructing the algebraic form of an unknown rational function helped him reason 

about why the input circle needs to be small.  

 It is also significant that Melody and Edward made this critical observation while 

Christine and Zane did not. This distinction could be related to the fact that Edward and 

Melody appeared to more fully encapsulate Needham’s characterization of an amplitwist 

than Zane and Christine. In the context of embodied cognition, it therefore appears that 

Edward and Melody really started grounding their developing geometric reasoning about 

the derivative of a complex-valued function in both the virtual and physical 

environments, as well as related past classroom discussions.  

 My participants’ ability to ground both their previously established reasoning and 

their developing geometric reasoning appeared to be further supported by GSP’s ability 

to display algebraic notation alongside associated geometric figures (Heid & Blume, 
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2008; Marrades & Gutiérrez, 2000; Pea, 1987; Salomon, 1990; Zazkis, Dubinsky, & 

Dautermann, 1996). For example, while Melody and Edward attempted to determine the 

locations of non-differentiable points for the function 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
, the numerical 

output of GSP helped my participants determine reasonably precise estimates for these 

points. The desire to obtain accurate decimal approximations for these non-differentiable 

points seemed to provide them additional motivation to keep their input circle small. 

Thus, the combination of geometric and numerical output provided by GSP seemed to 

help Edward and Melody develop reasoning about the derivative of a complex-valued 

function specifically in the context of small circles. Edward additionally noted that this 

exercise helped him reason about how the circle needs to be small enough to avoid all the 

non-differentiable points.  

 As noted above, while working with GSP, my participants were reminded of past 

classroom discussions related to geometric reasoning about the derivative of a complex-

valued function. For example, Edward experienced a “flash” of insight when he reasoned 

that a radius of one can in fact be considered rather large. He may have recalled a 

previous class discussion about considering rotation and dilation amounts of small 

circles, and GSP could have helped him ground his reasoning in that past class 

discussion. This possibility seems especially likely in light of the fact that on another task 

Edward also commented on a prior class discussion about how he did not understand his 

instructor when he was directed to consider a smaller circle as part of one of his 

classroom lab activities. In this instance, he actually uttered that he “didn’t get it” at the 

time, but GSP really helped him reason about why that circle has to be “darn small,” and 

further helped him establish context regarding what “small” really meant.  
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 In a previous episode, Edward used embodied gesture to reason geometrically 

about the apparently difficult concept of smallness in the context of the derivative of a 

complex-valued function. In this episode, Edward pinched his fingers and thumbs 

together while talking about being “zoomed in” on the complex plane, which made the 

constructed geometric objects appear larger. Similarly, Edward extended his arm while 

talking about the fact that the circles a complex-valued function transforms must be 

smaller than he expected to relate sensibly to the derivative of the function. Note that 

Edward utilized a gesture that seems iconic of “smallness” when talking about geometric 

objects appearing larger, and a gesture that seems iconic of “largeness” when talking 

about the necessity of considering a small circle. Through this embodied gesture and 

reflection on his investigations with the aid of GSP, Edward formed the correct 

conclusion that a radius of one may in fact be too large for the purposes of relating a 

complex-valued function’s transformation of a circle to the function’s derivative.  

 In another previous case, Edward observed that a large circle maps to another 

large circle. While making this claim, he moved his hands toward and away from each 

other and revised his statement by clarifying that a large circle will not even necessarily 

map to another circle. In the same episode, Edward used both his index finger and the 

mouse cursor to point at a circle constructed with the aid of Geometer’s Sketchpad 

(GSP). In both cases, Melody revoiced part of Edward’s geometric reasoning. 

Furthermore, she appeared to repeat the speech Edward accompanied with gesture in 

particular. Thus, gesture helped Edward and Melody reason together about the derivative 

of a complex-valued function. As such, they may have helped ground each other’s 
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geometric reasoning about the derivative of a complex-valued function rather than 

progressing independently. 

 Melody and Edward were not the only participants to ground their reasoning in 

previous mathematical discussions. Zane, for example, recalled computational concepts 

from his numerical analysis class when GSP displayed a jagged circle when it should 

have shown a smooth curve. Zane noted that the GSP display reminded him of how he 

was taught to build a circle in his numerical analysis class out of a large number of line 

segments. He drew pictures to explain how using too few line segments to construct the 

curve results in the same jagged appearance that GSP displayed, and that as the line 

segments became short enough and numerous enough, the sequence of short line 

segments began to resemble a smooth curve. While I thought he might have connected 

this approximation of a circle with small enough line segments to a linear approximation 

of a derivative within a small enough circle, he did not provide any such elaboration on 

his explanation.  

 Thus, while it is possible that working with GSP helped students ground their 

prior knowledge and their current discoveries in these related past conversations, my 

participants were also reminded of classroom discussions they did not successfully 

connect to reasoning geometrically about the derivative of a complex-valued function, 

even in cases where such a connection was possible. For example, near the beginning of 

the interview, both participant groups recalled that the derivative value described a 

rotation and dilation, but had difficulty describing specifically that it described a rotation 

and dilation of a small circle. They certainly did not seem able initially to explain how 

small a “small” circle needs to be in this context. 



269 
 

 
 

 Developing the Concept of Amplitwist. By the end of the tasks, Edward and 

Melody reasoned that complex-valued linear functions rotate and dilate a circle by the 

argument and magnitude of the appropriate derivative value, that a small circle always 

maps to a small circle, and that the input circle needs to be small enough to stay away 

from the “bad” points. As a result, they successfully reasoned that the magnitude of the 

derivative value of a function at a point is the factor by which the function dilates a small 

input circle, and the argument of the derivative value of that function at that point is the 

angle by which the function rotates a small input circle counterclockwise. Thus, Melody 

and Edward essentially developed Needham’s (1997) amplitwist characterization of the 

derivative of a complex-valued function over the course of the interview sequence.  

 In contrast, while Christine and Zane reasoned that a linear complex-valued 

function rotates and dilates a circle, they did not quite connect these amounts to the 

appropriate derivative value’s argument and magnitude. As a result, they also did not 

reason about the necessity of having a “small” input circle or why this is the case. Thus, 

Zane and Christine only verbalized that the derivative has something to do with how the 

function rotates and dilates a circle, and did not clarify that the circle must be small. It is 

therefore possible that successfully reasoning precisely about the relationship between the 

magnitude and argument of the derivative to rotation and dilation of a small circle in a 

complex-valued function aided Melody and Edward in characterizing the derivative as a 

local property. Indeed, for larger circles the amount of rotation and dilation is far less 

predictable.  

 One related advancement in reasoning that may have helped Melody and Edward 

develop their reasoning about the derivative of a complex-valued function more 
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completely than Christine and Zane is their specificity about which mathematical entities 

rotate and dilate. In particular, Zane and Christine talked about how much the function 

rotates and dilates, while Edward and Melody talked more precisely about how the 

function rotates and dilates a point, or how the function rotates and dilates a circle. This 

distinction between how points are transformed and how circles are transformed seemed 

critical to developing geometric reasoning about the derivative of a complex-valued 

function.  

 More precisely, Zane and Christine never identified exactly which particular 

mathematical entity the function rotated and dilated. When I asked them to specify, they 

seemed unsure, guessing that the function rotated and dilated “the entire plane” by the 

derivative value at a particular point, or perhaps just rotated and dilated that one point. Of 

course, their guess that the entire plane rotates and dilates by the derivative value is 

accurate in the case of linear functions, but as one might expect, they experienced 

difficulty generalizing this geometric reasoning to the case of non-linear complex-valued 

functions.  

 In dealing with non-linear functions, it seemed Christine and Zane focused on 

how the function rotated and dilated particular points, and thus did not quite develop the 

geometric reasoning necessary to consider an amplitwist until I gave them the significant 

hint that a derivative value of one at a point means the function does not rotate or dilate a 

small circle around that point. However, they still did not gain any specificity in their 

geometric reasoning about rotating and dilating circles in particular. Thus, while Zane 

and Christine successfully characterized the amount of rotation and dilation given a 
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derivative value, they did not identify the entity that rotates as necessarily a small 

𝜖 −neighborhood, or even as a circle.  

 Similar to Christine and Zane, Melody and Edward initially reasoned about points 

rotating and dilating rather than circles while working through geometric transformations 

on the blackboard. Edward and Melody additionally recalled that the derivative value has 

something to do with rotation and dilation, but could not verbalize the nature of this 

connection at the beginning of the tasks. As such, they too experienced difficulty relating 

the derivative value at a point to how the function rotates and dilates a vector associated 

with that point. This difficulty may have motivated their thorough investigations of the 

related transformations 𝑓(𝑧) = 𝑧2, 𝑓′(𝑧) = 2𝑧, and 𝑓(𝑧) → 𝑓′(𝑧).  

 However, once they began focusing on 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = (3 + 2𝑖)𝑧 with the 

aid of Geometer’s Sketchpad (GSP), they began reifying their investigations with recalled 

discussions from their complex analysis course. They additionally began successfully 

relating the derivative value at a point with the manner in which a complex-valued 

function rotates and dilates a circle at a point. Then, while Melody and Edward attempted 

to determine an algebraic formula with the aid of GSP for an unknown rational function I 

had previously constructed, they noted that the input circle must be small to adequately 

relate its rotation and dilation to the derivative value at a point the input circle surrounds. 

This particular breakthrough would have been difficult to achieve without the prior 

realization that the derivative value at a point describes something about how the function 

rotates and dilates a circle. Thus, Melody and Edward’s specificity in what geometric 

object the function rotates and dilates was likely crucial in their development of their 
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geometric reasoning about the derivative of a complex-valued function as an amplitwist 

as described by Needham (1997). 

 Over the course of the tasks, Christine and Zane did start reasoning about 

rotations and dilations, although they did not explicitly verbalize the amplitwist concept 

in the context of small circles in particular. Rather, they developed their geometric 

reasoning about the derivative of a complex-valued function enough so that they could 

state that a particular derivative value at a point for some particular function means that 

the function dilates a circle around that point by the magnitude of the derivative value 

and rotates the circle by the argument of that point. In other words, they were able to 

reason that a derivative value describes exactly how a small circle turns around and 

stretches out. Notions of local linearization were never explicitly verbalized. Thus, while 

the classroom lectures were not enough to support my participants’ reasoning about 

rotation and dilation, Zane’s and Christine’s active participation in a GSP-aided 

investigation of the way functions rotate and dilate circles allowed them to develop their 

reasoning further. These results led me to suggest one of my teaching implications. 

Briefly, I suggest that mere information acquired from lecture is insufficient for students 

to develop geometric reasoning; some active engagement on the part of the learner is also 

required. This teaching suggestion will be revisited later in the chapter.  

 In the context of my study, my participants needed to ground their reasoning, and 

working within virtual and physical environments simultaneously seemed to help them 

ground their reasoning in both these and previous classroom discussions. Before they 

were able to do this, it appeared that they needed to integrate their algebraic and 

geometric reasoning, which they may have accomplished by working with algebraic and 
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geometric inscriptions simultaneously. This integration appeared to be further aided by 

GSP, a dynamic geometric environment (DGE) that can give dynamic feedback about the 

correspondence between different kinds of inscriptions. Of course, in order to accomplish 

this integration, my participants must have already grounded their algebraic and 

geometric inscriptions together, which they appear to be able to accomplish via a 

combination of gesture and speech. 

 Unlike Christine and Zane, Melody and Edward explicitly reasoned about the 

derivative of a complex-valued function as a local linearization expressed as an 

amplitwist. In particular, Edward and Melody noted that the complex value of the 

derivative of a complex-valued function at a given point describes how the function 

rotates and dilates a circle around that point. That is, the function dilates the circle by the 

magnitude of the value of the derivative at the point and rotates the circle by the 

argument of the value of the derivative at that point. Christine and Zane articulated this 

much about the rotation and dilation of a circle, but Edward and Melody added the 

crucial additional observation that this rotation and dilation amount applies only to small 

circles.  

 Furthermore, while both groups of participants were reminded of prior class 

discussions, only Melody and Edward seemed to completely ground their recollections of 

these past discussions together with their current GSP investigations. Thus, developing 

good judgment about when to reason with various forms of complex numbers may have 

helped my participants develop their geometric reasoning about the derivative of a 

complex-valued function as both a local linearization and as an amplitwist. We must 

therefore be careful not only to help students how to convert forms, but also impress upon 
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them the reasons for doing so in order to develop in them the ability to reason both 

algebraically and geometrically about complex numbers. This implication will be further 

discussed in the Teaching Implications section later in this chapter. 

 In conclusion, it appears that my participants needed to make three main 

developments in their reasoning about the derivative of a complex-valued function as an 

amplitwist, and that these three advancements correspond to each of the three forms of 

embodied cognition discussed previously. Furthermore, each of these developments 

correspond to some important relationship between the limit definition of the derivative 

𝑓′(𝑧) =
𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
 and the geometric behavior of 𝑓(𝑧).  

 The first necessary development was that participants had to realize that they 

needed to reason geometrically about a linear complex-valued function. Appropriately, 

this is related to one of the first statements made about the algebraic definition: that it 

represents a local linearization. In particular, given the limit definition, we can then 

construct a linear function around 𝑧0, namely 𝑓(𝑧) = 𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0) + 𝜖(𝑧). The 

arrival at this stage seemed to be associated with participants successfully utilizing 

gesture and speech to integrate their algebraic and geometric inscriptions. In particular, 

they discussed information from GSP with each other to help them learn how to associate 

algebraic and geometric forms of complex numbers. Once they did so, they arrived at the 

realization that they were unsure of how to characterize a complex-valued “line,” and that 

thus they needed to investigate a linear complex-valued function to obtain this 

information.  

 The second development in reasoning seemed to be that linear function always 

rotates and dilates every circle by the argument and magnitude of the derivative 
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respectively, regardless of location. This stage is associated with the algebraic definition 

of the derivative in that our function 𝑓(𝑧) = 𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0) + 𝜖(𝑧) is exactly 

linear when 𝜖(𝑧) = 0 for all 𝑧 ∈ ℂ. Thus, an investigation of a linear function with a 

complex-valued derivative helped my participants reason geometrically about the 

derivative 𝑓′(𝑧) in some linear formula of the form 𝑓(𝑧) = 𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0). This 

stage also necessitated the successful coordination of 𝐴𝑟𝑔(𝑓′(𝑧)) and |𝑓′(𝑧)| with the 

rotation and dilation of circles, respectively. As such, this stage seemed associated with 

my participants’ ability to integrate their algebraic and geometric reasoning together 

coherently with the aid of algebraic and geometric inscriptions provided by GSP. That is, 

at this stage participants began to become more proficient in relating their algebraic and 

geometric reasoning with each other. 

 The third and final advancement in reasoning appeared to be that small circles 

always map to small circles, for an appropriate definition of the word “small.” In context 

of the algebraic definition, this advancement is equivalent to the realization that 𝑓(𝑧) =

𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0) + 𝜖(𝑧) becomes approximately the linear function 𝑓(𝑧) =

𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0) provided that 𝜖(𝑧) ≈ 0, which occurs if we restrict 𝑓(𝑧) to a 

“small enough” radius around 𝑧. That is, recognizing that lim𝑧→𝑧0
𝜖(𝑧) = 0, for any 

𝜖 > 0 we decide on as an acceptable error, we can always find a disk around 𝑧0 so that 

|𝜖(𝑧) − 𝜖(𝑧0)| < 𝜖. By “small enough” we mean any disk that satisfies this requirement. 

This advancement seemed particularly aided by my participants’ investigation of an 

unknown rational function 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
. I constructed the function first and asked 

them to reconstruct the function formula with the aid of geometric information obtained 

via Geometer’s Sketchpad (GSP). My participants utilized GSP to realize that they 
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needed to make their input circle small enough to stay away from non-differentiable 

points and obtain an output point that was approximately a circle. They utilized the 

chalkboard, speech, and gesture to reconstruct the appropriate algebraic function and gain 

some insight in how the function’s geometric behavior is related to its derivative. Finally, 

they recalled past classroom discussions about the necessity of using a “small” circle. 

Thus, this seemed by far the most difficult advancement in reasoning for students to 

achieve, and to do so it seemed they had to rely on the virtual environment, the physical 

environment, and their past classroom discussion. 

 Therefore, while embodied cognition was leveraged on all three fronts throughout 

the interview sequence, each of these fronts appeared to aid at least one of the three 

critical developments in reasoning toward the derivative of a complex-valued function. 

First, participants integrated their inscriptions via gesture and speech, and realized the 

need for an investigation of a linear complex-valued function. Second, they integrated 

their algebraic and geometric reasoning via algebraic and geometric inscriptions, and 

reasoned that linear functions always rotate and dilate every circle by the same amount. 

Finally, they grounded their embodied reasoning in both the virtual and the physical 

environment with the aid of past classroom discussions, and reasoned that small circles 

always have to map to small circles, where “small” means that the function looks 

approximately linear at that point. With the successful completion of these three steps, 

participants realized that the derivative can be characterized as an amplitwist. Formally, 

within 𝐵(𝑧0, 𝜖), an 𝜖 −neighborhood of 𝑧0 for some appropriately small 𝜖, 𝑓(𝑧) ≈

𝑓′(𝑧)(𝑧 − 𝑧0) + 𝑓(𝑧0), where 𝑓(𝑧) rotates the image 𝑓(𝐵(𝑧0, 𝜖)) counterclockwise 

𝐴𝑟𝑔(𝑓′(𝑧)) and dilates it by a factor of |𝑓′(𝑧)| with respect to the pre-image 𝐵(𝑧0, 𝜖). 
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Connections to Literature 

 My dissertation study builds on existing research in three ways. First, it extends 

research on reasoning about the derivative of real-valued functions to reasoning about the 

derivative of complex-valued functions. Second, it adds to research on the field on the 

teaching and learning of complex numbers in general, which is still relatively sparse. 

Finally, and perhaps most significantly, it contributes to the growing theoretical 

perspective of embodied cognition. 

 The participants of my dissertation study regularly utilized reasoning about the 

derivative of a real-valued function to inform their reasoning about the complex-valued 

derivative. This was seen when both groups of participants claimed the complex-valued 

derivative could be characterized as the slope of the tangent line, and when Melody and 

Edward compared the output graphs of 𝑓(𝑧) and 𝑓′(𝑧) side by side for the sake of 

comparison. As such, research on the derivative of real-valued functions will likely 

inform potential student difficulties and successes while developing reasoning about the 

derivative of a complex-valued function.  

 For example, after my participants reconstructed the function 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
 

utilizing only information obtained from GSP, students reasoned successfully about the 

necessity of considering a small enough circle when reasoning geometrically about the 

derivative of a complex-valued function. This setup reversed the process established by 

all prior tasks in the interview, where students were given an algebraic formula and asked 

to determine geometric information relative to the derivative of the given function. This 

result corroborates Sfard’s (1992) suggestion that reification does in fact occur when 

processes can be successfully reversed.  
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 On the other hand, participants also occasionally seemed to overgeneralize a 

geometric finding or ignore the context of the derivative. Zane and Christine seemed to 

downplay the role of the derivative while explaining the geometry associated with the 

derivative 3 + 2𝑖 of the complex-valued function 𝑓(𝑧) = (3 + 2𝑖)𝑧 = 3𝑧 + 2𝑖𝑧 

exclusively in terms of vector addition of 3𝑧 and 2𝑖𝑧. They additionally overgeneralized 

this finding by reasoning that this same kind of vector addition should hold in the case of 

a non-linear function, and expressed surprise when they saw that their reasoning did not 

hold.  

 Similarly, Melody and Edward seemed to overgeneralize their reasoning about the 

real-valued derivative wherein they compared the graphs of 𝑓(𝑥) and 𝑓′(𝑥) to develop 

reasoning about how the geometry of 𝑓(𝑥) and the geometry of 𝑓′(𝑥) were associated. 

When reasoning about the derivative of a complex-valued function, they tried to create a 

similar set-up, but only compared the output planes of 𝑓(𝑧) and 𝑓′(𝑧), apparently not 

realizing that they lost half their geometric information by excluding the input plane of 

each function from their investigation. This apparent tendency to either overgeneralize or 

ignore the appropriate context supports the research of both David, Tomaz, and Ferreira 

(2014) and Kuo, Gupta, and Elby (2013).  

Connections to Studies on Complex Numbers 

 While the research on real-valued functions is diverse and far-reaching, the 

teaching and learning of complex numbers still represents a small but growing field of 

research. Thus, my research helps make this field of research a little less sparse in a few 

ways, and additionally corroborates the previously existing research on complex 

numbers.  
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 At first glance, it may appear that my dissertation study conflicts with Harel’s 

(2013) assertion that students had considerable difficulty reasoning geometrically about 

the addition and multiplication of complex numbers. This apparent conflict is due to the 

fact that my participants demonstrated no such difficulty reasoning about addition of 

complex numbers as vector addition and multiplication of complex numbers as a 

“rotation dilation”—add the angles and multiply the magnitudes, respectively. However, 

I believe this conflict is primarily due to a difference in populations. In particular, Harel 

reported findings about how in-service and pre-service math education teachers reasoned 

about complex numbers. These findings are further supported by Karakok, Soto-Johnson, 

and Anderson’s (2014) research, which also utilized in-service high school teachers.  

 On the other hand, I reported findings about how undergraduate math and physics 

majors previously enrolled in a complex analysis course reasoned about complex 

numbers. It is unsurprising that students who had taken a course focusing on complex 

numbers reasoned geometrically more proficiently about complex numbers than teachers 

who had likely never taken such a course. This conclusion is further supported by Soto-

Johnson and Troup (2014), who also interviewed students previously enrolled in a 

complex analysis course. These students were also generally able to reason geometrically 

about the multiplication of two complex numbers.  

 My study also produced mixed results in the light of Danenhower’s (2006) 

dissertation study. In particular, Zane and Christine demonstrated poorer judgment in 

which form of a complex number to utilize. For example, they considered vector addition 

of a Cartesian representation at a point when it may have been more useful for them to 

consider angles of rotation and magnitudes of dilation, which should have made the polar 
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form 𝑧 = 𝑅𝑒𝑖𝜃 look particularly appealing. In direct contrast, Melody and Edward 

consistently recognized that the polar notation 𝑧 = 𝑅𝑒𝑖𝜃 was especially useful when 

trying to determine angles of rotation, and even verbalized this strategic geometric 

reasoning. Thus, sometimes my participants developed good judgment about which 

representation of a complex derivative to utilize while investigating the derivative of a 

complex-valued function, while at other times they did not.  

 While my study produced mixed results about students’ patterns in shifting 

representations, my study significantly corroborated Danenhower’s (2006) theme of 

Thinking Real, Doing Complex. To begin with, and perhaps somewhat unsurprisingly, my 

participants’ first attempt to reason geometrically about the derivative of a complex-

valued function was as the slope of the tangent line. While this definition is essentially 

accurate, participants were unsure of how to generalize correctly from the case of the 

real-valued function to the case of the complex-valued function. For example, they could 

not provide a geometric characterization of a tangent line with slope 3 + 2𝑖.  

 In what is likely another case of Thinking Real, Doing Complex, Melody and 

Edward investigated the output planes of 𝑓(𝑧) and 𝑓′(𝑧) side by side, mirroring the real-

valued case of comparing the function graphs of 𝑓(𝑥) and 𝑓′(𝑥) side by side to develop 

geometric reasoning about the derivative function with respect to the original function. 

Again, my participants could not develop further geometric reasoning about the 

derivative of a complex-valued function, possibly because the generalization was 

imprecise.  

 Finally, my dissertation study contributes to research on complex numbers by 

supporting Nemirovsky et al.’s (2012) assertion that students reasoned geometrically 
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about complex numbers successfully when supported in an embodied way. In 

Nemirovsky et al.’s research, students reasoned about the multiplication of complex 

numbers via a physical representation of a complex plane in which students could move 

around and place points or vectors with stick-on dots and strings. In particular, 

Nemirovsky et al. noted that students noticed when their algebraic and geometric 

reasoning conflicted while utilizing this “embodied” complex plane.  

 In my research, my participants seemed to recognize conflicts between their 

algebraic and geometric reasoning while they utilized Geometer’s Sketchpad (GSP). In 

one case, Zane reasoned algebraically about the geometric behavior he expected from the 

function 𝑓(𝑧) = 𝑒𝑧, and Christine provided counterexamples to all Zane’s claims (such 

as the idea that 𝑓(𝑧) cannot take on a negative real value). When confronted with 

contradictory output from GSP, Zane accepted Christine’s demonstrations as true 

counterexamples, rather than reason that she had simply found an exception to the rule. 

This reasoning contradicts Harel & Sowder’s (2005) finding that students tend to dismiss 

counterexamples as exceptions to a mathematical rule rather than a disproof of a 

conjecture. Perhaps this occurred due to my participants’ usage of embodied reasoning 

with the aid of GSP. As argued in Chapter III, GSP and other similar dynamic geometric 

environments (DGEs) can reasonably be considered a tool that supports my participants’ 

embodied cognition. This finding additionally supports Soto-Johnson and Troup’s (2014) 

assertion that working with algebraic and geometric inscriptions in tandem helped their 

participants recognize a conflict in associated algebraic and geometric reasoning. 
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Connections to Embodied Cognition 

 My research thus helps contribute to research about the field of teaching and 

learning of complex numbers and provides an additional bridge between the prolific 

research about real-valued functions to the comparatively sparse research about complex-

valued functions. Furthermore, it contributes significantly to the theoretical perspective of 

embodied cognition itself. In particular, each of my three fronts of embodied cognition 

discussed at the beginning of this chapter contributes to a different aspect of research 

related to or motivated by embodied cognition. 

 First, my research corroborates Goldin-Meadow’s (2003) findings that gesture is a 

single integrated system. In particular, my participants grounded their algebraic and 

geometric inscriptions via embodied reasoning by producing gestures and communicating 

with each other regarding these inscriptions. For example, throughout the interview 

sequence, both sets of participants produced many gestures iconic of dilation (e.g., 

moving hands apart from each other, extending arm outward, holding a sphere and 

moving hands as though this sphere was growing) and rotation (e.g., tracing circles in the 

air with the index finger, holding a sphere and rotating it) while discussing the 

multiplication of two complex numbers, or the way a function turns and stretches a circle. 

In the process of grounding these inscriptions, they were able to realize the necessity of 

first reasoning about the geometry of a linear complex-valued function in order to 

develop reasoning about the derivative of a complex-valued function. Thus, reasoning 

both geometrically and algebraically with inscriptions via gesture and speech helped my 

participants embody their reasoning, much as Goldin-Meadow (2002) describes in her 

research on gesture.  
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 Second, my research corroborates findings from both Zazkis et al. (1996) and 

Soto-Johnson and Troup (2014). Both research papers report that translating regularly 

between algebraic and geometric reasoning helps students integrate both kinds of 

reasoning into a single integrated system, much as gesture and speech already naturally 

function as such an integrated system. Similarly, at the beginning of my interview 

sequence, my participants seemed to view their algebraic and geometric reasoning as 

relatively disparate. In fact, Zane and Christine told me directly that they preferred to 

utilize algebra whenever possible, and to avoid geometry completely. Melody and 

Edward did not appear quite so averse to geometry, but still experienced difficulty 

relating their geometric reasoning to their algebraic reasoning. For example, they could 

not explain why a complex number with positive argument appeared to rotate clockwise 

on their function graph of 𝑓(𝑧) = 𝑧2. Rather than realize that this behavior resulted from 

the fact that their graph represented the graph 𝑓(𝑧) → 𝑓′(𝑧), they decided that their 

algebra and geometry together suggested that they originally reasoned incorrectly and 

that the clockwise direction was in fact associated with positive angles.  

 However, as the interview sequence progressed, Melody and Edward became 

more proficient in integrating their algebraic and geometric inscriptions coherently. In the 

process of integrating these inscriptions, my participants developed geometric reasoning 

that a linear complex-valued function rotates every circle by the argument of the 

function’s derivative, and dilates every circle by the magnitude of the function’s 

derivative. Thus, my findings corroborate Zazkis et al.’s (1996) assertion that cycling 

through algebraic and geometric reasoning allowed their participants to integrate both 

kinds of reasoning into an integrated system. Similarly, they support Soto-Johnson and 
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Troup’s (2014) findings that cycling through reasoning with algebraic and geometric 

inscriptions helped their students develop an integrated system of reasoning that utilizes 

both types of inscriptions simultaneously.  

 Thus, Goldin-Meadow’s (2003) research suggests that gesture and speech can 

help ground algebraic and geometric reasoning together as one (see leftmost cycle in 

Figure 45), and Zazkis et al.’s (1996) and Soto-Johnson and Troup’s (2014) research 

suggests cycling between algebraic and geometric inscriptions can further integrate this 

reasoning (see center cycle in Figure 45). My dissertation study adds the similarly 

structured claim that oscillating between reasoning with the aid of the virtual 

environment and reasoning with the aid of the physical environment can help ground 

both kinds of reasoning together as a single embodied system (see rightmost cycle in 

Figure 45). That is, I argue reasoning with the virtual environment and physical 

environment simultaneously is similar to utilizing gesture and speech simultaneously, or 

viewing associated algebraic and geometric inscriptions as two aspects of the same 

mathematical reasoning.  

 Under this view, at the beginning of my interview sequence, students likely 

viewed information garnered from Geometer’s Sketchpad (GSP) as disparate from their 

existing grounded mathematical reasoning, as this new information had yet to be 

grounded in anything. For example, Edward and Melody did not initially seem to notice 

that they constructed 𝑓(𝑧) = 𝑧2 differently on the chalkboard than they did with the aid 

of GSP. In particular, Edward and Melody graphed 𝑓(𝑧) → 𝑓′(𝑧) on the chalkboard and 

represented 𝑧 → 𝑓(𝑧) with the aid of GSP, but claimed both graphs represented the 

function 𝑓(𝑧) = 𝑧2.  
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 However, as they reasoned via gesture, speech, and inscriptions in the physical 

environment while simultaneously reasoning via mouse movements and inscriptions 

produced with the aid of the virtual environment, students began to integrate the two 

environments and thereby ground their reasoning developed via GSP together with the 

mathematical reasoning they had previously grounded in the physical environment. For 

example, as the interview sequence continued, Edward eventually reasoned that the 

derivative informs the geometry of the function 𝑧 → 𝑓(𝑧) more meaningfully than the 

geometry of the function 𝑓(𝑧) → 𝑓′(𝑧). In particular, he stated that because the 

derivative is constant, 𝑧 → 𝑓(𝑧) always rotates and dilates every circle by the same 

amounts, regardless of location. In contrast, Melody insisted that they should investigate 

𝑓(𝑧) → 𝑓′(𝑧) because this expression actually involves the derivative, and that the fact 

that the derivative is constant means that every point in the complex plane should map to 

the same location 𝑓′(𝑧). Through a combination of reasoning with the aid of GSP and 

allusions to their previous chalkboard investigations, Edward was able to persuade 

Melody toward his line of thinking.  

 Thus, oscillating between the physical and virtual environments allowed my 

participants to ground their reasoning in both environments simultaneously. One apparent 

result of this integrated grounded reasoning is that students recalled related class 

discussions. This result was particularly apparent in Edward and Melody’s investigation 

of a rational function unknown to the participants that I had previously constructed, when 

Edward connected his newly developed geometric reasoning with a previous classroom 

discussion. This function was 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
.  
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 While attempting to determine the location of non-differentiable points, Edward 

noted that their input circle should be small to allow them to accurately pinpoint the 

locations on the complex plane that seemed to cause odd output behavior (i.e., something 

other than a rotation and dilation of the input circle). This reasoning was further enforced 

when they attempted to determine the derivative value for a specific point of their 

choosing given only the geometric output of GSP. They again observed that reasoning 

about a rotation and a dilation was only quantifiable when their output shape was close to 

circular, which only occurred when their input circle was small. This observation led 

them to correctly estimate the derivative value at the point they chose, and further 

influenced Edward to recall a prior classroom discussion.  

 In particular, he recalled an episode where he saw that a function transformed his 

input circle into a clover shape rather than a circle. When he asked his instructor about 

this, he was told to consider a smaller circle as an input. He reflected that at the time this 

admonition confused him, but that he now understood as a result of his investigations 

with 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
. Thus, not only did Edward ground his reasoning garnered from a 

virtual environment in the physical one, but he also grounded reasoning that had 

previously confused him together with his new discovery. Therefore, the combination of 

reasoning in the virtual and physical environments may help ground reasoning from both 

together in much the same way as the combination of gesture and speech can help ground 

algebraic and geometric reasoning together, and the combination of algebraic and 

geometric inscriptions may help integrate both kinds of reasoning together. 
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Additional Connections to Literature 

 A few other ways my dissertation study contributes to the research is by 

supporting Kaschak, Jones, Carranza, and Fox’s (2014) claim that language 

comprehension is by nature embodied. The claim that language comprehension is 

embodied is again supported by Edward’s and Melody’s investigation of 𝑓(𝑧) =

(2𝑧+1)

(𝑧+𝑖)(1−𝑧)
. In particular, Edward noted that they had to “stay away from bad points,” and 

that keeping the circle small accomplished this goal. Thus, Edward’s reasoning about the 

necessity of a small circle was likely grounded in his reasoning about the physical world. 

Namely, to keep our body from touching something we wish to avoid, say, in a shop full 

of fragile equipment, we reduce the relative size of our body in order to move around 

more freely without damage. Edward further observed that “you’ve got one is huge.” 

That is, he noted that the reason this advancement in reasoning was so difficult for him 

was that he did not realize that the number one could actually be quite large in the context 

of the derivative of a complex-valued function, and he was used to reasoning that one 

was fairly small. 

 My study additionally supports the Focusing Framework (Lobato, Rhodehamel, 

& Hohensee, 2012; Lobato, Hohensee, & Rhodehamel, 2013), which Lobato, 

Rhodehamel, and Hohensee developed to catalogue seventh grade students’ reasoning 

about slope in terms of what they noticed from a class on linear functions.  Lobato, 

Hohensee, and Rhodehamel refined this framework and posited that transfer could occur 

across contexts as a result of the aspects on which students focused during class. That is, 

students seemed more likely to transfer aspects of slope they had previously developed in 

class to the new context she presented to them. Danenhower’s (2006) Thinking Real, 
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Doing Complex in particular could be deepened via this framework. That is, my students’ 

reasoning about the derivative of a complex-valued function in my interview sequence 

may have been representative of the reasoning they had previously developed in their 

classes on real-valued functions.  

 Given that it is likely that teachers of these classes emphasized the derivative as 

descriptive of the slope of a tangent line, it seems likely that students would have 

particularly focused on this geometric aspect of the derivative. Lobato, Rhodehamel and 

Hohensee’s (2012), and Lobato, Hohensee, and Rhodehamel’s (2013) Focusing 

Framework thus suggests that my participants were likely to reason about the derivative 

of a complex-valued function as the slope of a tangent line, and indeed they did so. They 

also likely noticed the way the graphs of 𝑓(𝑥) and 𝑓′(𝑥) were compared for real-valued 

functions, and attempted to recreate this comparison for the graphs of 𝑓(𝑧) and 𝑓′(𝑧). 

Thus, Danenhower’s Thinking Real, Doing Complex can be recast in the light of Lobato, 

Rhodehamel, and Hohensee’s, and Lobato, Hohensee, and Rhodehamel’s Focusing 

Framework.  

 This framework further explains students’ ability to find a derivative, but not 

reason about it. In particular, my participants claimed that their complex analysis class 

taught them many ways in which to find a derivative, but not why the derivative was 

useful. My participants also recalled the words “rotate” and “dilate” from their class, but 

could not originally explain precisely what they meant by these terms. Indeed, in several 

of the classes I observed, their professor called attention to “rotations” and “dilations” 

while discussing the multiplication of two complex numbers and the way a function maps 

a small circle. Thus, it seems that my participants focused on the words “rotation” and 
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“dilation” themselves without precisely focusing on details such as when points rotated 

and dilated and when entire circles rotated and dilated. They were also not originally 

aware of how much the circle rotates and dilates under a given function. Thus, the 

reasoning with which my students entered into my interview sequence was likely a direct 

result of the aspects of reasoning on which they focused in their previous math classes. 

 One final connection to Lobato, Hohensee, and Rhodehamel’s (2012) and Lobato, 

Rhodehamel, and Hohensee’s (2013) Focusing Framework can be found in the nature of 

my participants’ investigations undertaken with the aid of Geometer’s Sketchpad (GSP). 

GSP is capable of producing a large quantity of geometric information, and my interview 

sequence was largely student-driven. Therefore, my students’ reasoning was likely highly 

influenced by the aspects of geometry produced by GSP on which they chose to focus. 

For example, Christine and Zane focused on how points rotated and dilated under the 

given functions throughout the interview. Even when explicitly told to focus on how the 

function mapped circles, they reasoned about the circles as an infinite collection of 

points. This characterization of circles is essentially correct, but their focus on points 

seemed to make it difficult for them to reason about the quantities by which the circles 

themselves rotated and dilated. In contrast, Edward and Melody focused on a circle as a 

single mathematical object in its own right, and thus more successfully transitioned from 

reasoning about the way points rotate and dilate to the way these circles rotate and dilate 

under the given functions. 

 Therefore, my dissertation study extends research on real-valued functions to the 

field of complex numbers, builds on the still relatively young body of research on 

complex numbers, and adds to the theoretical perspective of embodied cognition. 
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Namely, it supports prior claims that gesture and speech help ground algebraic and 

geometric inscriptions together and that algebraic and geometric inscriptions help 

integrate both kinds of reasoning, and that reasoning in virtual and physical environments 

simultaneously help further ground both kinds of reasoning.  

Implications for Teaching 

 The findings described above suggest a few implications for teaching the 

derivative of a complex-valued function. First, it provides necessary components of a 

potential learning trajectory for students seeking to develop their geometric reasoning 

about the derivative of a complex-valued function. Second, it suggests that students work 

beneficially with DGEs when placed in pairs and allowed some opportunity for free 

exploration of related algebraic and geometric reasoning. Finally, my research suggests 

that students’ focus must be directed to key points over the course of their mathematical 

investigations, even when aided by a dynamic geometric environment (DGE).  

Learning Trajectory 

 Curriculum designers should particularly take note of the potential learning 

trajectory my dissertation study demonstrated toward reasoning about the derivative of a 

complex-valued function as an amplitwist. This learning trajectory progresses as follows: 

students should develop reasoning about the geometry of lines in ℂ, reasoning 

geometrically about a constant derivative in terms of rotation and dilation, and reasoning 

about the need to reason specifically about small circles.  

  First, note that the ability to reason geometrically about multiplication of two 

complex numbers as a rotation and dilation is a critical starting point to this investigation. 

Without significant development of this initial geometric reasoning, reasoning about 
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rotations and dilations of small 𝜖 −neighborhoods proved difficult. Second, investigation 

of a complex-valued linear function allowed my participants to extend their reasoning 

about the derivative of real-valued functions as the slope of a tangent line to the complex-

valued case. In other words, students had difficulty generalizing their pre-existing 

geometric reasoning about the derivative as the slope of a tangent line until they 

investigated the complex-valued analog of a line. Finally, extending this geometric 

reasoning once again from complex-valued linear functions to general complex-valued 

functions proved to be an equally essential advancement.  

 This generalization occurred in one of my participant pairs while they worked on 

a task, which reversed the typical problem template from my dissertation interviews. In 

particular, Melody and Edward first gathered geometric information about a pre-

constructed function with the aid of GSP. They then utilized this information to 

reconstruct an algebraic formula for the given function, identify non-differentiable points, 

and estimate the function derivative’s value at a chosen point. This task proved essential 

in allowing my students to reason geometrically about the derivative of a complex-valued 

function as a local property. Before this task, they were able to verbalize that the 

magnitude of the derivative value at a point is the factor by which the function dilates a 

circle around that point, and the argument of the derivative value is the angle by which 

the function rotates a circle counterclockwise around that point. After this last task, my 

participants additionally verbalized that this property holds only for very small circles. 

 Previously in my proposal study, I discovered that reasoning geometrically about 

complex-valued linear functions as an essential step toward reasoning geometrically 

about the derivative of a complex-valued function as a more general amplitwist. This 
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finding was further supported by the findings of my dissertation study, as both Edward 

and Melody and Christine and Zane verbalized their difficulty in reasoning geometrically 

about the derivative before investigating a complex-valued linear function with a 

complex-valued derivative. They further stated that they believed this difficulty stemmed 

from the fact that they were not sure how to characterize a “line” geometrically in the 

field of complex numbers. Thus, they could not specify what they meant when they stated 

that the derivative value is “the slope of the tangent line.” 

 Investigating a complex-valued linear function appeared to shift their focus from 

reasoning about slope to reasoning about rotations and dilations of circles. The critical 

observation about linear functions that my participants seemed to require was that a linear 

complex-valued function transforms a circle by rotating it by an amount equal to the 

argument of the function’s derivative, and dilating it by a factor equal to the magnitude of 

the function’s derivative. This observation appeared to lessen my participants’ 

dependence on characterizing the derivative of a complex-valued function as the slope of 

a tangent line. Thus, instructors should take note to emphasize this particular geometric 

behavior in their complex analysis courses. 

 In particular, students first need to develop geometric reasoning about the fact that 

a “line” looks different in the complex plane than it does in the real plane due to 

differences in dimensionality and how functions are graphed in each setting. Note that 

this advancement requires that students first develop geometric reasoning about 

multiplication of two complex numbers 𝑧1 = 𝑅1𝑒𝑖𝜃 and 𝑧2 = 𝑅2𝑒𝑖𝜙 as the composition 

of a rotation and dilation. In particular, the resultant vector 𝑧1𝑧2 = 𝑅1𝑅2𝑒𝑖(𝜃+𝜙) is 

obtained by multiplying the magnitudes and adding the arguments of the input vectors 𝑧1 
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and 𝑧2. Participants seemed likely to notice that they were not familiar with the geometry 

of a “line” in the field of complex numbers during GSP investigations of various 

complex-valued functions such as 𝑓(𝑧) = 𝑧2 or 𝑓(𝑧) = 𝑒𝑧. While these functions are 

themselves not lines, the participants noticed that they could not geometrically reason 

about the tangent line at a given point in either of these functions. In particular, note that 

“the slope of the tangent line” is not always obvious for complex-valued functions. (For 

example, what does a line with a slope of 1 + 𝑖 look like?) This realization tended to arise 

naturally when asking participants to describe how they reasoned geometrically about the 

derivative of a complex-valued function.  

 Given students’ apparent tendency to rely heavily on slope while reasoning 

geometrically about the complex-valued derivative, at least at first, instructors may be 

able to capitalize on this tendency. In particular, they may wish to consider first 

demonstrating a real function graphed from ℝ to ℝ, rather than in the Cartesian plane ℝ2. 

They could then discuss the geometry of the real derivative in this context. This could 

potentially leverage the power of Danenhower’s (2006) Teaching Real, Doing Complex 

in a beneficial way by giving students the opportunity to generalize correctly from 

geometric reasoning about the derivative of real-valued functions to geometric reasoning 

about the derivative of complex-valued functions. Once students have developed 

reasoning about this difficulty in generalizing from the real plane, they should develop 

geometric reasoning about complex-valued linear functions (i.e., “lines” in the complex 

plane). The goal here is for students to reason that complex-valued linear functions have 

a constant derivative, and that such a function will always rotate and dilate a circle by the 

same amount.  
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 With this geometric reasoning about linear complex-valued functions in place, 

students need to notice that a complex-valued linear function will always rotate an input 

circle counterclockwise by an angle equal to the argument of the derivative and dilate the 

input circle by a factor equal to the magnitude of the derivative. This and the previous 

goal can be met via investigations with the aid of Geometer’s Sketchpad (GSP) of 

complex-valued linear functions such as 𝑓(𝑧) = (3 + 2𝑖)𝑧. Linear functions with 

complex-valued derivatives seemed better for this purpose than linear functions with 

either purely real or purely imaginary derivatives. This is due to the fact that exposing 

participants to a function with a purely real derivative seemed to lead them to reason that 

the real part of the derivative value at a point is the amount the function stretches a circle 

around that point. Similarly, participants’ explorations of a function with a purely 

imaginary derivative seemed to encourage them to reason that the imaginary part of the 

derivative value at a point is the amount the function rotates a circle around that point. In 

contrast, utilizing a function with a complex-valued derivative seemed to motivate 

students to more appropriately relate the amounts of rotation and dilation to the derivative 

value’s argument and magnitude, respectively, rather than to the real and imaginary parts.  

 In this study, I uncovered what appears to be a similar critical step on this learning 

trajectory: reasoning about “smallness.” This objective was accomplished by asking my 

participants to reason about derivative values given only geometric behavior. In 

particular, asking students to utilize geometric information to reconstruct algebraic 

inscriptions appeared to help them develop their reasoning further in this regard. As 

stated in Chapter III, most tasks called for students to construct a given complex-valued 

function and investigate geometric behavior given the function formula. That is, I 
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typically asked students to determine geometric information given an algebraic 

inscription. Recall further that one new task turned this format around by supplying only 

geometric behavior via GSP and requiring students to determine a specific derivative 

value at a point of their choosing. While only one group had enough time left at the end 

of the interview to explore this task in detail, one participant from this group observed 

that this task in particular helped him realize that the derivative value only describes how 

small circles around the point are affected. This observation is significant because in my 

previous iteration, I identified participants’ ability to reason about the derivative as a 

local property as one of the main recurring obstacles to their geometric reasoning.  

 In contrast, in this study, while working on Task 5, Edward commented that he 

realized that a circle of radius one could be considered quite large in certain contexts. He 

further observed that he needed to use a small enough circle so that he both “stayed 

away” from bad points and obtained a roughly circular output. At the conclusion of the 

task, he related a classroom discussion he had experienced with his complex analysis 

professor in which he remembered the professor telling him directly that the circle 

needed to be small. He reflected that he had not understood at the time, but that as a result 

of this task, he felt he finally had a grasp on what his professor meant by utilizing a 

smaller circle. Edward additionally credited his ability to make this discovery to the 

dynamic nature of GSP, commenting that Mathematica is “not as interactive as this.” 

With this discovery, Edward and Melody were able to focus on smaller circles in other 

functions as well and thus more precisely characterize the derivative of a general 

complex-valued function as an amplitwist.  
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 Thus, this task in particular may help students reason geometrically about the 

derivative as a local property, much as investigating complex-valued linear functions 

helped students reason geometrically about how the derivative relates to circles in 

general. That is, this task may help students move past reasoning geometrically about 

how functions map all circles just as investigating complex-valued linear functions may 

help students move past reasoning geometrically about the derivative of a complex-

valued function as the slope of a tangent line. GSP is noteworthy in that its usage made 

this task possible. Without such a program to give immediate feedback to my 

participants’ manipulations, providing such complete geometric information without any 

algebraic information would likely have proved impossible. This fact in itself is 

suggestive of Olive’s (2000) discussion of how the existence and usage of computer 

programs amplify and reorganize mathematical investigations by making different types 

of tasks possible.   

 Thus, contrary to Kieran’s (2007) and Lagrange’s (n. d.) concerns, my 

participants’ usage of GSP did not appear to lessen their focus or proficiency on symbolic 

forms. In fact, in task 5, my students’ reasoning about the correct algebraic function 

formula was largely motivated by their experiences with GSP. In previous tasks, Zane 

and Christine tried to leverage their algebraic reasoning to predict the geometric behavior 

of a complex-valued function, then used GSP to check these hypotheses. For example, 

Zane and Christine algebraically reasoned correctly about why the function 𝑓(𝑧) = 𝑒𝑧 

maps the imaginary line to the unit circle by reasoning about the real and imaginary parts 

𝑒𝑥(cos 𝑦) and 𝑒𝑥 sin 𝑦, respectively. Conversely, Melody and Edward used the 

geometric behavior from GSP to inform their algebraic inscriptions, most notably in Task 
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5 when they used GSP to correctly reconstruct a formula for an unknown rational 

function 𝑓(𝑧) =
2𝑧+1

(𝑧+𝑖)(1−𝑧)
. As previously noted, Edward credited his ability to do this to 

the important fact that GSP is “more interactive than Mathematica.”  

 Thus, Melody and Edward may have been able to accomplish Task 5 specifically 

due to the feedback possible from Geometer’s Sketchpad’s (GSP) allowance of relatively 

unconstrained movement of mathematical objects. That is, they were able to create a 

circle, make it smaller, and move it to various locations via clicking and dragging in 

smooth motions. Thus, far from harming Melody and Edward’s abilities to reason 

algebraically, direct usage of GSP appeared to accomplish the direct opposite by 

strengthening their ability to reason both geometrically and algebraically about the 

derivative of a complex-valued function. Instructors may thus wish to consider allowing 

their students the opportunity to freely explore mathematical concepts with the aid of a 

DGE in the hopes of further integrating their algebraic and geometric reasoning about 

these topics.  

 In particular, students need to develop their geometric reasoning to the point that 

they can verbalize that their reasoning about linear complex-valued functions only holds 

for small circles in the general case. In particular, students need to have the ability to 

reason about what “small” means in this context. This observation may help them 

connect to the algebraic definition of the derivative 𝑓′(𝑧) = lim𝑧→𝑧0
 

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
. Namely, 

it may help them realize that the limit requires considering all 𝑧 “close” to 𝑧0, which is 

strongly related to the idea of “smallness”. Like the previous goal, this is another critical 

development for students to make in reasoning about the derivative of a complex-valued 

function as an amplitwist, and it appears to take some time to help students develop this 
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reasoning. The best way I found in my study to meet this goal was to create a rational 

function with the aid of GSP, and ask my participants to identify a derivative value at a 

point of their choice. I additionally asked them to identify non-differentiable points. 

 Through the course of this investigation, they reasoned that utilizing small circles 

had practical benefit in both staying away from “bad” non-differentiable points and 

giving them more precise information about the one point on which they really wanted to 

focus. Finally, students need to develop geometric reasoning that a point is differentiable 

and non-zero exactly when the function maps a small circle to another nearly circular 

output shape. This development in geometric reasoning seemed to occur naturally in my 

dissertation study, particularly while participants used geometric information to construct 

an algebraic inscription for a function with an unknown formula.  

Pairs of Students 

 Placing my participants in pairs seemed to help them advance their reasoning 

about the derivative of a complex-valued function in a few ways. First, this pairing 

allowed students to take on distinct roles within the group, where one participant 

manipulated GSP directly, while the other participant observed and reflected on the 

results and strategized about future direction. These roles were not rigid, as participants 

in both group switched roles with each other several times over the course of the tasks. 

While I initially directed them to switch, over the course of the tasks they began to switch 

roles with each other without such direction.  

 Second, my participants informed me that they were glad that they were not 

required to tackle such an advanced topic alone, and that they were likely to feel 

unmanageably frustrated were they to undertake these tasks without the help of a fellow 
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student. Thus, pairing the students helped mitigate this inherent frustration. Usage of GSP 

itself may have helped mitigate frustration and advance both geometric and algebraic 

reasoning in the light of my theoretical perspective of embodied cognition.  

 Finally, it should be noted that I typically did not manipulate GSP for the 

participants, and I allowed them to wander “off-course” so as to allow them to fully 

engage in an exploration of mathematics. Thus, I suspect that it is essential to allow 

students in a classroom to carry out their own investigations with the aid of a dynamic 

geometric environmentrather than simply watch the teacher manipulate a program at the 

front of the classroom for them, or follow overly detailed instructions. By allowing my 

students to engage in explorations such as the behavior of 𝑓(𝑧) → 𝑓′(𝑧), they learned 

properties of transformations that were likely never addressed in their complex analysis 

classroom, or at least did not fit nicely under the typical characterization of the derivative 

of a complex-valued function as an amplitwist.  

 Thus, instructors may wish to consider pairing students together when allowing 

students to independently engage in the mathematics, to prevent their students from 

feeling too overwhelmed with the information they acquire. More generally, this 

implication suggests that students are unlikely to develop their geometric reasoning 

through lectures alone. Rather, students appear more likely to develop such reasoning if 

some sort of active engagement is required of them. Usage of a DGE such as GSP could 

greatly encourage this sort of active engagement. 

 Therefore, given the implications for teaching and research, curriculum designers 

should keep in mind Pea’s (1985) discussion about how the usage and existence of 

mathematical technology changes the nature of mathematical investigation itself. In 
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particular, my participants’ usage of GSP naturally focused them on specific aspects of 

mathematics, some of which are not covered in the traditional complex analysis 

classroom, such as the behavior of the transformation 𝑓(𝑧) → 𝑓′(𝑧). The existence of 

technology enables unique and beneficial mathematical tasks, such as a task that requires 

students to reconstruct a derivative value at a point and an algebraic inscription for the 

function given only dynamic geometric information garnered from GSP investigations.  

Directed Focus 

 Given that a large amount of such information can be gathered from Geometer’s 

Sketchpad (GSP) and other similar DGEs, instructors must take care to help students 

focus on relevant aspects of the mathematical concepts they are investigating. In the 

context of research, instructors could leverage the power of Lobato, Rhodehamel, and 

Hohensee’s (2012) and Lobato, Hohensee, and Rhodehamel’s (2013) Focusing 

Framework by calling students’ attention to the most relevant details of a mathematical 

topic. For example, to encourage development of geometric reasoning about the 

derivative of complex-valued functions, instructors of such classes might consider first 

constructing a graph of a real-valued function 𝑓: ℝ → ℝ as mapping from an input real 

line to an output real line, mirroring the typical way of graphing complex-valued 

functions. In fact, Needham describes exactly this construction in Visual Complex 

Analysis (1997). If students successfully reason about this way of mapping real functions, 

they may therefore more readily reason about the graphs of complex-valued functions.  

 Graphing a function 𝑓: ℝ → ℝ instead of in the Cartesian plane ℝ2 also allows for 

discussions on the geometric properties of the derivative in relation to this way of 

graphing 𝑓. In particular, students might notice that a larger derivative value at a point 
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suggests that a small interval around that point maps to a larger interval around the image 

of the point. That is, for a real-valued function, the magnitude of the derivative value is 

the factor by which 𝑓 dilates a small interval around that point. This aspect of the 

derivative thus generalizes precisely to the complex-valued case. If students are directed 

to focus on this new way of graphing a real-valued functions, the only new aspect of 

reasoning about the derivative of complex-valued functions involves how much the 

function rotates a small circle around a point. Establishing reasoning about a function as 

graphed from the real line to the real line would allow students the opportunity to develop 

geometric reasoning about the derivative as a local dilation of an appropriately small 𝜖 − 

neighborhood.  

 This way of graphing a real-valued function could thus represent a reasonable 

transitionary step between reasoning geometrically about the derivative of a real-valued 

function and reasoning geometrically about the derivative of a complex-valued function. 

While actually investigating the geometry of the derivative of a complex-valued function, 

instructors should call attention to the fact that linear functions always rotate and dilate 

every circle by the same amount, and that these amounts are given precisely by the 

argument and magnitude of the linear function’s derivative. They should additionally 

help students focus on the fact that investigating small input circles with the aid of GSP 

both increases the precision of their measurements with the software and helps them 

avoid non-differentiable points. With this guidance, students’ investigations with GSP or 

a similar DGE may significantly help students develop their geometric reasoning about 

the derivative of a complex-valued function. 
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 If students are guided in such a way, Thinking Real, Doing Complex might 

actually function as a beneficial tendency if students are guided toward proper 

generalization. Students may more easily generalize from a real-valued graph as 

represented from ℝ to ℝ than a graph in ℝ2, as the former set-up is more closely related 

to the typical representation of the graph of a complex-valued function. However, my 

participants either tended to generalize incorrectly or were aware they did not know how 

to generalize correctly. Thus, as in Danenhower’s (2006) research, students’ tendencies 

toward Thinking Real, Doing Complex seemed more of a hindrance than a help. 

 Furthermore, my participants’ ability to reason effectively with various forms of 

complex numbers may have helped them develop their geometric reasoning about the 

derivative of a complex-valued function not only as an amplitwist, but also as a local 

linearization. Therefore, in the classroom, it may be beneficial for lecturers to help 

students notice the variety of strategic reasons for converting between various forms of 

complex number. For example, they may consider explicitly directing attention to the fact 

that while the Cartesian form simplifies vector addition, the polar form highlights rotation 

and dilation amounts. Through this careful direction of students’ attention in the 

classroom, lecturers may be able to help students further develop their ability to reason 

about complex numbers via both algebraic and geometric reasoning methods.  

 Therefore, curriculum designers may wish to consider including a “lab” section 

for complex analysis courses, or allowing all sections of the course access to university 

computers to enable students within the course to carry on their own mathematical 

investigations as they see fit within the context of the course. My research thus suggests 

that there is the potential for a considerable improvement in students’ geometric 
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reasoning about the derivative of a complex-valued function as an amplitwist when they 

are allowed to use GSP in pairs in a semi-directed setting.  

 Limitations and Future Research 

 As this is a case study, we cannot expect the results to generalize beyond the 

specific circumstances surrounding my participants, research setting, and the tasks 

themselves. Some constraints of this study involve how student pairs were selected, the 

differing time frames of the two groups’ interviews, and occasional technological 

difficulties. 

 In my dissertation study, only five students volunteered, and I could not obtain a 

sixth with which to form a third pair. Therefore, my participants were essentially self-

selected. This constraint could be addressed by sampling from a larger complex analysis 

class or a set of similar complex analysis classes. Students’ typical reason for not 

volunteering was that the eight-hour interview sequence represented too large a time 

commitment too close to finals week. 

 Another constraint involved the timing of the interviews. To improve my 

proposal, I stated that I would interview my pairs of students relatively close to the 

conclusion of the complex analysis class rather than the end of the subsequent semester. 

As Edward and Melody were also concerned about the time commitment and their 

impending final exams, I could not schedule their interview sequence at a mutually 

agreeable time for both of these participants at the end of the same semester. Thus, I 

interviewed this group at the beginning of the following semester. Zane and Christine, in 

contrast, were interviewed at the beginning of the summer, immediately after their 

complex analysis class had concluded. 
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 One additional significant difficulty involved the difficulties imposed by 

technology such as Geometer’s Sketchpad (GSP) and the cameras used to record video 

data. In my proposal, I asked other graduate students to help me ensure appropriate 

camera angles. However, I could not find any graduate students to help me with the 

camera again, so I attempted to change the camera angle where appropriate myself. This 

mostly involved rotating the camera to point at the chalkboard when participants worked 

at the chalkboard, and at the computer when they worked with GSP, and I was able to do 

this for the most part. On a few occasions, though, I neglected to rotate the camera, so I 

may have lost some data involving participants’ gestures. I believe I successfully 

captured all of their chalkboard formulas with the camera.  

 There was a related problem with the screen-capture software, in that it failed to 

record my participants’ GSP work for a small number of intervals in the interview 

sequence due to the fact that the computer crashed immediately prior to these intervals. 

During this time, the camera was placed correctly and recording, so at all points in the 

interview I was missing at most one of my two data sources. In the majority of the 

interview, all data-gathering devices were functioning correctly. Despite all these 

difficulties, sufficient data were collected to help address the research questions. 

However, many of these conditions could be improved in a future research study. 

 One possible direction for future research is to increase the breadth of these 

results by implementing dynamic geometric environments (DGEs) on a large scale in real 

classrooms and collecting quantitative data on student performance on tasks related to 

reasoning about the derivative of a complex-valued function as an amplitwist. Such 

research would theoretically allow these or related results to achieve some level of 
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generality. Another possible direction is to increase depth of the results in this case study 

by iterating on the last task specifically. My participants reported beneficial effect from 

constructing algebraic information from exclusively geometric information from GSP, so 

further research on the effects of similar tasks for other students could prove highly 

interesting.   

 Further study is needed on this last task in particular because only Melody and 

Edward devoted a substantial amount of time to this task. My other pair of participants, 

Christine and Zane, looked at the rational function briefly at the conclusion of the 

interviews and merely stated they were glad they did not get to that task given how 

intimidating it appeared. Thus, iteration on this last task, even in another case study, 

could strengthen the results of this study by providing more information about how other 

students react both to the presentation and the execution of the task. Christine and Zane 

may have felt differently about the task had they actually carried out the necessary 

investigations, and may even have further developed their geometric reasoning about the 

derivative of a complex-valued function.  

 While my dissertation study was focused on Needham’s (1997)  

characterization of the derivative of a complex-valued function as an amplitwist, he 

describes other possible geometric characterizations of the derivative. Thus, future 

iterations could potentially build tasks around these other possible characterizations. For 

example, future participants could develop reasoning about the derivative with respect to 

a vector field described by the Jacobian matrix, or discover a way to reason geometrically 

about the Cauchy-Riemann equations directly. Another possibility is to direct students 

toward investigating conformality more completely in the context of the derivative of a 
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complex-valued function. That is, participants could utilize GSP to investigate how 

functions transform shapes other than circles with and without spokes.  

 For example, future participants might be asked to investigate how the function 

𝑓(𝑧) = 𝑧2 transforms a square grid that covers the Argand plane. Participants might also 

investigate the deformation of visual pictures to help them meet this goal. While 

transforming a circle with spokes with the aid of Geometer’s Sketchpad (GSP) seems to 

have been enough to allow my participant to reason geometrically about rotation as well 

as dilation, transforming a grid or solid picture may highlight even more geometric facets 

of a given transformation. For example, transforming a more solid picture may encourage 

students to develop focused geometric reasoning about the localized distortions they see 

in larger copies of the picture, or they may more quickly notice that smaller copies of the 

picture are relatively undistorted by the transformation. Thus, transforming a grid or solid 

picture may particularly help students develop geometric reasoning that allows them to 

verbalize that this aspect of the derivative of a complex-valued function is a local 

property.  

 One additional concept Needham (1997) discusses is how to reason geometrically 

about differentiating a power series. Therefore, future participants could potentially be 

asked to build up geometric reasoning about the derivative of a complex-valued function 

by first reasoning about the derivative of complex-valued polynomials and then building 

up to the general derivative via Taylor series. One final potential improvement for future 

iterations is to conduct an exit interview after giving students the opportunity to ask 

whatever questions they wished. This interview could provide more in-depth affective 
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information about how students reacted to the tasks and what they personally thought 

they learned.  

 With these improvements in place, future iterations may give rise to additional 

discoveries about how students develop geometric reasoning about the derivative of a 

complex-valued function. Different variations on the tasks or transformed geometric 

objects may result in a different rate of development of geometric reasoning. As a 

naturally biased human, my role as interview represents another significant constraint on 

the study. As such, more consistent and intentional probing may help students develop 

more complete geometric reasoning about the derivative of a complex-valued function as 

an amplitwist. Students may discover a variety of new ways to utilize GSP to beneficial 

effect. In general, future iterations are likely to discover different variations on the 

learning trajectory described in this chapter. They may additionally confirm previously 

discovered relationships and discover new relationships between students’ usage of GSP, 

gesture, speech, inscriptions, and reasoning. These relationships may then be leveraged to 

improve teaching practices, inform future research, and guide the development of 

geometric reasoning involving the derivative of a complex-valued function.  
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Title:  Students’ Development of a Dynamic Conception of the Derivative of a 

Complex Function  

 

A. Purpose 

 

1. The purpose of my research is to discover students’ naturally occurring thought 

patterns and strategies while they are attempting to develop a more dynamic idea 

of a complex derivative. Sfard (1998) argues through her own research that 

having a metaphor of mathematical concepts involving motion is essential to 

viewing all aspects of a particular topic as a single, coherent whole. She adds that 

experts tend to possess such a dynamic metaphor, while Danenhower (2006) 

suggests that students may not be able to see two aspects of a concept as part of 

the same idea, and may fixate on a more static aspect of the concept-a view 

emphasized by formal mathematical definitions. The means by which students 

travel to and arrive at such a view of any mathematical concept is therefore a 

topic of great interest. Núñez (2004) suggests that fictive motion-the idea that we 

regularly refer to things that do not move as possessing motion (e.g., the fence 

runs along the road)-may be a reasonable way to connect static formal textbook 

definitions with useful intuitive dynamic metaphors of a given mathematical 

concept. Furthermore, while there is an established body of literature related to 

the derivative of real functions, much of which has proven quite useful, the 

literature on the derivative of complex functions seems to be relatively sparse, so 

extending the research on real functions to the analogous case on the complex 

plane seems natural. Finally, I intend to incorporate the gesture students produce 

during the task-based interviews into my analysis to help further understand each 

student’s developing patterns of thought and strategies (Goldin-Meadow, 2002). 

This aspect of my research will help extend the existing research on gesture, 

which has previously been conducted primarily on elementary students and 

teachers. This project will help extend those findings to the realm of 

undergraduate students and teachers.    

 

2. My project falls within the expedited category, since I am collecting video and 

audio data of the participants, which are data sources which could potentially 

identify the participants of the study and breach confidentiality. However, I am 

neither researching a vulnerable population nor increasing risk to participants 

beyond what is typical of enrolling in an undergraduate complex analysis course, 

and talking about the associated experiences. We will exclude students under 18 

from participation in the study. 
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B. Methods – Be specific when addressing the following items. 

1. Participants 

The professor who taught the most recent undergraduate complex analysis course 

will be asked for their recommendations of students to participate in the guided 

discovery of a dynamic conception of the derivative of a complex derivative. 

These recommendations will be utilized to select about 4-6 students to take part in 

the study. Participation in the survey is voluntary and students selected will have 

the opportunity to decline or discontinue participation at any point in the study 

without additional risk or loss of benefit. 

 

2. Data Collection Procedures 

The researcher will observe and video-tape an undergraduate complex analysis 

course to obtain data regarding what concepts the participants learned prior to the 

start of this project. Permission to collect video data will be obtained from the 

students in this course via consent forms for these non-interview participants 

(Document 1).These data will additionally be utilized to inform the selection of 

students for participation in this study. The researcher will begin data collection 

from the selected students by distributing consent forms for participants 

(Document 2) to the students recommended by the previous undergraduate 

complex analysis instructor, which will inform the participants of their right to 

decline or withdraw from the study, as well as provide information regarding the 

purpose of the study. No professor other than my advisor will know the 

correspondence between pseudonym and student, so it is unlikely that any 

findings reported will affect the students’ grades in future college courses. 

Students will be interviewed in pairs, to allow for the possibility of support and 

collaboration and because students are more likely to share their thinking 

processes with another student. The researcher will present each pair of students 

with mathematical tasks on which to work related to complex analysis, some of 

which will give the students opportunity to explore mathematical ideas via the 

Geometer’s Sketchpad computer program. The students will be asked to explain 

their thinking regarding each task and may be asked additional follow-up 

questions designed to clarify the students’ ideas to the researcher. (See Document 

3 for outline of tasks and potential categories of follow-up questions.) Each 

student pair will be interviewed over the course of several days, based on their 

availability. At the moment, it is estimated that no more than four 2-hour long 

interviews will be necessary. Data will be video and audio recorded, and the 

researcher will not refer to any participant by name in any written findings. 

Another graduate student will help me record the interviews by controlling 2 

cameras, one in the front of the room, and one in the back. Finally, a computer 

will be utilized to record the students’ work on Geometer’s Sketchpad.  
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3. Data Analysis Procedures 

The professor’s recommendations and the researcher’s observations and video 

data of students will be utilized as a criterion for purposeful selection of 

participants for the guided discovery of additional mathematical ideas related to 

the complex derivative. Since the purpose of the study is largely related to how 

exactly students learn new material regarding the derivative of complex functions, 

the researcher wishes to obtain a sample with students that will successfully make 

progress through some of the presented mathematical tasks. Such a sample also 

serves to minimize the risk and discomforts associated with mathematically 

induced anxiety.  Preliminary data from each interview will be considered in 

conducting the next, providing potential insight regarding students’ current 

thoughts and suggesting further possible questions to ask the students or ways to 

help them progress. Therefore, it will be necessary to record all the students’ work 

regarding the questions asked, including the work they do on the computer in 

Geogreba or Geometer’s Sketchpad. The researcher will individually code video 

and audio data, attempting to produce mutually exclusive and exhaustive 

categories in which to sort data. The computer program ELAN will be used to 

transcribe all participants’ hand gestures and spoken words. ELAN will also be 

used for analysis, as it contains the capability of associating the transcriptions 

with the time at which it occurs in the video files. In addition to synchronizing 

gesture, speech and verbiage, ELAN also allows for interpretations to be written 

within the program and associated with the relevant spoken phrases or gestures. 

After sufficient refinement of the data, each participant and each pair of 

participants will be described in terms of these produced categories. In particular, 

the patterns and progressions of thinking about the presented tasks utilized by 

each student and by each student will be described as completely and accurately 

as the data makes possible. The overall goal of the data analysis is to discover one 

or more possible ways in which students could reasonably develop an intuitive 

dynamic sense of the derivative of a complex function. If possible, the researcher 

will ask the participant for verification of their analysis. Data analysis will be 

overseen by the researcher’s advisor. 

 

4. Data Handling Procedures 

Each pair of students will be video and audio recorded, and these data will be 

stored on a secure folder on a password-protected computer which is located in a 

locked office. The video and audio data of the class will also be stored on a secure 

folder on the same password-protected computer within the same locked office. 

The researchers will assign pseudonyms to each participant when presenting data 

to further increase confidentiality. Only the researcher and his advisor will have 

access to these data, and only the researcher and his advisor will know which 
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pseudonym corresponds to which student. The researcher’s observation notes will 

utilize only pseudonyms, and thus will not refer to any student by name. These 

notes will be kept in a locked office; only the researcher will have access. Any list 

corresponding pseudonyms to participants will be kept on a secure folder on a 

password-protected computer located in a locked office, and at most one such list 

will be generated. The list of pseudonyms will be destroyed upon completion of 

the study, and the video and audio data will be destroyed 5 years after the 

completion of the study. The researcher’s advisor will keep consent forms for 5 

years after the completion of the study. 

 

C. Risks, Discomforts and Benefits 

There are no foreseeable risks beyond the risks normally associated with 

enrollment in a college-level class on complex analysis. Pairs of students will be 

presented with a variety of mathematical tasks related to the complex derivative 

in an effort to help the students naturally develop a more dynamic view of that 

concept. Students will be asked questions related to their work on the given 

problems, but remain free to decline answering any question posed or withdraw 

from the study completely at any time. There are no direct benefits to students for 

participation in the study. However, the qualitative nature of our study may lead 

to knowledge regarding the nature and effectiveness of naturally occurring 

student thought patterns and progressions regarding the derivative of complex 

functions. The knowledge developed may benefit both students and teachers of 

future complex analysis classes. 

 

D. Costs and Compensations 

Each student will be compensated for participation in this study with a $25 

Starbucks gift card. Participation is voluntary. The only additional foreseen costs 

are the time costs associated with the implementation and execution of the 

teaching experiment, and the time cost resulting from the subsequent video data 

analysis. 

E. Grant Information (if applicable) 

We have not and will not apply for any grants or any funding regarding the 

execution of this study. 
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Document 1: Consent Form for Non-Interview Participants 

 

 

 

 

 

 

CONSENT FORM FOR HUMAN PARTICIPANTS IN RESEARCH 

UNIVERSITY OF NORTHERN COLORADO 

 

 

Project Title:   Students’ Development of a Dynamic Conception of the Derivative of a 

Complex Function 

Researcher: Jonathan Troup, M.S., School of Mathematical Sciences 

Phone:   970-351-2907  E-mail:  jonathan.troup@unco.edu 

Research Supervisor: Dr. Hortensia Soto-Johnson, School of Mathematical Sciences 

Phone:  970-351-2425  E-mail: hortensia.soto@unco.edu 

 

Purpose and Description: The primary purpose of this study is to determine potential 

effective ways to teach the concept of the derivative of a complex derivative to 

undergraduate students enrolled in complex analysis. We are particularly interested in 

how students develop a geometric understanding of the derivative of a complex-valued 

function. In order to investigate this phenomenon, we request that you allow us to video-

tape you while you are in the complex variables class (Math 460). 

 

This video data will allow us to see various ways in which you communicate your 

understanding of complex variables; this recording will allow us to watch these offered 

explanations multiple times, and will be utilized to corroborate my classroom 

mailto:jonathan.troup@unco.edu
mailto:hortensia.soto@unco.edu
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observations. I will be present every day during class, but will not be an active participant 

during class. I will only video-tape you and take observation notes. You do not need to 

worry about saying anything incorrect, as we are solely interested in how you reason 

through and communicate your geometric ideas about complex variables and the 

derivative of a complex-valued function.  

 

Given the purpose of our research, we would like to share portions of your video-clips 

during presentations and it is possible that we may want to incorporate photos that 

illustrate your gestures and/or diagrams in a publication. Thus, we are requesting 

permission to do so, but if you would prefer that we protect your identity, then we will 

honor your request. In such a case, we will only use your responses and assign you a 

pseudonym – care will be taken to protect your identity.  

 

Please note that you are not under any obligation to participate in this research and your 

decision to not participate in this research will not impact your course grade. You also 

have the option to participate in different aspects of the research. You may choose to: 

a. participate in the video-taping where we are allowed to use episodes 

showing your face and where we are allowed to use your student work, 

b. participate in the video-taping where we are NOT allowed to use episodes 

showing your face but where we are allowed to use your remarks and your 

student work, 

c. not participate in the video-taping but allow us to use your student work, 

or 

d. not participate in the research at all. 

 

All data will be stored on my computer, which is password protected. Thus, no one will 

have access to these data other than me or Dr. Soto. 

 

We foresee no risks to participants beyond those that are normally encountered in a 

classroom setting and possibly some discomfort if you do not feel comfortable being 

video-taped or are embarrassed by your work. It is possible that we may accidentally 

video-tape you, especially if you are working closely with someone who has agreed to be 

video-taped. In such circumstances, we will attempt to edit the video accordingly. Please 

feel free to contact us if you have any questions or concerns about this research at 

jonathan.troup@unco.edu. We appreciate your willingness to help us with our research. 

mailto:jonathan.troup@unco.edu
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So that you may benefit from this study, participants may ask for a copy of the report 

after the completion of the study. 

 

Participation is voluntary. You may decide not to participate in this study and if you 

begin participation you may still decide to stop and withdraw at any time. Your decision 

will be respected and will not result in loss of benefits to which you are otherwise 

entitled. Having read the above and having had an opportunity to ask any questions, 

please sign below if you would like to participate in this research. A copy of this form 

will be given to you to retain for future reference. If you have any concerns about your 

selection or treatment as a research participant, please contact the Office of Sponsored 

Programs, Kepner Hall, University of Northern Colorado Greeley, CO  80639; 970-351-

2161. 

 

 

If willing to participate in classroom video-taping and willing to disclose your 

identity i.e., agreeing to have your video shared with others at conference 

presentations, classes, publications, etc. please complete the following. 

 

________________________________________________________________________ 

Name (please print)            Signature                         Date 

 

Jonathan 

Troup_________________________________________________________________ 

Researcher’s Name    Research’s Signature                      Date 

 

If willing to participate classroom video-taping but prefer to have identity protected, 

please complete the following. 

 

_______________________________________________________________________ 

Name (please print)            Signature                         Date 
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Jonathan 

Troup_________________________________________________________________ 

Researcher’s Name    Research’s Signature                      Date 

 

 

If not willing to participate in the research, please complete the following. 

 

_______________________________________________________________________ 

Name (please print)            Signature                         Date 

 

Jonathan 

Troup_________________________________________________________________ 

Researcher’s Name    Research’s Signature                      Date 
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Document 2: Consent Form for Interview Participants 

 

 

 

CONSENT FORM FOR HUMAN PARTICIPANTS IN RESEARCH 

UNIVERSITY OF NORTHERN COLORADO 

Project Title:   Students’ Development of a Dynamic Conception of the Derivative of a 

Complex Function 

Researcher: Jonathan Troup, M.S., School of Mathematical Sciences 

Phone:   970-351-2907  E-mail:  jonathan.troup@unco.edu 

Research Supervisor: Dr. Hortensia Soto-Johnson, School of Mathematical Sciences 

Phone:  970-351-2425  E-mail: hortensia.soto@unco.edu 

 

Purpose and Description: The primary purpose of this study is to determine potential 

effective ways to teach the concept of the derivative of a complex derivative to 

undergraduate students enrolled in complex analysis. No more than four separate 2 hour 

interviews will be conducted in which you and another student previously enrolled in 

complex analysis will be asked to collaborate on various mathematical tasks related to the 

derivative of a complex function. Since I am particularly interested in how you and other 

students develop purposeful strategies and ways of thinking regarding complex analysis, 

these tasks are designed to be somewhat challenging. To help offset the increased 

difficulty, you will be interviewed in conjunction with another student who has also taken 

complex analysis, and with whom you may collaborate on any task or question posed. 

You will be asked to explain your methods in approaching the problems presented, and 

may be asked additional clarifying follow-up questions based on your responses. You 

may decline to answer any question posed, and if you become too uncomfortable with the 

tasks presented or the interview questions asked, you may choose to stop the interview 

and/or withdraw from the study at any time without additional risk or loss of benefits. We 

will document each interview with video and audio recording equipment, to which only 

the researcher and his advisor will have access. 

 

mailto:jonathan.troup@unco.edu
mailto:hortensia.soto@unco.edu
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If you participate in any aspects of the research, then we will compensate you with a $25 

Starbucks card at the conclusion of the interviews. We will assign each participant a 

pseudonym to help protect confidentiality. Pseudonyms will also be used to report data; 

no one will be referred to directly by name. Only the researcher and his advisor will 

know which pseudonyms correspond to which student. Data collected and analyzed for 

this study will be kept in a secure folder on a password-protected computer located in a 

locked office, which is only accessible by faculty and graduate students. 

 

We foresee no risks to participants beyond those that are normally encountered in a 

classroom setting. Please feel free to contact us if you have any questions or concerns 

about this research at jonathan.troup@unco.edu. We appreciate your willingness to help 

us with our research. So that you may benefit from this study, participants may ask for a 

copy of the report after the completion of the study. 

 

Participation is voluntary. You may decide not to participate in this study and if you 

begin participation you may still decide to stop and withdraw at any time. Your decision 

will be respected and will not result in loss of benefits to which you are otherwise 

entitled. Having read the above and having had an opportunity to ask any questions, 

please sign below if you would like to participate in this research. A copy of this form 

will be given to you to retain for future reference. If you have any concerns about your 

selection or treatment as a research participant, please contact the Office of Sponsored 

Programs, Kepner Hall, University of Northern Colorado Greeley, CO  80639; 970-351-

2161. 

 

 

 

         

Subject’s Signature    Date 

 

 

         

Researcher’s Signature    Date  

mailto:jonathan.troup@unco.edu
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Document 3: Interview Topics and Types of Task 

Guide to Tasks and Interview Questions 

 

Tasks: 

1. I will begin by asking the participants how they think about the derivative of a 

complex valued-function. 

2. I will ask them questions related to the geometry of repeated multiplication by a 

complex number. (I.e., What happens to the complex plane when it is multiplied 

by 𝑖? How much is the complex plane rotated? How much is the complex plane 

dilated? What happens if I multiply by the same complex number several times. 

This concept of iterated multiplication is related to spiral Nautilus pictures) In this 

step and the next, students will utilize a program such as Geometer’s Sketchpad or 

Geogebra as an aid to their inquiry regarding the above questions and the 

derivatives of various complex functions. 

3. Students will continue to experiment with derivatives of various complex 

functions in a program like Geometer’s Sketchpad or Geogebra to help them 

develop an intuitive and dynamic sense of how the derivative behaves in the 

complex plane. This step should help the students think more readily about the 

derivative of complex functions in later tasks. This computer program will enable 

students to see visually and dynamically on the computer screen how the 

derivative of complex functions affects the complex plane. Ideally, this program 

will allow the students to relate the concept of the derivative to the function’s 

behavior more directly and intuitively. 

4. The next natural step is to guide the students through an exploration of quadratic 

complex functions and their linearizations (closely related to derivatives) at 

various local points. (I.e., what is the linearization of the function 𝑓(𝑧) = 𝑧2 at 

the point 𝑧 = 𝑖? At the point 𝑧 = 0? What about the other points of the complex 

plane? In addition, they will explore questions similar to the above with other 

functions such as 𝑓(𝑧) = 𝑧3 

5. If time permits, I will explore the exponential function, by asking the students 

(and nudging them at appropriate times) to design a Taylor polynomial that 

approximates it. (E.g., 𝑊 = 𝑓(𝑧) = 1 + 𝑧 +
𝑧2

2
+

𝑧3

3
 

 

Possible Interview Question Types  

Note: This is certainly not an exhaustive list, as probing questions must naturally arise 

from the current context of each interview, and the kind and amount of progress made by 

each student. However, this list should at least give a good idea of the kinds of questions 

I intend to ask. 

1. Can you relate your algebraic work to a geometric picture? 

2. How are you thinking about this problem? 

3. What are you thinking right now? 

4. How do you know that’s true? 
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5. Can you repeat what the other student just said? 

6. Do you agree (with the other student)? 

7. Why do you agree/disagree (with the other student)? 

8. Do you have anything to add (to what the other student said)? 

9. How else could you think of this problem? 

10. How else could you think of this concept? 



 
 

 

 

 

APPENDIX B 

LAB WORKSHEET FOR TASK 1 
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Lab 1:  

Instructions: 

We will begin by constructing a graph and unit circle.  

1. First click the Graph drop-down menu and select “Show Grid” 

2. Click the A toolbar (4
th

 from the bottom) and double-click on the red point at the 

origin. Type “O” in the Label field in the pop-up window 

3. Double-click on the red point at (0,1) and label this point 1.  

4. Now click the “Construct circles” icon on the left toolbar (3
rd

 icon from the top on 

the left) and click on the origin.  

5. Now drag the mouse away from this point to increase the radius to 1. Click the 

circle again when the radius is at the proper size.  

Note: You can always zoom in or out by selecting the point 1 and moving it closer to or 

farther away from the origin. Be careful not to move the point too close to the origin (i.e., 

zoom too far away), or it may be difficult to reselect this point when you need to. 

Next we need to construct the transformation 𝑧 → 𝑧2. 

1. Select the Point tool (2
nd

 icon from the top on the left) and click once somewhere 

on the grid to place the point there 

2. Select the A toolbar and double-click on this new point. Label it 𝑧.  

3. Select this point (if it isn’t already) and go into the “Measure” dropdown menu. 

Select “Abscissa(x).” This will output the 𝑥 −coordinate of 𝑧.  

4. Make sure that only the point is still selected (you may have to unselect the value 

you just measured) and go into the “Measure” dropdown menu. Select 

“Ordinate(y)” to output the 𝑦 −coordinate of 𝑧.  

5. Go to the “Number” dropdown menu and select “Calculate.” You can click on the 

coordinates you just measured to input them into the calculator. Use this 

calculator to calculate the real part of 𝑧2 with an appropriate expression. Click 

“Okay” when you’re done. Now calculate the imaginary part of 𝑧2.  

6. Go to the “Graph” dropdown menu and select “Plot points.” Click the real part of 

𝑧, then the imaginary part of 𝑧, and click “Okay.” Your new point should now be 

on the graph. Click “Done.” 

7. Label this new point 𝑧2. 

8. Select the point 𝑧 and then 𝑧2 (in this order; you will need to hold down the shift 

key in order to select both points.) Under the “Transform Menu” click “Define 

Custom Transform.” A box should pop up that says 𝑧 → 𝑧2 transform. Click 

“Okay.”  
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This graph should now show a point 𝑧, and the corresponding point 𝑧2. Try dragging 𝑧 

around to various points on the graph.  You can select a point with the Transformation 

Arrow tool at the top of the left toolbar. 

Warm-up Questions: What do you expect the point labeled 𝑧2 to go if you put 𝑧 

on 1 + 𝑖? Why? Did it go where you expect? 

Where do you think you should place 𝑧 to send 𝑧2 to 𝑖? Test your theory. 

What do you think will happen to 𝑧2 if you move 𝑧 around the green unit circle 

once? Test your theory. 

Now we will construct a circle and apply the transform 𝑧 → 𝑧2 to the whole circle. 

1. Click the “Construct circles” icon on the left toolbar (3
rd

 from the top) and click 

somewhere on the graph to place the center of your circle there (Don’t worry too 

much about location; you will be able to move it later.)  

2. Now drag the mouse away from this point to increase the radius. When you are 

happy with the size of your circle, click the mouse again to create the circle. 

(Again, you will be able to change the radius later.) Your circle will automatically 

be selected. 

3. Without unselecting the circle you just constructed, go into the Display drop-

down menu, and select a “Color” for your circle. (I used red, but you can use 

something else if you like.)  

4. Now, go into the Transform drop-down menu, then click  “𝑧 → 𝑧2 transform” at 

the bottom of the menu. This will apply this transformation to your whole circle. 

The “output” shape will automatically be selected. 

5. Go into the Display drop-down menu again and choose a different color for the 

“transformed circle.” (I used blue, but again, you can pick a different color.) This 

is intended to help you keep track of your input and output shapes more easily.  

6. Remember to click on the Transformation Arrow tool again before you start 

trying to drag your circles around! (Otherwise you’ll just end up making more 

circles) 

7. Move your circle around the graph and observe how the output shape changes as a 

result. Try to predict the behavior of the output in advance. 

Some pointers: 

 If you select the center point and move it, the other point you created (the one 

actually on the circle) will remain fixed, but the radius will change. 

 If you select the point on the circle, the center point will remain fixed and the 

radius again will change.  
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 You can also select the circle itself. This will preserve the radius of the circle. 

(i.e., make sure to select the circle itself, and not the points, if what you want 

to do is drag the circle around the graph without changing anything else about 

it. 

Questions: What do you think the output will look like if the input is a circle 

where 1 + 𝑖 is within the area enclosed by the circle? Test your theory.  

What do you think the output will look like if the input is a circle where 2 is 

within the area enclosed by the circle? Test your theory, 

What do you think the output will look like if the input is a circle where the origin 

is within the area enclosed by the circle? Test your theory. 

Now we will investigate what happens when we change the radius of circles at 

these points. 

Center your input circle around 1 + 𝑖 (so that 1 + 𝑖 will be within the area 

enclosed by a circle centered at 1 + 𝑖 of any radius.) Try changing the radius of 

your circle (Move the point on the circle so the center stays fixed). What happens 

to the output? 

Center your circle around 2. Try changing the radius of your circle. What happens 

to the output? 

What do you think the output will look like if the input is a circle where 1 + 𝑖 and 

2 are both in the area enclosed by the circle? Test your theory. 

Center your circle around the origin. What happens to the output? 

What happens to the output when your circle is inside the unit circle? What about 

when your circle is outside the unit circle. 

Try dragging your circle along the real axis. What happens? What about when 

you drag your circle along the imaginary axis?  

Try dragging your circle to different quadrants. What happens? 

Now, try to summarize what you think is happening. What do you think a large 

circle around a point 𝑥 + 𝑖𝑦 in the complex plane will map to? What about a small 

circle around the same point? 
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Lab 2:  

Instructions: 

Select Show Grid under the “Graph” dropdown menu, label the origin and 1, and create a 

unit circle centered around the origin as you did in the previous lab. 

Now we want to construct the mapping 𝑧 → 𝑒𝑧. 

1. Create a point and label it 𝑧. 

2. Measure the 𝑥 − and 𝑦 − values as you did in the previous lab. (Use Abscissa(x) 

and Ordinate(y) in the “Measure” dropdown menu.) 

3. Before we actually start calculating 𝑒𝑧, we will need to tell GSP to interpret angle 

measurements as radians instead of degrees. You can do this by selecting 

“Preferences” in the “Edit” dropdown menu, make sure the Unit tab is selected, 

and change the field marked “Angle:” from degrees to radians. Click “OK” once 

you’ve done this. 

4. Now we need to calculate the real and imaginary parts of 𝑒𝑧. (Recall that if 

𝑧 = 𝑥 + 𝑖𝑦 then 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) = 𝑒𝑥 cos 𝑦 +

𝑖𝑒𝑥 sin 𝑦.)  Select “Calculate” in the number dropdown menu to input the 

appropriate formulas. (You can find 𝑒 in the “Values” dropdown menu on the 

calculator and the functions sin and cos in the “Functions” dropdown menu on the 

calculator.) 

5. Plot the point 𝑒𝑧 as you did in the previous lab by selecting “Plot points” in the 

graph dropdown menu and inputting the real and imaginary parts in the 𝑥 − and 

𝑦 − coordinate boxes, respectively. Click “Plot” then “Done”. Label your point 

𝑒𝑧.  

6. Select the point 𝑧 and then 𝑒𝑧 (in this order; you will need to hold down the shift 

key in order to select both points.) Under the “Transform Menu” click “Define 

Custom Transform.” A box should pop up that says 𝑧 → 𝑒𝑧 transform. Click 

“Okay.”  

 This graph should now show a point 𝑧 and a corresponding point 𝑒𝑧. Again, you 

can drag the point 𝑧 around the graph. The point labeled 𝑒𝑧 will move to the proper 

corresponding position. 

More warm-ups: Where will the point labeled 𝑒𝑧 be if 𝑧 = 𝜋𝑖?  

The real-valued function 𝑥 → 𝑒𝑥 is always positive. Where should the point 

labeled 𝑧 be to get the point labeled 𝑒𝑧 to move to −1? Why did you conjecture 

that? 
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What do you think will happen if you drag 𝑧 along the real axis? What about the 

imaginary axis? Why does this happen? 

This time (before we start mapping circles) we will send the vector defined by 𝑧 through 

the transformation 𝑧 → 𝑒𝑧. 

1. Click the “segment straightedge” tool on the left toolbar (4
th

 icon from the top) 

2. Click the origin 

3. Click the point labeled 𝑧. Your vector should now be created 

4. In the Display dropdown menu, select your “input” color to make your newly 

created vector that color. 

5. Now in the Transform dropdown menu, select “𝑧 → 𝑒𝑧 transform” at the bottom 

.This will send your vector through this mapping. 

6. Select your “output” color to change the color of the newly created curve. 

7. Re-select the transformation arrow tool. Now you can click and drag the point 𝑧 

to various points and watch how the output changes! 

Questions: What happens if the vector is stretched along the imaginary axis?  

What happens if the vector is stretched along the real axis? 

What happens if the vector is stretched in the first or fourth quadrant? 

What happens if the vector is stretched in the second or third quadrant? 

Now we will investigate how circles are mapped at various points under this transform. 

You will follow essentially the same steps as you did in the last lab. 

1. Click the “Construct circles” icon on the left toolbar (3
rd

 from the top) and click 

somewhere on the graph to place the center of your circle there (Don’t worry too 

much about location; you will be able to move it later.)  

2. Now drag the mouse away from this point to increase the radius. When you are 

happy with the size of your circle, click the mouse again to create the circle. 

(Again, you will be able to change the radius later.) Your circle will automatically 

be selected. 

3. Without unselecting the circle you just constructed, go into the Display drop-

down menu, and select a “Color” for your circle. (I used red, but you can use 

something else if you like.)  

4. Now, go into the Transform drop-down menu, then click  “𝑧 → 𝑒𝑧 transform” at 

the bottom of the menu. This will apply this transformation to your whole circle. 

The “output” shape will automatically be selected. 
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5. Go into the Display drop-down menu again and choose a different color for the 

“transformed circle.” (I used blue, but again, you can pick a different color.) This 

is intended to help you keep track of your input and output shapes more easily.  

6. Remember to click on the Transformation Arrow tool again before you start 

trying to drag your circles around! (Otherwise you’ll just end up making more 

circles) 

7. Move your circle around the graph and observe how the output shape changes as a 

result. Try to predict the behavior of the output in advance. 

Tip Reminders: 

 If you select the center point and move it, the other point you created (the one 

actually on the circle) will remain fixed, but the radius will change. 

 If you select the point on the circle, the center point will remain fixed and the 

radius again will change.  

 You can also select the circle itself. This will preserve the radius of the circle. 

(i.e., make sure to select the circle itself, and not the points, if what you want 

to do is drag the circle around the graph without changing anything else about 

it. 

Questions: What do you think the output will look like if the input is a circle 

where 1 + 𝑖 is in the area enclosed by the circle? Test your theory.  

What do you think the output will look like if the input is a circle where 2 is in the 

area enclosed by the circle? Test your theory. 

What do you think the output will look like if the input is a circle where 1 + 𝑖 and 

2 are both in the area enclosed by the circle? Test your theory. 

What do you think the output will look like if the input is a circle where the origin 

is in the area enclosed by the circle? Test your theory. 

Try putting the point on the circle itself along the positive real axis. What happens 

to the output if you drag the center along the negative real axis?  

Now we will investigate what happens when we change the radius of circles at these 

points. 

Center your input circle around 1 +
𝜋𝑖

2
 .Try changing the radius of your circle. 

What happens to the output? 

Center your circle around −1 + 𝜋𝑖. Try changing the radius of your circle. What 

happens to the output? 
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Center your circle around the origin. What happens to the output? 

Now, try to summarize what you think is happening. What do you think a large 

circle around a point 𝑥 + 𝑖𝑦 in the complex plane will map to? What about a small 

circle around the same point? 



 
 

 

 

 

APPENDIX D 

FINDINGS FROM PROPOSAL STUDY 
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Between-Group Comparisons 

 As my groups for the pilot study were different sizes, I begin this section detailing 

the differences and similarities I noticed between groups. After summarizing the 

differences and similarities between groups, I provide a discussion of each group’s 

development of geometric reasoning about the derivative of a complex-valued function, 

utilizing the essential ideas I isolated through my analysis methods detailed above. These 

findings are grouped first by task, then by participant. Thus, summaries of each interview 

task are provided in sequence. Within each task, Karen’s progress is discussed first, and 

followed by Joshua and David’s progress within the same task. After I have discussed all 

tasks, I provide common themes that occurred for each group and for both groups in the 

subsequent section. 

 By the end of the interview sequence, both participant groups appeared to develop 

the ability to geometrically reason about the derivative as a local linearization, or at least 

vocalized all the requisite intuitive ideas. In particular, both groups verbalized the 

following:  

 Circles are mapped to other nearly circular shapes.  

 The magnitude of the derivative predicts the factor by which the output shape 

is dilated with respect to the input circle. 

 The argument of the derivative predicts the angle by which the output shape is 

rotated with respect to the input circle.  

Furthermore, placing two participants in a group appeared to ease some of the 

frustration that Karen seemed to experience with my repeated requests to determine how 

to reason about the derivative of a complex-valued function in a geometric way. Having a 
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partner additionally seemed to encourage them to explore the presented topics more 

deeply. Joshua and David often appeared to consider a particular question for a longer 

amount of time and attempted to approach the question from several different possible 

solution paths. In contrast, Karen sometimes verbalized that she did not know how to 

think about a particular question or seemed to stop reasoning through the question 

because she was unsure of how to proceed. Additionally, David appeared to synthesize 

algebraic and geometric reasoning in some of his explanations, particularly his 

explanation of how 𝑓(𝑧) = 𝑧2 transforms the complex plane. Joshua and Karen may both 

have combined algebraic and geometric reasoning at some points in the interview, but 

both seem to do so to a lesser extent than David.  

Perhaps simply because she was interviewed alone rather than in a pair, the nature 

of Karen’s inquiry was also different than Joshua’s and David’s. In particular, Karen 

seemed content with knowing why the output circle sometimes twisted on itself, while 

Joshua and David seemed insistent on discovering additional information about how the 

circle twisted. That is, Joshua and David spent almost 40 minutes on day 1 trying to 

discover which two points on the input circle mapped to the same location on the output 

circle, thereby causing the twist they saw; Karen appeared content once she verbalized 

that she thought a twist occurred whenever her input circle for 𝑓(𝑧) = 𝑧2 surrounded the 

point 𝑧 = 0. Thus, as one might expect, these tendencies seemed to motivate Joshua and 

David to provide somewhat more information than Karen in their mathematical 

characterizations. However, Joshua and David sometimes appeared to forget their 

original goal, perhaps due to their occasional tendency to begin reasoning exclusively 

algebraically. 
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On the other hand, Joshua and David’s apparent consistent concern with local 

properties may have helped guide them toward conveying of the derivative as a local 

property, while it is possible that Karen’s seemingly more global way of interpreting the 

derivative may have partially obscured this fact from her. For example, in the context of 

the real derivative, interpreting the derivative primarily in terms of slope, as Karen 

seemed to do, may make reasoning through details involving specific limits more 

difficult.  

Task Progression Comparison 

 Having just detailed the original differences I noticed between a group of one 

participant and a group of two, I now provide more task-oriented details for each group of 

participants. Since Karen progressed at a different speed through the interview sequence 

than Joshua and David, this format provides a more direct comparison of the 

development of each group on each task than sorting the details by day. In the sections 

following some select exchanges between participants are presented. For these 

exchanges, accompanying gestures are described in parentheses, while speech incident 

with these gestures is bolded. Descriptions of gesture that occurs in the absence of speech 

are themselves bolded. I additionally document the participants’ stage of diagrammatic 

reasoning in parentheses. The construction stage involves creating an inscription such as 

a computer-simulated diagram or algebraic equation. The experimentation stage occurs 

when students manipulate aspects of the inscription to see what happens. Finally, in the 

observation stage, students reflect on structural properties of the diagram to inform their 

mathematical reasoning. I refer to the relevant stages in parentheses throughout my task 

descriptions. 
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Task 1: The Function 𝒇(𝒛) = 𝒛𝟐 

Within this task, I asked students via a task worksheet (found in Appendix E) to 

explore the function behavior of 𝑓(𝑧) = 𝑧2. I guided students in constructing the function 

𝑓(𝑧) = 𝑧2 (construction), after which they investigated the ways in which the function 

mapped points and circles of various sizes at varying locations in the domain, including 

circles surrounding the point 𝑧 = 0 (experimentation and observation). At the end of the 

task I asked them to characterize how 𝑓(𝑧) = 𝑧2 transformed the entire complex plane 

(observation).  

Throughout this task, Karen tended to reason about rotation angles correctly and 

dilation amounts incorrectly or vice versa when multiplying two complex numbers. In the 

initial construction of this function, she initially attempted to reason algebraically to find 

the real and imaginary parts. She appeared to struggle with these algebraic calculations 

before noting that she could just reason geometrically by rotating and dilating. This 

realization suggests she had already integrated the algebraic and geometric reasoning 

about complex number multiplication to some degree. However, once she plotted and 

transformed a point (construction), she expressed surprise at the location of the output 

(observation), claiming that the point had the correct dilation, but not the proper rotation. 

That is, she noted that her geometric reasoning disagreed with the inscription provided by 

Geometer’s Sketchpad (GSP). She started to explain where she believed the resulting 

point should be, but stopped herself partway through her explanation and suggested that 

perhaps GSP was showing the correct transformation after all.  

After this occurrence, she turned her attention to answering the first exploratory 

question on Task 1: What is 𝑓(1 + 𝑖) (phrased as “where should 𝑧2 go if 𝑧 = 1 + 𝑖?” on 
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the worksheet)? Karen answered (0,1), which is a point that has the correct argument, but 

not the correct dilation. She tested her answer on GSP (experimentation), and matter-of-

factly noted that she “didn’t add,” and “thought that 𝑖 + 𝑖 3 was 1 in some strange 

fashion. It’s actually 2.” (The reader will note that 1 + 𝑖 ≠ 2 and 𝑖 + 𝑖 ≠ 2.) This 

explanation suggests she may have been reasoning algebraically, albeit incorrectly. As in 

the previous occurrence, Karen again demonstrated a willingness to be corrected by GSP 

and modify her reasoning to match the inscription she saw with the computer program 

(observation), rather than assume the inscription itself may have been flawed. She also 

noted the nature of her error via geometric reasoning: “I got the angle right….I didn’t 

account for the dilation.” Karen also initially failed to account for dilation in the next 

question: Where do you need to put 𝑧 to make 𝑧2 = 𝑖? That is, for what value of 𝑧 is 

𝑓(𝑧) = 𝑖? 

When asked what happens to the output when the input is moved along the unit 

circle, Karen began by reasoning geometrically. She traced a few circles in the air with 

her index finger before announcing that the output point 𝑓(𝑧) corresponding to the input 

point 𝑧 would move in an ellipse, reasoning that 𝑓(1) = 1 and 𝑓(𝑖) = −2. Neither the 

nature of her calculations nor the way she arrived at 𝑓(𝑖) = 𝑖2 = −2 is clear. Perhaps she 

reasoned geometrically and doubled both the argument and magnitude of 𝑖, rather than 

squaring the magnitude. This geometric reasoning would reflect her previous error of 

attending correctly to rotation, but not dilation. Perhaps she reasoned algebraically and 

misremembered the value of 𝑖2.  

                                                           
3
 While Karen said “𝑖 + 𝑖”, this was likely a slip of the tongue—she probably meant to say 1 + 𝑖. 
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She briefly suggested that 𝑓(𝑧) would follow the unit circle in the range as she 

moved 𝑧 along the unit circle in the domain (experimentation) with GSP, and appeared to 

reject this explanation by stating, “except at 𝑖 it’s not going to do that.” This utterance 

suggests Karen still believed that 𝑓(𝑖) = −2, and thus conflicted with her geometric 

reasoning about 𝑓(𝑧) following the unit circle. It is thus possible that Karen noticed a 

contradiction between this correct geometric reasoning and her incorrect (possibly 

algebraic) reasoning about the value of 𝑓(𝑖), and attempted to modify her reasoning to 

address this contradiction. This finding is inconsistent with the same participant’s 

behavior in a prior research study (Soto-Johnson & Troup, 2014) where she noticed a 

contradiction between her algebraic and geometric reasoning, but attributed the 

contradiction to the different reasoning styles and thus did not attempt to reconcile the 

two.  

At this point I intended to ask Karen why she believed that 𝑓(𝑖) = −2, but 

misspoke and instead asked why she believed 𝑓(−1) = −2. She answered by stating that 

“oh, nope, it’s not going to −2. That was a lie. At −1, it’ll be 1, I think….I’m doing math 

strangely in my head. So, it should just, I think, follow the path of the circle.” Thus it 

would appear that an incorrectly phrased question on my part helped Karen resolve the 

apparent contradiction and realize via geometric reasoning that the image point of 𝑧 

traces an ellipse as 𝑧 traces the unit circle.  

However, she moved back to her ellipse idea once she reconsidered the point 

about which I had intended to ask. “Except, at 𝑖 it’s not going to do that. It’s going to go 

to 2. And at −𝑖 it’s going to go to positive 2. So, something like, maybe create an 

ellipse.” Upon stating that 𝑓(𝑖) = 2 and 𝑓(−𝑖) = −2, she again notes that these values 
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would mean that the image could not trace the path of the unit circle as she moved the 

pre-image around the unit circle. As she moved the point 𝑧 with GSP (experimentation) 

along the unit circle (see Figure 46), she paused briefly when her point 𝑧 was resting on 

the point 𝑖 in the domain (observation) and exclaimed, “Oh it does follow the circle. So 

again I’m doing math kind of funky.” That is, due to her observation of the inscription 

provided by GSP, she may have recognized that her claim that 𝑓(𝑖) = −2 was incorrect, 

as it was this belief that seemed to dissuade Karen from her original suggestion that 𝑓(𝑧) 

would move along the unit circle in the range as 𝑧 was moved along the unit circle in the 

domain. 

 

Figure 46. Karen traces unit circle counter-clockwise with a point 𝑧 

In this same exploration, she made an observation via motion-based gesture that 

she employed later to describe why double circles formed when her circle in the domain 

contained the origin. I asked her why and she expressed that “because you’re dilating 

and rotating each time with 𝑧2 (clasps hands with index fingers extended and moves 

fingers left and right as seen in Figure 47), it’s going to go around twice as fast (traces 

counterclockwise circles as seen in Figure 48), but your magnitude isn’t changing at all.”  

This explanation suggests Karen was reasoning geometrically to describe how 𝑧2 

transforms the unit circle, and was attending to the speed of the vector for which she was 
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enacting a rotation. Since 𝑧2 squares the magnitude and doubles the angle, on a circle 

where all points have magnitude 1, the magnitude is not changed and doubling every 

angle makes the point “move twice as fast.” 

 

Figure 47: Karen moves index finger left and right 

 

 

Figure 48. Karen traces counterclockwise circles 

When Karen started exploring how circles are transformed by 𝑓(𝑧) = 𝑧2, she 

claimed that the image should be “some sort of circle depending on what I do with the 

rest of the circle.” It appeared that Karen, even before investigating this question in 
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Geometer’s Sketchpad (GSP), had some notion inherent in her geometric reasoning that 

circles should, in some sense, be mapped to another circle within this particular context. 

Her explorations with GSP appeared to allow Karen to develop the idea that smaller 

circles are less distorted by the transformation than larger circles; after moving circles of 

various sizes to various locations on the input plane according to the task’s instructions, 

Karen remarked that “if it’s bigger it’s going to get all wonky-shaped.” When I asked her 

why this is the case, she replied that 𝑧2 changes the magnitude, but did not extend her 

idea much beyond this concept. However, she did add that double loops occur when the 

input contains the origin shortly thereafter, thereby identifying (observation) the only 

place that 𝑧2 does not send (small) circles to other circle-like shapes.  

After considering the ways in which the output shape might be “distorted” (i.e., 

ways in which the output looks less like a circle), Karen discovered with GSP 

(experimentation) that even with small circles, “weird” things such as double loops still 

occur near zero (see Figure 49).  Furthermore, Karen noted that the output is “basically a 

circle,” until it gets “close to zero”, where the output “flattens out, on the side that’s 

closest to zero (see Figure 50).” She added that farther away from zero “you’re just going 

to get a bigger circle that’s dilated and rotated according to the usual fashion.” She did 

not, however, elaborate on what she meant by the “usual fashion”. I asked her whether 

she thought the output was a perfect circle farther away from zero. She replied “No!” and 

clarified that the distortion is just more obvious closer to zero since the output has flatter 

sides and more clearly “doesn’t want to hit zero.”  
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Figure 49. “Weird things” happening with small circles (input is blue, output is red) 

 

 

Figure 50. Image (red) of the blue circle “flattens out” near zero 

Even though Karen had been attending correctly to how the inputs were dilated 

throughout the interview thus far, I still had her construct spokes on her circle and 

transform them (construction) so she could see how the circle would be rotated. I thought 

investigating the transformations of small circles more thoroughly here might strengthen 

her understanding of the rotation aspect of the derivative as a local linearization. She 

began her response by noting that if her spokes had been perfectly spaced, they would be 

perfectly aligned in the output as well (observation). This observation was significant in 

that it was not directly reflected by GSP’s provided inscription (see Figure 51). She could 

have interpreted this figure as indicating that spokes directly opposite to each other will 

not map to precisely the same place in the output plane, though they may be near to each 

other. Rather, she correctly noted the particular arrangement of spokes in the input circle 
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that would transform to coinciding line segments in the output, though neither of these 

facets were immediate from GSP’s inscription.  

 

Figure 51. Red spokes are slightly misaligned because blue spokes are not evenly spaced 

Thus, Karen appeared able to respond appropriately to GSP’s output both when 

she was correct and when she was not. Karen was willing to change her geometric 

reasoning when she saw 𝑓(𝑧) move in a circle and not an ellipse in response to the 

movement of 𝑧 around the unit circle. There were also moments like the previous where 

Karen explained what might have been taken as an inconsistency between her geometric 

reasoning and GSP’s output without changing the way she thought. 

That is, Karen appeared to consistently identify in which cases she was wrong and in 

which cases GSP’s output was potentially misleading. In this case, she recognized that 

since her input was slightly off from where she intended—the spokes were not quite 

evenly spaced—her output would be slightly mismatched from the intended input as well. 

This realization suggests that Karen could extend her reasoning beyond the context of 

GSP’s dynamic environment, and that she is not overly dependent on GSP to drive her 

reasoning methods (Salomon, 1990). 

While Karen completed task 1 in a little less than an hour on the first day, Joshua 

and David spent the entire two hours of the first interview exploring various aspects of 

the given function 𝑓(𝑧) = 𝑧2. This time discrepancy occurred in large part because David 
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and Joshua attempted to answer many more questions than Karen. Karen answered only 

the questions listed on the worksheet or questions I specifically asked, whereas David and 

Joshua generated their own conjectures and explored many aspects of the function to 

which I never explicitly referred. Thus, while Karen exhibited a more stereotypical 

progression through mathematical tasks as a “game of mental gymnastics” (Olive, 2000, 

p. 11), Joshua and David seemed to view their work as a “laboratory science” (Olive, 

2000, p.11), in that they “observ[ed], record[ed], manipulat[ed], predict[e]d, 

conjectur[ed] and test[ed], and develop[ed] theory as explanations for the [interesting] 

phenomena” (Olive, 2000, p.11). For example, during the first two hour interview at 

various points, Joshua and David utilized Geometer’s Sketchpad (GSP) to investigate the 

possibility that the maximum imaginary value on an input circle maps to the maximum 

imaginary value on the corresponding output shape, or that if an input circle surrounds 

the point 1 + 𝑖 then the output intersects the imaginary axis exactly twice 

(experimentation). Furthermore, they discovered the conditions for which there exists two 

values 𝑧1 and 𝑧2 located on the circle in the domain such that 𝑓(𝑧1) = 𝑓(𝑧2), and how to 

determine these two values. 

For the first question of task 1, “where does 𝑧2 go if 𝑧 = 1 + 𝑖,” Joshua explicitly 

suggested calculating the answer algebraically, while David suggested reasoning 

geometrically by squaring the magnitude and doubling the angle. Using this method, 

David noted that 𝑓(1 + 𝑖) = 2𝑖, though when Joshua tested this assumption with GSP 

(experimentation), he claimed the output point showed up at −1 instead of 2𝑖 as David 

expected (observation). Despite GSP’s unexpected output, instead of assuming he was 

wrong, David searched for an explanation for why GSP seemed to be supplying an 
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incorrect answer to their question. He found that Joshua had placed the input point at 

𝑧 = 𝑖 and not at 𝑧 = 1 + 𝑖 (observation). Thus, GSP had calculated 𝑓(𝑖) rather than 

𝑓(1 + 𝑖) as David had originally assumed. Once Joshua corrected the input location, he 

conceded that David was right. This event is significant in that David could detect and 

correct discrepancies between his reasoning and the output GSP provided, just as Karen 

demonstrated.  

David reasoned geometrically by squaring the magnitude and doubling the angle; 

he elaborated on this geometric reasoning by reversing this process to answer the 

following question. When he read “Where does 𝑧 have to be to get 𝑧2 = 𝑖”, he halved the 

angle and noted that the input should be on the unit circle since the output was on the 

circle. Thus, David seemed able to reason geometrically regarding multiplication of 

complex numbers, just as Karen could at this point in the interview. These two 

participants may have developed and retained this ability due to their involvement in 

prior research involving the development of connections between algebraic and 

geometric reasoning methods via diagrammatic reasoning. 

While Joshua appeared to rely on David’s geometric reasoning at many points in 

the interview, he did not always accept it without question. While investigating circles 

that contained the point 1 + 𝑖 (experimentation), both Joshua and David initially felt that 

the top of the input circle, would correspond to the top of the output circle. That is, they 

conjectured that 𝑓(𝑧) = 𝑧2 would preserve the maximum imaginary value of their input. 

Joshua found a counterexample (see Figure 52) to this conjecture with GSP, namely a 

circle where 1 + 𝑖 was the top of the input circle, but 2𝑖 was not the top of the output 

circle. The existence of this counterexample was enough for Joshua to dismiss their 
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conjecture, but David did not seem willing to accept it as false, even with the evidence 

provided by GSP. Joshua was able to talk him out of his flawed reasoning by referring to 

GSP, saying “because this point (places cursor over the point 1 + 𝑖 at the top of the circle 

in the domain) is only going to be imaginary things, right (drags mouse along imaginary 

axis in GSP)?” That is, Joshua correctly reasoned that the maximum value of the circle in 

the domain will have a pure imaginary image, and thus cannot be a maximum of the 

image of the whole circle (see Figure 52). It is not clear which forms of reasoning Joshua 

employed to determine that 𝑓(1 + 𝑖) is a purely imaginary number. 

 

Figure 52. Joshua’s counterexample—the point indicated by the arrow does not map to 

the top of the image (orange circle) of the pink circle. 

As Joshua and David had not yet varied the size of their input circle, I asked them 

what they thought would happen for a larger circle. They responded to this question first 

by embarking on what appeared to be an in-depth technological exploration 

(experimentation), dragging the input circle to various quadrants as they had before with 

the smaller circle, and varying the size of the circle in both directions at each location. 

During this free-form exploration, Joshua and David discovered that double loops 

sometimes form (observation).  As a result, David and Joshua expressed a desire to learn 

why these twists occurred. When I asked them why they thought the twists occurred, 

David referenced the idea that if he traversed a circle once in the domain, he would 
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traverse a circle twice in the co-domain 𝑧2, though this explanation did not yet 

acknowledge the origin as an important point regarding this behavior.  

While David attempted to explain what caused double loops, Joshua fixated on 

trying to discover exactly which two points mapped to the overlap that the twist caused—

the point of the output curve’s self-intersection. To help himself answer this question, he 

strategically positioned (experimentation guided by geometric reasoning) the input circle 

so that the twist in the output was aligned with the positive real axis (see Figure 53). 

According to Joshua, he believed this positioning would make algebraic calculations 

simpler. However, Joshua appeared to become a little confused while reasoning through 

this algebra. For example, he initially stated he needed to find points where the imaginary 

part 2𝑥𝑦 = 0 and thus where 𝑥 = 0, though GSP showed this assumption to be incorrect. 

Later he said he was looking for places where 𝑦 = 0, but he changed his mind entirely 

and claimed he should have been looking for places where the real part 𝑥2 − 𝑦2 = 0. 

This last suggestion seemed strange in that Joshua was supposedly looking for input 

points where the output would be pure real, not pure imaginary. It is possible that Joshua 

became so involved in his algebraic reasoning that he forgot what exactly he was looking 

for in the first place.  

 

Figure 53. The image’s (orange) twist (indicated by blue arrow) located on the positive 

real axis 
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Perhaps to place himself back on track, Joshua asked David to summarize their 

findings thus far, and David responded with geometric reasoning. He reminded Joshua 

that a small input circle maps to something that looks like a circle, though he still did not 

acknowledge the origin’s role in potentially disrupting this near preservation of circles. 

Joshua added that small circles were not distorted a great deal because they were able to 

stay away from “trouble points,” though Joshua admitted that he did not yet know where 

these “trouble points” were exactly. When David investigated the transformation of 

circles surrounding the point 1 + 𝑖 he noted that “twists” occurred when the input circle 

passed through the unit circle. Furthermore, while David utilized Geometer’s Sketchpad 

(GSP) to investigate various circles in the domain surrounding the point 2 Joshua 

narrowed in on the origin itself as the point that caused the twists, stating that “It looks 

like 2 is not special. The only deformations happen when we get closer to the origin” (see 

Figure 54). Thus experimentation with GSP and the subsequent observation allowed 

David and Joshua collectively to refine their geometric reasoning to include the fact that 

the origin somehow causes twists in the output and the point (2,0) does not. 

 

Figure 54. Orange output “twists” when purple circle surrounds the origin 
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Due to this observation, the next question I asked seemed natural: “What happens 

when the origin is included in or surrounded by the circle in the input plane?” David 

commented that “everything near the origin is really small, [so] the magnitude squared 

makes it even smaller so it’s all getting pulled in.” This explanation suggests a synthesis 

of algebraic and geometric reasoning: in this explanation, David speaks both of algebraic 

operations (squaring the magnitude) and geometric behavior (proximity to origin and 

being “pulled in”).  

Now that Joshua knew what the “trouble point” was, he offered geometric 

reasoning to explain why smaller circles are less distorted: “Once we get below a certain 

radius the twists go away, because it’s when the circle does not contain the origin 

anymore.” He continued this reasoning by saying that when the input circle is centered at 

the origin, the twists overlap exactly and become the same circle. When I asked Joshua 

why this occurs, David observed in GSP that if the input center stays on the 𝑥 −axis, then 

the intersection stays on the real axis. Joshua expressed discontent at this offered 

explanation, arguing “that’s not why,” marking another time when Joshua was not willing 

to accept David’s geometric reasoning. Perhaps due to his extensive technological 

explorations with GSP, Joshua eventually articulated that two input points map to a single 

output point, thereby causing a “twist,” exactly when the two points have the same 

magnitude and a difference of 𝜋 in their arguments.  Joshua and David additionally 

discovered that 𝑧 = 0 was the only “trouble point.”  

Joshua suggested that the geometric reason for the twists going away would also 

explain the dent’s dissipation as the input circle moved away from the origin: “We’ll get 

to a place outside the unit circle where no point on our circle will have the same radial 
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distance from the origin.” Instead of pointing out to Joshua that his statement was flawed, 

David utilized this idea to essentially prove via geometric reasoning that 0 is the only 

non-conformal point of 𝑧2. He conveyed that “we should have a lot of points where two 

different points have the same radial distance, but if it’s outside the unit circle then we 

can’t have that 𝜋 separation.” This argument successfully showed that the input circle 

surrounding the origin is a necessary condition to cause twists, and that therefore there 

are no other similarly problematic points.  

Task 1 ended with Joshua and David attempting to summarize via geometric 

reasoning how the function 𝑓(𝑧) = 𝑧2 transforms the entire plane, and at this point David 

recalled their complex analysis instructor “might have used pizza dough to explain this 

one.” David essentially felt that the function 𝑓(𝑧) = 𝑧2 stretched out the plane and folded 

the quadrants around on themselves, while Joshua primarily said that each single 

quadrant in the pre-image was mapped to two quadrants in the image.  

Task 2: The Function 𝒇(𝒛) = 𝒆𝒛 

As in Task 1, my participants followed instructions contained in a task worksheet 

(found in Appendix E) to explore the function 𝑓(𝑧) = 𝑒𝑧. This worksheet was similar in 

form to the worksheet paired with Task 1. After my participants constructed 𝑓(𝑧) = 𝑒𝑧, I 

asked them first to determine how the function transformed various points and lines. 

They then investigated ways in which this function transformed various circles 

(experimentation). Finally, they attempted to geometrically reason through how 𝑓(𝑧) =

𝑒𝑧 transformed the entire complex plane. 

Karen finished the second task in the remaining hour of the first day. The first set 

of questions from the second task required Karen to determine the nature of the output 
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given some input or vice versa. While exploring the function 𝑓(𝑧) = 𝑧2, Karen appeared 

to reason predominantly geometrically; she seemed to favor algebraic reasoning to 

investigate 𝑓(𝑧) = 𝑒𝑧. For example, when I asked her to determine the value of 𝑧 for 

which 𝑓(𝑧) = −1, she algebraically reasoned that “because you’re rotating…that’s 

(Points cursor at 𝑒𝑥 in the equation 𝑒𝑥 cos 𝑦) just going to be 1 and cos 𝜋 is −1. So it’s  

going to – 𝟏 (Waves mouse over real component 𝑒𝑥 cos 𝑦) and then this part (Waves 

mouse over imaginary component 𝑒𝑥 sin 𝑧) is going to be 0 if you calculate it out.” (See 

Figure 55)  

 

Figure 55. Real and imaginary parts of 𝑓(𝑧) = 𝑒𝑧 (upper left corner) 

It is possible she was utilizing Euler’s equation 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦), or 

perhaps just evaluated each part of the relevant algebraic inscriptions (see Figure 55) 

provided by Geometer’s Sketchpad (GSP). She appeared to reason algebraically in a 

similar way when attempting to explain what she thought would happen if her input point 

was moved along the real axis. She stated, “the cosine and sine wouldn’t change, just the 

𝑒𝑥.” Immediately after forming this hypothesis, she confirmed it (experimentation and 

observation) with GSP. Seemingly unsurprised, she remarked, “Yeah. Just kind of shoots 

off into the distance.” When asked what happens if the input point was dragged along the 

imaginary axis, she once again reasoned algebraically to determine the behavior of the 

image point 𝑓(𝑧): “the 𝑒𝑧 is always going to be 1, because you don’t have a real 

value….So it’s just going to, oh it moves along the circle there” (see Figure 56). In 
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contrast to Karen’s test on the positive real axis, Karen seemed somewhat more surprised 

at the results of moving the point 𝑧 along the positive imaginary axis (observation).  

 

Figure 56. Karen moves her point 𝑧 along the positive imaginary axis (indicated by blue 

arrow). The image moves counterclockwise along the unit circle (indicated by red arrow) 

 After some further experimentation in GSP, Karen noted that she had not yet seen 

any double circles in this function, so I asked her if she thought she could make one. She 

was not sure, but agreed to try, thus entering a more purposefully directed 

experimentation phase. She started by dragging a small circle to various locations 

surrounding the origin in GSP, then repeating this action several times, making the circle 

progressively larger between each repetition. Despite the fact that none of these circles 

created a twist in the output, she still commented, “I’m thinking that we’re going to get a 

double circle.” After about a minute, she found a way to create a twist while zooming out 

and thereby dramatically increasing the size of her circle in the domain (see Figure 57). 

Karen clarified that in some way, she felt the twist was different from the double circles 

that had occurred in 𝑧2, perhaps due to her initial difficulty in finding a circle that 

mapped to an image with a twist. No small circles around the origin created a double 

circle, as they had in 𝑓(𝑧) = 𝑧2. She called the twist of 𝑒𝑧 a curlicue rather than a double 
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circle. She also realized that the input circle had to be sufficiently large to create these 

curlicues, and discovered via experimentation and observation with GSP that the radius 

needed to be 𝜋 or greater for a twist to occur. However, even after discovering these 

“curlicues,” she did not appear certain about why they occurred. 

 

Figure 57. A twist in the image (green curve) 

When I asked her if she could obtain a twist in the output with a small circle, she 

expressed doubt, but suggested that perhaps there are microscopic twists. She found none 

with GSP (experimentation), and after this technological experimentation she stated that 

no curlicues could occur in the image of a small circle. However, she still did not know 

why the curlicues occurred, though she may have implicitly drawn a parallel to 𝑧2 with 

her terminology. Karen claimed that 𝑓(𝑧) = 𝑒𝑧 should behave more strangely as a 

function as the input circle moves closer to zero, and added “turns in zero, we start 

getting our double loop.” While she observed with GSP that if the circle in the domain is 

not zero, its image is “your classic circle,” and that “the closer it gets to zero the weirder 

it becomes,” the meaning of her utterance about “turns in zero” remains unclear. Perhaps 

she thought of the way 𝑓(𝑧) = 𝑧2 turns the complex plane around on itself at 𝑧 = 0 via 

its mapping, as she referenced a “double loop,” a shape she had previously determined to 

be distinct from the “curlicues” she was considering at this time.  
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Motivated by this possible implicit reference to 𝑧2, I asked Karen whether a small 

circle could yield strange output behavior, and she said yes, “if it includes zero.” While 

Karen had previously stated that she did not believe the image of a small circle could 

have a twist, her geometric reasoning still allowed for the possibility of some other kind 

of unusual behavior. She even began demonstrating this point in GSP, placing the input 

circle closer to zero, and expressed surprise when her small circle around zero mapped to 

another relatively normal small circle (see Figure 58). Her surprise may have stemmed 

from the possibility that she was using the real-valued function 𝑓(𝑥) = 𝑒𝑥 as a reference 

point to reason through the analogous complex-valued function 𝑓(𝑧) = 𝑒𝑧, as near 0 in 

the real-valued function the graph does not bend a great deal. Alternatively, perhaps her 

experience with the function 𝑓(𝑧) = 𝑧2 led her to believe that the point 𝑧 = 0 causes 

atypical behavior in all functions. Regardless, she spent several minutes in silence after I 

asked her why no strange behavior occurred in the case of 𝑓(𝑧) = 𝑒𝑧. She moved the 

input circle along the negative axis briefly (see Figure 59) and additionally stretched the 

line attached to the origin to various locations during this time (see Figure 60), but it 

appeared that her confusion remained.  

 

Figure 58. Small purple circle around 0 maps to small green circle around 1 
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Figure 59.  Karen moves purple circle along negative real axis 

 

Figure 60. Karen rotates and stretches the vector attached to the origin (following the 

path of the red arrow)) 

While moving this vector around (experimentation), she remarked, “the outside 

[of the unit circle]’s where [the image of the vector] starts to bend in your exponential 

fashion (observation).” This remark could connect to the behavior of the real function 

𝑓(𝑥) = 𝑒𝑥, which has a graph that also begins to bend more noticeably at points with 

domain values at greater distances from 0. Perhaps her experimentation with GSP’s 

geometric inscription reminded her of this pictorial resemblance. Immediately after this 

observation she claimed that “[inside the unit circle] you’re going to have a fractional 

power,” suggesting a transition from geometric to algebraic reasoning. She additionally 

stated that she no longer believed that “weird behavior” could occur in the image of a 
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small circle under the transformation 𝑧 → 𝑒𝑧. Thus, experimentation with GSP once 

again helped her refine her geometric reasoning for the behavior of a complex-valued 

function. I ended both the first day and task 2 by asking Karen to calculate the respective 

derivatives of 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧, which she correctly supplied immediately.  

Like Karen, Joshua and David both correctly predicted how various points and 

lines were transformed with the function 𝑓(𝑧) = 𝑒𝑧. David noted that the positive real 

axis would stretch out and Joshua predicted that the positive imaginary axis would map to 

a circle. Joshua and David both seemed to struggle to articulate how the function would 

transform the negative imaginary axis, so both seemed to shift their form of reasoning 

from geometric to algebraic. 

Joshua: But when it’s negative, it’s cosine minus 𝒊 sine. (David traces several 

circles counterclockwise in the air as shown in Figure 61) 

 

David: So it'll just (traces a few more clockwise circles as shown in Figure 61), 

spiral in, or go in the circle the other way (traces several larger clockwise 

circles.), or it will be the same. Because at that point we just basically have 𝑒𝑖𝑦.  

 

 

Figure 61. David traces clockwise circles 

 In particular, Joshua appeared to reference the algebraic formulas for the real and 

imaginary parts of the output 𝑓(𝑧) = 𝑒𝑧, as when the imaginary part of the input 𝑧 is 
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negative, the real part 𝑒𝑥 cos 𝑦 is positive and the imaginary part 𝑒𝑥 sin 𝑦 is negative. 

Joshua does not gesture or make any technological actions at this time, though David 

appears to trace circles in response to Joshua’s statements. Neither participant writes 

anything down. Thus, Joshua appears to reference an algebraic inscription while David 

continues to reason geometrically, though it appears David’s geometric reasoning may 

have been influenced by Joshua’s more algebraic statements. 

 The exchange just outlined may have prepared Joshua and David to answer my 

next question: what would happen if they stretched a vector along the imaginary axis? 

While Joshua had already correctly predicted, apparently via geometric reasoning aided 

by gesture, that the function transforms the positive imaginary axis into circles (while 

tracing counterclockwise circles as shown in Figure 62). David elaborated on this 

geometric reasoning, adding that with each additional increment of 2𝜋 the vector was 

stretched would form a new circle—another correct prediction. David utilized no gesture 

throughout the majority of this explanation except near the end when he referenced the 

new circle the image would form as the vector was stretched (see Figure 63). 

 

Figure 62. Joshua traces counterclockwise circles 
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Figure 63. David traces counterclockwise circles 

After this exploration I asked Joshua and David what would happen if a vector 

was stretched into one of the quadrants instead of along the axes. Joshua continued the 

trend of correctly predicting how 𝑓(𝑧) = 𝑒𝑧 transformed various points on the plane via 

geometric reasoning by stating that the imaginary component of the input controlled the 

amount of “twisting” or “spiraling” that occurred. Continuing his geometric reasoning, he 

further clarified that the real component controlled the size of the spiral.  

As he referenced the 𝑥 −component and size of the spiral, he held his hands apart and 

facing each other, as though they were signifying length or size (See Figure 64). So, 

Joshua geometrically reasoned both that 𝑓(𝑧) = 𝑒𝑧 rotated objects based on the 

imaginary component of 𝑧, and that a vector stretched into a quadrant would result in a 

spiral shape. Joshua added that the spiral would twist in the opposite direction if he 

moved the vector from the first quadrant into the fourth, and David justified this assertion 

by stating that “following along our vector, basically we can trace how the imaginary 

components are either increasing or decreasing.” Thus David’s integration of algebraic 

and geometric reasoning appeared to allow him to note that the function 𝑓(𝑧) = 𝑒𝑧 maps 
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a point to an image whose argument is equal to the imaginary component of its pre-

image.    

 

Figure 64: Joshua explains the size of the spiral 

While observing the spiral in Geometer’s Sketchpad (GSP) (see Figure 65), 

Joshua correctly noted that it moved toward 0 fairly quickly (observation) “because it’s 

exponential.” This statement is the first reference made to the exponential nature of the 

function, so the nature of Joshua’s reasoning is not entirely clear. It is possible that 

Joshua reasoned algebraically via the real-valued counterpart 𝑓(𝑥) = 𝑒𝑥 and drew on the 

knowledge that the exponential function can have values 𝑧1 and 𝑧2 such that |𝑧1 − 𝑧2| is 

small but |𝑓(𝑧1) − 𝑓(𝑧2)| is still large. Perhaps Joshua’s geometric reasoning suggested 

to him that the output values of an exponential function can vary drastically for small 

changes in the input values (as in ℝ2 where a small horizontal change in the graph of 

𝑓(𝑥) = 𝑒𝑥 can correspond to a large vertical change). Joshua and David also had a brief 

disagreement regarding exactly how the function 𝑓(𝑧) = 𝑒𝑧 moved in toward zero. 

Namely, after noting that their output point in GSP could move quite close to zero 

(observation), they discussed whether or not there existed 𝑧0 such that 𝑓(𝑧0) = 0. This 

question is similar to another question that has commonly caused problems in the past for 

undergraduate mathematics students considering the nature of limits. Namely, “Does 
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𝑓(𝑧) = 𝑒𝑧 ever actually attain its limit point 0?"  (e.g., Cottrill et al., 1996; Tall & 

Vinner, 1981).   

 

Figure 65. Spiral in Geometer’s Sketchpad 

Previous literature suggests that most students believe that a limit point can never 

be attained by the function. Therefore, it is noteworthy that in the following conversation 

Joshua committed the opposite error by suggesting that 𝑓(𝑧) = 𝑒𝑧 does attain its limit 

point 0 when in fact it does not. However, it is important to note that this wording was 

never employed by either David or Joshua, who only discussed whether the function ever 

actually reaches 0, as seen in the following conversation. 

Joshua: Not quite to zero, however, but definitely zero by here (Left side 

of the unit circle as seen in Figure 66). 

 

David: Close to zero 

 

Joshua: Close enough….yeah, that we can’t visually tell the difference.  

 

David did not expound upon what he meant by “close to zero,” and it is possible 

that Joshua believed 𝑓(𝑧) = 𝑒𝑧 actually reaches zero at some point, though this is not 

clear. His speech seems similar to the zooming metaphor that some of Oehrtman’s (2009) 

calculus students employed, though they never explicitly referenced limits. 
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Figure 66. Image (orange) “reaches” 0 

Eventually I pulled Joshua and David away from transforming vectors and had 

them predict how 𝑓(𝑧) = 𝑒𝑧 transformed circles. David reasoned geometrically that this 

function should send a closed loop to another closed loop, but said he wasn’t sure why he 

thought that should be the case. Joshua offered a more specific suggestion that the 

function should send a circle around 1 + 𝑖 to “a nice oval.” This time, David asked 

Joshua why he thought that, and Joshua replied, “the points further on the axis are more 

stretched than the points closer.” Thus, Joshua could have geometrically reasoned that the 

points further away from zero would spread out further on the output curve and the points 

closer to zero would end up somewhat closer together, thereby creating a major axis and 

a minor axis, rather than a uniform radius as a circle would have. 

David did not appear satisfied by Joshua’s geometric reasoning, as he began 

talking about how individual points from the unit circle are mapped, apparently in order 

to form an idea of what the output should look like. After some discussion and work at a 

chalkboard (experimentation), they determined that the top part of their input maps to the 

point on their output curve that has the maximum argument (See Figure 67).  Perhaps 

motivated by this discussion, David asked what would happen to an input circle with 

radius larger than 2𝜋. David began answering his own question via geometric reasoning 
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by claiming that things would get weird after “the 𝑦 goes beyond 2𝜋, so it includes more 

than rotation around, ” and further that “everything makes sense if we have a small circle 

that stays within 2𝜋 and −2𝜋.  David seemed to want to know exactly how things would 

get weird if they expanded their input circle beyond a radius of 2𝜋, possibly reasoning 

geometrically that at this point the maximum angle would have to be more than one 

rotation around the circle. 

 

Figure 67. David’s Diagram 

David and Joshua discovered via experimentation in Geometer’s Sketchpad (GSP) 

that their output curve would “twist” on itself; that is, it would no longer be one-to-one. 

They eventually characterized exactly which values 𝑧1 and 𝑧2 on their input circle had the 

property that 𝑓(𝑧1) = 𝑓(𝑧2). Joshua estimated that points which map to the same place 

on the twist have a vertical distance of 2𝜋 between them, and suggested that this 

geometric reasoning also provided an explanation for why circles with a radius smaller 

than 2𝜋 map to an output with no twists. 

I asked David and Joshua why the two points on the other side of the circle do not 

also map to a single point. This question was misleading because only one intersection 

point was visible on the screen, and according to David and Joshua’s geometric 



377 
 

 
 

reasoning, there should have been two. Both David and Joshua understandably seemed 

troubled by this apparent contradiction to their logic, and David initially attempted 

utilizing geometric reasoning to explain this discrepancy by suggesting that twists do not 

occur unless two points are rotated at least 𝜋 in opposite directions: “the image hasn’t 

completed a 𝜋 rotation, so they can’t intersect.” However, Joshua quickly noticed that 

this geometric reasoning suggests that the first two points should not have mapped to an 

intersection point either. Eventually, David commented that a lack of a second 

intersection point did not make sense, despite what he was seeing in GSP. So, he scrolled 

a little further to the left and actually found the second intersection, which had simply 

been off-screen. Joshua and David both expressed relief that their initial geometric 

reasoning really was correct and that there were in fact two twists (observation); one for 

each pair of points that are vertically separated by a distance of 𝜋 on the input circle. 

Both the second day and the second task ended with Joshua and David attempting 

to geometrically reason through what 𝑒𝑧 did to the plane, though both Joshua and David 

claimed that their summary of this new function was less insightful than their overarching 

description for 𝑧2. Joshua restated that points with a vertical distance of 2𝜋 away from 

each other are mapped to the same location, while everything else gets turned depending 

on imaginary values and stretched depending on real values, suggesting another synthesis 

of algebraic and geometric reasoning. David remembered that lines through the origin are 

mapped to spirals, and Joshua further added that the transformation 𝑓(𝑧) = 𝑒𝑧 squeezes 

in negative values toward zero, before finally reiterating twice more that this function 

maps points 2𝜋 apart to the same place in the output plane. 
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Task 3: Exploring Linear Functions and  

the Derivative With and Without 

 Geometer’s Sketchpad  

After each participant group completed the first two tasks, I asked them to 

characterize the meaning of the derivative of a complex-valued function. This task 

allowed me to establish a baseline regarding facts they already knew about the derivative 

of a complex-valued function before the beginning of the interview sequence or facts 

they acquired via one of the first two tasks. At the start of this task, I did not provide any 

access to GSP, thereby encouraging the participants to describe what they already knew, 

and implicitly discouraging exploration of concepts of which they were not yet sure. 

Disallowing GSP usage aided me in further determining how participants reasoned 

through the derivative of a complex-valued function. In the context of GSP, participants 

could utilize the technology to help them answer the questions of which they were 

unsure, whereas without it they may have been more likely to tell me only what they 

knew already. Additionally, this tactic helped me address some concern documented in 

previous literature that the knowledge gained with technology may not be retained 

without the usage of this technology (Salomon, 1990). While my participants did not 

have access to GSP, I asked them to reason about the meaning of the value of the 

derivative at particular points for particular functions such as a 𝑓(𝑧) = 𝑧2 or various 

complex-valued linear function. 

After I felt the participants finished describing the derivative of complex-valued 

functions geometrically as far as they were able, I returned their access to Geometer’s 

Sketchpad (GSP) so they could continue investigating aspects of this topic they still felt 

were unfamiliar. Though I did not explicitly plan for it, both groups investigated the 
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nature of linear functions at some point during this task. Karen utilized GSP to consider 

this topic, while Joshua and David first considered them before I returned their access to 

GSP. Due to the different rates of progress between the two groups through the first and 

second tasks, Karen worked through this task on the second day of her interview 

sequence, while Joshua and David completed the task on their third day. 

At the beginning of Karen’s third task, I removed her access to GSP and asked her 

to describe the nature of her reasoning about the derivative of a complex-valued function. 

She recalled the Cauchy-Riemann equations, but could only remember vague details 

about a matrix with two entries that had matching signs and two entries with opposite 

signs. As she could not remember any detail, she began describing the derivative as the 

slope of the tangent line. While this answer was understandable given her background in 

calculus, she did not feel that her explanation of the derivative as a slope generalized well 

to the complex plane for her. She also later stated that a “linearization” felt different than 

a “line.” This way of reasoning geometrically about the derivative as the slope of a 

tangent line seemed salient to Karen, as it recurred frequently throughout her interview. 

After she struggled to geometrically reason about a complex-valued derivative as 

the slope a tangent line, I suggested she re-summarize how 𝑓(𝑧) = 𝑧2 transforms the 

complex plane. She remembered that double circles are created when the input surrounds 

the origin, and further recalled the indent in the output that becomes more apparent as it 

moves closer to zero. Karen also told me that small circles “got rotated and dilated to 

their effect but they still had that weird bump thing happening around the point that was 

inside the unit circle.” So, while she alluded to the idea that small circles, in particular, 

are both rotated and dilated in a specific way, she did not say anything about what that 
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specific way might be, or how it might relate to the derivative. I re-introduced GSP to 

Karen after she finished summarizing the behavior of the function 𝑓(𝑧) = 𝑧2 

As Karen seemed to be investigating more potentially useful mathematical 

concepts related to the derivative, I encouraged her to investigate how the function 

𝑓(𝑧) = 𝑧2 transformed circles with GSP. During this experimentation stage she conveyed 

that she was “having trouble grasping what a line means in complex.” About 8 minutes 

later, while investigating the function behavior 𝑓(𝑧) = 𝑒𝑧 with GSP, she finally seemed 

to realize that even the idea of a line is different in the context of the complex numbers. 

She elaborated on what she felt was the source of her confusion: “I guess what’s really 

screwing me up is the difference between, because you have a function, you have an 

input plane and an output plane, you have a function, and then you have a 

transformation.” In short, Karen felt there were too many similar mathematical objects to 

keep track of at once. Karen may have had difficulty separating the input plane and the 

output plane because GSP displayed mathematical objects in both the domain and the co-

domain within one single Cartesian grid. As in the previous two tasks, Karen used 

different colors to graphically separate the objects in the domain from the objects in the 

co-domain, but their physical proximity may still have confused Karen somewhat. 

Karen further seemed to distinguish between functions and transformations, 

despite their mathematical equivalence. Perhaps this separation is due to a common 

difficulty experienced by students of mathematics—that of viewing a function as both an 

object and a process simultaneously (Sfard, 1992)—and the different words she used may 

reflect each of these facets separately. Karen utilized the function 𝑓(𝑧) = 𝑧2 to calculate 

the output value and derivative value at 𝑧 = 1 + 𝑖 via algebraic reasoning, and 
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constructed a transformation according to task instructions with GSP, so it is possible 

Karen viewed a function as a process and a transformation as an object, not realizing that 

they are both one single mathematical concept. 

Since Karen had attempted to reason about complex-valued functions 

geometrically similar to how she reasoned geometrically about functions in ℝ2, I 

reminded her of the limit definition of the derivative for a real-valued function. I asked 

Karen to consider the point 𝑥 = 4 for the function 𝑓(𝑥) = 𝑥2 and tell me what 4 + ℎ 

meant. She replied simply that it was 4 when ℎ goes to zero, perhaps utilizing algebraic 

reasoning to answer this question, so I asked her what ℎ approaching zero meant. She 

appeared to transition back to geometric reasoning, claiming that a circle showed what 

was happening around the points of interest, and asked “Is that why we’re doing circles?” 

Thus, for the first time, Karen appeared to generalize an aspect of geometric reasoning 

about the derivative of real-valued functions to the setting of the complex plane.  

While she did not appear certain of the limit’s geometric relationship to circles, 

this reasoning appeared to develop for Karen as she described to me what “narrowing in” 

on 𝜋𝑖 in the complex plane looked like geometrically. She initially talked about 

approaching 𝜋𝑖 from “both” sides, as though there were only two, so I asked Karen about 

a point on her circle in GSP that was located neither left nor right of 𝜋𝑖 but rather 

somewhere above it. This question seemed to make something click. “Sure! We can have 

a little circle around 𝜋𝑖. Oh! Circles! Gotcha!”  

Following this exclamation, she realized that she “can get as close to 𝜋 as [she] 

want[s] by changing the diameter of her circle,” stating that a small circle will “have a 

small 𝜖 or…ℎ,” and a large circle would have “a big ℎ.”The next time I asked her to 



382 
 

 
 

characterize what information the value of the derivative at a point 𝑧 gives her about the 

output 𝑓(𝑧), she first reasoned algebraically through the limit definition 𝑓′(𝑥) =

limℎ→0
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 I had supplied, and eventually transitioned to geometric reasoning. In 

particular, she reasoned that “the closer we are to [the point z] the more accurate for what 

our derivative actually is at a single point.” That is, she once again successfully enhanced 

her geometric reasoning about the derivative of a real-valued function to apply to the 

derivative of a complex-valued function. Through her experimentation with GSP of 

circles of varying size around a point 𝑧, she realized that she could utilize the same limit 

definition that defines the derivative of real-valued functions to reason about the 

derivative of complex-valued functions. Her observation that one can approach points in 

the complex plane in many directions, rather than just from the left or right as in the case 

of points in ℝ, seemed crucial to this discovery. After that realization, she suggested that 

ℎ was controlled entirely by the size of the circle surrounding the complex-valued point 

of interest.  

However, in manipulating a circle centered at 1 + 𝑖, she collapsed the radius to 0, 

making the input circle in essence a single point. Despite having just rediscovered a 

relationship between derivatives, limits, and approximations, she once again returned to 

geometrically reasoning about the derivative as the slope of the tangent line. This time I 

told her directly that we should investigate properties of “lines” in the complex plane, 

recalling her previous exclamation that she did not know what a line really looked like. I 

therefore asked Karen to construct the function 𝑓(𝑧) = 2𝑧 + 1. While initially convinced 

that the output circle would change in size as the input circle moved away from the 

origin, she discovered via experimentation with Geometer’s Sketchpad (GSP) that if the 
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input circle did not change in size or rotate, neither did the output circle. Moving the 

input circle only changed the output circle’s location, not its shape (see Figure 68 and 

Figure 69). I reminded Karen to use this function to learn what “slope” meant, and 

pointed out that this function’s derivative evaluated to 2 everywhere. Karen responded by 

suggesting that this value of 2 meant that the output circle is always twice the size of the 

input circle in this function, successfully reasoning geometrically about an algebraic 

result. 

 

Figure 68. Circle at origin 

 

Figure 69. Circle away from origin 

While Karen developed some sense of how to reason about the derivative 

geometrically in the context of a linear function, she felt that this reasoning would not 

generalize to 𝑓(𝑧) = 𝑧2, as circles no longer mapped to circles. She added that her rule 

for linear functions probably would not work here because the output is not a circle and 

thus “doesn’t have a radius really,” an objection that David and Joshua also raised briefly. 

Thus, the geometric reasoning of both groups initially suggested to them that the process 
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of “rotation” and “dilation” applied only to circles—an odd objection, as in previous 

research both Karen and David spent a great deal of time rotating and dilating vectors, 

and they additionally knew that multiplication by a complex number corresponds to a 

rotation and a dilation. Perhaps some facet of their experimentations and observations 

with GSP contributed to my participant’s sense that geometric reasoning about the 

operations of “rotation” and “dilation” are somehow more difficult if the object 

undergoing these transformations is not a circle. It is not clear whether they ever truly 

resolved this issue, as all participants essentially managed to sidestep this problem by 

noting that the image of a small circle under 𝑓(𝑧) = 𝑧2 and other functions at least 

resembled a circle (observation), then reasoning about these images as though they were 

circles. 

Just as Karen developed a sense of how the derivative might affect the dilation 

factor of an input circle with the function 𝑓(𝑧) = 2𝑧 + 1, the function 𝑓(𝑧) = 𝑖𝑧 + 2 

seemed to help her develop a sense of how the derivative might affect the degree of 

rotation of an input circle. However, Karen was incorrect regarding how the derivative 

could affect the rotation and dilation of the input circle. She claimed that the real part of 

the derivative impacted the dilation of the image of the input circle, and the imaginary 

part was the degree by which the function rotated the image of the input with respect to 

the original circle. This claim is incorrect, as the derivative value’s magnitude, not its real 

part, impacts the dilation of the image at a point and the derivative value’s argument, not 

its imaginary part, impacts the rotation. Karen may have made this error because of the 

particular linear functions I asked her to construct: the first had a pure real derivative to 
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emphasize the dilation aspect of the derivative and the second had a pure imaginary 

derivative to highlight the rotation aspect. 

While Karen originally claimed that the derivative was related to the Cauchy-

Riemann equations and described the slope of a tangent line, David and Joshua had no 

such pretense. When I asked Joshua and David how they thought of the derivative of a 

complex-valued function, Joshua bluntly stated, “I don’t” and David confessed, “I don’t 

think I ever really got a good grasp on it, so,” and did not elaborate.  After I pressed them 

further, David tried to recall a limit definition, but neither Joshua nor David seemed able 

to remember details. Having unsuccessfully attempted to recall an algebraic definition, 

David tried transitioning to a geometric reasoning approach, and started talking about the 

slope of a tangent line, just as Karen did. However, unlike Karen, David appeared to 

believe that this geometric reasoning would not generalize to the complex plane: “We 

were talking about somehow, the normal real derivative is just slope change in a function. 

For the complex derivative, I think somehow it had to do with a change but it was a 

change along a vector, or something like that. Maybe.” 

Since neither participant seemed sure how to proceed, I directed their attention to 

the behavior of the function around the point 𝑧 = 1 + 𝑖 in the function 𝑓(𝑧) = 𝑧2. David 

simply stated “that was a circle that did weird things,” apparently recalling their 

investigation of the transformation of circles surrounding the point 𝑧 = 1 + 𝑖.  Joshua 

restated the conditions necessary for two points to map to the same place under this 

transformation, thereby causing a twist in the output. When I asked them to relate their 

observations to the derivative, David started considering the magnitude and angle of the 
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value of the derivative 𝑓′(1 + 𝑖) = 2 + 2𝑖 evaluated at 1 + 𝑖, and suggested the 45° 

angle of 2 + 2𝑖 “represents what the point 1 + 𝑖 would get mapped to in 𝑧2.”  

He continued by calculating the magnitude and angle of 1 + 𝑖, possibly to attempt 

to discover some relationship between these quantities and the magnitude and angle of 

the value of the derivative of 𝑓(𝑧) = 𝑧2 at 1 + 𝑖. It is also possible that David still 

wanted to consider the value of the derivative at 1 + 𝑖 but chose to work with the 

incorrect value of 1 + 𝑖 instead of 2 + 2𝑖. David stated that he was attempting to find 

some relationship involving magnitude and angle through these calculations. I redirected 

him and Joshua back to the value 2 + 2𝑖 and asked Joshua and David how the 

transformation rotated the input circle. Joshua suggested upper bounds for the amount the 

circle could be rotated, and David appeared to object to talking about rotations at all in 

this context. Like Karen, David initially felt that the term “rotation” did not make sense 

for a shape that was not a circle.  Shortly after Joshua re-voiced this concern, David 

seemed to overcome his own objection by geometrically reasoning about the output shape 

as though it was a circle, stating “So do you mean, rotated as in a circle is taken and you 

twist it like this,” as his hands positioned themselves as though they were holding a 

sphere, then rotated as though rolling this sphere to the left (see Figure 70).  

 

Figure 70. David rotates a circle counter-clockwise 
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This discussion appeared to remind David of talking about 𝜖 −neighborhoods as a 

class in his complex analysis course. Armed with this idea, he suggested looking at how a 

small region around a point is transformed by the function 𝑓(𝑧) = 𝑧2, rather than how the 

point itself is transformed. This realization was a major step forward in geometrically 

reasoning about the derivative as a local linearization, as the inclusion of 

𝜖 −neighborhoods in their reasoning made it possible to include the idea of 

approximation of a function in their reasoning as well. Joshua and David appeared to 

solidify this geometric reasoning about rotating something that is not a circle after they 

drew several line segments and discussed how they thought each are transformed. In 

particular, they wanted to know whether their line segments would map to another line 

segment. David initially posed this question, and Joshua appeared to believe this was not 

the case, stating, “I guess it does not need to be a straight line to have some idea of 

rotation.” David however, felt that a line would indeed map to a line rather than a circle 

due to a belief that rotation and magnitude occur separately, apparently forgetting that a 

different point on the line might be rotated in a different way.  

Joshua: I mean, but well sure, but we’re also rotating each point 

separately 

 

David: Yeah, but you can think of rotating and then, 

 

Joshua: I guess, okay no, you’re right, the rotation is separate from the 

magnitude.  

Despite Joshua’s seeming reluctance to believe that lines were mapped to lines, 

observing an inscription that rendered the image of lines as lines (see Figure 71) appeared 

to impact Joshua’s geometric reasoning. In particular, he seemed to believe that the 

transformation 𝑓(𝑧) = 𝑧2 preserved certain angles such as those indicated in Figure 72. 

David and Joshua followed this investigation by trying to develop their geometric 
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reasoning to predict how the circle gets rotated by considering specific angles. Joshua 

asked, “So we saw that this 45 degree angle was rotated 45 degrees. So would this 60 

degree angle be rotated 60 degrees….or is everything rotated 45 degrees no matter 

what?” After some discussion of how various angles were transformed by 𝑓(𝑧) = 𝑧2, 

David and Joshua eventually agreed that the output shape, which was nearly a circle, 

seemed to rotate by 45° with respect to its pre-image. Just as Karen had originally, David 

related this occurrence to the previously investigated function behavior rather than to the 

derivative at that point: “Well in this instance it would be because of circles around 1+i 

and that already had, that's a 45 degree angle so when you double that we get another 45 

degrees. So if we had an angle at, or a preimage a circle at an angle of 30 degrees, the 

image is going to be rotated 30 degrees.” 

 

Figure 71. Domain (left) and co-domain (right) of 𝑓(𝑧) = 𝑧2 

 

Figure 72. Angles in the domain (left) and co-domain (right) 
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 To pull them away from only reconsidering function behavior, I asked them to 

consider functions with a constant derivative. This question parallels my attempt to 

utilize linear functions to discourage Karen from continuing to reason geometrically 

about the derivative as the slope of a tangent line. At this point, Joshua also reintroduced 

the idea of slope, and defined it as the change in imaginary over the change in real 

values—a definition that, though flawed, is still symbolically related to the algebraic 

definition of a real-valued slope: 
𝑦2−𝑦1

𝑥2−𝑥1
 (see Figure 73). It appeared that Joshua had 

conflated the idea of input and output values (represented by 𝑥 and 𝑦 respectively) with 

the idea of real and imaginary parts (represented by 𝑥 and 𝑦 respectively) due to the fact 

that the same pair of variables are used to represent both concepts; his algebraic 

reasoning about these two facets could have interfered with each other due to the 

similarities of these algebraic inscriptions. While Joshua seemed unconcerned by the idea 

of slope, David seemed troubled, stuttering “Well no, the sss, are you talking about the 

ssss, what do you mean by slope?” Joshua tried to defend this way of reasoning 

geometrically about slope by building the domain out of several tangent lines through the 

origin (construction) but immediately abandoned this reasoning while looking at the 

geometric inscription he had just produced (seen in Figure 73). When I asked him why he 

said he “[did]n’t like the idea anymore,” he claimed that he “[could]n’t connect it to the 

function 𝑧.” 
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Figure 73. Joshua tries to explain the slope of the tangent line of a complex-valued 

function 

 While it was difficult to discourage Karen from reasoning geometrically about the 

derivative as the slope of the tangent line, David and Joshua seemed so proficient at 

reasoning through function behavior directly that it felt difficult to encourage them to 

think of the derivative at all.  That is, I created the interview tasks to encourage 

participants to think about how a complex-valued function maps a small circle around a 

point 𝑧, and how the value of the derivative of the function at the point 𝑧 describes this 

mapping. Particularly, the magnitude of the derivative value at a point 𝑧 impacts the 

amount the image of a small circle around 𝑧 dilates with respect to its pre-image, and the 

argument of the derivative value impacts the amount the image rotates. However, David 

and Joshua seemed able to predict the way a function maps a small circle simply by 

referencing the equation of the function itself, without ever having to utilize any 

derivative values. This proficiency at predicting function behavior without the use of the 

derivative may have caused some difficulty in motivating Joshua and David to see a need 

to geometrically describe the derivative at all. In this way, such knowledge of function 

behavior may have conflated with the development of their geometric reasoning about the 

derivative as a local linearization.  
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When I asked Joshua and David to consider the function 𝑓(𝑧) = 𝑖𝑧, which had an 

imaginary derivative, Joshua noted that geometrically the axes switch and so the plane 

rotates 90° under this transformation, and David justified this answer by algebraically 

reasoning that “𝑥 goes to 𝑖𝑥𝑦, 𝑖𝑦 goes to −𝑦, so all the real parts get mapped to the 

imaginary, and all the imaginary get mapped to the negative real parts.” Just as I had with 

Karen, I started asking Joshua and David more pointed questions to highlight the 

derivative’s role. Their response suggests development of geometric reasoning that 

included the possibility that the derivative is related in some way to rotation and dilation. 

Joshua thus became interested in whether this geometric reasoning would generalize to 

non-linear functions such as 𝑓(𝑧) = 𝑧2 

Interviewer: What does the derivative tell you about the function? 

 

David: So that would tell us that everything gets rotated by 𝟗𝟎° because 𝒊 

is (rotates open-palmed hand from facing up to facing left) at 90°. 

 

Joshua: So the derivative tells you something about how you stretch and 

how you rotate. 

 

David: Yeah, that makes sense for like 2𝑧, 3𝑧, 4𝑧,all that stuff because 

they're, all the derivatives are on the real line, (pinches fingers together 

with right index finger pointing forward, then pulls hands horizontally 

apart) so that gets rotated  

 

Joshua: We're not rotating anything, we're just stretching it so, yeah. Does 

that make sense for 𝑧2 though? 

 

Neither Joshua nor David explained which mathematical entities they claimed 

should be rotated and dilated throughout this exchange. David noted that “everything” 

rotates 90°, and later claims “that” rotates, without indicating to which objects either 

“everything” or “that” refers. Joshua introduces a similar ambiguity in commenting that 

“it” stretches. Throughout this exchange, both Joshua and David appear to focus on the 
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geometric operations that occur, but do not identify any entity on which these operations 

are acting.  

In a following conversation, Joshua duplicated one of Karen’s errors by claiming  

“the derivative if it’s a constant tells you about, either a rotation if it’s imaginary, or a 

dilation if it’s real,” thereby associating the real part of the derivative to a dilation and the 

imaginary part to a rotation. However, when I asked them what the complex-valued 

constant derivative 3 + 𝑖 meant, they answered correctly, although they were still vague 

about which rotation and dilation the derivative describes. 

Interviewer: Okay, and what if it’s complex? So like, (3 + 𝑖)𝑧. 

 

Joshua: Probably some combination. 

 

David: Well it'd be whatever angle 3 + 𝑖 is at, that's our rotation 

 

Joshua: Well shouldn't it's also whatever magnitude 3 + 𝑖 is, so it's exactly 

a combination of magnitude and rotation. So you dilate by root 10 and 

then rotate by whatever angle 3 + 𝑖 is like you said. 

 

David initially expressed discontent with this rule they developed, stating 

“actually I’m still not sure on the magnitude part.” His discontent could have 

stemmed from his previous statement that he wanted to think of rotation and 

magnitude occurring sequentially rather than simultaneously, but here he seemed 

to relent and accept Joshua’s geometric reasoning, admitting, “I don’t know, it 

kind of makes sense that it does it at the same time.” 

Despite having just correctly geometrically reasoned about the derivative within 

the context of a linear function, David repeated a previous error when attempting to 

generalize to the function 𝑓(𝑧) = 𝑧2. When considering the point 𝑧 = 1 + 𝑖 where 

𝑓′(𝑧) = 2 + 2𝑖, he applied their rule to the input point 1 + 𝑖 rather than an 
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𝜖 −neighborhood around it, citing the fact that 2 + 2𝑖 has magnitude 2√2, but the point 

1 + 𝑖 maps to 2𝑖, a point with magnitude 2, not 2√2. Joshua tried to salvage some of 

their heuristic by noting that 1 + 𝑖 has a magnitude of √2 and “√2 ∗ 2 = 2√2.” In 

particular, |1 + 𝑖| ∗ |𝑓(1 + 𝑖)| = |𝑓′(1 + 𝑖)|. David paraphrased Joshua’s claim by 

saying, “So the magnitude of the point of the pre-image times the magnitude of the image 

of the 𝑧2 is the same as the magnitude of the derivative, is that what you’re saying. 

Joshua confirmed: “I mean, apparently.” When I asked Joshua if this rule would hold 

everywhere, he noted it would not, since 𝑓(1) = 12 = 1, which is not dilated at all even 

though the function 𝑓(𝑧) = 𝑧2 at the point 1 has a derivative of 2 under this mapping. 

After this conversation, I re-introduced Geometer’s Sketchpad (GSP) to allow 

David and Joshua to test all the conjectures they had just generated between themselves 

and with some help from inscriptions on the blackboard (experimentation). This re-

introduction of GSP and its related inscriptions began with several quick progressions 

through construction, experimentation, and observation, as Joshua and David built the 

necessary objects (if needed/not already present) to test their conjectures 

(experimentation), placed them in their proper locations, and observed the results 

(observation). To begin with, Joshua noted that lines do not map to lines, though the 

spokes of the input circle looked close to straight in the output when the circle was small. 

David similarly observed that “small input circles…look like very circular outputs.” They 

additionally overturned their previous conjecture that an angle located at the origin in the 

input would be preserved by the function 𝑓(𝑧) = 𝑧2 in the output, observing that the 

angle is doubled instead. 
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After I asked Joshua and David to describe how circles are transformed by 

𝑓(𝑧) = 𝑧2, Joshua verbalized a connection between the magnitude of the derivative and 

the way in which circles are transformed by the function. 

Joshua: Oh. I said whatever magnification that is (places cursor over 

input point 𝑧), and I said the number, so looks like the input circle is a 

radius of a quarter (waves mouse along radius of input circle),, which is 

what, . 707? So not quite tripled. So I mean, the output is 2 root 2 bigger 

than the input, which is the magnitude of the derivative. 

 

He additionally realized shortly thereafter that this information only applied when the 

input circle was small. 

Joshua: Maybe the derivative tells you how much bigger the radius is, but 

then once you start getting deformation it doesn’t hold. I guess in an 

epsilon neighborhood around 1 + 𝑖, that you don’t need to consider 

deformations so they will hold, I guess. So the derivative tells you how 

much the radius grows around an epsilon neighborhood of 1 + 𝑖. 
 

David: I guess I can buy that a little bit. 

 

After this exchange, David spent about 8 minutes back at the blackboard trying to prove 

via algebraic reasoning and algebraic inscriptions that an 𝜖 −neighborhood around the 

point 1 + 𝑖 should be dilated by a factor of 2√2 by the function 𝑓(𝑧) = 𝑧2. After this 

interlude at the board, Joshua asked a question about the one aspect for which his 

explanation did not account: “But do we know how the derivative tells us that we’re 

rotating?” David turned to GSP to answer this question, choosing a different point as the 

center of their input circle and attempting to predict how the function would map one of 

its radii (see Figure 74). Joshua and David appeared to be able to predict that a radius at 

0° with respect the center of the input circle maps to a radius at 30° with respect to the 

center of the image of the circle (see Figure 75). However, it is not clear how they were 

reasoning about it, nor did they actually verbalize how the derivative relates to the 
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rotation. Additionally, they seemed to have the ability to accurately predict how an input 

angle would be transformed, though it is not clear whether this ability stemmed from 

their understanding of the derivative, or simply their experience with GSP or even just 

the function 𝑓(𝑧) = 𝑧2 itself. 

 

Figure 74. Joshua and David consider a circle (purple) centered around 2 + 𝑖 

 

Figure 75. Joshua and David test their rotation prediction 

Task 4: Generalizing and Testing Meaning  

of Derivative via 𝒇(𝒛) = 𝒛𝟐,  

𝒇(𝒛) = 𝒆𝒛, and 𝒇(𝒛) =
𝟏

𝒛
  

After exploring the transformation of circles under linear functions, both groups 

of participants seemed able to reason geometrically about the derivative. In particular, 

within the context of linear functions, both groups noted that the derivative of a linear 

function allowed them to predict how a circle was rotated and dilated under the function. 

However, neither group seemed certain how this result generalized to non-linear 

functions, or if it generalized at all. In this task, I asked each set of participants to apply 
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their geometric reasoning to the derivative of a complex-valued function within the 

context of the functions presented by the two tasks: 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧. In 

particular, I asked them if their current geometric reasoning generalized to these new 

transformations.  

Furthermore, I introduced a function they had not yet investigated: 𝑓(𝑧) =
1

𝑧
. I 

selected this function for two reasons. First, while 𝑓(𝑧) = 𝑧2 maps circles around the 

origin to double circles and 𝑓(𝑧) = 𝑒𝑧 maps larger circles to an image that twists around 

on itself, the function 𝑓(𝑧) =
1

𝑧
 always maps a circle to a circle or a line. Thus, in these 

ways, 𝑓(𝑧) =
1

𝑧
 maps an arbitrary circle somewhat less oddly than either of the other two 

functions, though 𝑓(𝑧) = 𝑒𝑧 does always map a small circle to another circle as well. 

Second, unlike either of the first two functions, 𝑓(𝑧) =
1

𝑧
 has a point for which its 

derivative is not an ordinary complex number; namely 𝑧 = 0. At 𝑧 = 0, the derivative 

can either be taken as non-existent, or as 
1

0
= ∞. 

In this task, I discuss the ways in which my participants attempted to generalize 

their current geometric reasoning about the derivative of a complex-valued linear 

function to the context of these three functions. The participants’ explorations regarding 

the meaning of a non-existent derivative is discussed further in Task 5. Karen began this 

task on the third day of her interview sequence, and completed it near the end of her 

fourth and final day. Joshua and David worked through this task entirely on their fourth 

day.  

Karen began the fourth task by re-summarizing how she reasoned about the 

derivative of a complex-valued function, both algebraically and geometrically. She 
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recalled what the derivative meant for a linear function, again claiming that the 

magnitude of the real part determines the dilation and the argument of the imaginary part 

determines the rotation. She also remembered the limit definition of a derivative and 

shrinking the input circle all the way down to a single point: “So at a point, like, you're 

taking the circle and as ℎ goes to 0 it the output also kind of converged onto the point that 

we would expect it to. ”  

As Karen had just offered a way of reasoning geometrically about the derivative 

of a complex-valued linear function, I asked her to describe her geometric reasoning 

about the derivative of 
1

𝑧
 at 1 + 𝑖. Via algebraic reasoning, she calculated the value to be 

1

2
−

1

2
𝑖 . Note that this is the incorrect value, as the derivative at this point evaluates to 

1

2
𝑖. 

Regardless, she told me that 
1

2
−

1

2
𝑖 is the slope of the tangent line at 1 + 𝑖. As before, 

throughout this task Karen geometrically reasoned about the derivative as the slope of the 

tangent line many times over, although I was often able to encourage her to find alternate 

methods of reasoning by asking her to explain what a line with imaginary slope looked 

like. For example, when I asked her to tell me what a slope of 
1

2
𝑖 meant, she replied, “It 

means that, see this is where I get lost because, can linear functions slope like that? 

Because input and output are not the same, geometrically this is difficult. So it’s dilating, 

it’s shrinking, and….” Furthermore, after geometrically reasoning through what it means 

to multiply a complex number by 
1

2
−

1

2
𝑖 via rotations and dilations, it seems she began to 

feel once again that her tangent line idea may not easily generalize to the case of complex 

functions.  

Karen: That's why I'm getting confused mostly is because I don't 

know how that would transfer over. If it transfers over like, directly or if 
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there's something else that happens because your input and output in the 

Cartesian plane is on the same plane, so you just find your point on that 

plane and then you draw the tangent line. But since it's on two different 

planes in a complex, I don't know what that implies as far as tangent lines 

go.  

 

She seemed to conclude that the tangent line should exist entirely within the 

output plane of a complex function: “So it would be on an output plane….because, well 

then maybe it’s not. No it has to be because, if you go back to the algebraic definition of 

limit, your output is what defines your function, the derivative. Because it’s 𝑓(𝑥 + ℎ) and 

that’s the output, minus 𝑓(𝑥) over ℎ.” 

 This time, to encourage an alternate method of reasoning and discourage 

reasoning involving tangent lines which seemed to be unhelpful to Karen, I suggested 

Karen direct her attention to how circles are transformed by the function 𝑓(𝑧) =
1

𝑧
. Via 

experimentation and observation with Geometer’s Sketchpad (GSP), Karen discovered 

that 𝑧 = 0 is a “weird” point in that a small circle around 0 was transformed into a very 

large circle. Though apparently initially interested by the discovery that a small circle 

around 0 was transformed into a very large circle (observation), she decided that this 

result was unsurprising since “1 over 0 is infinity.” She additionally described how 

𝑓(𝑧) =
1

𝑧
 transformed circles in general while demonstrating this in GSP. Particularly, 

she noted that this function maps circles “inside the unit circle to something bigger 

because it’s less than 1” (see Figure 76) and the function maps circles “inside the unit 

circle are going to be larger than what they were” (see Figure 77). She additionally noted 

that if she moved the unit circle farther away from the origin, the output gets closer to 

zero and it “basically all but disappears into just a single point.” (see Figure 78) 
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Figure 76. Input circle (blue) inside unit circle (green) 

  

Figure 77. Input circle outside unit circle 

 

Figure 78. Image collapses “into just a single point” 

When I asked Karen to reason geometrically about the derivative of 𝑓(𝑧) =
1

𝑧
 at 

𝑧 = 1, she calculated the derivative to be 1 and again claimed that this was the slope of 
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the tangent line. I discouraged this explanation once again by asking her to extend this 

reasoning to the point 𝑧 = 1 + 𝑖, which has a complex-valued derivative.  

She attempted to answer by drawing a line segment (construction) in the output plane 

through the point 
1

𝑧
 at 

1

2
−

1

2
𝑖 with slope −

1

2
  (see Figure 79). I challenged this reasoning, 

and again she seemed to decide that she probably did not want to reason via the slope of 

tangent lines. 

Interviewer: Why is that what it looks like? 

 

Karen: That has to go through that point and it has a slope of. Oh! Dang 

it (strikes table forcefully), I'm thinking in terms of Cartesian again. It 

doesn’t look like that. Shoot. 

 

Interviewer: Tell me why you don’t want to think in terms of Cartesian 

coordinates. 

 

Karen: Well, because I keep thinking that, like negative one half would be 

(palms face each other, fingers tessellate with palms facing inward, then) 

which it is, but it doesn’t necessarily (rotates palms upward with right 

palm facing left). Does it mean rise over run (right hand rotates on top of 

left hand, palms coming together) in complex like it does in Cartesian? 

 

 

Figure 79. Karen’s “tangent line” for the point 

Karen continued to spend some time trying to generalize her tangent line 

reasoning properly to the complex plane, and I tried to help by directing her attention to 
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various components of reasoning about the real-valued derivative. Eventually she 

returned to the idea of linear transformations. 

Interviewer: What do 𝑥 and 𝑦 mean? 

 

Karen: The output values over the input values. 

 

Interviewer: So where do the tangent lines live? 

 

Karen: Like in? 

 

Interviewer:  Is the tangent line part of the output values or the input 

values or neither or something else entirely? 

 

Karen: On the Cartesian plane it lies tangent to your output values at that 

specific input value. Does that make sense? 

 

Interviewer: So what does a line look like in the complex plane? 

 

Karen: Like a linear transformation you mean? 

 

It is possible that here Karen was committing an error of which Joshua was also 

guilty. In particular, she may have been conflating the input and output values 

(represented by 𝑥 and 𝑦 respectively in the Cartesian plane) with the real and imaginary 

parts (represented by 𝑥 and 𝑦 respectively in the complex plane).  Furthermore, even 

within the context of the Cartesian plane, Karen did not appear to recognize that the 

tangent line of a function is tangent to a point that consists of both an 𝑥 −value and a 

𝑦 −value, rather than just the 𝑦 −value. This oversight may have contributed to Karen’s 

difficulty in generalizing geometric reasoning about tangent lines to a complex-valued 

function, as she may not have realized that such a tangent line touched a four-

dimensional point (𝑧, 𝑓(𝑧)) consisting of both a two-dimensional input point 𝑧 and its 

corresponding two-dimensional output 𝑓(𝑧). After this summary, I asked Karen to 

explain what the derivative at the point 𝑖 in the function 𝑓(𝑧) =
1

𝑧
 told her about the 
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function. She correctly noted that the derivative at 𝑖 was 1 and claimed this meant that 

“[the input circle]’s going to stay the same, because it would just dilate by a factor of 1, 

but that doesn’t do anything.” When she tested her theory in GSP (experimentation), she 

initially seemed disappointed (observation) by the result (see Figure 80). 

Karen: So that didn’t work (traces down and right, outlining a line with 

slope negative one half). Yeah, 𝑑𝑧 is at 1. Why did it do that (referring to 

black circle in Figure 80) though?  

 

Interviewer: It’s where you want it? 

 

Karen : 𝑑𝑧 is where I want it. The circle is not ideal. 

 

 

Figure 80. The derivative of 𝑧 (red dZ point) and the transformation (black) of the blue 

circle under the derivative function 

However, Karen soon decided that a slight distortion should be present in the 

output shape, because for different “points on the circle, the derivative is going to have a 

different effect on them because they have a different value.” Thus, at this point in the 

interview, Karen may have had a sense not only that the derivative describes an 

essentially local property, but also could have developed some geometric reasoning 

explaining why the property is necessarily local in nature. However, Karen still did not 

seem certain that her geometric reasoning about the derivative at a point in the function 
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𝑓(𝑧) =
1

𝑧
 was correct, apparently due to the fact that the output of a circle in GSP was 

slightly distorted, stating that “before, when we did linear transformations, it didn’t affect 

the size of your circle that you were looking at.” When I asked her what was different 

about 𝑓(𝑧) =
1

𝑧
, she seemed to change her reasoning to allow for the possibility of 

generalization from linear functions, claiming “…it almost kind of looks like and maybe 

this is just a coincidence, but if you took this circle (waves mouse over black circle, 

which represented the derivative; see Figure 81) and you kind of rotated and dilated it to 

a certain effect, that's kind of what you got with the derivative.” 

 

Figure 81. Input (blue), function output (red), and derivative output (black) 

However, after apparently developing geometric reasoning about the meaning of 

the derivative of a linear function and offering geometric reasoning for the meaning of 

the derivative of 𝑓(𝑧) =
1

𝑧
, Karen returned again to geometric reasoning about the 

derivative as the slope of a tangent line. She tried to refine this reasoning by attempting to 

explain what the derivative of a real-valued function would tell her about the shape of the 

function. Additionally, she claimed that the derivative of a complex-valued function 
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really told her nothing, despite having already explained several aspects of her geometric 

reasoning about the derivative of a complex-valued function. 

Karen: I don’t know what else it would tell you, but I don’t necessarily 

know that it’s the same either. So the derivative function really tells me 

nothing. Well it does, but it doesn’t give you any graphical meaning. 

That’s not right either. It tells you the slope of all the tangent lines but 

doesn’t look like any of them. Does that make sense? 

 

Karen eventually managed to transition back to her previous geometric reasoning 

about the derivative of complex-valued linear transformations, and even repeated her 

error that the real part of the derivative controlled the magnitude of the dilation, and the 

imaginary part controlled the angle of rotation. Karen seemed to take another step toward 

developing geometric reasoning about the derivative of complex-valued functions when I 

asked her what it would mean if the derivative at an arbitrary point 𝑧 under an arbitrary 

complex-valued function 𝑓evaluated to 3 + 2𝑖. In particular, it seemed she began to 

realize that the magnitude of the derivative, not the real part, impacted the dilation of the 

transformed circle, and the argument of the derivative, not the imaginary part, impacted 

the rotation. 

Interviewer: What does that tell you about this function? 

 

Karen: Nothing. It tells me about that point, but as far as a function goes, 

just that it’s increasing (palms face inward, fingertips point at each other, 

fingers fan out) at that point. 

 

Interviewer: What’s increasing? 

 

Karen: The function itself. 

 

Interviewer: 3 + 2𝑖 means increasing? Why is that? 

 

Karen: Well, I guess not in complex terms. (Both hands start palm 

down. Left hand raises as right hand raises straight and drops in an 

“S” shaped path) It means that it’s dilating (Hands move out to shoulder 
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width, palms facing each other, fingers slightly curled) in a positive 

fashion and rotating in a positive direction. Is that better? 

 

It seemed clear by the end of the third day that Karen did indeed realize the 

magnitude of the derivative evaluated at a point described a dilation and the argument 

described a rotation. However, instead of relating this dilation and rotation to the image 

of a circle centered around a point where the derivative evaluates to 3 + 2𝑖, Karen 

claimed that a derivative value of 3 + 2𝑖 meant that “the function itself” was 

“increasing.” She elaborated that by “increasing” she meant that “[the function]’s dilating 

in a positive fashion, and rotating in a positive direction.” As Karen had previously 

associated the real part of the derivative evaluated at a point with this dilation and the 

imaginary part with a rotation, I asked her to apply this geometric reasoning to a different 

value to see if she would repeat this error. She did not, instead interpreting “tan
𝑏

𝑎
 or 

something like that” as the “angle [she]’s dilating by,” and “the magnitude of 𝑎 + 𝑏𝑖” as 

her “dilation factor,” where 𝑎 + 𝑏𝑖 is the value of the derivative evaluated at some point.  

To continue this task on the fourth day, I asked Karen to re-summarize how a 

complex-valued linear transformation behaved. She recalled that a linear function 

transforms a circle according to the derivative: dilating the circle by the magnitude of the 

derivative and rotating it by the argument. My questions grew more direct as well; I 

started asking Karen to consider how 𝑓(𝑧) =
1

𝑧
 would transform a circle at the point 𝑧 = 𝑖 

if this transformation were linear. Although she had just evaluated the derivative at 𝑧 = 𝑖 

as 1, stating “because the derivative is −
1

𝑧2, and 𝑖2 is −1,” she responded by associating 

the function 𝑓(𝑧) = −𝑖𝑧 with this point. Despite this error, her reasoning about the 

derivative as a linear approximation appeared to develop. 
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Karen: “It almost looks like it's a linear map, but it's not. You can tell 

because the spoke is being dampened and because the spoke isn’t straight, 

and I don’t know how I would characterize that. 

 

Interviewer: When you say it looks like a linear map, what do you mean? 

 

Karen: Well the linear maps we looked at, a lot of them were just a 

representation of that circle either farther away or rotated or both, and 

that’s kind of what this looks like, but it’s a little bit different.  

 

Interviewer: Can you tell me which linear transformation this looks like? 

 

Karen: No….Actually, if it looked like any transformation, it would look 

most like 𝑐𝑜𝑠 90° . I was going to say 𝑖, but that’s not right, because 

otherwise it’d be over here (points at the point −1 on the unit circle. See 

Figure 82 for reference). 

 

 

Figure 82. Circle (blue) transformed under 𝑓(𝑧) =
1

𝑧
 (red) and 𝑓′(𝑧) (black) 

Karen even stated at one point during this interview portion that she believed that 

𝑓(𝑧) =
1

𝑧
 actually was linear, since “the circle isn't changing in any way shape or form, 

just moving (observation).” She even asserted that she was “pretty sure it’s linear. Should 

still be. It’s just different than expected.” She continued by correctly applying geometric 

reasoning to the meaning of a derivative value of 𝑓′ (
1+𝑖

√2
) = 𝑖: the function does not 

dilate the image of a circle around the point 
1+𝑖

√2
  at all with respect to its pre-image, but 

does rotate it  90° (observation; see Figure 83). However, Karen still seemed to feel that 
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her geometric reasoning was flawed for 𝑓(𝑧) =
1

𝑧
 at 𝑧 = 4 + 2𝑖, possibly because GSP 

showed her something slightly different than expected (see Figure 84).  

Karen: 4 + 2𝑖 I would expect the output to be dilated by the magnitude of 

that, so it’d be quite big. And it would be rotated by the angle which I 

think is 
1

2
. 

 

Interviewer: What does your output look like? 

 

Karen: Not that (see Figure 84). 

 

 

Figure 83. A circle around 
1+𝑖

√2
 (blue) and its image (red) under 

1

𝑧
 

It is not clear what Karen expected to see, as the output did indeed appear to be 

dilated and rotated approximately as she described (see Figure 84). Perhaps she felt that 

the output was too small, or perhaps she confused the slope of the line through the origin 

and the value of the derivative at 2 + 𝑖 with the argument of this value. Karen later told 

me she was unsure whether the output matched her prediction or not. On one hand she 

felt that that her circle was not quite rotated by the correct angle, but on the other hand 

she felt that the dilation was correct, and was not entirely sure whether her angle was 

correct or not. Karen seemed to develop a sense that the derivative described some local 

property, but appeared unsure of whether the derivative was in fact a linearization. 
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Figure 84. Mapping an input (blue) via 𝑓(𝑧) = 2𝑧 + 1 (red) and 𝑓′(𝑧) (black) 

While it was not entirely clear whether Karen continued to reason through the 

derivative as a local linearization by the end of the four-day interview sequence, Joshua 

and David seemed to develop this knowledge by the beginning of Task 4. 

D: It would be the (Joshua pinches right index finger and thumb together) 

derivative at a single point (David pinches right index finger and thumb 

together)  tells us how the antiderivative functions (rotates right hand 

from facing palm down to facing palm up, then returns his hand to palm 

down and raises his hand up then lowers it again), the function we took the 

derivative of, tells us how original function (pinches right index finger 

and thumb together, then points left with index finger) transforms by the 

angle (flips right hand right to face palm up, then left to face palm down) 

and magnitude of the derivative. (right hand forming a “C”) So the angle 

and magnitude of the derivative (rotates right and back left) at a point 

tells us how epsilon balls (touches curled fingers together as though 

holding a ball) are little circles around (hands raise slightly, then left hand 

drops)  points will transform (right hand fingers point left) how they'll 

rotate (right hand fingers point up and rotates left and right about wrist), 

and how they'll expand (palms face each other, hands move horizontally 

away from each other) or contract (hands move horizontally back toward 

each other). 

 

This explanation appears to lack only the specifics regarding how the derivative 

describes the rotation and dilation of their 𝜖 −balls. In particular, David and Joshua did 

not explain that the magnitude of the derivative evaluated at a point 𝑧 is the factor by 

which the transformation dilates the image of an 𝜖 −ball around 𝑧 with respect to their 
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pre-image and the transformation rotates the 𝜖 −ball at an angle equal to the argument of 

the derivative evaluated at 𝑧. 

As Joshua and David explained their reasoning about the derivative at a point for 

𝑓(𝑧) = 𝑧2 at a previous point in the interview, I asked them if they thought the geometric 

rule they developed would hold for 𝑓(𝑧) = 𝑒𝑧 at 1 +
𝜋𝑖

2
.  Their rule stated that if for a 

particular point 𝑧, 𝑓′(𝑧) = 𝑤 for some complex number 𝑤, then the image of an 𝜖 −ball 

around 𝑧 is |𝑤| times larger than its pre-image, and rotated 𝐴𝑟𝑔(𝑤) degrees with respect 

to its pre-image.  After they calculated the derivative to be 𝑖𝑒 at this point, Joshua 

correctly stated that this derivative value suggested that “maybe it’s a rotation by 90°. 

That’s what it would tell us if the rule stays.” Still, Joshua expressed skepticism about the 

rule holding for this new function, while David felt that their rule would still apply in the 

context of this new function, at least for small circles. 

Joshua seemed to feel that their rule regarding rotation and dilation was rooted in 

the fact that 𝑓(𝑧) = 𝑧2 multiplies the input by itself, and multiplication is strongly related 

to the rotation and dilation of the input point. Joshua claimed that “for 𝑒𝑧 I can’t really 

think of it in that way, and I know that multiplication by a complex number is the same as 

a rotation and dilation.” David appeared to have no corresponding reason for why he felt 

their rule would still hold, simply stating that he believed it would “just because maybe 

that should make sense.” He additionally cited the fact that the output of an exponential 

function changes drastically even for small changes in the input, and finished his 

explanation by expressing increasing doubt: “The exponential’s where I guess, or maybe 

not. No. Maybe. I don’t know what I’m saying. I retract what I said.” 
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 David and Joshua went on to investigate whether the rule for the derivative they 

had developed in the task for 𝑧2 still held for 𝑒𝑧, beginning by looking at a circle of 

radius . 5 centered around the point 1 +
𝑖𝜋

2
 (experimentation; see Figure 85). When I 

asked them if there were any points for which their rule did not hold for 𝑓(𝑧)  =  𝑒𝑧, they 

expressed brief concern over the twists formed in the output of large circles (observation; 

see Figure 86). However, this concern appeared to dissipate quickly once David reiterated 

that they were looking primarily at small circles. 

David: So, yeah, I don't think that'll come into play since we're taking 

very small circles around all of the points (forms the “OK” gesture with 

right hand). 

Joshua: Locally. So if we’re taking small enough circles we’ll never get 

the repeated (waves mouse over twist in output). So I guess the answer to 

our question is nowhere. Or, the rule will hold everywhere, I guess. 

 

 

Figure 85. Input circle (purple) centered around 1 +
𝑖𝜋

2
 in 𝑓(𝑧) = 𝑒𝑧 

 

Figure 86. A twist in the image (yellow) of a large circle (purple) in 𝑓(𝑧) = 𝑒𝑧 
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David followed this event with a mostly correct description of the derivative’s 

geometric meaning, but reverted to applying the derivative rule to the image point rather 

than the epsilon neighborhood around it—an error that Karen committed as well. 

David: The image point is found, using the derivative we know that if we 

take a point, it's rotated by whatever angle that the derivative gives 

(moves right index finger to the left). That point is radially magnified by 

whatever the magnitude of the derivative is. Okay, that makes sense. 

Near the end of this task, I asked Joshua and David what the derivative meant 

geometrically in the context of the derivative of the function 𝑓(𝑧) =
1

𝑧
. They explained 

that the magnitude of the value of the derivative evaluated at a point 𝑧 still describes the 

dilation of the image of their 𝜖 − balls around 𝑧 and the argument of the value of the 

derivative evaluated at 𝑧 still describes their rotation. When they attempted to validate 

this heuristic with Geometer’s Sketchpad (GSP) (experimentation and observation), there 

was some brief concern that the 𝜖 −ball at which they were looking seemed to be rotated 

by the right angle but in the wrong direction (observation). However, David was able to 

discover through some algebraic reasoning that they had committed a minor sign error 

when originally calculating the derivative. After this correction, David and Joshua both 

seemed to feel that the rule they had developed for both 𝑓(𝑧) = 𝑧2 and 𝑓(𝑧) = 𝑒𝑧 still 

held for 𝑓(𝑧) =
1

𝑧
. 

Task 5: Exploring the Meaning of  

Non-existent Derivatives Via 

 𝒇(𝒛) =
𝟏

𝒛
 and 𝒇(𝒛) = |𝒛| 

In what little time remained for each group after the conclusion of task 4, I asked 

participants to try to explain non-differentiability geometrically. In particular, I asked 

each participant group to explain geometrically what it means when there is a point 𝑧 for 

which 𝑓′(𝑧) does not exist for a given function 𝑓. To help them answer this question, I 
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asked them to consider the point 𝑧 = 0 in the function 𝑓(𝑧) =
1

𝑧
, and later suggested that 

they construct the function 𝑓(𝑧) = |𝑧| in GSP. As this task came at the end of the four-

day sequence, neither participant group spent as much time on this task. Karen only spent 

about 20 minutes considering the meaning of the existence of a non-differentiable point, 

while Joshua and David spent about 45 minutes. While I expected both participant groups 

to believe that the derivative did not exist at 𝑧 = 0 for 𝑓(𝑧) =
1

𝑧
, both groups instead 

claimed that the derivative at 𝑧 = 0 for this function evaluated to ∞. Furthermore, they 

seemed able to reason geometrically about this value as describing a dilation and rotation 

of an 𝜖 −neighborhood around 0 as they had for points with finite derivative values. 

I began this task with Karen by asking her what she thought it meant if the 

derivative does not exist at some point. To help Karen answer this question, I asked her to 

construct the function 𝑓(𝑧) = |𝑧|. She correctly stated that this function is nowhere 

differentiable, and I further noted that the derivative does not exist at 𝑧 = 0 for the 

function 𝑓(𝑧) =
1

𝑧
. She objected to this statement, however claiming instead that the 

derivative had a value of ∞. She continued with geometric reasoning by saying that this 

derivative value meant that an input circle around 𝑧 = 0 should be dilated by a factor of 

∞ and rotated by a negative angle. This reasoning seemed to correspond with her 

previous geometric reasoning about the derivative as describing how a function 𝑓 

transforms small circles around a point 𝑧. That is, the image of these circles are dilated by 

the magnitude of the value of the derivative evaluated at 𝑧 and rotated by the argument of 

this same value. 

 Just as in the other tasks, David and Joshua spent more time than Karen trying to 

arrive at a satisfactory solution. Additionally, while I had explicitly asked Karen to 
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consider the meaning of a non-existent derivative, David noted the derivative at 𝑧 = 0 for 

𝑓(𝑧) =
1

𝑧
 does not exist before I directed his attention to that fact.  In the previous task, 

after they determined that their geometric reasoning for the derivative of 𝑓(𝑧) = 𝑧2 also 

worked for the derivative of the function 𝑓(𝑧) = 𝑒𝑧, Joshua suggested testing more 

points to further verify this reasoning (experimentation). Joshua suggested looking at 

their “trouble point” 𝑧 = 0 in 𝑓(𝑧) =
1

𝑧
, and David added that they “don’t have a 

derivative there.” At this point, Joshua agreed, “oh yeah, that’s true.” However, less than 

a minute later when I asked Joshua and David what it meant when the derivative does not 

exist at a point, Joshua offered exactly the same geometric reasoning for 𝑧 = 0 in 

𝑓(𝑧) =
1

𝑧
 as Karen. That is, he stated that the derivative evaluated at this point yielded ∞, 

saying “the derivative at zero is infinity right, so we'd expect a magnification by infinity, 

and that, I guess the angle isn't even relevant at that point. I mean it’s just the negative 

angle right?” 

 For the function 𝑓(𝑧) = |𝑧|, instead of verifying their developed heuristic for 

their geometric reasoning about the derivative as they had in all the previously presented 

functions, Joshua and David utilized this heuristic to determine what the derivative of this 

new function at each point of the plane should be. In the following exchange, it appears 

that they committed an error that Karen had in previous tasks. Namely, they applied the 

rotation and dilation to a specific point rather than to a neighborhood around the point. 

Throughout this exchange, neither participant performed any actions in GSP. (Their 

display at the time of the following conversation is shown in Figure 87.) 

David: So for everything on the real axis, not including zero, the 

derivative would be 1. Right, so I guess by the rule we were using there's 
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Joshua: No magnification 

 

David: No magnification or rotation. 

 

Joshua: So we know there's no rotation so we don't really have to worry 

about that.  

 

David: So I mean, the derivative where it exists is one. So I mean, all 

points would get mapped to themselves (right index finger touches thumb)  

like we saw (right index finger points left and bounces up and 

down)before. 

 

Interviewer: Okay, so now I'll ask you with that in mind do you think your 

rule still holds? 

 

Joshua: From the looks of things, yeah. Because I mean, if we march out 

one (Points up and outward as seen in Figure 88) on the positive 𝑥, we 

obviously (flattens palm), our image is obviously 1. Negative 𝟏 goes to 𝟏 

(points right with both index fingers). The magnitudes are the same I 

mean. 

 

 

Figure 87. The function 𝑓(𝑧) = |𝑧| in Geometer’s Sketchpad 

 

Figure 88. Joshua gestures “march[ing] out on the positive 𝑥” 
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Joshua also repeated the error of believing the imaginary part of the value 

of the derivative evaluated at a point 𝑧, rather than the argument, described the 

rotation of the image of an 𝜖 −ball around 𝑧 with respect to its pre-image. David 

corrected him, stating that the argument of the derivative at a point describes the 

rotation. David tried to calculate the value of the derivative along various lines 

through the origin, suggesting that given one of these lines, the derivative should 

be the same for every point on that line. David geometrically reasoned that this 

should be the case since along a line through the origin, each point on the line is 

“pushed down” by the same amount to the real axis, meaning that each of these 

points were rotated by the same amount. Finally, David concluded by saying that 

he believed the derivative existed everywhere. As an example, he offered that the 

derivative of 𝑓(𝑧) = |𝑧| at 𝑧 = 0 should be 0, since 0 is mapped to itself and is 

thus not changed at all. Thus, by the end of this task it appeared that David had 

forgotten his previous statements that if 𝑓′(𝑧) = 1, then a neighborhood around 𝑧 

in the domain mapped to an image that was not rotated or dilated with respect to 

the neighborhood. 

Summary (Themes) 

While Joshua and David seemed to investigate more aspects of the behavior of the 

function 𝑓(𝑧) = 𝑧2 than Karen in the first task, they still seemed to develop many of the 

same advancements in reasoning, albeit in a slightly different order. Both participant 

groups successfully resolved a time when Geometer’s Sketchpad (GSP) appeared to 

provide an inscription that contradicted previously stated reasoning. Both groups noticed 

that moving an input point around the unit circle once would result in the corresponding 



416 
 

 
 

output point moving around the unit circle twice. Furthermore, they noted that a small 

input circle was transformed by 𝑧2 into an output shape that was nearly a circle except 

when the input surrounded the point 𝑧 = 0. Finally, both groups of participants appeared 

to consider whether it was possible to reach or approach an output value of zero (i.e., is 

there a value of 𝑧 for which 𝑓(𝑧) = 0 or is at least “close” to zero. Thus, it is possible 

that the usage of inscriptions provided by GSP in task 1 encourages these particular facets 

of reasoning related to the derivative. Namely: 

1. 𝑓(𝑧) = 𝑧2 transforms the input by doubling its argument and squaring its 

magnitude  

2. One revolution around the unit circle in the domain causes two revolutions 

around the unit circle in the co-domain. Therefore circles that surround the 

origin map to “double circles” 

3. Circles map to shapes which are nearly circles if they do not surround the 

origin, meaning that the point 𝑧 = 0 is the only non-conformal point of the 

complex-valued function 𝑓(𝑧) = 𝑧2 

4. Small circles are distorted less than large circles under the mapping 𝑓(𝑧) =

𝑧2. 

5. Circles further away from 𝑧 = 0 are distorted less than circles closer to 𝑧 = 0 

under the mapping 𝑓(𝑧) = 𝑧2 

 However, I believe all participants, particularly David and Karen knew how to 

reason geometrically about multiplication of complex numbers before starting the task, 

and was thus a pre-existing condition rather than a real result of the task itself. This belief 

is due to my knowledge that both David and Karen had previously participated in 
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research involving undergraduate students’ abilities to connect algebraic reasoning to 

geometric reasoning via diagrammatic reasoning. Many of these tasks required them to 

multiply a vector by a complex number; they eventually determined how to carry out this 

operation on their diagram directly, rather than performing any algebraic calculations first 

(Soto-Johnson & Troup, 2014). Joshua seemed to have well-developed algebraic 

reasoning abilities. While he may not have synthesized the two modes of reasoning as 

completely as David, he still seemed able to reason geometrically about a complex-

valued function given the function equation. 

In the second task, the trend of Joshua and David exploring more questions than 

Karen continued, though there were several similarities in their experimentations as well. 

Both groups discovered a twist could occur when the radius of the input circle was 𝜋 or 

greater, and both groups felt at one point that there might always be twists in the output 

of a circle under the mapping. Both groups eventually discovered that twists only occur 

when the input circle has a radius of 𝜋 or greater. In summary, it is possible that task 2 

encourages these particular advancements in geometric reasoning related to the 

derivative. Namely: 

1. 𝑓(𝑧) = 𝑒𝑧 dilates the input based on its real part and rotates it based on it 

imaginary part. 

2. A circle’s image has distinct points 𝑧1 and 𝑧2 such that 𝑓(𝑧1) = 𝑓(𝑧2) exactly 

when the radius of the input circle is 𝜋 or greater. 

3. Small circles are distorted less than large circles in 𝑓(𝑧) = 𝑒𝑧 at every point, 

including 𝑧 = 0 
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4. Small circles always map to shapes which are nearly circles, regardless of 

which point they surround (i.e., “weird behavior” like twists or double circles 

never occur with small circles. 

5. 𝑓(𝑧) = 𝑒𝑧 never actually reaches zero.  

For the third task, I removed my participants’ access to GSP (and thus the 

associated inscriptions that a dynamic geometric environment (DGE) provides) and I 

asked them to first describe how they thought of the derivative of a complex-valued 

function, and then to try to reason through its meaning geometrically. While Karen only 

spent about 30 minutes without GSP developing this geometric reasoning, David and 

Joshua spent an entire 1 hour and 15 minutes before they wished to return to GSP. During 

the time without GSP, both groups of participants referred to the idea that the derivative 

is the slope of a tangent line. For Karen, this idea was highly recurrent and difficult to 

discourage, whereas Joshua and David dismissed the idea themselves almost immediately 

and without prompting. Karen additionally suggested reasoning algebraically using the 

Cauchy-Riemann equations as a potential starting point. Both groups recalled their 

experiences with 𝑓(𝑧) = 𝑧2 and made some comment about how circles were 

transformed, but seemed to reason through the nature of these transformations by 

utilizing the function behavior itself rather than the derivative value at any of the points.   

Geometric reasoning about function behavior and about the derivative of a 

complex-valued function may even have interfered with one another in the development 

of the participants’ geometric reasoning about the derivative of a complex-valued 

function. That is, both groups tended to relate the behavior of a circle around a given 

point to the nature of the given function, and not to the value of the derivative of the 
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function at that point. Therefore, motivating any need for geometric reasoning about the 

derivative may have felt difficult due to both groups' proficiency in determining 

geometric behavior by considering the function formula only. Finally, both Karen and 

Joshua each verbalized an incorrect algebraic definition of slope at least once during this 

portion of the interview. Karen claimed that the slope was the difference between output 

and input values, while Joshua believed that the slope was the change in imaginary 

components divided by the change in real components. 

I re-introduced GSP for different reasons for the two groups: Karen simply 

appeared to run out of ideas and seemed to be growing frustrated, while Joshua and 

David had a large number of conjectures they had generated between them and wished to 

test. After I re-introduced GSP, both groups appeared to further develop the idea that the 

derivative somehow controlled the dilation of an input circle, and again that this input 

circle needed to be small for the derivative to be accurate. 

Thus, as I suggested previously in this chapter, removing Geometer’s Sketchpad 

(GSP) did indeed seem to help me in determining how the participants reasoned about the 

derivative of a complex-valued function and in creating a laboratory setting as Olive 

(2000) described. Before this point in the tasks, I asked the participants fairly specific 

questions (seen in the task worksheets, found in Appendix E) about specific functions. By 

asking an open-ended question for task 3, I gave my participants the opportunity to 

reason about the derivative of a complex-valued function as they wished, and not as I 

directed. Furthermore, as participants utilized GSP to answer previous tasks, restricting 

their access may have helped encourage this less prescribed reasoning by creating a new 

learning context further removed from the more pre-determined structure of the first two 
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tasks. Some ideas were common to both groups but differed in when they were first 

discovered in relation to the presence or absence of GSP (see Appendix F for a table of 

these concepts).  

That is, David and Joshua seemed to develop certain concepts without GSP that 

Karen only discovered after its re-introduction. In particular, Joshua and David started 

talking about 𝜖 −neighborhoods, and thus the idea that the derivative is essentially a limit 

or approximation without GSP, while Karen did not seem to understand this idea until 

actually zooming in on a point with a circle. Joshua and David dismissed their reasoning 

about the derivative as a tangent line near the beginning of Task 3, while Karen returned 

to this geometric reasoning many times over. She appeared to become dissatisfied with 

this reasoning only when attempting to explain what a complex-valued derivative 

evaluation would mean in this context or demonstrating a “complex-valued slope” with a 

geometric inscription (either with a blackboard or with GSP.) Despite these differing 

circumstances, both groups then committed the same error of attempting to apply their 

meaning of the derivative to a particular point rather than a small circle/𝜖 −neighborhood 

surrounding that point.  

Furthermore, I asked Joshua and David to consider functions with a constant 

derivative without the use of GSP, while Karen did not consider linear functions until I 

prompted her to construct one with GSP. However, neither group seemed to connect the 

derivative to the rotation or dilation of an input circle before considering linear functions 

in task 4, instead opting to reason through the given transformation simply by considering 

function behavior. Thus it appeared that this consideration of linear functions was a 

necessary prerequisite for the attempted generalization of the participants’ geometric 
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reasoning about the derivative of a complex-valued function. For both groups, looking at 

a linear transformation with a real derivative seemed to highlight the way in which the 

derivative described the dilation of the input circle, while a linear transformation with an 

imaginary derivative appeared to help them develop a sense of how the derivative affects 

the rotation. However, Karen ended this portion of the interview apparently believing that 

the real part of the derivative describes the dilation and the imaginary part describes the 

rotation. In contrast, Joshua and David appeared to be more correct in the sense that they 

connected the magnitude of the derivative to the dilation and the angle of the derivative 

to the rotation in the context of a linear function, though they too initially committed 

Karen’s error. Neither group was sure of whether this rule generalized to the function 

𝑓(𝑧) = 𝑧2, as this function does not have a constant derivative, thus the output of a circle 

is no longer always a circle. Because of this distortion, the idea of rotating this output 

seemed strange to them. That is, the image of a circle is no longer a circle, and is 

therefore not just a rotation and dilation of the pre-image. Experimentation with GSP 

appeared to allow both groups to develop their geometric reasoning to the point where 

they could view this image as an approximation of a rotation and dilation of the pre-

image. 

Following this task, Karen’s experience began diverging more from Joshua and 

David’s group after investigating the nature of linear functions. This difference in 

experience appeared to occur in part because of her continuing tendencies to reason about 

the derivative as the slope of a tangent line, and in part because she was interviewed 

alone rather than as part of a pair. Her strong tendency to reason about derivative values 

as the slope of a tangent line could be an instantiation of a theme Danenhower (2000) 
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titled “Thinking Real, Doing Complex” (p. 184). His participants also seemed to exhibit 

some tendencies to borrow strategies or facts from one-dimensional real-valued calculus. 

For example, some of his participants inspected graphs to determine differentiability and 

assumed all polynomials are entire. Like Danenhower’s participants, Karen appeared to 

experience difficulty arising from her tendency to reason about the derivative of a 

complex-valued function in a way similar to the way she might reason about the 

derivative of a real-valued function. She eventually extended this geometric reasoning to 

the complex-valued case by developing geometric reasoning about complex-valued linear 

functions.  

While Karen began reasoning about the derivative of a complex-valued function 

as a tangent line, David and Joshua made only a passing reference to this idea before 

considering the complex-valued case separately from the real-valued case. However, 

there were still similarities in the two participant groups’ patterns of development. In 

particular, while both groups had previously developed a geometric idea of the meaning 

of the derivative of a linear complex-valued function, both seemed uncertain of whether 

this meaning would generalize (task 4) to the presented non-linear functions 𝑓(𝑧) = 𝑒𝑧 or 

𝑓(𝑧) =
1

𝑧
. While Joshua and David came to the conclusion that their rule did in fact hold 

for the non-linear functions due to some tests run in Geometer’s Sketchpad (GSP), 

Karen’s experience with GSP originally seemed to fuel her uncertainty by showing her 

that circles did not map to perfect circles. She vacillated in her geometric reasoning about 

the derivative of linear complex-valued functions, initially believing that this reasoning 

did not generalize to the given non-linear functions, but appeared to end the interview 

believing that her reasoning was valid even in the non-linear case by viewing the output 
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as approximately correct. Both groups seemed able to correctly predict the proper amount 

of dilation of the input circle based on a derivative value alone by the end of their 

collective investigations of 𝑓(𝑧) =
1

𝑧
, 𝑓(𝑧) = 𝑒𝑧, and 𝑓(𝑧) =

1

𝑧
.  

During these investigations, Karen also made some discoveries that Joshua and 

David had already observed in prior tasks. For example, I asked her to consider the 

meaning of a derivative value of 3 + 2𝑖 for an arbitrary function at some point. In 

response, Karen began relating the magnitude and argument of the derivative to the 

dilation and rotation, respectively, of the 𝜖 −neighborhood, rather than utilizing the real 

and imaginary parts as she had previously. Furthermore, while Joshua and David seemed 

able to predict the proper rotation of a particular example based on the derivative value 

by the end of their third day (where GSP was initially restricted and then re-introduced), 

Karen still seemed uncertain of how to predict the angle by which her input circle should 

rotate. 

I developed the final task of investigating the transformations 𝑓(𝑧) =
1

𝑧
 and 

𝑓(𝑧) = |𝑧| to help Karen, Joshua and David develop geometric reasoning about a non-

existent derivative. However, all participants adopted the convention that 
1

0
= ∞, and thus 

stated that the derivative of 𝑓(𝑧) =
1

𝑧
 at 0 was ∞. Furthermore, they may even have 

reasoned geometrically about the derivative as a local linearization within this context, 

treating ∞ simply as another number. In particular, Karen and Joshua both claimed that 

this derivative meant the function should dilate a circle centered at 0 by ∞ and rotate it 

by some negative angle. Joshua added that at ∞ the angle may not even be relevant. For 

the function 𝑓(𝑧) = |𝑧|, Joshua and David appeared to try to utilize their heuristic to 
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evaluate the derivative at each particular point, and somehow ended up concluding the 

derivative should exist everywhere.  

Thus, it may be that Joshua and David’s geometric reasoning about the derivative 

of a complex-valued function did not yet include the viewpoint that the output of a small 

circle (an 𝜖 −neighborhood) is a roughly circular shape. Neither of my participant groups 

spent much time on this final task in relation to the time they spent on the previous four 

tasks. However, given more time, this task may have helped my participants realize that 

the output of a small circle should again be nearly a circle, especially if they eventually 

discovered that the derivative did not in fact exist anywhere in 𝑓(𝑧) = |𝑧|. The other 

function, 𝑓(𝑧) =
1

𝑧
, may not be as useful in investigating the meaning of a non-existent 

derivative in a complex-valued function, as my participants tended to suggest that for this 

function, 𝑓′(0) = ∞, rather than not existing.  

Overall, participants appeared to develop geometric reasoning about the 

derivative of a complex-valued function that included the three points toward which I 

guided them. Namely,  

1. The associated image of the 𝜖 −neighborhood is approximately a circle. 

2. The function rotates the image of this neighborhood by the argument of the 

derivative of the function at 𝑧 with respect to its pre-image. 

3. The function dilates the image by the magnitude of the derivative of the 

function at 𝑧. 

However, Joshua and David appeared to forget about point 1 once they began 

investigating the function 𝑓(𝑧) = |𝑧| while trying to determine the meaning of a non-

existent derivative. Furthermore, they appeared to modify their reasoning regarding 
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points 2 and 3 to match what they observed in GSP regarding this function’s behavior, 

rather than realizing that their previously developed geometric reasoning did not match 

the inscriptions provided by GSP in this task.  

 Finally, at some point in the interview sequence, all participants considered the 

following points in their reasoning through the presented tasks: 

4. The behavior of a given function (e.g., how points, lines, or circles are 

transformed) 

5. Local vs. global properties 

6. The meaning of “linearization” or “linear” in the complex plane (particularly 

for Karen) 

Preliminary Implications 

Teaching 

 In giving students opportunities to manipulate software like GSP, I recommend 

that instructors consider assigning students in pairs. In my research, my pair of students 

appeared to assume fairly consistent roles, according to who directly manipulated the 

computer and who watched. It appeared that the observer usually assumed the 

responsibilities of suggesting questions to investigate and producing explanations when 

something unexpected occurred within GSP. The observer would additionally monitor 

the actions the other participant took within GSP, occasionally checking for accuracy of 

input (i.e., that the input point or vector was where the participants had said it should be). 

The observing participant would frequently produce iconic gestures while providing 

explanations or deictic gestures (particularly pointing at the computer screen) while 

correcting an error or guiding construction actions taken by the other participant with 
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GSP. The participant manipulating GSP built necessary constructs in GSP such as points, 

circles, and lines, and sometimes offered strategic suggestions for solving a particular 

problem. For example, Joshua placed a “twist” on the real axis in an attempt to simplify 

the associated algebra, and thus the associated reasoning.  The participant in direct 

contact with the computer tended not to produce gestures, instead producing virtual 

motion with the mouse cursor, both to signify other objects such as circles or lines and to 

point at these same objects. Neither participant remained in one role exclusively; both 

participants in my paired group experienced both roles, though Joshua more often 

directly interacted with GSP while David tended to watch. This difference may explain 

why Joshua and David seemed to tackle questions of their own invention, while Karen 

tended to answer only questions on the worksheets or that I asked in particular. 

 Part of my solo student’s frustration may have been due to the fact that she had to 

fill both these roles simultaneously at all times throughout the interview. She did not have 

anyone else to watch; she always manipulated Geometer’s Sketchpad (GSP) directly, and 

may have found the dual roles of experimentation with GSP’s inscriptions and 

strategizing about future explorations. This frustration may have been exacerbated during 

the period of the interview when GSP was re-introduced after it was removed. In 

previous tasks, I asked specific questions for Karen to answer; thus the role of the 

observer may not have been quite as large a factor. However, in this portion of the 

interview, I offered little direction, thus implicitly requiring Karen to decide for herself 

how to proceed. The lack of a second student to help her may explain some of her 

feelings of frustration. Similarly, some of this difficulty may have been alleviated once I 
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returned to asking her specific questions, as she no longer had to determine her own 

direction to such a great degree. 

 Therefore, I would recommend that teachers assign students to pairs, as this 

seemed to facilitate my students’ willingness to explore the mathematics on their own 

terms, rather than simply perform the tasks I set out before them. A solo student may 

have difficulty navigating their own course through an unstructured task; a pair of 

students may experience more success. 

 Teachers should be aware of common problems that could arise, even while using 

GSP or related dynamic geometric environments (DGEs). Particularly, the idea of 

“slope” appears to be a salient one for students and seems easy to confuse within the 

realm of complex numbers. Karen was aware that she did not know what a slope with 

imaginary value means geometrically, though she returned to this idea with great 

frequency. Furthermore, both participants at some point stated that the slope was the 

change in imaginary values divided by the change in real values. It is possible that this 

error arose from conflated symbolic reasoning. In particular, they may have conflated the 

meanings of the 𝑥 and 𝑦 inscriptions in the formula for slope 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
 and the 

equivalence between the symbolic and Cartesian form of a complex number 𝑧 = 𝑥 + 𝑖𝑦. 

They may not have realized that slope is the difference between outputs divided by the 

difference between inputs due to these symbolic similarities. It does not seem likely that 

GSP alone would help reduce the occurrence of this error: both input and output were 

superimposed on the same plane, and the fact that (𝑧, 𝑓(𝑧)) is a 4-dimensional point 

renders any literal ideas of slope invisible. 
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 Investigation of linear complex-valued functions—those with constant 

derivatives—seemed essential for my participants in developing geometric reasoning 

about the derivative of a complex-valued function. In particular, based on their 

experience with GSP and my implicit suggestion that they investigate the behavior of 

circles, they seemed able to realize that the derivative has something to do with how the 

function rotates and dilates circles. This investigation additionally seemed to help Karen 

significantly in generalizing her geometric reasoning about the derivative such that it 

became more than just the slope of a tangent line. 

It is possible that Karen’s difficulty in this respect is an instantiation of 

Danenhower’s (2006) “Thinking Real, Doing Complex” (p. 184) theme. Perhaps Karen 

also had difficulty advancing her geometric and algebraic reasoning in tandem. Past 

research shows students generally have difficulty integrating differing forms 

(Danenhower, 2006) and representations (Panaoura et al., 2006) of complex numbers, 

though a learner may be able to shift between two forms, representations, or styles of 

reasoning with increasing ease if given the opportunity to practice making these 

connections (Soto-Johnson & Troup, 2014; Zazkis, Dubinsky, and Dautermann, 1996). In 

my project, both sets of participants appeared to make substantial progress toward 

reasoning geometrically about the derivative of a complex-valued function. Therefore, 

teachers may wish to consider the potential benefits of including direct student 

experiences with DGEs. Rather manipulating these programs for their students, or 

creating inscriptions while explaining meaning, instructors may find that students could 

in theory derive substantial value from creating these inscriptions and experimenting with 

these programs for themselves, allowing them to opportunity to discover meaning and 
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thus perhaps imbuing their reasoning with a more personal flavor. This may help students 

avoid errors that occur due to a lack of integration of algebraic and geometric reasoning 

approaches. 

 One additional error my pair of students made was to overextend their geometric 

reasoning about the derivative of a complex-valued function in the context of the function 

𝑓(𝑧) = |𝑧|. At the beginning of this task, Joshua and David correctly stated that this 

function has no derivative anywhere. Despite this statement, they nonetheless considered 

various rotation and dilation factors between circular inputs and line segment outputs to 

reason through what they thought the derivative value should be at various points. Thus, 

instructors may need to emphasize that for points that do have derivatives, small circles 

are mapped to shapes which are nearly small circles, and that line segments should not be 

considered reasonable approximations to circles in this context. 

Finally, students may need directed instruction to develop their geometric 

reasoning to the point where they realize the derivative is an approximation. My pair of 

students, in particular, admitted reluctance in speaking of the amount of rotation or 

dilation for a non-circular shape. They eventually appeared to overcome this by assuming 

these shapes were approximately circular, but this advancement appeared to require 

considerable discussion and experimentation with GSP. Perhaps this particular issue 

could be addressed in a teaching context by asking students first to predict how an 

𝜖 −neighborhood around some particular point 𝑧 will be transformed under the 

transformation 𝑓(𝑧) = |𝑧|. In particular, the teacher could note that this output will never 

be a circle, whereas in previously investigated functions, the output was at least nearly a 

circle, and not a line segment.  
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More generally, emphasizing the output of a sufficiently small 𝜖 −neighborhood 

around a point as “approximately” a circle may be essential to helping students develop 

geometric reasoning about the derivative of a complex-valued function. This idea seems 

even more important to point out in teaching contexts where Geometer’s Sketchpad 

(GSP) is used, since in some situations, students might falsely attribute the distortion of 

the output circle to a minor misalignment in the placement of their unit circle, rather than 

to the behavior of the function itself. 

 

Research 

 As my participants assumed the roles of observer and GSP manipulator—roles 

which are purposefully adopted by professional computer programmers while writing 

code (Cockburn & Williams, 2000; Williams, Kessler, & Cunningham, 2000)—future 

researchers may wish to investigate the usage of these roles more closely. Within 

computer programming, this practice appears to increase accuracy, efficiency, and quality 

of the final product. It is possible that similar benefits may apply to undergraduate 

students’ investigations of complex numbers. One significant difference between my 

participants’ behavior and the professional practice is that computer programmer pairs 

switch these roles frequently, whereas my participants did not. Rather, Joshua more often 

manipulated GSP, while David observed. Future researchers may wish to consider 

explicitly asking the participants to switch roles at pre-determined points in time.  

Alternatively, they may wish to investigate how these roles arise without explicit 

instruction, and how they are negotiated throughout the development of the team’s 

reasoning about the derivative of a complex-valued function. Joshua and David adopted 

these roles on their own terms despite lack of instruction, and experienced benefits 
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similar to those of computer programmers who design code in teams of two: one person 

manipulating the computer, and the other observing, strategizing, and troubleshooting. 

Limitations and Improvements for Future Study 

 As is appropriate for a design experiment, I identified several limitations and 

weaknesses of the pilot study upon which to improve for my dissertation study. This 

section is a discussion of those weaknesses and the improvements I intend to carry out for 

this second iteration. The section parallels the methodology section in its organization: I 

begin by discussing improvements to my participant sampling, ways to enrich the 

participants’ descriptions, and the formation of participant teams better suited to my 

study than those found in the pilot. I continue by noting improvements made to the 

interview tasks, and similarly to the actual structure of the interview. I outline improved 

data collection and analysis methods, and conclude by suggesting potential ways I could 

strengthen my results and implications. 

Participants and Setting 

In the pilot study, two of the participants took part in a prior research study, which 

could have primed them to view rotation and dilation as strongly salient aspects of a 

transformation, and thus may have noticed these properties of the derivative more quickly 

than a typical student might. To avoid the former problem, I will sample students that to 

my knowledge have not participated in strongly related prior research. This will increase 

the possibility that their exposure to geometric properties of the derivative of a complex 

number is minimal.  

Furthermore, the fact that I interviewed one student alone and two students in a 

pair is a severe conflating factor for the majority of my cross-case findings. For this 
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reason and because the nature of the social interaction between my participants is a 

relevant data source for a design study (Cobb et al., 2003), in my dissertation study I will 

not have any participant groups consisting of just one student. Rather, all participants will 

be placed in teams of two. This grouping will help strengthen my cross-case analysis by 

eliminating this potential conflating factor. In the pilot study the majority of these 

differences may merely be because one student worked alone, while the other two did 

not. However, if these differences re-occur in my dissertation study with no participants 

working alone, these results would be strengthened.  

Furthermore, placing students in groups may increase the amount of data I collect, 

particularly data regarding technological action and gesture. In my pilot study, Karen, the 

solo student, tended either to gesture with her hands, or take some action within 

Geometer’s Sketchpad (GSP), but rarely both at the same time. This observation is in 

keeping with the suggestion implicit in my theoretical framework that technological 

actions in GSP could conflate with gestures. Placing participants in pairs seems to help 

address this issue, as typically Joshua performed technological actions within GSP on 

behalf of the group, while David more frequently utilized gestures in his explanations. 

Even within this setting, neither participant operated in both contexts simultaneously, but 

at least with two participants it seems to be more likely that I will collect both data 

involving gestures and data involving GSP rather than just one or the other at any given 

time. Therefore my dissertation study will involve only participant teams of two, and 

none of just one. I hope to obtain three pairs of students for my dissertation study, thus I 

will need to sample six students.  
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I will again sample students based on instructor recommendation, additionally 

using data collected from my observations of their class to guide this decision. As the 

class is based on lecture, students were silent and attentive most of the time. However, 

when the instructor asked questions of the students, some simply answered verbally, 

while others supplemented their response with gesture. Due to my reliance on gesture as 

a data source, I will favor those students who demonstrated this stronger tendency to 

gesture while reasoning through or responding to a question.  However, I will be 

sampling six or eight students, and there are only 11 students in the complex class total, 

so it is quite possible I may have to sample all the students that volunteered. 

Additionally, I observed all potential participants in an undergraduate complex 

analysis course during several class days while the derivative of a complex-valued 

function was discussed. This allows me a better sense of which aspects of my interview 

tasks are novel for the participants, and which are not novel. To further help with this 

aspect of my research, I will ask participants when they attended their last geometry class 

and what they did in that class as an introductory question in the interviews. 

Task Development 

As a result of the pilot study, I now have a more definite itinerary regarding 

progression through the detailed tasks than I did for iteration 0 of the design experiment. 

Whereas I developed later tasks of my pilot study during the interview sequence in 

response to the rate at which my participants completed the tasks, I now have access to 

these refined and tested tasks for use in my future study. I will more deliberately plan 

some of the tasks that I had previously spontaneously generated; particularly those 

involving the investigation of linear functions. These tasks suggested themselves 
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organically during the interview of both sets of participants. The solo student insisted on 

viewing the derivative as the slope of a line, but became uncertain of how a line behaved 

within the complex plane, even while working with GSP. I thus suggested she look at 

various linear functions. The pair of students arrived at linear functions more 

independently than the solo student; they started their GSP-free discussion of the 

geometric properties of the derivative of a complex-valued function by first considering 

what a constant derivative function would mean. Thus, the linear functions that the two 

sets investigated were not consistent across groups.  

Another problem was that since the linear functions were spontaneously 

generated, and thus may not have been ideal for students still new to geometric reasoning 

about the derivative of a complex-valued function. In particular, I tended to suggest linear 

functions which had a derivative which was either real or purely imaginary rather than 

functions with derivatives that had both real and imaginary non-zero components. My 

choice of functions may have been primarily responsible in forming my participants’ 

initial conclusions that the real part of the derivative determines how the associated 

transformation would dilate an 𝜖 −neighborhood, and the imaginary part determines the 

𝜖 −neighborhood’s rotation.  

 I am at this point reasonably convinced that investigation of a linear function is 

essential to building up geometric reasoning about the derivative of a complex-valued 

function, thus for my second iteration I will sacrifice the organic nature of this task in 

order to ensure consistency across groups and more general linear functions, such as 

𝑓(𝑧) = (1 + 𝑖√3)𝑧. I will additionally develop a worksheet similar to those for Tasks 1 

and 2 to pair with this task.  
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In addition to including a worksheet for linear functions, I will improve some of 

the wording contained in my task worksheets. For example, the question “What do you 

think the output will look like if the input is a circle that contains the origin?” caused 

some confusion for one of my participant groups, as they told me they were not sure 

whether I meant that the origin was supposed to be one of the points of the circle, or 

“surrounded” by the circle. Using their terminology, I could rephrase this question as 

“What do you think the output will look like if the input is a circle that surrounds the 

origin.”  

As the participants seemed willing to investigate 𝑓(𝑧) =
1

𝑧
 without explicit 

instruction, I will refrain from developing a worksheet to pair with this function to ensure 

that my dissertation study participants have at least one function to investigate in a less 

structured way. The lack of explicit direction allows them to explore the function as they 

wish; the manner in which they choose to do this, the propositions they suggest, and the 

questions they seek to answer could all help elucidate the nature of their geometric 

reasoning regarding the derivative of complex-valued functions. Furthermore, this 

function’s behavior is ostensibly simpler than either 𝑓(𝑧) = 𝑧2 from Task 1 or 𝑓(𝑧) = 𝑒𝑧 

from Task 2, in that it sends circles and lines to images which are exactly circles and 

lines, and not simply approximations of circles or lines. However, as my pair of 

participants from the pilot study noted, for the derivative to accurately predict the rotation 

and dilation of the pre-image under 𝑓(𝑧) =
1

𝑧
, the pre-image circle must still be small. 

Thus, not all notions of the approximate nature of a local linearization are lost within this 

function. The fact that it is a truly conformal transformation with simple behavior and a 
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non-constant derivative may even make it ideal for a free-form exploration within the 

context of my dissertation study.   

Finally, I can continue to refine the questions I ask or the wording of my 

worksheets by considering the data I collect between interviews. This will help me 

improve future methods by analyzing current data, thus strengthening the reflective 

aspect of my design experiment. 

Interview Structure 

I will administer similar tasks to participant pairs in my future study. 

Additionally, I have a greater sense for how quickly my future participants are likely to 

progress through these tasks. The pair of students in my pilot study progressed through 

the tasks at the expected rate; thus no additional tasks will be added on to the current 

interview protocol. I will ask pairs of students to investigate the functions 𝑓(𝑧) = 𝑧2 on 

the first day and 𝑓(𝑧) = 𝑒𝑧 on the second, and then ask them to reason about the 

derivative of complex-valued functions in general, first without the use of Geometer’s 

Sketchpad (GSP). This phase of the interview is intended to be free-form, though based 

on pilot study results I feel it would be beneficial to direct each pair’s attention to an 

investigation of functions with a constant derivative. Furthermore, while I attempted to 

re-direct Karen’s attention away from reasoning about the derivative as the slope of a 

tangent line, I will not discourage future participants so strongly. Karen was eventually 

able to generalize this idea to the derivative of a complex-valued function after 

investigating the properties of linear complex-valued functions. After this stage, I will re-

introduce participants to GSP based on similar criteria as laid out for the pilot study. I 

will ask them to verify their conjectures, to explain again how to reason about the 
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derivative of complex-valued functions geometrically, and to demonstrate this reasoning 

within the context of the previously introduced functions and a newly presented function 

𝑓(𝑧) =
1

𝑧
.  I will end the interviews by asking how to reason about the derivative of 

𝑓(𝑧) =
1

𝑧
 at 𝑧 = 0 and 𝑓(𝑧) = |𝑧| at any point. Investigation of this last function 

produced interesting findings in my pilot study—they used a rotation and dilation 

heuristic to geometrically reason through what the derivative needed to be to cause the 

transformations they observed with GSP—so more time could be allocated to this task on 

the final day of the interview. I will again conclude the interview by allowing participants 

to ask me about any unresolved questions that may have formed for them as a result of 

the interview.  Finally, since I now have a more well-defined framework, I can adjust the 

phrasing of my interview questions to match. For instance, while for my pilot study I 

sometimes asked participants to describe their “geometric interpretation” of the derivative 

of complex-valued functions, for my dissertation study I will request that they describe 

the derivative of complex-valued functions geometrically.  

Data Collection 

I will again video-record the interviews to capture gesture and speech and use 

screen-capture software to document actions taken within GSP. Interviews for the 

participants of the pilot study took place a full semester after the conclusion of their 

complex analysis course. For my dissertation study, participants will be interviewed near 

the end of the semester during which their complex analysis course took place. Thus, I 

expect that participants of my dissertation study may more frequently recall geometric 

reasoning methods from their complex analysis course than did participants of my pilot 

study.   
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Data Analysis 

In selecting my time segments, while I included some repeated discussions for the 

sake of helping corroborate my interpretation of the original discussion (see Appendix 

G), I did not analyze all such repetitions. More typically, I included repeated discussions 

if some previously unmentioned aspect of reasoning was introduced. However, for my 

dissertation study, I will additionally analyze these discussions even when no new 

concept is mentioned. This analysis will provide further supporting or disconfirming 

evidence of my interpretations of the first instance of each discussion. Furthermore, a 

record of the times a particular discussion or aspect of reasoning is repeated may help me 

infer the relative strength of each of these aspects as they exist in my participants’ 

geometric reasoning about the derivative of a complex-valued function.  

For my dissertation study, I will include an additional column noting the stages of 

diagrammatic reasoning as occurring with GSP or the usage of a blackboard. 

Conclusion 

  This concludes my discussion of methods for the first iteration of this project. I 

described my participants, the development of tasks to use with Geometer’s Sketchpad 

(GSP), the structure of my interviews, and my data collection and analysis methods. After 

these sections, I provided my results both in detail and in a summarized form. Finally, I 

suggested limitations to this first iteration of the study and possible ways to improve the 

next iteration.
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APPENDIX E 

LAB WORKSHEETS FOR TASKS 1 AND 2 
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Lab 1:  

Instructions: 

We will begin by constructing a graph and unit circle.  

6. First click the Graph drop-down menu and select “Show Grid” 

7. Click the A toolbar (4
th

 from the bottom) and double-click on the red point at the 

origin. Type “O” in the Label field in the pop-up window 

8. Double-click on the red point at (0,1) and label this point 1.  

9. Now click the “Construct circles” icon on the left toolbar (3
rd

 icon from the top on 

the left) and click on the origin.  

10. Now drag the mouse away from this point to increase the radius to 1. Click the 

circle again when the radius is at the proper size.  

Note: You can always zoom in or out by selecting the point 1 and moving it closer to or 

farther away from the origin. Be careful not to move the point too close to the origin (i.e., 

zoom too far away), or it may be difficult to reselect this point when you need to. 

Next we need to construct the transformation 𝑧 → 𝑧2. 

9. Select the Point tool (2
nd

 icon from the top on the left) and click once somewhere 

on the grid to place the point there 

10. Select the A toolbar and double-click on this new point. Label it 𝑧.  

11. Select this point (if it isn’t already) and go into the “Measure” dropdown menu. 

Select “Abscissa(x).” This will output the 𝑥 −coordinate of 𝑧.  

12. Make sure that only the point is still selected (you may have to unselect the value 

you just measured) and go into the “Measure” dropdown menu. Select 

“Ordinate(y)” to output the 𝑦 −coordinate of 𝑧.  

13. Go to the “Number” dropdown menu and select “Calculate.” You can click on the 

coordinates you just measured to input them into the calculator. Use this 

calculator to calculate the real part of 𝑧2 with an appropriate expression. Click 

“Okay” when you’re done. Now calculate the imaginary part of 𝑧2.  

14. Go to the “Graph” dropdown menu and select “Plot points.” Click the real part of 

𝑧, then the imaginary part of 𝑧, and click “Okay.” Your new point should now be 

on the graph. Click “Done.” 

15. Label this new point 𝑧2. 

16. Select the point 𝑧 and then 𝑧2 (in this order; you will need to hold down the shift 

key in order to select both points.) Under the “Transform Menu” click “Define 

Custom Transform.” A box should pop up that says 𝑧 → 𝑧2 transform. Click 

“Okay.”  
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This graph should now show a point 𝑧, and the corresponding point 𝑧2. Try dragging 𝑧 

around to various points on the graph.  You can select a point with the Transformation 

Arrow tool at the top of the left toolbar. 

Warm-up Questions: Where do you expect 𝑧2 to go if you put 𝑧 on 1 + 𝑖? Did it 

go where you expect? 

Where do you think you should place 𝑧 to send 𝑧2 to 𝑖? Test your theory. 

What do you think will happen to 𝑧2 if you move 𝑧 around the green unit circle 

once? Test your theory. 

Now we will construct a circle and apply the transform 𝑧 → 𝑧2 to the whole circle. 

8. Click the “Construct circles” icon on the left toolbar (3
rd

 from the top) and click 

somewhere on the graph to place the center of your circle there (Don’t worry too 

much about location; you will be able to move it later.)  

9. Now drag the mouse away from this point to increase the radius. When you are 

happy with the size of your circle, click the mouse again to create the circle. 

(Again, you will be able to change the radius later.) Your circle will automatically 

be selected. 

10. Without unselecting the circle you just constructed, go into the Display drop-

down menu, and select a “Color” for your circle. (I used red, but you can use 

something else if you like.)  

11. Now, go into the Transform drop-down menu, then click  “𝑧 → 𝑧2 transform” at 

the bottom of the menu. This will apply this transformation to your whole circle. 

The “output” shape will automatically be selected. 

12. Go into the Display drop-down menu again and choose a different color for the 

“transformed circle.” (I used blue, but again, you can pick a different color.) This 

is intended to help you keep track of your input and output shapes more easily.  

13. Remember to click on the Transformation Arrow tool again before you start 

trying to drag your circles around! (Otherwise you’ll just end up making more 

circles) 

14. Move your circle around the graph and observe how the output shape changes as a 

result. Try to predict the behavior of the output in advance. 

Some pointers: 

 If you select the center point and move it, the other point you created (the one 

actually on the circle) will remain fixed, but the radius will change. 

 If you select the point on the circle, the center point will remain fixed and the 

radius again will change.  
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 You can also select the circle itself. This will preserve the radius of the circle. 

(i.e., make sure to select the circle itself, and not the points, if what you want 

to do is drag the circle around the graph without changing anything else about 

it. 

Questions: What do you think the output will look like if the input is a circle that 

contains 1 + 𝑖? Test your theory.  

What do you think the output will look like if the input is a circle that contains 2? 

Test your theory, 

What do you think the output will look like if the input is a circle that contains the 

origin? Test your theory. 

Now we will investigate what happens when we change the radius of circles at 

these points. 

Center your input circle around 1 + 𝑖 (so that a circle at this point of any radius 

will contain 1 + 𝑖. Every circle contains its center.) Try changing the radius of 

your circle (Move the point on the circle so the center stays fixed). What happens 

to the output? 

Center your circle around 2. Try changing the radius of your circle. What happens 

to the output? 

Center your circle around the origin. What happens to the output? 

What happens to the output when your circle is inside the unit circle? What about 

when your circle is outside the unit circle. 

Try dragging your circle along the real axis. What happens? What about when 

you drag your circle along the imaginary axis?  

Try dragging your circle to different quadrants. What happens? 

Now, try to summarize what you think is happening. What do you think a large 

circle around a point 𝑥 + 𝑖𝑦 in the complex plane will map to? What about a small 

circle around the same point? 
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Lab 2:  

Instructions: 

Select Show Grid under the “Graph” dropdown menu, label the origin and 1, and create a 

unit circle centered around the origin as you did in the previous lab. 

Now we want to construct the mapping 𝑧 → 𝑒𝑧. 

7. Create a point and label it 𝑧. 

8. Measure the 𝑥 − and 𝑦 − values as you did in the previous lab. (Use Abscissa(x) 

and Ordinate(y) in the “Measure” dropdown menu.) 

9. Before we actually start calculating 𝑒𝑧, we will need to tell GSP to interpret angle 

measurements as radians instead of degrees. You can do this by selecting 

“Preferences” in the “Edit” dropdown menu, make sure the Unit tab is selected, 

and change the field marked “Angle:” from degrees to radians. Click “OK” once 

you’ve done this. 

10. Now we need to calculate the real and imaginary parts of 𝑒𝑧. (Recall that if 

𝑧 = 𝑥 + 𝑖𝑦 then 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) = 𝑒𝑥 cos 𝑦 +

𝑖𝑒𝑥 sin 𝑦.)  Select “Calculate” in the number dropdown menu to input the 

appropriate formulas. (You can find 𝑒 in the “Values” dropdown menu on the 

calculator and the functions sin and cos in the “Functions” dropdown menu on the 

calculator.) 

11. Plot the point 𝑒𝑧 as you did in the previous lab by selecting “Plot points” in the 

graph dropdown menu and inputting the real and imaginary parts in the 𝑥 − and 

𝑦 − coordinate boxes, respectively. Click “Plot” then “Done”. Label your point 

𝑒𝑧.  

12. Select the point 𝑧 and then 𝑒𝑧 (in this order; you will need to hold down the shift 

key in order to select both points.) Under the “Transform Menu” click “Define 

Custom Transform.” A box should pop up that says 𝑧 → 𝑒𝑧 transform. Click 

“Okay.”  

 This graph should now show a point 𝑧 and a corresponding point 𝑒𝑧. Again, you 

can drag the point 𝑧 around the graph. The point labeled 𝑒𝑧 will move to the proper 

corresponding position. 

More warm-ups: Where will 𝑒𝑧 be if 𝑧 = 𝜋𝑖?  

The real-valued function 𝑥 → 𝑒𝑥 is always positive. Where should 𝑧 be to get 

𝑒𝑧 = −1? Why did you conjecture that? 

What do you think will happen if you drag 𝑧 along the real axis? What about the 

imaginary axis? Why does this happen? 
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This time (before we start mapping circles) we will send the vector defined by 𝑧 through 

the transformation 𝑧 → 𝑒𝑧. 

8. Click the “segment straightedge” tool on the left toolbar (4
th

 icon from the top) 

9. Click the origin 

10. Click the point labeled 𝑧. Your vector should now be created 

11. In the Display dropdown menu, select your “input” color to make your newly 

created vector that color. 

12. Now in the Transform dropdown menu, select “𝑧 → 𝑒𝑧 transform” at the bottom 

.This will send your vector through this mapping. 

13. Select your “output” color to change the color of the newly created curve. 

14. Re-select the transformation arrow tool. Now you can click and drag the point 𝑧 

to various points and watch how the output changes! 

Questions: What happens if the vector is stretched along the imaginary axis?  

What happens if the vector is stretched along the real axis? 

What happens if the vector is stretched in the first or fourth quadrant? 

What happens if the vector is stretched in the second or third quadrant? 

Now we will investigate how circles are mapped at various points under this transform. 

You will follow essentially the same steps as you did in the last lab. 

8. Click the “Construct circles” icon on the left toolbar (3
rd

 from the top) and click 

somewhere on the graph to place the center of your circle there (Don’t worry too 

much about location; you will be able to move it later.)  

9. Now drag the mouse away from this point to increase the radius. When you are 

happy with the size of your circle, click the mouse again to create the circle. 

(Again, you will be able to change the radius later.) Your circle will automatically 

be selected. 

10. Without unselecting the circle you just constructed, go into the Display drop-

down menu, and select a “Color” for your circle. (I used red, but you can use 

something else if you like.)  

11. Now, go into the Transform drop-down menu, then click  “𝑧 → 𝑒𝑧 transform” at 

the bottom of the menu. This will apply this transformation to your whole circle. 

The “output” shape will automatically be selected. 

12. Go into the Display drop-down menu again and choose a different color for the 

“transformed circle.” (I used blue, but again, you can pick a different color.) This 

is intended to help you keep track of your input and output shapes more easily.  
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13. Remember to click on the Transformation Arrow tool again before you start 

trying to drag your circles around! (Otherwise you’ll just end up making more 

circles) 

14. Move your circle around the graph and observe how the output shape changes as a 

result. Try to predict the behavior of the output in advance. 

Tip Reminders: 

 If you select the center point and move it, the other point you created (the one 

actually on the circle) will remain fixed, but the radius will change. 

 If you select the point on the circle, the center point will remain fixed and the 

radius again will change.  

 You can also select the circle itself. This will preserve the radius of the circle. 

(i.e., make sure to select the circle itself, and not the points, if what you want 

to do is drag the circle around the graph without changing anything else about 

it. 

Questions: What do you think the output will look like if the input is a circle that 

contains 1 + 𝑖? Test your theory.  

What do you think the output will look like if the input is a circle that contains 2? 

Test your theory. 

What do you think the output will look like if the input is a circle that contains 

1 + 𝑖 and 2? Test your theory. 

What do you think the output will look like if the input is a circle that contains the 

origin? Test your theory. 

Try putting the point on the circle itself along the positive real axis. What happens 

to the output if you drag the center along the negative real axis?  

Now we will investigate what happens when we change the radius of circles at these 

points. 

Center your input circle around 1 +
𝜋𝑖

2
 .Try changing the radius of your circle. 

What happens to the output? 

Center your circle around −1 + 𝜋𝑖. Try changing the radius of your circle. What 

happens to the output? 

Center your circle around the origin. What happens to the output? 
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Now, try to summarize what you think is happening. What do you think a large 

circle around a point 𝑥 + 𝑖𝑦 in the complex plane will map to? What about a small 

circle around the same point? 

 



 
 

 

 

 

APPENDIX F 

MATHEMATICAL DISCOVERIES GROUPED BY TASK IN WHICH THEY OCCUR 
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MATHEMATICAL DISCOVERIES GROUPED BY TASK IN WHICH THEY OCCUR 

Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

Task 1    

 Multiply by a complex 

number via algebraic 

calculation 

Task 1 Task 1 

 Multiply via rotation and 

dilation 

Task 1 Task 1 

 Discovered algebraic error 

through GSP 

Task 1 Task 1 

 Student Conjecture:  moving 

z along the unit circle might 

make its image move in an 

ellipse  

Task 1 (in 𝑓(𝑧) = 𝑧2). 

Overturned via GSP in 

Task 1 

Task 2 (in 𝑓(𝑧) =
𝑒𝑧). Overturned via 

GSP in Task 2 

 Circles map to circles Task 1 Task 1 

 Output is distorted from a 

circular shape when pre-

image is close to origin 

Task 1 Task 1 

 Small circles are distorted 

less than large circles 

Not stated Task 1 and Task 2 

 Recognized when GSP's 

output differed from the 

problem considered 

Task 1 Task 1 

 Student Conjecture: The 

maximum imaginary value of 

an input circle might be 

preserved in the image 

Not considered Task 1 

 Maximum imaginary value is 

not actually preserved 

Not considered Task 1 

 Twists occur when the circle 

includes 0 

Task 1 Task 1 

 Two points map to the same 

spot under 𝑓(𝑧) = 𝑒𝑧 when 

two points have the same 

magnitude and a difference of 

𝜋 in their arguments 

Not considered Task 1 

 



449 
 

 
 

Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

 Including the origin is the 

only way to cause a twist 

Not stated Task 1 

Task 2    

 Correctly predicted how 

points and the real axis map 

in 𝑓(𝑧) = 𝑒𝑧 

Task 2 Task 2 

 Had difficulty predicting how 

the imaginary axis maps 

Task 2 Task 2, difficulty 

with negative 

imaginary axis only 

 Circles in 𝑓(𝑧) = 𝑒𝑧 twist if 

the input circle has a radius of 

𝜋 or larger 

Task 2 Task 2 

 Small circles cannot twist Task 2 Task 2 

 Student conjecture: small 

circles will twist if they 

surround zero 

Task 2 No occurrence 

 Discovered via GSP that 

small circles never twist 

Task 2 Additionally 

discovered exactly 

when twists did 

occur 

 Twists occur when there are 

points on the input circle with 

the same real part and an 

imaginary part that differed 

by a multiple of 2𝜋 

Not considered Task 2 

 The real part of 𝑓(𝑧) = 𝑒𝑧 

determines magnitude and the 

imaginary part determines 

argument of the output point 

Not stated Task 2 
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Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

 The maximum imaginary 

value of the input circle maps 

to the point in the circle's 

image with the maximum 

argument 

Not stated Task 2 

Task 3    

 Derivative is the slope of the 

tangent line 

Task 3, frequently 

recurred throughout 

remainder of interview 

sequence 

Task 3, rejected 

immediately. 

Recurred once 

 Used C-R equations to 

calculate the derivative 

Task 3, without GSP No occurrence 

 Connected difference 

quotient definition of limit to 

circles narrowing in on a 

point in GSP 

Task 3, with GSP No occurrence 

 The derivative describes the 

mapping of a small circle 

more accurately than a large 

one 

Task 3, with GSP Task 3, with GSP 

 Linear functions always map 

circles to another circle of the 

same size and degree of 

rotation. The kind of circle is 

determined by the derivative 

Task 3, with GSP 

(believes real part 

determines dilation and 

imaginary part 

determines rotation.) 

Corrects herself in Task 

4 

Task 3, without 

GSP (believes 

magnitude 

determines dilation 

and argument 

determines rotation) 
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Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

 Relationship between 

derivative and the mapping of 

circles in linear functions 

may not generalize to 

𝑓(𝑧) = 𝑧2 or 𝑓(𝑧) = 𝑒𝑧 

(because the output is not a 

circle) 

Task 3, with GSP Task 3, without 

GSP.  

 Relationship might generalize 

because the output is nearly a 

circle 

Not stated Task 3, without 

GSP 

 Epsilon neighborhoods of a 

point 

No occurrence Task 3, without 

GSP 

 Student conjecture: Real part 

of derivative describes the 

dilation of the circle, and the 

imaginary part describes the 

rotation 

Task 3, with GSP Task 3, without 

GSP 

 Student conjecture: 

Magnitude of the derivative 

describes the dilation of a 

point, angle describes the 

rotation 

Task 4 Task 3, without 

GSP 

 Student Conjecture: 𝑓(𝑧) =
𝑒𝑧 maps lines to lines and 

preserves angles 

No occurrence Task 3, without 

GSP. Overturned 

with GSP 

 Derivative at a point 

describes how e-

neighborhood at a point is 

mapped: dilation factor is 

magnitude and rotation is 

argument 

Not stated Task 3, with GSP 



452 
 

 
 

Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

Task 4    

 Small circle around zero 

maps to a very large circle. 

This is unsurprising to them 

because they believe 
1

0
= ∞ 

Task 4 Task 4 

 Describes how 𝑓(𝑧) =
1

𝑧
 

maps circles successfully 

Task 4 Task 4 

 Derivative is a local property-

the output will be slightly 

distorted, unlike in linear 

functions 

Task 4 Task 4 

 Small circles are almost 

mapped in a linear way 

Task 4 Task 4 

 Successfully generalized their 

interpretation of the 

derivative to non-linear 

functions 

Task 4 Task 4 

Task 5    

 𝑓(𝑧) =
1

𝑧
 has no derivative at 

0 

Argued this assertion Task 5 

 𝑓(𝑧) =
1

𝑧
 has a derivative of 

infinity at 0 

Task 5 Task 5 

 𝑓(𝑧) = |𝑧| is nowhere 

differentiable 

Task 5 Task 5 conjecture, 

rejected 

 𝑓(𝑧) = |𝑧| is differentiable 

everywhere. Calculate 

derivative via interpretation 

of the derivative as describing 

No occurrence Task 5 
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Table 11, continued 

Tasks During Which Mathematical Concepts Were First Verbalized 

Task  Ideas Referenced Task where idea first 

occurred to Karen 

Task where idea 

occurred to Joshua 

and David 

A rotation and a dilation 

 



 
 

 

 

 

APPENDIX G 

SAMPLE ELAN DOCUMENTATION 
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Karen’s 

Task 1  

(Day 1) 

Time 

Description 

00:07:36-

00:08:10 

First reference of "rotation dilation" to calculate the real and imaginary part 

of 𝑧2. Asks if she is right. When interviewer refuses to answer, she appears 

to trace through algebra to verify 

00:09:41-

00:10:05 

Plot point appears in a place Karen does not expect. Interviewer asks her to 

explain why. Something convinces her that actually the point is right. 

00:12:38-

00:13:30 
Predicts where z will go given the point 1 + 𝑖. Calculates correct angle, 

forgets about dilation. Knows why she was wrong after trying it 

00:14:30-

00:16:30 
Tries to predict how 𝑧2 will move when 𝑧 moves around the circle. Says 

almost correct answer once (move in the path of the circle except at 𝑖), but 

sticks with the original idea of tracing an ellipse anyway  

00:16:30-

00:17:40 

Experiments with GSP-notes that it moves twice in a circle, tries to explain 

to herself why. 

00:23:45-

00:24:25 

Karen predicts what will happen to the output if the input is a circle that 

contains 1 + 𝑖. Says she will get some kind of circle shape 

00:28:20-

00:28:53 

Karen correctly notes that double circles result when the input surrounds 

the origin. Calls them bread rolls first. Later called double loops 

00:29:22-

00:30:12 

Karen describes why she thinks double circles happen 

00:31:59-

00:32:38 

In response to interviewer prompt, Karen describes what happens with 

small circle inputs, and again notes double circles occur when the origin is 

surrounded 

00:35:50-

00:36:19 

Notes circles outside the unit circle seem to go to circles, and get flattened 

a little as input approaches unit circle 

00:36:30-

00:37:50 

Karen starts to explain why output is not a perfect circle but peters out. 

(Also seems to be thinking somewhat algebraically for a brief time) 

00:43:45-

00:44:47 

Karen comments that if input is centered at origin then the circles should be 

exactly on top of each other. Interviewer asks her why. (Circle should be 

rotated exactly 90 degrees) 

00:48:30-

00:50:12 

Karen distinguishes small circles and large circles and comments on how 

distorted the circles will be based on the input 

00:51:12-

00:51:28 

Karen asks me why the circle is distorted when the output nears zero 

00:52:01-

00:52:46 

Karen explains why double loops happen 

00:53:45-

00:54:26 
Karen suggests 0 is weird because it is a fixed point. Interviewer overturns 

this idea by asking Karen to consider 1 
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Karen’s Task 2 

(Day 1) 

 Description 

01:04:04-

01:04:42 

Karen explains algebraically why 𝑖𝜋 is mapped to −1  

01:04:43-

01:05:46 

Karen explains algebraically what happens when input is dragged 

along real axis. Experiment confirms her answer 

01:06:08-

01:07:32 

Karen explains algebraically what happens when input is dragged 

along imaginary axis. Experiment surprises her, but she still provides 

an explanation for what she observes 

01:17:05-

01:18:03 
Karen discovers a way to create a loop with 𝑒𝑧. Distinguishes from 

double loops, is unable to explain why they occur 

01:19:00-

01:20:20 

Karen notices that loops do not occur unless input is large. Even notes 

that input has radius pi when first loop occurs. Turns to algebra/trig to 

explain why. 

01:21:06-

01:21:50 

Responding to interviewer prompt, Karen determines through 

experimentation that loops do not occur with large circles. 

01:31:14 -

01:31:30 

Karen again investigates the possibility of creating double circles and 

succeeds in making more than one loop. Does not explain why and 

interviewer does not prompt her 

01:37:50-

01:39:23 

Karen describes due to prompt what happens to a circle around an 

arbitrary point, quadrant by quadrant. Ends by demonstrating with 

GSP 

01:39:30-

01:40:03 

Karen investigates what happens when input circle is small based on 

interviewer prompt. Karen is surprised to discover that weird behavior 

does not occur. Karen at this point is unable to articulate why weird 

behavior does not occur. 

01:42:00-

01:42:36 

Karen notes bending occurs in a vector when it is outside the unit 

circle. Relates this to fractional exponents 

01:44:00-

01:44:45 

Karen adds what will happen to a small circle at various points, says 

weird behavior will not occur, and does not offer any explanation 

about why not. 

01:45:14-

01:46:18 
Interviewer asks if a circle in 𝑧2 is made smaller if the double circle 

will stop happening. Karen says no, double circles will always happen 

around zero. 

Karen’s Day 2 

(No GSP 

Portion) 

Description 

00:00:33-

00:01:28 

Karen describes Cauchy Riemann equations based on interviewer 

prompt asking about definition of complex derivative 

00:01:30-

00:02:00 

Karen describes derivative as slope when interviewer asks for 

graphical interpretation 

00:02:03--

00:02:19 

Karen clarifies what she means by slope 
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Karen’s Task 2 

(Day 1) 

 Description 

00:03:10-

00:04:38 
Karen draws tangent line of 𝑧2at 1 + 0𝑖 in response to interviewer 

prompt 

00:04:38-

00:05:47 

Interviewer attempts to disrupt tangent line idea. Karen decides her 

calculus and algebra are contradictory 

00:07:36-

00:09:45 

Karen uses interviewer-supplied Cauchy Riemann equations to verify 

derivative. Is still bothered by geometry 

00:11:14-

00:14:30 

Interviewer again attempts to disrupt line idea. Karen tries hard to 

reconcile geometry with her algebra. Karen states for the first time at 

the end of a long silence that it might not just be a straight line 

00:14:30-

00:15:02 

Karen describes the answer she "instinctually" wants to give as a 

tangent line of slope 4 in the output plane 

00:16:24-

00:18:17 
Karen draws a tangent line of "slope 2 + 2𝑖" through the point 2𝑖 in 

the output plane 

00:21:10-

00:22:10 
Karen describes what 𝑧2 does to input circles in response to 

interviewer prompt 

00:22:10-

00:23:40 
Karen describes what 𝑧2 does to the complex plane near 1+I in 

response to interviewer prompt 

00:23:51-

00:24:16 
Karen describes what 𝑧2 does to small circles around 1+I in response 

to interviewer prompt 

Karen’s Day 2 

(GSP Portion) 

 Description 

00:00:12-

00:05:11 

Interviewer asks Karen to determine with GSP what it means for the 

derivative to be 2 + 2𝑖 at 1 + 𝑖 

00:06:20-

00:07:00 

In response to interviewer prompt, Karen describes what happens to 

output circle when input surrounds 1 + 𝑖 

00:07:42-

00:07:54 

Karen makes the salient observation that she is "not sure what a line 

means in complex." 

00:09:50-

00:11:41 

Karen attempts to determine how much bigger the output circle is than 

the input in response to interviewer prompt 

00:12:39-

00:12:52 
Karen asks to pull up 𝑒𝑧as well and experiments in the context of a 

different function 

00:14:31-

00:15:31 
Karen starts experimenting with circles in 𝑒𝑧. Interviewer suggests 

looking at a point with a more intuitive derivative and calculates 

derivative for that point 
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Karen’s Task 2 

(Day 1) 

 Description 

00:15:50-

00:18:12 

Karen tries to respond to interviewer prompt asking about what the 

derivative means geometrically here. Identifies pieces that are 

confusing her, including a distinction between "function" and 

"transformation" 

00:19:27-

00:21:45 

Karen describes what algebraic definition of derivative means. 

interviewer explains way too much about the geometry involved in 

response 

00:21:45-

00:23:15 

Interviewer prompts Karen to extend limit/derivative ideas to the 

complex plane via circles 

00:23:20-

00:24:03 

Interviewer prompt leads Karen to connect the idea of "close" to the 

size of the surrounding circle 

00:24:28-

00:27:10 

Interviewer asks again what the derivative tells about the output 

values. Karen explores ideas like accuracy and attempts to translate 

algebraic definition to the geometric setting 

Back to 𝒛𝟐   

00:28:01-

00:28:18 

Karen confirms that output becomes more accurate as circle shrinks 

here as well 

00:28:18-

00:29:57 

Karen attempts to answer interviewer prompt about what the 

derivative 2 + 2𝑖 means. She again invokes the idea of slope 

First Linear 

Transformation 

  

00:30:00-

00:30:59 
Interviewer asks Karen to create the transform 2𝑧 + 1 in GSP for the 

purpose of investigating "what a line looks like" in the complex plane 

00:35:21-

00:36:15 

Karen answers interviewer question by saying size will change based 

on location, but orientation will stay constant 

00:36:31-

00:37:12 

Karen clarifies how size will change based on input 

00:37:15-

00:37:25 

Karen is asked to demonstrate the expanding circle 

00:38:05-

00:38:52 

Karen notes the circle is not expanding or shrinking as expected. Tries 

to explain why 

00:39:24-

00:39:44 

Interviewer prompts Karen to think about the derivative (constant) in 

the context of this function 
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Karen’s Task 2 

(Day 1) 

 Description 

00:40:30-

00:41:51 
Karen is asked to test radius expansion theory in the context of 𝑧2. 

Talks about rotation/dilation but has difficulty talking about particular 

numbers 

00:44:51-

00:45:35 

Karen observes that in a linear function output is always a perfect 

circle, and so the output expanding by a certain radius in a non-linear 

function does not make sense 

00:46:24-

00:46:40 

Karen says derivative has something to do with how the circle 

expands or contracts. No prompt  here 

00:49:20-

00:52:45 
Karen is asked to consider derivative at a point other than 0. She 

looks at −1, 1 and 𝑖. interviewer asks Karen to contrast 1 and −1 

outputs in particular 

00:52:45-

00:58:18 

Karen investigates where the spokes are sent and suggests after 

prompt that derivative affects where the spokes go 

New Linear 

Function: 

𝒊𝒛 + 𝟐 

 

01:01:52-

01:03:13 

Interviewer asks what the derivative is of this new function and what 

it means. Karen responds multiplication by 𝑖, but continues by simply 

describing function behavior 

01:04:35-

01:05:10 

Karen notes that again the circle does not change, just moves 

01:05:10-

01:05:53 

interviewer asks Karen to put spoke on the circle 

01:06:03-

01:06:19 

Karen says derivative should dilate and rotate (apparently saying 

rotate by imaginary part and dilate by real part) 
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Karen’s 

Day 3 

Description 

First 2 

minutes 

(separate 

file) 

  

00:18-

2:26 

Karen describes her current perception of derivative 

(switch 

to second 

file) 

  

6:28-9:15 Karen calculates the derivative at 1 + 𝑖 and describes meaning as slope 

9:15-

10:48 
Karen tries to decide what slope of 

1

2
−

1

2
𝑖 and catalogues several the 

problems with this interpretation 

12:24-

14:02 

Karen describes the input and output planes and why derivative is 

problematic as a result 

15:01-

16:02 
Karen explores circles mapped under 

1

𝑧
 and notes it too is funky around zero 

16:02-

17:08 
Circle exploration continues while Karen explains what 

1

𝑧
 does to the 

complex plane 

20:36-

21:20 

Karen responds to interviewer question about what does it mean when the 

derivative does not exist 

21:20-

23:46 

Interviewer asks Karen about where the tangent line is 

23:46-

24:30 
Karen steps through meaning of derivative for 

1

𝑥
 in response to Interviewer 

prompt 

24:30-

25:17 
Karen tries to extend this process for 

1

𝑧
 

27:07-

28:08 
Karen again references tangent line for derivative at 1 + 𝑖, but stalls out 

when asked to identify tangent line 

28:28-

29:08 

Karen draws potential tangent line: when asked to explain why that is it, she  

catches herself "thinking in terms of Cartesian again" 

29:22-

29:53 

Interviewer asks Karen about why she does not want to think in terms of 

Cartesian 

29:55-

30:30 

Karen explains why she thinks Cartesian thinking is not right 

30:30-

31:00 

Karen tries to discover how to graph a slope in the complex plane 

31:30-

31:54 
Karen justifies a line of slope −

1

2
 is actually the one she wants despite 

previous objections 
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Karen’s 

Day 3 

Description 

31:54-

33:05 

Interviewer revives K's objections to the drawn tangent line 

33:52-

34:51 

Interviewer tries to help Karen connect meaning of real derivative with 

meaning of complex derivative 

37:20-

39:13 

Interviewer asks Karen what a linear transformation looks like in the 

complex plane and if it is different from a line 

39:25-

39:53 

Interviewer asks Karen to describe the equation of a complex linear 

transformation 

41:00-

41:36 

Interviewer asks Karen to draw a tangent line in the technological 

environment and she explains why she cannot 

42:34-

42:57 

Karen says derivative is just another transformation 

43:00-

44:25 

Karen tries to predict what will happen based on the derivative at i 

58:25-

59:41 

Karen describes why the derivative transformation looks the way it does 

59:41-

1:00:55 

Karen again suggests derivative should relate to output more than input 

values 

1:00:55-

1:03:00 

Karen describes "2-step process" of interpreting the derivative, then 

demonstrates in GSP 

1:03:34-

1:05:25 

Karen predicts GSP will not behave as predicted and tries to clarify her 

meaning 

1:05:25-

1:06:57 

Interviewer asks Karen about difference between linear transformation and 

line 

1:07:05-

1:07:39 

Karen refers to the derivative as a linear transformation 

1:07:43-

1:09:04 

Karen describes the difference between here and an actual linear 

transformation. Comes close to actually describing what the derivative means 

1:09:13-

1:09:51 

Throws out the idea of derivatives corresponding to linear transformations 

because 
1

𝑧
 is not linear 

1:10:15-

1:11:44 

Karen describes derivative describing slope of a line on one hand but that the 

derivative is not always a linear transformation on the other.  

1:11:44-

1:12:36 

Interviewer points out that a derivative can be non-linear and still describe 

the slope of a line 

1:12:38-

1:12:44 

Karen instantly makes the connection to complex: "So the circle is telling me 

about the slope of a line?" 

1:18:45-

1:20:07 

Karen expresses uncertainty whether the tangent line in the complex plane is 

a line 
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Karen’s 

Day 3 

Description 

New 

Linear 

Transfor

mation: 

(3+2i)z+4

-i 

  

1:21:05-

1:23:10 

Karen successfully predicts what a constant derivative means 

1:23:10-

1:23:49 

Karen claims the circle will be rotated by the real part and dilated by the 

imaginary 

1:27:54-

1:28:23 

Karen believes her prediction was flawed since the output is bigger than the 

input 

1:31:12-

1:31:59 

Interviewer asks what the derivative of a linear transformation means and 

Karen notes which aspects of the input/output circles are constant 

1:39:05-

1:40:05 

Interviewer asks Karen what a derivative what tell her about an unknown 

function at a single point 

1:40:05-

1:41:08 

Karen describes derivative close to a point 

1:42:30-

1:44:27 

Karen describes a set of lines that fit the derivative Interviewer gave her at a 

single point as well as a parabola 

1:45:07-

1:46:03 

Interviewer asks Karen what derivative means for a linear function locally 

1:46:03-

1:46:53 

Karen describes what negative signs and fractions do in the derivative 

1:46:53-

1:48:11 

Karen clarifies what happens in an instance like 3+1/2i 

1:48:11-

1:49:52 

Karen applies this knowledge to our particular example 

Karen’s 

Day 4 

Description 

0:00-1:02 Karen describes what a linear function tells her 

1:17-3:37 Interviewer asks how 
1

𝑧
 would behave at 𝑖 if was linear 

3:37-4:11 Karen compares this to how 
1

𝑧
 actually looks at 𝑖 

4:11-4:53 Interviewer asks what happens to the output as you shrink the input around 𝑖 

8:02-9:44 Karen says it looks like a linear function 
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Karen’s 

Day 3 

Description 

9:44-

10:50 

Interviewer asks what derivative of linear function tells you 

11:44-

14:10 

Interviewer asks what the derivative point has to do with the circles 

14:10-

15:22 
Interviewer asks what the derivative of 

1

𝑧
 at I tells you 

15:22-

16:55 
Interviewer asks what the difference between 

1

𝑧
 and a linear function is 

locally 

17:49-

22:20 

Karen says linear function output circle is rotated differently at different 

points 

24:45-

25:52 
Interviewer asks if 

1

𝑧
 looks like a linear transformation near i 

26:00-

30:03 
Interviewer asks about derivative and behavior of 

1

𝑧
 at 1 +

1

√2
 

𝒛𝟐 at 

31:42 

  

35:30-

39:15 
Interviewer asks about derivative and behavior of 𝑧2 at 2 + 𝑖 

40:22-

43:02 
Interviewer asks if the output at 1 +

𝑖

√2
 is rotated by the wrong angle and 

why not 

43:50-

49:06 
Interviewer asks why 2 + 2𝑖 was not rotated correctly but other points were 

49:20-

50:27 

Interviewer asks how much bigger output circle is than input 

50:28-

52:20 

Interviewer asks what it means for a linear transformation to have a 

derivative of 4 + 2𝑖 

52:20-

54:18 

Interviewer asks if there is similar behavior at other points 

54:18-

55:39 
Interviewer asks Karen to characterize derivative's meaning for 𝑧2 

55:40-

56:30 
Interviewer asks how 𝑒𝑧 might be different 

Switch 

video 

and 

function 

to 𝒆𝒛 

  

58:00-

1:00:40 
Interviewer asks about derivative in context of 𝑒𝑧 
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Karen’s 

Day 3 

Description 

1:08:22-

1:08:41 

Interviewer asks what it means if the derivative does not exist 

New 

function 

|z| 

  

1:19:53-

1:28:20 
After Karen determines derivative of |𝑧| does not exist, Interviewer asks 

what a non-existent derivative means 

1:28:47-

end  

Interviewer ends inquiry and lets Karen ask questions to be answered 
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Joshua 

and 

David’s 

Day 1 

Description 

10:56-

11:07 
Joshua suggests 𝑧 and 𝑧2 are on the same line and instantly corrects himself 

due to technological exploration 

11:16-

12:09 
Where do we expect 𝑧2 to go if 𝑧 = 1 + 𝑖. Joshua suggests calculating while 

David leans on a geometric interpretation 

12:30-

12:50 

David describes his geometric reasoning 

13:03-

14:58 

David again utilizes geometric reasoning to find input given output. Joshua 

uses algebra to flesh out details 

15:06-

16:10 

Joshua uses geometric reasoning for the first time to describe why one trip 

around 0 for input means two trips around for output 

23:25-

26:12 
David and Joshua try to decide whether 1 + 𝑖 on a circle being transformed 

will be a max or min in the output (wrt 𝑦-value). Joshua both introduces and 

corrects this misconception 

27:05-

28:15 
Joshua suggests a circle with 1 + 𝑖 on it will intersect the imaginary axis 

twice. David notes a case where only one intersection occurs. 

28:30-

28:46 

David notes another case where only one intersection occurs 

29:05-

33:38 

Interviewer asks about what happens when the input is a large circle. They try 

to explain why twists or deformations occur 

34:00-

37:00 

Joshua notes that when twists occur, there are two points getting mapped to 

the same spot at the overlap. They look at a particular example where the 

overlap is real-valued 

37:04-

38:50 

Joshua switches to a new example where the overlap is pure imaginary 

38:51-

40:00 

Joshua asks about better answering first question. David notes that small 

circular inputs map to circular outputs 

41:07-

45:21 

They further explore what it means to have zero inside the input circle 

45:21-

46:10 
Joshua observes similar twists when circle contains 2 

48:15-

50:00 

Joshua looks at circle containing origin, Interviewer asks about circles 

containing 2 

50:00-

53:30 

David talks about what happens near zero regarding twists and spikes 

54:15-

57:10 

They try to explain where the twisting occurs 

58:04-

1:00:37 

Further explanation of twisting location 

1:01:00-

1:03:13 

What happens when the radius changes 
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Joshua 

and 

David’s 

Day 1 

Description 

1:03:39-

1:07:45 
What happens when the circle is centered at 0 

1:11:08-

1:12:00 

Joshua and David make interesting observations about where the intersection 

occurs 

1:13:07-

1:13:48 

Joshua and David again clarify the ambiguity in using angles 

1:14:08-

1:15:47 

Joshua suggests algebraic reason for twist 

1:16:15-

1:19:30 

Joshua feels algebra is backed by software exploration. Davidchallenges 

interpretation first by clarification then counterexample 

1:19:38-

1:21:21 

Joshua feels satisfied with twist explanation now but David is not. (Switched) 

1:21:30-

1:24:26 

Joshua and David try to sort out more angle language 

1:25:40-

1:27:16 

David explains how to predict where the twist will occur. Joshua explains 

why this means every point is 2-to-1 when circle is centered at origin 

1:28:13-

1:31:18 

Joshua and David predict what happens when input circle is inside/outside 

unit circle 

1:38:30-

1:42:57 
Interviewer asks what 𝑧2 does to the plane 

1:43:40-

1:44:58 
Joshua and David start summarizing 𝑧2 again in terms of quadrants 

1:47:30-

1:49:15 
Joshua and David try summarizing 𝑧2 nicely 

1:50:07-

1:51:10 

Joshua gives something like a final answer 

Joshua 

and 

David’s 

Day 2 

Description 

9:55-

12:07 
What happens if you move 𝑧 along the real axis? 

12:07-

13:33 

What about the imaginary axis? 

18:29-

19:30 

What happens if you stretch along the imaginary axis? How many circles? 

19:54-

24:12 

What happens if you stretch vector in a different direction? They answer in 

terms of quadrants 

24:42-

25:26 

What happens when vector is rotated but not dilated? 
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Joshua 

and 

David’s 

Day 1 

Description 

26:12-

28:24 

What happens in 2nd and 3rd quadrants? 

37:20-

39:57 
What happens when input circle contains 1 + 𝑖 

43:25-

46:03 

Joshua struggles to discuss indent in output while David discusses orientation 

of output 

46:23-

48:36 
What happens when circle contains 2? 

49:13-

54:18 

What halves of input and output correspond and what does that mean? 

54:52-

57:25 

David clarifies his hypothesis 

1:05:00-

1:07:02 

What happens when input circle includes origin 

1:07:12-

1:11:24 
Interviewer probes about  𝑦-values of 2𝜋 

1:12:18-

1:15:59 
What happens when input circle has radius2𝜋? 

1:16:00-

1:18:32 

Investigating/explaining when output has a twist 

1:20:20-

1:23:40 

Interviewer asks how far apart the input points are that go to the same place 

1:23:53-

1:26:15 
Why is it that the other two points on the circle 2𝜋 away do not intersect on 

output? 

1:28:53-

1:31:50 

David finds another intersection to resolve the question 

1:39:34-

1:47:19 
What happens when you change the radius centered at 1 +

𝜋𝑖

2
 

1:48:25 

for 

question, 

1:49:10-

1:50:44 

What happens to the whole plane? (David and Joshua decide to investigate 

circles first) 

1:52:38-

1:53:59 

What happens to the whole plane?  

1:57:00-

1:57:50 

Another attempt to summarize transformation 

1:58:15-

2:00:10 

Summary of transformation. (David nudges edge of cylinder explanation) 
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Joshua 

and 

David’s 

Day 3 

Description 

00:19-

1:52 

How do you think about derivatives? 

2:00-

4:21 

Interviewer attempts to prod about derivatives without much success 

4:30-

7:54 

Connection between derivative and magnitude 

16:27-

19:30 

Connection between derivative and rotation (long silences) 

23:00-

31:30 

David talks about epsilon circles and how lines get mapped 

36:01-

36:44 

Why does a line get mapped to a line? 

47:00-

50:53 

Does the mapping preserve the angle? 

54:12-

57:50 

Derivative is like a rotation 

59:12-

1:02:50 
What does a constant derivative (like 1) mean geometrically? 

1:03:12-

1:04:34 

Interviewer disrupts tangent line idea 

1:04:35-

1:07:08 
Interviewer asks about linear function 𝑖𝑧 

1:07:08-

1:08:45 

Joshua says derivative describes how function is stretched and rotated and asks 

if it applies to 𝑧2 

1:08:46-

1:11:40 
Interviewer asks if pure imaginary like 2𝑖𝑧 will dilate the input 

1:11:55-

1:16:00 

Joshua and David try to calculate by how much the input will stretch 

New 

Video 

 

1:21-

2:00 

Joshua notes output of a line does not look straight 

9:00-

12:02 

David notes circles map to circular outputs. Interviewer asks about the line 

segment 

12:47-

16:06 

Joshua makes a connection between small circle's radius/epsilon neighborhood 

and magnitude of dilation 
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17:00-

17:35 

David reiterates Joshua as his own idea 

17:40-

22:30 

David attempts to verify algebraically. Something goes wrong 

22:30-

25:00 

David and Joshua try to debug their algebra 

25:10-

29:45 

David and Joshua argue about whether derivative says how the input gets 

rotated 

Joshua 

and 

David’s 

Day 4 

Description 

00:00-

03:38 
Describes derivative in context of 𝑒𝑧 

5:37-

8:45 
Uses technology to investigate what happens at 1 +

𝜋𝑖

2
. Constructs circle and 

spoke and transforms them at this stage 

8:45-

14:30 

Actually starts exploring. Determines rules of magnification and dilation hold 

14:30-

16:00 

Do these rules hold everywhere? 

16:00-

16:42 
What happens at 0? 

17:15-

19:15 

Given the option to explore what they want, they drag circles along axes. 

(How do I make dilation go to 0) 

27:30-

29:00 
What does 

1

𝑧
 do to the complex plane? 

29:00-

32:21 

How do circles get mapped? (Joshua interprets pieces of algebra at end) 

33:00-

34:37 

Joshua discovers some circles map to lines (i.e. the circle "breaks" at some 

point) Connects quickly to 0 

34:37-

36:11 

Notices spoke flips to outside of circle 

36:11-

40:19 
What does the derivative mean for 

1

𝑧
? 

41:20-

45:25 

David utilizes polar coordinates to aid his algebra. David and Joshua attempt 

to explain negative sign discrepancy 

46:29-

47:56 

What does it mean when the derivative does not exist? 

49:00-

50:38 

Where is the outside of the circle? 

51:00-

55:40 
What does 

1

𝑧
 do to the complex plane? When do you get broken circles? 

1:16:30-

1:18:52 
What is the derivative of |𝑧| at a point where you think it exists? 
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1:21:20-

1:23:16 

Joshua and David convince themselves that derivatives on real axis exists and 

follows their rule 

1:30:00-

1:31:45 

Joshua now thinks the rest of the plane does have a derivative 

1:31:45-

1:32:15 

What does it mean when the derivative does not exist? 

silence  

1:32:50-

1:33:27 

Answer to previous question 
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