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ABSTRACT

Albaqshi, Amani Mohammed H. Generalized Partial Least Squares Approach for
Nominal Multinomial Logit Regression Models with A Functional Covariate.
Published Doctor of Philosophy dissertation, University of Northern
Colorado, 2017.

Functional Data Analysis (FDA) has attracted substantial attention for the

last two decades. Within FDA, classifying curves into two or more categories is

consistently of interest to scientists, but multi-class prediction within FDA is

challenged in that most classification tools have been limited to binary response

applications. The functional logistic regression (FLR) model was developed to

forecast a binary response variable in the functional case. In this study, a functional

nominal multinomial logit regression (F-NM-LR) model was developed that shifts

the FLR model into a multiple logit model. However, the model generates

inaccurate parameter function estimates due to multicollinearity in the design

matrix. A generalized partial least squares (GPLS) approach with cubic B-spline

basis expansions was developed to address the multicollinearity and high

dimensionality problems that preclude accurate estimates and curve discrimination

with the F-NM-LR model. The GPLS method extends partial least squares (PLS)

and improves upon current methodology by introducing a component selection

criterion that reconstructs the parameter function with fewer predictors. The GPLS

regression estimates are derived via Iteratively ReWeighted Partial Least Squares



(IRWPLS), defining a set of uncorrelated latent variables to use as predictors for the

F-GPLS-NM-LR model. This methodology was compared to the classic alternative

estimation method of principal component regression (PCR) in a simulation study.

The performance of the proposed methodology was tested via simulations and

applications on a spectrometric dataset. The results indicate that the GPLS method

performs well in multi-class prediction with respect to the F-NM-LR model. The

main difference between the two approaches was that PCR usually requires more

components than GPLS to achieve similar accuracy of parameter function estimates

of the F-GPLS-NM-LR model. The results of this research imply that the GPLS

method is preferable to the F-NM-LR model, and it is a useful contribution to FDA

techniques. This method may be particularly appropriate for practical situations

where accurate prediction of a response variable with fewer components is a priority.

iii
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1

CHAPTER I

INTRODUCTION

A Generalized Partial Least Squares (GPLS) method was applied to a

Functional Nominal Multinomial Logit Regression (F-NM-LR) model as the latest

development in the estimation techniques that are used to improve the estimation of

functional parameter. The performance of the proposed methodology will be

studied and compared to the classic alternative estimation method of Functional

Principal Component (FPC) regression.

Due to advances in modern technology, Functional Data Analysis (FDA) has

been a prominent subject in statistical literature for the last two decades. Various

researchers have developed approaches to FDA across scientific disciplines having

different objectives, e.g., science, engineering, biology, medicine, chemistry, geology,

and sports (Aguilera, Aguilera-Morillo, and Preda, 2016; Ferraty and Vieu, 2006;

Ramsay and Silverman, 2002). Regardless of variety in applications, the purpose of

FDA is to provide information about curves, surfaces, or anything else that varies

over a continuum. To avoid confusion, FDA could be described as a

shape-to-numbers converter; in FDA, a single functional curve, i.e., a single

observed function, is called a replication.

Often, FDA deals with high-dimensional space; this type of data is

measured repeatedly over time or at several discrete points, and it comes to us
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through a process naturally described as a functional form. For example, this is the

case of the evolution of a magnitude value for temperature as a function of time.

The goal of FDA is to express repeated measurement data for each individual as a

smooth function and then to draw information from the collection of these

functions. Also, FDA emerges as a natural generalization of multivariate data

analysis techniques to the case where the data are curves that are generated. Its

purpose is to address the problems of high-dimensionality and correlations between

observations at nearby time points that occur with functional data. A procedure for

this type of analysis was developed by Ramsay and Silverman (2005).

The most recently developed applications in FDA are regression models.

The main objective of these statistical techniques is to model and predict one or

more response variables in terms of a set of related functional predictor variables.

The primary applications of FDA that have been developed include functional

principal component (FPC) regression (Aguilera and Escabias, 2000), functional

partial least squares (FPLS) regression (Preda and Saporta, 2005), and functional

logistic regression (FLR) James (2002). The interested reader can review Ramsey

and Silverman (2002, 2005) for the statistical methodology introduced and

interesting real data applications such as growth curves in medicine, financial series

derived from stock market movements, and rainfall and temperature curves in the

environmental field.

Although substantial advances have been made in FDA, there are still

challenges to the accurate estimation of parameter functions in this type of analysis,

ranging from noisy, discrete observations to representing infinite-dimensional objects
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numerically and measuring variation in infinite dimensions. One of the most

important of these challenges to functional linear regression models is that the

infinite dimension of the predictor space in real data causes a problem with

estimating the parameter function.

There are two commonly used processes for constructing a functional dataset

(an infinite object) from a finite observed sample: basis expansion and smoothing

methods. In a functional regression model it is common to represent the functional

data in terms of basis functions (B-splines, wavelets, Fourier, etc.) and assume both

the sample curves and the parameter function belong to a finite space generated by

this basis. This way, the functional linear regression model is converted into a

multiple regression model in terms of sample curve basis coefficients.

Specific techniques for basis expansion are best chosen to represent the

characteristics of the functional curve. For instance, Fourier basis are a good choice

for periodic data; B-splines are an efficient, flexible, generic choice for non-periodic

data. Some other common basis functions are wavelet and monomial. On the other

hand, good basis systems approximate any sufficiently smooth data. Basically,

smoothing methods eliminate small “wiggles” in the data while retaining the right

shape. The smoothness of the process that generates functional data differentiates it

from classic multivariate data and the smoothing process ensures the information in

the derivatives of the functions is reasonably accurate (Ramsay and Silverman,

1997).

Despite the advantages of multiple linear models, some problems arise

related to the estimations produced by this type of model. One issue is that the
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least squares estimation of the parameters function of model is usually affected by

multicollinearity because of high correlations between the columns of the design

matrix. Additionally, the number of basis functions of the sample curves can in

many cases be higher than the sample size due to the large number of variables

available from discrete observations. These problems are usually solved by

regressing the response variable on an optimum set of orthogonal covariates such as

principal component regression or partial least squares regression.

Currently, partial least squares (PLS) regression and principal component

regression (PCR) are the most popular estimation methods used to reduce the high

dimensionality and multicollinearity frequently encountered in functional regression

analysis (Escabias, Aguilera, and Aguilera-Morillo, 2014). Several researchers have

presented FPCR as a method to obtain an estimate of the functional parameters of

a model (Escabias et al., 2014; Preda, Saporta, and Lévéder, 2007). The main

criticism of FPCR is that it is computed without taking into account the response

variable. Hence, FPLS regression is an attractive alternative to FPCR because it

takes into account the correlation between the predictor and response when

selecting regression components (A. Aguilera, Aguilera-Morillo, and Preda, 2016;

Delaigle and Hall, 2012a; Preda and Saporta, 2005).

Partial least squares regression is a technique that reduces the predictors to

a smaller set of uncorrelated components and performs least squares regression on

these components, instead of on the original data. The PLS approach usually leads

to stable and highly predictive models. The latent variables are mutually

independent (orthogonal) linear combinations of original descriptors. Thus, the PLS
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model contains the smallest necessary number of factors. This method first became

popular in Chemometrics (i.e., computational chemistry) and in sensory evaluation

(Martens and Stark, 1991). However, PLS regression is also becoming a tool of

choice in the social sciences as a multivariate technique for non-experimental and

experimental data alike (McIntosh, Bookstein, Haxby, and Grady, 1996).

In terms of procedure, the PLS regression method iteratively produces a

sequence of orthogonal functions as does functional principal components but it

offers maximum predictive performance. Particularly, PLS is used to obtain sensible

estimates of the functional parameters of the model and the selection of components

used in these methodologies appears to be a major task in real data analysis. With

this method, the comparison is performed in terms of the integrated mean squared

error (IMSE) of the parameter function of the fitted model. The capacity of

standard methods for establishing criteria to select PLS components (leave-one-out

cross-validation) in terms producing accurate estimates of functional parameters is

reviewed in Chapter III.

Three common categories are used for classifying functional regression

models based on the role played by the functional curves in each model: scalar

responses and functional predictors (scalar-on-function regression), functional

responses and scalar predictors (function-on-scalar regression), and functional

responses and functional predictors (function-on-function regression) (Ramsay and

Silverman, 2005). Domains in which scalar-on-function regression has been applied

include chemometrics, cardiology, brain science, climate science, and many others.

This dissertation focused on nonlinear approaches to scalar-on- function regression.
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Beyond functional linear regression models, two nonlinear functional

regression models that are promising for certain applications include the functional

logistic regression model and the functional multinomial logit regression model. The

functional logistic regression model has received broader attention in the literature

in recent years as it has been applied with different objectives for predicting a

binary response from a functional predictor (Escabias, Aguilera, and Valderrama,

2004). However, this model approximates the sample curves and the parameter

function on a finite dimension space generated by a basis, so it has the same

multicollinearity problem as linear models. Therefore, the parameter function

estimation is very inaccurate so its its interpretation in terms of odds ratios may be

erroneous. Again, PLS regression and PCR are the most popular methods used in

functional regression to solve this problem.

Classification of samples into two or more categories is almost always of

interest to scientists. Thus, the natural generalization of the functional logit model

in the case of a categorical response variable with a finite set of categories greater

than two is the functional multinomial response model. A functional multinomial

logit regression model based on FPC regression was introduced by Escabias et al.

(2014). Different types of logit transformations can be applied in the analysis

depending of the type of response being considered (nominal or ordinal).

Classic PLS univariate regression for continuous responses results from the

iterated use of ordinary least squares (OLS). Marx (1996) proposed an extension of

classical PLS in the context of generalized linear regression as a dimension reduction

tool. Partial least squares generalized linear regression follows the rationale of PLS,
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but criterion optimization at each step is based on maximum likelihood. The

acronym PLS, is retained to refer to the general methodology used to relate a

response variable to a set of predictor variables. The approach proposed for PLS

generalized linear regression is easy to implement as it generalizes readily to any

linear model at the level of the predictor variables (Ding and Gentleman, 2005).

This dissertation examined generalized PLS regression for a categorical response

variable associated to a functional curve with respect to a logit transformation of a

nominal response variable.

Purpose of the Study

The purpose of this research was to (a) extend the ordinary partial least

squares method within the context of the functional generalized linear model

(James, 2002) based on iteratively reweighted partial least squares to obtain an

accurate estimation of the functional parameters and (b) to classify sample curves

in the categories of the response variable of the functional nominal multinomial logit

regression (F-NM-LR) model. This adaptation is designated as the Generalized

Partial Least Squares method (GPLS). This method has two key advantages: (a) it

is expressed only in terms of functional predictors that are explicitly computable,

and (b) it demonstrates consistency.

In this study, the GPLS regression method is used as an alternative to

functional principal component (FPC) regression as presented by Escabias et al.

(2014). This research applies the proposed GPLS method directly to the F-NM-LR

model, achieving an improvement in functional parameter estimates for supervised
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multicategory classification problems that deals with dependence, produces lower

classification error rates, and have high predictive ability.

Hence, for the present purposes, the author focuses on the commonly used

nominal logit response model with functional predictors. The objective of the

proposed methods and results presented in this work was to help practitioners use

real-world functional data to make valid interpretations and decisions. A simulation

and a real dataset were used in this study to investigate the usefulness of the

proposed method.

Statement of the Problem

When traditional functional multinomial logit regression model are used to

predict categorical logit response variables associated with observed curves, two

critical problems arise. First, the classical FPC method calculates PCs without

taking into account the response variable. Second, the original PLS algorithm was

designed for a continuous outcome with constant variance that has a linear

relationship with the predictor. The GPLS method is a strategy that integrates

these concepts into functional generalized linear models.

Significance of the Study

This study generalizes the functional PLS logistic regression model for a

binary response variable to the case of a functional GPLS nominal multinomial logit

regression model. This process is intended to provide more accurate estimation of

functional parameters and improved sample curve classification. To investigate the

effectiveness of the proposed method, the results generated by the proposed model
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were compared to those of classical FPC regression method under a baseline logit

regression model as presented by Escabias et al. (2014).

Research Questions

The following questions were be addressed in this study:

Q1 How is a generalized partial least squares regression method developed
for parameter function estimation in the functional nominal
multinomial logit regression model?

Q2 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, with changes of the functional predictor dependent
on arbitrary values assigned to a and b?

Q3 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, based on changes in the number of the nominal
response categories?

Q4 How does the precision of the generalized partial least squares
regression method compare to the principal component regression
method proposed by Escabias et al. (2014) under the functional
nominal multinomial logit regression model?

Q5 How to develop an R code to fit a functional generalized partial least
squares nominal multinomial logit regression model to real data?

The effectiveness of the proposed methodology was evaluated using a

simulation study conducted with changes in the number of categories of a nominal

response variable. In addition, a real-world dataset (spectrometric data) was used to

demonstrate the performance of the GPLS estimation techniques in terms of curve

classification, model precision, and the accuracy of parameter estimates.
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Saeys, De Ketelaere, and Darius (2008) suggested the potential use of

functional data analysis for spectroscopy and chemometric data. The spectrometric

data consist of spectrometry curves (absorbance measured in terms of wavelength)

generated for different substances, such as food. For this study, the the functional

generalized partial least squares nominal multinomial logit regression model was

used to classify near infrared (NIR) spectra of corn samples according to the

spectrometer that generates them so was is a retrospective study of spectral curves.

The data are publicly available and can be downloaded from

http://www.eigenvector.com/data/Corn/index.html.

Rationale for the Study

Limited studies have focused on applying PLS procedures for functional

logistic models to classifying sample curves into the categories of a response

variable. The power of using the PLS method was it uses a set of uncorrelated

latent variables (as the PCs) and it takes into account the relationship between the

response and the predictor variables in the regression model. The PLS method has

been used to estimate the discriminant coefficient functions for linear discriminant

analysis (LDA) when predictors are functional curves; however, it is built based on

the similarities between LDA and multiple linear regression (Preda et al., 2007).

A. Aguilera et al. (2016) proposed two penalized versions of functional PLS

regression with roughness penalties on the weight functions to improve the

classification ability of functional logistic models such that they produce suitable

estimates.
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The PLS approach has also been used for classification purposes by Escabias

et al. (2007) for modeling a binary response with a functional predictor because of

the equivalence of linear discriminant analysis and linear regression. Although the

results for classification look good, their approach may not be ideal because the

original PLS algorithm was designed for a continuous outcome with constant

variance that had a linear relationship with the predictor.

In contrast to partial least squares, the FPC regression method is the classic

tool and base solution for addressing the multicollinearity and high dimensionality

problems that occur with functional data (Escabias et al., 2014). However, the FPC

method has been subject to many criticisms based on the fact that PCs are

calculated without taking into account the response variable. As mentioned earlier,

Cardot, Faivre, and Goulard (2003) considered a functional logistic model for

predicting land use with the temporal evolution of coarse resolution remote sensing

data. These authors proposed a quadrature method to approximate the linear

predictor of the model from discrete data and a functional PCA to reduce the

dimensions of the problem.

However, Escabias et al. (2007) indicated it was more informative to

consider a PLS regression method as an alternative to an FPC regression method.

They have demonstrated that a functional PLS logistic regression model provides

better estimations of the parameter function than did the FPC method with a

greater reduction in the number of components needed and similar predictions.

More broadly, Mahesh, Jayas, Paliwal, and White (2015) have shown that PLS
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regression models demonstrated better prediction performance than the PCR

models for predicting protein contents and hardness of wheat.

In conclusion, to the author’s knowledge, no work has been done to apply

the proposed GPLS method directly to the F-NM-LR model. In addition, the GPLS

method would be flexible enough to be applied to a broad family of statistical

problems. Therefore, this dissertation offers substantial progress toward improving

estimates generated from functional data.

Delimitations of the Study

The current study faces a few limitations. First, the author investigated the

procedure with only a nominal response variable; thus, there was no guarantee the

results of this dissertation would be valid for an ordinal response variable. Second,

the simulation results were limited to one-dimensional curves for one functional

predictor. Additionally, the proposed GPLS method was limited when only

predictor variables were functional; thus, there was no guarantee the results of this

dissertation would be valid when both response and predictor variables are

functional. Finally, this study applied regularization techniques, (e.g., reduction

methods) to improve the precision of regression models; which might not reflect the

diversity that occurs in shrinkage methods.



13

Definition of Terms

Definition I.0.1. A sample X = (x1, . . . , xn) is called functional data when the ith

observation is a real function {Xi(t) : t ∈ T , i = 1, . . . , n}, and hence, each Xi(t) is a

point in some function space H.

Definition I.0.2. An inner product on the real function space H is a function 〈·, ·〉

defined on H×H with values in R and satisfying the properties

1 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉,

2 〈x, y〉 = 〈y, x〉,

3 〈x, x〉 ≥ 0 and 〈x, x〉 = 0, iff x = 0

for all x, y, z ∈ H; a, b ∈ R.

Definition I.0.3. Basis representation represented by supposing L2(T ) the space of

all squared integrable function defined on T. The inner product defined on L2 is

〈f, g〉 =

∫
T

f(t)g(t)dt, ∀f, g ∈ L2(T ).

A system of basis function φp(t) is called orthonormal if

‖φp‖2 =

∫
T

| φp(t)|2dt = 1

, and ψvu =< φv, φu > being the (p× p) matrix of inner products of the basis

function. Where ψvu=1 for u = v, and 0 otherwise.
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Abbreviations

For the sake of readability, the following is a list of the main abbreviations

used in this dissertation:

FDA Functional Data Analysis

FPC Functional Principal Components

PCR Principal Components Regression

FPCR Functional Principal Components Regression

PCR Principal Components Regression

PLS Partial Least Square

FPLS Functional Partial Least Square

FPLSR Functional Partial Least Square Regression

GPLS Generalized Partial Least Square

FLR Functional Logistic Regression

F-PLS-LR Functional-PLS-Logistic Regression

FMLR Functional Multinomial Logit Regression

F-NM-LR Functional-Nominal Multinomial-Logit Regression

F-GPLS-NM-LR Functional-GPLS-Nominal Multinomial-Logit Regression

CCR Correct Classification Rate
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ROC Receiver Operating Characteristic

IMSE Integrated Mean Squared Error

CVMSE Cross-Validation for Mean Squared Error

Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter II

provides relevant background about functional data analysis and a literature review

showing the development of estimation techniques for FDA. In addition, the

necessary knowledge for basis expansion and how it is applied in functional data

settings is given. Chapter III describes the proposed methodology for a GPLS

regression base solution for a functional multinomial logit regression (FMLR) model

and the development of this model. Chapter IV contains a thorough analysis results

of both a simulation study and a real dataset application to illustrate the proposed

GPLS method. Chapter V presents a brief discussion of the results, conclusions, and

potential motives for additional work with F-GPLS-NM-LR model as well as future

research directions. Finally, supplementary material including figures, tables, and

details on R code are available in the appendices.
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CHAPTER II

REVIEW OF LITERATURE

This chapter contains some necessary definitions and basic tools for

functional data analysis; basis expansion, the B-spline smoothing method, and

registration are presented. In addition, the most well-known estimation methods in

functional data analysis, FPC and FPLS regression, and their algorithms are shown

in order to give the appropriate foundation for the model and the estimation

procedure developed in this dissertation. The chapter is organized as follows: A

brief overview of Functional Data Analysis (FDA) and the fundamentals of the basis

function approach with common types of basis and smoothing methods are followed

by the primary idea of curve registration. The functional linear regression model

with a scalar response and a review of the current literature on functional logistic

regression used to model a binary response variable are then presented.

Additionally, a review of the functional PCA and PLS based solutions for the

multicollinearity problem that arises with functional logistic regressions is provided.

Next, a functional multinomial logit model for nominal responses and the

motivation for the use of this framework throughout this work are demonstrated.

Finally, the prospective methodology for parameter estimation of the functional

multinomial logit model using FPCA, FPLS, and G-PLS are discussed.
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A Brief Overview of Functional Data Analysis

Functional data analysis (FDA) is a relatively new field of research in

statistics that became popular at the end of the nineties. Historically, this term is

rooted in work by Ramsay (1982) and Ramsay and Dalzell (1991), and two

additional monographs addressing the subject were written by Ramsay and

Silverman (1997, 2002). These works provide an accessible overview of the

foundations of FDA and its applications, and they were followed by Ramsay and

Silverman (2005), which provides advanced references for work in this field. This

resource inspired substantial interest in developing statistical models for FDA.

Ramsay and Silverman (2005) present many ideas and techniques for collecting

functional data samples, mainly curves and other functional observations measured

over a continuous parameter such as time.

To establish the general nature of functional data, Figure 1 shows examples

of functional data sets from three different disciplines. Furthermore, to simplify the

idea of FDA, a general way of thinking is to view each replication as a single

observation, where the basic unit of information is the entire observed function

rather than a string of numbers. For example, stock and option prices in finance are

often treated as functions of time because the data observed are not the univariate

or multivariate observations of classical statistics; they are functions that are

attributable to an underlying infinite dimensional process. Several functional data

sets have been studied in Ferraty and Vieu (2006), and they present methods that

are considered useful for analyzing discretely observed data and generalizations of

classical multivariate techniques to the FDA field. Aguilera et al. (2010) developed
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the formulation and estimation of functional PLS regression from basis expansion of

sample curves, and a number of other books have subsequently appeared. In short,

the history of this area is much older and dates back to Grenander (1950) and Rao

(1958).
1.1. Moving from classic data to functional data 3
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Figure 1.1: Examples of functional data from di↵erent disciplines. A random sample
of 10 random function is shown for lameness of horse dataset (the top left panel),
colon carcinogenesis dataset (the top right panel), and phoneme dataset (the bottom
panel). Highlighting one example of the curves for each dataset (the red solid) along
the observed data of the functions (the blue circle points).

way of thinking to seek for the basic unit of information in the entire observed
function rather than a string of numbers. In other words, in FDA, we consider a set
of functions in comparison with the classic multivariate statistics that works with
a matrix of observations. The aims of FDA are more or less the same as for other
branch of statistics which can be listed below (among others):

• to represent and transform the data in an appropriate way for further analysis.

• to display the data with aim of highlighting various characteristics.

• to investigate the main sources of variation and pattern among the data.

• to explain variations in the response variable by hiring the information of the
covariate variables.

Figure 1. Example of functional data from different disciplines.

Currently, data that are being recorded continuously during a time interval

or intermittently at several discrete time points are called functional data. FDA has

become one of the most motivating and popular statistical topics due to its

influence on crucial societal issues, which is a failure of standard multivariate

statistics (Ferraty, 2011). This subfield is still in rapid development and becoming

more common in scientific studies, for example, data collected by weather stations,
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human growth curve data, marketing applications, and handwriting data. From this

point of view, FDA can be challenging when the data objects are curves that need

to be measured repeatedly over time. A current interest is in how well FDA

methods extend to the case of functional regression and serve as alternatives to the

classical multivariate methods of classification such as regression methods for a

binary response (logistic regression model) or multi-category response (multi-logit

regression models) as observed in Hervás, Silva, Gutiérrez, and Serrano (2008).

These approaches allow modeling variables from a set of predictors and

interpreting the relationship between the categorical response and the functional

predictor via the parameters of the model. There are numerous examples of

methodologies developed that extend functional logistic regression techniques and

functional multinomial regression models to use for functional PCA and PLS to

reduce the dimensions (Escabias, Aguilera, and Valderrama, 2004; A. M. Aguilera,

Escabias, and Valderrama, 2008; Aguilera-Morillo, Aguilera, Escabias, and

Valderrama, 2013; Ratcliffe, Heller, and Leader, 2002).

A commonly arising quandary for the researcher, however, is deciding which

datasets should and should not be treated as functional data. Generally speaking,

one could say that there are some prerequisites for considering data to be

appropriate for functional data analysis. For instance, the data must realistically

arise from an underlying smooth process, and there must be enough data to extract

the essential feature of the underlying process; additionally, there must be

repetitions in order to study the variations of interest. Ultimately, in functional

data there is no need for equally spaced or perfect measurement. Ramsay and
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Silverman (2002), Ferraty and Vieu (2006), and Horváth and Kokoszka (2012)

provide excellent summaries of methods and case studies for handling functional

data from different perspectives, and statistical inference related to some FDA

methods was recently studied by Horváth and Kokoszka (2012).

Definition of Functional Data Analysis

Functional Data Analysis (FDA) is “ a branch of statistics that analyses

data providing information about curves, surfaces ,or anything else varying over a

continuum” (Ramsay and Silverman, 2005, p. 9). The continuum is usually time,

but it can be other indices such as wavelength, probability, spatial position,

frequency, weight, and so on. The aforementioned definition has been discussed in

many different studies with varied purposes (Escabias, Aguilera, and Valderrama,

2004; Kayano, Dozono, and Konishi, 2010; Müller and Stadtmüller, 2005).

Essentially, FDA is a generalization of multivariate data analysis techniques

to the case where the data are curves. This type of analysis draws information from

collecting multiple functions as a smooth curve that occurs over some domain (e.g.,

time, spatial location, wavelength, or probability). Escabias et al. (2012) present a

review of the FDA methods usually used in biometrics and biostatistics, and they

discuss some interesting applications. Fundamentally, the statistical tool based on

the analysis of functional data can be viewed as the realization of a one-dimensional

stochastic process, often assumed to be in a Hilbert space, such as L2(T ) (Gasser et

al., 1984; Gasser and Kneip, 1995; Rice and Silverman, 1991). Regardless of the

stochastic nature of functional data, the usual assumption in functional data
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analysis, and in this work, is that the curves belong to the squared integrable

functions space L2(T ).

Summary Statistics of Functional Data

Functional means and variances. The classical summary statistics for

univariate data familiar in the introductory statistics classes apply equally to

functional data. The mean function with values

x̄(t) = N−1
N∑
i=1

xi(t) (2.1)

is the average of the continuous point-wise across replications. Similarly the

variance function var has values

varX(t) = (N − 1)−1
N∑
i=1

[xi(t)− x̄(t)]2, (2.2)

and the standard deviation function is the square root of the variance function.

Covariance and correlation functions. The covariance function

summarizes the dependence of records across different argument values, and it is

computed for all t1 and t2 by

covX(t1, t2) = (N − 1)−1
N∑
i=1

{xi(t1)− x̄(t1)}{xi(t2)− x̄(t2)} (2.3)

The associated correlation function.

corrX(t1, t2) =
covX(t1, t2)√

varX(t1)varX(t2)
. (2.4)
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Correlation function is mainly intended for situations where the two functions are

reflecting the same variable, such as angle in the gait data. However, one also can

want to correlate two variables of an entirely different character, such as

temperature and precipitation in the weather data (Ramsay et al., 1997).

Steps of Functional Data Processing

In reality, the random function of FDA cannot be tracked continuously;

instead, a sample of the random function can take a number of measurements at

discrete times or separate spatial locations for one object. Generally, these sample

curves are independent of each other. Usually, a single observed function is a called

a replication; and in turn, functional data is a random sample of replications.

Typically, the sampling designs do not have strict requirements. Figure 2 shows the

change in temperature over the course of a full year, taken from 35 weather stations

across Canada. Each data point, marked with an “x”, represents the mean

temperature recorded by a weather station for the entire month, collected over 30

years. The colors correspond to the geographic climates of the stations.
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Figure 2. Raw data for mean monthly temperatures in 35 Canadian weather stations.
The colors and the numbers correspond to the geographic climates of the stations.

However, analyzing the variation within and between functions requires the

extensive use of derivatives. In addition, the typical underlying function x is

smooth, and consequently the concepts of roughness and smoothness of functions

play a crucial role, warranting review.

In summary, the process for FDA is as follows:

1. Collect, clean, and organize the raw data.

2. Convert the data to functional form.

• Select Basis Set.

• Select Smoothing Operator.
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3. Explore the data through plots and summary statistics.

4. Register the data, so that important features occur at the same aligned

argument values.

5. Carry out exploratory analysis, such as functional principal components

analysis, or functional partial least squares regression.

6. Construct models, if appropriate.

7. Evaluate model performance.

In terms of programming for FDA, well-developed computational code for

Matlab, Splus, and R are available from the FDA website (Ramsay, 2011). The

book by Ramsay, Hooker, and Graves (2009) illustrates strong connections between

functional data analysis techniques and their applied applications using R and

Matlab. Moreover, the FDA package in R provides an extensive range of smoothing

and modeling tools, along with a number of classical functional data sets (Ramsay,

Hooker, and Graves, 2009).

Advantages of Functional Data Analysis

The advantages of FDA reflect its objectives as described by Ramsay and

Silverman (2005). These objectives are more or less the same as for other branches

of statistics, and they include the following: (a) representing and transforming the

data in appropriate ways for further analysis; (b) investigating the main sources of

variation and patterns among data with high dimensionality; (c) explaining

variations in the response variable by using the information about the covariance of
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variables; (d) displaying the data to highlight various characteristics; and (e)

comparing two or more sets of data with respect to certain types of variation, where

the two sets of data can contain different sets of replicates of the same functions or

different functions for a common set of replicates.

In reality, the observed data often are collected with random noise called

error, which are often assumed to be independent across and within subjects. Thus,

the strength of FDA is that it can adjust for error easily because for each subject,

one observes repeated measurements. However, functional data that are assumed to

be observed continuously without errors are the easiest type to handle (J.-L. Wang,

Chiou, and Mueller, 2015). Due to these practical advantages, many applied

statisticians work with functional data analysis, for example, in the analysis of

growth curves (Rao, 1958), demographic forecasting (Hyndman and Booth, 2008;

Hyndman and Shang, 2009; Hyndman and Ullah, 2007), electronic commerce

research, marketing science (S. Wang, Jank, and Shmueli, 2008), and many more.

Basis Expansion of Functional Data

Basis functions and smoothing methods are the two most common

approaches to constructing a functional dataset. Basis functions are a known set of

mathematically independent functions that describe a curve or any other data

distributed over a continuum. Basis functions provide all appropriate computations

necessary for storing information, fitting the data quickly with minimal

programming, and providing flexibility, paired with the computational power

required to fit hundreds of thousands of data points. Additionally, the basis

approach is not too technical; it uses more advanced methods, such as the
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calculation of variations and functional analysis. As such, there are no practical

limitations as to what functional data require.

The main feature of a functional variable is the infinite dimension of the

space to which the observations belong. However, due to the infinite dimensionality

of the functional variable, direct estimation of a functional regression model (in

which some of the response and/or predictor variables are functional), particularly a

linear one, is generally impossible. A customary approach to the estimation of

functional regression models is to employ a roughness penalty, which performs well

in the case of noisy or unequally spaced observations of the curves. Another

common solution is the generalization of the linear regression approach to represent

the functional data in terms of basis functions (B-splines, wavelets, trigonometrics),

and provide approximations for the basis coefficients via the use of a large number

of discrete observations, which may be characterized by irregularity and sparseness.

Thus, the functional model is converted into a multiple model in terms of sample

curve basis coefficients.

However, because sample curves are usually observed in a finite set of

sampling points that could be unequally spaced and different among the sample

units, typically, the first step in FDA is to reconstruct the true functional form (an

infinite object) of each sample curve from a finite set of discrete observations by

assuming an expansion of each sample curve in terms of a basis of functions and

fitting the basis coefficients using smoothing or interpolation. The most common

method assumes that the sample curves belong to a finite dimensional space

generated by a basis of functions. This way, the estimation of a functional
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regression model is reduced to an equivalent multivariate regression model with high

correlation between the predictor variables.

Basis Coefficients for Functional Data

In practice, interpolation (for data observed without error) or least squares

approximation (for noisy data) can be used to compute the basis coefficients for

FDA. For example, A. M. Aguilera, Gutiérrez, and Valderrama (1996) first

considered natural cubic spline interpolation to calculate estimates for functional

PCA. Also, Escabias, Aguilera, and Valderrama (2007, 2014, 2015) introduced

quasi-natural cubic spline interpolation to estimate the risk of drought from time

evolution of temperatures. However, A. M. Aguilera et al. (2008) used least squares

approximation with both B-splines and trigonometric functions to interpret the

relationship between time evolution of stress and flares in Systemic Lupus

• If the sample curves are observed without error

Xij = Xi(tij), j = 1, . . . ,mi,

an interpolation procedure can be used.

• On the other hand, if the sample curves are observed with error

Xij = Xi(tij) + εij, j = 1, . . . ,mi,

least squares smoothing is used after choosing a suitable basis.



28

In practice, most functional data are contaminated with random noise

(measurement error). These errors are sometimes insignificant, (e.g., recording the

height of children over time), but in other cases, noise is a critical issue, (e.g.,

accounting for the influence of head movements when taking functional magnetic

resonance images (fMRIs).

Basis Representation

In practice, various classes of basis can be used depending on the

characteristics of the curves and the observations. The assumptions of the

underlying stochastic process {X(t), t ∈ T} are necessary in order to develop the

theory of the basis function approach, the first and second order moments of X(t)

are assumed to exist and to be finite within a Hilbert space of measurable functions.

A curve can be represented by a basis when you assume that the data belong to this

space. A basis is a set of known functions {Φp(t)}p∈N such that any function could

be arbitrarily approximated by a linear combination of a sufficiently large number of

these functions (Ramsay and Silverman, 2005). Fitting the sample curve xi(t) can

permit the following basis expansions:

xi(t) = a′iΦ(t), β(t) = b′Φ(t),

where ai = (ai1, . . . , aip)
′ is the vector of sample curve basis coefficients and

b = (b1, . . . , bp)
′ is the vector of the parameter function basis coefficients.

Note that choosing the number of basis functions is important and critical

for all subsequent computations. Small numbers of basis functions mean minimum
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flexibility (under-fitting), and larger numbers of basis functions result in overfitting

(Febrero-Bande and Oviedo de la Fuente, 2012; Ramsay and Silverman, 2002).

However, the choice of the basis should be based on the objective of the analysis

and on the data. Figure 3 shows a noisy functional observation approximated by

B-splines in order to graphically show the phenomenon of over or under-smoothing.

The grey curve represents the actual function, the circles are the observation points,

and the blue and red lines represent two B-spline approximations, where K = 5 and

K = 40, respectively. The smaller K under-fits the underlying model, while the

larger k replicates the noise, and not the original function (over-fitting).

Figure 3. Approximation of a functional data via B-splines. Grey: true data. Blue:
under-fitted (K = 5). Red: over-fitted approximation (K = 40).

Common Types of Basis Systems

This section provides a short summary of common types of basis used with

functional data. Choosing the ideal basis and its dimension for approximating the
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functional form of a set of sample curves is very important, and it must be done

according to the characteristics of the data. The most common examples of useful

basis systems according to the main features of the sample curves are the following:

(a) Fourier basis for the case of periodic data; (b) B-spline basis for non-periodic

smooth data with continuous derivatives up to a certain order, which provides

better local behavior (De Boor, 2001); and (c) wavelet basis for data with strong

local behavior where derivatives are not required (Ramsay and Silverman, 2005).

Additionally, there are several different types of basis functions that can be created

using the function basis package in R and Matlab (constant, monomial, polynomial,

B-splines, power, exponential, and Fourier). The most common basis functions

according to the main features of the data are reviewed below:

Polynomial basis. The oldest system consists of the powers of t, that is,

1, t, t2, . . . , tk. This basis was important in the days of hand calculation. Actually,

polynomials are easy to compute but also inflexible, and they seem to be

appropriate only for simple data structures without many local features.

Fourier basis. In the early nineteenth century the Fourier basis technique

was been developed. This basis is known as a good choice for modeling periodic

functions. This basis is easy to use to fit periodic or near periodic data with a fixed

and known frequency, such as weather data, some types of economic data, and so

on. In this basis, which containing 1 and a series of pairs of sines and cosines that

is, 1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), . . . the constant ω

plays an important role (Ramsay, 2006). However, Fourier series are not great at

capturing sharp changes.
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Wavelets basis. These types of basis are terrific at capturing sharp

changes. Commonly, the wavelet basis is used for nonlinear techniques for

approximating functions, particularly those whose domains are defined on a

bounded interval (Morris and Carroll, 2006). However, wavelets basis shares the

computational advantages of potentially orthogonal basis systems similar to the

Fourier series and splines basis.

Spline basis. These are related to polynomial systems, and they require

some further explanation. Currently, a spline basis function is mostly used for

non-periodic data. This is a popular application for many reasons. Spline basis

systems provide fast coefficient computation when thousands of equations are

required.

Spline basis functions are excellent systems that indicate special structures

for the equations, which is a distinct advantage of a spline basis. This fast

computation of individual basis functions increases the ability to create appropriate

and smooth approximations of the underlying data. This basis combines the

efficiency of polynomials (which are included in it) with a greater flexibility for

fitting highly curvy data or sharp curvatures at specific locations. The technique

basically relies on dividing the time interval and making a polynomial

approximation in each subinterval while taking care of the breakpoints (De Boor,

De Boor, Mathématicien, De Boor, and De Boor, 1978). Expansions using the

spline basis system are used in this dissertation. Examples of B-spline and Fourier

basis are illustrated in Figure 4.
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Figure 4. Basis systems: The Fourier basis function (left panel), and the B-spline
basis function (right panel).

The Characteristics of B-Spline Functions

Before considering how to construct a spline basis system, an understanding

of the essential characteristics of splines is necessary. In computer science, the term

spline refers to a piecewise polynomial curve. In mathematics, a spline is a piecewise

polynomial function of degree m formed by joining polynomials together at fixed

points called knots ξl (Wood and Jennings, 1979). Knots are given by dividing the

interval extending from lower limit tL to upper limit tU , to approximate a curve

into L+ 1 sub-intervals separated by L interior boundaries ξl (knots, or sometimes

breakpoints) for the spline.

For example, consider the simplest case in which a single breakpoint divides

interval [tL : tU ] into two subintervals. Then, the spline function within each interval

is a polynomial of specified degree (the highest power defining the polynomial) or
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order (the number of coefficients defining the polynomial, which is one more than its

degree), a spline function being of order m or degree m− 1 over each sub-interval.

The two polynomials are required to join smoothly at the interior breakpoint ξ1.

This means, in the most common case, that the derivatives match up to the order

one less than the degree. Knots are often spaced equally, but two important rules

should be observed in placing knots: Place more knots where you know there is

strong curvature and fewer where the function changes slowly. However, one must

be sure that there is at least one data point in any interval. Therefore, the order m

(order = degree + 1) of the polynomial segments and the location of the knots

define the spline basis system. Because splines are constructed from polynomials,

computing their derivative at any point between two knots is simple; at a knot, it is

required that the derivatives up to order (m - 2) also join. That is, the derivative of

order (m - 2) of a spline function is usually continuous.

Once the knots are given, B-splines can be evaluated recursively for any

degree of the polynomial by using a numerically stable algorithm (De Boor, 2001).

For example, when q = 3 the basis functions are called cubic B-splines (q = the

order of the polynomials plus the number of interior breakpoints). They are used to

fit regular sample curves with first and second continuous derivatives. Typically,

cubic splines are used to design objects because they are reasonably flexible, and

they can be computed and stored efficiently (Hall, Poskitt, and Presnell, 2001).

On the other hand, the choice of knots is an important problem when

working with B-splines. If too many knots are selected, over-fitting the data will

result. On the other hand, too few knots results in under-fitting. Some automatic
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numerical schemes for optimizing the number and the position of the knots have

been proposed to solve this problem (J. H. Friedman and Silverman, 1989).

However, in each region or station there must be at least one observed value ti

within each subinterval, because practically speaking, it is a waste to have

breakpoints without data. Moreover, if one suspects that a sharp feature exists in a

particular region and there are only one or two data values in its area, there will be

little hope of adequately describing the data, and the fitted curve may as well be

smooth. Typically, the hope is for gains in statistical power and computational

efficiency with a small number of basis functions, reflecting the old philosophers

saying, “ the simpler, the better.”

There are two strategies for determining exactly where to position

breakpoints. The first, and most commonly used strategy, is to make them equally

spaced, but the requirement of having at least one observation in every subinterval

needs to be considered. The second strategy has the advantage of ensuring that

there is a practical amount of data associated with each subinterval. This is called

the quantile placement, which places a breakpoint at every fixed number of observed

values of t.

Quasi Natural Cubic Spline System

A quasi-natural cubic spline approximation method consists of two main

steps: First, the degree and knot vector are determined, and then the B-spline

coefficients of the approximation are computed from given data according to a

formula. For some methods, like spline interpolation and least squares

approximation, this formula corresponds to the solution of a linear system of
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equations. Typical global methods are cubic spline interpolation, which are popular

local method. Quasi-interpolants allow us to establish important properties of

B-splines. The true functional forms of the curves have been reconstructed via

quasi-natural cubic spline interpolation, as used by Escabias et al. (2014). The

advantage of quasi-natural cubic spline interpolation is its flexibility and simplicity.

As mentioned above, B-spline functions have good local behavior, and this is the

reason for their frequent use in practice.

However, many authors have stated that in the case where the interpolation

design matrix is obtained from the observation of correlated data, the model will

have collinearity between predictor variables Hosmer and Lemeshow (1989).

Consequently, using basis expansion usually results in the functional model turning

to multiple models that have no unique solution. Escabias et al. (2005), proposed to

use quasi-natural cubic spline interpolation. Quasi-natural cubic spline interpolation

consists of cubic spline interpolation, but it uses uniformly generated values (around

and next to zero) as boundary conditions. That is, the interpolation matrix is

uniformly generated in the interval [0, 1].

Beyond the basis approximations, there exist a great variety of smoothing

methods (with or without a basis representation) to remove noise or just make the

discretized data continuous.

Smoothing Methods for Functional Data

The smoothing process in generating functional data is an important step

that distinguishes this type of data from classical multivariate observations (Ramsay

and Silverman, 1997). Ideally, smoothness is the required assumption for functional
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data analysis, making it flexible enough for modeling. The basic idea of smoothing

methods for functional data is to retain the right shape of the underlying random

function by making the variations caused by measurements error and other factors

more even.

Basic smoothing techniques are nonparametric, and researchers can select

from many tools (Ramsay, 2006). Usually, the choice of a smoothing technique is

crucial, and it is subject to both mathematical considerations and computational

limitations. However, in principle, there is no universal rule that would provide an

optimal choice.

Furthermore, for scientific models, derivatives play an important role; they

are needed to construct models for data based on differential equations. The order

of the derivative depends on the problem at hand. In other words, assuming that

the underlying process is smooth, one can deduce that the adjacent observations

should be linked together. Therefore, smoothness ensures that the information in

the derivatives of functions can be used in a reasonable way. Figure 5 presents an

example of smoothing data with different numbers of basis functions. Additionally,

the first and second derivatives can reflect the energy exchange within a system, as

described by Ramsay and Silverman (2002). Consequently, if the smoothness

property did not apply to a functional linear model, there would be nothing much to

be gained by treating the data as functional rather than just multivariate.
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Figure 5. Example of smoothing functional data by changing the number of basis
functions.

It is far from clear whether smoothing is a good practice when classifying

functional data. Carroll, Delaigle, and Hall (2013) showed that under-smoothing is

appropriate in practical cases such as the functional logistic model because the

smoothing parameters that achieve good and even optimal performance in

prediction and hypotheses testing fail in this context.

Crambes, Kneip, and Sarda (2009) carried out a comparative study of

regression splines and smoothing splines. Basically, there are three different

approaches for approximating smooth sample curves: regression splines

(non-penalized least squares approximation), smoothing splines (continuous

roughness penalty based on the integrated squared d-order derivative of each sample

curve), and P-splines (discrete roughness penalty based on d-order differences

between coefficients of adjacent B-splines). The purpose of all smoothing spline
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methods for sample curves is to improve the statistical estimates. Moreover,

different basis systems (B-splines, wavelets, trigonometric ....) can be used

depending on the smoothness and performance of sample functions.

Cross-validation and generalized cross-validation are adapted to select a common

smoothing parameter for all sample curves with the roughness penalty approaches.

Choosing the Smoothing Parameter

Garthwaite (1994) distinguish between two philosophical approaches to the

question of choosing the smoothing parameter. The first approach is to choose the

smoothing parameter subjectively. Varying features of the data that arise on

different scales can be explored, and the one parameter value which “looks best”

might be chosen. The second approach is to use an automatic method of choice such

as cross-validation. Graven and Wahba (1979) provide a fundamental reference

regarding the use of cross-validation to guide the choice of a smoothing parameter.

In the functional case, the same two approaches to selecting a smoothing technique

apply:

• Subjective choice

• Automatic method - driven choice:

1. Cross-validation 2. Generalized cross-validation

Curve Registration

Curve registration or curve alignment is a procedure for transforming the

time argument such that the curves are more aligned, as illustrated in Figure 6. In a

functional dataset, there are two sources of variation: phase variation and amplitude
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variation. From this point of view, amplitude variation is referred to as variation in

the magnitude or size of functional data, which measures the differences in the

y-axis; variation in the time scale is often referred to as phase variation, which

measures the differences in the x-axis. Thus, curve registration is an additional

assumption if both amplitude variation (magnitude) and phase variation (time) are

present in a functional dataset. The procedure for removing phase variation has

been investigated under different names in different disciplines, namely, curve

registration, curve alignment, and time warping in statistics, biology, and

engineering.
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Figure 6. Example of comparing functional data with a) no curve registration of the
data, and b) aligned data.

However, separating amplitude variation from phase variation is still a

challenging problem for FDA. Thus, FDA techniques are designed to handle either

phase or amplitude variation depending upon the particular problem at hand. For

example, there may be cases in which amplitude variation is of primary interest and
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phase variation of secondary or little interest, such as in the case of a number of

spectral datasets. In other circumstances, the opposite may be the case. Moreover,

there may be times when both phase and amplitude variation are equally

important. Curve registration and shift registration address these variations.

Curve registration transforms the functional curves by transforming their

time or location arguments rather than transforming the measurements themselves.

Shift registration removes amplitude effects that can be accounted for by vertical

shifts by using a linear transformation including centering and rescaling the curves

(Nason and Silverman, 1995). Then, the standard least square defined as the global

sum of squared vertical differences between the shifted curves and the sample mean

curve over all sample curves’ can be minimized iteratively to obtain the estimates of

shift parameters simultaneously.

Unlike the simple linear transformation of the argument in shift registration,

landmark registration aligns the curves by lining up their most representative

landmark. In order to identify the argument value for each landmark selected,

landmark registration transforms the argument nonlinearly using a warping

function. The landmark registration method removes phase variation by

transforming the domain for each curve so that points specifying the locations of

shape features are aligned across curves.

So far, the discussion has focused on exploratory data analysis: basis

function systems, smoothing for FDA, and curve registration. The next section

includes a discussion of the generalization of linear models that examine predictive

relationships: functional linear regression models, functional logistic regression
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models, functional PC regression, functional PLS regression, and the functional

multinomial logit regression model.

Functional Linear Regression Model
with Scalar Response

The linear regression model was the first to be considered within the

framework of functional data analysis (FDA). The functional linear regression

model was intended for dealing with continuous scalar response variables when one

of the predictor variables has a functional nature. Functional regression models with

scalar response have been studied extensively (Cardot, Ferraty, and Sarda, 1999;

James, 2002; Müller and Stadtmüller, 2005; Ramsay and Dalzell, 1991). The first

theoretical contributions to the study of functional linear regression models for

scalar response and functional predictors were made by Cardot et al. (1999).

Meanwhile, Müller and Stadtmüller (2005), and Aguilera et al. (2015) considered

the case where both predictor and response are functional. Therefore, the functional

linear regression model is split into three types: (1) functional predictor regression

(scalar on function), (2) functional response regression (function on scalar) and (3)

function on function regression (function on function). This dissertation addresses

functional regression models where the response variable is scalar and there is at

least one functional covariate.

Functional Linear Model

This model assumes that the relationship between the scaler random

response Y and the functional predictor X(t) has a linear structure.
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Let Y be a scalar random variable (scalar response) and X(t) be a

functional predictor {X(t) : t ∈ T} whose sample curve belongs to the space L2(T )

of the square integrable function (Ramsay and Silverman, 2005). With the purpose

of predicting Y from X(t), the functional linear model is then expressed as

yi = β0 + 〈xi, β〉L2[0,T ] = β0 +

∫ T

0

xi(t)β(t)dt+ εi , (2.5)

where yi = (y1, . . . , yn)′ be a random sample of Y , β0 is a constant, β(t) is a

parameter function, and εi = 1, . . . , n are centered independent random errors of the

model (2.5).

In practice, it is impossible to directly estimate the parameters of the

functional linear model because of the infinite dimension of the predictor space. In

addition, in practice there are only discrete observations of each sample curve at a

finite set of knots, which could be unequally spaced and different for sample

individuals.

One of the most common solutions to solve this problem is to assume that

both the sample curves and the parameter function belong to a finite space

generated by a basis of functions. An appropriate basis must be selected according

to the main characteristics of the observed sample curves.

Basis of functions. Lets consider that both the sample curve and the

parameter function belong to the same finite space generated by the basis. Then, let

Φ(t) = (φ1(t), . . . , φk(t))
′ is a basis functions that span the space where xi(t) and

β(t) belong.
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Thus, the xi(t) and β(t) can be expressed in terms of the basic expansion as:

xi(t) = a′iΦ(t), β(t) = b′Φ(t),

where ai = (ai1, . . . , ank)
′ is the vector of basis coefficients of the ith sample curve,

and b = (b1, . . . , bk)
′ is the vector of of basis coefficients of the parameter function.

This way, the functional linear model (2.5) is equivalent to the multiple

linear model, and it is expressed in matrix form as

Y = 1β0 +AΨb, (2.6)

with A is the design matrix which has as rows the parameter function basis

coefficients of the ith sample curve, and Ψ = (ψjk) =< φj(t), φk(t) > is the p× p

matrix that has as entries the usual inner products between basis functions.

It is known that the use of the least squares criterion to estimate this model

yields an ill posed problem because of the Wiener-Hopf equation, which does not

have a unique solution (Saporta, 1981). There are additional problems related to

the estimation of this multiple linear model. First, the number of basis functions

needed to get accurate estimations of the sample curves could be higher than the

sample size so that a dimension reduction procedure is necessary. Second, least

squares estimation of the parameters of model (2.5) of the parameters of the model

is usually affected by multicollinearity because of the high correlation between the

columns of its design matrix.
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In order to reduce the infinite dimension of the functional predictor and to

solve the multicollinearity problem associated with the estimation of the functional

linear model, most approaches regress the response variable on a set of orthogonal

covariates, such as a reduced number of functional principal components (FPC) (A.

M. Aguilera et al., 2010; Valderrama, Ocaña, Aguilera, and Ocaña-Peinado, 2010;

Preda et al., 2007; Reiss and Ogden, 2007; Escabias et al., 2007) or functional partial

least squares (FPLS) components (Escabias et al., 2012; Cardot and Sarda, 2005;

Preda et al., 2007; Reiss and Ogden, 2007). These components can then be used as

predictor variables to provide an accurate estimation of the functional parameter.

Both methods produce linear combinations of the original predictor

variables to construct new predictor variables (or components), but they construct

the components in different ways (Escabias et al., 2007). In the next section the

generalization of principal components regression and partial least squares

regression to the case of a functional predictor is presented.

Functional Principal Components
and Partial Least Squares
Based Solutions

All of the representations of functional linear regression in terms of basis

functions consider the high multicollinearity problem. Unfortunately, the effects of

multicollinearity make the estimation of the parameters of the models inaccurate

with high estimated variance. In the presence of multicollinearity (when the

smallest eigenvalue of the predictors is close to zero), the sample covariance matrix

can be nearly singular; so statistical inferences drawn from the singular covariance

matrix linear could be incorrect. For example, the estimates of ordinary least
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squares (OLS) for regression coefficients are likely to be too large in absolute values

and possibly of the wrong sign (Wichern and Churchill, 1978). Consequently, the

overall MSE tends to be large when multicollinearity is present.

As in the multivariate case, the problems of multicollinearity and infinite

dimension impede estimations of the FLR model. So similarly, the estimation may

be inaccurate due to a strong correlation between the components of the design

matrix, as well as the possibility that basic functions used to approximate sample

curves can outnumber observations. Because principal components and partial least

squares components methods use predictors as uncorrelated sets of variables, these

methods can generally solve this problem in the functional case.

Functional Principal Component
Based Solution

Before reviewing Functional Principal Component (FPC), it is more

meaningful to review multivariate PCA, which is used as a dimension reduction tool

for multivariate data, because principal component regression (PCR) is a technique

that is based on principal component analysis.

Classical PCA is the most useful tool for reducing dimension while

preserving the maximum amount of information from the original variables

(Pearson, 1901). Typically, the variables selected as regressors are the principal

components with higher variances. Selected regressors are based on eigenvectors

that correspond to higher eigenvalues in the sample variance-covariance matrix of

predictor variables (James, 2002). Therefore, the goal of PCA is to find the

sequence of orthogonal components that most efficiently explains the variance of the
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observations. PCA is covered in almost all textbooks on multivariate data analysis,

in particular, Jolliffe (2002), and Witten, Tibshirani, and Hastie (2009)

The PCR method includes four steps: (a) Conduct an initial PCA on the

observed data matrix for the predictor variables to identify principal components;

(b) (in most cases) choose a subset of those components, based on appropriate

criteria, for further use; (c) use ordinary least squares regression to calculate a

vector of regression coefficient estimates to regress the observed vector of outcomes

on the selected principal components as covariates; and (d) use the selected PCA

loadings to generate a final PCR estimator (equal in dimension to the total number

of covariates) to transform this vector back to the scale of the actual covariates for

estimating the regression coefficients that characterize the original model (Jolliffe,

2002).

Functional principle components (FPC). The PCA method was the

first multivariate data analysis method to be extended to functional data, so the

process is called functional principal component analysis (FPCA). This process has

become the main tool used in FDA (Dauxois, Pousse, and Romain, 1982; Jolliffe,

2002). It is one of the most popular techniques used in functional linear models, and

it has been considered by many authors (Cardot, Faivre, and Goulard, 2003;

Ferraty, Van Keilegom, and Vieu, 2012; Hall and Vial, 2006). From this point of

view, Escabias et al. (2004) have proposed functional regression solutions based on

FPCA methods to avoid multicollinearity by taking covariates as a reduced set of

PCs of the design matrix of the multiple logit models equivalent to the original FLR

model. The technique contributed by Dauxois, Pousse, and Romain (1982) for
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FPCA is now the basis of many developments in functional data analysis. For

example, a two-step functional regression approach has been applied to forecast

curves of pollen concentration from temperature curves (Valderrama et al., 2010).

Ramsay and Silverman (2005) provide an introductory exposition on FPCA and a

thorough review of methods for deriving principal component functions.

FPCA has been central to the development of the functional linear model,

and this method generates a parsimonious model with orthogonal regressors and

uncorrelated regression coefficients. FPCA is carried out in a similar fashion to

PCA, except that it is necessary to renormalize the eigenvectors and interpolate

them with a suitable smoother (Ramsay and Silverman, 2005). FPCA finds the set

of orthogonal principal component functions to explore major sources of variation in

a sample of curves. The differences in notation between PCA and FPCA are

summarized in Table 1.
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Table 1
The differences in notation between PCA and FPCA

PCA FPCA

Variables X = [x1, . . . ,xp] X(t) = [x1(t), . . . , xn(t)]

Data Matrix X ∈ Rp×p Curves ∈ L2[T ]

Dimension p <∞ ∞

Inner Product < X,Y >=
p∑

k=1

XkYk < X, Y >=
∫
T
X(t)Y (t)dx

Eigen Vector ξk ∈ Rp,Vξk = λkξk, Function ξk(x) ∈ L2[T ],

Structure for 1 ≤ k < min(n, p)
∫ xp
x1
Tξk(x)dx = λkξk(x), for

1 ≤ k < n

Components Random variables in Rp Random function in L2[T ]

In FPCA, selecting the optimal number of functional principle components

achieves more stable parameter estimate. Yao, Müller, and Wang (2005) proposed a

way to use a functional version of the Akaike’s information criterion to select the

optimal number of components, and Hall and Vial (2006) proposed a bootstrap

method to determine the optimal number of components. Also, Escabias et al.

(2014) introduced scree plots, or the portion of total variance explained by each

principal component.

In FPCA, the principle components are obtained as uncorrelated generalized

linear combinations with maximum variance.
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In general, the jth principal component is given by

ξij =

∫
T

xi(t)fj(t)dt, i = 1, . . . , n,

where the weight function or loading fj is obtained by maximizing the variance

MaxfV ar

[∫
T

xi(t)fj(t)dt

]

w.r.t

{
‖f‖2 = 1 and

∫
fl(t)fj(t)dt = 0, ∀l = 1, . . . , j − 1

}
.

The weight functions are obtained as the eigenfunctions of the covariance operator

C defined by

Cf(s) =

∫
c(t, s)f(t)dt, s ∈ T.

also, in terms of the sample covariance function

c(t, s) =
1

n− 1

n∑
i=1

xi(t)xi(s).

That is, Cfi = λifi. The principal components ξi are uncorrelated and their

variances are given by the eigenvalues V ar[ξi] = λi.

When the sample curves admit a basis expansion, functional PCA is

equivalent to multivariate PCA of matrix AΨ1/2 so that the weight functions wj are

computed by diagonalizing the covariance matrix of AΨ1/2 (Ocaña, Aguilera, and

Escabias, 2007).
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Then, the sample curves are expressed in terms of FPC as:

xi(t) =
n−1∑
j=1

ξijfj(t).

By truncating this representation in terms of the q principal components, can obtain

an approximation of the sample curves whose explained variance is given by∑q
i=1 λi, where q first principal components.

Different methods exist to select the optimum number of FPC to use and

the order in which they must be included in the model that take into account both

explained variability and the ability to predict the response while providing the best

estimation of the functional parameters. However, Escabias et al. (2014) proved

that in the case of FPC, the more efficient way for including PCs in the model

consists of including principal components using a forward stepwise method based

on a conditional likelihood ratio test, which takes into account the PCs relationships

with the response variable rather than the natural order of explained variability to

obtain an accurate estimated parameter function.

Remark. Functional PCA of the sample curves with respect to the usual

inner product in L2(T ) is equivalent to finite multivariate PCA of the matrix AΨ1/2

with respect to the usual metric in Rp (Aguilera et. al., 2010). However, the FPCR

method has been criticized because the PCs are calculated without taking into

account the relation between the response and the predictor variables; and thus,

their choice for regression has drawbacks. As alternative solution to this problem,
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PLS regression has recently been generalized to the case of functional data

(Escabias et al., 2007).

Functional Partial Least Squares
Based Solution

An alternative to FPC regression is Functional Partial Least Squares

(FPLS) regression. The FPLS regression model was introduced by Preda and

Saporta (2005) to solve the problems of high dimensionality and multicollinearity

associated with the scalar-on-function linear model. PLS regression is a recent

technique that generalizes and combines the features of principal component

analysis and multiple regression.

The PLS regression components are obtained by replacing the least squares

criterion with that of maximizing the covariance between linear spans of X(t) and

response variables Y, respectively, as a solution to the Tucker’s criterion (Tucker,

1938). PLS can handle both univariate and multivariate responses, and the process

is computationally fast. The success of PLS as a standard tool has led to its

application in scientific fields, for example, analyzing chemical data (Wold, 1975).

Before reviewing FPLS, it is helpful to revisit the ordinary PLS method that is used

for dimension reduction for multivariate data.

Partial least squares (PLS). Basically, the PLS method operates by

forming linear combinations of the predictors using the response and then regressing

the response on these latent variables. The PLS method can predict response

variables, perform regression, and reconstruct the original dataset matrix
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simultaneously. PLS in its original form is for a continuous response variable, and

the process is usually presented as an algorithm.

PLS algorithm. Let X = (x1,x2 . . . ,xp) be the n× p matrix of predictors

and y be the (n× 1) response vector. X can often be written as a bilinear form

(Geladi and Kowalski, 1986):

X = TP′ + Ek

= t1p
′
1 + t2p

′
2 + · · ·+ tKp′K + EK

where T = [t1, t2, . . . , tK ] is the n× k matrix of latent variables or scores, and

P = [p1,p2, . . . ,pK ] is the p× k matrix of loadings. Also, EK is the n× p residual

matrix. Moreover, it is usually assumed that the X matrix is standardized so that

each column has mean 0 and standard deviation 1 (although the latter is not

necessary). Moreover, further assume that

y = Xβ

= TQ + FK

= t1q1 + t2q2 + · · ·+ tKqK + fK ,

where Q = [q1, . . . ,qk] is matrix of latent variables and FK is the residual matrix.

Thus, X and y are linked via the latent variables T.
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Usually, the criterion for constructing components in PLS is to sequentially

maximize the covariance between the response vector y and the predictor matrix.

The PLS components are orthogonal. If is chosen to be the rank of X (i.e.

minimum of the row rank and column rank of X), and X is of full rank, then the

PLS estimates of β are identical to ordinary least squares (OLS) estimates.

Functional PLS. The FPLS regression is a good alternative method to

FPC regression, which visualizes the relation between object and functional

predictor variables by maximizing the variance of X(t) without taking into account

the response variable. There are some interesting studies that compare FPLS

regression and FPC regression (A. M. Aguilera et al., 2010; Delaigle and Hall,

2012b; Reiss and Ogden, 2007). The main conclusion drawn from this research was

that FPLS regression is superior to FPC regression because FPLS regression

requires fewer components to capture the same interactions. FPLS also provides a

much more accurate estimation of the parameter function than FPC regression

because FPLS does take the response variable into account, often leading to a more

parsimonious model. However, the prediction ability of both approaches has been

found to be similar.

The main objective of FPLS method is to build a set of orthogonal

components from a data sample and use them as predictor variables in a least

squares fit. The orthogonal components consist of linear regressions of the

functional predictor that are calculated by maximizing their squared covariance

with the response (Tucker’s criterion). A stepwise process determines the FPLS

components using an iterative procedure, which is based on the residuals of each
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regression of response and predictor variables on the component that was calculated

in the previous step. Delaigle and Hall (2012b) completed a detailed study about

the theoretical properties and explicit formulation of functional PLS.

Functional PLS algorithm. The FPLS algorithm was introduced by

A. Aguilera et al. (2016), and A. M. Aguilera et al. (2010) to solve the problems of

high dimensionality and multicollinearity associated with the function linear model.

The PLS components associated with the functional regression of a real random

response Y in terms of a functional predictor, X = X(t), t ∈ [0, T ] are obtained as

solutions of Tucker’s criterion extended to functional data as

max
w∈L2([0,T ]),‖w‖L2([0,T ])=1

Cov2
(∫ T

0

X(t)w(t)dt, Y

)
. (2.7)

Let CY X be the cross-covariance operator of X and Y and CXY be its adjoint

defined by

CY X : L2(T )→ R

f 7→ x =

∫
T

Cov(X(t), Y )f(t)dt

CXY : R→ L2(T )

x 7→ f(t) = x · Cov(X(t), Y ), ∀ ∈ [0, T ].

The optimization problem to equation (2.7) can be rewritten as

max
w∈L2(T )

〈Uw,w〉
〈w,w〉 , where U = CXY ◦ CY X
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Therefore, the solution to equation (2.7) is the eigenfunction of the operator U

associated to its largest eigenvalue λ1,

Uw1 = λ1(max)w1

and the first PLS component is defined as

t1 =

∫
T

X(t)w1(t)dt.

The PLS algorithm is an alternative procedure.

Let X0 = X and Y0 = Y . For any positive integer h, let Xh and Yh be the

residuals of the linear regressions of Xh−1 and Yh−1 respectively, with as predictor

the hth PLS component th, i.e.

Xh(t) = Xh−1(t)− ph(t)th, t ∈ T.

Yh = Yh−1 − chth,

where ph(t) = (E(Xh−1(t)th)/E(t2h)) and ch = (E(Yh−1th)/E(t2h)).

Then, at step h, the hth PLS component is defined as the random variable

maximizing the Tucker criterion (2.7) using the residuals Xh−1 and Yh−1

th =

∫
T

Xh−1(t)wh(t)dt, (2.8)
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where wh(t) is the solution of

wh = arg max
w,‖w‖2=1

Cov2
(∫

T

Xh−1(t)w(t)dt, Yh−1

)

given by the largest eigenvalue of Uh−1 = U = Ch−1XY ◦ Ch−1Y X . That is,

Uh−1(wh) = λhwh,

with Ch−1XY and Ch−1Y X being the cross-covariance operators of Xh−1(t) and Yh−1,

respectively. The PLS linear approximation of Y at hth iteration is then given by

Ŷ h = c1t1 + c2t2 . . . chth.

Notice that the expression of the PLS components defined by equation (2.8) can be

rewritten as elements of the linear space spanned by {X(t) : t ∈ T}, i.e.

ti =

∫
T

vi(t)X(t)dt

with vi ∈ span{w1, . . . , wi}, i = 1, . . . , h. Thus, the PLS linear approximation at

step h becomes

Ŷ h = c1

∫
T

v1(t)X(t)dt+ · · ·+ ch

∫
T

vh(t)X(t)dt =

∫
T

β̂PLS,h(t)X(t)dt,
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where β̂PLS,h is the estimation of the parameter function β̂(t) in equation (2.5)

provided by the functional PLS approach with h components. As in the case of

functional PCR functional PLS is equivalent to multivariate PLS of Y on matrix

AΨ1/2 with respect to the usual metric in Rp (A. M. Aguilera et al., 2010), when

the sample curves are expressed terms of basis functions. It has been reduced to

regression of Y on a set of PLS component of AΨ1/2.

Functional linear model component estimation in terms of original

variables. In both FPCR and FPLS processes, the dimension reduction problem is

reduced to the regression of Y on a set of PCR or PLS components of AΨ1/2, so

both approaches use the computational algorithm with the following steps:

• Computation and selection by cross-validation of a set of m components

Zn×m = (AΨ1/2)n×KVK×m,

where Z is the matrix whose columns are the first m FPCR or FPLS

components, and V is the matrix comprising the columns of the first h

eigenvectors associated with thetth FPCR or FPLS components of each

considered method.

• The estimated functional linear model of Y in terms of the first m FPCR or

FPLS components is given by

Ŷ m = 1β̂0
m

+Zγ̂m
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where γ̂ is the vector of the regression coefficients of Y on Z.

• The vector of basis coefficients of the estimated parameter function

β̂m(t) = ΣK
k=1b̂

m
k φk(t)

with b̂m = Zγ̂m.

The limitation of these approaches is that they are intended for use with continuous

variables, so they have limited usefulness for the analysis of binary or categorical

variables.

Functional Logistic Regression Model

The logistic regression model has been used for applications in many areas,

including clinical studies, epidemiology, social sciences, marketing, and engineering.

The root of binary logistic regression is a generalized linear model that uses a

binomial distribution and a logit link function (Derr, 2013). Thus, binary logistic

regression was developed to handle the case in which the response is binary,

meaning that it can take only two values (the “event” and the “non-event”). In this

case, the conditions for linear regression are not met because the responses are

binomial and not normally distributed. Ideally, instead of modeling the response

itself, the logistic regression model is constructed for modeling the log of odds that

an event occurs or does not occur as the alternative. Thus, the odds of success are

defined as the ratio of the probability of success over the probability of failure.
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The functional logistic regression model with the logit link is a particular

case of the functional generalized linear model proposed by James (2002). This

section is a review of the development of the logistic regression model for predicting

a binary response variable in the functional case, known as the Functional Logistic

Regression (FLR) model (Escabias et al., 2004). The FLR appears in many

applications throughout the literature that have been developed in recent years with

different objectives. Escabias et al. (2005) used FLR to establish the relationship

between the risk of drought and time evolution of temperatures. A. M. Aguilera et

al. (2008) estimated the probability of lupus flares from the time evolution of stress

level measurements. With the same objective, Müller and Stadtmüller (2005) have

expanded asymptotic inference for a class of functional generalized linear model

based on approximating the predictor process with a truncated Karhunen-Loéve

expansion.

The main contribution of the FLR model is its usefulness for predicting and

modeling the relationship between a binary response variable Y , or equivalently, the

probability of occurrence of an event, in terms of a functional covariate X(t) (i.e., a

continuous variable that has been measured repeatedly over time). In the FLR

model, the probability, πi, of the occurrence of an event, yi = 1, rather than the

event yi = 0, conditional on a a random sample xi(t) of functional covariates X(t) is

expressed as:

πi =
exp{α + 〈xi, β〉}

1 + exp{α + 〈xi, β〉}
=

exp{α +
∫
xi(t)β(t)dt}

1 + exp{α +
∫
xi(t)β(t)dt} (2.9)
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with α being a real parameter and β(t) the parameter function of the model that

belongs to the space L2(T ). Equation (2.9) can be expressed in terms of the logit

transformation, li = log[πi/(1− πi)] , ∀ i = 1, . . . , n, as

li = α +

∫
T

xi(t)β(t)dt, (2.10)

l = 1α +AΨb, (2.11)

with l = (l1, . . . , ln)′ is vector of logit transformations, 1 = (1, . . . , 1)′. Also, AΨ is

the design matrix has as rows the vector of basis coefficients of the ith sample curve,

and Ψ = (ψjk) is the p× p matrix that has as entries the usual inner products

between basis functions. Finally, b is the vector of the parameter function basis

coefficients. So the FLR model can be seen as a particular case of the functional

generalized linear model introduced in James (2002). The conditional distribution of

Y given X(t) is a Bernoulli distribution that belongs to the exponential family.

The interpretation of the parameter function is drawn from formula (2.10).

That is, “ the integral of the parameter function multiplied by a constant K, can be

interpreted as the multiplicative change in the odds of response Y = 1 obtained

when a functional observation is incremented constantly in K units along T ”

(Escabias et al., 2005, p. 4892). However, the FLR model faces two issues faced by

other linear models. First, the functional observations occur across a finite set of

discrete time points. Secondly, it is impossible to estimate the infinite

(non-numerable) parameter function with a finite number of observations n. The
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usual solution for these pointed questions in functional logistic regression as a

functional linear model is to express both the sample curve X(t) and the parameter

function β(t) in terms of basis functions that belong to the same finite space.

In order to avoid the multicollinearity and dimensionality problem in FLR,

different algorithms for computing the PLS components for the FLR model have

been developed, such as the Nonlinear Iterative Partial Least Squares (NIPALS)

algorithm (Geladi and Kowalski, 1986); Statistically Inspired Modification of PLS

(SIMPLS), which has fewer intuitive constraints than NIPALS (De Jong, 1993); and

powered PLS (Indahl, 2005). Garthwaite (1994) compared PLS with different

methods for solving multicollinearity in linear regression including PLS, PCR, ridge

regression, variable subset selection, ordinary least squares, forward variable

selection, and a Stein shrinkage method. This author concluded that PLS is suited

to models with numerous variables and large error variances. Escabias et al. (2004)

proposed several FPC methods for selecting the PCs to be included in a logit

model. Preda and Saporta (2005) proposed the application of PLS discriminant

analysis to the FLR model; later on, A. M. Aguilera et al. (2010) used basis

expansions for estimating functional PLS regression.

Escabias et al. (2007) applied the PLS algorithm for generalized linear

regression proposed by Bastien, Vinzi, and Tenenhaus (2005) for the particular case

of the logit model to functional logistic regression. In addition, Garthwaite (1994)

provides an interpretation of the PLS components such that they can be viewed as

weighted averages of predictor variables, where each predictor holds the residual

information in an explanatory variable that is not contained in earlier components.
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PLS for logistic response. Traditionally PLS was designed for use with

continuous response variables. When the response variable is not continuous, the

ordinary PLS method does not apply directly. The modification to classical PLS

regression for use with non-continuous response variables is PLS logistic regression,

which has been studied in detail by Bastien et al. (2005). Classical PLS univariate

regression results from an iterated use of ordinary least squares, and PLS

generalized linear regression retains the rationale of PLS while the criterion

optimized at each step is based on maximum likelihood.

The technique for PLS was originally developed in high-dimensional and

collinear multivariate settings, and it is especially popular in chemometrics (Wold,

1975). Also, C.-Y. Wang et al. (1999) proposed a probability-based multivariate

algorithm combining partial least squares and logistic regression to identify the

development stages of oral cancer by analyzing the auto fluorescence spectra of oral

tissues. These authors used leave-one-out cross-validation to determine the number

of PLS components and to evaluate the performance of the algorithm.

PLS for logistic regression is a two-stage process. The original PLS

procedure was first used for dimension reduction where the response variable was

either 0 or 1, and then Logistic Discrimination (LD) was applied to the chosen PLS

components for classification (C.-Y. Wang et al., 1999). Meanwhile, Frank and

Friedman (1993) compared LD with quadratic discriminant analysis. These

researchers applied their method to various datasets involving human tumor

samples and analyzed the stability of the classification results. Nguyen and Rocke

(2002) have completed two-stage PLS regression on microarray gene expression
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data. Although these authors obtained positive results for two-group classification,

their approach was designed for a continuous outcome variable with constant

variance, so it may not be ideal.

Functional Partial Least Squares for
Logistic Response Variables

For the functional logit model with binary response variables, a PLS

estimation approach was recently introduced and compared with functional

principal component logistic regression (Escabias et al., 2007). The PLS approach is

employed in a variety of other functional data problems as well. For example,

Ferraty and Vieu (2006) used it to define a semimetric for nonparametric functional

predictors or classifiers, and Delaigle and Hall (2012) used it for functional data

classification. However, the literature of PLS is very diverse. Numerous studies have

generally indicated that FPLS is better suited for logistic problems and has more

accurate estimation than FPCR because the influence of the response is considered

in extracting FPLS components (Aguilera at el., 2015; Escabias et al., 2007). Also,

PLS has been viewed as having advantages over PCA for regression and logistic

problems in both multivariate and functional data analysis (Aguilera et al., 2010).

Reiss and Ogden (2007) have studied PLS for functional logistic regression via

estimating the conditional distribution of Y/X. The main problem with FPCA for

regression for classification is that it ignores the relationship between the predictor

and response, which has been emphasized throughout this work.

The functional PLS logit estimation in terms of the original

predictors. The FLR model fits the response variable yi on the retained PLS
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components. Also, Γ is the matrix of logit PLS components of the design matrix

AΨ, and Γ = AΨV , with V being the matrix whose columns are the vector of

coefficients of the logit PLS components in terms of the original predictors.

Then, the multiple model, (2.11), can express the logit model in terms of the PLS

components as

L̂ = 1α̂ + Γγ̂, (2.12)

where γ̂ = (γ̂1, . . . , γ̂s)
′ are the maximum likelihood estimators of the vector of the

coefficients of the logit model in terms of the logit PLS components. Finally, the

estimation of the parameter function is obtained as: β̂(t) = b̂′Φ(t), in terms of its

basis coefficients estimated from the gamma parameters b̂ = V γ̂ ′.

Logistic Models for Multinomial Responses

This section is focused on generalizing a binary logistic regression model to

allow modeling a response variable with more than two categories. When a

categorical dependent variable has more than two possible responses (is not binary),

a multinomial distribution and different link functions address the nature of the

responses with different linear predictors to model the probabilities. J. Friedman,

Hastie, and Tibshirani (2010) considered classifying data into three or more groups

using the multinomial logistic regression model.

For this type of categorization, Park and Hastie (2007) used a generalized

linear model (GLM) to do multinomial logistic regression where the random

component is the multinomial distribution. The systematic components are

explanatory variables, which can be continuous, discrete, or both. The goal of using
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a multinomial response is to model ordered behavior while considering whether

covariates have common slopes across response functions Derr (2013). Also,

multinomial logistic regression can use individual characteristics as predictor

variables. “The multinomial model can be written in the same form as the

conditional logit model ” (Agresti, 2007, p. 316-317).

On the other hand, different types of logit transformations can be used

depending of the type of response (nominal or ordinal). When analyzing a

multinomial response, it is important to note whether the response is ordinal

categories (e.g., satisfaction ratings with 1=very poor ... 5 = very pleased), or

nominal consisting of unordered categories (e.g., race with 1 = White, 2 = African

American, 3 = Hispanic) Some types of models are appropriate only for ordinal

responses, such as the cumulative logits model, the adjacent categories model, or

the continuation ratios model. Other models may be used regardless of whether the

response is ordinal or nominal such as the baseline logit model, and the conditional

logit model. However, the estimation methods for odds ratios for a multinomial

response have a similar manner to the logistic models.

Nominal response variable. If a response variable takes values that have

no order, such as voting (Democratic, Green, Independent, Republican), then it is

nominal. Typically, nominal logit models have one response vector y with S

components and πi1, ..., πiS are the probabilities for a randomly chosen individual to

fall into categories 1, ..., S , respectively. The n independent observations falling into

the different categories have a multinomial distribution. One or more explanatory

(predictor) variables may be quantitative, qualitative, or both. Furthermore, the set
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of explanatory variables X = (x1, ..., xk) can be discrete, continuous, or a

combination of both. However, any of the categories can be chosen to be the

baseline (reference) and the choice can be the first, last, or the most common

category; otherwise a software program can do it automatically (an arbitrary

process). Then, the process pairs the probability of being a member of a group in

another response category to the probability of membership in the baseline category

for the purpose of computing odds ratio.

The nominal logit regression process also simultaneously models all

relationships between probabilities for the pairs of categories. This is done by

modeling the odds of falling within one category instead of another (baseline). So,

multi-category logit models for nominal response variables define all of the S − 1 log

odds for all pairs of categories, given a particular choice of S − 1, the rest are

redundant. The baseline-category logits for each nominal response paired with a

baseline category can be written as

lis = αis + xi
′βis, s = 1, 2, . . . , S − 1.

Typically, the maximum likelihood method is used for estimating the

parameters. The βis can be interpreted as the increase in log-odds of falling into

category s versus category S resulting from a one-unit increase in the kth covariate,

holding the other covariates constant. Since any of the categories can be chosen to

be the baseline, the model is fitted equally well, achieving the same likelihood and
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producing the same fitted values. Only the values and interpretation of the

coefficients is changed.

The multinomial model is a type of GLM, so the overall goodness-of-fit

statistics and their interpretations and limitations still apply. Wald tests are used to

test whether a predictor variable is related to the response variable or if the

parameters for two or more categories of the response variable are the same

(Agresti, 2007). From this point of view, the Newton-Raphson method yields the

ML parameter estimates in case of nominal logit since the log likelihood is concave.

A Fisher scoring algorithm is used for iterative calculation of ML estimates in the

case of cumulative logits (Agresti, 2007, 2010).

Functional Multinomial Logit Models
for Nominal Responses

This section is an introduction to the general scheme of the functional

logistic regression (FLR) model for predicting a binary response. The purpose of

FLR is modeling the relationship between a functional predictor whose sample

information is given by a set of curves that vary over time and a binary response

variable. In this line of research, the Functional Multinomial Logit Regression

(FMLR) model is used where yi is the response vectors with S categories, takes a

finite set of categories greater than two and the predictor is functional. This section

is a presentation of FMLR models used for curves classification into more than two

groups where the type of response could be nominal or ordinal. FMLR models allow

modeling variables from a set of predictors and the interpreting of the relationship
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between the categorical response and the functional predictor via the parameters of

the model.

Recently, the FMLR model has been applied in research from many different

disciplines. Ferraty and Vieu (2003) used nonparametric FDA methodologies for

curve classification of spectrometric food data. From the classical point of view of

functional regression methods, Preda, Saporta, and Lévéder (2007) used FDA based

on PLS to classify the quality of cookies based on the resistance of the dough.

Aguilera-Morillo et al. (2013), presented a review of different calibration and

classification methods for functional data in the context of chemometric

applications. Following previous research, Aguilera et al. (2014) proposed a

functional PCA and baseline category logit model in order to predict the

relationship between predictors and a multi-category response variable.

Typically, this model is a particular case of a generalized linear model in

which the link functions can take different types of logit transformations, such as

the baseline logit for nominal responses, or cumulative, adjacent-categories and

continuation-ratio logits for the ordinal response variables (Agresti and Kateri,

2011).

Functional multinomial response model. The multinomial response

model is a particular case of a functional generalized linear model with

gs(µi) = αs +

∫
T

xi(t)βs(t)dt, (2.13)
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where gs(µi) is the link functions for different types of logit transformations, and αs

and βs(t) are a set of parameters to be estimated (Agresti and Kateri, 2011). Also,

the link function components gs(µi) can be defined in different ways. Thus, the

FMLR model for nominal response pair each response with a baseline category, and

they can be written as

lis = log

(
πis
πiS

)
, s = 1, . . . , S − 1, i = 1, . . . , n,

then, the above equation that expresses the multinomial logit models directly in

terms of response probabilities is

πis =
exp{αs +

∫
T
xi(t)βs(t)dt}

Σs exp{αs +
∫
T
xi(t)βs(t)dt}

with αS = 0, βS(t) = 0.

The estimation of the parameter of the functional logit model presents the

same problems that occur with the functional linear model. In the case of basis

expansion of the sample curves and the parameter function, the FMLR model is

equivalent to a multiple logit regression model given by

lis = αs +

∫
T

xi(t)βs(t)dt (2.14)

Estimation for the functional multinomial logit models. The

inherent problems in parameter estimation in functional data analysis (infinite

dimension of the predictor space, discrete time observations, and individual
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differences) are solved by reducing dimension via performing an orthonormal basis

expansion of the functional predictor (Ramsay and Silverman, 2005). Then, a first

estimation of the parameter functions can be obtained by considering that both the

predictor curves and functional parameters belong to a finite space generated by a

basis function. However, it is mandatory to obtain the sample curve basis

coefficients from the sample information.

Typically, in the case of FMLR, the parameters are estimated by least

squares or maximum likelihood (ML). Müller and Stadtmüller (2005) have studied

the dimension reduction approach in the theoretical framework of functional

generalized linear models where asymptotic tests and simultaneous confidence bands

for the parameter function have been obtained. On the other hand, Marx and Eilers

(1999) studied B-spline expansion of the functional parameter as an alternative

estimation procedure for the functional parameter (but not the predictor curves)

that maximizes the penalized log-likelihood for a functional binomial response

model. Cardot and Sarda (2005) examined the procedure in the general context of

functional generalized linear models. A. M. Aguilera et al. (2008) and Escabias et

al. (2007) have considered natural and quasi-natural cubic spline interpolation to

generate estimates for functional PCA. This procedure is accomplished by using the

slope parameters of the model, that in the case of the functional multinomial logit

model are a set of functions. With this objective in mind, an accurate and

interpretable estimation of these functional parameters is very important in

functional data analysis.



71

The FPCA and FPLS methods have been constructed again in multinomial

logit regression in order to provide an accurate estimation of the parameter

functions. The FPCA and FPLS regression methods are used to estimate the

functional parameters in terms of basis expansions of the sample curves (Escabias et

al., 2004, 2007; Preda et al., 2005). The next section includes an overview of

estimation methods based on FPC and FPLS regression and a discussion of their

advantages and disadvantages in terms of the FMLR model.

Functional Principal Component Estimation of
Functional Multinomial Logit

Regression Model

FPC method is a dimension reduction technique that explains the

dependence structure of a functional data set in terms of uncorrelated variables.

Typically, the estimation method for FLR based on the FPCA of sample curves has

been generalized to the case of a multi-category response. Escabias et al. (2014)

proposed different FPCA approaches for solving the multicollinearity problem in the

FMLR model by using a set of functional principal components of the functional

predictor as covariates of the multiple multinomial regression model, and Massy

(1965) followed the idea of PCR in proposing the use of a reduced set of FPCA of

the sample curves of the baseline category response model as regressors. The two

different FPCAs of the functional predictor considered make efforts to improve the

estimation of the functional parameters in the sense of smoothness.

Escabias et al. (2014) introduced two different methods for selecting the

number of components, which take into account both their explained variability and

their ability to predict the response while providing the best estimation of the
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functional parameters. These authors follow the methodology considered in

A. M. Aguilera et al. (2006) for multiple binary logit models, which was extended to

the case of the functional multinomial logistic model. The first method consists of

including principal components in the order given by their explained variability

(variability order). In the second method, PCs are included by a forward stepwise

method based on conditional types of criteria that can be fixed based on the

optimum number of principal components: the response prediction-type criterion

and the functional parameters-type criterion. Then, a likelihood ratio test takes into

account their relationship with the response variable (stepwise method). To obtain

an estimate of the functional slope of the model, the standard functional principal

component regression estimation method regresses the response on the principal

component scores linked with the largest eigenvalues of the functional predictor

covariance operator.

In relation to the optimum number of principal components to retain, two

methods have been compared. The first is the classical method used in principal

component regression based on minimization. The leave-one-out cross-validation

mean squared error of prediction (CVMSE) and the leave-one-out cross-validation

correct classification rate (CVCCR) are defined as the rate of agreements between

the observed category for an individual and the predicted category (that associated

with the highest predicted probability) based on the model. These values are

estimated without taking the individual into account in the process (A. M. Aguilera

et al., 2008).
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Different measures have been used to evaluate the accuracy of estimated

functional parameters and the fit of the different considered models. Goodness of fit

has been measured in terms of the Probabilities Mean Square Error (PMSE).

Additionally, an accuracy measure of the estimation of the functional parameters

can be determined by the mean of the Integrated Mean Square Error (IMSE) of the

parameter functions and the estimated variance of the estimated parameter

functions given by the mean of the sum of variances of intercepts and parameter

function basis coefficients (Aguilera et al., 2014). In general, FPCA is good solution

for representing data in a reduced-dimension space, but when a scalar variable is

observed, a Functional Partial Least Squares approach allows more direct use of this

information.

Generalized Partial Least Squares Estimation Method
for the Functional Multinomial Logit

Regression Model

As an alternative to FPC mothed, Preda and Saporta (2005) introduced a

new functional regression method based on the PLS logit model that consists of

adapting the classical PLSR algorithm introduced by (Wold, 1975) as an alternative

to PCR for solving the multicollinearity problem and reducing the number of

predictor variables in linear regression. In particular, A. Aguilera et al. (2016)

introduced the penalized versions of functional PLS regression.

The expansion of PLS to sparsely observed functional data is of considerable

interest not only as applied to classification but also to the more general context of

regression problems, as shown in Escabias et al. (2007). Preda and Saporta (2005)

studied LDA-PLS, and Delaigle and Hall (2012a) tested centroid-PLS. Furthermore,
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Preda et al. (2007) used this expanded approach for linear discriminant analysis

purposes, where it was applied to the estimation of the functional linear model and

used with the FPLS method. Aguilera-Morillo and Aguilera (2015) conducted an

extensive simulation study comparing both methodologies with their multivariate

versions with both equally spaced and irregularly spaced sampling points.

In conclusion, the objective of FPLS regression is to regress Y matrix on a

set of uncorrelated random variables (FPLS components), considered as the linear

spans coefficients of Γ, using a transformation of the parameters of the simple logit

fittings of the response Y on each single explicative variable as covariates, which

takes into account the correlation between the response Y and the functional

predictor X(t).

Iteratively reweighted partial least squares (IRWPLS) for

multinomial response. Since Wold (1975) introduction of PLS regression, there

have been numerous studies that have sought to (a) improve PLS algorithms, (b)

adapt PLS linear regression to the logistic regression model, and (c) extend PLS

logistic regression to include functional covariates. Of particular interest to this work

is the work of Escabias et al. (2007), in which they propose a functional PLS logit

regression model to forecast a binary response variable from a functional predictor.

McCullagh and Nelder (1989) demonstrated that the maximum likelihood

estimation of the parameters of generalized linear models via the Fisher scoring

method can be rephrased as iteratively reweighted least squares. Also, in their work

the dependent variable is a linearized form of the link function that is applied to the

response variable. The parameter estimates are calculated via iterative updates of
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the adjusted dependent variable and weights until a convergence criterion is

satisfied. Marx (1996) proposed incorporating PLS into the framework of

generalized linear models using an iteratively reweighted PLS algorithm. In this

approach, the weighted PLS steps are embedded in the iterative steps, and the

process treats and updates the adjusted dependent variable z as the response as

opposed to working with the original outcome. These nested loops are iterated until

convergence is reached. In high-dimensional problems, separation often occurs,

which Marx did not directly address.

The IRWPLS procedure has been extended to a multi-group classification

scenario. By treating the classes as nominal without special ordering, the process is

a generalization of logit models for binary responses (Fahrmeir and Tutz, 2001).

However, Firth’s procedure can be extended to the multinomial case, denoted by

(MIRWPLSF) incorporated to address the nonconvergence problem frequently

encountered in logistic regression. The dependent variable is a linearized form of the

link function applied to the response variable,

zi = ηi +
∂ηi
∂pi

(yi − pi), (2.15)

where zi is the adjusted dependent vector as the response rather than

working with the original outcome, η is the link function applied to the response

variable, pi is the covariate vector corresponding to the ith logit , and yi is the

response vector for the ith sample. As such, MIRWPLSF provides a more stable

model than MIRWPLS. However, the literature of PLS is very diverse a large
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number of algorithmic variants of the process exist. The first approach for PLS was

proposed by Ding and Gentleman (2005), and it can be seen as an adaptation of

Marx (1996) IRPLS method that solves the problem of separation. In GLMs, the

Newton-Raphson algorithm is usually used to maximize the log likelihood, which

results in the Iteratively Re-weighted Least Squares (IRLS) method. Marx (1996)

and Fort and Lambert-Lacroix (2005) adapted PLS for classification by using PLS

to solve the weighted least squares problem arising within the IRLS method. Ding

and Gentleman (2005) reported that G-PLS regression achieved lower classification

error rates than two- stage PLSR.

The G-PLS procedure proposed by Ding and Gentleman (2005) carries out

multi-group classification from a generalization of the PLS method to

multi-categorical response variables. The procedure is based on the multinomial

logit model and denoted as M-IRWPLS-F. The IRWPLS-F and M-IRWPLS-F are

reported to achieve better classification performance. Usually, G-PLS demonstrates

several advantages over other approaches:

1. It performs variable selection automatically.

2. t can be applied to diverse tasks, including classification, survival analysis, or

modeling transcription factors activities.

3. It is statistically efficient.

4. It is computationally very fast, so it is practical for application to large data

sets.
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The Algorithm for Generalized
Partial Least Square

The dimension reduction concept of PLS has been used with generalized

linear models resulting in a new algorithm named G-PLS (Bastien et al., 2005). The

basic concept of G-PLS is to apply generalized linear regression of the response on

retained PLS components. Then, the original explanatory variables are expressed in

terms of the latent components. In the class of G-PLS models, some examples are

logistic PLS and ordinal PLS (Chen, Phan, and Reutens, 2010). The process

includes the following steps:

1. Computation of the m G-PLS components. This step is described in details in

next section.

2. Generalized linear regression of yi on the m retained PLS components.

3. Expression of PLS-GLR in terms of the original explanatory variables.

Computation of the PLS components. Let X = [x1, . . . ,xp] be the

matrix of numerical or categorical explanatory variables, and assumed to be

centered p explanatory variables xj’s. The objective is to search for m PLS

orthogonal components th’s defined as linear combinations of xj obtained as follows:

Computation of the first PLS component t1.

Step 1 : Compute the regression coefficient a1j of xj in the generalized linear

regression of y on xj for each variable xj, j = 1 to p,

Step 2 : Normalize the column vector a1 made by a1j’s: w1= a1/||a1||,

Step 3 : Compute the component t1 = Xw1/w
′
1w1.
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Computation of the second PLS component t2.

Step 1 : Compute the regression coefficient a2j of xj in the generalized linear

regression of y on tj and xj for each variable xj, j = 1 to p,

Step 2 : Normalize the column vector a2 made by a2j’s: w2 = a2/||a2||,

Step 3 : Compute the residual matrix of X1 of the linear regression of X on t1,

Step 4 : Compute the component t2 = X1w2/w
′
2w2,

Step 5 : Express the component t2 in terms of X: t2 = Xw∗2, where w∗2 is the

Cov(XY,w).

Computation of the hth PLS component th. In the previous steps, the

PLS components t1, . . . , th−1 have been yielded. The component th is obtained by

iterating the search for the second component.

Step 1 : Compute the regression coefficient ahj of xj in the generalized linear

regression of y on t1, . . . , th−1 and xj for each variable xj, j = 1 to p.

Step 2 : Normalize the column vector ah made by ahj’s: wh = ah/||ah||,

Step 3 : Compute the residual matrix Xh−1 of the linear regression of X on

t1, . . . , th−1,

Step 4 : Compute the component th = Xh−1wh/w
′
hwh,

Step 5 : Express the component th in terms of X: th = Xw∗h.

On the other hand, an important problem in FMLR model is to select the optimum

number of G-PLS components to be retained.
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The Generalized partial least square component selection. In

relation to the optimum number of G-PLS components to retain, the methods have

been compared. Escabias et al. (2007) introduced different methods for selecting

the number of components to be retained such as cross-validation procedure. These

authors follow the methodology considered in A. M. Aguilera et al. (2006) for

multiple binary logit models, which was extended to the case of the functional

multinomial logistic model. Additional, the area under the Receiver Operating

Characteristic (ROC) curve which is defined as the rate of correct response

classifications (Menard, 2000) and (Mittlböck and Schemper, 1996). The ROC curve

plots the proportion of data points that are correctly classified (the true positive

rate) against the false positive rate to illustrate the different possible cut-off points

for a diagnostic test. It shows the trade-off between sensitivity and specificity. The

closer the ROC curve comes to the diagonal of the ROC space, the less accurate the

test. The proposed method generates a graphic that shows the trade-off between the

rate at which the model can correctly predict categories and the rate of incorrectly

predicting the response classifications. Ultimately, the performance of the model

using the ROC ( also called AUROC) curve is as follows:

AUROC = 0.5 useless

0.7≤ AUROC <0.8 acceptable

0.8 ≤AUROC < 0.9 excellent

AUROC ≥ 0.9 outstanding
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So, the range from 0.50 to 1.00, and values above 0.80 indicate that the

model does a good job in discriminating between the two categories that comprise

the target variable. In conclusion, by consider the G-PLS, the primary goal of this

dissertation is to develop a modified functional G-PLS logistic regression algorithm

that can be used to predict a classification response with the FMLR model.

The remainder of this chapter introduces the focus of this dissertation. The

proposed method applies the classical PLS estimation method to the case of a

functional logistic regression model to improve estimation of the functional

parameters of a FMLR model with nominal response resulting in a new model

named Functional Nominal Multinomial Logit Regression (F-NM-LR). It is

hypothesized that the F-MN-LR model based on the generalized PLS estimation

method is more parsimonious than the alternative functional PCA and base-line

logit models proposed by Escabias et al. (2014). This dissertation an effort to

improve on principal components-based procedures, which do not take into account

the relationship between response and predictor variables. Chapter III provides an

explanation of how the proposed model provides various methodological

contributions in statistics. An investigation of the performance of the generalized

PLS method, via a simulation study and the analysis of a real dataset, is presented

in Chapter IV. Curve classification functions are presented, and the discussion was

emphasize the differences existing between F-MN-LR models using PCR and GPLS

methods of parameter estimation. Finally, Chapter V contains the conclusion and

how these methodological contributions improve actual estimation methods and

production functions for a wide scope of applied scientific fields.
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CHAPTER III

METHODOLOGY

This chapter illustrates the methodology used to develop the functional

generalized partial least squares nominal multinomial logit regression model.

Introduction

The primary goal of this dissertation is to develop an alternative to the

classical Functional Principal Components (FPC) regression method for the

problem of predicting a categorical logit response variable associated to an observed

curve. The proposed approach uses the Generalized Partial Least Squares (GPLS)

regression method, while avoiding extreme local fluctuation in estimation of the

functional parameters of the Functional Nominal Multinomial Logit Regression

(F-NM-LR) model. Particularly, the author is interested in comparing the

performance of the GPLS method under the F-NM-LR model to the one proposed

by Escabias et al. (2014) based on FPC regression. To this end, the

F-GPLS-NM-LR model is used to predict a multinomial logit response associated

with a functional predictor. To be more meaningful, the F-GPLS-NM-LR model is

viewed as a particular case of a functional generalized linear model. An important

contribution of the GPLS method is that it easily generalizes to any functional logit

regression model that is linear at the level of the functional predictor variable. The

strength of using the GPLS method is that of producing more accurate estimations
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of the functional parameters and providing the precise probability of each sample

curve’s falling into a specific class, with the high predictive ability of the

F-GPLS-NM-LR model.

Specifically, the GPLS and FPC regression methods of interest construct

new predictor variables as linear combinations of the original predictor variable, but

they construct their components differently. The FPC regression method creates

components without considering the response variable at all to explain the observed

variability in the predictor variables. On the other hand, the GPLS regression

method takes the response variable into account, so this process often leads to

models that are able to achieve fit for the categorical response variable with fewer

components. The comparative performance of the proposed methodology is

compared using both a simulation study and a real world dataset.

The following research questions are investigated:

Q1 How is a generalized partial least squares regression method developed
for parameter function estimation in the functional nominal
multinomial logit regression model?

Q2 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, with changes of the functional predictor dependent
on arbitrary values assigned to a and b?

Q3 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, based on changes in the number of the nominal
response categories?

Q4 How does the precision of the generalized partial least squares
regression method compare to the principal component regression
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method proposed by Escabias et al. (2014) under the functional
nominal multinomial logit regression model?

Q5 How to develop an R code to fit a functional generalized partial least
squares nominal multinomial logit regression model to real data?

The rest of this chapter is organized as follows. First a brief summary of the

theoretical framework of the F-NM-LR model within the context of a functional

generalized linear model is presented, followed by an introduction to basis expansion

approaches for the F-NM-LR model. Next, the PLS regression method and the

GPLS-based estimation approaches within the context of the F-NM-LR model are

discussed. Afterward, the algorithm for computing the GPLS for the F-NM-LR

model and an overview of the Functional PCR-based solution is presented, followed

by the F-NM-LR component estimation in terms of original variables. An overview

of component selection with different estimation methods (PCR and GPLS) and

goodness of fit measures is then presented. Finally, the scheme for a simulation

study and the real dataset example that is used to compare the two methods is

described.

Functional Nominal Multinomial Logit
Regression Model

This section presents the development of an F-NM-LR model that can be

seen as a particular case of a functional generalized linear model (James, 2002) with

a finite set of categories for the response variable that is greater than two. Logit

transformations are used depending on the nominal response variable. The purpose

of the proposed model is to predict the class membership (multinomial response

variable) that is associated with an observed curve (functional data).
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Model formulation. In order to formulate the F-NM-LR model that is

considered in this work, it is assumed that X(t) a functional predictor and Y a

matrix of response variable are defined on the same probability space. The sample

curves xi(t) belong to the space L2(T ) of squared integrable functions on T called

Hilbert space, defined as

L2(t) =

{
f : T → R :

∫
T

f 2(t)dt <∞
}

where the usual inner product is defined as

〈f, g〉u =

∫
T

f(t)g(t)dt, ∀f, g ∈ L2(T ).

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a random sample of observations (sample

curve) of a functional predictor {X(t) : t ∈ T} where T is some interval on the real

line and each curve can be observed at a different time point t.

Let {(yi1, . . . , yiS)′ : i = 1, . . . , n} be a set of n sampled from a categorical

response vectors yi associated with the S categories, defined for each s = 1, 2, . . . , S

by

yis =


1 if category s is observed for X(t) = xi(t)

0 other case
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so that each observation is generated by a multinomial distribution,

yi ∼M(1; πi1, . . . , πiS),

with

πis = P [yis = 1|X(t) = xi(t)] and
S∑
s=1

πis = 1 ∀i = 1, . . . , n,

it means πis is the conditional probability that subject i will have a response yis = 1,

given the functional covariate xi(t). Also πis ∈ [0, 1], ∀ i = 1, . . . , n.

Observe that yiS is redundant, as in any multinomial logistic regression

model (Agresti and Kateri, 2011), so it is denoted by yi = (yi1, . . . ,yi,S−1)
′ the

response vector for subject i, with mean vector µi = E[yi] = (πi1, . . . ,πi,S−1)
′.

The πis only takes values on the interval [0, 1], but linear functions are

unbounded. To deal with this problem, the logit transformation of πis as the

response is applied. The multinomial logit regression model for nominal responses

can be extended to the functional case as a Functional Generalized Linear

Regression (FGLR) model, as introduced in James (2002), whose link function is

given by the nominal multinomial logit transformations lis that pair each response

with a baseline category (usually the last one),

lis = log

(
πis
πiS

)
. (3.1)

Then equation (3.1) can be expressed alternatively in terms of the logit

transformation as
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lis = αs +

∫
T

xi(t)βs(t)dt, s = 1, 2, . . . , S − 1, (3.2)

with lis is logit transformations that pairs each response with a baseline category, αs

is a real parameter, xi(t) are random samples of observations of a functional

variable X(t), and βs(t) is the parameter function of the model that belongs to the

space L2(T ), which need to be estimated.

Then, the probabilities of the nominal multinomial response are modeled in

terms of the functional predictor and the parameters as

πis =
exp{αs +

∫
T
xi(t)βs(t)dt}

Σs exp{αs +
∫
T
xi(t)βs(t)dt}

, (3.3)

for s = 1, 2, . . . , S, i = 1, 2, . . . , n, with αS = 0, βS(t) = 0.

Essentially, equation (3.2) leads to an interpretation of the relationship

between the nominal response and the functional predictor. For example, “ the

exponential of the integral
∫ t0+h
t0

βs(t)g(t)dt of the parameter function is the

multiplicative change in the odds of response (ys = 1) against response (yS = 1)

provided by a change of the curve xi(t) according to a function g(t) in the interval

[t0, t0 + h] ” (Escabias et al., 2014, p. 299), obtained when a functional observation

is incremented constantly in K units along T . The F-NM-LR model is a

multi-equation model, similar to multinomial logistic regression. So (S − 1) logit

equations, with (S − 1) log odds of each model are required.
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As in the case of the functional linear and logistic regression model, the use

of the least squares criterion for estimating the model in equation (3.2) has to take

into account different aspects:

• First, the functional predictor xi(t) cannot be observed continuously in time

but at a set of discrete time points that could be different for each sampled

individual (Aguilera-Morillo and Aguilera, 2015; Delaigle and Hall, 2012).

• Second, due to the infinite dimension of the predictor space, which in general

is not invertible (i.e. does not propose a unique solution), estimating the

parameter function βs(t) is not possible (that is infinite non-numerable) with a

finite number of observations (Escabias et al., 2007).

Basis expansion methods are the most recognized solution within functional

regression methods to overcoming these two problems simultaneously. In this study,

the approach is to reduce dimensions by performing an orthonormal basis expansion

of the functional predictor and the parameter. This dimension reduction approach

has been studied by Müller and Stadtmüller (2005) in the theoretical framework of

functional generalized linear models and has been presented in Chapter II. The next

section discusses a basis expansion approach in terms of the F-NM-LR model.

Basis Expansion of Functional Nominal
Multinomial Logit Regression

(F-NM-LR) Model

In practice, besides the impossibility of direct estimation of the functional

parameter, normally the functional predictor can only be observed in a set of

discrete time points called knots {tik : k = 1, ...,mi} for each sample curve xi(t).
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Because of this factor, sample curves can have different time points for each

sampled individual. Thus, the first step in FDA is often reconstructing the

functional form of data from discrete observations using basis functions. Basis

functions allow the representation of complicated functions in a relatively simple

form. However, as mentioned in Chapter II, there are many possible choices for

basis functions depending on the character of the observed curves.

In general, an appropriate basis function should be chosen according to the

main features of the sample curves. This work considers only the B-Spline basis

system because it is widely used with functional regression models. B-splines are

piecewise polynomials of degree m, and requiring continuity at the knots ensures

smoothness of the function. This work uses fourth degree polynomials (i.e. cubic

B-Spline) with the knots unequally spaced within the interval of observation.

Regardless of the basis function system that is chosen, this method was

simultaneously solve the two-pointed problem in the F-NM-LR model, by

considering that both the predictor function xi(t) and parameter function βs(t)

belong to the same finite space spanned by an orthonormal basis of functions.

However, in spite of having considered the same type of basis for sampled curves

and functional parameters, they could differ. If the functional predictor and the

parameter function are represented as a linear combination of basis functions, the

basic concept is as follows:

1. Let Φ(t) = (φ1(t), . . . , φp(t))
′ be a basis functions that generate the space

where x(t) belongs. Then
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(a) xi(t) = a′iΦ(t), where ai = (ai1, . . . , aip)
′ are the vectors of basis

coefficients of the sample curves.

(b) βs(t) = b′sΦ(t), where bs = (bs1, . . . , bsp)
′ are the vectors of basis

coefficients of the parameter function.

This way the F-NM-LR model in equation (3.2) becomes a multiple linear

model for the response variable in terms of a transformation of the functional

predictor and parameter using basis coefficients given by:

2. lis = αs +
∫
T
a′iΦ(t)b′sΦ(t)dt = αs + a′iΨbs, s = 1, . . . , S − 1, i = 1, . . . , n ,

with Ψ = ψvu =< φv(t), φu(t) > is the p× p matrix of inner products between

basis functions.

3. In the matrix form, Escabias et al. (2014) showed that under these conditions,

the F-NM-LR model as given is equivalent to the following multivariable

logistic regression model

ls = α⊗ 1 +AΨB. (3.4)

Also, the F-NM-LR model can be expressed as

L = α⊗ 1 +HB, s = 1, . . . , S − 1, (3.5)
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where

(a) L = (l1, . . . , lS−1)
′, the matrix of n× (S − 1) logit transformations.

(b) α = (α1, . . . , αS−1), is a (S − 1)× 1 vector of the intercept parameter.

(c) H =AΨ is an n× p design matrix whose product of the matrix of

sample curve basis coefficients and the matrix of the inner products.

(d) A is a (n× p) matrix of the sample curve basis coefficients.

(e) Ψ is a p× p matrix of the inner products of between basis functions.

(f) B = (b1, . . . , bS−1)
′, is a (S − 1)× p matrix of the parameter function

basis coefficients for the multivariable logit model (3.5).

Then, the estimation of equation (3.5) is provided by maximizing the

multinomial log likelihood under equation (3.3). However, the estimation procedure

of the parameter function basis coefficients of equation (3.5) has the following issue

that must be dealt with:

1. The sample curves basis coefficients are estimated from discrete-time

observations (ti1, ..., tim) by using an appropriate numerical method. An

interpolation (data observed without error) or least squares approximation

(noisy data) can be used to compute these basis coefficients in practice. For

example, Escabias et al. (2005) proposed quasi-natural cubic B-spline

interpolation for reconstructing annual temperature curves from monthly

values, and it has been introduced to estimate the risk of drought from the

time evolution of temperatures (Escabias et al., 2005). Natural cubic spline
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interpolation was first considered to estimate functional PCR by

A. M. Aguilera et al. (1996).

On the other hand, if the functional predictor is observed with errors

then least squares smoothing is used. For example, least squares

approximation with both B-splines and trigonometric functions has been used

for interpreting the relationship between time evolution of stress and flares in

Systemic Lupus Erythematous patients (Aguilera et al., 2008). Also, least

squares smoothing on cubic B-splines is used in the application developed to

approximate dough resistance curves during the kneading process and

spectrometry curves of fine chopped meat pieces (Aguilera et al., 2010).

In this study, the true functional forms of the curves are reconstructed

via natural cubic spline interpolation under the F-NM-LR model adaption

from Escabias et al. (2005; 2007; 2014) as,

xi = xi(tik) k = 1, ...,mi.

2. The estimation of the basis coefficients of the functional parameter under

equation (3.6) is provided by maximizing the multinomial log likelihood under

equation (3.3). The most widely used method that yields the ML parameter

estimates is a Newton-Raphson because of the concavity of the log-likelihood

equation. However, when logistic regression is performed, the likelihood

estimation of the parameter function of this model inaccurate, as proved by
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Ramsey and Silverman (1997). Inaccurate estimation of the parameter is due

to the following issues:

(a) The first issue that must be dealt with is multicollinearity of the

covariates. As established in the previous sections, basis expansion

estimation of logit models usually provides good predictions of the

response and consequently a fair classification rule, but Aguilera et al.

(2006) demonstrated that it results in inaccurate parameter estimation

with high variability due to a strong correlation between the columns of

the design matrix (multicollinearity). These inaccuracies make it difficult

to interpret the true relationship between variables, so the intent of this

research is to strike a balance between estimation of the functional

parameters of the model and accurate prediction of the response.

(b) The second issue is high dimensionality. The number of basis functions

used in the approximation of the sample curves could be higher than the

number of observations.

To solve the multicollinearity and dimensionality issues and to obtain an

accurate estimation of the parameter function, a well-known solution in functional

data analysis is to use a reduced set of uncorrelated components instead of the

columns of the H design matrix as regressors. In the particular case of binary and

multinomial response variables, different approaches based on the Functional Partial

Least Squares (FPLS) or Functional Principal Component (FPC) regression that

agree with orthonormal basis functions are usually used (Escabias, Aguilera, and
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Valderrama, 2007; Escabias et al., (2014). This work was consider the PLS approach

and compare its efficiency to the FPC regression method of obtaining accurate

estimations for both the functional parameter and the categorical nominal response.

The next section is an introduction to a PLS method that agrees with

orthonormal basis functions as one of the most efficient solutions to the inverse

problem in the framework of functional data, which has been investigated in several

studies (Aguilera et al., 2010; Aguilera-Morillo and Aguilera, 2015; Delaigle and

Hall, 2012; Escabias et al., 2007; Preda et al., 2005).

Partial Least Squares Regression Method

The PLS method is used in regression to find the direction in the response

that explains the maximum variance of the direction in the predictive space. This

technique was originally developed as a multivariate linear regression method to

deal with a large number of predictors, small sample size, and high collinearity

among predictors (Wold, 1975). The PLS components are defined as uncorrelated

linear spans of the latent variables of the regression model that maximize the

covariance between the predictors in the columns of design matrix and the response

variables as a solution to Tucker’s criterion (Tucker, 1938). These ideas have been

described in Chapter II. That is why PLSR is called a supervised method in

contrast to the FPC method, which visualizes the relation between object and

function predictor variables by maximizing the variance of X(t) without taking into

account the response variable for the construction of the new components.

There have been numerous studies that have looked to improve PLS

algorithms. Bastien et al. (2005) adapted PLS linear regression to generalized linear
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models, and Preda et al. (2005) extended PLS logistic regression to include

functional covariates and used it for classification purposes in Preda et al. (2007)

with the name PLS classification of functional data. Escabias et al. (2007) proposed

a functional PLS logit regression model to forecast a binary response variable from a

functional predictor, and Aguilera et al. (2015) adapted PLS logistic regression to

include functional covariates. However, the literature regarding PLS is very diverse,

and numerous studies have generally believed that PLS is better suited for

classification problems and produces more accurate estimation than PCR (Aguilera

et al., 2015; Escabias et al., 2007).

On the other hand, the PLS method was originally designed for continuous

response variables to estimate the slope parameter in multivariate parametric

models. The next section includes a brief summary of the main objective of this

study, which is the proposal of the generalized PLS estimation procedure as a basic

estimation approach for the F-NM-LR model that produces accurate estimation of

functional parameters and the precise probability of each sample curve’s falling into

a specific class. Without loss of generality and in order to clarify the theoretical

aspects, curves are considered to be centered.

The Generalized Partial Least Squares
Estimation Approach

The purpose of this research is to develop an alternative to the traditional

PCR method by using a Generalized PLS (GPLS) method for estimating the

parameter functions in the F-NM-LR model. The proposed method is based on

work from Ding and Gentleman (2005), and it consists of adapting the classic
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Iteratively Reweighted Partial Least Squares (IRWPLS) regression algorithm (Wold,

1975) to the M-IRWPLS-F, also denoted as the Generalized-PLS regression model

for a classification setting.

The PCR method for predicting a categorical logit response associated with

an observed curve is limited by two issues. This method fails to account for the

response variable, and the original algorithm was designed for a continuous response

variable with a linear relationship with the predictor. The proposed method is a

strategy that integrates these concepts into functional generalized linear models by

extending PLS, a popular dimension reduction tool, to the context of the F-NM-LR

model, based on M-IRWPLS-F. Usually the criterion for constructing components in

PLS is to sequentially maximize the covariance between the response and the

predictor variable.

While the PLS approach applied to a nonlinear response may not be ideal,

Marx (1996) presented a development of generalized linear models to accommodate

regression of nonlinear responses on a set of covariates by considering the extension

of PLS from the linear model to the G-PLS for classification settings. The present

approach adapts this line of G-PLS to the case of a functional logit model and

incorporates the G-PLS method into an F-NM-LR model as a natural generalization

of the PLS regression method.

On the other hand, the estimation of this multi-category logit model is

carried out by maximizing the multinomial log likelihood under model (3.5). Thus,

the log likelihood is usually maximized using the Newton-Raphson algorithm, which

in turn results in the iteratively re-weighted least squares (IRLS) method. Ding and
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Gentleman (2004) studied this method specifically for classification problems and

developed the multinomial regression version denoted as MIRWPLS. Ding and

Gentleman (2004) also applied the Firth bias reduction procedure (Firth, 1992)

denoted as MIRWPLS-F in order to avoid the common non-convergence and infinite

parameter estimates problems of logistic regression in large number of predictor,

small sample size problems.

The M-IRWPLS-F procedure carries out multi-group classification from a

generalization of the method to predict multi-categorical response variables, which

is based on the multinomial logit model. The M-IRWPLS-F method is reported to

achieve better classification performance with a lower classification error rate. For a

more detailed description of classification using generalized partial least squares,

refer to Ding and Gentleman (2005). However, the proposed approach is simpler; its

implementation requires minimal and easy programming, and it easily generalizes to

all models that are linear at the level of explanatory variables.

To the best of the author’s knowledge, the M-IRWPLS-F method, also

known as (G-PLS), has never been applied directly to the classic of a functional

logistic regression model. Therefore, this study adapts the classical G-PLS

algorithm, resulting in a new algorithm for the G-PLS method, the generalized PLS

method, denoted as (GPLS) for the F-NM-LR model. The greater accuracy of

GPLS under the F-NM-LR model improves the lines of functional PLS classification

approaches as multiple stages and in general performs comparably to other methods.

In this study, classes are always nominal with no special ordering, so it is

easy to use any other model deemed appropriate, such as an adjacent logit model.
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Therefore, this model generalizes well, and it also accommodates complex

multi-group relationships that make classification procedures based on a functional

generalized linear models framework so appealing.

The maximum likelihood estimation of the parameters for generalized linear

models via Fisher’s scoring method that was presented by McCullagh and Neider

(1989) is adapted for the proposed approach. Also, by following Ding and

Gentleman (2005), the PLS components are functions of the fitted values. Estimates

of these components are obtained iteratively. Details of an algorithm to compute the

functional GPLS components for the F-NM-LR model are given in the next section.

The Functional Generalized Partial Least Squares
Nominal Multinomial Logit Regression

(F-GPLS-NM-LR) Model

As an alternative to FPC-NM-LR model, the goal of this study is to propose

a new functional regression model based on the GPLS method that combines a

modified version of the functional PLS logistic regression algorithm presented by

Escabias et al. (2007) and the classical PLS regression algorithm (Wold et al., 1983)

to create the F-NM-LR model. The modification of the functional GPLS nominal

multinomial logit regression (F-GPLS-NM-LR) model proposed in this work consists

of applying this GPLS logit algorithm to the nominal multinomial response vector

and the design matrix H , where the nominal multinomial response vector yi is

changed by the corresponding logit model; meanwhile, the rest of the linear fits are

kept.

As is the case for all PLS algorithms, the goal of GPLS method is to find a

set of uncorrelated latent vectors that are linear spans of the functional predictor
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X(t) that maximize the covariance between explicative variables and the nominal

multinomial response variable, respectively, and use them as predictors in the

F-NM-LR model. This is done iteratively. The F-GPLS-NM-LR model proposed in

this study is based on a multiple GPLS logit regression model that has H as a

design matrix.

The algorithm for computing the F-GPLS-NM-LR model consists of the

three following steps: (1) Computation of a set l of GPLS components, (2) Logit

regression fitting of the nominal multinomial response matrix Y on the retained

GPLS components and (3) Formulation of the F-GPLS-NM-LR model in terms of

the original predictor variables.

1. Computation of a set of GPLS components. Let Y be a multinomial

response matrix and Hj, j = 1, . . . , p the columns of the design matrix of the

F-NM-LR model. Then, the algorithm that computes the GPLS components

is summarized as follows:

Step 1: Extraction of first GPLS component which is denoted by, T1,

obtained as follows:

• Logit regress Y on each column of the design matrix Hj. Let the

estimated parameters be denoted by ∆̂1 = (δ̂11, . . . , δ̂1p)
′ and

V1 = (v11, . . . ,v1p)
′ its normalized form where v1j = δ̂1j/‖δ̂1j‖. Thus, the

results of interest are the regression coefficients associated with Hj,

denoted by V1.
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• If the coefficient v1jk is not significant, as determined by the classic Wald

statistical test, then set v1jk equal to zero. That means to delete those

components of V1 that verify |δ̂1jk/SE(δ̂1jk)| ≤ zα/2, with SE(δ̂1jk) being

the estimated standard deviation of δ̂1jk and zα/2 being a fixed critical

value of the standard normal distribution. This ensures that only those

covariates that predict the response are used to build the GPLS

component.

• Thus, the first GPLS component is defined as T1 = V1H .

Step l: Given T1, . . . ,Tl−1 the first l − 1 GPLS components, the lth one is

obtained as follows:

• Logit regress Y on T1, . . . ,Tl−1 and each Hj (j = 1, . . . , p). Let

∆̂l = (δ̂l1, . . . , δ̂lp)
′ and Vl = (vl1, . . . ,vlp)

′ its normalized form where

vlj = δ̂lj/‖δ̂lj‖. Then, set equal to zero those coefficients of vljk that are

not significant, |δ̂ljk/SE(δ̂ljk)| ≤ zα/2, with SE(δ̂ljk) being the estimated

standard deviation of δ̂ljk.

• Then, computation of the lth GPLS component as the first principal

component th of the data matrix Th

• After that, in order to find a GPLS component that is orthogonal to all

previous GPLS components, linearly regress each Hj, identified in step l,

on T1, . . . ,Tl−1, and the primary result of interest is denoted by R(l−1)=

(r
(l−1)
1 , . . . , r

(l−1)
p ) which is their n× p residual matrix.

• The lth GPLS component is defined by Tl = VlR
(l−1).
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Note: The algorithm stops calculating GPLS components when none of the

vljk are considered significantly different from zero. The other usual method

for selecting the number m of GPLS components to be retained is

cross-validation on the predictive power of the model. Tenenhaus (2002)

presents a detailed study.

2. Regressing the response variable on GPLS components. Logit

regression fitting of multinomial response matrix Y on the retained GPLS

components. The first step is to express all GPLS components in terms of the

original covariates (columns of the AΨ matrix) instead of the corresponding

residual vectors. Let Γ be the matrix of GPLS components of the design

matrix AΨ, then Γ = AΨU , with U being the matrix whose columns are the

vector of coefficients of the GPLS components in terms of the original

predictors.

3. Formulation of the GPLS logit regression model in terms of the

original predictors. The third step is the formulation of the GPLS logit

regression model in terms of the original predictors, which is discussed in

detail in the next section.

The Generalized Partial Least Squares Estimation Method
for the Functional Nominal Multinomial

Logit Regression Model

Following the principles of functional PLS logistic regression (Escabias et

al., 2007), the proposed method uses a reduced set of GPLS of the sample curves as
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regressors for the F-NM-LR model. Then the F-NM-LR model (3.5) can be

equivalently expressed in terms of all GPLS as

L̂ = α̂⊗ 1 + Γγ̂, (3.6)

where γ̂ = (γ̂1, . . . , γ̂S−1)
′, is a (S − 1)× p matrix of the maximum likelihood

estimators of the coefficients of the logit model. So the Maximum Likelihood (ML)

estimation of the basis coefficients of the functional parameters can obtained

through the estimation of the parameter of equation (3.6) by

B̂ = Uγ̂

However, the ML estimation of the functional parameter provided by using

all GPLS components as predictor variables is very rough and inaccurate, which has

been shown by Escabias et al. (2014). Consequently, the proposed method adapts

Escabias et al. (2014) method by using as predictors an optimum set of m GPLS

components contained in the columns of the following matrix:

Γ(m) = (AΨ)U (m).

where m is chosen by cross validation. Then, the F-GPLS-NM-LR model is given by

L̂(m) = α̂(m) ⊗ 1 + Γ(m)γ̂(m), (3.7)
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finally the ML estimation of the functional parameters in terms of the m GPLS

components is given by

β̂(m)
s (t) = Φ′(t) B̂(m),

with B̂(m) = U (m)γ̂(m).

The next section includes a brief summary of the functional PCA method to

provide an understanding of how this process compares to GPLS approach.

Overview of Functional Principal Components
Regression Based Solution

The basic idea behind the PCR-based solution of the functional PCA and

base-line logit models is to calculate the principal components and then use a

reduced set of components as predictors in a linear regression model, which is fitted

using the typical least squares procedure. The FPC method generates uncorrelated

linear combinations of the functional predictor with maximum variance (Escabias et

al., 2014). The theoretical results are shown in Ocaña, Aguilera, and Escabias

(2007). A more detailed review of the FPC method as a classic solution to

dimensionality and multicollinearity problems in FDA is presented in Chapter II.

Methods of selecting the optimum number of FPCs to use and the order in

which they must be included in the model are discussed next. These methods take

into account both explained variability and the ability to predict the response while

providing the best estimate of the functional parameters. However, Escabias et al.

(2014) demonstrated that, in the case of FPC, the most efficient way to select PCs

in the model is to choose principal components using either way; a forward stepwise
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method based on a conditional likelihood ratio test, which takes into account the

relationships of components with the response variable or the natural order of

explained variability in order to maximize accuracy.

Remark. Aguilera et. al. (2010) demonstrated that Multivariate PCA of

AΨ matrix with respect to the usual metric in Rp is equivalent to FPCA of the

transformed sample curves basis coefficients with respect to the usual metric in L2.

The Generalized Partial Least Squares
Component Selection

Two methods for selecting the optimal number of GPLS to be retained are

compared below, the response prediction type and the functional parameter type,

using Escabias et al. (2014) methodology for FPCA and base-line logit models.

Criterion 1. The Correct Classification Rate (CCR) is defined as the rate

of agreement between the observed and predicted response category. The predicted

category of an individual is the one associated with the highest predicted

probability.

Criterion 2. The second criterion consists of selecting the number of

components that provides the most accurate estimation of the functional

parameters. Thus, minimizing the Integrated Mean Square Error (IMSE) of the

parameter functions can be used to evaluate the accuracy of F-GPLS-NM-LR

model, which can be computed only for simulations where βs(t) is known. The

IMSE of the parameter functions is defined as

IMSE(m) =
1

S − 1

S−1∑
s=1

1

T

∫
T

(
βs(t)− β̂(m)

s (t)

)2

dt. (3.8)
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Criterion 3. Minimizing the leave-one-out Cross-Validation Mean Squared

Error (CVMSE) criteria was also used in this study to find an accurate estimate of

the functional parameters in real dataset example, where it is impossible to

calculate the IMSE. Therefore, taking into account the response, the number of

components that optimizes the F-GPLS-NM-LR model by minimizing the CVMSE

of prediction, is defined as

CVMSE(m) =
1

S

1

n

S∑
s=1

n∑
i=1

(
yis − π̂(m)

(−i)s

)2

, (3.9)

where π̂(−i)s is the probability of the s category provided by the model with m

GPLS components, predicted for the ith individual by using the model fitted after

removing the ith individual from the data.

In conclusion, the different types of criteria that can help us to detect the

optimum number of GPLS components, the response-prediction-type and the

functional parameters type, are used for this study. In the case of the

response-prediction-type criterion, the CCR was considered. On the other hand, for

the functional parameter type criterion, the optimum number of components is that

which minimizes the IMSE or CVMSE was considered because it provides the best

estimation of the functional parameters.

For this study, simulation and real datasets were developed to allow the

proposed GPLS method to be used to estimate parameter functions and

discriminate a set of curves for the F-GPLS-NM-LR model more precisely.
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Simulation Study Techniques

To test the effectiveness of the GPLS method, a simulation study was

conducted following the scheme proposed in Escabias et al. (2014) with some

modification. The following explains the simulation procedure:

(1) Generate the functional predictor as X(t) = Z(t) + at+ bE ,

where a = 1
2
, 1

4
, and 1, and b = 1, 5, and 10, are arbitrary values that have been

chosen by the researcher. Z(t) is a centered Gaussian process with covariance

function C(s, t) = 0.580|t−s|. E is a Bernoulli random variable with probability (0.1),

and the considered functional variable is in the domain of T = [0, 12], which is

adopted from Escabias et al. (2014).

(2) Meanwhile, it is impossible to record the functional form of the curves of

a functional variable with only discrete observations at different points of the

domain interval. As such, to obtain a sample of curves for this study, an n = 80

sample of 15-dimensional curves were simulated using the defined process at a set of

9 unequally spaced knots {0, 1.1, 2.5, 3.7, 5.1, 7.3, 8.5, 9.6, 12} on the interval [0, 12].

Also, natural cubic spline interpolation is used to reconstruct the true functional

forms of the curves.

(3) The number of categories (e.g., 2, 3, and 4) of the nominal response

variable are changed during the process, as displayed in Table 2, and the response

probabilities are simulated in terms of cubic B-spline expansion of sample curves

and parameter functions using the F-NM-LR model. The observations of the

response are randomly simulated from a multinomial distribution with the

simulated probabilities as parameters.
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(4) From Escabias et al. (2014), the intercept parameter is (α1, α2, α3) =

(0.30, 0.19, 0.20), and (5) the functional parameters are represented by natural

cubic spline interpolation of the sinusoidal functions

β1(t) = cos(t− π

4
),

β2(t) = sin(t− π

4
),

β3(t) = cos(t− π

4
)− sin(t− π

4
).

(6) After data simulation, the nominal response functional logit model (3.5)

is fitted. A total of 9 schemes were simulated using the process described in Table 2.

(7) Next, the problem of multicollinearity is solved using the proposed

method (GPLS), and then this method was compared in terms of its ability to

improve the estimation of the functional parameters. Two criteria are used to select

optimal models (GPLS components). Moreover, the number of GPLS components

are chosen by minimizing the IMSE as the form of the estimated functional

parameters and the accuracy measure.

Another important aspect of the simulation is the opportunity to compare

the classification ability of the F-GPLS-NM-LR model with the alternative method,

the FPC-NM-LR model proposed by Escabias et al. (2014). In order to draw

conclusions about the relative performance of the estimation approaches, 500

simulation replications are run.
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Table 2
Schemes of the Parameters

Sample Function Predictor Functional Number of

Curve Parameters Categories Response

80 X(t) = Z(t) + ait+ biE, i = 1, 2, 3,

a1 = 1
4

b1 = 0.5, β1(t) = cos
(
t− π

4

)
2

a2 = 1
2

b2 = 5, β1(t) = cos
(
t− π

4

)
3

a3 = 2 b3 = 10, β2(t) = sin
(
t− π

4

)
β1(t) = cos

(
t− π

4

)
4

β2(t) = sin
(
t− π

4

)
β3(t) = cos

(
t− π

4

)
− sin

(
t− π

4

)
The Intercept Parameter (α1, α2, α3) = (0.30, 0.19, 0.20).

Knots t = {0, 1.1, 2.5, 3.7, 5.1, 7.3, 8.5, 9.6, 12}.

π = 3.14159 is a mathematical constant.

The Response Probabilities πis =
exp{αs+

∫
T xi(t)βs(t)dt}∑S

s=1 exp{αs+
∫
T xi(t)βs(t)dt} ,

s = 1, · · · , S, i = 1, · · · , n,

with αS = 0, βS(t)=0.

In addition to the simulation, a real world dataset, spectrometric data

consisting of curves of spectrometry (absorbance measured in terms of wavelength)

of corn, is used to demonstrate the estimation technique in terms of reducing the

number of components required to get a parsimonious model. In spectroscopy the

most common problem is calibration that consists of estimating a scalar response

variable from the spectrum. Despite the functional nature of spectral data, this

problem is usually analyzed with multivariate statistical methods such as PCR and

PLS regression that consider the spectrum as a vector associated with its measures

at a finite number of wavelengths. Taking into account that the absorbance at two
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nearby wavelengths is highly correlated, the proposed process could provide better

estimations via considering the spectrum as a curve instead of a vector. The

potential use of functional data analysis in spectroscopy and chemometric data was

stated by Saeys, De Ketelaere, and Dairus (2008).

Chemometricians are also interested in the classification of chemometric

data (curves of spectrum) according to a characteristic of interest of the substance

that generated the curve (Ferraty and Vieu, 2003). In this study an

F-GPLS-NM-LR model is used to classify near infrared reflectance (NIR) spectra of

corn samples according to the spectrometer that generates them. This is a

retrospective study of curves of the spectrum. The NIR spectra of 80 corn samples

were measured by three different instruments at Cargill Inc. (m5, mp5, and mp6

spectrometers). The wavelength domain was [1100, 2498] nm, measured at 2 nm

intervals (700 observations).

The F-GPLS-NM-LR model was developed using R-3.3.2. All resulting

output is assembled and presented in both tables and figures, which are presented

and discussed in Chapter IV.
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CHAPTER IV

RESULTS

This chapter describes the results of both a simulation study and a real

dataset application to illustrate the proposed GPLS methodology developed in

chapter III. The proposed method is built on basis expansions of the sample curves

of the functional predictor and parameters. A classification problem with a

functional predictor was studied to demonstrate the GPLS approach to estimation

of the functional parameter and curve classification for the F-NM-LR model. This

description is followed by a comparison in terms of performance of the GPLS

method to the classic PCR method for parameter estimation and classification in

the F-NM-LR model, providing an illustration of how the F-GPLS-NM-LR model

behaves under different circumstances. Goodness of fit and accuracy measures were

calculated to test the classification ability of the two methods considered to

determine whether one or the other model provides better performance in terms of

CCR. The IMSE was used to select the optimum number of components (GPLS or

PCRs) that provided the most accurate estimation of the functional parameters. To

facilitate comparisons of the two estimation methods (F-GPLS-NM-LR and

FPC-NM-LR), it is important to clarify that all results compare the means and

standard deviations of the number of covariates, IMSE, and CCR of the different

optimum logit models after 500 simulation replications.
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The simulation study was carried out in R version (3.3.2); most of the

program was written by the author. To evaluate and compare the aforementioned

approaches accurately, this study followed the simulation scheme developed by

Escabias et al. (2014), providing a comparable replication of the data analyses used

in previous research. The simulation results are reported, and they are presented in

tables and figures relative to each research question.

The remainder of this chapter is divided into the following sections. The

first section describes the steps in the simulation study and how each estimation

method was implemented with respect to the F-NM-LR model. The second section,

presents the simulation study results for research Question 1. The third section

contains the simulation study results comparing the behavior of the proposed model

under different conditions to address the second and third research questions. The

fourth section presents simulation study results comparing the performance of the

F-GPLS-NM-LR and the FPC-NM-LR model proposed in Escabias et al. (2014) in

terms of their performance in estimation and prediction (research Question 4). The

fifth section presents results of the performance of the F-GPLS-NM-LR model on a

real data set (research Question 5). Lastly, the simulation and the real dataset

results are summarized.

Simulation Study Algorithm

The algorithm for the simulation study consisted of generating the

functional covariates, the response probabilities, the intercept parameters, the

parameter functions, then, the observations of the response. The steps for the

algorithm are as follows:
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Simulation algorithm. The F-NM-LR model considered in this work was

defined as

lis = αs +

∫
T

xi(t)βs(t)dt, s = 1, 2, . . . , S − 1. (4.1)

Step 1: Generate a sample of curves, sized n = 80, of a second order stochastic

process of a functional predictor {X(t) : t ∈ T} whose sample curve is

X(t) = Z(t) + at+ bE,

where Z(t) is a centered Gaussian process that has covariance function

C(s, t) = 0.580|t− s|, and E is a Bernoulli random variable with probability

(0.1). More specifically, for the first step, a set of unequally spaced knots

{0, 1.1, 2.5, 3.7, 5.1, 7.3, 8.5, 9.6, 12} on the interval T = [0, 12] was obtained.

The values a and b are set at a = .25 and b = 5 for the development of the

model and for the comparison of the model with the PCR method

(Questions 1 and 4). These values are manipulated to explore research

Questions 2 and 3. This method of generating the functional covariates was

chosen based on Escabias et al. (2014) research to allow direct comparisons

to an existing estimation method, the FPC-NM-LR model, later on.

Step 2: A natural cubic spline interpolation was used to reconstruct the true

functional forms of each sample of curves.
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Step 3: This simulation study involved a nominal random variable with four

categories as the response variable to explore research Questions 1 and 4.

Also, different category response levels were considered to classify a set of

curves into four, three, or two groups defined by a a nominal random

variable to explore research Questions 2 and 3.

Step 4: The response probabilities given in model (3.3) were simulated in terms of

cubic B-spline expansion of the sample curves and parameter functions

corresponding to 15 basis functions over the interval [0, 12].

Step 5: The intercept parameters were (α1, α2, α3) = (0.30, 0.19, 0.20), and the

functional parameters were also represented by natural cubic spline

interpolation at these nodes {0, 1.1, 2.5, 3.7, 5.1, 7.3, 8.5, 9.6, 12} of the

sinusoidal functions, following the methodology of Escabias et al. (2014).

β1(t) = cos

(
t− π

4

)

β2(t) = sin

(
t− π

4

)

β3(t) = cos

(
t− π

4

)
− sin

(
t− π

4

)
.

Step 6: The observations of the response were randomly simulated from a

multinomial distribution with the simulated probabilities as parameters.

The probabilities of the nominal multinomial response are modeled in terms

of the functional predictor and the parameters as
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πis =
exp{αs +

∫
T
xi(t)βs(t)dt}

Σs exp{αs +
∫
T
xi(t)βs(t)dt}

, (4.2)

for s = 1, 2, . . . , S, i = 1, 2, . . . , n, with αS = 0, βS(t) = 0.

Step 7: Fit the F-NM-LR model

L = α⊗ 1 +HB, s = 1, . . . , S− 1. (4.3)

Step 8: In order to improve the estimation of the functional parameters of the

F-NM-LR model, the GPLS and PCR methods were fitted using:

• The algorithm for computing the FPC-NM-LR model described in

Chapter II.

• The algorithm for computing the F-GPLS-NM-LR model described in

Chapter III.

However, the estimated parameter functions are not comparable because

they correspond to different regression models from a theoretical point of

view. The two methods are compared in terms of plots and the selected

criteria (number of covariates, IMSE, and CCR).

Step 9: In order to draw conclusions about the performance of the GPLS-based

estimation approach, the simulation of a nominal response variable and

following computation of GPLS to fit the F-NM-LR model was repeated 500

times.
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Step 10: For each repetition goodness of fit and accuracy measures (number of

covariates, and CCR) were recorded to test the performance of each model.

Also, leave-one-out cross-validation was completed to select the number of

GPLS components that provided the most accurate estimates of the

functional parameters by minimizing the IMSE.

Step 11: To compare the degree of dimension reduction produced by the two models’

selection criteria, box plots for the distribution of the selected number of

PLS and PCR components were drawn.

After that, steps 1 through 7 generate simulated data to fit the F-NM-LR

model (4.3) with no modifications; steps 8 through 11 are those that are used for

further generation of results based on GPLS and PCR methods. Table 3 includes

results indicating the precision of the F-NM-LR model. In terms of goodness-of-fit

statistics, the correct classification rate (CCR) suggested good prediction ability for

this model (CCR=87.5), but the estimated functional parameter plots and the

accuracy measure (IMSE=3.94E+4) showed poor estimations of the functional

parameters.

Table 3
Goodness of fit and accuracy measures of the F-NM-LR model

Model Covariates IMSE CCR

F-NM-LR 15 3.94E+4 87.5
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Figure 7 shows the estimates of the parameter functions, and Figure 8

illustrates the distribution of the correlations between the columns of the design

matrix H . The inaccuracy of these estimates makes it very difficult to interpret the

relationship between the functional predictor and the nominal multinomial response

variable. Figures 7 and 8 clearly illustrate the issues encountered with the

F-NM-LR model in FDA. The model fails to provide a good fit for any of the

simulated parameter functions, and the box plot highlights the multicollinearity

problem. The GPLS approach demonstrated in next section is intended to improve

the estimates of the parameter functions of the F-NM-LR model by avoiding the

multicollinearity problem.
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Figure 7. Simulated curves of the functional predictor variable (top left), y = 0 (black
dashed line), simulated parameter function (black solid line), and its estimation in
terms of cubic B-spline smoothing without using GPLS (red dashed line) for the
F-NM-LR model.
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Figure 8. Box plot of the distribution of correlations between columns of the design
matrix H .

The Development of Generalized Partial Least Square Method
for the Functional Nominal Multinomial

Logit Regression Model

This section is focused on addressing Question 1 by demonstrating the

development of the GPLS method using a functional predictor to classify a

four-category response variable:

Q1 How is a generalized partial least squares regression method developed
for parameter function estimation in the functional nominal
multinomial logit regression model?

In order to solve the problem of multicollinearity in F-NM-LR models, the

process followed the same steps 1 through 7 from the above section, but in step 8,

the proposed GPLS algorithm was applied to fit the F-NM-LR model in simulated

data. As was demonstrated in Chapter III, the algorithm for obtaining GPLS

estimates as covariate functions for computing the F-GPLS-NM-LR model consists

of the following three steps:
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1. Computation of a set the lth GPLS orthogonal components called Tl.

2. Logit regression fitting of multinomial response matrix Y on the lth retained

GPLS components, the lth GPLS component must capture the discriminant

information not available in the l − 1 previous ones.

3. Computation of the lth GPLS component as the first principal component Tl of

the design matrix.

4. Formulation of the F-GPLS-NM-LR model in terms of the original predictor

variables, where Γ = HU , with U being the matrix whose columns are the

vector of coefficients of the GPLS components in terms of the original predictors.

5. Then, the F-NM-LR model (4.3) is expressed in terms of the GPLS components

as

L̂ = α̂⊗ 1 + Γγ̂, (4.4)

The ML estimation of the functional parameter in the current study was

obtained by using an optimum set of m GPLS contained in the columns of the

design matrix as predictors. This process yields the F-GPLS-NM-LR model as

follows:

L̂(m) = α̂(m) ⊗ 1 + Γ(m)γ̂(m), (4.5)

where is m chosen by cross validation.
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Finally, model (4.5) provides ML estimation of the functional parameter given by:

β̂(m)
s (t) = Φ′(t)B̂(m)

with B̂(m) = U (m)γ̂(m).

In order to draw conclusions about the performance of the GPLS method,

this simulation was repeated 500 times. In each repetition, the optimum number of

components for the F-GPLS-NM-LR model was indicated by the lowest IMSE and

the highest CCR after fitting the model. Finally, the means and standard deviations

of the goodness-of-fit and accuracy measures previously defined for the optimum

models were obtained. The simulation results for the F-GPLS-NM-LR model are

presented in Table 4, and Figure 9 shows box plots for the distributions of IMSE

and CCR for the model after data simulation.

Table 4
Sample means and standard deviations of the distributions of number of GPLS
components, IMSE, and CCR of the optimum F-GPLS-NM-LR models

Measures F-GPLS-NM-LR

Mean SD

Covariates 2.26 0.90

IMSE 0.26 0.08

CCR 75.81 5.86
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Figure 9. Box plots for the distributions of IMSE and CCR for the optimum
F-GPLS-NM-LR model using the GPLS method.

The results shown in Table 4 indicate that the mean number of components

needed for the best possible estimation of the parameter function is 2.26, selected by

minimizing IMSE. Therefore, the mean accuracy of the estimated parameter

functions is IMSE = 0.26. The mean value calculated for the CCR was 75.81,

indicating an acceptable degree of accuracy. These results show that the GPLS

approach produced a good fit for the model, and all of these measures showed that

the estimations improved after using the proposed GPLS method. These results

support the ability of the developed GPLS method to provide accurate parameter

function estimates and good prediction ability.

Overall, the F-GPLS-NM-LR model performed well in terms of the selected

criteria (number of covariates, IMSE, and CCR). To further illustrate the

improvement in estimation provided by the GPLS method, the goodness of fit and
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accuracy measures previously established were used to compare the results and to

evaluate each model (F-GPLS-NM-LR verses F-NM-LR) as can be seen in Table 5

and Figure 10.

Table 5
Goodness of fit and accuracy measures of the F-GPLS-NM-LR and F-NM-LR models

Measures F-GPLS-NM-LR F-NM-LR

Covariates 2.26 15

CCR 75.81 87.5

IMSE 0.26 3.94E+4
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Figure 7. Simulated curves of the functional predictor variable (top left), y = 0 (black
dashed line), simulated parameter function (black solid line), and its estimation in
terms of cubic B-spline smoothing without using gPLS (red dashed line) for the F-
NM-LR model.

Figure 8. Box plot of the distribution of correlations between columns of the design
matrix H .
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Figure 10. Box plot of the distribution of correlations between columns of the design
matrix �.

To compare the models in more detail, box plots for the distribution of

correlations between columns of the design matrix � are displayed in Figure 10. This

figure highlights that the gPLS approach is a good choice for use with the F-NM-LR

model as a solution for the multicollinearity problem. These results support the

ability of the developed gPLS method to provide accurate parameter function

estimates as you can see in Figure 11. This figure illustrates the improvement in

parameter function estimates obtained with the gPLS method with respect to the

F-NM-LR model. To determine if the proposed method could be used as general

rule, simulation results for this estimation method under varying circumstances are

presented in the following section in response to Questions 2 and 3.

Figure 10. Box plot of the distribution of correlations between columns of the design
matrix H verses Γ.

To compare the models in more detail, box plots for the distribution of

correlations between columns of the design matrix Γ are displayed in Figure 11.

This figure highlights that the GPLS approach is a good choice for use with the

F-NM-LR model as a solution for the multicollinearity problem. These results
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support the ability of the developed GPLS method to provide accurate parameter

function estimates as can see in Figure 12. This figure illustrates the improvement

in parameter function estimates obtained with the GPLS method with respect to

the F-NM-LR model. To determine if the proposed method could be used as general

rule, simulation results for this estimation method under varying circumstances are

presented in the following section in response to Questions 2 and 3.
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Figure 11. Box plot of the distribution of correlations between columns of the design
matrix Γ.
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Figure 12. Simulated curves of the functional predictor variable (top left), y = 0
(black dashed line), simulated parameter function (black solid line), and its estimation
in terms of cubic B-spline expansion and GPLS (red dashed line) for the F-NM-LR
model.

Behavior of the Functional Generalized Partial Least Square
Nominal Multinomial Logit Regression

Model in Three Cases

To investigate the performance of the F-GPLS-NM-LR model more

extensively, simulation studies were used to examine the behavior of the model

under varying circumstances. These simulations provided important information

about the consistency of the advantages provided by the model. This section focuses

on the following two research questions:
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Q2 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, with changes of the functional predictor dependent
on arbitrary values assigned to a and b?

Q3 How does the functional generalized partial least squares nominal
multinomial logit regression model behave in terms of goodness-of-fit
measures, such as the correct classification rate and the integrated
mean squared error, based on changes in the number of the nominal
response categories?

To address Q2 and Q3, the behavior of the F-GPLS-NM-LR model was

tested and results compared in a simulation study where different category response

levels were considered to classify a set of curves into four, three, or two groups

defined by a nominal response, with different values of a and b used to generate the

functional predictor. To create three different case scenarios (Case 1, Case 2, and

Case 3), the researcher arbitrarily chose the specific values for a = 0.25, 0.5, 1.0 and

b = 5, 1, 10 as three cases. In order to draw conclusions about the behavior of the

proposed model and the argument for using the GPLS approach as a general rule,

the simulation was repeated 500 times for each case.

The criteria previously described in step 10 were applied in each repetition

to optimize the F-GPLS-NM-LR model (i.e., the minimum number of covariates

according to the lowest IMSE after fitting the model). Finally, the means and

standard deviations over the 500 repetitions were obtained for the goodness-of-fit

and accuracy measures previously defined for each model. Table 6 shows the results

that illustrate the behavior of each model corresponding to the number of response

categories 4, 3, or 2, respectively.
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Table 6
Sample means and standard deviations for the distributions of the three criteria
considered for the optimum F-GPLS-NM-LR models, for three cases and varied levels
of response categories

Sample Number of Functional Criterion Case 1 Case 2 Case 3

size Categories Parameter Measures (a= 0.25, b = 5) (a= 0.5, b = 1) (a= 1.0, b = 10)

Mean SD Mean SD Mean SD

80 4 β1, α1 Covariates 2.26 0.90 1.75 0.81 1.79 0.81

β2, α2 IMSE 0.26 0.08 0.98 3.60 0.54 0.75

β3, α3 CCR 75.81 5.86 78.54 5.59 83.45 5.19

80 3 β1, α1 Covariates 2.13 0.82 2.43 1.05 1.67 0.91

β2, α2 IMSE 0.39 0.12 0.32 0.21 0.38 0.05

CCR 72.68 7.65 78.70 5.51 85.34 3.87

80 2 β1, α1 Covariates 1.22 0.64 1.36 0.80 1.61 0.67

IMSE 0.04 0.01 0.08 0.06 0.08 0.01

CCR 88.06 2.74 91.39 2.45 93.86 2.10

The results shown in Table 6 indicate that in Case 1, a = 0.25, b = 5, at

the different levels of response (4, 3, and 2 categories), respectively, the outcomes

are very similar, and the GPLS method provides a great fit for these models. The

mean number of components needed for the best possible estimation of the

parameter function was 2.26, 2.13, and 1.22, respectively, selected by minimizing

IMSE among the three models. The degree of dimension reduction and the mean

accuracy of the estimated parameter functions (IMSEs) produced in the models

with 4 and 3 response categories are similar, but the binary model needed fewer

components and had the lowest IMSE, as would be expected. The results for CCR
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are also close for the models with 4 and 3 response categories and higher with

binary model, and all models show an acceptable degree of accuracy.

Overall, the values generated in Case 1 corresponding to 4 response

categories compared relatively well to the other two models on all criteria. Box

plots for the distributions of the IMSE and CCR for the model with 3 response

categories are displayed in Figure 13. It can be concluded from the results in Case

1, where a = 0.25, and b = 5, that the GPLS approach is a good option for

predicting the categorical response and estimating the parameter function at all

three response category levels. These results indicate that the observed strong

performance of the GPLS method in the first simulation with 4, 3, and 2 response

categories is likely to be the rule, meaning it is not particular to a specific case or

number of categories in the response variable.
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Figure 13. Box plots for the distributions of IMSE and CCR for the optimum
F-GPLS-NM-LR model with 2 response categories in Case 1.
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The optimum estimations of functional parameters in terms of different

numbers of nominal response categories for the three cases after using the GPLS

method are displayed in Figure 14. This figure shows that the parameter function

estimates obtained using the F-GPLS-NM-LR model in the three different cases are

very similar. All models provided accurate parameter function estimates. There are

no major differences related to the number of response categories in Case 1 relative

to their forecasting ability or in the accuracy of functional parameter estimates.

The proposed GPLS method with respect to all models for Case 1 behaves as well

as other classification methods in the F-NM-LR model. However, the objective of

the proposed GPLS method is to provide an improvement over other methods for

the estimation of the functional parameter associated with the F-NM-LR model for

categorical responses.
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F-gPLS-NM-LR Model with 4 Response Categories in Case (1) 
	

	
 
 

F-gPLS-NM-LR Model with 3 Response Categories in Case (1) 
 

		
 

F-gPLS-NM-LR Model with 2 Response Categories in Case (1) 
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Figure 14. Simulated curves of the functional predictor variable (solid line) and its
estimation for the optimum F-GPLS-NM-LR models (broken line) with 4, 3, and 2
response categories in Case 1.



128

As can be seen in Table 6, the results for Case 2, a = 0.5, b = 1.0, indicate

that the F-GPLS-NM-LR models again produced good fit. The mean number of

components needed for the best parameter function estimation was 1.75, 2.43, and

1.36 for the three models, respectively. Thus, the degree of dimension reduction

produced by the three models in Case 2 was close to that in Case 1. Also, the mean

of the accuracy of the estimated parameter functions for all three models shows that

they have no major differences in prediction ability, IMSEs were 0.98, 0.32, and

0.08, respectively. However, in the model with 4 response categories, the standard

deviation is notably larger than in the models with 3 and 2 response categories.

This result follows logically in that if values are set at a = 0.5 and b = 1, it is very

likely that data for the response categories 2, 3, and 4 are generated while category

1 is missed, changing the operation to a three-category classification problem. The

solution in this case was to delete the simulation repetitions that resulted in the

wrong number of categories, so after 500 repetitions, only 440 of them were useful.

Overall, similar to Case 1, the results for Case 2 in terms of CCR (78.54, 78.70, and

91.39) are close for the models with 4 and 3 response categories and higher with the

binary model. Box plots for the distributions of IMSE and CCR in Case 2 for the

model with 4 response categories are displayed in Figure 15. Overall, the simulation

results for Case 2 corresponding to 3 categories compared relatively well to the

binary model on all criteria.
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Figure 15. Box plots for the distributions of IMSE and CCR for the optimum
F-GPLS-NM-LR model with 4 response categories in Case 2.

Table 6 shows that in Case 3, a = 1.0, b = 10, for all three response

category levels, the F-GPLS-NM-LR model achieves a particularly good fit. The

mean number of components needed for the best possible parameter function

estimation was 1.79, 1.67, and 1.61, respectively. Thus, the degree of dimension

reduction produced in the three models is larger than in Cases 1 and 2. The mean

of the accuracy of the estimated parameter functions, IMSE = 0.54, 0.38, and 0.08,

respectively, shows good prediction ability in all models. However, IMSE is larger

than in Case 2, but lower than in Case 1 with 4 response categories. CCR values

(83.45, 85.34, and 93.86) are higher than those obtained in Cases 1 and 2. And

again, these values are close for the models with 4 and 3 response categories and

higher with the binary model. Case 3 box plots for the distributions of the IMSE

and CCR for the model with 4 response categories are displayed in Figure 16.



130

Overall, the simulation results for Case 3 corresponding to 4 response categories also

compared relatively well to the other two models on all criteria.
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Figure 16. Box plots for the distributions of IMSE and CCR for the optimum
F-GPLS-NM-LR model with 4 response categories in Case 3.

Based these results, Figure 17 shows the parameter function estimates for

the three cases with 4 response categories. This figure shows that the optimum

estimations of the functional parameters after using the GPLS method are very

similar for Cases 1 and 3. The shape of Case 2 is roughly the same as that of Case

3. The parameter estimation is the most stable across multinomial models for Case

1. It was expected that the behavior of the functional predictors in the

F-GPLS-NM-LR model with 4 response categories would be similar to the behavior

with 3 and 2 categories. This was indeed the case for functional parameters

estimation with respect to shape.
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Overall, with respect to research questions 2 and 3, the GPLS method

produced similar results under several different conditions. The results shown in

Table 6 and all of the figures indicate that the GPLS method provides a clear

improvement in the parameter function estimates in the model with 4 response

categories in all three cases. However, there is no major difference between Cases 2

and 3 in terms of accurate estimation. On the other hand, in Case 2 the

improvement may be superior to Case 1 and Case 3 in that there was a larger

reduction in the number of components needed to obtain the best possible estimate

in the model with 4 response categories. Ultimately, the behavior of the

F-GPLS-NM-LR model in Case 1 is the best overall.

In fact, Case 1 could be a good general option for predicting responses and

estimating parameter functions with the GPLS approach. In terms of how the

model behaves at different levels of response categories, there are no major

differences among the three cases relative to improving the estimation of functional

parameters of the F-NM-LR model; researchers can choose the one that is more

precise to apply. Furthermore, all models showed that the GPLS approach is a good

choice for use with the F-NM-LR model for predicting responses categories

associated with functional predictor. The models showed consistent performance at

all 3 levels of response categories with the three different case scenarios (Case 1,

Case 2, and Case 3). To confirm these results, the performance of the GPLS method

was compared to the most popular method in FDA, the PCR method for the

F-NM-LR model proposed by Escabias et al. (2014).
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F-gPLS-NM-LR Model with (4) Response Categories in Case 1 
 

	
F-gPLS-NM-LR Model with (4) Response Categories in Case 2 

 

	
		

F-gPLS-NM-LR Model with (4) Response Categories in Case 3 
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Figure 17. Simulated curves of the functional predictor variable (top left) and y = 0
(black dashed line). True parameter function (black solid line) and its estimation for
the optimum F-GPLS-NM-LR models (red dashed line) for Case 1, Case 2, and Case
3 with 4 response categories.
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Comparison of Generalized Partial Least Square and
Principal Components Regression Methods

in Terms of Precision

To confirm the above results, the precision of the GPLS method was

compared to the PCR method for the F-NM-LR model proposed by Escabias et al.

(2014), addressing research question 4 and providing a direct comparison of the

FPC-NM-LR and F-GPLS-NM-LR models

Q4 How does the precision of the generalized partial least squares
regression method compare to the principal component regression
method proposed by Escabias et al. (2014) under the functional
nominal multinomial logit regression model?

After developing the F-GPLS-NM-LR model, the precision of the model was

evaluated by comparing its performance to that of the alternative PCR method

proposed Escabias et al. (2014). At step 8 of the algorithm, the PCR method fitted

to the F-NM-LR model is denoted as the FPC-NM-LR model. The FPC-NM-LR

model consists of a principal component analysis. More specifically, Escabias et al.

(2014) proved that the best possible estimation of the parameter function (the one

with the lowest IMSE) was achieved after including PCs in the model one by one

according to the order of explained variance. The same process of obtaining the

most accurate parameter function estimation in FPC-NM-LR model was used in

this study.

To further facilitate the comparison, the goodness of fit and accuracy

measures previously established (optimum number of covariates for GPLS and

PCRs, minimum IMSE, and highest CCR) were used to compare the results and to

evaluate each model (F-GPLS-NM-LR vs. FPC-NM-LR) across repetitions. The
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results, after 500 repetitions, are summarized in Table 7. This study is, to the best

of the author’s knowledge, the first study on the F-GPLS-NM-LR model, so it is not

possible to compare the estimates of the coefficients of the functional parameter

using the different approaches, because they correspond to different regression

models from a theoretical point of view. The two methods are compared in terms of

plots and the selected criteria (number of covariates, IMSE, and CCR).
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Figure 18. Box plots for the distributions of CCR and IMSE for the optimum
F-GPLS-NM-LR and FPC-NM-LR models.
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Table 7
Means and standard deviations of goodness of fit and accuracy measures of the
F-GPLS-NM-LR and FPC-NM-LR optimum models

Measures F-GPLS-NM-LR FPC-NM-LR

Mean SD Mean SD

Covariates 2.26 0.90 5.29 0.94

CCR 75.81 5.86 77.64 4.80

IMSE 0.26 0.08 0.23 0.07

To compare the models in more detail, Figure 18 shows box plots for the

distributions of the mean IMSE and CCR of the optimal models generated by using

GPLS and PCA estimation methods, respectively. The optimum estimates of the

functional parameters for the F-GPLS-NM-LR and FPC-NM-LR models for this

simulation study are displayed in Figures 18, 19, and 20. According to these figures,

the parameter function estimates obtained by the F-GPLS-NM-LR and

FPC-NM-LR models are very similar. Both methods provide accurate parameter

function estimates with respect to the F-NM-LR model. Furthermore, Table 7

shows that the F-GPLS-NM-LR model may be superior to FPC-NM-LR model in

that it provides greater dimension reduction (fewer necessary components for

optimal estimates). Based on these results, it is reasonable to conclude that the

proposed GPLS method with respect to the F-NM-LR model is, in general,

comparable with the PCR method for classification in F-NM-LR model.
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Figure 19. FPC-NM-LR model: Simulated curves of the functional predictor (top
left) and y = 0 (black dashed line). Simulated functional parameters (black solid
line) and their estimates in terms of 8 principal components, included by variability
order in the F-NM-LR model (red dashed line).
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Figure 20. F-GPLS-NM-LR model: Simulated curves of the functional predictor
variable (top left) and y = 0 (black dashed line). Simulated functional parameters
(black solid line) and their estimates in terms of 3 GPLS components (red dashed
line).
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Figure 21. Simulated parameter (black solid line), FPC-NM-LR estimation in terms
of 8 PCR (blue dashed line) and F-GPLS-NM-LR estimation in terms of 3 GPLS (red
dashed line).

Table 7 summarizes simulation results for the three defined criteria obtained

with optimal F-GPLS-NM-LR and FPC-NM-LR models with four response

categories. Note that the mean number of GPLS covariates is (2.26), and this figure

corresponds to the lowest IMSE (0.26); furthermore, GPLS covariates incorporate

information on both the response category and functional predictor for the optimum

F-GPLS-NM-LR model. In contrast, the mean number of components with the

lowest IMSE (0.23) in the FPC-NM-LR model was 5.29, encompassing the ones that

cumulate more than 90% of the total variability. These results show that this model

required more components to achieve similar prediction accuracies to the

F-GPLS-NM-LR model. The mean CCRs calculated using GPLS (75.81) and PCR

(77.64) methods are similar, so both models show an acceptable degree of accuracy.
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This result indicates that the main practical difference between the GPLS and PCR

methods is a larger reduction of dimension on the part of the F-GPLS-NM-LR

model in that fewer components are required to obtain the best possible estimation

for the F-NM-LR model.

Table 7 also shows that there is no major difference in the mean IMSE and

its standard deviations between the two models (mean IMSE = 0.26 with mean

standard deviation (0.08) for the F-GPLS-NM-LR and mean IMSE = 0.23 with

mean standard deviation (0.07) for the FPC-NM-LR model). Although there is a

notable difference in the mean number of covariates for the F-GPLS-NM-LR, and

FPC-NM-LR models (2.26 and 5.29, with standard deviations of 0.90 and 0.94,

respectively) the mean of the CCR is not significantly different between the

F-GPLS-NM-LR and FPC-NM-LR models (75.81 and 77.46 with standard

deviations 5.86 and 4.80, respectively), which indicates good prediction ability on

the part of both models.

In summary, the mean number of retained covariates, selected by

minimizing IMSE, with the F-GPLS-NM-LR model is notably lower than with the

FPC-NM-LR model. The F-GPLS-NM-LR model provides good accuracy in

functional parameter estimation, with IMSE that is not significantly larger than

that of the FPC -NM-LR model. However, there was no major difference in

prediction accuracies (CCR) between the two models. The PCR method provides a

slightly better classification rate, as shown in Table 7. It is also clear that both

GPLS and PCR methods are useful for avoiding the multicollinearity problem in

F-NM-LR models while retaining good prediction ability. Table 7, and Figures
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17,18, and 19 demonstrate that the parameter function estimates obtained by the

F-GPLS-NM-LR and FPC-NM-LR models are very similar; furthermore, these

results provide empirical evidence that both methods improve the estimation of the

functional parameters of the F-NM-LR model.

Overall, these results can reaffirm that the behavior of the F-GPLS-NM-LR

model observed in the first simulation is consistent, so it is likely the rule instead of

limited to a particular case. The conclusion regarding Q4 is that there is no major

difference between the GPLS and PCA methods in their overall ability to improve

the estimation of functional parameters of the F-NM-LR model, researchers can

choose the one that is easiest to apply. However, there is a major difference in that

the GPLS method achieves good precision and prediction with more dimension

reduction (fewer covariates) than the PCA method. Given the results obtained in

simulations, it is appropriate to test the F-GPLS-NM-LR model as applied to real

data.

Real Data Application

The last phase of this research involved developing the R code needed to use

the GPLS method for a classification problem with actual functional data to

address research question 5

Q5 How to develop an R code to fit a functional generalized partial least
squares nominal multinomial logit regression model to real data?

The purpose of question 5 is to illustrate the use of the proposed

F-GPLS-NM-LR model in a real application by using the developed GPLS method

to classify near infrared reflectance (NIR) spectra of corn samples according to the
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spectrometer that generates them. Considering the functional nature of spectral

data and taking into account that the absorbance at two nearby wavelengths is

highly correlated, the F-GPLS-NM-LR model could provide better estimates by

considering the spectrum as a curve instead of a vector. The potential use of

functional data analysis in spectroscopy data is described in detail by Saeys et al.

(2008).

For the purpose of comparability, the procedure used by Escabias et al.

(2014) was precisely replicated. Three different instruments at Cargill Inc. (m5,

mp5, and mp6 spectrometers) measured the (NIR) spectra of 80 corn samples.

Measurements were taken at 2-nm intervals within a wavelength domain of [1100,

2498] nm, and data included 700 discrete observations for each sample curve. The

NIR spectra of the 80 corn samples are shown in Figure 22 and Figure 23.
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Figure 22. Curves of corn spectrum measured with the 3 different spectrometers.
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Figure 23. The NIR 3D spectra of corn spectrum measured with the 3 different
spectrometers.

The original data set (80 corn samples) was split into a set of 64 samples for

training purposes and a set of 16 samples for testing purposes. Taking into account

that spectrometry (absorbance measured in terms of wavelength) generates a

smooth curve but the observed one is measured with error, the true functional form

of each sample curve was reconstructed via least squares approximation on the basis

of cubic B-spline functions with 30 equally spaced knots on the wavelength range as

shown in Figure 24. Then, an F-GPLS-NM-LR model was used to estimate the
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categorical response representing the measuring instrument used based on the NIR

spectrum. The parameter estimates for this model were generated by regressing the

categorical response on a set of functional GPLS components.
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Figure 24. Observed curves of the NIR spectrum of a corn sample measured with
the 3 different spectrometers (left) and its least squares approximation on the basis
of cubic B-splines with 30 equally spaced knots (right).

Taking into account that in real applications the parameter function is

unknown and a criterion based on minimizing the IMSE measures was used to find

an accurate estimate of the functional parameters where it is impossible to calculate,

this study concluded that the CVMSE criterion for model selection is a good option

for predicting the response category and estimating the parameter function.

Table 8 shows goodness-of-fit and accuracy measures for the

F-GPLS-NM-LR model. In almost all cases the model produces correct
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classification rates that are 98.43%. These results indicate that the best possible

response prediction (spectrometer classification) is obtained by the model with 2

GPLS components selected by minimizing CVMSE (0.029). These models are

highly accurate, providing CCR = 100% in the test set and CCR = 98.43% in the

training set.

Table 8
Goodness of fit and accuracy measures of the F-GPLS-NM-LR model

Method Covariates CVMSE CCR

GPLS 2 0.029 98.43

In terms of interpretability of the functional parameters, the smoothest

estimations were achieved in all cases by the model with the first two GPLS

components as shown in Table 8. Also, this model provides an interpretation of the

odds of selecting one spectrometer over another. The functional parameter β1 is

associated with the odds of the mp5spec spectrometer’s generating a specific NIR

spectral curve against those of the m5spec spectrometer’s (baseline) generating the

curve, and β2 is associated with odds of the mp6spec spectrometer’s generating the

NIR spectral curve against baseline (the m5spec).

Figure 25 shows that in low wavelengths (under 1400nm) β1 is always

greater than β2 with negative values, and the opposite occurs in high wavelengths

(over 1400nm). Furthermore, the form of the estimated functional parameters is

very similar to the observed NIR spectra of the sample, which could facilitate

interpreting the functional parameters. So the form of the functional parameters
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may suggest that the increment of NIR spectra in high wavelengths increases the

odds that the spectrum is generated by mp6spec or mp5spec instead of m5spec,

with the odds being higher for mp6spec than mp5spec. The opposite occurs in low

wavelengths. High NIR spectra in high wavelengths are associated with higher

probability with mp6spec and mp5spec spectrometers, respectively. However, in low

wavelengths, the highest values of the spectrum are associated with a higher

probability that the reference spectrometer is the m5spec.
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Figure 25. Estimation of the parameter functions given by the F-GPLS-NM-LR
model in terms of the two GPLS components. The function β̂1(t) is associated with
the odds of spectrometer mp5spec against m5spec and β̂2(t) is associated with the
odds of mp6spec against m5spec.

In summary, in spectroscopy the measured spectra are typically plotted as a

function of the wavelength. From a physical point of view it could be more

informative to describe the spectrum as a function rather than as a set of points,
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thereby taking into account the physical background of the spectrum, and a

motivating example for this functional approach is given. It is shown that for

spectral data the use of cubic B-splines proves to be an appealing basis to

accurately describe the data. By applying the GPLS estimation method on the data

sets the predictive ability of the GPLS method for functional data analysis was

found to be comparable to that of PCR method, maintaining strong performance

while reducing dimensionality.

Summary and Implications for the Generalized
Partial Least Square Method

In general, the performance of the proposed F-GPLS-NM-LR model was

assessed in terms of several different criteria: (a) as a method to avoid the

multicollinearity problem in FDA, (b) as a way to generate more accurate

parameter function estimates, and (c) as a method for accurately discriminating a

set of curves generated by a functional variable. Thus, based on a simulation study

and the application of the method to real datasets, the results of the proposed

method can be summarized as the following:

• Results from a simulation study implementation indicated that the developed

F-GPLS-NM-LR model gives the most stable estimates of the parameter

function.

• The developed F-GPLS-NM-LR model behaved well in all cases based on the

three criteria considered for the optimum models, the IMSEs are similar for

the three cases considered, with a slightly better mean CCR in Case 3.
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• The F-GPLS-NM-LR provides accuracy in estimations of the parameter

function similar to the alternative FPC-NM-LR model but with a larger

dimension reduction. Ultimately, there is no major difference between the two

methods in overall predictive ability; researchers can choose the one that is

easiest to apply. However, if the objective is to predict the response, the

GPLS method is a good choice because it produces similar prediction accuracy

with fewer retained components.

• Goodness-of-fit measures show that the F-GPLS-NM-LR model performed

well in both the simulation study and the real application, and the estimates

of the parameter function are reliable. In summary, the GPLS method seems

to be preferable to the F-NM-LR model, and it is a useful contribution to

methods for FDA.
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CHAPTER V

CONCLUSIONS

The Generalized Partial Least Squares (GPLS) approach with cubic B-spline

basis expansions of the functional predictor and parameters was developed in this

dissertation as a method for avoiding the multicollinearity and high dimensionality

problems that preclude accurate parameter function estimates in the case of the

nominal multinomial logit regression model with a functional covariate. The

developed GPLS algorithm improves upon more recent methods in that the process

introduces a new criterion for selecting the optimum set of GPLS components as

covariate functions in the F-NM-LR model that reconstructs the parameter function

with a smaller number of predictor variables. Marx (1996) introduced PLS

regression using the iterated weighted least-squares algorithm for likelihood

maximization for estimating the parameters in generalized linear regression. The

GPLS regression estimates are derived based on Iteratively ReWeighted Partial

Least Squares (IRWPLS), which defines a set of uncorrelated latent variables (as the

PCs), taking into account the relationship between the nominal multinomial

response and the functional predictors, respectively, and using them as predictors in

the F-GPLS-NM-LR model. The F-GPLS-NM-LR model improves the accuracy of

parameter function estimates and discriminates a set of curves of the model more

precisely than the original F-NM-LR model. The performance of the proposed
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methodology was tested in a simulation study and in applications using

spectrometric data sets. The results regarding the accuracy of F-GPLS-NM-LR and

FPC-NM-LR models’ selection criteria were tabulated and discussed.

The initial simulation developed in this dissertation followed the scheme

proposed in Escabias et al. (2014), so the ML functional parameter estimates and

IMSE associated to the F-GPLS-NM-LR model were provided by using all PLS

components as predictor variables, yielding extremely inaccurate results.

Furthermore, the solution was not unique, and interpretation in terms of odds ratios

using this technique may be erroneous. In such cases, it is common to apply

regularization techniques (i.e., reduction methods) to improve the precision of the

model. This study extended PLS for parameter function estimation problems as

introduced by Escabias et al. (2007). In order to improve the accuracy of the

parameter function estimation, the IMSE and CCR were the criteria applied for

selecting the optimum number of GPLS components to be introduced as predictors

in the F-GPLS-NM-LR model. To validate the results obtained from the simulation

process, the means and standard deviations of the goodness-of-fit and accuracy

measures associated with the optimum model were computed across 500 simulation

replications.

The objective of the proposed methodology and all results presented in this

dissertation is to help practitioners use real-world functional data to make valid

interpretations and decisions. The contribution of the proposed GPLS method is

that it is a strategy that integrates PLS concepts into functional generalized linear

models. A review of the literature on the functional logistic regression models
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indicated that no work has been done that applies the GPLS method directly to

nominal multinomial data within the FDA field. In addition, the GPLS method is

flexible enough to be applied to a broad family of statistical problems. The

performance of the proposed methodology was studied and compared to a

competing classification procedure (PCR) in a simulation study. The PCR method

is a well-known tool and base solution for dimension reduction and multicollinearity

problems in functional data (Escabias et al., 2014). However, this study addressed

the limitations of the PCR method and the need to explore alternative estimation

techniques, such as the GPLS approach.

The GPLS approach developed in this dissertation has two major

advantages over the PCR method that has been used extensively in the literature on

the functional logistic regression model. First, the GPLS method uses a set of

uncorrelated latent variables (as the PCs), taking into account the relationship

between the response and the functional predictors variables in the regression

model; whereas, the traditional PCR method is subject to many criticisms based on

the fact that PCs are calculated without taking into account the response variable

at all. Second, classic PLS regression was designed for a continuous outcome

variable with constant variance that has a linear relationship with the predictor. In

this framework, the proposed GPLS method is a strategy that integrates these

concepts into functional generalized linear models. This study was used to

determine whether or not the F-GPLS-NM-LR model performs well enough to be

considered as a base solution for issues in FDA.
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The first research question addressed the process of developing a generalized

partial least squares regression method for the F-NM-LR model. The GPLS

approaches that agreed with orthonormal basis systems were combined with the

cubic B-splines basis system. The GPLS regression method linking the nominal

multinomial response variable to functional covariate showed that the model fit well

based in the three criteria considered for the optimum models. This method is

demonstrated in detail in chapter III, and in chapter IV results are presented where

models were constructed and tested on 500 simulated datasets.

The results obtained from the simulation showed that the GPLS procedures

obtained an evident dimension reduction, as is necessary for an accurate estimation

of the parameter function of the F-NM-LR model, and the method showed strong

curve discrimination ability. The reduction was obtained by minimizing the IMSE

and including the smallest number of PLS components (in the F-GPLS-NM-LR

model) necessary to generate the best possible parameter function estimates, with

an acceptable degree of prediction accuracy, based on CCR.

The simulation study was also used to answer the second and third research

questions regarding the behavior of the proposed method under varying

circumstances. Comparisons of goodness-of-fit and accuracy measures were used to

test the behavior of the F-GPLS-NM-LR model with three cases, using different

functional predictors dependent on arbitrary values assigned to a and b, which were

tested with four, three, and two nominal response categories. The estimation

method results varied depending upon the number of nominal response categories

and the arbitrary values that generated the functional predictor. The means and



151

standard deviations of goodness-of-fit and accuracy measures were calculated for the

different optimum logit models over 500 simulation replications for each model. All

three cases tested generated acceptable results relative to predictive ability, and the

CCRs of all three models (4, 3, and 2 response categories) within each case are

almost the same. Furthermore, the optimum number of PLS components needed for

each model for optimal estimations were slightly different, but once the IMSE was

optimized for each model, the mean number of components was similar. Also, it is

important to mention that the models with 3 categories of nominal response yielded

a slightly lower CCR compared to the models with 4 and 2 response categories, but

there was no significant difference in the CCR or IMSE for the models with 4 and 2

categories. Also, the Case 2 scenario resulted in a large SD for IMSE in the model

with 4 response categories because the values assigned to a and b (0.5 and 1.0,

respectively) created the possibility that response category 1 could be missing from

the generated data. This problem is solved by eliminating the simulation repetitions

that have only 3 response categories from the analysis.

Results from the simulation study also addressed the fourth research

question about comparing the precision of the proposed methodology to the classic

alternative PCR method for the F-NM-LR model. Based on the 500 simulation

replications, the results indicated that the F-GPLS-NM-LR model provided

parameter function estimates with accuracy similar to the ones generated by the

alternative FPC-NM-LR model. However, with respect to the criterion for selecting

the optimum number of GPLS and PCs with lower IMSE, the F-GPLS-NM-LR

model showed a larger dimension reduction. On the other hand, the strength of the
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F-GPLS-NM-LR model for curve discrimination (CCR) and the IMSE were not

notably different from those obtained with the FPC-NM-LR model. However, in

agreement with most studies that explore PCA and traditional PLS approaches

(A. M. Aguilera et al., 2010; Aguilera-Morillo and Aguilera, 2015; Delaigle and Hall,

2012a; Escabias et al., 2007; Preda and Saporta, 2005), the results show that GPLS

almost always requires fewer components than the PCR method. Furthermore, this

study shows that parameter function estimates with GPLS are more accurate than

with PCR under the F-NM-LR model. The results also highlight the necessity for

functional data analysis to accurately estimate parameter functions.

In addition, this study compared solutions to the problems of high

dimensionality and multicollinearity in the classification of curves based on PCR

and GPLS methods. The results indicated that there is no difference between GPLS

and PCR methods relative to improving the estimation of the functional parameters

of the F-NM-LR model, the one that is easiest to apply is most likely suitable.

However, if the main objective is to predict the response, the GPLS method is a

good choice because it produces similar prediction accuracy with fewer components

needed for dimension reduction.

For the application considered in this dissertation, the GPLS method was

applied to spectrometric data. The spectrometric data analysis is a retrospective

study of curves of spectrum wherein the proposed F-GPLS-NM-LR model was used

to classify Near Infrared Reflectance (NIR) spectra of corn samples according to the

spectrometer that generates them. The objective of spectroscopy data is to explain

a nominal multinomial response from a functional variable (the spectrum) whose
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observations are functions of wavelengths rather than vectors. The proposed

approach reduced the functional GPLS to the multivariate GPLS of the response on

a transformation of the matrix of sample curve basis coefficients. Again,

goodness-of-fit and accuracy measures, such as CVMSE, and CCR procedures were

considered in selecting the number of GPLS components.

The results of the real data study indicate that the proposed method is an

appropriate one for the application that was tested. Therefore, it is concluded that

the GPLS approach provides the necessary dimension reduction for generating

accurate estimations of the functional parameter. In the case of the

F-GPLS-NM-LR model, the number of components that minimizes the CVMSE

provides the most accurate estimation of the parameter function.

In summary, the purpose of F-GPLS-NM-LR model is to classify a set of

curves into groups and, most importantly, to interpret the relationship between the

nominal multinomial response and the functional covariate in terms of the

functional parameter. Taking into account the functional form of data, the research

presented here has proposed a new estimation procedure for the F-NM-LR model

based on the GPLS approach with cubic B-spline basis expansions of the functional

predictor and parameters. Generally, the results from the simulated examples

developed in this study and a real data application allow the conclusion that the

GPLS approach showed an evident dimension reduction, and it is important to

highlight that accurate estimates of the parameter function are useful for designing

efficient selection methods for explanatory variables in addition to facilitating

interpretations and predictions. Overall, as expected, the GPLS approach presented
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in this dissertation produced results similar to the PCR estimation method in terms

of their predictive ability and their capacity to provide accurate estimates of the

functional parameter, but PCR retains more components than GPLS.

Recommendations for Future Research

The research line on GPLS methodologies with a functional covariate is not

closed. The author intends to continue with development efforts in several areas:

First, the estimation of ordinal response variables with the F-GPLS-NM-LR model

requires development. Also, a comparative study between penalized functional PLS

and GPLS methods is warranted. Furthermore, using the GPLS method when both

response and predictor variables are functional is a challenge that needs to be

addressed. Additionally, it is common to apply regularization techniques, (e.g.,

reduction methods or shrinkage methods) to improve the precision of regression

models. Therefore, future research using different algorithm modification methods

with the F-GPLS-NM-LR model is of interest, such as using least absolute shrinkage

and selection operator (LASSO) or power of prediction measures, such as

McFadden’s R2, as criteria to extract the GPLS components that explicitly consider

the individual predictors, reducing the number of components needed in the final

model. It is important to note that the data sets analyzed in this dissertation were

considered relatively smooth, and they did not contain outliers. Because this study

algorithm can be considered a form of variable selection, it is also of interest in

future research to see if outlying observations would be filtered out in the GPLS

component extraction process.
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Closing Remarks

It was expected that the GPLS method would be useful in the development

of accurate parameter estimation for FDA. The proposed method proved to be

useful in this study; however, the results indicated that there is no major difference

between the GPLS and PCR methods with respect to improving the estimation of

the functional parameters of the F-NM-LR model; the one that is easiest to apply is

appropriate. This issue is important when the key objective is an accurate estimate

of the functional parameter because the approach that is used provides a measure to

identify the optimum number of components when there are non-simulated

examples in which the real functional parameter is unknown. If the goal is to

predict the response, the GPLS method is a good alternative to PCR because it

produces similar prediction accuracy with fewer retained components. Finally, in

practice, when a strong degree of multicollinearity shows up, stepwise multiple

regressions are commonly used. On the contrary, the GPLS method allows the

retention of all variables with a strong explanatory power in the MLR model, and it

accounts for the relationship between the nominal multinomial response and the

predictor variables.
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F-gPLS-NM-LR Model with (4) Response Categories in Case 2 
 

	
F-gPLS-NM-LR Model with (3) Response Categories in Case 2 

 

	
		

F-gPLS-NM-LR Model with (2) Response Categories in Case 2 
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Figure 26. Simulated parameter function (solid line) and its estimation for the
optimum F-GPLS-NM-LR model (broken line) with 4, 3, and 2 response categories
in Case 2.
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F-gPLS-NM-LR Model with (4) Response Categories in Case 3 
 

	
F-gPLS-NM-LR Model with (3) Response Categories in Case 3 

 

	
		

F-gPLS-NM-LR Model with (2) Response Categories in Case 3 
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Figure 27. Simulated parameter function (solid line) and its estimation for the
optimum F-GPLS-NM-LR model (broken line) with 4, 3, and 2 response categories
in Case 3.
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Figure 28. Simulated curves of the functional predictor variable before and their basis
expansion estimation without using GPLS for the F-NM-LR model.
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Table 9
Goodness of fit and accuracy measures example of the FPC-NM-LR model

N m IMSE CCR

1 8 0.08 82.50

2 6 0.20 71.25

3 5 0.26 82.50

4 5 0.24 83.75

5 7 0.19 77.50

6 5 0.15 80.00

7 5 0.23 85.00

8 5 0.18 73.75

9 6 0.18 77.50

10 6 0.10 77.50

11 5 0.12 77.50



173

Table 10
Goodness of fit and accuracy measures example of the F-GPLS-NM-LR model.

N m IMSE CCR

1 2 0.05 90.00

2 3 0.02 86.25

3 2 0.08 92.50

4 2 0.02 88.75

5 3 0.02 88.75

6 3 0.03 87.50

7 1 0.01 90.00

8 2 0.08 92.00

9 1 0.09 87.50

10 1 0.07 86.25

11 1 0.08 88.75
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APPENDIXB

R CODE FOR SIMULATION STUDY AND REAL DATA
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####################################################

## R code of: ##

## Utilities for gPLS and PCR of F-NM-LR model ##

## ##

####################################################

####################################################

# Packages #

############

library(mvtnorm)

library(splines)

library(fda)

require(fields)

library(nnet)

library(MASS)

######################################################

######################################################

# To generate X(t) and Z(t) #

#############################

t=c(0,1.1,2.5,3.7,5.1,7.3,8.5,9.6,12)

lt=length(t)

n=80

Sigma=matrix(0,lt,lt)

for(i in 1:lt){

for (j in 1:lt){
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Sigma[i,j] = 0.5^(n*abs(t[i]-t[j]))

}

}

Z=rmvnorm(n,mean=rep(0,lt),Sigma)

#############

a=0.25 # can change this to 0.5, 0.25 or 1

b=5 # can change this to 1.0, 5 or 10

############

X=matrix(0,n,lt)

for(i in 1:n){

X[i,]=Z[i,]+a*t+b*rbinom(lt,1,0.1)

}

###########################################################

###########################################################

# Reconstruct the true functional curves

# via Natural cubic spline interpolation

###########################################################

nks=101

Xf=matrix(,n,nks)

for(i in 1:n){

sp=spline(t,X[i,],n=nks,method="natural")

Xf[i,]=sp$y

}

matplot(t(Xf),type="l",col=1,lty=1)

############################################################
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############################################################

# Generate X(t) with bsplines in fda() #

########################################

nba=15 # number of basis

splinebasis= create.bspline.basis(c(0,12), nbasis=nba)

tn=(1:nks/nks)*12

Xt=Data2fd(tn, t(Xf), splinebasis)

############################################################

############################################################

# generate beta curves #

########################

# This shows the true beta curves!

# It can change this depend on number of response categories

########################

b1=cos(t-pi/4)

b1c=spline(t,b1,n=nks,method="natural")

b1tn=b1c$y

b1tt=Data2fd(tn, b1tn, splinebasis) # it’s a "fd"

b2=sin(t-pi/4)

b2c=spline(t,b2,n=nks,method="natural")

b2tn=b2c$y

b2tt=Data2fd(tn, b2tn, splinebasis) # it’s a "fd"

b3=cos(t-pi/4)-sin(t-pi/4)

b3c=spline(t,b3,n=nks,method="natural")
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b3tn=b3c$y

b3tt=Data2fd(tn, b3tn, splinebasis) # it’s a "fd"

###### The estimated beta curves######

bt<-Xt[1:3]

bt$coefs=cbind(b1tt$coef,b2tt$coef,b3tt$coef)

b1t=bt[1]

b2t=bt[2]

b3t=bt[3]

par(mfrow=c(2,2))

plot(Xt,col=1,lty=1)

plot(t,b1,col=1,lty=1,main =expression(beta[1](t)))

abline(h=0,lty=2)

lines(b1c)

lines(b1t,col=2)

plot(t,b2,col=1,lty=1, main = expression(beta[2](t)))

abline(h=0,lty=2)

lines(b2c)

lines(b2t,col=2)

plot(t,b3,col=1,lty=1, main = expression(beta[3](t)))

abline(h=0,lty=2)

lines(b3c)

lines(b3t,col=2)

###############################################################
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###############################################################

# Set up intercept

#it can change this depend on number of response categories

####################

alpha=c(0.30,0.19,0.20,0)

S=length(alpha)

################################################################

################################################################

# Create a function "f.PI" to compete PI with alpha, bt and Xt #

################################################################

f.PI<-function(a0,bt0,Xt0){

n1=length(Xt0$fdnames$reps)

n2=length(a0)

PI=matrix(,n1,n2)

for(i in 1:n1){

expv=rep(0,n2)

for(j in 1:(n2-1)){

expv[j]=exp(a0[j]+inprod(Xt0[i],bt0[j]))

}

expv[n2]=1

PI[i,]=expv/sum(expv)

}

return(PI)

}

###############################################################
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#####################################################################

# Create a function "f.resp" to generate a vector response using PI #

#####################################################################

f.resp<-function(PI0){

d1=nrow(PI0)

d2=ncol(PI0)

res=rep(0,d1)

for(i in 1:d1){

y0=rmultinom(1,1,PI0[i,])

res[i]<-which(y0==1)

}

res<-as.factor(res)

### Choose the last "category" as the baseline###

resp0<-relevel(res, ref=levels(res)[d2])

return(resp0)

}

###############################################################

###############################################################

# Generate response using PI #

##############################

PI=f.PI(alpha,bt,Xt)

resp<-f.resp(PI)

################################################################
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################################################################

# Get design matrix H #

#######################

A=t(Xt$coefs) # A is a n*p(nba) coefficient matrix

Psi=inprod(splinebasis,splinebasis)

H=A%*%Psi # H is a n*p design matrix

# With resp, H (A and Psi), I will be able to estimate

# and betas. H is the design matrix

###############################################################

###############################################################

# Create a function "f.bcurves" for estimated beta curves #

###############################################################

f.bcurves<-function(bh){

bb=Xt[1:3]

bb$coefs=bh

par(mfrow=c(2,2))

plot(Xt,col=1,lty=1,main="All curves")

plot(bb[1],col=2,lty=2,

main=expression(beta[1](t) ~’&’~ hat(beta)[1](t)),

ylim=range(c(range(b1t$coefs),range(bb[1]$coefs))))

lines(b1t,col=1,lty=1)

plot(bb[2],col=2,lty=2,

main=expression(beta[2](t) ~’&’~ hat(beta)[2](t)),

ylim=range(c(range(b2t$coefs),range(bb[2]$coefs))))

lines(b2t,col=1,lty=1)
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plot(bb[3],col=2,lty=2,

main=expression(beta[3](t) ~’&’~ hat(beta)[3](t)),

ylim=range(c(range(b3t$coefs),range(bb[3]$coefs))))

lines(b3t,col=1,lty=1)

}

#############################################################

##############################################################

# Create a function "f.IMSE" to calculate IMSE #

################################################

f.IMSE<-function(bh){

bb=Xt[1:3]

bb$coefs=bh

bb1=bb[1]

bb2=bb[2]

bb3=bb[3]

dd1=b1t-bb1

dd2=b2t-bb2

dd3=b3t-bb3

imse=as.numeric((inprod(dd1,dd1)/12+inprod(dd2,dd2)/12

+inprod(dd3,dd3)/12)/3)

return(imse)

}

###############################################################
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##################################################

# Estimation of beta parameters using multinom() #

##################################################

##################################################

test=multinom(resp ~ H)

betam=summary(test)$coefficients

beta.hat=t(betam[,-1])

f.bcurves(beta.hat)

pred=predict(test)

CCR=sum(pred==resp)/length(pred)*100

IMSE=f.IMSE(beta.hat)

cat("CCR is:", CCR, "\n");cat("IMSE is:", IMSE)

###############################################################

##############################################################

# Create a function f.PCA to get beta.hat

# using PCA for a given m

# Input "resp" and "H", returns "beta.hat", "CCR" and "IMSE"

##############################################################

f.PCA<-function(resp0,H0,m0){

co=cov(H0)

eg=eigen(co)

vc=cumsum(eg$values)/sum(eg$values)

varprop=vc[m0]

V=eg$vectors # p*p

Vm=V[,1:m0] # p*m0

Gamm=H0%*%Vm # n*m0
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test0=multinom(resp0 ~ Gamm)

betam=summary(test0)$coefficients

gammas.hat=t(betam[,-1]) # m0*3

beta.hat=Vm%*%gammas.hat # p*3

pred0=predict(test0)

CCR=sum(pred0==resp0)/length(pred0)*100

IMSE=f.IMSE(beta.hat) # Compute IMSE

list(beta.hat=beta.hat,CCR=CCR,IMSE=IMSE,cumvarprop=varprop)

}

###############################################################

##############################################################

# Use "f.PCA" to choose optimal "m" with the minimum IMSE #

##############################################################

imse.pca=rep(0,nba)

for(ii in 1:nba){

fm.pca=f.PCA(resp,H,ii)

imse.pca[ii]=fm.pca$IMSE

}

round(cbind(1:nba,imse.pca),3)

mpca=which(imse.pca==min(imse.pca))

fpca=f.PCA(resp,H,mpca)

cat("The results for PCA method:")

cat("m is", mpca,"\n");cat("CCR is:", fpca$CCR, "\n")

;cat("IMSE is:", fpca$IMSE)

beta.hat.pca=fpca$beta.hat

f.bcurves(beta.hat)

############################################################
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############################################################

# Create a function "f.gPLS" to

# get beta.hat using PLS ( + PCA) for a given m.

# Input "resp" & "H",

# returns PLS components "T", "beta.hat", "CCR" and "IMSE"

###########################################################

f.PLS<-function(resp0,H0,m0){

stop.early=0

s=length(levels(resp0))-1

n=nrow(H0)

p=ncol(H0)

# Step1

delta=matrix(,nrow=s,ncol=p)

sedelta=matrix(,nrow=s,ncol=p)

for(j in 1:p){

mfit=multinom(resp0 ~ H0[,j])

delta[,j]=summary(mfit)$coefficients[,2]

sedelta[,j]=summary(mfit)$standard.errors[,2]

}

V0=matrix(,nrow=s,ncol=p)

for(i in 1:s){

V0[i,]=delta[i,]/sqrt(sum(delta[i,]^2))

}

Z=delta/sedelta

ind1=abs(Z)>1.96

V1=V0*ind1 # V1 is a s*p matrix
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T1m=H0%*%t(V1) # T1m is a n*s matrix

d0=apply(abs(T1m), 2, sum)!=0

T1m=T1m[,d0]

v1=ginv(t(H0)%*%H0)%*%t(H0)%*%T1m # T=Hv

#round(sum(abs(H0%*%v1-T1m)),6)

co=cov(T1m)

eg=eigen(co)

Vpc=eg$vectors

Vpcm=cbind(Vpc[,1])

T1=T1m%*%Vpcm

w1=v1%*%Vpcm

#round(sum(abs(H0%*%w1-T1)),6)

if(m0==1){

# Get the results when m0=1

Th=T1

plsfit=multinom(resp0 ~ Th)

gamm=summary(plsfit)$coefficients[,2]

V=w1

beta.hat=V%*%t(gamm)

pred=predict(plsfit)

CCR=sum(pred==resp0)/length(pred)*100

IMSE=f.IMSE(beta.hat)

list(Th=Th,beta.hat=beta.hat,CCR=CCR,IMSE=IMSE,

stop.early=stop.early)

}

else{

# Get the results when m0!=1
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W=matrix(,nrow=ncol(H0),m0)

TT=matrix(,nrow(H0),m0)

W[,1]=w1

TT[,1]=T1

for(k in 2:m0){

Tp=cbind(TT[,1:(k-1)])

delta=matrix(,s,p)

sedelta=matrix(,s,p)

for(j in 1:p){

mfit=multinom(resp0 ~ Tp + H0[,j])

delta[,j]=summary(mfit)$coefficients[,ncol(Tp)+2]

sedelta[,j]=summary(mfit)$standard.errors[,ncol(Tp)+2]

}

if(sum(is.nan(sedelta))+sum(is.nan(delta))>0){

cat("The maxium m is", k-1)

stop.early=1

TT=TT[,1:(k-1)]

W=W[,1:(k-1)]

break

}

Vp=matrix(,s,p)

for(i in 1:s){

Vp[i,]=delta[i,]/sqrt(sum(delta[i,]^2))

}

Z=delta/sedelta

ind2m=abs(Z)>1.96

V2m=Vp*ind2m
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if(sum(abs(V2m))==0){

cat("The maxium m is", k-1)

stop.early=1

TT=TT[,1:(k-1)]

W=W[,1:(k-1)]

break

}

#else{

R=matrix(,n,p)

for(j in 1:p){

R[,j]=resid(lm(H0[,j] ~ Tp))

}

T2m=R%*%t(V2m)

d0=apply(abs(T2m), 2, sum)!=0

T2m=cbind(T2m[,d0])

v2=ginv(t(H0)%*%H0)%*%t(H0)%*%T2m # T=Hv

if(ncol(T2m)==1){

TT[,k]=T2m

W[,k]=v2

}

else{

co=cov(T2m)

eg=eigen(co)

Vpc=eg$vectors

Vpcm=cbind(Vpc[,1])

TT[,k]=T2m%*%Vpcm

W[,k]=v2%*%Vpcm
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}

#}

}

Th=TT

plsfit=multinom(resp0 ~ Th)

gamm=summary(plsfit)$coefficients[,2:(ncol(Th)+1)]

V=W

beta.hat=V%*%t(gamm)

pred=predict(plsfit)

CCR=sum(pred==resp0)/length(pred)*100

IMSE=f.IMSE(beta.hat)

list(Th=Th,beta.hat=beta.hat,CCR=CCR,IMSE=IMSE,

stop.early=stop.early)

}

}

################################################################

############################################################

# Use "f.gPLS" to choose optimal "m" with the minimum IMSE #

############################################################

imse.pls=rep(100000,nba)

for(ii in 1:nba){

fm.pls=f.PLS(resp,H,ii)

imse.pls[ii]=fm.pls$IMSE

if(fm.pls$stop.early==1){

ms=ii-1

break
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}

}

round(cbind(1:nba,imse.pls),3)

mpls=min(which(imse.pls==min(imse.pls)))

fpls=f.PLS(resp,H,mpls)

cat("The results for PLS method:")

cat("m is", mpls,"\n");cat("CCR is:", fpls$CCR, "\n");

cat("IMSE is:", fpls$IMSE)

beta.hat.pls=fpls$beta.hat

f.bcurves(beta.hat)

##############################################################

##############################################################

# Finally, compare the results for both PCR and gPLS methods:

##############################################################

cat("The results for PCA method:")

cat("m is", mpca,"\n");cat("CCR is:", fpca$CCR, "\n");

cat("IMSE is:", fpca$IMSE)

cat("The results for PLS method:")

cat("m is", mpls,"\n");cat("CCR is:", fpls$CCR, "\n");

cat("IMSE is:", fpls$IMSE)

################################

bb.pca = Xt[1:3]

bb.pca$coefs = beta.hat.pca

bb.pls = Xt[1:3]

bb.pls$coefs = beta.hat.pls

par(mfrow=c(2,2))
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plot(Xt,col=1,lty=1,main="All predictor curves")

plot(bb.pca[1],col=2,lty=2,

main=expression(beta[1](t) ~’&’~ hat(beta)[1](t)),

ylim=range(c(range(b1t$coefs),range(bb.pca[1]$coefs),

range(bb.pls[1]$coefs))))

lines(bb.pls[1], col = 4, lty=4)

lines(b1t,col=1,lty=1)

plot(bb.pca[2],col=2,lty=2,

main=expression(beta[2](t) ~’&’~ hat(beta)[2](t)),

ylim=range(c(range(b2t$coefs),range(bb.pca[2]$coefs),

range(bb.pls[2]$coefs))))

lines(bb.pls[2], col = 4, lty=4)

lines(b2t,col=1,lty=1)

plot(bb.pca[3],col=2,lty=2,

main=expression(beta[3](t) ~’&’~ hat(beta)[3](t)),

ylim=range(c(range(b3t$coefs),range(bb.pca[3]$coefs),

range(bb.pls[3]$coefs))))

lines(bb.pls[3], col = 4, lty=4)

lines(b3t,col=1,lty=1)

legend("bottomleft",cex=0.4,l

egend=c("True curves", "PCA", "gPLS"),

col=c(1, 2, 4), lty = 1:3)

############################

# Box plot of the distribution of

# correlations between columns of

# the design matrix H

############################
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cH=cor(Th)

index=lower.tri(cH, diag = FALSE)

upt=cH[index]

boxplot(upt)

####################################################################

####################################################################

##############

# Simulation #

##############

#####################################################################

set.seed(12345)

REP=500 # of simulations

pcat=matrix(,REP,3)

colnames(pcat)=c("m","CCR","IMSE")

rownames(pcat)=1:REP

plst=matrix(,REP,3)

colnames(plst)=c("m","CCR","IMSE")

rownames(plst)=1:REP

t1=Sys.time()

for(h in 1:REP){

PI=f.PI(alpha,bt,Xt)

resp<-f.resp(PI)

A=t(Xt$coefs) # A is a n*p(nba) coefficient matrix

Psi=inprod(splinebasis,splinebasis)

H=A%*%Psi # H is a n*p design matrix



193

#######################

# Use "f.PCA" to choose optimal "m" with the minimum IMSE #

#######################

imse.pca=rep(0,nba)

for(ii in 1:nba){

fm.pca=f.PCA(resp,H,ii)

imse.pca[ii]=fm.pca$IMSE

}

mpca=which(imse.pca==min(imse.pca))

fpca=f.PCA(resp,H,mpca)

pcat[h,]=c(mpca,fpca$CCR,fpca$IMSE)

# Use "f.gPLS" to choose optimal "m" with the minimum IMSE #

imse.pls=rep(100000,nba)

for(ii in 1:nba){

fm.pls=f.PLS(resp,H,ii)

imse.pls[ii]=fm.pls$IMSE

if(fm.pls$stop.early==1){

ms=ii-1

break

}

}

mpls=min(which(imse.pls==min(imse.pls)))

fpls=f.PLS(resp,H,mpls)

plst[h,]=c(mpls,fpls$CCR,fpls$IMSE)

print(h)
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}

t2=Sys.time()

t2-t1 # tell us the time span

##########################################################

#sink("Q1,2,3,4.txt")

pcat

plst

pca.ccr=pcat[,2]

pca.imse=pcat[,3]

pls.ccr=plst[,2]

pls.imse=plst[,3]

par(mfrow=c(1,2))

boxplot(pca.ccr,pls.ccr,xaxt="n",main=("Box plot for CCR"))

axis(1, at=1:2,labels=c("CCR.PCR","CCR.gPLS"))

boxplot(pca.imse,pls.imse,xaxt="n",main=("Box plot for IMSE "))

axis(1, at=1:2,labels=c("IMSE.PCR","IMSE.gPLS"))

par(mfrow=c(1,2))

boxplot(pls.ccr,xaxt="n",main=("Box plot for CCR"))

axis(1, at=1:1,labels=c("CCR.gPLS"))

boxplot(pls.imse,xaxt="n",main=("Box plot for IMSE "))

axis(1, at=1:1,labels=c("IMSE.gPLS"))

mean(pcat[,1]);sd(pcat[,1])
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mean(pcat[,2]);sd(pcat[,2])

mean(pcat[,3]);sd(pcat[,3])

mean(plst[,1]);sd(plst[,1])

mean(plst[,2]);sd(plst[,2])

mean(plst[,3]);sd(plst[,3])

t2-t1

summary(pcat)

summary(plst)

#sink()

###############################################################

###############################################################
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###############################################################

###############################################################

## R code of Real dataset: ##

# Description:This data set consists of 80 samples #

# of corn measured on 3 different NIR spectrometers. #

# The wavelength range is 1100-2498nm #

# at 2 nm intervals (700 channels). #

###############################################################

###############################################################

##### reading m5spec, mp5spec, mp6spec data ####

setwd("/Users/amani/Desktop/myRealData")

par(mfrow=c(1,3))

m5sp=read.csv("m5spec.csv", header=F)

ch=as.numeric(m5sp[1,])

plot(ch,as.numeric(m5sp[2,]),

type="l", main="m5spec", ylim=c(0,0.9))

for(i in 3:81){

lines(ch,as.numeric(m5sp[i,]))}

mp5sp=read.csv("mp5spec.csv", header=F)

ch=as.numeric(mp5sp[1,])

plot(ch,as.numeric(mp5sp[2,]),

type="l", main="mp5spec", ylim=c(0,0.9))

for(i in 3:81){
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lines(ch,as.numeric(mp5sp[i,]))}

mp6sp=read.csv("mp6spec.csv", header=F)

ch=as.numeric(mp6sp[1,])

plot(ch,as.numeric(mp6sp[2,]),

type="l", main="mp6spec", ylim=c(0,0.9))

for(i in 3:81){

lines(ch,as.numeric(mp6sp[i,]))}

###########################

# draw 3D curves

###########################

x <- c(1, nrow(m5sp)*3)

y <- range(ch)

ygrid <- ch

z <- matrix(-0.05+0*rnorm(length(y)*length(x)), nrow = length(x))

dim(z)

op <- par(bg = "white")

par(oma=c(0,0,0,0))

persp(x, y, z, phi = 25, theta = 55, expand = 0.7, col = "white",

ltheta = 120,

ticktype = "detailed",

#ticktype = "simple",

#box = FALSE,

#border = FALSE,
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xlab = "Index", ylab = "wavelength", zlab = "Spectrum curve",

zlim = c(-0.05, 1)

) -> res

round(res, 3)

lines (trans3d(x = 243, z = 1, y = range(ch), pmat = res),

col = "white", lty = 1, lwd = 2)

lines (trans3d(x = c(1, 243), z = 1, y = range(ch)[1], pmat = res),

col = "white", lty = 1, lwd = 2)

lines (trans3d(x = 243, z = c(-0.05, 1), y = range(ch)[1], pmat = res),

col = "white", lty = 1, lwd = 2)

for(i in (1:4)*50){

lines (trans3d(x = i, z = -0.05, y = range(ch), pmat = res),

col = "lightgrey", lty = 1)

}

for(i in c(1250, 1500, 1750, 2000, 2250)){

lines (trans3d(x = c(1, 243), z = -0.05, y = i, pmat = res),

col = "lightgrey", lty = 1)

}

for(i in (1:4)*50){

lines (trans3d(x = i, z = c(-0.05, 1), y = range(ch)[2], pmat = res),

col = "lightgrey", lty = 1)

}

for(i in 1:5/5){

lines (trans3d(x = c(1, 243), z = i, y = range(ch)[2],

pmat = res), col = "lightgrey", lty = 1)

}
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for(i in 1:5/5){

lines (trans3d(x = 1, z = i, y = range(ch), pmat = res),

col = "lightgrey", lty = 1)

}

for(i in c(1250, 1500, 1750, 2000, 2250)){

lines (trans3d(x = 1, z = c(-0.05, 1), y = i,

pmat = res), col = "lightgrey", lty = 1)

}

lines (trans3d(x = 1, z = -0.05, y = range(ch), pmat = res),

col = "lightgrey", lty = 1)

lines (trans3d(x = c(1, 243), z = -0.05, y = range(ch)[2], pmat = res),

col = "lightgrey", lty = 1)

lines (trans3d(x = 1, z = c(-0.05, 1), y = range(ch)[2], pmat = res),

col = "lightgrey", lty = 1)

lines (trans3d(x = c(1, 243), z = 1, y = range(ch)[2], pmat = res),

col = "white", lty = 1, lwd = 2)

lines (trans3d(x = 1, z = 1, y = range(ch), pmat = res),

col = "white", lty = 1, lwd = 2)

lines (trans3d(x = 243, z = c(-0.05, 1), y = range(ch)[2], pmat = res),

col = "white", lty = 1, lwd = 2)

lines (trans3d(x = 243, z = -0.05, y = range(ch), pmat = res),

col = 1, lty = 1, lwd = 1.5)

lines (trans3d(x = c(1, 243), z = -0.05, y = range(ch)[1], pmat = res),

col = 1, lty = 1, lwd = 1.5)

lines (trans3d(x = 1, z = c(-0.05, 1), y = range(ch)[1], pmat = res),

col = 1, lty = 1, lwd = 1.5)
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for(i in 1:nrow(m5sp)){

lines (trans3d(x = i, y = ygrid, z = as.numeric(m5sp[i,]), pmat = res),

col = 2, lwd = 0.95)

}

for(i in 1:nrow(mp5sp)){

lines (trans3d(x = nrow(m5sp) + i, y = ygrid, z = as.numeric(mp5sp[i,]),

pmat = res), col = 3, lwd = 0.95)

}

for(i in 1:nrow(mp6sp)){

lines (trans3d(x = nrow(m5sp) + nrow(mp5sp) + i, y = ygrid,

z = as.numeric(mp6sp[i,]), pmat = res), lwd = 0.95, col = 4)

}

legend("bottomleft", legend = c("m5spec","mp5spec","mp6spec"), col = 2:4,

lty = 1, cex = 0.8)

#############################

### 240 predictor curves ###

#############################

mp=rbind(m5sp[2:81,],mp5sp[2:81,],mp6sp[2:81,])

colnames(mp)=round(m5sp[1,])

rownames(mp)=1:240

mp1=m5sp[2:81,]

colnames(mp1)=round(m5sp[1,])

rownames(mp1)=1:80

mp2=mp5sp[2:81,]

colnames(mp2)=round(mp5sp[1,])
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rownames(mp2)=1:80

mp3=mp6sp[2:81,]

colnames(mp3)=round(mp6sp[1,])

rownames(mp3)=1:80

mp1[1:6,1:6]

dim(mp1)

set.seed(20170409)

ind=sample(1:80)

ind1=ind[1:30] # first instrument has 30 curves

ind2=ind[31:60] # second instrument has 30 curves

ind3=ind[61:80] # third instrument has 20 curves

xm=rbind(mp1[ind1,],mp2[ind2,],mp3[ind3,])

dim(xm)

y=c(rep(1,30),rep(2,30),rep(3,20))

par(mfrow=c(1,1))

matplot(t(xm),type="l")

# now xm is a 80 by 700 matrix of predictor curves

# y is the response

##########################################################

# X(t) with bsplines in fda() #

######################################

rangeval=c(1100,2498)
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nks=30

nba=nks+2 # number of basis

splinebasis= create.bspline.basis(rangeval, nbasis=nba)

tn=(0:699/700)*(2500-1100)+1100

Xt=Data2fd(tn, t(xm), splinebasis)

#######################################

par(mfrow=c(1,2))

labl=(1:20/20)*700

xseq=seq(1100,2498,2)[labl]

matplot(t(xm),xaxt="n",type="l",main=c("Raw Data"),col=y,lty=1)

axis(1, at=labl,labels=xseq)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

plot(Xt, main="Smooth Curves",col=y,lty=1)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

##########################################################

# Get design matrix H #

#######################

A=t(Xt$coefs) # A is a n*p(nba) coefficient matrix

dim(A)

Psi=inprod(splinebasis,splinebasis)

H=A%*%Psi

dim(H)

resp=as.factor(y)

resp

##########################################################
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###########################################

# Split the data into train and test sets #

###########################################

# we need to split xm and y into two sets!

xtrain = rbind(mp1[ind1[1:24],], mp2[ind2[1:24],],

mp3[ind3[1:16],])

xtest = rbind(mp1[ind1[25:30],], mp2[ind2[25:30],],

mp3[ind3[17:20],])

ytrain = c(rep(1, 24), rep(2, 24), rep(3, 16))

ytest = c(rep(1, 6), rep(2, 6), rep(3, 4))

#xm = rbind(xtrain, xtest)

#y = c(ytrain, ytest)

#xtrain=xtest

#ytrain=ytest

#################

# training data #

#################

Xttrain=Data2fd(tn, t(xtrain), splinebasis)

par(mfrow=c(1,2))

labl=(1:20/20)*700

xseq=seq(1100,2498,2)[labl]
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matplot(t(xtrain),xaxt="n",type="l",

main=c("Raw Data"),col=ytrain,lty=1)

axis(1, at=labl,labels=xseq)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

plot(Xttrain, main="Smooth Curves",col=ytrain,lty=1)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

A=t(Xttrain$coefs) # A is a n*p(nba) coefficient matrix

dim(A)

Psi=inprod(splinebasis,splinebasis)

H=A%*%Psi

dim(H)

resp=as.factor(ytrain)

length(resp)

resp

################

# testing data #

################

Xttest=Data2fd(tn, t(xtest), splinebasis)

A.test=t(Xttest$coefs)

dim(A.test)

Psi=inprod(splinebasis,splinebasis)
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H.test=A.test%*%Psi

resp.test=as.factor(ytest)

length(resp.test)

resp.test

par(mfrow=c(1,2))

labl=(1:20/20)*700

xseq=seq(1100,2498,2)[labl]

matplot(t(xtest),xaxt="n",type="l",

main=c("Raw data"),col=ytest,lty=1)

axis(1, at=labl,labels=xseq)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

plot(Xttest, main="Smooth Curves",col=ytest,lty=1)

legend("topleft",cex=0.5,legend=c("m5spec","mp5spec","mp6spec"),

col=1:3, lty=1)

###########################################################

# Create a function "f.bcurves" for estimated beta curves

###########################################################

f.bcurves<-function(bh){

bb=Xt[1:2]

bb$coefs=bh

par(mfrow=c(1,1))

plot(bb[1],col=2,lty=1,
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main=expression(hat(beta)[1](t) ~’&’~ hat(beta)[2](t))

, ylim=range(c(bb[1]$coefs,bb[2]$coefs)))

lines(bb[2],col=4,lty=2)

legend("topleft",cex=0.5,legend=c("beta1","beta2"),

col=c(2,4), lty=1:2)

#par(mfrow=c(1,2))

#plot(bb[1],col=2,lty=1,main="beta1hat",

ylim=range(c(bb[1]$coefs,bb[2]$coefs)))

#plot(bb[2],col=4,lty=1,main="beta2hat",

ylim=range(c(bb[1]$coefs,bb[2]$coefs)))

}

#######################################################

#####################

# Compute pi.is.hat #

#####################

fpihat <- function(H1, a.hat, b.hat){

S <- length(a.hat) + 1

nr <- nrow(H1)

L <- matrix(NA, nrow = nr, ncol = S)

L[,1]=rep(0, nr)

for(s in 2:S){

L[,s] <- rep(a.hat[s-1], nr) + H1%*%b.hat[,s-1]

}

pi.is.hat <- matrix(NA, nrow = nr, ncol = S)
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for(i in 1:nr){

expl = exp(L[i,])

if(max(expl) == Inf){

expl0 = expl

expl0[which(expl == Inf)] <- 1

expl0[which(expl != Inf)] <- 0

expl = expl0

}

pi.is.hat[i,] <- expl/sum(expl)

}

pred.y=rep(0, nr)

for(i in 1:nr){

pred.y[i] <- which(pi.is.hat[i,] == max(pi.is.hat[i,]))[1]

}

list(pih = pi.is.hat, pry = pred.y)

}

#fff=fpihat(H, alpha.hat, beta.hat)

###########################################################

###########################################################

# Create a function "f.PLS" to get beta.hat

#using gPLS (+ PCA) for a given m.

# Input "resp" & "H",

# returns PLS components "T", "beta.hat", "CCR" and "IMSE"

###########################################################

f.PLS<-function(resp0,H0,m0){
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stop.early=0

s=length(levels(resp0))-1

n=nrow(H0)

p=ncol(H0)

# Step1

delta=matrix(,nrow=s,ncol=p)

sedelta=matrix(,nrow=s,ncol=p)

for(j in 1:p){

mfit=multinom(resp0 ~ H0[,j])

delta[,j]=summary(mfit)$coefficients[,2]

sedelta[,j]=summary(mfit)$standard.errors[,2]

}

V0=matrix(,nrow=s,ncol=p)

for(i in 1:s){

V0[i,]=delta[i,]/sqrt(sum(delta[i,]^2))

}

Z=delta/sedelta

ind1=abs(Z)>1.96

V1=V0*ind1 # V1 is a s*p matrix

T1m=H0%*%t(V1)

d0=apply(abs(T1m), 2, sum)!=0

T1m=T1m[,d0]

v1=ginv(t(H0)%*%H0)%*%t(H0)%*%T1m # T=Hv

#round(sum(abs(H0%*%v1-T1m)),6)
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co=cov(T1m)

eg=eigen(co)

Vpc=eg$vectors

Vpcm=cbind(Vpc[,1])

T1=T1m%*%Vpcm

w1=v1%*%Vpcm

#round(sum(abs(H0%*%w1-T1)),6)

if(m0==1){

# Get the results when m0=1

Th=T1

plsfit=multinom(resp0 ~ Th)

alph=unname(summary(plsfit)$coefficients[,1])

gamm=summary(plsfit)$coefficients[,2]

V=w1

beta.hat=V%*%t(gamm)

pred=predict(plsfit)

CCR=sum(pred==resp0)/length(pred)*100

list(Th=Th,beta.hat=beta.hat,alpha.hat=alph,

CCR=CCR,stop.early=stop.early)

}

else{

# Get the results when m0!=1

W=matrix(,nrow=ncol(H0),m0)

TT=matrix(,nrow(H0),m0)
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W[,1]=w1

TT[,1]=T1

for(k in 2:m0){

Tp=cbind(TT[,1:(k-1)])

delta=matrix(,s,p)

sedelta=matrix(,s,p)

for(j in 1:p){

mfit=multinom(resp0 ~ Tp + H0[,j])

delta[,j]=summary(mfit)$coefficients[,ncol(Tp)+2]

sedelta[,j]=summary(mfit)$standard.errors[,ncol(Tp)+2]

}

if(sum(is.nan(sedelta))+sum(is.nan(delta))>0){

cat("The maxium m is", k-1)

stop.early=1

TT=TT[,1:(k-1)]

W=W[,1:(k-1)]

break

}

Vp=matrix(,s,p)

for(i in 1:s){

Vp[i,]=delta[i,]/sqrt(sum(delta[i,]^2))

}

Z=delta/sedelta
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ind2m=abs(Z)>1.96

V2m=Vp*ind2m

if(sum(abs(V2m))==0){

cat("The maxium m is", k-1)

stop.early=1

TT=TT[,1:(k-1)]

W=W[,1:(k-1)]

break

}

#else{

R=matrix(,n,p)

for(j in 1:p){

R[,j]=resid(lm(H0[,j] ~ Tp-1))

}

T2m=R%*%t(V2m)

d0=apply(abs(T2m), 2, sum)!=0

T2m=cbind(T2m[,d0])

v2=ginv(t(H0)%*%H0)%*%t(H0)%*%T2m # T=Hv

round(sum(abs(H0%*%v2-T2m)),6)

if(ncol(T2m)==1){

TT[,k]=T2m

W[,k]=v2

}
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else{

co=cov(T2m)

eg=eigen(co)

Vpc=eg$vectors

Vpcm=cbind(Vpc[,1])

TT[,k]=T2m%*%Vpcm

W[,k]=v2%*%Vpcm

#round(sum(abs(H0%*%W[,k]-TT[,k])),6)

}

#}

}

Th=TT

plsfit=multinom(resp0 ~ Th)

alph=unname(summary(plsfit)$coefficients[,1])

gamm=summary(plsfit)$coefficients[,2:(ncol(Th)+1)]

V=W

beta.hat=V%*%t(gamm)

pred=predict(plsfit)

CCR=sum(pred==resp0)/length(pred)*100

list(Th=Th,beta.hat=beta.hat,alpha.hat=alph,

CCR=CCR,stop.early=stop.early)

}

}

#######################################################
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#########################

# CVMSE & CVCCR for PLS #

#########################

f.pls.CV <- function(H0, resp0, m0){

nr = nrow(H0)

S = length(levels(resp0))

y0 = as.numeric(resp0)

picv = matrix(0, nr, S)

ypcv = rep(NA, nr)

for(j in 1:nr){

H_j = H0[-j,]

Hj = matrix(H0[j,], nrow = 1)

resp_j = resp0[-j]

fpls = f.PLS(resp_j, H_j, m0)

a.j = fpls$alpha.hat

b.j = fpls$beta.hat

fpi = fpihat(Hj, a.j, b.j)

picv[j,] = fpi$pih

ypcv[j] = fpi$pry

print(j)

}

# get CVMSE
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Y0 = matrix(0, nr, S)

for(k in 1:S){

Y0[y0 == as.numeric(levels(resp0))[k], k] <- 1

}

CVMSE <- sum((Y0 - picv)^2)/(nr*S)

# get CVCCR

CVCCR <- sum(ypcv == y0)/nr*100

list(predicted.pi = picv, predicted.y = ypcv,

CVMSE = CVMSE, CVCCR = CVCCR)

}

###################################

# Using CVMSE & CVCCR to choose m #

###################################

cvmse = NULL

cvccr = NULL

npls = 5

for(i in 1:npls){

fplscv = f.pls.CV(H, resp, i)

cvmse[i] = fplscv$CVMSE

cvccr[i] = fplscv$CVCCR

}

pls_CV = data.frame(cvmse,cvccr)

rownames(pls_CV) = 1:npls

pls_CV
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par(mfrow=c(1,2))

plot(pls_CV$cvmse, type = "b", xlab = "no. of pls",

ylab = "CVMSE")

plot(pls_CV$cvccr, type = "b", xlab = "no. of pls",

ylab = "CVCCR")

par(mfrow=c(1,1))

###################

# In_sample error #

###################

mpls=2

fpls=f.PLS(resp,H,mpls)

cat("The results for PLS method:")

cat("m is", mpls,"\n");cat("CCR is:", fpls$CCR, "\n" );

cat("CVMSE is:",fplscv$CVMSE, "\n")

beta.hat=fpls$beta.hat

alpha.hat=fpls$alpha.hat

f.bcurves(beta.hat)

####################

# Out_sample error #

####################

fpi = fpihat(H.test, alpha.hat, beta.hat)

picv = fpi$pih

ypcv = fpi$pry

round(picv, 3)

ypcv
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#########

# get PMSE

##########

nr = nrow(H.test);nr

S = length(levels(resp.test));S

Y0 = matrix(0, nr, S)

y0 = as.numeric(resp.test)

for(k in 1:S){

Y0[y0 == as.numeric(levels(resp.test))[k], k] <- 1

}

PMSE <- sum((Y0 - picv)^2)/(nr*S)

##########

# get CCR

##########

CCR <- sum(ypcv == y0)/nr *100

cat("The results for PLS method:")

cat("m is", mpca,"\n");cat("CCR is:", CCR, "\n");

cat("PMSE is:", PMSE, "\n")

##############################################################
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