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ABSTRACT 

Traxler, Karen.  Estimating Bias in Multilevel Reliability Coefficients: A Monte Carlo 
Simulation. Published Doctor of Philosophy dissertation, University of Northern 
Colorado, 2017. 

 
 

Purpose: The purpose of this dissertation was to generate observed scores under 

complex data conditions often found in the real world and (a) investigate error in terms of 

internal consistency reliability within the Classical Test Theory framework (Cronbach’s 

α and polychoric ordinal α) and person reliability within Rasch Rating Scale Model 

(RSM); (b) inform applied researchers about possible relative bias in reliability 

coefficients when more complex data structures and underlying distributions are 

encountered; and (c) provide applied researchers a reference from which to interpret their 

results. Methods: Using Monte Carlo simulation techniques to generate polytomous 

response choices in single-level and multilevel models, sample reliability coefficients, 

standard errors of reliability estimates, and levels of absolute relative bias were examined 

and compared across a range of data conditions, including normal, mixed, and non-

normal distributions and varying sample sizes. Results: The results support taking the 

structure of the data collected into account during the analytic phase and provide 

empirical evidence that if data collected for research are dependent on a higher order 

structure, reliability coefficients in a multilevel model are less biased than those derived 

from a single-level model. 
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Additionally, results support the idea that polychoric ordinal α at level-1 of a  

two-level sampling design have slightly less bias across all data conditions than 

Cronbach’s α, and under normal and mixed data distributions for person reliability; 

however, the small gain in the precision of reliability estimates may not be worth the 

additional effort of calculating polychoric ordinal α for many clinicians and educators. 

Recommendations for Applied Researchers: Using Cronbach’s α under normal and 

mixed data conditions and across sample sizes is acceptable and easier to estimate due to 

its availability in social science software. For extremely non-normal data, the Rasch-

RSM model should be used since the effort is worth the lower level of bias. The results 

also show that a variety of different data properties jointly affect reliability coefficients 

and care should be taken to provide both context and a theoretical framework in which to 

interpret results.  

 

Keywords: Reliability, Cronbach’s α, polychoric ordinal α, multilevel models, multilevel 

confirmatory factor analysis, Rasch item response theory, rating scale model 
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CHAPTER I 

INTRODUCTION 

In the United States the emphasis on evidence-based practices (EBPs) in the fields 

of behavioral, educational, psychological, and social sciences propels the demand for 

reliable and accurate results on a variety of self-report and objective assessments. 

Surveys and assessment instruments are a common method used to measure an 

assortment of individual and group attributes such as attitudes, beliefs, cognitive 

competencies, abilities, and performance. In many cases, individual certification or 

licensure are at stake, therefore, clinicians, teachers, administrators, and other 

stakeholders must be able to depend on the results observed on the assessment 

instruments employed (Townsend, Christensen, Kreiter, & ZumBrunnen, 2010). The 

development and implementation of effective treatments, interventions, and programs 

across the fields of education, psychology, and the social sciences rely on assessments 

that consistently measure the traits they were developed to measure. Therefore, it is 

imperative that the systematic processes by which assessments are developed and 

administered and data are collected and analyzed be established and practiced (Converse, 

2009; Thorndike & Thorndike-Christ, 2010). Consequently, it is critical that, educational 

and social researchers support these stakeholders through the rigorous examination of the 

methodological issues involved in consistent and valid measurement of the individual and 

group traits of interest, from attitudes to aptitude. This dissertation focused on the 
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reliability of scores related to measures of attitude, specifically polytomously scored 

items using a multilevel sampling design.  

Measuring Latent Traits 

Quantification is the objective for many social, psychological, and behavioral 

science researchers (Converse, 2009; Cronbach, 1951; Likert, 1932; Thorndike & 

Thorndike-Christ, 2010; Thurstone, 1924). Unlike the concrete measurements used in 

biology, physics, chemistry, and other natural sciences, measurements in socio-

behavioral research are more conceptual, requiring abstract thinking and the formation of 

theoretical constructs, also known as latent traits or factors (Andrich, 1988; Pedhazur & 

Schmelkin, 1991). In other words, since most phenomena of interest in socio-behavioral 

sciences are measured indirectly, that is, inferences are drawn based on various indicators 

related to the traits being studied, social research utilizing self-report and objective 

assessment tools is seen as a practical method of data collection and the use of these 

instruments is now widely accepted. However, the debate of using fundamental 

measurement processes with implicitly measured traits continues. A deeper 

understanding of the evolution of measurement theories in the social sciences may 

illuminate the rationale for the methods employed to measure unobserved phenomena. 

An Overview of Measurement Theories 

Measurement theories and statistical models used to measure latent traits and 

assess accurate response scaling have evolved and three distinct measurement theories 

now dominate the research and application of assessment tools: Classical Test Theory 

(CTT; Spearman, 1904), Generalizability Theory (Brennan, 1992), and Item Response 

Theory (IRT; Rasch, 1960). Two important components of these prevailing measurement 



 

 

3 

theories are the understanding and treatment of measurement error (Brennan, 1992; 

Cronbach, 1951; Guttman, 1950; Likert, 1932, Lord, 1952; Lord & Novik, 1968; 

Masters, 1982; L. K. Muthén & Muthén, 2002; Rasch, 1960; Spearman, 1904; Thurstone, 

1928). In this dissertation I focused on CTT and Rasch IRT measurement theories. Rasch 

IRT is a subset of IRT which evolved to address some of the limitations of CTT such as 

sample dependence, the lack of specific item level information, and the inability to 

partition variance (J. B. Kline, 2005). Both CTT and Rasch IRT use quantitative methods 

to measure latent traits by assessing the true relationships between empirical observations 

(Pedhazur & Schmelkin, 1991). Measurement theories are subsumed within these widely 

accepted measurement frameworks (CTT; and Rasch IRT). Regardless of the 

measurement framework embraced, by maximizing the consistency and accuracy of the 

results and minimizing measurement error through the systematic use of well-established 

methods, measurement frameworks provide the tools necessary to conceptualize 

individual and/or group differences. Both CTT and Rasch IRT will be discussed in more 

detail in Chapter II.  

Psychometric Analysis of Scores from 
Assessment Instruments 

 
As mentioned previously, in socio-behavioral research, CTT and Rasch IRT 

frameworks are widely used to assess the relationships between observed item responses 

and unobserved latent traits of interest on assessment instruments using psychometric 

analysis. The National Council on Measurement in Education (Kolen & Tong, 2009) 

defined psychometrics as “a field of study concerned with the theory and technique of 

psychological measurement, assessment, and related activities” (para 1). The field of 

psychometrics encompasses the objective measurement of attitudes and aptitudes as well 
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as the development and validation of assessment instruments such as personality tests, 

questionnaires, tests, and raters’ judgments. Psychometric analytic techniques are 

therefore used to examine bias in the observed scores, response scaling, item to sample 

size ratio, multilevel data structures, and unobserved latent traits measured. These aspects 

are multifaceted and require intense scrutiny. During the development phase of any 

assessment tool, reliability and validity are considered “the two most important 

fundamental characteristics of any [psychometric] procedure” (Miller, 2004, p. 1). Miller 

(2004) explained that scores on an assessment instrument can be reliable (representing 

consistency and reproducibility) without being valid (representing accuracy) but cannot 

be valid without first being reliable. Reliability coefficients are estimates of true measure 

variance to observed measure variance and since the reliability of scores impacts validity, 

the intent of this dissertation was to examine any bias in estimates of reliability across a 

myriad of data conditions and sampling designs. These data conditions include varying 

sample sizes and single and two-level data structures. The premise being that both data 

conditions and sampling designs have the potential to introduce measurement error which 

may render the interpretation of results suspect (Cronbach, 1951; Guttman, 1950; Likert, 

1932, Lord, 1952; Lord & Novick, 1968; Masters, 1982; L. K. Muthén & Muthén, 2002; 

Rasch, 1960; Spearman, 1904; Thurstone, 1928). 

Reliability is not an index of quality but a measure of relative reproducibility and 

as is well-known, reliability is not a property of the instrument itself but of the scores 

obtained from a particular sample of examinees by the instrument (American Educational 

Research Association, 2014). Reliability is sample dependent and predicated on the level 

of measurement (dichotomous, ordinal or continuous scores), distribution of scores, 
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number of items and response choices, the nature of the relationship between the 

variables and the latent trait of interest, and any group differences.  

Reliability Within the Classical Test 
Theory Framework 
 

The most common reliability coefficient in published social science literature is 

Cronbach’s α (Cronbach, 1951). Alpha, which emerged from CTT is a coefficient of 

internal consistency. Cronbach’s α is best suited for continuous data, although it is often 

used for polytomously (ordered) and dichotomously scored (yes/no, true/false, 

correct/incorrect) data, which are then treated as continuous. The theoretical value of 

Cronbach’s α falls between 0 and 1 and will increase as the inter-item correlations 

increase (Cronbach, 1951).  

An adaptation of Cronbach’s α being revisited in contemporary research is the 

polychoric ordinal α used for polytomously scored variables such as those found in Likert 

or Likert-type responses (Bonanomi, Ruscone, & Osmetti, 2013; Gadermann, Gruhn, & 

Zumbo, 2012; Zumbo, Gadermann, & Zeisser, 2007). The polychoric ordinal α utilizes 

the polychoric correlation coefficient introduced by Pearson (1900). Polychoric ordinal α 

is also recommended by Ekström (2009), Ekström (2010); Haldgado-Tello, Chacón-

Moscoso, Barbero-García, and Vila-Abad (2008), and Zumbo et al. (2007) to measure 

ordinal variables such as those obtained from an ordinal response scale.  

Finally, CTT-based reliability of observed scores can also be estimated using 

Confirmatory Factor Analysis (CFA) for single-level models and Multilevel 

Confirmatory Factor Analysis (MCFA) for multilevel models, where the objective is to 

test whether the observed scores on an assessment instrument fit a hypothesized 

measurement model T. A. Brown (2015); Geldhof, Preacher, and Zyphur (2014), 
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Raudenbush and Bryk (1994, 2002). Though there are other methods for producing CTT-

based reliability estimates, these are beyond the scope of the current study and are thus 

not described. 

Reliability Within the Rasch Item 
Response Theory Framework 
 

Person reliability and person separation as well as item reliability and item 

separation account for reliability estimates within the Rasch IRT family of models. In 

other words, reliability in Rasch IRT models varies across person ability levels, and 

depends specifically on how well the items’ difficulty matches a person’s ability (Bond & 

Fox, 2014; Rasch, 1960). 

Since one main aspect of this dissertation was to focus on polytomously scored 

(ordinal) assessment items with the same number of response choices across items, the 

rating scale model (RSM), an extension of the Rasch IRT model, was examined  

Problem Statement 

With the national call for behavioral, educational, and social interventions, 

treatments, and programs based on empirical evidence (i.e.: evidence based practices: 

EBP’s), methodological studies regarding the consistency and accuracy of the scores 

obtained on measurement instruments used to support these interventions and treatments 

and programs are necessary. Stakeholders and policy-makers alike count on the results of 

these studies that utilize assessment tools to allocate resources and expand or dismantle 

programs. Therefore, it is critical that these decisions are predicated on reliable, accurate, 

and interpretable results, regardless of the complexities of the research design. As 

mentioned previously, a thorough review of the literature indicates that reliability is one 

of the most important characteristics of any psychometric procedure, regardless of the 
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underlying measurement framework (Allen & Yen, 1979; Choi, Dunlop, Chen, & Kim, 

2011; Culligan, 2013; Culpepper, 2013; Dick & Hagerty, 1971; Fitzmaurice, 2002; 

Gaberson, 1997; Gliner, Morgan, & Harmon, 2001; J. B. Kline, 1999, 2005; Shavelson & 

Webb, 1991; Thorndike & Thorndike-Christ, 2010). Considering the high-stakes 

decisions based on assessment results, providing guidance on how best to obtain accurate 

estimates of reliability of the scores on any measurement instrument across multiple 

disciplines is paramount. Since reliability is heavily affected by item and respondent 

attributes of latent distributions, the standard error of measurement for any given latent 

trait value will also be affected by these item and respondent attributes (Culpepper, 

2013). Issues related to reliability estimates within the CTT, and IRT frameworks have 

been well documented; however; bias in estimating reliability coefficients across these 

frameworks using polytomous data and examining both standard estimates and 

polychoric coefficients under realistic data circumstances is uncertain, especially in 

multilevel sampling designs which are discussed in more detail below.  

Rationale for the Study 

Charter (2003), Cicchetti (1994), Culpepper (2013), Gadermann et al. (2012), 

Geldhof et al. (2014), Linacre (2012), Maas and Hox (2005), Nunnally and Bernstein 

(1994), Wright and Stone (1979), Yurdugul (2008); Zumbo et al. (2007), and others 

suggest building upon previous research related to accurate reliability estimates in CTT 

and Rasch IRT by further assessing the appropriate sample sizes and shapes of the latent 

distributions with respect to ordinal response items.  

Key considerations when estimating reliability were the level of measurement for 

the response scale and the underlying structure of the data. For example, with greater 



 

 

8 

emphasis on EBPs, educational and social researchers must be able to take into account 

the effects of ordinal response scales and more complex sampling designs on estimates of 

reliability. These advanced designs are central to their research and the investigation into 

the distinct sources of error variation must include variable interactions (Bonito, Ruppel, 

& Keyton, 2012; Davidson, Cooper, & Bullock, 2010; B. O. Muthén, 1994). Few studies 

have examined the methodological issues inherent in estimating reliability using 

multilevel modeling (Gadermann et al., 2012; Geldhof et al., 2014; Huang & Cornell, 

2016; Raykov & Penev, 2010; Sheng & Sheng, 2012). While these studies assess 

multilevel data structures under varying data conditions, none of these researchers 

specifically examined the consequences of non-normal data on reliability coefficients in 

multilevel models, nor did they assess polytomous data under the concurrent conditions 

of non-normality and multilevel data even though these complex data structures are a 

reality in educational and social science research. Finally, previous researchers examining 

polychoric ordinal α recommend varying sample sizes and distributional characteristics 

and measuring corresponding levels of bias to contribute to the methodological literature 

regarding reliability estimation, providing guidance to clinicians, educators, stakeholders, 

and applied researchers on the consequences of research design decisions on reliability 

estimates and inform academic, personal, professional, and policy determinations based 

on assessment results. 

Purpose of the Study 

The purpose of this dissertation was to assess four reliability coefficients under 

real world data conditions and sampling designs within the CTT and IRT frameworks by 

conducting a Monte Carlo simulation. Three main aspects of this dissertation are (a) to 
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generate polytomously scored sample data which represent a myriad of population data 

characteristics known to affect the reliability of scores obtained from a hypothetical 

assessment tool, (b) to assess reliability estimates and standard errors derived from both 

single-level and two-level models, and c) to investigate and report any bias found in 

reliability estimates across these data conditions and sampling designs. 

Research Questions and Hypotheses 

For this dissertation, using Monte Carlo simulation techniques, sample sizes and 

distributional characteristics were varied and levels of bias in reliability estimates were 

assessed, reported, and compared, when applicable, across single-level and two-level data 

structures. Detailed specifications for the varying data conditions and fixed parameters 

are found in Chapter III of this dissertation. The research questions answered in this study 

are: 

Q1 In a single-level model, to what degree do data conditions (sample size 
and distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person 
reliability)? 

 
H1 In single-level models, bias in reliability estimates will increase under the 

conditions of smaller sample sizes and non-normal or mixed distributions 
and polychoric ordinal α and person reliability will be less biased than 
Cronbach’s α. 

 
Q2 In a multilevel model, to what degree do data conditions (sample size and 

distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person reliability 
in level-1 (within groups) and the Spearman-Brown’s prophecy coefficient 
in level-2 (between groups)? 

 
H2 In multilevel models, bias in reliability estimates in level-1 will increase 

under the conditions of smaller sample sizes and non-normal or mixed 
distributions and polychoric ordinal α will be less biased than Cronbach’s 
α and person reliability. Additionally, Spearman-Brown’s prophecy 
coefficient will be underestimated under the conditions of smaller sample 
size and non-normal or mixed distributions 
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Q3 Do standard errors and levels of bias in reliability estimates (Cronbach’s 

α, polychoric ordinal α, and person reliability) differ when data are single-
level versus when data are at level-1 of a two-level across sample size and 
distribution of data?  

 
H3 When comparing the standard errors and levels of bias in reliability 

estimates of single-level and level-1 of two-level sampling designs, across 
three estimates of reliability, bias for level-1 of the two-level model will 
be lower than the bias found in the single-level models. 

 
 
Q4 To what degree do interactions among sample size, data distribution, and 

sampling design (e.g., single-level and two-level) affect levels of bias in 
reliability estimates (Cronbach’s α, polychoric ordinal α, person 
reliability, and Spearman-Brown’s prophecy coefficient)? 

 
H4 Interactions among sample size, data distribution, and sampling design 

will increase bias in reliability estimates, with the joint effect of lower 
sample sizes and non-normal and/or mixed distributions displaying the 
most bias. 

 
Limitations 

There are several limitations to this dissertation. First, limitations inherent to 

Monte Carlo simulation studies include the inability to define or apply context (e.g., 

theoretical foundations) to the results beyond hypothetical situations. In other words, 

Monte Carlo simulation procedures are data-intensive experimental designs requiring 

researchers to make numerous decisions regarding data conditions and sampling designs 

not always found in real-world data conditions, such as levels of non-normality and 

varying response patterns. Second, while the ability to control all data conditions selected 

for the study is alluring, these decisions may result in significant consequences. For 

example, in this dissertation, I held the number of items and the number of response 

choices constant for manageability of the design (items = 10, response choices = 5), I 

fixed Cronbach’s α, polychoric ordinal α, and person reliability to .70 and Intraclass 
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Correlation Coefficients (ICCs) in the multilevel model to .20, and then standardized 

person ability and item difficulty in order to resemble a fairly well-developed assessment 

tool administered to an ideal target population. Additionally, I selected only three levels 

of sample size and three item distributional characteristics (normally distributed data, a 

mixed data distribution with ½ of the responses normally distributed and ½ of the item 

responses non-normal, and a fully non-normal distribution) in the single-level models and 

two levels of sample size, two levels of group size, and three item distributional 

characteristics in the multilevel model with the intention of replicating real world data 

conditions. Each of these decisions has consequences on the level of bias in the reliability 

coefficients. Third, Monte-Carlo simulation will never capture all of the possible data 

conditions, sampling designs, and crossed designs implemented by applied researchers, 

limiting the application and generalizability of the results.  

Chapter Summary 

Measurement frameworks such as CTT and Rasch IRT are the most commonly 

utilized frameworks to develop, validate, and assess individual and group responses. 

Since the use of assessment tools, specifically measures of attitude using polytomously 

scored rating scales developed within these frameworks has increased to meet the 

emphasis on EBPs in the fields of behavioral, educational, psychological, and social 

sciences, consequences based on assessment results have intensified. Consequently, 

methodological studies regarding the reliability of responses has become imperative 

under a mélange of polytomously scored data, a variety data conditions and two-level 

models. Currently a considerable amount of methodological literature addresses issues 

relating to reliability estimation as almost an afterthought, as if the debate surrounding 
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the ramifications of biased estimates were settled long ago. The truth is, for those handful 

of researchers interested in the behavior of reliability estimates in the more complex 

sampling designs emerging in the educational and social sciences, the debate has been 

renewed with vigor. The practical importance of studies designed to address reliability 

estimate bias under the more realistic data characteristics found in applied educational 

and behavioral research, such as small sample sizes and data distributions not meeting the 

assumptions of normality or independence, cannot be overemphasized. Building on 

contemporary research conducted by Huang and Cornell (2016), Little (2013), Geldhof et 

al. (2014), Raykov and Penev (2010), and Sheng and Sheng (2012), through this 

dissertation I endeavored to fill in some of the gaps in the literature regarding bias in 

reliability estimation and generalization. Chapter II presents the theoretical and research 

literature supporting the need, purpose, data conditions, and distributional characteristics 

used in this dissertation, with a thorough examination of the importance of calculating 

and reporting reliability coefficients and the need to understand the role measurement 

error plays in estimating reliability. Chapter III provides a detailed description of the 

methods used to generate data and examine bias in reliability estimates across all data 

conditions and sampling distributions for single-level and multilevel models. The results 

are presented in Chapter IV, organized by research question and sampling design, In 

Chapter V, I communicate my conclusions and recommendations for applied researchers, 

clinicians, and educators and provide practical guidance on interpreting reliability 

coefficients under varying data conditions.  

 



 

 

13 

CHAPTER II 

REVIEW OF THE LITERATURE 

 This review of the literature provides the empirical basis to warrant, not only the 

need for the current study, but the specific research questions introduced in Chapter I. To 

understand the full scope of the myriad of issues related to accurate reliability estimates 

of scores obtained from summated rating scales (such as those found in psychological 

and educational research), Chapter II begins with a discussion of fundamental 

measurement in the realm of psychological and educational assessment. This is 

proceeded by a reflection on the origins of contemporary scaling methods and their 

relationship to fundamental measurement. Included in this section are issues related to 

item response scaling and the development of the Thorndike (1919), Thurstone (1928), 

Likert (1932), and Guttman (1950) response scaling methods. Next, levels of 

measurement, recommended by Stevens (1946, 1951) as a useful way to classify 

variables, are described. Data classification and types of data, such as dichotomous or 

polytomous, are then explored and an additive conjoint model is introduced.  

Following a thorough review of the foundations of response scaling and item 

calibration, two of the most commonly used frameworks of measurement are presented 

and defined: CTT (Spearman, 1904) and Rasch IRT (Lord, 1952; Lord & Novick, 1968; 

Rasch, 1960). Since these measurement frameworks carry a set of assumptions regarding 

the underlying structure and distribution of data and contain advantages and 

disadvantages for their use, they are fully explained. Included in this section is the 
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explanation for the reliance these measurement frameworks have on the reliability of the 

scores obtained. Since reliability estimates may differ between the two measurement 

theories, data characteristics affecting reliability estimates, such as sample size, number 

of items, type of response scale, and number of response choices are discussed.  

The final section of this literature review focuses on the role sampling design, 

specifically multilevel modeling, plays in accurately estimating reliability coefficients 

across measurement frameworks (Feldt, 1990). A thorough discussion of the precision of 

reliability estimates in a multilevel model supports the need for and purpose of this 

current study. Lastly, reliability estimation procedures based on Cronbach’s α (Cronbach, 

1951) and polychoric ordinal α (Bonanomi, Nai Ruscone, & Osmetti, 2012; Zumbo, et 

al., 2007) used within the CTT and MCFA frameworks, as well as the person reliability 

used in the Rasch rating scale model (RSM; Andrich, 1978; Masters, 1982) are examined 

in both single and multilevel models. 

Fundamental Measurement 

Recognizing the need to develop accurate and accepted measures of mental and 

social phenomena, Thorndike (1904) introduced students of the social sciences to what he 

called “mental measurement” (p. 3), which he adopted and modified from the physical 

sciences. He explained that in the mental sciences, as in the physical sciences, the need to 

measure “differences, changes, relationships or dependencies” (p. 5) is just as important 

but present what he termed “special problems” when human factors are involved because 

often judgments about what is being measured conflict. Thorndike posited that the 

scientific method of measurement in the physical sciences is based on fundamental 

mathematical measurement principles which were established to provide accurate and 
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consistent measurement of the object or attributes being measured. He developed a 

mental measurement scale which incorporated several of the fundamental measurement 

principles. These principles are conservation, transitivity, and unit iteration (Annenberg, 

2012). In the physical sciences, conservation is the principle that an object or attribute 

maintains the same size and shape regardless of orientation. For example, a person’s 

height remains constant whether her or she is standing or lying down. Transitivity means 

that when you cannot compare two objects or attributes directly you must compare them 

via a third object or attribute. In other words, if A = B and B = C, then A = C. Unit 

iteration refers to the determination of the correct unit of measurement which requires a 

deeper understanding of the attribute being measured. For example, with distance, height, 

or length, a linear measurement is appropriate and when measuring area, two-

dimensional units are appropriate. Fundamental measurement in the physical sciences 

therefore requires a stability of measurement which can be expressed in comparable units 

of measurement. If these three principles of fundamental measurement hold true, the 

concatenation of like units is possible which are applied every day in the physical 

sciences to measure quantities such as weight, height, length, width, and depth 

(Lindquist, 1989).  

Thorndike (1904) argued that the ability to quantify, and therefore, measure 

human behavior was simply a matter of interpreting the underlying mathematical 

concepts to non-mathematicians. He provided the example of measuring the spelling 

ability among 10-year old boys. In essence, if you were to develop a list of 50 or 100 

spelling words, who is to say that spelling certainly is of equal difficulty to spelling 

because? This measurement therefore, requires judgment, which means that agreement 
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about ability must first be established. Thorndike then posited that measuring mental 

traits such as abilities, beliefs, or attitudes, required an underlying continuum in which to 

mark the appropriate observed level of the trait. Thorndike then went on to develop an 

objective scale of measurement for which judges could agree. His definition of 

objectivity included aspects of reliability and validity and laid the foundation for CTT.  

Concurrently, Spearman, (1904) developed the framework for CTT where a 

theoretical true score and error were summed and linked to an observed score. 

Spearman’s CTT framework relied heavily on the reliability of the scores in terms of the 

amount of error in the observed scores.  

The ability to measure psychological and social phenomena in a meaningful way 

using fundamental measurement principles relied on the development of response scales 

and the establishment of levels of measurement to better classify, and therefore, identify 

stable variable characteristics, mentioned here only to illustrate the relationship between 

fundamental measurement principles and response scaling, and discussed in more detail 

in the next section. Thurstone (1928) demonstrated that attitudes could be measured in a 

similar manner as variables in the physical sciences by placing responses on a linear scale 

in order for researchers to make a “more or less type of judgment” (p. 529) on a given 

trait of interest. Likert (1932) introduced a simplified version of Thurstone’s scaling 

method which addressed some of Thurstone’s unverified assumptions in response scaling 

for measurement in the social and psychological sciences. These assumptions are 

discussed in the next section. Stevens (1946) described measurement as “the assignment 

of numerals to objects or events according to rules” (p. 677) and introduced four new 

scales or levels of measurement; quite controversial at the time, but still in use today: 
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nominal, ordinal, interval, and ratio. These levels of measurement provide a good starting 

point from which to choose the correct statistical methods for a given data set based on 

the level of measurement of both independent and dependent variables. Thurstone and 

Likert scales are ordinal scales which means the numbers represent a position or rank in a 

sequential response pattern. Guttman (1950) developed a cumulative scaling model 

where items are ranked from easiest to most difficult and agreement with any particular 

item implies agreement with the lower-difficulty items. Deviations from the ideal 

Guttman pattern are considered random errors (Guttman, 1950). This is extended to 

achievement tests with dichotomous (correct or incorrect) outcomes where the 

assumption is if the examinee can successfully answer items of X difficulty, s/he would 

be able to answer preceding items of lower difficulty.  

Applying fundamental measurement principles of quantifying variables by 

placing their measurement on a continuum from least to greatest amount, in conjunction 

with use of various scaling procedures, which are described later in the chapter, allows 

parameter estimators to be computed with greater efficiency. These principles laid the 

theoretical foundation for later IRT models by expanding the definition of fundamental 

measurement to include, (a) measurement which is not derived from other measurements 

and (b) measurement which is produced by an additive (or equivalent) measurement 

operation (Luce & Tukey, 1964; Rasch, 1960). These definitions are discussed in more 

detail in the section on IRT.  

Following is a discussion regarding the development of three progressive 

response scales and the establishment of levels of measurement to classify and identify 

stable variable characteristics in order to apply the fundamental measurement principles 
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of conservation, transitivity, and unit iteration to more precisely measure social and 

psychological phenomena.  

Response Scaling 

 Response scaling is at the core of psychometric theory. Psychometric theory 

enables comparisons between individual test scores or individual item scores by scaling 

differences among individuals based on a specific phenomenon or attribute of interest 

(Wright, Gaskell, & O’Muircheartaigh, 1997). Scaling models are developed for “three 

related but distinct purposes” (McIver & Carmines, 1981, p. 8): confirmatory, 

exploratory, or parallel analysis. 

Confirmatory analysis is used to test hypotheses. For example, a psychometrician 

may test the hypothesis that there is a single dimension of hope underlying mental health 

recovery. The scaling model is then used as a point of comparison to evaluate how well 

the observed data fit the specified model. Exploratory analysis is used to describe the 

underlying structure of data. For example, it can be used to determine whether scores 

obtained on a survey developed to measure levels of hope confirm a unidimensional or 

multidimensional scale. The purpose of an exploratory scaling analysis is not to test a 

hypothesis of dimensionality but merely to discover latent traits related to a construct of 

interest, such as hope, depression, or self-efficacy. Finally, parallel analysis is used as a 

benchmark for related measures. For example, after developing a unidimensional 

measure of hope, a psychometrician will assess evidence of concurrent validity by 

correlating the scores on their scale with scores on a similar measure of hope.  

McIver and Carmines (1981) explained that “scaling models may be used to scale 

persons, stimuli, or both persons and stimuli” (p. 9). Three scaling methods are elucidated 
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below, followed by a discussion of the evolution of response scaling to encompass item 

response theory (IRT).  

Thurstone (1928), Likert (1932), and Guttman (1950) all developed 

unidimensional scales to measure attitudes. Each new scale developer identified the 

strengths and weaknesses of previous scales and worked to extend their usefulness in 

measuring psychological and educational phenomena. Roiser (1996) argued that “most 

attitude measurement concentrates on attitudinal differences and is thus psychometric, 

whereas Guttman scaling investigates attitudinal consensus [patterns of agreement] and is 

thus more suitable for the study of social representations” (p. 11). She explained that 

these response scales can be extended beyond attitude to include scientific understanding 

of psychological and educational phenomena.  

Thurstone Response Scaling 

Thurstone (1928) devised a method of measuring attitudes along a continuum by 

counting the number of opinions either rejected or accepted by the respondent. For 

example, drawing from current events, one respondent may be more in favor of same-sex 

marriage than another respondent. The Thurstone scaling procedures provide a “more or 

less type of judgement” (Thurstone, 1928, p. 536) where these opinions are located on a 

stated continuum based on attitudes conveyed. His research in and development of The 

Law of Comparative Judgment led to the development of three methods of response 

scaling: paired comparisons, consecutive intervals, and equivalent-appearing intervals 

(McIver & Carmines, 1981). Thurstone’s methods scaled stimuli and then persons 

(Salkind, 2010). Thurstone provided the attitude of pacifism as an example and described 

the steps involved in his scaling method. He developed a qualitative continuous measure 
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of pacifism in which he (a) clearly defined pacifism; (b) used a set of opinions as 

anchors; (c) explained that pacifism could be represented by a single point on that 

continuum; and (d) used a series of graduated statements selected by judges for their 

representation of a single point on the continuum between extreme pacifism and extreme 

militarism. When participants either endorsed or rejected each statement, Thurstone was 

able to assess the strength and direction of their attitude toward pacifism. Further, by 

dividing the continuum into class intervals, he demonstrated the ability to count the 

frequency of the data points at each interval, thereby describing a group of individuals by 

means of a frequency distribution as illustrated by Figure 1 below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. An example of Thurstone’s (1928) continuum of summated group ability. 
 
 
 Thurstone’s (1928) unidimensional method of scaling, while clearly defined, 

made several assumptions difficult to meet. Thurstone assumed that the aspect of 

measuring attitudes was “just as legitimate [as] to say that we are measuring tables or 

men” (p. 531). Next, he assumed the opinion of an individual was a statement of attitude 

and that individuals would be honest in their opinions. Finally, he had individuals write 

statements of opinion for a given variable of interest and used judges to specify the point 
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on the continuum represented by that statement. Two problems with this approach can be 

immediately identified: First, the judges were not selected based on specific expertise, but 

opinion; second, his method required hundreds of judges’ opinions, making the approach 

impractical, which brings the scale into question. Regardless of these oft unmet 

assumptions, Thurstone made an important contribution to attitude response scaling and 

the ability to measure psychological phenomena.  

Likert Response Scaling 

Likert (1932) addressed some of the issues involved in social and behavioral 

measurement and developed a summative scale to address disadvantages in Thurstone’s 

(1928) scaling. For example, he discussed at length the number of unverified assumptions 

included in Thurstone’s attitude scales such as the independence of the scale values from 

the distribution of attitudes of the readers and the use of judges to correlate responses. 

Likert (1932) emphasized the need to simplify what he referred to as “exceedingly 

laborious” (p. 6) methods. Building on the social and psychological research of 

Thorndike (1904, 1913, 1918), Moore (1925), Allport (1929), G. Murphy (1929), and G. 

Murphy and Murphy (1931), Likert emphasized the role of theory in social and 

behavioral research and introduced the use of a five-point response scale. His scaling 

methods were used to scale subjects based on a single stimulus (level of agreement or 

disagreement). His unidimensional scale involved “a series of propositions to be 

responded to by the words strongly approve, approve, undecided, disapprove, and 

strongly disapprove” (p. 14). In order to quantify and measure the responses, Likert 

coded and ordered them from 1 to 5 with 1 = strongly disapprove to 5 = strongly 
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approve, with higher scores indicating more of the trait being measured, and summed the 

scores across all the items.  

Likert advanced two main assumptions of his scaling model: the data of the 

summed scores are normally distributed and equal intervals of the ranges existed. To 

support the assumption of normality, Likert (1932) stated that “it seems justifiable for 

experimental purposes to assume that attitudes are distributed fairly normally and to use 

this assumption as the basis for combining the different statement” (p. 22). To support the 

assumption of equal intervals, Likert posited “[the scale] retains most of the advantages 

present in methods now used, such as yielding scores the units of which are equal 

throughout the entire range” (p. 42). Developed as an ordinal scale, these data are often 

treated as interval level data due to the summation of responses across all items which 

provides a total score. Additional research supports the underlying assumptions of 

normality and equal intervals of Likert’s 5-point response scale which enables the use of 

parametric statistical tests such as t-tests and ANOVAs to analyze data (Allen & Seaman, 

2007). Likert’s 5-point response scale and its variations (Likert-type response scales: 

scales with fewer than or more than five categories), visual analog scales, and response 

scales based on anchor points rather than levels of approval) have been the primary scales 

used in survey research and self-report measures since their introduction in 1932. 

Guttman Response Scaling 

Guttman (1950, 1967) developed a scaling technique to be used as an alternative 

to Thurstone or Likert response scaling where a series of statements of attitude 

characterizes a progressively larger (or smaller) proportion of the population. For 

example, “a person who endorses the most demanding item should also endorse the most 
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consensual” (Roiser, 1996, p. 14). In other words, if the assumption of a Guttman (1950) 

scale is met (i.e., unidimensionality of the scale) and an individual endorses the most 

difficult item, then all items prior will also be endorsed. Therefore, the Guttman scale can 

be characterized as a cumulative scale, suggesting that the variation in the proportions of 

agreement, avoided in Thurstone or Likert scales, is at the heart of measurement, where 

the actual number of items endorsed is the recorded score as illustrated in Table 1. 

 
Table 1 
 
An Example of a Consistent Guttman Cumulative Scale 

Person Item 1 Item 2 Item 3 Item 4 Item 5 

1 Yes Yes Yes Yes Yes 

2 Yes Yes Yes Yes No 

3 Yes Yes Yes No No 

4 Yes Yes No No No 

5 Yes No No No No 

Note. Yes signifies the endorsement of the item. Adapted from Oppenheim, 1986, p. 
147. 

 
 

Roiser (1996) pointed out two critical differences between the Guttman scale and 

the Likert (or Thurstone) scale:  

Similar Likert scores may be achieved by endorsing different selections of items, 
[whereas] individuals with the same score may not actually have the same 
attitudes and two individuals scoring equally on a Guttman scale must be in 
complete agreement both on the items that they endorse and reject. (p. 15)  
 
Item-level data collected using Likert and Likert-type scales are polytomous in 

nature while item-level data collected using a Guttman scale are dichotomously scored. 

Although not perfect representations of psychological phenomena, Likert and Guttman 
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scales are still in use today and provide important information for survey researchers, 

clinicians, and educators. As previously evidenced, the type of scaling method used is a 

key ingredient in survey research, self-report measures, and the assessment of aptitude, 

attitude, and objective measures of phenomena. Another key component of measurement 

which is closely aligned with summative response scales is the level of measurement 

(nominal, ordinal, interval, and ratio) introduced by Stevens (1946, 1951). These levels of 

measurement are commensurate with the scaling method chosen.  

Levels of Measurement 

 Stevens (1946) proposed definitive classes or levels of measurement based on the 

mathematical properties of the scales. He argued that four levels of measurement existed: 

nominal, ordinal, interval, and ratio “based on the empirical operations needed to create 

each type of scale” (p. 678). He defined each level both by its basic empirical operations 

and mathematical group structure and went on to discuss the type of statistical analysis 

appropriate at each level. Table 2 details Stevens’ four levels of measurement, which are 

routinely used in modern psychometrics.  

 The development and maturation of response scales and the establishment of 

levels of measurement to accurately capture attitudes and attributes invites spirited debate 

in the field of psychometrics, but nonetheless is fundamental to the development and 

evolution of measurement frameworks such as CTT, MCFA, and the one parameter IRT 

model. These three measurement frameworks are discussed in detail later in this chapter.  
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Table 2 
 
Stevens’ Four Levels of Measurement 

 
Scale 

Basic Empirical 
Observations 

Mathematical 
Group Structure 

Permissible 
Statistics 

Nominal Determination of 
equality 

Permutation group Number of cases 
Mode  
Contingency correlation 

Ordinal Determination of 
greater or less 

Isotonic group: Any 
monotonic increasing 
function 

Median percentiles 

Interval Determination of 
equality of intervals or 
differences 

General linear group Mean 
Standard Deviation 
Rank order correlation 
Product moment correlation 

Ratio Determination of 
equality of ratios 

Similarity group Coefficient of variation 

Note. Adapted from Stevens (1946). 

 
 
Response Scaling 

Scaling methods are not limited to survey research. Clinicians, educators, and 

applied researchers embrace various response scales to measure and assess aptitude, 

attitude, and objective measures of a variety of phenomena. It is important to note that 

Guttman and Likert scales are found most often in assessments of aptitude or attitude and 

are discussed in that realm here. 

Dichotomous vs. Polytomous Response 
Scaling 
 

Aptitude tests are more likely to have dichotomously scored items, for which an 

item can be marked as correct or incorrect. Attitude measures frequently follow a 

response pattern with items measuring beliefs and feelings, where the respondent may 

choose between dichotomously scored options such as true or false, yes or no, or agree or 
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disagree. More commonly used in the measurement of attitudes is a rating scale response 

where the respondent chooses from a range of ordered responses (polytomously scored 

options). Most contemporary researchers prefer providing more than two choices to 

measure the latent trait of interest and previous studies provide strong evidence that a 

respondent’s ability to choose among a range of responses will provide more 

measurement information than just two choices (Bejar, 1977; Kamakura & 

Balasubramanian, 1989; Masters, 1988). Samejima (1977, 1979) advised that polytomous 

data increase the statistical information of a given item when compared to dichotomous 

data, and in fact, when polytomous data are artificially dichotomized, substantial 

information is lost. Since dichotomous and ordinal data are categorical in nature, the 

categories represent imprecise locations along a trait continuum. Polytomous response 

options provide an advantage since there are more response categories from which to 

choose, providing more information over a wider range of the trait continuum than the 

range offered by dichotomous response options (Ostini & Nering, 2006). The current 

study focuses on items with five ordered response choices developed by Likert (1932) 

since these are the most commonly used response rating scales in aptitude and attitude 

assessment.  

 The polytomously ordered categories discussed in this dissertation are 

characterized by thresholds, or boundaries, along an observed response continuum used 

to measure the latent trait of interest. These boundaries separate the various categories 

and as logic dictates, they always comprise one less boundary than category. For 

example, with three categories (Like, Neutral, and Dislike), there will always be one 

category defined by two boundaries and with five categories, there will be four 
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boundaries separating them (Ostini & Nering, 2006). With polytomous data, since the 

probability of a specific response in a given category reflects a respondent’s observed 

level of a measured trait, psychometricians focus on these boundaries because the 

probability of responding within a category is governed by the characteristics of the two 

neighboring boundaries. For example, consider a unidimensional assessment of hope 

using a 5-point Likert-type scale (1 through 5), where 1 = low levels of hope and 5 = 

strong levels of hope. A Wright map is created to visualize the person and item data on 

the same metric. The left side of the Wright map locates the person ability measures 

along the variable hope, where persons are signified by the # symbol. The right side of 

the Wright map locates the item difficulty measures along the variable hope, where items 

are identified by item number. Higher scores indicate an increased level of hope. Items 

with low difficulty would be endorsed only by individuals with a low level of hope and 

items with high difficulty would be endorsed only by persons with the greatest level of 

hope. Figure 2 below is a Wright map representing data collected to measure the latent 

variable hope using the 12-item Snyder Hope Scale (Snyder, 1994). 

Note that high positive thresholds indicate the lowest point at which a person with 

a high level of hope would endorse an item of high difficulty (e.g., item 5) and low 

negative thresholds would indicate the lowest point at which a person with a low level of 

hope would endorse an item of low difficulty (e.g., item 11).  
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Figure 2. Wright map for a measure of Hope on a 12-item survey. Adapted from Linacre 
(2014)  
 
 Assessing individual and group responses, regardless of the response scaling 

method utilized or the way in which items are scored (dichotomously or polytomously), 

requires theories related to measurement. In the following section, I discuss the evolution 

of measurement theories and explore the advantages and disadvantages of each.  

The Evolution of Measurement Theories 

Introduction to Measurement 
Theories 
 
 In educational and psychological research, mathematical models are used to 

elucidate the underlying theoretical concepts of interest, provide a framework for 

comparisons, and define a context from which to conduct analysis and interpret results 

(Ostini & Nering, 2006). Mathematical models provide the means by which 
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psychometricians can quantify phenomena of interest. The simplest mathematical model 

is a count, for example, observing the number of times a given individual answers each 

test item correctly. For more complex analysis of a phenomenon of interest, more than 

one mathematical model is often employed to measure and assess underlying theoretical 

concepts of interest. Two such models are discussed at length here: Classical Test Theory 

(CTT) and item response theory (IRT). CTT is a set of mathematical models which 

evolved from research conducted by Spearman (1904) and builds on fundamental 

measurement described previously. IRT is an extension of CTT which allows for 

simultaneous measurement of person and item parameters.  

Classical Test Theory 

 The early 20th century was a time of “exploration and [measurement] theory 

development” (Thorndike & Thorndike-Christ, 2010, p. 4) in the emerging field of 

psychology. Researchers began to recognize the existence of errors in measurement, 

understand errors as random variables, and conceptualize the idea of “correcting a 

correlation coefficient for attenuation due to measurement error [in order to] obtain the 

index of reliability” (Traub, 1997, p. 2). By differentiating between observed variable 

scores and error scores, the theory of measurement coalesced into what was known as 

true test theory, and finally regarded as CTT. 

The framework of CTT was detailed by Spearman (1904) and others throughout 

the first half of the 20th century, culminating in the work of Lord and Novick (1968) and 

Allen and Yen (1979) regarding the use and analysis of mental tests and the precision of 

the test score (McDonald, 1999). Equation 1 is the true score model and is the basis of 

classical measurement theory: 
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X =T + E (1) 

 
 

The premise of CTT is that a given observed score (X) on a test is comprised of 

two components: a hypothetical true score (T) which represents the average score taken 

over recurrent independent testing, and random error (E). Therefore, the less random 

error in a given score, the better the raw score reflects the hypothetical true score. The 

true score of a person is found by taking the mean score that the person would get on the 

same test if he or she had an infinite number of testing sessions (or trials). The goal of 

CTT is to provide a framework to assess the observed score (X) of a test-taker by 

partitioning out the estimated random error (E) from the hypothetical true score (T). Allen 

and Yen (1979) explained that if the true and error score assumptions are met, and an 

individual were to take the same test 1,000 times, the average of the individual’s raw 

scores would be the best estimate of the true scores. Furthermore, using the standard 

deviation of the distribution of random errors around the true score (known as the 

standard error of measurement) as an index, Allen and Yen demonstrated that if 1,000 

people were to take the same test one time each, the true and error score assumptions are 

still met. This substitution simplified data collection and analysis enormously.  

Assumptions of Classical Test Theory. Allen and Yen (1979) explained that the 

foundation of CTT was the idea of the true value of a variable (XTrue). Classical Test 

Theory (CTT) assumes that the true values of scores on a variable, X, in a given 

population of interest follow a normal distribution denoted as N(0, 1). The observed 

distribution of the scores on the variable X is denoted as D. The population mean is 

denoted by µ and the population standard deviation is denoted by σTrue. Using this 
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notation, modified from Allen and Yen (1979), the distribution of the true value for a 

population of participants is found in Equation 2: 

 
D(XTrue) = N(µ ,σTrue) (2) 

 
 

The population parameters µ and σTrue  differ from those used in a sample due to 

sampling error. CTT focuses on how the observed values of X (Xobs) are related to the true 

values of X (XTrue). Since CTT purports that the observed values are a combination of the 

true values plus a component of random measurement error, CTT makes three 

assumptions about the error component: 

1. The error component will have a mean of zero. Therefore, the observed 

mean will not be systematically distorted away from the true value by the error  

2. The measurement errors are assumed to follow a normal distribution.  

3. The measurement errors are uncorrelated with the true values.  

Equation 3 represents the expression for the distribution of Xobs: 

 
D(xobs) = D(XTrue) + N(0, σerr) (3) 

 
 
where D is the observed distribution of the variable X and σerr is the standard deviation of 

the normal random error term. Equation 4 shows that for an individual (ith) participant, 

the Equation 4 expression could be written as:  

 
Xi = Xi,True + ε2i (4) 

 
 
where Xi,True denotes the value of XTrue for participant i, drawn from the true value 

distribution N1 (µ ,σtrue), and ε2i denotes the error term for the ith participant, drawn from 
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the error distribution N2(0, σerr). From these three assumptions, it follows that the 

expected value of the sample mean, (Exp{}) is µ . In addition, the sample standard 

deviation (s) of Xobs is going to be larger than σTrue as the random error component (with 

a standard deviation of σerr) increases the variation in Xobs.  

Equation 5 represents the expected sample variance (s2) of a composite score. 

Imagine two variables a and b, and a variable c (observed score) which is the sum of a 

and b. The variance of the new variable c is given by: 

 
Var (c) = Var (a) + Var (b) + 2rab*√[Var(a) *  Var(b)] (5) 

 
 
where rab is the correlation between a and b  

 Since the observed values are the sum of the true values and random measurement 

error, using “true” and “error” instead of “a” and “b,” the expected value of the sample 

variance is simply the sum of the variances of the true score and error terms. The final 

term in Equation 6 is absent because of the assumption that the measurement errors are 

uncorrelated with the true values. It is important to estimate the expected value of the 

variance in the observed score (s2) in order to determine the amount of variance explained 

by the true score (σtrue
2)  as seen in Equation 6: 

 
Exp{s2} = σtrue

2 + σerr
2 (6) 

 
 
 Advantages of Classical Test Theory. Classical Test Theory does not involve a 

complex theoretical model to assess (a) a test-taker’s ability to correctly respond to a 

specific item (aptitude) or (b) to measure a specific attitude, but instead collectively 

assesses a pool of test-takers. As this dissertation is focused on measuring attitude, 
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ideally, the observed score reflects the test takers’ true attitudes with minimal error. In 

other words, the observed score is similar to the theoretical true score. In this regard, 

ability refers to the ability to indicate more of the attitude being measured when the 

attitude is high. Lord (1953) explained that ability scores are test independent while 

observed and true scores are test dependent. In other words, test takers come to the test 

with a certain level of ability on the attitude being measured, while the observed and true 

scores will “depend upon the selection of assessment tasks [drawn] from the domain of 

assessment tasks over which their ability scores are defined” (cited in Hambleton & 

Jones, 1993, p. 253) In the case of measuring aptitude, CTT models the test-takers’ 

proportion of correct responses to a specific item using dichotomous scoring. This is 

known as the P value of the item (not to be confused with the p-value as an indication of 

significance in hypotheses testing) and is used as the index for item difficulty, with lower 

values indicating a harder item and higher values indicating an easier item. P is the 

proportion of respondents who answer the item correctly. The ideal P value is .5, 

meaning that 50% of the test-takers endorse or pass the item, which J. B. Kline (2005) 

explains provides “the highest levels of differentiation between individuals in a group” 

(p. 96). More relevant to this dissertation is the case of measuring attitudes using 

polytomous rating scale-scoring. As with dichotomously scored items, polytomous items 

are used to quantify true score values on a trait of interest, defined here as the underlying 

ability of interest (the trait intended to be measured). As values of the true score increase, 

responses to items representing the same concept should also increase. In other words, 

there should be a monotonically increasing relationship between true scores and observed 

scores, assuming that responses are coded so that higher responses indicate more of the 
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measured trait. Item difficulty is represented as an index of the mean score of the item 

across test-takers (DeMars, 2010) with higher values indicating greater overall 

endorsement of the attitude trait.  

Another important characteristic of items is discrimination. A higher 

discrimination index indicates that the item differentiates well between test-takers with 

different levels of the construct being measured. For example, in aptitude testing this 

means that the item discriminates well between test-takers of low and high ability. In 

attitude assessments, this means that the item discriminates well between test-takers with 

more versus less positive attitudes regarding the trait being measured. Therefore, high 

discrimination is preferred since it means the item, test, or measure is able to differentiate 

between those who know the material and those who do not or those with positive 

attitudes and those with negative attitudes. When an item discriminates well between 

higher and lower ability (or attitude) test takers, the relationship between the test taker’s 

score and the overall scores on the test will increase. For polytomously scored items, the 

item discrimination value is computed using the Pearson product-moment correlation 

coefficient. For dichotomously scored items, point-biserial correlation is computed. 

When the correlation is positive, individuals who endorsed (or answered correctly) the 

item “score higher on the sum of the remaining items” (DeMars, 2010, p. 5) than those 

who do not endorse the item (answer incorrectly).  

 Disadvantages of Classical Test Theory. The main disadvantage of CTT is that 

item statistics are sample dependent and examinee characteristics (such as ability) are 

item-dependent. Fan (1998) described this as “circular dependency” (p. 1) in that not only 

are the true scores (person parameters such as ability) test dependent, the item difficulty 
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and item discrimination values (item parameters) are sample dependent (Lance & 

Vandenburg, 2010). For example, the unidimensional measure of the attitude hope 

contains items easy for a hopeful person to endorse (i.e., I set attainable goals), but 

difficult items for a less hopeful person to endorse. To summarize, the observed scores 

for the more hopeful person will increase and the observed scores for the less hopeful 

person will decrease. In other words, a hopeful person’s ability estimate will increase 

with items considered more difficult for a less hopeful person to answer. Conversely, a 

less hopeful person’s ability estimate will decrease because he or she is less able to 

endorse a more difficult item (i.e., I am never concerned about the future). Comparing 

true scores across tests would be difficult due to the differences in test properties. 

Additionally, item discrimination will be higher in samples that represent a large range of 

abilities. Finally, the item difficulty parameter depends upon the ability level of the 

sample. For example, if an exam regarding the Central Limit Theorem were given to fifth 

graders and the same exam to statistics majors in college, the item difficulty indices 

would vary substantially because what is hard for the fifth graders to conceptualize may 

be easy for the statistics majors.  

Item parameter estimation (i.e., item difficulty and discrimination) is certainly an 

important disadvantage of CTT since these parameters are test and sample dependent 

which limits the generalizability of the results. To overcome this disadvantage, Thurstone 

(1928) proposed absolute scaling, which is an empirical, ad hoc procedure to measure 

invariance, and more commonly referred to within the IRT framework. The method 

employs standardizing scores so that the same metric is used to assess a respondent’s 

location within the distribution of test scores.  
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Other disadvantages of CTT include the assumption that the standard error of 

measurement (SEM) of scores from a given test is equal across an entire population 

(Spearman, 1904). The SEM is frequently used to interpret individual test scores but is 

only useful if the test scores demonstrate high reliability and the obtained score for the 

individual test taker does not deviate significantly from the mean test scores of all test-

takers. J. B. Kline (2005) explained that this means the “standard error does not differ 

from person to person but is instead generated by large numbers of individuals taking the 

test” (p. 94). For example, regardless of the magnitude of the observed score, the standard 

error for each examinee is assumed to be the same, which is unrealistic (J. B. Kline, 

2005). In CTT, the standard errors for all examinees are expected to cancel each other out 

and therefore, sum to 0 (Lord, 1953). However, it is important to note that test-takers 

with the same total score may have different standard errors and that raw score standard 

errors are larger for overall scores closer to the mean than for extreme scores (Brennan & 

Lee, 1999) Finally, when the assumptions of CTT are not met, researchers may “convert 

scores, combine scales, and do a variety of other things to the data to ensure an 

assumption is met” (J. B. Kline, 2005, p. 94). Kline described the manipulation of data as 

problematic because of the possibility of ignoring systematic error. However, CTT is 

based on three parameters, observed score, true score, and error and most analysis 

conducted within the CTT framework is based on summing the observed scores across 

items, reducing error, and estimating true scores based on the model.  

 Estimating reliabilty in Classical Test Theory. Reliability is the overall 

consistency of the observed scores of a measure and the three most commonly used 

estimates of reliability in CTT are:  
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1. Test-retest reliability refers to the consistency of scores when the same test 

is given to the same people at different times (Nunnally & Bernstein, 1994) 

2. Parallel-forms reliability refers to the consistency of scores when different 

people receive more than one form of a test measuring the same construct (Nunnally & 

Bernstein 1994).  

3. Internal-consistency reliability refers to the consistency of scores across 

items (Cronbach, 1951).  

 Lord and Novick’s (1968) defined reliability within the CTT framework as the 

ratio of true score variance, σ2
T, to the observed score variance, σ2

X,, where the reliability 

of the observed test scores, X, is denoted as ρ2
xt  (see Equation 7). Pickering (2001) 

demonstrated the conceptual model of reliability based on computing the proportion of 

true score variance relative to total variance in Equation 8: 

 

 =  (7) 

 
 

Reliability = σTrue
2 / (σTrue

2 + σerr
2) (8) 

 
 
Two Coefficients to Estimate Internal 
Consistency 
 

While several coefficients to estimate reliability within the CTT framework have 

been developed, this dissertation focuses on two coefficients to estimate internal 

consistency for polytomous data: Cronbach’s coefficient α (Cronbach, 1951) and 

polychoric ordinal α (Gadermann et al., 2012; Bonanomi et al, 2012; Zumbo et al., 2007).  

Cronbach’s coefficient alpha. In the CTT framework, Cronbach’s coefficient 

alpha (α) is the most frequently reported reliability coefficient for summated scales using 
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polytomously scored items (i.e., Likert or Likert-type scales; Hogan, Benjamin, & 

Brezinski, 2000). Developed by Cronbach (1951) to address the issues of simple split-

half reliability examined by Spearman (1910) and W. Brown (1910), Cronbach’s α is a 

maximum likelihood (ML) estimator of the parameter. In other words, the reliability of 

the scores cannot be less than the value of this parameter (Zeller & Carmines, 1980). Van 

Zyl, Neudecker, and Nel (2000) explained that Cronbach’s α is equal to reliability under 

the assumption of tau equivalence; otherwise it is used as a lower bound estimate of the 

reliability of scores obtained on an assessment. The assumption of tau equivalence is 

addressed under the section on assumptions of coefficient α. Cronbach’s α is a function of 

the number of items on a given assessment, the average covariance between item-pairs, 

and the variance of the total score. It can be viewed as the average correlation of a set of 

items measuring a specific construct or dimension of a construct. The coefficient α is 

defined in Equation 9: 

 
K/(K-1) [ 1-Σσk

2/ σtotal
2] (9) 

 
 
where K represents the number of items; Σσk

2
 represents the sum of the variance of scores 

on each item and σtotal
2
 represents the total variance of overall scores. Furthermore, van 

Zyl et al. (2000) explained that the ratio of variances expressed by Cronbach’s α follows 

the general linear model (GLM) and as shown in Equation 9, Cronbach’s α is item 

dependent. In other words, if the number of items increases, Cronbach’s α will increase, 

and conversely, with fewer items Cronbach’s α will be lower when holding all other 

factors constant. In addition, if the number of items is held constant, and the average 

inter-item correlation is low, Cronbach’s α will change as a function of sample size. As 
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the average inter-item correlation increases, Cronbach’s α increases (Cronbach, 1951; 

van Zyll et al., 2000).  

 Cronbach (1951) demonstrated that the coefficient α is “the average of all 

possible split-half coefficients for a given test” (p. 310). Cronbach’s α is more frequently 

used to assess the reliability of scores obtained from polytomously scored items such as 

Likert response scales. Recent research suggests the fallacy of relying on Cronbach’s α 

when polytomous data are used (Pastore & Lombardi, 2014; Rodriguez & Maeda, 2006; 

Sijtsma, 2009; Tavakol & Dennick, 2011; Teo & Fan, 2013; Zumbo et al., 2007).  

 Assumptions of coefficient alpha. Cronbach’s α is rooted in two important 

assumptions:  

1. Cronbach’s α assumes unidimensionality of the measure, where all items 

measure the same underlying construct or latent trait. If the assumption of 

unidimensionality is violated, Cronbach’s α will underestimate the reliability of the 

scores obtained (Geldhof, et al., 2014; Pastore & Lombardi, 2014; Rayvok & Penev, 

2010; Rodriguez & Maeda, 2006; Sijtsma, 2009; Tavakol & Dennick, 2011; Teo & Fan, 

2013; Zumbo et al., 2007). 

2. Cronbach’s α is grounded in an essentially tau equivalent model. This 

means that each item measures the same latent variable on the same scale with the same 

degree of precision, but that the individual item error variances are allowed to differ from 

one another, suggesting it is possible for each item to have its own amount of random 

error. This translates to all variance unique to a specific item is assumed to be the result 

of error (Raykov, 1997a, 1997b). 
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Advantages of coefficient alpha. Cronbach’s α has three main advantages. First, 

it is included in all contemporary computer-based statistical packages such as SPSS, 

SAS, and R and therefore, is available to researchers across a wide range of academic 

fields. Second, it is a single measure of inter-correlations between items on a continuous 

scale, only requires one test administration, and may be more easily conceptualized by 

researchers than other estimates. Third, it is the most frequently reported reliability 

estimate in the world. Consequently, literature citing Cronbach’s α across a variety of 

academic fields is easy to find.  

Disadvantages of coefficient alpha. Cronbach’s α has several distinct 

disadvantages. The first disadvantage is related to the standard error of Cronbach’s α 

(SEα), which provides an estimate of the amount of error found with the given scores. In 

turn this shows the spread of the inter-item correlations (Duhachek, Coughlan, & 

Iacobucci, 2005). The SEα is inversely related to sample size and as stated by Duhachek et 

al. (2005), “heterogeneity within the covariance matrix negatively impacts reliability” (p. 

299). Therefore, as the SEα increases, reliability decreases (Cortina, 1993; Hattie, 1985; 

Schmitt, 1996). In the simplest case where all inter-item correlations are equal to the 

average of inter-item correlations (r), Cronbach’s α can be expressed as Equation 10:  

 

 (10) 

 
 
and the standard error of α is expressed as Equation 11: 
 
 

 (11) 
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where k is the number of items, n is the sample size, and Q represents the maximum 

likelihood estimator of alpha based on a standard assumption of multivariate normality 

(van Zyl et al., 2000). As n to ∞, (SEα – α) is normally distributed with a mean = 0 

and variance represented by Q (described above) in Equation 12: 

 

 (12) 

 
 

The importance of the Equation 12 is that a confidence interval for Cronbach’s α 

can be derived using the SEα, which provides more information than a simple point 

estimate regarding reliability. As described by Equations 10, 11, and 12, the importance 

of considering the SEα cannot be ignored, yet is rarely examined, calculated, or reported 

by behavioral, educational, and social science researchers (Cortina, 1993; Hattie, 1985;, 

Schmitt, 1996). Second, as Duhachek et al. (2005) and van Zyl et al. (2000) suggested, 

from these equations, it was clear Cronbach’s α was both dependent on the number of 

items in an assessment (k) and the sample size (n). This meant that k, n, and r have a 

noticeable (negative or positive) effect on Cronbach’s α, and researchers can affect inter-

item correlations which in turn affects α simply by changing (increasing or decreasing) k 

or n. The effects of k or n are discussed in detail later in this chapter.  

 Third, many researchers wrongly assume that Cronbach’s α is a measure of 

unidimensionality of a scale and do not understand the relationship among Cronbach’s α, 

inter-item correlations, and SEα. For these reasons, it is more often misinterpreted and 

over-utilized by well-meaning researchers (Cortina, 1993; Schmitt, 1996; Sijtsma, 2009). 

This single coefficient then takes on inflated meaning when it comes to making decisions 

regarding assessment development and analysis of the scores. If Cronbach’s α must be 
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used, assessing and reporting confidence intervals for Cronbach’s α would help guide 

these decisions (Sijtsma, 2009).  

Fourth, since Cronbach’s α is the default coefficient in statistical packages 

commonly used by researchers and frequently reported (correctly or incorrectly) in 

scholarly journals, it has become the “go-to” coefficient for reliability estimation, even 

when other reliability estimators would be more suitable based on the type of data and 

level of measurement (Sijtsma, 2009). Relevant to this dissertation is that over the past 20 

years, researchers have provided compelling evidence that Cronbach’s α is not 

appropriate for polytomous data (Bentler, 2009; Duhachek et al., 2005; Kopalle & 

Lehmann, 1997; Schmitt, 1996; Liu, Wu, & Zumbo, 2009; Sideridis, 1999; Sijtsma, 

2009; Yang & Green, 2011; Zumbo et al., 2007), specifically Likert or Likert-type data 

such as those collected on a multi-item measurement such as a survey or attitude scale. 

Goodman and Kruskal (1979) and Norman (2010) disagreed that Cronbach’s α was not 

appropriate for polytomous data and argued that even though the item responses are on an 

ordinal scale, the summated scores are on a continuous scale, which they felt suggested 

that Cronbach’s α was an appropriate measure of internal consistency with polytomous 

data. There is, however, convincing evidence to the contrary. (Duhachek et al., 2005; 

Gadermann et al., 2012; Kopalle & Lehmann, 1997; Liu et al, 2009; Schmitt, 1996; 

Sideridis, 1999; Yang & Green, 2011). Since the calculation of Cronbach’s α involves 

inter-item correlations, the Pearson covariance matrix is employed. In other words, “as 

measurement error increases, the observed inter-item-correlations will become more 

attenuated” (Fisher, 2014, p. 1). For example, a mental health client’s score on an 

instrument measuring hope (where higher scores indicate more of the trait) may decrease 
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between the first and second administration of the instrument because she was just fired 

from her job. In this instance, the client’s decreased hope score likely reflects 

measurement error rather than an underlying decrease in the trait of hope.  

Consequences of Underestimating 
Alpha 
 

Most relevant to this dissertation is that attenuated correlations will produce 

underestimated internal consistency reliability coefficients. Spearman (1904) explained 

that if reliability estimates are underestimated then those estimates would affect the 

correction for attenuation, which includes Cronbach’s α since “measurement error refers 

to the inconsistency of measurement” (Fisher, 2014, p. 1). An important assumption for 

the use of a Pearson covariance matrix is that data are continuous. Violations of this 

assumption can “substantively distort . . . the [Pearson covariance matrix]” (Gadermann 

et al., 2012, p. 2). When data are from an ordinal scale rather than a continuous scale, the 

“desired distributional properties of continuous data” (Olsson, 1979, p. 443) are not 

present. Therefore, the evidence suggests that the Pearson correlation coefficient 

underestimates the true relationship between ordinal responses and the item inter-

correlations (Haldago-Tello, Chacón-Moscoso, Barbero-García, & Vila-Abad, 2008). 

Cronbach (1951) discussed the difficulties in underestimating the coefficient when data 

lack variance.  

When data are continuous, the numbers imply a proportionate rank order along a 

continuum, whereas, when data are polytomous, the numbers represent an ordered 

categorical label but do not necessarily have proportionate rank order (Rothke, 2010). 

Since variance is the average of the squared deviations from the mean, due to a restricted 

range of response choices, polytomous data cannot provide as much variance and, 



 

 

44 

therefore, may underestimate Cronbach’s α (Nunnally, 1978). In addition, since the 

distance between 1 and 2 on a Likert or Likert-type scale may not be the same as the 

distance between 3 and 4 on that same scale, precise and meaningful measurement 

becomes more complex. For example, on an attitude scale where the item response 

choices are from 1 to 4, with 1 indicating a low level of the measured trait and 4 

indicating a high level of the measured trait, two test-takers choosing the response option 

of 2 may differ in their actual level of the trait, with individual one considering the lower 

bound of 2 and individual 2 considering the upper bound of 2. Therefore, the number of 

response choices will substantially affect the variance of the scores obtained on each 

item. 

Polychoric ordinal α. To address the misuse and underestimation of Cronbach’s 

α when assumptions such as essential tau equivalence and/or unidimensionality are 

violated, Zumbo et al. (2007) tested a coefficient α for ordinal (polytomous) data. Known 

as the polychoric ordinal α, the coefficient uses the polychoric correlation matrix 

(Pearson, 1900; Zumbo et al., 2007), which takes into account the ordered categorical 

data structure rather than Pearson’s correlation matrix, which assumes an interval level 

data structure (Haldago-Tello et al., 2008) and “severely underestimates the true 

relationship between two continuous variables when the two variables manifest 

themselves in a skewed distribution of observed responses” (Gadermann et al., 2012, p. 

2).  

 The polychoric correlation matrix was proposed by Pearson (1900) where the 

measure of the relationship between two variables relies on the assumption of an 

underlying joint bivariate normal distribution and can be extended to ordinal data with a 
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joint normal distribution fundamental to his proposal (Pearson, 1907). In other words, the 

“polychoric correlation coefficient is the linear correlation of the postulated joint normal 

distribution” (Ekström, 2009, p. 3). The computation of this matrix is quite complex and 

beyond the scope of the proposed dissertation. The main differences between the Pearson 

correlation for continuous data and the polychoric correlation for ordinal data are the 

underlying distributions from which they are estimated. Both the Pearson correlation 

coefficient and polychoric correlation coefficient assume variables have an underlying 

bivariate normal distribution; however the polychoric distribution is based on the 

underlying latent continuous trait represented by the order categories while the Pearson 

correlation coefficient assumes a continuous standard normal distribution and represents 

the strength of the linear relationship between the row and column variables. 

Advantages of polychoric ordinal α. There are three distinct advantages to using 

polychoric ordinal α for polytomous scales. First, conceptually, ordinal α is equivalent to 

Cronbach’s α, but it is based on the polychoric correlation matrix rather than the Pearson 

correlation matrix. Therefore, empirical evidence suggests it is a more accurate estimate 

for measurements involving polytomous data (Gadermann et al., 2012; Zumbo et al., 

2007). Second, polychoric ordinal α considers polytomous responses as expressions of 

the underlying latent trait and interprets the reliability of the observed ordinal scores 

using the observed item responses, where Cronbach’s α interprets the reliability of the 

observed scores by treating them as continuous (Gadermann et al., 2012). Third, 

computer software packages such as SPSS (using the POLYMAT add-on), R, and SAS 

(using POLYCHOR) have advanced to the point that calculating or entering a polychoric 

correlation matrix to use in the polychoric ordinal α estimation can be accomplished and 
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the polychoric ordinal α coefficient is easily interpretable since the resulting metric is 

between 0 and 1 with 0 = no reliability and 1 = perfect reliability (Lewis, 2007; Zumbo et 

al., 2007).  

Item Response Theory 

Addressing the limitations of CTT to estimate item parameters that weren’t 

sample dependent, and person parameters that weren’t test dependent, item response 

theory (IRT) grew through the work of Richardson (1936), Lawley (1943), Lord (1952), 

Birnbaum (1957), Rasch (1960), Wright (1967), and Lord and Novick (1968). The focus 

of this dissertation regarding IRT models is the Rasch model, advanced in 1960 by 

George Rasch. Rasch developed a special case of the one-parameter logistic (1PL) IRT 

model to address the need for fundamental measurement principles in psychological 

measurement. Based largely on the work of Luce and Tukey (1964), the Rasch 1PL-IRT 

model places item difficulty and person ability on the same latent continuum by 

combining fundamental measurement with the composite theory of simultaneous conjoint 

measurement and continuous quantities to quantify psychological attitudes or attributes.  

One of the assumptions for the Rasch IRT model is the responses across items 

should be uncorrelated, or locally independent, after controlling for person ability. For 

example, each endorsement or correct item response should be based solely on person 

ability and not on trait or response dependence, as explained by Marais and Andrich 

(2008). Marais and Andrich described local independence as being depicted in two ways. 

First, there may be trait dependence, where person parameters other than ability are part 

of the response (a violation of unidimensionality). Second, there may be response 

dependence, where the same person with the same level of ability has a response on one 
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item that depends on a response given for a previous item (a violation of local 

independence). For example, trait dependence is often found when tests are constructed 

to measure a single trait but the items are drawn from a test bank in which each item is 

intended to measure a different aspect of the trait of interest. Response dependence is 

found when a correct answer on a test provides a clue to the answers on successive items.  

Luce and Tukey (1964) posited that simultaneous conjoint measurement is a new 

type of measurement that includes both fundamental and derived measurement. 

Fundamental measurement refers to measurement with “iterative unit values” (Bond & 

Fox, 2014, p. 15) such as weight and height, while derived measurement means that “the 

attribute itself (e.g., temperature and density) cannot be physically added together” (p. 

16). Bond and Fox (2014) used weight, volume, and density to help readers conceptualize 

conjoint measurement in the non-physical world, such as measures of attitude and 

aptitude. In the case of weights, volume, and density described by Bond and Fox (2014), 

“the key to conjoint measurement does not reside in the collusion of fundamental 

measurement scales to produce a third derived measurement scale of density that 

conserves the crucial properties of scientific measurement already inherent in weight and 

volume” (p. 9). In other words, density is contained within weight and volume. 

According to Luce and Tukey, conjoint measurement can be seen as the observable 

relationships between and among the variable matrix cells.  

Person and item characteristics are simultaneously (conjointly) measured and 

modeled by the Rasch model where person ability and item difficulty can be used to 

estimate the probability that a person of given ability will respond correctly to an item of 

a given difficulty (Rasch, 1960, 1977). Therefore, the independent variables of ability and 
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difficulty can be represented on an interval scale with common units of measurement as 

seen in Equation 13 (Bond & Fox, 2014):  

 
 
 

 
(13) 

 
 
where θ is the person ability estimate, b is the item difficulty, and             is the 

probability that a respondent of a given ability will respond correctly to an item of a 

given difficulty level (Rasch, 1960). 

To illustrate Rasch’s (1960) model of combining simultaneous conjoint 

measurement with concatenation, an example using dichotomously scored data collected 

on a subset drawn from the Geo-Science Concept Inventory (GCI v.1.0; Libarkin & 

Anderson, 2005) is provided. The GCI v.1.0 was developed to measure the latent trait of 

geo-science knowledge in topic areas such as earthquakes, volcanos, and plate tectonics. 

Each item on the GCI is scored as either correct (1) or incorrect (0).  

Furthermore, a monotone transformation, or way of transforming the numbers 

representing correct and incorrect responses on the GCI v.1.0 into another set of numbers 

without losing the original order of the data, is accomplished in the Rasch model by using 

an inverse logistic transformation. For example, Equation 14 represents that for some 

monotonic transformation M (Perline, Wright, & Wainer, 1979): 
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where pij is the probability of a person (i) answering correctly to item (j) on the GCI v.1.0 

and ln is the natural logarithm. That is, the Rasch model is additive in the person ability 

)(ΘiP

)(

)(

1
)(

bD

bD

i e

e
P −Θ

−Θ

+
=Θ



 

 

49 

(θ) and item difficulty (b) parameters which allows for practical applications in the 

estimate of these parameters (Perline et al., 1979). 

The dichotomous Rasch model is presented here to provide background 

information and lay the groundwork for an extension of the Rasch model when scores are 

polytomously scored. One addition to the Rasch model is the rating scale model (RSM; 

Andrich, 1978) which Masters (1982), Wright (1984), and Andrich (1978, 2004) 

explained was an extension of the 1PL-Rasch IRT model to be used when data are 

polytomous and the same number of thresholds exist across items.  

Rating Scale Model 

The rating scale model (RSM) is a unidimensional model used to assess ratings 

with two or more ordered categories. RSM requires a fixed number of response 

categories for every item measuring the latent trait (Englehard, 2014). There are two 

different approaches to the RSM. Andersen (1977) introduced a response function, shown 

in Equation 15, in which the values of the category scores are directly used as a part of 

the function: 

 

���  (θ) =  
�� �θ−α�ℎ

∑�−1
� �� �θ−α�ℎ

 (15) 

 
 
where w1,w2,…,wm are the category scores, or numeric values associated with each rating 

scale point, which prescribe how the m response categories are scored, and aih are item 

parameters such as item difficulty and invariance, connected with the items and 

categories. An important assumption of this model is that the category scores are 
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equidistant. In Andrich’s RSM, item response functions to account for item thresholds are 

computed in Equation 16 as: 

 

 
(16) 

 
 
where dix is the relative difficulty of score category x of item i.  

Assumptions of Rasch Item Response 
Theory and the Rating Scale Model 
 

The Rasch IRT family of models has several strict assumptions: (a) 

unidimensionality of the test, (b) local independence, (c) nature of the item characteristic 

curve (ICC), and (d) parameter invariance.  

1. Unidimensionality. As with CTT, unidimensionality requires that the 

items on a test or survey only measure one latent trait or construct. 

2. Local independence. Local independence is the assumption that item 

responses are independent given a person’s ability. Therefore, if person ability 

determines success on each item then ability is the only factor that systematically affects 

item performance. Once person ability is known (estimated), responses to items are 

uncorrelated.  

3. Nature of the item characteristic curve. The logistic function specifies a 

monotonically increasing function so that higher ability results in a higher probability of 

success. In other words, item performance is regressed on the test-takers’ ability. In 

addition, since the probability of endorsing an item is bounded at 0 and 1, the slope of the 

ICC captures the nonlinear relationship between item responses and the latent trait of 

interest.  
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4. Parameter invariance. Item and ability parameters do not vary over 

samples of examinees from the population of interest. In other words, two groups may 

differ in the distributions of the latent trait, but the same model should fit both.  

Advantages of the Rasch Item Response 
Theory and the Rating Scale Model 
 

The Rasch model of measurement is a special case of IRT. There are several 

advantages to using the Rasch family of models over CTT models. The Rasch model is 

based on estimating the probability of observing each response to an item as a function of 

ability on the latent trait being measured. Rasch modeling involves examining the 

probability of success (correct response) as a function of the item’s difficulty and the 

person’s ability. CTT is unable to separate person ability from item difficulty. Each item 

in Rasch IRT has its own item response function (IRF) represented by the item 

characteristic curve (ICC) which reflects item difficulty when ability is held constant. 

Therefore, an item’s psychometric properties are taken into consideration by the model. 

Another advantage to the Rasch model is that it can be extended to polytomous data such 

as with the RSM. A third advantage, according to many researchers, is that Rasch is an 

excellent tool for evaluating construct validity and is invaluable in test development 

(Bond & Fox, 2014; Messick, 1989, 1996; Rasch, 1960).  

Disadvantages of the Rasch Item 
Response Theory and the 
Rating Scale Model 
 

 The first disadvantage of fitting data to the Rasch model is the 

mathematical complexity of IRT models in general coupled with access to the software 

used in IRT. Applied researchers often lack training in measurement theories and rely on 

the more accessible tools developed for CTT. Another disadvantage is that the one-
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parameter model (1PL) assumes that all items that fit the model have equivalent item 

discriminations. This is especially true with the Rasch model where all item 

discriminations are assumed to be = 1.0. Therefore, each item is only described by a 

single parameter (item difficulty) which the model assumes is the only item characteristic 

influencing performance. Finally, opponents of the Rasch family of models posit that 

these models are not robust to guessing, and instead consider guessing as a separate 

parameter. Proponents of the Rasch family of models explain that there are two types of 

“guessing.” random guessing, which provides no information about item difficulty and 

person ability, and informed guessing which contains information about item difficulty 

and person ability. Smith (1993) provided several examples of how the Rasch model was 

able to detect informed guessing by assessing the person ability, item difficulty, the 

probability of answering an item correctly, and the response patterns of two individuals 

with a similar ability levels.  

Estimating Reliability 

 The focus of this dissertation is to estimate reliability when data are 

polytomous in CTT, MCFA, and Rasch IRT frameworks. Reliability in CTT, MCFA, and 

Rasch theory “reports the reproducibility of the scores or measure, not their accuracy or 

quality” (Linacre, 2012, p. 23). In Rasch, two reliability estimates are calculated and each 

can range between 0 and 1, with values closer to 1 indicating higher reliability. The first 

is a person reliability, which is equivalent to score reliability in CTT. To achieve higher 

person reliability, a study must include either a person sample with a large range of 

ability and/or an instrument with many items. The second is item reliability, which is not 

reported in CTT but provides information about the consistency of the items and locating 
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the items on the latent variable (Boone, Staver, & Yale, 2014). To achieve higher item 

reliability, a study must include either an instrument with a large range of item difficulties 

and/or a large sample of persons. Reliability coefficients for all three measurement 

frameworks (CTT, MCFA, and IRT) are estimates of the ratio of true measure variance to 

observed measure variance. The height of the ICC can be used to assess item reliability. 

Linacre (2012) provided three rules of thumb for reliability estimates for Rasch models:  

1. If the item reliability is less than .80, a bigger sample is required. 

2. If the person reliability is less than .80, more items are needed in the test. 

3. High item reliability does not compensate for low person reliability. 

The Importance of Reporting Reliability 
Estimates 

 
The idea of reliability in the context of educational and psychological assessments 

is mired in misunderstanding (Baugh, 2002; Coe, 2002; Nunnally, 1978, 1982; 

Thompson & Snyder, 1998). Often graduate students preparing themselves for a career in 

the educational, psychological, and social sciences, as well as some faculty members, 

scholars, educators, and researchers in these fields, erroneously consider reliability to be 

a stable attribute of a given assessment tool rather than dependent upon the scores 

obtained from the administration of these assessment tools (Thompson, 2003; Vacha-

Haase, 1998). These scholars and leaders often fail to realize that reliability is not 

subsumed within the instrument but instead relies on the scores obtained using the 

instrument. This misunderstanding leads to anything from misinformation and the 

endorsement of meaningless assessments or interventions to improper high stakes 

decisions. A variety of methods have been developed to estimate the reliability of scores 

related to an assessment instrument within the CTT framework. These include inter-rater, 
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test-retest, parallel forms, split-half, KR-20 and internal consistency reliability 

coefficients (Clark, 2008; Cortina, 1993; Cronbach, 1951; Henson, 2001; Nunnally & 

Bernstein, 1994; Spearman, 1904). This dissertation focused on the measure of internal 

consistency credited to Cronbach (1951) since, of the aforementioned methods of 

reliability, Cronbach’s α is said to be the most commonly used method of measuring 

reliability (Geldhof et al., 2014; Raudenbush, 1993; Raykov & Penev, 2010, and others). 

One reason is that Cronbach’s α can be calculated from a single test administration, 

which saves both time and money over other methods requiring more than one 

administration of a test (i.e., test-retest and parallel forms). Cronbach foretold that his 

internal consistency coefficient (Cronbach’s α) “is a tool that we expect to become 

increasingly prominent in the research literature” (Cronbach, 1951, p. 299). His 

prediction has certainly come true. However, since reliability is a characteristic of the 

scores obtained from an assessment tool rather than a number assigned to the assessment 

tool for all time, applied researchers in the educational, psychological, and social fields 

often do not understand the impact low reliability of the scores on a given assessment has 

on other results, which is discussed in more detail below.  

In 1999, The American Psychological Association (APA) Task Force on 

Statistical Inference (Wilkinson, 1999) published recommendations for appropriately 

reporting statistical results in scholarly research. One of these recommendations 

emphasized the need to include estimates of reliability of the scores obtained from a 

given educational or psychological assessment. Underlying this recommendation was the 

understanding that “score unreliability attenuates detected study effects” (Hogan et al., 

2000, p. 524). The APA taskforce explained the importance of remembering that a test is 
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neither reliable nor unreliable. Reliability is a property of the scores on a test for a 

particular population of examinees (Feldt & Brennan, 1989). Thus, authors should 

provide reliability coefficients of the scores for the data being analyzed even when the 

focus of their research is not psychometric  

While anecdotally, researchers appear to rely upon Cronbach’s α as a measure of 

internal consistency in an overwhelming number of articles, no empirical evidence 

regarding the frequency of use has been provided for more than 13 years. Hogan et al. 

(2000) and Charter (2003) addressed this issue of the frequency of use of Cronbach’s α in 

educational, social, and psychological research. Hogan et al. (2000) reviewed the number 

of times Cronbach’s α, along with other methods of estimating reliability, was reported 

between 1991 and 1995. Employing a systematic sampling technique of every third entry 

from 37 scholarly journals published between 1991 and 1995, Hogan and his colleagues 

examined tests found in The Directory of Unpublished Experimental Mental Measures, 

Volume 7 (Goldman & Mitchell, 2008), Tests in Print V (L. Murphy, Impara, & Plake, 

1999), Tests: A Comprehensive Reference for Assessments in Psychology, Education, and 

Business (Maddox, 1997), and the Educational Testing Service (ETS) Test Collection 

(e.g., ETS, 1995). They selected 696 out of 2,078 educational, psychological, and 

sociological tests and found that Cronbach’s α was reported in 533 out of the 696 tests 

(66.5%). The next most commonly reported reliability coefficient was test-retest 

reliability which accounted for 152 of the 696 tests (19.0%) selected.  

Revisiting the work of Hogan et al. (2000), Charter (2003) reviewed the literature 

regarding the frequency of use of reliability estimates. He gathered data from 2,733 test 

critiques, 8 journal articles, and 47 test manuals published between 1927 and 2001 with 
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92.5% of the data from the years 1960 to 1990 and found 937 reliability coefficients he 

deemed “sufficient enough to be used . . .” (p. 294). Table 3 shows the reliability 

coefficients used along with their frequency of use. Note that Cronbach’s α (Alpha) was 

used more frequently than any other method except test-retest. Charter acknowledged the 

discrepancies in the use of these various methods and explained that Hogan et al. (2000) 

used unpublished tests in 37 journals between 1991 and 1995 while he used mainly 

published tests from 1960 to 1990. An additional reason, which was not explored, is that 

data gathered by Charter include dates prior to Cronbach’s (1951) publication on 

reliability as a measure of internal consistency.  

 
Table 3 
 
Frequency of Reliability Estimation Methods Between 1927 and 2001 

Method Frequency Relative Frequency 

Alpha 140 14.94% 

Alternate Forms   40 4.27% 

Inter-judge   84 8.96% 

KR-20   62 6.62% 

Other or unknown   46 4.91% 

Split Half 126 13.45% 

Test-Retest 439 46.85% 

 
 

These gaps in the research literature pose serious issues regarding the use, and 

possibly misuse, of Cronbach’s α. For example, in the past 20 years, the use of 

Cronbach’s α has continued; however, (a) no comprehensive study has focused on either 
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the number of times Cronbach’s α has been used in educational and psychological 

research, (b) the number of researchers overlooking reliability estimates when reporting 

results from their studies is unknown, and (c) information regarding data characteristics 

when using Cronbach’s α to estimate reliability is not available.  

Regardless of the methods of estimating reliability, failing to consider reliability 

evidence puts into question any interpretation of research results since reliability is not 

only affected by data characteristics but affects other statistical properties as well. These 

data characteristics and statistical properties are discussed in the next section. 

Statistical and Psychometric Properties 
Affected by Reliability 

 
Reliability is not only affected by data characteristics such as sample size, number 

of items on an assessment, number of response choices, and sampling design, which are 

discussed in detail in the next section, but affects other statistical properties such as effect 

size, validity, p-value, power, and Type II error. Each of these statistical and 

psychometric properties are discussed below as they are related to reliability. Whether as 

stand-alone statistics or when combined, these properties express meaningful results and 

allow for accurate inferences.  

Effect Size 

Effect size, also known as practical significance is independent of sample size and 

refers to the magnitude of the impact of one variable on another (Huberty, 2002). The 

two most common types of effect size are (a) the effect size which focuses on the 

standardized mean differences between groups (Cohen’s d; Cohen, 1969, 1988) and (b) 

the effect size focusing on the amount of covariation between the independent and 

dependent variables (e.g., a squared multiple correlation, adjusted R2, or η2). Cohen’s d 
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(Cohen, 1969, 1988), which is the standardized mean difference between groups, is 

shown in Equation 17: 

 

 
(17) 

 
 
where the numerator is the difference between two group means and the denominator is 

the pooled standard deviation as described in Equation 18: 

 

 
(18) 

 
 
where the standard deviations of both groups are summed and divided by two. If within-

group variance is reduced, effect size increases (Zimmerman, Williams, & Zumbo, 1993). 

An example of the relationship between power and effect size is provided by Cohen 

(1988) in Equation 19:  

 

 (19) 

 
 
where ES is observed effect size, ESP is the population effect size, and rxx’ represents 

reliability. Therefore, when reliability is 1, the observed ES is equal to ESP; but when 

reliability is < 1, the observed ES is a value smaller than the true ESP. R2 and η2 measure 

the degree to which variability among observations can be attributed to the conditions or 

explanatory variables as represented in Equation 20 (Cohen, 1977; Huberty, 2002):  
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(20) 

 
 
where SStreatment is the sum of squares for the treatment groups or other, non-treatment 

categorical variables and SStotal is the total sum of squares in the model. Thompson 

(1994) explained that “score reliability inherently attenuates effects sizes . . . [and] we 

may not accurately interpret the effect sizes in our studies if we do not consider the 

reliability of the scores” (p. 840). More recently, Baugh (2002), Coe (2000), Durlak 

(2009), Gerhart, Wright, McMahan, and Snell (2000), R. Kline (2009), Wilkinson (1999), 

and others have provided evidence that effect size reflects other characteristics of a study 

such as estimates of internal consistency reliability. Thompson and Snyder (1998) studied 

issues related to reliability in peer-reviewed educational and psychological research and 

found that; 

The concern for score reliability in substantive inquiry is not just some vague 
statistician’s nit-picking. Score reliability directly (a) affects our ability to achieve 
statistical significance and (b) attenuates the effect sizes for the studies we 
conduct. In other words, because measurement error variance is generally 
considered random, measurement error inherently attenuates effect sizes. It 
certainly may be important to consider these dynamics as part of result 
interpretation, once the study has been conducted. (p. 438) 
 
According to CTT, the “observed” score is comprised of a “true” score, together 

with a component of “error,” which can be conceptualized as “augmenting and 

diminishing [observed values]” (Spearman, 1904b, p. 89). Therefore, the amount of 

variation in true scores in a given sample will depend on the variation of both observed 

and error scores. This fluctuation in variation affects both Cronbach’s α and effect size. 

Poor reliability will yield low Cohen’s d (Thompson & Snyder, 1998).  
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Validity 

In the broadest sense, validity of scores obtained on an assessment tool refer to 

the degree to which scores measure the latent trait of interest. There can be no validity of 

scores without first achieving reliability. Scores can be consistent (reliable) but unless 

they reflect what is actually being measured, the scores may not be valid (Moss, 1994; 

Weiner, 2007).  

P-value 

The p-value is used in hypothesis testing and represents the probability of 

obtaining the observed effect (or larger) under a null hypothesis, or hypothesis of no 

effect or difference. Ideally a p-value refers to the degree to which the results obtained by 

the sample are representative of the population, unless the sample contains bias. 

Therefore, a small p-value (i.e., under a given threshold of .05 or .01) indicates that the 

observed effect is not likely to have happened by chance and provides statistical evidence 

against the null hypothesis. Therefore, a low Cronbach’s α indicates more measurement 

error which translates to a higher p-value (J. B. Kline, 2005).  

Power 

Power of a statistical test (1-β) refers to the ability to detect group differences or 

relationships between variables when they actually exist. In other words, the power of a 

statistical test is the probability that the null hypothesis was correctly rejected. Power is 

expressed between 0 and 1, with numbers closer to 1 indicating more power. Therefore, 

as power increases, the probability of a type II (β) error decreases. Power analysis can be 

used to calculate the minimum sample size required in order to be reasonably likely to 

detect a given effect size and conversely, power analysis can be used to calculate a 
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minimum effect size one can expect from a given sample size. Reliability affects 

statistical power through effect size (refer to Equations 17, 18, 19 and 20 above). Since 

reliability is characterized by “observed variance in conjunction with true or error 

variance, power changes as reliability changes only if observed score variance changes 

simultaneously” (Zimmerman & Williams, 1986, p. 123). Additionally, “if true score 

variance remains constant but lower reliability leads to increased error variance, then 

statistical power will be reduced because of the increased observed score variance” 

(Kanyongo, Brook, Kyei-Blankson, & Gocmen, 2007, p. 83).  

Type II Error 

Type II error (β) refers to failing to reject the null hypothesis when in fact the null 

hypothesis is false. In other words, finding no difference or relationship when, in fact, 

there was a difference or relationship. Poor reliability could lead to decreased statistical 

power in the presence of increased observed score variance, which could lead to 

increased Type II error (Roxy, Olson & Devore, 2011).  

The importance of accurately estimating and interpreting reliability coefficients 

whether within the CTT or IRT framework cannot be underestimated since all estimated 

reliability coefficients influence effect size, validity, p-value, power, and Type II error, 

and severely jeopardize results. Improperly estimated reliability coefficients will 

potentially introduce additional relative bias.  

Factors Affecting Reliability 

As mentioned previously, many factors affect the reliability of scores obtained 

from test-takers on a given assessment tool. These factors include data characteristics 

such as sample size, number of items, number of response choices, and sampling designs 
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(i.e., single-and multilevel sampling designs) often found in educational and 

psychological research.  

This section is organized by first addressing factors affecting reliability regardless 

of the sampling design, then examining these factors through the lens of single-level 

modeling, and finally, through the lens of multilevel (e.g., two-level) models within CTT 

and Rasch IRT measurement frameworks. Single-level models focus on individual effects 

and multilevel models examine individual effects at level-1 and group effects at level-2 

while allowing for residual components to be estimated at each level (Geldhof et al., 

2014; Preacher, Wichman, MacCallum, & Briggs, 2012; Raudenbush & Bryk, 2002).  

Single-Level Sampling Design 

Sample size. It is well documented in psychometric analysis of single-level 

models that as sample sizes (n) increase, reliability estimates such as Cronbach’s 

coefficient α, polychoric ordinal α, and person and item reliability increase (Raudenbush 

& Bryk, 2002; Zumbo et al., 2007). Large sample sizes provide more reproducible and 

stable estimates of reliability, regardless of reliability magnitude and are more easily 

interpreted (Charter, 1999, 2003; R. Kline, 2014; Linacre, 2014; and others). However, in 

extremely small sample sizes, standard errors are often underestimated, correlation 

coefficients are less stable and tend to be over-estimated, and outliers play a role, 

resulting in higher reliability coefficients (Frost, 2015). Therefore, reliability coefficients 

must be interpreted with caution, taking into account sample size, standard errors, and 

outliers. This is also true for the number of items and the number of response choices on 

an assessment tool. As the number of items and/or the number of response choices 
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increase, reliability increases. In other words, research shows that larger sample sizes 

produce larger estimates of reliability across a range of data characteristics. 

For behavioral and educational research related to reliability estimation, sample 

size recommendations vary from 30 participants to over 1,000 participants (Charter, 

1999, 2003; Draxler, 2010; S. B. Green, Akey, Fleming, Hershberger, & Marquis, 1977; 

Hattie, 1985; Kahn, 2014; Peterson, 1994; Rust & Golombock, 2008; Yurdugul, 2008; 

and others). There are currently no studies examining appropriate sample sizes for the 

polychoric alpha reliability coefficient. Zumbo et al. (2007) developed a study of the 

stability of polychoric ordinal α when compared to Cronbach’s α, as described in detail 

previously, and recommended exploring the impact of sample size in terms of the 

precision of polychoric ordinal α estimates in future studies, which is one purpose of this 

dissertation. Since sample size affects Cronbach’s α within the CTT framework as well as 

person reliability and item reliability within the Rasch IRT framework, the debate 

regarding both ideal and realistic sample sizes within these frameworks is examined 

(Charter, 1999, 2003; S. B. Green et al., 1977; Hattie, 1985; Linacre, 2014; and others).  

Classical Test Theory. As discussed previously, among the most commonly 

reported reliability coefficient in CTT is Cronbach’s α coefficient (α) which is one 

method of estimating internal consistency (reliability) explored in this dissertation and 

which is a maximum likelihood estimator of the parameter and follows the GLM. 

Nunnally and Bernstein (1994) only vaguely referred to reliability as a function of sample 

size by stating that “measurement theory is large sample theory” (p. 228) and indicated 

that in order to precisely estimate reliability, larger samples are required. They surmised 

that a minimum of 300 participants was necessary for accurate reliability analysis but did 
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not provide any evidence to defend their claim. Furthermore, when examining corrections 

for attenuation, Nunnally (1967) stated that 300 participants was “a relatively small 

number of cases” (p. 218). Since these statements appear contradictory, several studies 

were conducted between 1994 and 2014 to provide guidelines (Charter, 1999; Peterson, 

1994; Segall, 1994) or empirical evidence using simulated data (Charter, 2003; Yurdugul, 

2008) of necessary sample sizes to estimate reliability.  

Guidelines for estimating reliability. Many studies provide guidelines for 

appropriate sample sizes to more accurately estimate reliability; however, only a handful 

of studies provide empirical evidence to support their recommendations. Peterson (1994) 

conducted a meta-analysis of the use of Cronbach’s α across 832 journals and 4,286 

articles between 1960 and 1992. The journals represented behavioral, educational, 

marketing, and social science research and the following sample sizes are reported in 

Table 4.  

 
Table 4 
 
Reported Sample Sizes to Estimate Cronbach’s Alpha 

Sample Size (n) Number of Articles 

< 100  1,028 

100-199  1,169 

200-299  696 

> 300  1,265 

Not reported  128 
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The average sample size in Peterson’s analysis was 268 which is on par with 

Nunnally and Bernstein’s (1994) recommendation of > 300; however, Peterson (1994) 

concluded that sample sizes > 100, which he based on actual sample sizes utilized rather 

than any empirical evidence, were appropriate. Segall (1994) proposed sample sizes > 

300 but failed to provide an explanation. Each of these recommendations aligned with 

Nunnally and Bernstein’s proposed sample size of > 300 but none presented adequate 

reasoning. The sample size debate continues and the traditional guidelines on the 

necessary sample size for accurate reliability estimation yielded to confidence interval 

and parameter estimation using real and simulated data. Charter (1999) conducted a study 

using a 95% confidence interval for test-retest, parallel forms, split-half, and Cronbach’s 

α reliability coefficients provided in previous studies (Charter, 1997; Feldt, Woodruff, & 

Salih, 1987) to determine more appropriate sample sizes when estimating reliability. First 

Charter (1999) indicated the coefficient r (e.g., correlations of .5, .6, .7, .8, .9, and .95) at 

varying sample sizes n (e.g., 50, 100, 200, 300, 500, and 1,000). Second, he calculated 

the width of the confidence intervals, although he did not expand on the formulas used 

for this step. Third, the results were plotted on a graph where the X-axis represented the 

sample size n, and the Y-axis represented the width of the confidence interval. Charter 

(1999) found that when sample sizes were < 50, reliability coefficients had larger 

standard errors than when sample sizes were 300 (.0605 compared to .023, respectively) 

and smaller sample sizes severely underestimated Cronbach’s α. He concluded that 

Nunnally (1967) and Nunnally and Bernstein’s (1994) sample size recommendation of > 

300 was “probably too low [and] these figures suggest that at high r’s, say .9 or above, 

one should have a minimum of 400 subjects and strive for more” (p. 563). Charter (2003) 
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conducted further investigation into 937 reported reliability coefficients and compared 

them to reliability standards outlined by Cronbach (1951), Rosenthal and Rosnow (1991), 

Cicchetti (1994), and Nunnally and Bernstein (1994). Charter determined that while 

sample sizes < 100 were common, sample sizes > 500 provided higher reliability 

estimates which he deemed to be more accurate.  

Yurdugul (2008) conducted a simulation study in which he examined eigenvalues 

to determine the appropriate sample size for estimating reliability. First Yurdugul 

generated population data by generating a multivariate normal distribution based on the 

Likert 5-point scale and using the bootstrapping method of sampling. Bootstrapping 

refers to a resampling method where random samples of the parameter of interest are 

drawn and replaced to provide a more precise estimate of the population parameter of 

interest. In Yurdugul’s (2008) study, N = 10,000 which included N = 5,000 observations 

and varying numbers of randomly determined variables (e.g., number of items). Using 

principal component analysis (PCA: a method of data reduction) coefficient α and λi 

resulting from the PCA was calculated from each population data set but not reported as 

part of the analysis. The estimated α, λi, and eigenvalues (the magnitude of variance in 

the data) were examined. Yurdugul (2008) explained that since standardized alpha is 

based on a correlation matrix of item scores it is therefore, “directly related to the 

eigenvalue of the first un-rotated principal component” (p. 398). Second, for each 

population data set, 100 samples were drawn by simple random sample methods with 

replacement for sample sizes n = 30, 100, 300, and 500 and item numbers k = 5, 6, 7, 8, 

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. For each sample data set, bootstrap estimators 

of Cronbach’s coefficient α were generated. Finally, the relative bias (R- bias) and the 
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relative root mean square error (R-RMSE) were computed for every 100 samples in each 

of the four sample size levels. R-Relative bias refers to the degree of non-response error 

and R-RMSE is a measure of error in the responses. PCA was then conducted on every 

combination of the data characteristics described above (e.g., sample size, number of 

items, estimated factor loadings) and Yurdugul found that the minimum sample size for 

Cronbach’s α is dependent on the level of the largest eigenvalue obtained. Using data 

simulated as unidimensional and normally distributed, Yurdugul concluded that a sample 

size of at least 100 was sufficient to produce an acceptable unrelative biased estimator for 

Cronbach; s α.  

The evolution of sample size determination based on the confidence interval, 

correlations, and eigenvalues provides more robust and defensible methods on which to 

make recommendations regarding adequate sample sizes to applied researchers than 

previous speculation. The idea that reliability is a function of sample size is well founded. 

While other researchers laid the foundation for determining sample sizes for more precise 

measurement, B. Muthén and Muthén (2000) contributed to the sample size debate within 

the framework of structural equation modeling (SEM) by tying sample size not only to 

the number of parameters being estimated, but considered the reliance of other data 

characteristics such as unidimensionality, distribution, missingness, the number of items, 

and the number of response choices.  

The consensus on sample size recommendations for accurate reliability estimation 

within the CTT framework is somewhere between 100 and 500 and is dependent on the 

number of parameters to be estimated (e.g., number of items and number of response 

choices). 
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Rasch item response theory. Rasch IRT assesses reliability with an analysis of 

person reliability, person separation, item reliability, item separation, inter-item 

correlations, and item difficulty thresholds. Person reliability is the degree to which items 

distinguish students' ability levels in a consistent manner which is analogous to 

Cronbach’s α. The number of levels of student ability found in the data is known as 

person separation. Item reliability depends on the item difficulty variance independent of 

test length. The number of levels of item difficulty found in the data is known as item 

separation. Together, person reliability, person separation, item reliability, and item 

separation form the basis of overall reliability of the scores. Scores are considered to have 

good reliability if person reliability, person separation, item reliability, and item 

separation values are high. Respondents’ (or test takers) scores are considered to have 

poor reliability if the person reliability, person separation, item reliability, and item 

separation values are low (Bond & Fox, 2014). Inter-item correlation (ICC), not to be 

confused with item characteristic curve, represents the average correlation each item has 

with other items on an instrument. The Rasch model assumes unidimensionality which 

means that the inter-item correlations should be at least moderate to high. Item difficulty 

(also called threshold) is a value that indicates how easy or difficult an item is. Ideally, an 

instrument will include items that fall across a spectrum of difficulty levels (Bond & Fox, 

2014; Linacre, 2014).  

Guidelines for estimating reliability in Rasch. Recommendations for 

appropriate sample sizes in Rasch IRT are based largely on three important 

considerations: (a) the number of parameters being estimated, (b) whether the items 

reflect a single administration of a test or the items are calibrated as part of a test bank, 
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and (c) the data characteristics and IRT model chosen (e.g., one parameter, rating scale. 

or partial credit models). There is no study specifically focused on the impact of sample 

size on reliability estimates within the Rasch IRT framework, which is one focus of this 

dissertation; however, Wright and Stone (1979) explained that a minimum sample size 

for an exploratory study in a simple Rasch IRT is 30, and as with CTT, larger sample 

sizes produce more accurate parameter estimations. K. E. Green and Frantom (2002) 

recommended a Rasch IRT study have a sample size > 100 participants and Van der 

Leeden, Busing, and Meijer (1997) recommended that a study have a sample size > 30 

participants. Linacre (1994) stated that parameter estimates in Rasch IRT analysis 

(including reliability estimates) will be less precise with smaller sample sizes and 

recommended a sample size of at least 50 for the most basic Rasch IRT analysis. Reeve 

and Fayers (2005) suggested that in the case of items being calibrated for a test bank, a 

sample size > 250 is required while Emberson and Reise (2000) recommended a 

minimum of 500 participants. When estimating parameters using the rating scale or 

partial credit models, Reeve and Fayers and Emberson and Reise agreed that a minimum 

of 250 participants are necessary for accurate parameter estimation while Thissen and 

Wainer (2001) believed a sample size of 500 to be too low. None of these researchers 

provided any evidence supporting these recommendations beyond previous researchers’ 

claims and trial and error. In this dissertation I examined the impact of sample size on 

reliability estimation in a rating scale model for both single and multilevel models.  

The consensus on sample size recommendations for accurate parameter 

estimation in Rasch IRT is somewhere between 30 and 500 depending on the use of the 

items (e.g., single administration or test bank), the number of items, and the number of 
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response choices (e.g., dichotomously scored items versus items using a rating scale or 

partial credit model). As with CTT, more items on an instrument require larger sample 

sizes. One noticeable difference between CTT and Rasch IRT sample size discussions is 

that parameter estimation is thought to be more robust in Rasch IRT than CTT in the case 

of smaller sample sizes (K. E. Green & Frantom; 2002; Linacre, 2012; Wright & Stone, 

1979).  

Number of Items 

In both CTT and Rasch IRT frameworks, the number of items affects the 

reliability coefficients calculated from the data (Cortina, 1993; Crocker & Algina, 1986; 

Jackson, 2003; Linacre, 2014; Nunnally & Bernstein, 1994 and others). As evidenced by 

Equation 9 shown previously, Cronbach’s α estimation relies on the number of items and 

the mean inter-item correlation. Therefore, as the number of items increases, reliability 

will increase, but this concept can be misleading since a large number of items (e.g., 

items, 50) will produce higher reliability estimates even if the underlying inter-item 

correlations are small to moderate (Nunnally, 1978). B. Muthén, (1981) explained that 

the more items selected to measure a latent trait of interest, the more complex the model. 

Hellman, Fuqua, and Worely (2006) conducted a reliability generalization study and 

determined that above and beyond sample size, the number of items used to measure a 

latent trait was significantly correlated with reliability with more items resulting in higher 

estimates of reliability. Churchill and Peter (1984) conducted a meta-analysis regarding 

data characteristics such as sample size, response rate, sample demographics, and number 

of items and the effect each characteristic had on reliability estimates. One-hundred-fifty 

studies were included in the assessment on the effect of the number of items on reliability 



 

 

71 

estimates (Cronbach’s α, test-retest, parallel reliability). The average number of items 

reported was 13.5 with a range of 1 item to 103 items. Churchill and Peter concluded that 

higher reliability estimates were significantly correlated with higher number of items, 

which is supported by the reliability generalizability study conducted by Hellman et al. 

(2006). While the literature is abundant with study results providing basic guidelines for 

the appropriate number of items to include in a measurement instrument (Allen & Yen, 

1979; Draxler, 2010; Nunnally, 1978 and others), only a handful of empirical studies 

regarding the number of items and their specific effect on reliability estimates exist. 

Nunnally (1978) pointed out that the fallacy is that more items will increase reliability 

when in actuality, the combination of higher numbers of items and higher covariance 

among the items, the more reliable the scores In other words, since correlation is a scaled 

version of covariance, adding items (for the sake of having more items) that have little to 

do with the latent trait of interest will decrease covariance as well as Cronbach’s α 

because when the sum of the variance is 0 Cronbach’s α is also 0. In determining the 

number of items appropriate to include in a measurement instrument, I examined dozens 

of recommendations across a variety of disciplines and found that most recommendations 

are based on what “seems appropriate” and not on empirical evidence. For example, 

Draxler (2010) recommended between 9 and 45 items are required to measure one latent 

trait of interest while Karabatsos (2000) advised 20 to 50 items. Allen and Yen (1979) 

recommended writing “one and a half to three times” (p. 118) the number of items 

required to adequately measure the latent trait of interest and then conduct a pilot study 

using all of the items with a minimum of 50 participants and “item analysis procedures 

[to] identify poor items” (p. 118). One empirical study conducted by Jenkins and Taber 
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(1977) used simulated data to specifically address and assess the effects of various data 

characteristics, to include number of items, on reliability estimates. Building on the work 

of Lissitz and Green (1975) regarding the number of response choices and the effect on 

reliability estimates, Jenkins and Taber varied the number of items as well as other data 

characteristics in their Monte Carlo simulation study to assess the effects on reliability 

estimates. Data were generated to reflect a composite scale using a multivariate random 

number generator with seven levels of items numbers (2, 3, 5, 7, 9, 10, 14), seven levels 

of response choices (2, 3, 5, 7, 9, 10, 14), and three levels of covariance among items (.2, 

.5, .8). This resulted in a 7 X 7 X 3 fully crossed design. Their results suggested that as 

the number of items increased in the composite scale, the reliability estimates increased, 

especially when the error variance in individual item scores were high. While no specific 

recommendations regarding the number of items were provided, their findings regarding 

the number of response choices necessary to produce a stable estimate of reliability 

supported Lissitz and Green’s (1975) study and are discussed in the section under 

response choices.  

Finding little guidance in the reliability literature and to determine an appropriate 

number of items needed to measure a latent trait, previous studies following the GLM 

and using ML estimators commonly used in CFA were examined. The reasoning for this 

decision is three-fold: first, a scale’s internal structure has implications for reliability as 

well as validity since it reflects “internal consistency by revealing which items are 

consistent with which other items” (Furr & Bacharach, 2014, p. 331) and CFA and SEM 

are used to assess internal structures of the data collected. Second, although not 

commonly used to assess reliability, factor analysis, including PCA, is considered by 



 

 

73 

some researchers to be an adequate alternative which may provide greater understanding 

of reliability (consistency; Raykov, 1997b; Yurdugul, 2008). Third, a CFA-based 

reliability estimation procedure for a unidimensional scale has been developed and 

provides stable reliability estimates in a single-level model (Furr & Bacharach, 2014, p. 

348). McDonald (1999) summarized the relationship between CFA and internal 

consistency reliability by highlighting the role of measurement error in both CFA and 

estimates of reliability. Both CFA and reliability assess the amount of error variance 

found in a given data set. The literature on parameter estimation referring to CFA models 

(Anderson & Gerbing, 1984; Bearden, Sharma, & Teel, 1982; Boomsa, 1983; B. Muthén, 

1983; and others) provided definitive answers regarding the appropriate number of items 

to improve model fit. Since the number of items is a factor known to affect reliability 

estimates, as discussed in detail previously, I examined the CFA literature to demonstrate 

the large discrepancy in recommendations made by researchers on the appropriate 

number of items to include in a single-level unidimensional assessment of attitudes and 

beliefs. Researchers proposed a minimum of four to 50 items, leaving applied 

researchers, educators, and clinicians to make a best guess, based on how well each item 

measured the latent trait of interest.  

An example of CFA studies regarding the appropriate number of items to use 

follows: Bearden et al. (1982) conducted a Monte Carlo simulation where three items per 

latent trait were studied using varying sample sizes (25, 50, 100, 500, 1,000, 2,500, 5,000, 

and 10,000) with uninterpretable results at the smaller sample sizes. The number of items 

(three) did not appear to affect relative bias the parameter estimates in models with 

sample sizes > 500. Anderson and Gerbing (1984) conducted a simulation study where 
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they used five different sample sizes (50, 75, 100, 150, 300) and three levels of number of 

items (2, 3, 4) per latent trait to assess fit indices in a CFA. Their results suggest that 

models with two items are insufficient for convergence but models with three or four 

items per latent trait and a sample size of > 100 provided unrelative biased estimates of 

fit.  

B. Muthén (1983) assessed the functionality of dichotomous and polytomous 

response choices by providing an example of a model with four items developed to 

measure “neurotic illness” which he found to be an appropriate number of items. Boomsa 

(1983) conducted a Monte Carlo simulation study in which he was examining the effects 

of non-normality on simple factor structures comprised of six to ten items with a varying 

number of response variables. Using sample size N = 400 with 300 replications, Boomsa 

(1983) found little to no relative or absolute bias in parameter estimates in the 

multivariate normal distribution; however, found that the model overestimated the 

parameters in cases of large skew (> 2). Jöreskog and Sörbom (1986) referenced a 

simulation study examining Likert scale items (5 response choices) and dichotomously 

scored items (2 response choices) in a skewed distribution and considered 5 items for 

measuring a single latent trait to be a small number of items and 15 items for measuring a 

single latent trait to be a medium number of items. MacCallum, Browne, and Sugawara 

(1996) suggested the number of items be related to power and effect size.  

Kahn (2014) recommended between 10 and 50 items in Rasch IRT with 30 being 

the average number of items and in a simulation study using CFA, Jackson (2003) fixed 

sample sizes (N = 50, 100, 200. 400, and 800) and number of items (4, 5 6, 7, and 20) per 

latent trait to assess the N:q hypothesis (the ratio of sample size to number of estimated 
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parameters) using a SEM and found the 20:1 ratio to be the most appropriate which 

supports J. B. Kline’s (1999) assertion of 10:1 or 20:1. Ziegler, Poropat, and Mell (2014) 

advised that as few as four items can accurately measure one latent trait within the 

framework of CFA, while Shevlin, Miles, Davies, and Walker (2000) recommended six 

items and Beeckman et al. (2010) suggested as many as 26 items should be used to 

measure one construct. Finally, Ulf and Lehmann (2015) suggested that a more critical 

issue than the number of items appropriate to measure a latent trait of interest is the 

“impact of an item scale on the respondent” (p. 259). Ulf and Lehmann’s view is that 

participants look unfavorably upon assessment with multiple items and develop what 

they refer to as a “response style” (p. 259). The argument presented by Ulf and Lehmann 

posited that test taking fatigue kicks in and respondents may have a specific fallback 

pattern to answering items such as circling neutral for every response or using category 

extremes such as never and always which increases error.  

The aforementioned studies supported the need for the number of items 

appropriate to measure one latent trait of interest in a latent variable model such as CFA 

or IRT to be based on up to three specific criteria: 

1. Determine how well the items correlate with the latent trait of interest and 

choose items with higher correlations to include in the model.  

2. A ratio of N: q of at least 10:1 and more appropriately 20:1. For example, 

if one has a sample size of 400 then 40 parameters, representing 20 items (for example, 

the mean and standard deviation of each item) would be appropriate at the 10:1 ratio 

where at the 20:1 ratio, a sample size of 800 would be needed to estimate 40 parameters.  
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3. The theoretical foundation of each item and the reasoning of how and why 

it will accurately measure the latent trait of interest. For example, the appropriate number 

of items is conditioned on how the construct is defined. A simple well-defined construct 

could be measured by as few as four items while a more complex construct such as IQ 

would likely require more items.  

Finally, the debate on the number of items needed to appropriately measure the 

latent trait of interest in a single-level model will continue because there is no general 

“rule of thumb” a researcher can easily access since a construct can be narrowly defined 

(needing a small number of items to assess) or broadly defined (requiring a large number 

of items to assess). There are, however, several methods to determine the appropriate 

number of items based on the target population characteristics, sample size, theoretical 

foundations of the latent trait of interest (e.g., the definition of depression and the theory 

behind it), the distribution of the data, item correlations and covariance, the number of 

response categories, and the power and effect size a researcher wishes to achieve.  

The good news is that there is some agreement in the literature regarding 

parameter estimation, to include reliability estimation that the number of items should 

range between four and 50. Based on these studies and to contain the focus of this 

dissertation to levels of relative bias in polychoric ordinal α and reliability estimates with 

both normal and non-normal distributions, the number of items in this dissertation was 

held to 10. 

Number of Response Choices 

Another factor affecting reliability estimates in a single-level model is the number 

of response choices. Traditionally, the 5-point Likert scale (Likert, 1932), described in 
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detail previously, was used in tests of attitudes. The advantages of the 5-point Likert 

scale, with response options ranging from strongly disagree to strongly agree, include the 

fact they are easily quantifiable, do not require the respondent to take a firm stand on the 

measured latent trait, and accommodate neutral or undecided attitudes (Johns, 2010). The 

disadvantages of the 5-point Likert scale include the fact a respondent’s attitudes rarely 

fall neatly on a continuum, the continuum itself is flawed in that the distances between 

strongly disagree and disagree, and agree and strongly agree, are not equal, respondents 

often do not like to choose the extreme of one category or another (strongly disagree; 

strongly agree), and the true attitudes of the respondents can only be estimated and are 

never known. Other polytomous scales have been developed in an attempt to more 

precisely measure a respondent’s true attitude and include modified Likert scales such as 

scales providing three, four, six, seven, nine, and ten choices. Nunnally (1978) found 

reliability to be a monotonically increasing function of the number of response choices 

offered and that reliability estimates accelerated up to seven response choices and evened 

out after eleven response choices. Several previous studies focused on how the number of 

response choices affect reliability. Recommendations regarding the optimal number of 

response options have ranged from two to three (Matell & Jacoby, 1971), six to seven 

(Ko, 1994), and 7 to 10 (Preston & Colman, 2000), while Aiken (1983) posited that the 

number of response choices does not affect Cronbach’s α. The inconsistency in these 

recommendations leaves researchers confused when it comes to selecting an appropriate 

number of response choices to include. Finney and DiStefano (2006) explained that the 

appropriate number of response choices depends on the underlying distribution of data. 

For a normal or approximately normal distribution of data, “using ML estimation 
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techniques does not result in severe levels of relative bias [in parameter estimation] as 

long as the minimum number of responses is five or more” (p. 277). If the underlying 

distribution is severely non-normal, as the number of response choices decrease (from 

five or more), the greater the amount of attenuation in the parameter estimates. In other 

words, standard errors will increase as the number of response choices decrease causing 

relative biased parameter estimates. In addition to examining CTT reliability literature, to 

gain clarity on the issue of the appropriate number of response choices, and since latent 

variable models are related to internal consistency reliability, additional literature 

reviewed includes studies regarding how the number of response choices affect factorial 

validity in CFA (DiStefano, 2002; Dolan, 1994; S. B. Green et al., 1997; Hutchinson & 

Olmos, 1998; Maydeu-Olivares & Coffman, 2006). Lozano, García-Cueto, & Muñiz 

(2008) explained that even though CFA is the focus for the researchers above, their study 

examined the impact of varying levels of categorical response scales on evidence of 

validity. Categorization implies a greater loss of information over continuous data and 

consequently “a greater attenuation of the relationships between items” (Finney & 

DiStefano, 2006, p. 73). The following review of the literature regarding the number of 

appropriate response choices centers on how reliability estimates in single-level models 

are affected.  

 A sample of the studies that have been conducted to assess how the number of 

response categories affect Cronbach’s α reliability estimates used empirical and/or 

simulated data (Aiken, 1983; Bandelos & Enders, 1996; Lozano et al., 2008; Lissitz & 

Green, 1975; Weng, 2004). Lissitz and Green (1975) conducted a Monte Carlo 

simulation to determine the relationship between reliability and the number of response 



 

 

79 

choices. They generated multivariate normal data to represent a 10-item instrument with 

N = 50, 100 replications per cell, six levels of response options (2, 3, 4, 5, 7, 9, 14), and 

three levels of item covariance (.20, .50, and .80), to assess how response choices 

affected estimates of reliability. Lissitz and Green found that at each of the three levels of 

covariance, reliability increased at 2, 3, 4, and 5 response choices and then leveled off. 

Lissitz and Green recommended a minimum of five response choices. Aiken (1983) 

conducted a study regarding whether the number of response choices affected reliability 

estimates. Using a 10-item teacher evaluation instrument originally developed with a 5-

point Likert scale, Aiken recruited 627 participants and administered the 10-item teacher 

evaluation instrument with only the number of response choices changed. As expected, 

he found that as the number of response choices increased, the item variance increased; 

however, reliability coefficients remained constant. Aiken concluded that “efforts to 

increase the spread of responses by employing a greater number of response categories 

will not necessarily improve scale reliability” (p. 401). 

Lozano et al. (2008) conducted a Monte Carlo simulation to assess the effects of 

varying data characteristics on Cronbach’s α. They generated responses to 30 

hypothetical items measuring one latent trait of interest and following the normal 

distribution. Their data included eight levels of inter-item correlations (.2, .3, .4, .5, .6, .7, 

.8, .9), four levels of sample sizes (10, 100, 200, and 500), and eight levels of response 

categories (2, 3, 4, 5, 6, 7, 8, 9). In total, 256 (8 X 4 X 8) conditions were simulated. The 

results showed that as response choices increased, reliability increased. The only 

exception was between two and three response choices, where no discernable differences 

were found until N = 500. These findings differ from Lissitz and Green (1975) and Aiken 
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(1983). For example, Lissitz and Green found differences in reliability coefficients 

between two and three response choices with n = 50 while Aiken (1983) found no 

evidence of reliability increasing as a function of the number of response choices. Lozano 

et al. (2008) concluded that (a) using only three categories was inadvisable because the 

majority of responses are centered at neutral and the reduction in variability affects all 

statistics, including reliability coefficients, and (b) when taking into account inter-item 

correlations and sample size, an appropriate number of response choices is four.  

To address the inconsistencies in study findings outlined above, Weng (2004) 

recruited 1,247 participants to complete two subscales (concern for others: CO and the 

determination scale: DE) of the Teacher Attitude Test. The CO and DE scales were 

developed as unidimensional scales using a five-point Likert scale. Weng combined the 

CO and DE into one test with varying numbers of response choices (4, 5, 6, 7, 8, 9). As 

expected, the results showed that as the number of response choices increased, the means 

and standard deviations of both scales increased. To test for the effects of the number of 

response choices on coefficient alpha the k-sample significance test (using a χ2 

distribution) was used with a null hypothesis of equal reliability. Six conditions (4, 5, 6, 

7, 8, and 9) were distributed as a χ
2 with 5 degrees of freedom and Weng found that the 

reliability estimates for the CO scale increased as the number of response choices 

increased but the reliability estimates for the DE scale did not vary with the number of 

response choices. Weng explained that reliability coefficient alpha was less affected by 

the number of response choices when the items were more homogenous (more highly 

correlated) and was not affected when individual variation was large. Weng concluded 
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that a minimum of five response choices is more appropriate when it is believed item 

homogeneity is high and/or individual variance is large.  

Bandelos and Enders (1996) conducted a Monte Carlo simulation to determine 

how non-normal data affected reliability estimates Generating one normal distribution 

(skew = 0, kurtosis = 0), two skewed distributions (skew = 1.75, kurtosis = 1.0 and skew 

= 2.25 and kurtosis = 7.0), one platykurtic distribution (skew = .25, kurtosis = -1.0) and 

one symmetric and leptokurtic distribution (skew = 0, kurtosis = 3) representing a 10-

item instrument with N=100 and three levels of inter-item correlation (.25, .5, and .75), 

three levels of discrete distribution shapes (item scores < 33 = 1, scores between 34 and 

67 = 2, and scores > 67 = 3), and five levels of response choices (3, 5, 7, 9, 11). In total, 

225 cells (5 distributions X 3 inter-item correlations X 5 levels of response choices X 3 

discrete distribution shapes) were assessed and average Cronbach’s α were computed for 

each cell design. Medium (d = .06) and large (d = .14) Cohen’s d effect size estimates 

were used as the criteria for significance. Their results provide evidence that (a) as inter-

item correlation increases, reliability increases, (b) reliability coefficients increased as a 

function of the number of response choices up to five categories and then stabilized, and 

(c) the underlying distributional shape (e.g., normal, skewed, platykurtic, leptokurtic) 

severely affected reliability coefficients, meaning that when data are normal or 

approximately normal, reliability coefficients remained stable when compared to non-

normal distributions. Reliability coefficients were more likely to decrease when the 

underlying distributional shape and observed distributional shape (uniform, skewed, and 

normal) were most dissimilar. Bandelos and Enders (1996) concluded that the number of 

response choices should be five or more and the underlying shape of the distribution is 
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just as important as the inter-item correlations. This ties in nicely to the consideration of 

the type of underlying distribution in the next section of this dissertation. Lastly, the 

Bandelos and Enders (1996) study most closely relates to the goals of this dissertation. 

Therefore, to contain the focus of this dissertation and follow the results of Bandelos and 

Enders, the number of response choices was held at five.  

Types of Distribution: Normal vs. 
Non-Normal Data 
 

Almost all studies examining the impact of varying data characteristics on 

reliability coefficients used normal or approximately normal distributions. Bandelos and 

Enders (1996), and Sheng and Sheng (2012) generated data sets representing both normal 

and non-normal data and compared the results of varying data characteristics to provide 

guidance to applied researchers facing real world data scenarios. Enders’ (2008) results 

show that the more non-normal the data, the lower Cronbach’s α became It is important 

to note, however, that these effects were mediated by the magnitude of the inter-item 

correlations which is supported by Bandelos and Enders (1996). Therefore, when the 

inter-item correlations were high (.75), the shape of the distribution had less effect on the 

reliability coefficients. Sheng and Sheng generated data with four levels of sample size 

(N = 30, 50, 100, 1,000), three levels of number of items (5, 10, 30) assuming tau 

equivalence, three levels of Cronbach’s α (.3, .6, .8), and two levels of true and error 

score distributions: symmetric, and non-symmetric. Table 5shows the three levels of 

symmetric and non-symmetric distributions assessed. 
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Table 5 
 
Sheng and Sheng’s Three Levels of Distribution Conditions 

Skew Kurtosis Distribution 

0 0 Normal 

0 -1.35 Symmetric platykurtic  

0 25 Symmetric leptokurtic  

0.96 0.13 Non-symmetric  

0.48 0.92 Non-symmetric platykurtic 

2.5 25 Non-symmetric leptokurtic 

Note. Adapted from Sheng and Sheng (2012).  
 
 

A total of 432 conditions (4 sample sizes X 3 test lengths X 3 levels of reliability 

X 6 distributions X 2 true and error score distributions) were included in Sheng and 

Sheng’s (2012) simulation study. Each condition involved 100,000 replications where 

Cronbach’s α was estimated for the simulated test scores. Sheng and Sheng considered 

the five non-normal distributions containing α estimates as random samples from the 

sampling distribution α which they called distribution α. The final distribution was a 

normal distribution and the sample reliability estimates obtained were called reliability α, 

which Sheng and Sheng compared to the five distribution αs. The criterion for 

significance (testing the hypothesis that reliability α = distribution α) is that if the 

observed mean of distribution(s) α = reliability α, then distribution α is not significant 

(unrelative biased). If the observed mean of distribution(s) α ≠ reliability α, then 

distribution α is significant (relative biased) and either positively or negatively relative 

biased based on whether it is larger or smaller than reliability α. The results showed that 
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(a) skewed or platykurtic distributions did not affect Cronbach’s α; however, (b) both 

symmetric and non-symmetric distributions with high kurtosis resulted in smaller mean 

alphas and larger standard errors equating to wider 95% confidence intervals, and (c) 

non-normal distributions with high positive kurtosis underestimated Cronbach’s α more 

so than other distributions tested. These findings support Enders’ (2008) findings 

regarding the effect of non-normal distributions on Cronbach’s α. It is important to note 

that the aforementioned studies regarding normal and non-normal data distributions 

generated all items to be either normal or non-normal and did not mix item distributional 

characteristics, which can be found in real-world data. Therefore, the effect of mixing 

item distributions within one generated data set may provide interesting results important 

for applied researchers. One goal of this dissertation was to mix item distributions within 

one data set and examine levels of relative bias in reliability estimates. This is discussed 

in more detail in Chapter III.  

Multilevel Model 

These psychometric analyses presented to this point refer to single-level models 

not often found in applied behavioral and educational research and rely on the 

assumption of independence of observations. Factors affecting reliability in multilevel 

models are less certain (Geldhof et al., 2014) and are addressed in the following section 

of this dissertation.  

Appropriate sampling designs place the data collected into proper context. 

Behavioral, educational, and social science data are not collected in a vacuum but rather 

are imbedded in a hierarchy of environment (Luke, 2004). For example, Luke (2004) 

explained that “the likelihood of developing depression is influenced by social and 
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environmental factors” (p. 1), health outcomes vary based on socioeconomic status, and 

educational outcomes vary based on a number of social and environmental conditions. 

Despite the importance of context, studies in the fields mentioned above often focus on 

single-level analysis (the hopeless individuals, specific health outcomes for individuals, 

attitudes of fifth graders) without accounting for the influences higher levels of context 

have on individual scores. Presenting data in the proper context provides a deeper 

understanding of how variance is influenced by higher level factors and reduces 

unexplained variance.  

B. Muthén (1989), in supporting the results of Lord and Novick (1968), showed 

that if unobserved heterogeneity (e.g., due to unexplained grouping) is ignored, it can 

lead to inflated measurement reliability. An example of polytomously scored data in 

educational research would be if a researcher wanted to assess fifth graders’ attitudes 

regarding standardized tests in Weld County. The researcher may randomly select 200 

fifth graders across Weld County, give them the attitude survey, and evaluate the 

composite scores. In this example, the schools and classrooms from which the students 

were enrolled were not taken into account and yet may help elucidate the unexplained 

variance in the attitude scores of the fifth graders. In other words, a more appropriate 

sampling design would be to take into account the nested aspect of the data (e.g., the 

hierarchy of the environment) which will allow the researcher to assess any effects school 

or classroom may have on the attitude score results. While multilevel data structures can 

have more than two levels and include time as a repeated measures variable, the focus for 

most researchers, and the focus of this dissertation, is the two-level cross-sectional model 

(Bryk & Raudenbush, 1992, Geldhof et al., 2013; Raudenbush & Bryk, 2002, Raykov & 
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Penev, 2010 ), and for the sake of clarity, levels of analysis will be referred to as 

individual (level-1) and group levels (level-2) with a single-level model focusing on 

individual effects and a two-level model examining individual effects at level-1 and 

group effects at level-2 (Geldhof et al., 2014; Preacher et al., 2012; Raudenbush & Bryk, 

2002). 

Sample Size in a Multilevel Model 

The sample size recommendations within the CTT and Rasch IRT frameworks 

described above are for single-level models only and do not take into account multilevel 

sampling designs most often found in educational, psychological, and social research. 

Snijders (2005) reviewed sample size requirements in multilevel modeling. While not 

directly discussing sample size effects on reliability coefficients, Snijders explained that 

to accurately estimate model parameters such as mean, variance, and effect size of a 

level-one variable, “the sample size at the highest level is the main limiting characteristic 

of the design…for testing the effect of a level-two variable it is the level two sample size 

. . . [that is the most important]” (p. 1571). For example, in a two-level model where 

patients are nested within clinics or students are nested within schools, the lowest level 

would be the patients or students and the second (or higher) level would be the clinics or 

schools. Expressly, the sample size at level-two (clinics or schools) is more critical in 

determining sample size requirements than the sample size at level-one (patients or 

students). Snijders provided a formula for computing appropriate sample sizes based on 

design effects (deff) as represented by Equation 21: 

 

deff =  (21) 
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where the “standard design” is defined as a multilevel design where the sample size at 

level-one is the same as other levels in the model. He explained that since variances of 

parameters are inversely proportional to sample sizes, multiplying deff by a sample size 

collected in a single-level model using simple random sampling techniques would 

provide an appropriate sample size for the level of interest in a multilevel design. B. 

Muthén and Satorra (1995) found that a deff < 2 using single-level analysis of multilevel 

data had a negligible effect on parameter estimates; therefore, Maas and Hox (2005) used 

a deff > 2 to determine appropriate sample sizes for multilevel models.  

Building on the work of Busing (1993) and Van der Leeden and Busing (1994), 

Maas and Hox (2005) studied the effects of sample size in parameter estimation on such 

entities as regression coefficients and variances. Using predetermined intraclass 

correlations (ICC = .1, .2, .3) at both level-1 (individual) and level-2 (group), Maas and 

Hox simulated data to represent the number of groups (NG = 30. 50, 100) and group size 

(GS = 5, 30, 50) based on simulations by Van der Leeden et al. (1997). For each of the 27 

conditions (3 ICCs X 3 NG X 3 GS) it was assumed the data were normally distributed 

and the explanatory variables (individual and group levels) were fixed. The results 

showed that the variance components were stable across all data conditions at level-1; 

however, the standard errors at level-2 were underestimated when NG < 100. Further 

analysis provided evidence that when NG = 50 the standard errors were not 

underestimated as frequently as when NG = 30. They concluded that NG = 50 at level-2 

was acceptable for multilevel modeling. These results differ from the results found by 

Busing (1993) and Van der Leeden and Busing (1994) where the minimum number of 

groups (level-2) recommended was > 100. Bell, Ferron, and Kromrey (2008) conducted a 
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Monte Carlo simulation to determine the effect of small sample sizes at level-1 and level-

2 of a multilevel model. Their data conditions for level-1 included small sample sizes 

(average = 10, range 5-15) and large sample sizes (average = 50, range = 25-75) and five 

items. For level-2, sample sizes were N = 50, 100, 200, and 500 with four items. In all, 

5,760 conditions were tested and their results suggested stable parameter estimates at 

both levels of the model, with the exception of level-2 N =50, where the confidence 

intervals were found to be less accurate. These findings support previous simulation 

studies.  

Number of Items, Response Choices, 
and Distributions 
 

A review of the reliability estimation in multilevel literature shows that there is 

insufficient advice provided regarding the appropriate number of items and response 

choices needed to reduce bias in estimates of reliability in multilevel models. Geldhof et 

al. (2014) encourages further research into varying and assessing these data 

characteristics in multilevel models. In this dissertation, I investigated the effect of 

sample size and normal, non-normal, and mixed data distributions while holding the 

number of items at ten and the number of response choices at five, which is outlined in 

Chapter III. 

Building a Two-Level Model 

Two common approaches to multilevel modeling are multilevel regression models 

and multilevel factor analysis models. The multilevel regression model, also known as 

hierarchical linear modeling (HLM; Bryk & Raudenbush, 1992; Raudenbush & Bryk, 

2002), random coefficient models (Rosenburg, 1973), or covariance component models 

(Dempster, Rubin, & Tsutakawa, 1981), permit the partitioning of variance, critical for 
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analyzing hierarchically nested data such as the data in the previous example where 

students are nested within classrooms. Researchers may specify a level-1 model where 

the parameters of the model illustrate a linear relationship between level-1 units. These 

level-1 parameters “are then viewed as varying across level-2 units as a function of level-

2 characteristics” (Raudenbush, 1993, p. 462). Consider the previous example of a two-

level model from above where student attitude scores are at level-1 and classroom effects 

are at level-2. The model for these data can be conceptualized as a multilevel regression 

model or a multilevel factor analysis model depending on the parameter estimations of 

interest (Maydeu-Olivares & Coffman, 2006). In this dissertation, since internal 

consistency reliability estimates are of interest, the multilevel factor analysis approach is 

discussed. Within the multilevel factor analysis model, the aforementioned example of a 

two-level model can then be considered as a random intercept model because the 

intercepts can be treated as a random effects and the items are used to explain the latent 

trait of interest (factor) in the model (Maydeu-Olivares & Coffman, 2006).  

Whether the reliability coefficient is anchored in CTT or assessed within the 

framework of Rasch IRT will affect how reliability is estimated in a multilevel model. In 

this dissertation, Cronbach’s α and polychoric ordinal α will be examined using a 

multilevel factor analysis model. Reliability estimates within the Rasch IRT framework 

will be assessed using person and item parameters, which are discussed in detail in the 

section below. 
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Using Confirmatory Factor Analysis 
to Estimate Reliability in a Two- 
Level Model 
 

Single and two-level models were reviewed previously in regard to selecting the 

appropriate sample sizes. The discussion included several references to the effect of 

single and two-level models on reliability coefficients which are only highlighted, and 

not rewritten, in this section. Recall, B. Muthén and Sattora (1995) found that single and 

two-level models did not affect parameter estimation while Maas and Hox (2005) found 

smaller standard errors of measurement (SEM) in a two-level model than a single-level 

model, which could lead to overestimation of the reliability coefficient in level-2, since 

SEM is related to reliability (e.g., as the reliability coefficient increases, the SEM 

decreases since higher reliability means lower error; Biemer, Christ, & Wiesen, 2009). 

Recall that Cronbach’s α is the ratio of true score variance to the total score variance and 

the goal of reliability analysis is to obtain unrelative biased estimates of measurement 

error. Further, Snijders and Bosker (1999) suggested that since multilevel sampling 

confounds within-group variance and between-group variance, it may lead to relative 

biased reliability estimates since the assumption of independent residuals is violated. Few 

studies have addressed the impact of two-level models on reliability estimates even 

though the need to account for variability in multilevel models has been described in and 

well established by the literature (B. O. Muthén, 1994; B. Muthén & Asparouhov, 2011; 

Raykov & Penev, 2010; Snijders & Bosker, 1999). For example, B. O. Muthén (1994) 

detailed the “perspective of varying parameters” (p. 377) as they related to multilevel 

structures. He explained that data in multilevel models are often obtained via cluster 

sampling techniques and studied by comparing the ratio of the variance of the estimator 
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under cluster sampling conditions to the variance under simple random sampling 

conditions such as those found in single-level models.  

B. Muthén and Asparouhov (2011) described several types of statistical analyses 

relevant for clustered data and recommended a two-level regression analysis, two-level 

path analysis, two-level EFA, two-level latent variable modeling, multilevel factor 

analysis, or a two-part growth model to examine both within-subjects and between-

subjects’ variability. To provide guidance to applied researchers on the effects of single- 

and two-level models on reliability coefficients, Raykov and Penev (2010) and Geldhof 

et al. (2014) conducted hypothesis tests to assess traditional and nontraditional reliability 

coefficients in a multilevel model using continuous data. Raykov and Penev (2010), 

Geldhof et al. (2014), Black et al (2015), Yang, Beitra, and McCaffrey (2015), Huang 

and Cornell (2016), and T. A. Brown (2015) suggested using some form of latent variable 

modeling (LVM) techniques to estimate reliability in multilevel models. Within each 

study, these researchers were interested in modeling the outcome (dependent) variable, yi, 

as a function of lower and higher sample levels (e.g., individuals and groups). I found 

multilevel factor analysis to be more relevant to my dissertation than the group means 

approach presented by Raykov and Penev or the composite reliability approach of Yang 

et al; therefore, further discussion details the research conducted by Geldhof et al. (2014), 

Huang and Cornell (2016), and T. A. Brown (2015) and their corresponding results.  

Multilevel Confirmatory Factor 
Analysis 
 

Geldhof at al. (2014) conducted a simulation study to provide recommendations 

when assessing reliability in a multilevel model. Stating that the basic CFA model can “be 

elaborated in various ways” (p. 76), the researchers restricted their focus to continuously 
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scored items. Since polytomously scored items have more often been found in an 

assessment of attitudes, this data characteristic is at the center of my dissertation and the 

MCFA model for polytomously scored items is highlighted in section describing the 

Huang and Cornell (2016) study and described in detail in Chapter III. While Geldhof et 

al. (2014) recognized the contribution made by Raykov and Penev (2010) regarding 

LVM, they believed that “the reliability of group means as estimates of the distribution of 

means in a population is different than measurement reliability” (p. 74). Instead, Geldhof 

et al. suggested that reliability estimated at each level of a two-level model within the 

framework of CFA (known as multilevel confirmatory factor analysis or MCFA) is a 

better approach since general reliability coefficients may be relative biased when the 

assumption of independent residuals is violated. Multilevel sampling will result in 

hierarchically structured data, as mentioned previously, “making the residuals dependent 

in the presence of between-cluster variation” (Geldhof et al, 2014, p. 72). Most 

behavioral, educational, and social science researchers who use multilevel modeling to 

account for the variance at each level of analysis tend to then report Cronbach’s α as a 

measure of reliability, which implies a single-level data structure since it uses a scale’s 

total variability rather than measuring reliability at each level of analysis (T. A. Brown, 

2015; Cronbach, 1951; Geldhof et al., 2014). According to Geldhof et al., single-level 

reliability estimates using CFA summarize the factor loading matrix into an easily 

interpretable result. Cronbach’s α can then be used to estimate reliability. Geldhof et al. 

(2014) posited that this approach can be extended to a two-level model by “specifying 

fully saturated indicator covariance matrices in both levels of a [multilevel confirmatory 

factor analysis] MCFA” (p. 76) and estimating Cronbach’s α at the within-level and the 
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between-level. Using data simulated to be continuous, Geldhof et al. explained that the 

MCFA model they chose provided a similar form of decomposing variance as found in 

generalizability theory, where an individual’s observed score on an item can be 

decomposed into four distinct parts as represented in Equation 22: 

 
Yik = Twi + Ewi +  Tbk + Ebk 

 

 

           within-cluster    between cluster 

(22) 

 
 
Where Twi is the true deviation from the cluster average true score, Ewi is the within 

cluster error, Tbk is the individual’s cluster average true score, and Ebk is between cluster 

error. Using this model, true score variance can be acquired at each level. Reliability at 

the within level is the ratio of within-cluster true score variance to total within-cluster 

variance and reliability at the between level is the ratio of between-cluster true score 

variance to total between-cluster variance. Geldhof et al. (2014) further explained that 

since the between-cluster reliability is represented in a scale, it “does not necessarily 

represent the reliability of group-level composites” (p. 75). Therefore, between-cluster 

reliability is different from ICC which is the ratio of between-cluster variance to its total 

variability across both levels. Geldhof et al. further explains that the idea of more than 

one error term is contrary to CTT but concludes that a multilevel model, by its very 

nature, requires the assessment of observed score and error variances at each level and 

therefore, the MCFA approach is appropriate because, unlike generalizability theory, 

“MCFA decomposes observed scores [(X)] into components related to each individual’s 

cluster average true score (T)” (Geldhof et al., 2014, p. 75). In other words, MCFA 

follows CTT requirements by combining item specific variance, between-cluster 
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differences, the interactions among them, and variance due to nonsystematic error into 

one residual term. The MFCA model provided by Geldhof et al. is given as a special case 

of B. Muthén and Asparouhov’s (2009) model by a set of three equations (Equations 23, 

24, and 25; Geldhof et al., 2014) which assume a continuous scale.  

 
Yij - Ʌjηijj

 (23) 
 
 

ηij = αj + βjηij + ζij   
 (24) 

 
 

ηi = µ jj βηijj + ζj
 (25) 

 
 
where subscript i represents level- 1 (individual) and subscript j represents level-2 units 

(groups). Yij is a vector of p measured variables; Ʌj = Ʌ = [Ip 0p_m Ip 0p_m] is a (p X 

(2p + 2m) factor loading matrix linking Yij to p latent parts at both the within- and 

between-cluster levels, and m common factors at both levels; αj is a vector of length (2p 

X 2m) containing p latent within-cluster parts, m within-cluster common factors, p latent 

between-cluster parts, and m between-cluster common factors; ηj is a vector of length (2p 

X 2m) that contains the p item intercepts and m between-cluster common factors; Bj is a 

(2p X 2m) X (2p X 2m) matrix containing within-cluster factor loadings; ηj (r X 1) 

contains all of the j-subscripted random coefficients from αj and Bj, including the 

between-cluster common factors; µ (r X 1) contains means of those coefficients and the 

item intercepts; β (r X r) contains between-cluster factor loadings; ζij contains unique 

factors and common factor residuals for the within-cluster model; and ζj (r X 1) contains 

unique factors and common factor residuals for the between-cluster model. Separate 

within- and between-group α can be obtained by applying Equation 25 to the  
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between- and within-group results. Equation 26 represents α as a function of the average 

inter-item covariance within a scale (mean σij), the variance of the scale (σ2x) and the 

number of items included in the scale (n) reflected by Equation 26 (Cronbach, 1951): 

 
α = n2(mean σij)/(σ

2
X) (26) 

 
 
Note that α can be estimated in MCFA by “specifying a fully saturated covariance 

structure model that has no latent variables” (Geldhof et al., 2014, p. 73). In this way, the 

MCFA method leads to observed scores (Yij) encompassing both true score and error 

variance at both within-cluster and between-cluster levels denoted by subscript ij. 

Revisiting the previous example of assessing fifth grade attitude scores in a two-level 

model, this means that the MCFA approach will permit attitude score variances and 

covariance to vary at level-1 and level-2.  

Focusing only on the aspect of their study where data were generated to reflect a 

two-level model and estimating Cronbach’s α, Geldhof et al. (2014) hypothesized that (a) 

ignoring the hierarchical data structure will make reliability estimates difficult to interpret 

unless reliability is equal across both levels; (b) as the ICCs decrease, the reliability 

estimates in a single-level model will roughly reflect the within-level (level-1) reliability 

estimates and as the ICCs increase, the reliability estimates will roughly reflect between-

group (level-2) reliability estimates; (c) MCFA may fail to reproduce an underlying factor 

structure when item reliabilities are low, especially in the face of low sample sizes; and 

(d) using a fully saturated two-level model to estimate alpha, no convergence problems 

will exist. Geldhof et al. (2014) examined reliability estimates for a six-item congeneric 

measurement model (scale). A congeneric measurement model means that each item is 
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related to only one latent trait (unidimensional) and all covariation between items is a 

consequence of the relationships between items and the latent trait of interest. They 

simulated continuous data to represent three conditions of observations per cluster 

(number of individuals: 2, 15, 30), three conditions of the number of clusters (groups: 50, 

100, 200), four conditions of ICCs (.05, .25, .50, .75), both low and high reliability 

conditions (α = .30 and .85) and three conditions of factor loadings set to .8, .7, and .6 for 

both level-1 and level-2. First, the researchers calculated the bias of Cronbach’s α in the 

single-level model under a cross-section of all of the data conditions, and then they 

compared these results to reliability estimates obtained from simulating a multilevel 

model with either low or high ICCs (.05 and .50), the total number of observations (200 

clusters with 30 observations each and 100 clusters with two observations each), and 

conditions where reliability was high at both levels, neither level, only within level-one, 

and only between level-two clusters. Finally, assessing the root mean squared error of 

approximation (RMSEA), the comparative fit index (CFI), and the Tucker-Lewis index 

(TLI) fit statistics, and 95% confidence intervals, their results show that within-level 

alpha was never biased more than 10% and considered acceptable in all conditions; 

however, between-level alpha was negatively biased for small clusters (50, 100) when the 

ICCs were low (e.g., .05, .25) and within-level reliability was low (e.g., .30). Geldhof et 

al. (2014) concluded that reliability estimation should be level-specific when working 

with multilevel data. Furthermore, within-level reliability estimates and between cluster 

reliability estimates were acceptable under all conditions except when the number of 

observations = 2 and the ICCs were low, in which case they were underestimated.  
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The random intercept model in MCFA is described by Geldhof et al. (2014) and T. 

A. Brown (2015). This model allows intercepts to vary. Reconsidering the fifth graders’ 

attitudes outlined previously, the goal would be to specify an MCFA where a single factor 

of attitude is specified at both within and between levels to explain the variability of the 

items on the survey. T. A. Brown (2015) clarified the process of building an appropriate 

MCFA model by recommending multiple steps to estimating reliability in an MCFA. 

First, one should examine the ICCs of the items, as they refer to the proportion of 

variance in the items due to the clusters. If the ICCs are < .05 then a multilevel model 

may not be necessary when estimating reliability. Second, “[specify] a CFA model at the 

within-level leaving it unstructured at the between-level” (T. A. Brown, T., 2015, p. 421). 

Third, if an appropriate measurement model exists, “examine the between-level factor 

structure in a two-level model with the within-level structure fully specified” (T. A. 

Brown, 2015, p. 421). Equations 27, 28, and 29 represent the within-and between-level 

model (T. A. Brown, 2015, p. 421) modified from Raudenbush and Bryk (2002): 

 
Y = Ʌwηw +εw  (within) (27) 

 
 

µB = µ + ɅBηB +εB  (between) (28) 
 
 
which can be combined as: 
 

Y = µ + Ʌwηw  + ɅBηB +εB + +εw
 (29) 

 
 

Where µ is the vector of between-level means; Ʌw is the within-level factor 

loading matrix; ηw is the within-level factor; and εw is the item residual variance within-

levels; ɅB  is the between-level factor loading matrix; ηB is the between-level factor, and 
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εB is the item residual variance between levels. The factor loading matrices (Ʌw, ɅB) and 

cluster level means (µ) are fixed effects while µB refers to the random intercepts of the Y 

variable. Note that the MCFA model given as a special case of B. Muthén and 

Asparouhov’s (2009) model and the MCFA model specified above are both fully 

specified models using continuous data. The main differences between Geldhof et al.’s 

(2014) model and T A. Brown’s (2015) model are (a) the way in which each is expressed, 

with Brown’s model providing more clarity and (b) how factor loadings are handled, with 

Geldhof et al. fixing all factor loadings to 1.0 and T. A. Brown fixing only the first factor 

loading to 1.0 and allowing the remaining factor loadings to be freely estimated. Figure 3 

illustrates the path diagram for the previously discussed example of a two-level model 

where student attitude scores (considered continuous in this example) are at level-1 and 

classrooms are at level-2. In the following example, there are four hypothetical 

(observed) items on the attitude scale in Figure 3 (Y1, Y2, Y3, Y4) which represent the 

within-level measurement and are depicted by squares. These four items are then 

considered four latent variables at the between-level measurement and depicted by small 

circles. The two large circles in the path diagram are the attitude factor at both the within 

level and between level. The single between-level factor Attitude between is specified to 

account for the variation and covariation among these random intercepts. Attitude within 

is the within-level attitude factor with four items and Attitude between is the between-

level factor where the four items in level-1 are considered latent variables in level-2: 

Brown provided Mplus commands to build the a two-level MCFA which is included in 

Chapter III and used to estimate within-and between-level reliability.  



 

 

99 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A hypothetical path diagram of a Multilevel Confirmatory Factor Analysis 
model of attitude. 
 
 

Finally, Geldhof et al. (2014), Black et al. (2015), and T. A. Brown (2015) 

provided the same recommendations regarding model fit and convergence rates. In other 

words, there was consensus among the researchers that good model fit (e.g., CFI > .95, 

TLI > .95, RMSEA < .05) must be present in order to provide meaningful interpretations 

of reliability at the within-and between-levels of analysis. Additionally, it is important to 

note that Geldhof et al. (2014), Black et al. (2015), and T. A. Brown (2015) considered 

only continuous data in their research. Their MCFA models all found stable within-level 

Cronbach’s α but biased estimates of Cronbach’s α at the between-level. Geldhof et al. 

reported negative bias at the between-level Cronbach’s α when ICCs were low (< .05), 

Black et al. (2015) reported the between-level Cronbach’s α to be underestimated 
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regardless of ICCs, and Brown did not recommend Cronbach’s α to estimate between-

level reliability.  

Each study estimating reliability in a multilevel model offered important ideas for 

the methods to employ in this dissertation; however, since my focus was specifically on 

polytomous data, by extending the MCFA model to polytomous data, Huang and Cornell 

(2016) provided valuable methodological techniques critical for this dissertation. Huang 

and Cornell conducted an MCFA to examine the factor structure of the Positive Values 

Scale (PVS). Their participants included 39,364 seventh-and eighth-grade students from 

423 schools. Each school randomly chose a sample of students to whom to administer the 

PVS. The PVS is a unidimensional measure of positive values and is comprised of nine 

items with six categorical response choices for each item, from not important to 

extremely important. Huang and Cornell found good model fit with RMSEA = .04, 

CFI=.98, and TLI =.97 and low ICCs across all items (<.05). At level-2, item 2 resulted 

in a small negative residual variance and was therefore fixed to 0 to allow for 

convergence of the model as recommended by Hox (2002) and Asparouhov and Muthén, 

(2006). Huang and Cornell then calculated Cronbach’s α at level-1 (within-students level) 

and to account for the clustered nature of the data and following the guidelines of 

Dedrick and Greenbaum (2010), used the Spearman-Brown prophecy formula (see 

Equation 30), as a measure of reliability at level-2 (between-school level).  

 
[k(ICC]/[(k-1)(ICC) + 1] (30) 

 
 
Where k is the average number of respondents per school and the ICC is the intraclass 

correlation of the factor that reflects the amount of variability resulting from the school-
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level. Cronbach’s α for level-1 was .81 and the Spearman-Brown reliability coefficient = 

.92 providing evidence of good reliability at both the within-and between-levels.  

The focus of this dissertation was to examine the behavior of Cronbach’s α along 

with Spearman-Brown’s Prophecy formula to provide guidance to applied researchers on 

the most appropriate reliability coefficient(s) to use in a multilevel model. Therefore, 

Cronbach’s α was estimated at the within-and between-levels using Geldhof et al.’s 

(2014) and T. A. Brown’s (2015) approaches, as well as the Spearman-Brown Prophecy 

formula for the between-level approach found in Huang and Cornell (2016). In addition, 

confidence intervals for each reliability estimate are reported as recommended by 

Geldhof et al. (2014), Black et al. (2015), T. A. Brown (2015), and Huang and Cornell 

(2016). These approaches in MCFA were compared to the other reliability estimates: 

polychoric ordinal α within the CTT framework and person and item reliability and 

separation within the Rasch IRT (RSM) framework. 

Assessing Reliability Within the 
Rasch Item Response Theory 
Framework 
 
 Assessing reliability in the Rasch IRT model requires examining both person and 

item parameters. Kamata (2001) explained that several methods are used in estimating 

these parameters based on multilevel data. The two methods applicable to estimating 

person and item parameters for this dissertation are described here. First, person 

parameters are treated as random effects rather than the classical fixed-effects model 

described by Rasch (1960). They can be decomposed into a linear combination of fixed 

and random effects. This method allows the researcher to perform analysis of person 

characteristics such as person reliability and separation. Second, a multiple group IRT can 
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be used to group individuals by a common characteristic such as classroom or school. A 

multiple group IRT assumes separate latent distributions for groups in estimating item 

parameters. Kamata proposed a three level formulation where level-one is the item level, 

level-two is the person level, and level-three is the group level (e.g., classrooms or 

schools). Building on and applying Kamata’s work, Raudenbush, Johnson, and Sampson 

(2003) explained that Rasch IRT scaling presents person-specific standard errors of 

measurement as well as item-specific and whole-scale information making it a good 

choice to use in multilevel models. Their study was in regard to self-reported crime 

statistics where the respondents were nested within social settings such as schools or 

neighborhoods. Following Kamata, Raudenbush et al. treated person parameters as 

random effects. Randenbush et al. then applied the Kamata approach where level-1 

includes item responses which are dependent on item difficulty and person propensity 

(e.g., the likelihood of committing a crime, which is interpreted as person ability with 

higher levels indicating higher likelihood to commit a crime). Level-2 describes variance 

and covariance between person propensities (e.g., abilities) within groups (e.g., schools 

or neighborhoods), and level-3 describes variance and covariance between groups. 

Reliability can then be assessed at each level by examining level-specific person and item 

reliability and separation. Linacre (2014) noted that reliability and separation parameters 

should be considered together when making decisions based on reliability of the scores. 

Confidence intervals are calculated to determine any reliability relative bias. By 

conceptualizing criminal behavior in this way, Raudenbush et al. (2003) were able to 

model crime indicators for both individual differences and contextual variation. In other 
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words, individual self-report responses on the likelihood to commit a crime and the 

hierarchical structure presented as social settings.  

 Pastor (2003) followed the recommendations of Kamata (2001) and conducted a 

study using Kamata’s three-level IRT model. Pastor explained that Kamata’s three-level 

model provided four distinct advantages over other multilevel modeling techniques 

within the Rasch IRT framework. These advantages are that hierarchically structured data 

can be modeled, latent traits of interest can be estimated at different levels, improved 

estimates of inter-item correlations and relationships between latent traits and observed 

variables can be calculated, and these relationships can be examined at different levels of 

analysis. Using the Culture Free Self-Esteem Inventories (CFSEI-3), Pastor first built an 

unconditional model which modeled the variation of item responses within people and 

used the log-odds of the probability of endorsing an item for a given person. Item effects 

were specified across persons so that in level-2 of the unconditional model, only variation 

among persons in level-1 within level-2 groups were estimated. The third level was used 

to model variation among groups by using the parameters estimated for each group where 

item effects were fixed across groups and latent trait effects varied randomly across 

groups. Considering the three-level model, once Pastor determined significant variation 

across level-1 variables, person variables of gender and age were modeled at level-2. 

Finally, group variables were modeled in level-3 to assess group level variation. Pastor 

compared the unconditional model to the conditional model with item and group 

variables at levels 2 and 3 and found improved model fit. While her study did not 

examine person or item reliability, it does provide information on building the 

unconditional three-level model which she stated was based on the Rasch IRT model 
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(e.g., satisfied the assumption of equal discrimination across items) and is, therefore, 

important to include in my dissertation., Once the three-level unconditional model is 

specified, person and item reliability and separation can be estimated.  

Chapter Summary 

Observed scores on an instrument designed to measure a latent trait such as 

aptitude or attitude contain some element of error. Measurement theories such as CTT 

(Spearman, 1904) and Rasch IRT (Rasch, 1960) were established to measure not only the 

observed scores but the various elements of error inherent to data collected from human 

subjects. Reliability coefficients were developed to measure error in composite test scores 

and evolved to measure error at the item level. This elevated social science research 

beyond descriptive statistics and into the world of hypotheses testing. Each of these new 

measurement frameworks (e.g., CTT, CFA/MCFA, and Rasch IRT) carry assumptions 

often not met with data collected from human subjects. Discussions regarding the 

selection of the most appropriate sample size, number of response choices, and sampling 

design to reduce error in survey research continues. The purpose of this dissertation was 

to simulate observed scores under complex data conditions often found in the real world 

and (a) investigate error in terms of internal consistency reliability within the CTT 

framework and person and item reliability and separation within Rasch IRT models (e.g., 

RSM), (b) inform clinicians, teachers, and applied researchers about possible relative bias 

in reliability coefficients when more complex data structures and underlying distributions 

are encountered, and (c) provide a reference from which to interpret their results.  

In Chapter III, the methods developed to answer the research questions in Chapter 

1 are described in detail and examples of programming codes are included.  
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CHAPTER III 

METHODS 

Introduction and Research Questions 

In Chapter III I discuss the methodology used to answer the four research 

questions posed in this dissertation. Three principle objectives were addressed in this 

dissertation: (a) following a call from Zumbo et al. (2007) and Gadermann et al. (2012). I 

examined the effect of sample size, type of underlying data distribution (normal, non-

normal, or mixed), sampling design (single and two-level), and the interactions of these 

data conditions on estimates of polychoric ordinal α within the CTT framework; (b) 

following the recommendations of T. A. Brown (2015), Geldhof et al. (2014), Huang and 

Cornell (2016), Little (2013), and Sheng and Sheng (2012), I examined the effect of 

sample size and type of underlying data distribution on estimates of Cronbach’s α within 

the CTT framework (single-level design) and MCFA framework (two-level design); and 

(c) examined person reliability in a two-level RSM model. Using a fully crossed design, 

these analyses focused on the possible consequences of these varying conditions on 

estimates of reliability. Monte Carlo simulation techniques were used to generate data to 

answer the following four research questions as they pertain to a unidimensional measure 

with polytomous data: 

Q1 In a single-level model, to what degree do data conditions (sample size 
and distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person 
reliability)? 
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H1 In single-level models, bias in reliability estimates will increase under the 
conditions of smaller sample sizes and non-normal or mixed distributions 
and polychoric ordinal α and person reliability will be less biased than 
Cronbach’s α. 

 
Q2 In a multilevel model, to what degree do data conditions (sample size and 

distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person reliability 
in level-1 (within groups) and the Spearman-Brown’s prophecy coefficient 
in level-2 (between groups)? 

 
H2 In multilevel models, bias in reliability estimates in level-1 will increase 

under the conditions of smaller sample sizes and non-normal or mixed 
distributions and polychoric ordinal α will be less biased than Cronbach’s 
α and person reliability. Additionally, Spearman-Brown’s prophecy 
coefficient will be underestimated under the conditions of smaller sample 
size and non-normal or mixed distributions 

 
Q3 Do standard errors and levels of bias in reliability estimates (Cronbach’s 

α, polychoric ordinal α, and person reliability) differ when data are single-
level versus when data are at level-1 of a two-level across sample size and 
distribution of data?  

 
H3 When comparing the standard errors and levels of bias in reliability 

estimates of single-level and level-1 of two-level sampling designs, across 
three estimates of reliability, bias for level-1 of the two-level model will 
be lower than the bias found in the single-level models. 

 
Q4 To what degree do interactions among sample size, data distribution, and 

sampling design (e.g., single-level and two-level) affect levels of bias in 
reliability estimates (Cronbach’s α, polychoric ordinal α, person 
reliability, and Spearman-Brown’s prophecy coefficient)? 

 
H4 Interactions among sample size, data distribution, and sampling design 

will increase bias in reliability estimates, with the joint effect of lower 
sample sizes and non-normal and/or mixed distributions displaying the 
most bias. 

 
The Pilot Study 

Data generation and the final selection of data characteristics of this dissertation 

are discussed in detail in the next section. During the proposal phase of this dissertation, a 

pilot study was conducted on a small portion of the myriad of proposed data conditions to 
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(a) assess my ability to simulate multivariate normal data within the CTT framework for 

single-level models in R and (b) determine the data conditions used in the full study. 

Additionally, within the Rasch IRT framework, data representing a single-level RSM 

were also generated using R (see Appendices A and B, respectively) and analyzed using 

Winsteps. To manage these data sets, all reliability coefficients were estimated in R and 

exported into MS Excel, and 95.0% confidence intervals about the sample reliability 

estimates were calculated and relative bias were examined and trends in bias elucidated. 

The pilot study included generating multilevel data; however, these data were 

simulated using Hierarchical Linear Modeling (HLM) techniques rather than MCFA 

techniques. During the proposal defense, MCFA techniques were found to be more 

appropriate for estimating reliability coefficients in a multilevel model. Therefore, the 

multilevel data conditions and subsequent results from the pilot study are not included 

here.  

Cronbach’s Alpha 

Multivariate normal data were generated in R and the same seed was used in all 

single-level analyses. Cronbach’s αs and their corresponding 95.0% confidence intervals, 

and person and item reliability and person and item separation indices in RSM were 

estimated. An example of data conditions used for the pilot study and all resulting biases 

are found in Table 6  
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Table 6 
 
Summary of Pilot Study Data Conditions 

 Single-Level Sampling Design 

Distributional Characteristics Normal [Skew = 0, Kurtosis = 0] 

For CTT:  

Cronbach and polychoric ordinal α* .70 

Sample size(s):  

Individuals (N) N = 50, 200 

Number of:  

Items (i) i= 5, 10 

Response choices (rc) rc = 4, 7  

For PCM and RSM:  

person reliability* .70 

Person ability* µ = 0, σ = 1 

Item difficulty* µ = 0, σ = 1 

Sample size(s):  

Individulas (N) N = 50, 200 

Number of:  

Items (i) i = 5 

Response choices (rc) RC = 4 

Note. All data generated will represent a unidimensional model measured by 
polytomously scored items. 

* indicates fixed parameters 
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Pilot Study Results 

Single-level Cronbach’s α. Table 7 represents the Cronbach’s α results and 

corresponding 95% sample confidence intervals and standard errors for the eight single-

level data sets generated. Within the eight 95% sample confidence intervals calculated 

from the samples drawn, the known population reliability coefficient (.70) was captured 

100% of the time.  

The results of the factorial ANOVA with absolute bias as the dependent variable 

and sample size (n), number of items (i), and number of response choices (rc) indicated 

as the random factors is in Table 8 below. No statistically significant absolute biased 

estimates were found under these data conditions based on all interaction and main 

effects having p-values > .05.  
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Table 7 
 
Pilot Study: Cronbach's α and Corresponding 95% Confidence Intervals from the Single-Level Sampling Design and Normal 
Distribution 

          95% Sample Confidence Intervals       

Sample 
size 
(N) 

Number 
of items 

(i) 

Number of 
response 
choices 

(rc) 

Population 
Cronbach’s 

α 

Average 
(observed) 

Cronbach's α 
Lower 
Level 

Upper 
Level 

SE of 
Sample 

Cronbach's α 
Relative 

Bias 
Absolute 

Bias 

Population Cronbach α 
falls within the 95% 
Sample Cronbach's a 
Confidence Interval 

50 5 4 0.70 0.6567 0.4903 0.8231 0.08 -0.24 0.04 yes 

50 10 4 0.70 0.6649 0.5113 0.8185 0.08 -0.25 0.04 yes 

50 5 7 0.70 0.6559 0.5069 0.8049 0.07 -0.24 0.04 yes 

50 10 7 0.70 0.6559 0.5021 0.8097 0.08 -0.24 0.04 yes 

200 5 4 0.70 0.6567 0.5831 0.7303 0.04 -0.24 0.04 yes 

200 10 4 0.70 0.6629 0.5935 0.7323 0.03 -0.25 0.04 yes 

200 5 7 0.70 0.6708 0.5974 0.7442 0.04 -0.26 0.03 yes 

200 10 7 0.70 0.6773 0.6069 0.7477 0.04 -0.27 0.02 yes 
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Table 8 
 
Tests of Between-Subjects Effects for Bias in Cronbach’s Alpha in a Single-Level 
Model 

Source F p-value 

Intercept 9.44 .33 

Same size (n) 1.000 .50 

Number of items () 1.000 .67 

Number of response choices (rc) 1.000 .50 

Sample size * Number of items 1.000 .50 

Sample size * Number of response 
choices 

9.000 .20 

Number of items * Number of 
response choices 

1.000 .20 

Sample Size * Number of items * 
Number of response choices 

1.25 .50 

 
 

Single-level Person and item reliability. Table 9 represents the Person and item 

reliability for two data sets within the RSM single-level sampling designs. As expected, 

the person Root Mean Square Error (RMSE) remained stable across data conditions 

because it is not affected by sample size but instead by person ability estimates, which 

were held constant. Item RMSE decreased as sample size increased. 
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Table 9 
 
Pilot Study: Person and Item Reliability and Separation Indices from a Rating Scale Model Single-Level Sampling Design 

File Name 

Sample 
size 
(n) 

Number 
of items 

(i) 

Number of 
response 
choices 

(rc) 
Distribution 

(D) 

Infit 
Mean 
Square 

Outfit 
Mean 
Square 

Root Mean 
Square 
Error Reliability Separation 

Rating Scale Model-Sample Size 50 

     Person   50 5 4 Normal 0.99 0.99 0.82 .61 1.26 

     Item   50 5 4 Normal 1.00 0.99 0.23 .86 2.48 

Rating Scale Model-Sample Size 200 

     Person 200 5 4 Normal 0.99 0.99 0.85 .71 1.55 

     Item 200 5 4 Normal 1.00 0.99 0.12 .97 5.31 
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The ANOVA results with absolute bias as the dependent variable and sample size 

(n) is in Table 10 below. No statistically significant absolute biased estimates were found 

under these data conditions based on all interaction and main effects having a p-value > 

.05. The results of levels of absolute bias were computed using SPSS 23.0 (2015). 

 
Table 10 
 
ANOVA Results for Absolute Bias Within the Rating Scale Model 

Source F p-value 

Intercept 0.190 .740 

Sample size 7.720 .220 

 
 

Note, these pilot data conditions drove necessary changes in several of the data 

conditions examined in this dissertation. The data conditions generated for the full study 

are described in detail below and presented in Table 11. 
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Table 11 
 
Summary of Final Data Conditions 

  Sampling Design 

  Single-Level Multilevel 

Distributional characteristics Normal Distribution Normal Distribution 

 
Mixed Distribution: 50% normal, 

50% Non-Normal 
Mixed Distribution: 50% normal, 

50% Non-Normal 

 
Non-Normal Distribution 

(skew = 3.0, kurtosis = 7.0) 
Non-Normal Distribution 

(skew = 3.0, kurtosis = 7.0) 

Cronbach and polychoric ordinal α * .70 .70 

Target between-level Intraclass 
Correlation Coefficients ** 

N/A .20 

Sample size(s):     

Individuals (N) Sample Size = 30, 50, 300 Sample Size = 30, 50 

Groups (Ng) N/A Number of groups =10, 100 

Number of items: (I) Items = 10 Items  = 10 
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Table 11 (continued) 

 Sampling Design 

 Single-Level Multilevel 

Number of response choices: (rc) Response choices =5 Response choices = 5 

For Rating Scale Model:   

Person reliability* .7 .7 

Total number of data conditions  9 = 3 (distributions) X 3 (sample sizes) X 
1 (item choice) X 1 (response choice) 

12 = 3(distribution) X 2 (Sample Size) X 2 
(Number of groups) X 1 (item choice) X 1 

(response choice) X 1 (between) 

Total Reliability Coefficients in each 
Condition 

X 3 reliability coefficients: Cronbach's α, 
polychoric ordinal α, and person 

reliability 

X 3 level-1 reliability coefficients: 
Cronbach's α, polychoric ordinal α, and 

person reliability coefficient and 1 level-2 
reliability coefficient (Spearman-Brown) 

Total Number of Coefficients across 
Data Conditions 

18 36 

Note. All data generated represent a unidimensional model measured by polytomously scored items. 

* indicates fixed parameters; ** to calculate Spearman-Brown Coefficient (Between Level)  
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Sampling Designs and Data Conditions 
for the Full Study 

 
In a single-level sampling design, two reliability estimates (i.e., Cronbach’s α, 

polychoric ordinal α, were examined within the CTT measurement framework and four 

reliability estimates (i.e., person reliability and separation (RSM), and item reliability and 

separation (RSM)) were examined within the Rasch IRT-RSM model for ordinal data. In 

a two-level sampling design, four reliability estimates (i.e., Cronbach’s α, polychoric 

ordinal α, between-level Spearman-Brown and between-level Cronbach’s α were 

examined within the MCFA framework and one reliability estimate (person reliability) 

was examined within the Rasch IRT-RSM for ordinal data.  

Using Monte Carlo simulation techniques, data were generated to represent 

single-level models across 9 data conditions and two measurement frameworks (CTT and 

RSM), and two-level models across 12 data conditions and 2 measurement frameworks 

(MCFA and RSM). Main effects and interactions related to the levels of relative bias in 

reliability estimates were assessed and recommendations for clinicians, educators, and 

applied researchers are provided in Chapter V. In both the single and two-level models, 

multivariate normal and non-normal polytomous data were generated in R psych package 

for every data condition and the resulting levels of relative bias were examined (see 

Appendices C for a sample of the R code used to generate these multivariate single-level 

and multilevel data). Additionally, these generated item scores were saved in MS Excel 

and used to examine all reliability estimates calculated. The reliability in the population 

was fixed at .70, which George and Mallery (2003) and Serfling (2010) reported as an 

acceptable reliability coefficient. A full description of the single and two-level models is 

provided below and summarized in Table 11. 
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Single-Level Sampling Design 

The single-level sampling design for all reliability coefficients was used as a 

baseline from which to compare the reliability estimates obtained in level-1 of the two-

level model under all data conditions. Based on the results of Charter (1999), K. E. Green 

and Frantom (2002), Gadermann et al. (2012) Kahn (2014), J. B. Kline (1999, 2005), 

Linacre (1994), B. Muthén (1983), Nunnally (1978), Wright and Stone (1979), Yurdugul 

(2008), and Zumbo et al. (2007), three levels of sample size (N =  30, 50, 300) were 

examined. In addition, based on Bandelos and Enders (1996) and Sheng and Sheng 

(2012), three levels of distributional characteristics (normal, non-normal, and mixed) for 

all single-level models were examined. Since the effect of the number of items and the 

number of response choices on Cronbach’s α, polychoric ordinal α, and reliability 

estimates using RSM have been tested extensively, and following the study designs of 

Lissitz and Green (1975) and Bandelos and Enders (1996), the number of items were held 

constant at ten (I = 10). Following the results of Bandalos and Enders (1996), Zumbo et 

al. (2007), and Lozano et al. (2008), the number of response choices were held constant 

at five (rc = 5). These 18 conditions represent a completely crossed 3 X 3 X 1 X 1 X 2 

design (three distributional characteristics, 3 levels of sample size, 1 number of items, 

and 1 number of response choices, across 2 frameworks)  

Two-Level Sampling Design 

The two-level model represents a multilevel data structure where the individual is 

modeled at level -1 and the group is modeled at level-2. In a completely crossed design, 

the level-1 data sample sizes were 30 and 50. Within the two-level model two group, or 

cluster sizes were generated (Ng = 10, 100) for which individuals were nested, to 
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examine between-level reliability estimates. To date, researchers estimating parameters in 

a two-level model using Monte Carlo simulation techniques usually fix the number of 

groups to be greater than the number of subjects per group based on design effects (Bell 

et al., 2008; Maas & Hox, 2005; B. Muthén & Satorra, 1995; Snijders, 2005). Further, in 

studies focusing specifically on reliability estimates, sample sizes were similarly fixed 

without providing an appropriate explanation (T. A. Brown, 2015; Clark, 2008; Geldhof 

et al., 2014; Raudenbush, 1994; Raykov & Penev, 2010). As stated previously, and 

similar to the level-1 and level-2 sample sizes tested by Clark (2008), Geldhof et al. 

(2014), and Raudenbush et al. (2003), individual level sample sizes were 30 and 50 and 

group level sample sizes were 10 and 100. Conceptually, if level-1 represents students 

and level-2 represents classrooms, when 30 individuals in 10 classrooms are crossed, the 

sample size will match the 300 individuals included in the single-level model. These 48 

conditions represent a completely crossed 3 X 2 X 2 X 1 X 1 X 1 X 2 design (three 

distributional characteristics, two levels of individual sample size, two levels of group 

sample size, one number of items, one number of response choices, and one between-

reliability estimate, across two frameworks). A summary of data conditions examined in 

previous research for both single-level and multilevel models is in Tables 12 and 13 

below  
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Table 12 
 
Summary of Data Condition Recommendations for Single-Level Models 

Citation Data Characteristics Included Data Characteristics 

Single-Level Samples Design 

     Zumbo et al. (2007) Sample size 1000 

 Number of items 14 

     Gadermann et al. (2012) Number of response choices 2, 3, 4, 5, 6, 7 

 Distributional characteristics normal (skew = 0) and non-normal (skew = 
-2) 

 Theoretical reliability .4, .5, .8, .9 

     Charter (1999) Sample size 50, 100, 200, 300, 500, 1,000 

 Theoretical reliability .5, .6, .7., .8, .9, .95 

     Lissitz and Green (1975) Sample size 50 

 Number of items 10 

 Number of response choices 2, 3, 4, 5, 7, 9, 14 

 Item Covariance .2, .5, .8 



 

 

120 

 
Table 12 (continued) 

Citation Data Characteristics Included Data Characteristics 

     Bandelos and Enders (1996) Sample size 100 

 Number of items 10 

 Number of response choices 3, 5, 7, 9, 11 

 Inter-item correlations .25, .5., 75 

 Distributional characteristics normal (skew = 0, kurtosis = 0) 

  skew = 1.75, kurtosis = 3.75 

  skew = 2.25, kurtosis = 7 

  platykurtic (skew = .25, kurtosis = -1) 

  leptokurtic (skew = 0, kurtosis =3) 

     Lozano et al (2008) Sample size 10, 100, 200, 500 

 Number of items 30 

 Number of response choices 2, 3, 4, 5, 6, 7, 8, 9 

 Inter-item correlations .2, .3, .4, .5, .6, .7, .8, .9 
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Table 12 (continued) 

Citation Data Characteristics Included Data Characteristics 

     Sheng and Sheng (2012) Sample size 30, 50, 100, 1000 

 Number of items 5. 10, 30 

 Number of response choices Not provided 

 Distributional characteristics normal (skew=0, kurtosis =0) 

  platykurtic (skew = 0, kurtosis = 1.35) 

  non-symmetric (skew = .96, kurtosis =.13) 

  leptokurtic (skew = 2.5, kurtosis =2.5) 

 Theoretical reliability .3, ,6, .8 

     Linacre (1994) Sample size 30, 50, 100 

 Number of items 10, 20 

     Wright and Stone (1979) Number of response choices 5 
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Table 13 
 
Summary of Data Condition Recommendations for Multilevel Models 

Citation Data Characteristics Included Data Characteristics 

Geldhof et al. (2014) Level-1 sample (per group) 2, 15, 30 

 Level-2 sample size (number of groups) 50, 100, 200 

 Number of items 6 

 Theoretical reliability 0.85 

 ICC .05, .25, .50, .75 

 Factor Loadings .6, .7, .8 

Huang and Cornell (2016) Level-1 sample (per group) 19 

 Level-2 sample size (number of groups) 423 

 Number of items 9 
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Table 13 (continued) 

Citation Data Characteristics Included Data Characteristics 

Little (2013) Level-1 sample (per group) 18,255 

 Level-2 sample size (number of groups) 2,104 

 Level-3 sample size 53 

 Number of items 12 

 Number of response choices 5 

 ICC .20, .25 

Raykov (2010) Level-1 sample (per group) 12, 19 

Raykov and Penev (2010) Level-2 sample size    (number of groups) 10, 19 

T. A. Brown (2015) Level-1 sample (per group) 10 

  Level-2 sample size    (number of groups) 85 

  Number of items 5 

  ICC >.10 
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Simulation Procedures and Building 
the Models 

 
Monte Carlo data simulation refers to generating samples from a specified 

underlying population distribution based on user provided information about the 

distribution and structure of a model (Bentler, 2006). In this dissertation, multivariate 

Monte Carlo simulation was conducted to generate 1,000 data sets for every type of 

reliability estimate described previously using polytomously scored items measuring one 

latent trait under the varying conditions outlined above and detailed below. 

Within the Classical Test Theory and 
Multilevel Confirmatory Factor 
Analysis Frameworks 
 
 Cronbach’s α and polychoric ordinal α are grounded in CTT where these 

reliability estimates are a function of the number of items on a given assessment, the 

average covariance between item-pairs, and the variance of the total score (Cronbach, 

1951) and error is a unitary construct. I estimated Cronbach’s α and polychoric ordinal α 

under each of the above data conditions, focusing specifically on multilevel models with 

non-normal data distributions, as recommended by Raykov and Penev (2010), Geldhof et 

al. (2014), and Huang and Cornell (2016).  

Generating Single-Level Data Sets 

Using Monte Carlo simulation techniques, 1,000 replications of every data 

condition were generated to represent item scores generated from either a multivariate 

normal distribution or a multivariate non-normal distribution in R using the psy, psych, 

MASS, and sn packages. Following the advice from van de Eijk and Rose (2015), scores 

on the items from the aforementioned distributions were generated to represent three 

distinct item distributions: (a) all items representing a normal distribution with a skew = 0 
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and kurtosis = 0, (b) all items representing a skewed and leptokurtic (non-normal) 

distribution with a skew = 1.75 and kurtosis = 3, and (c) five items drawn from the 

underlying normal distribution and five items drawn from the underlying non-normal 

distribution, representing a 50/50 “mixed distribution.” Using the mvnorm or dmultinom 

functions, a vector of means was created based on the sample size for ten items with five 

response choices per item and both a Pearson correlation matrix and polychoric 

correlation matrix were specified with the diagonals of the correlation matrix = 1. Sample 

data reflecting the underlying population data conditions of sample size (n), 10-items 

with 5-response choices each were generated from the specified population distributions 

with a fixed reliability estimate = .70. This provided a baseline from which to draw 

conclusions regarding relative bias in reliability estimates and is supported by results 

from Raudenbush and Bryk (2002) and Geldhof et al. (2014).  

Estimating Reliability in a Single-Level 
Sampling Design 
 

Cronbach’s α was estimated in a single-level sampling design across all data 

conditions in R by specifying a Pearson correlation matrix (cor.mat) and using the psy, 

psych, MASS and MBESS packages in R (see Appendix A for an example of the R code).  

A polychoric ordinal α and the standard error of polychoric ordinal α was 

examined across all data conditions using the multivariate normal and multinomial non-

normal distributions generated previously. Following the example R code provided by 

Gadermann et al. (2012), a polychoric correlation matrix was created using R 

Commander and downloading the psych package (Revelle, 2011) as well as the 

AGPArotation package (Bernaards & Jennrich, 2005). It is important to note that R 

simultaneously estimates polychoric correlations from the entire data matrix rather than 
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using pairwise comparisons. In a single-level sampling design in R, using the polychoric 

correlation matrix created in R, polychoric ordinal α was estimated based on Cronbach’s 

α and the SEα (see Appendix B). 

All 1,000 Cronbach’s α coefficients and 1,000 polychoric ordinal α coefficients 

under every data condition were calculated in R and exported to an MS Excel file in order 

to (a) determine how often the known population reliability of .70 fell within the 95.0% 

sample confidence interval as recommended by Raykov and Penev (2010), Geldhof et al. 

(2014), and Wu and Zumbo (2008); and (b) following Geldhof et al. (2014) and T. A. 

Brown (2015), calculate relative bias in reliability estimates across all data conditions . 

The MS Excel file for the single-level model contains 9,000 Cronbach α and 9,000 

polychoric ordinal α coefficients (1,000 iterations or data sets X 3 distributions, X 3 

sample sizes).  

Generating Multilevel Data Sets 

Multilevel confirmatory factor analysis (MCFA) was computed using a modified 

version of the multilevel package in R. First, I generated two-level data sets with 1,000 

iterations per data condition in R by using the psych and lme4 packages and the 

sim.multilevel function in R and the same seed for each condition used in the single-level 

data generation for a multivariate normal and multivariate non-normal distributions and 

exported them to MS Excel files to examine their properties. Next, the MCFA model was 

built using a modified version of the multilevel package in R by specifying the thresholds, 

and analyzing the results within the MCFA framework (see Appendix C for an example 

R code used to generate the two-level data structure using the Pearson Correlation matrix 

and polychoric correlation matrix respectively). The within-group Cronbach and 
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polychoric α reliability coefficients were fixed to .70 as recommended by Hox (2002). 

The target between-group ICC was fixed at .20, as recommended by Ludtke et al. (2008), 

and the factor loadings were fixed to .6 for 5 items and .8 for five items, as presented in 

Geldhof et al. (2014).  

Estimating Reliability in a Two-Level 
Sampling Design 
 

As previously discussed, estimating Cronbach’s α and polychoric ordinal α in a 

multilevel sampling design required an MCFA. Using MCFA, the latent trait of interest 

was estimated separately from item responses. In other words, MCFA “separated person 

traits from specific items given, and item properties from specific persons in a sample” 

(Templin & Bradshaw, 2013, para. 12). While MCFA is more closely related to IRT than 

CTT, Geldhof et al. (2014) explained that the MCFA model can be used to decompose 

observed item scores into “components related to each individuals’ within-cluster average 

true score . . . as well as each individuals’ true deviation from the cluster average” (p. 75). 

These sources of decomposed variance represent a ratio of true variance to total score 

variance as found in CTT. The MCFA approach used in this dissertation was represented 

by the within-and between-level model 

The factor loading matrices (Ʌw, ɅB) and cluster level means (µ) are fixed effects 

while µB refers to the random intercepts in the Y variable (note that the thresholds used 

due to polytomously scored items are based on Equation 31 below). Using this approach, 

and fixing the first factor loading to 1 as recommended by T. A. Brown (2015), random 

intercepts of the Y variable are allowed to vary.  

Equation 31 represents the relationship between a latent response distribution,  

y*, and an observed ordinal distribution, y and is applied to the level-1 (within) MCFA 
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model to indicate thresholds for observed polytomous data (recall thresholds = the 

number of response categories -1; Flora & Curran, 2004; Little, 2013): 

 
y =c, if τc < y* < τc+1 (31) 

 
 
with thresholds τ as parameters defining the categories c = 0, 1, 2, …, C -1 and where τ0 

= negative infinity and  τc = positive infinity. Little (2013) demonstrated a multilevel 

factor model with polytomous response variables at level-1 and continuous random 

intercepts at level-2. Figure 4 is modified to represent a four-item model with one factor 

from Little’s two-level model.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. An example of a four-item two-level polytomous factor model. The dashed line 
represents the division between the between-level (level-2) model and the within-level 
(level-1) model. At level-1, the solid black circles at the end of the arrows for Items 1 to 4 
represent observed polytomous response variables referred to as y1 to y4 in level-2. 
Adapted from Little (2013). 
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Estimating Reliability in the 
Two-Level Model 
 

As with single-level data, all 1,000 level-1 (within level) Cronbach’s α and 

polychoric ordinal α estimates were calculated in R and exported to an MS Excel file. For 

the between-level of the two-level model, 1,000 between level ICCs under every data 

condition were calculated and used to compute the Spearman-Brown Coefficient for both 

measurement frameworks. These calculations were then exported to MS Excel 

spreadsheets to (a) determine how often the known population reliability of .70 fell 

within the 95% confidence interval as recommended by Raykov and Penev (2010), 

Geldhof et al. (2014), and Wu and Zumbo (2008), (b) adopt Dedrick and Greenbaum’s 

(2010) use of the Spearman-Brown Prophecy Formula to assess between-level reliability 

for both CTT and Rasch RSM frameworks, and (c) following the recommendations of 

Geldhof et al. (2014) and T. A. Brown (2015), calculate relative bias in all reliability 

estimates across all data conditions. 

Within the Rasch Item Response 
Theory Framework 
 

While it is possible to generate the RSM data and corresponding results in R, 

most social science researchers will not have the requisite programming experience to 

conduct their RSM analysis in R and may feel more comfortable using Winsteps. 

Therefore, to provide comparable results across all measurement frameworks, regardless 

of the software used in the analysis, the data generated previously in R for both the single 

and two-level models was imported into Winsteps to generate results for this dissertation. 

See Appendix D for R code for the single-level person reliability model. See Appendix C 
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for sample R code used to generate the multilevel data sets and Appendix E for Winsteps 

codes to estimate multilevel person reliability. 

Estimating Reliability Within the 
Rasch Item Response Theory 
Framework 
 

The single-level model. I assessed and reported both person and item reliability 

and separation under all nine data conditions in a single-level model, as recommended by 

Kamata (2001) and Raudenbush et al. (2003), using the RSM described previously. 

Wright and Stone (1999) and Wright and Masters (1982) illustrated that person and item 

reliability (which they call person and item separation reliability) is comparable to KR-20 

or Cronbach’s α when corrected by degrees of freedom. Item reliability and person and 

item separation indices were reported, but not compared in single-level models and 

neither reported nor compared in multilevel models. This was due to the properties of 

these indices. For any IRT model, individual person ability and item standard errors of 

measurement can be computed and assessed; however, for CTT, standard errors can only 

be computed and assessed for measures at the group mean of person ability, and not for 

individual persons or items. Therefore, only person reliability estimates in Rasch IRT 

models have an equivalent coefficient in which to make comparisons in CTT. Equation 

32 represents person reliability (Wright & Stone, 1999): 

 
Person reliability = 1-( MSEp/σp

2) (32) 
 
 
Where MSEp is the sample mean square person error and σp

2  is the sample person 

variance. Equation 33 represents person separation (Wright & Stone, 1999): 
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Person separation =  (33) 

 
 
Which represents the ratio of the person reliability estimate to 1- the person reliability 

estimate. Consider person reliability =.8. Person separation would then = .20 which 

means that only two levels of person ability can be consistently identified suggesting the 

person sample is too homogenous (Bond & Fox, 2014).  

Equations 34 and 35 represent item reliability and separation (Wright & Stone, 

1999): 

 
Item reliability = 1-(MSEi/σi2) (34) 

 
 
Where MSEi is the sample mean square item error and σi2  is the sample item variance.  

 

Item separation =  (35) 

 
 
Which represents the ratio of the item reliability estimate to 1- the item reliability 

estimate.  

The multilevel sampling design. The focus of this dissertation was to compare 

bias in reliability estimates across two measurement frameworks and single and 

multilevel models. Therefore, for the Rasch-IRT (RSM) model, only person reliability 

was assessed at level-1 and Spearman-Brown Prophecy coefficients were assessed at 

level-2 across all data conditions of 3 reliability level-1 coefficients X 1 measurement 

framework (Rasch-IRT: RSM) X 2 level-1 sample sizes (N =30 and N = 50) X 2 level-2 

sample sizes (n = 10 and n = 100), and X 3 distributions (normal, mixed, and non-
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normal) for a total of 36 data conditions in a multilevel model, as recommended by 

Kamata (2001) and Raudenbush et al. (2003), in RSM. As with the single-level RSM 

model, the person ability and item difficulty parameters were fixed with a mean = 0 and 

SD = 1, as stated previously. The between level ICC target was > .20 to match the two-

level model specifications used in MCFA. Once these data-sets were generated under 

every data condition they were saved to MS Excel spreadsheets and imported into 

Winsteps for analysis. Level-2 comparisons were made by calculating between-level 

variance within the CTT and Rasch (RSM) frameworks and assessed by conducting a 

factorial ANOVA and computing and comparing Spearman-Brown Coefficients across 

data conditions. 

Final Data Conditions Examined 

In the single-level sampling design, 54 reliability coefficients (i.e., 9 data 

conditions X 6 types of reliability) X 1,000 replications per cell totaling 54,000 reliability 

coefficients, were generated along with 54,000 standard errors of reliability, 95% 

confidence intervals (Lower Level and Upper Level), and relative biases for a total of 

270,000 cells. In the multilevel sampling design, 60 reliability coefficients (i.e., 12 data 

conditions X 5 types of reliability) X 1,000 replications per cell, totaling 60,000 

reliability estimates, were generated, along with 60,000 standard errors of reliability, 95% 

confidence intervals (Lower Level and Upper Level), and relative biases for a total of 

300,000 cells. All data were saved in MS Excel for further analysis and the results for 

these 570,000 cells are presented in Chapter IV. 
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Summary of Final Data Conditions 

The final data conditions outlined below are consistent with conditions selected 

by previous methodological researchers using Monte Carlo simulation techniques to 

address issues related to parameter estimation, specifically reliability estimates. In 

addition, these data conditions represent more realistic sample sizes and hold the number 

of items and number of response choices constant to elucidate necessary data conditions 

for relative bias found in reliability estimates. Table 11, presented previously, shows all 

data conditions for both single-level and multilevel sampling designs. Under each 

sampling design, all data conditions were crossed, and main effects and interactions were 

assessed. Since the estimation of relative bias of reliability coefficients in a multilevel 

model with non-normal data was recommended, but not published, decisions regarding 

the distribution of data were based on Bandelos and Enders’ (1996) Monte Carlo 

simulation study assessing the effects of non-normal data on the number of response 

categories in a single-level sampling design and the recommendations of T. A. Brown 

(2015), Geldhof et al. (2014), and Huang and Cornell (2016) regarding the degree of non-

normal data in multilevel models.  

Following previous results and recommendations, I selected one normal 

distribution of all items (skew = 0, kurtosis = 0), one non-normal leptokurtic distribution 

of all items (skew = 1.75, kurtosis = 3.0), and, based on the methods presented by van de 

Eijk and Rose (2015), I added what I refer to as a “mixed distribution” of items (50% of 

items were drawn from a normal distribution and 50% of items were drawn from the 

skewed and leptokurtic distribution as described previously). As with my pilot study, 

using the mvnorm or dmultinom functions, a vector of means was created based on the 
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sample size for ten items with five response choices per item and both a Pearson 

correlation matrix and polychoric correlation matrix were specified with the diagonals of 

the correlation matrix = 1. Sample data reflecting the underlying population data 

conditions of sample size (n), 10-items with 5-response choices each were generated 

from the specified population distributions with a fixed reliability estimate = .70, and 

skew and kurtosis were modified (skew = +/- 3.0, kurtosis = +/- 7.0) for the non-normal 

and mixed data distributions to better reflect the thresholds at which non-normality 

increases bias in reliability coefficients. These types of data could be seen if the first five 

items are ‘easy’ for respondents to endorse while the next five items are more ‘difficult’ 

for respondents to endorse, causing a range of normally distributed scores combined with 

a cluster of low scores.  

Finally, Zhang (2010) presented a simulation study for the Rasch family of 

models where ability and difficulty parameters were fixed to a mean = 0, SD = 1, and 

person and item reliability were estimated. Zhang did not estimate person or item 

separation. Based on the fixed person reliability = .70 and the person ability variance = 1, 

the person separation index is expected to be 1.52. Based on the fixed item difficulty 

variance = 1, the item reliability estimate is expected to be ≥ .95, and the separation index 

is expected to be 4.35 in RSM. The reliability separation estimate is lower than the 

person separation = 2 and item separation = 7 recommended by Bond and Fox (2014), 

Kim and Feldt (2010), Linacre (2004, 2014), and Rutkowski & Svetina (2013) but 

represent more realistic estimates based on the data conditions affecting relative bias in 

reliability estimates. For example, Linacre (2014) explained that person reliability and 

separation estimates depend on person ability variance, number of items, and number of 
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response categories, with higher levels of each resulting in higher person reliability and 

separation. Item reliability and separation depend on item difficulty variance and person 

sample size with higher levels of each resulting in higher item reliability and separation. 

Person separation and person and item reliability are presented in the single-level 

sampling design results but, as explained previously, not used when comparing bias 

between CTT and Rasch-RSM multilevel models.  

Data Analysis 

To answer the four research questions posed in this dissertation, the data analysis 

consisted of first computing relative bias in reliability coefficients across all data 

conditions, sampling designs, and measurement frameworks and then analyzing bias as 

outlined below.  

Data representing 18 reliability coefficients in the single-level model and 36 

reliability coefficients in the multilevel model were generated in R, exported to MS 

Excel, imported into Winsteps for RSM models and loaded into a modified R multilevel 

package for MCFA models. Once all reliability coefficients were computed and exported 

to MS Excel, relative bias was calculated using Equation 36 shown below where “known 

reliability” were the Spearman-Brown Coefficients computed from the ICC’s: 

 

 

�������� ���� =  
 ���� �����!����" − ���#�� �����!����"

 ���� �����!����" 
 

 
(36) 

 
 
Further analysis regarding relative bias included (a) determining the proportion of known 

reliability coefficients falling within the sample confidence intervals with ≥ 95% deemed 

acceptable; (b) assessing whether reliability estimates were over-or-underestimated based 

on the based on research conducted by B. Muthén and Kaplan, (1985) and Geldhof et al. 
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(2014), where relative bias ≤ 10% was deemed acceptable; and (c) examining the 

behavior of the standard errors, which were expected to decrease as sample size 

increased, regardless of the distribution of data or sampling design.  

Finally, factorial ANOVAs across data conditions were conducted in SPSS 24.0 

with the dependent variables of reliability coefficients, standard errors, and percentage of 

relative bias and the independent variables of the type of reliability coefficient, sample 

size, and distributional characteristics indicated as the fixed factors with varying levels. 

All two-way interaction effects between factors were examined for significance first, and 

if significant, simple main effects were examined, along with the interaction graphs. 

Main effects were then examined by splitting the factors into groups and identifying the 

separate levels of each group based on sampling design. For statistically significant 

results, eta squared (η2) was calculated and examined for every simple main effect and 

main effect. Partial eta squared was not used as it tends to overestimate the true effect in 

complex models. The criteria for a medium effect size was any η2 >.06 as recommended 

by Cohen (1977, 1988) and by Thompson (2007) who conducted a simulation study of 

effect sizes. Chi-square tests were conducted to assess the percentage of bias either 

overestimated or underestimated across all data conditions. As presented by T. A. Brown 

(2015), Geldhof et al. (2014), and Huang and Cornell (2016), any p-value ≤ .05 indicated 

a statistically significant level of bias in reliability estimates. Results are presented in 

Chapter IV. 

Chapter Summary 

 The research questions were formulated based on the specific gaps in the 

literature pertaining to reliability estimation in a two-level model and recommendations 
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for future research posed by Geldhof et al. (2014), Zumbo et al. (2007), and Gadermann 

et al. (2012). The decisions regarding the data conditions I held constant 

(unidimensionality of the latent trait, polytomously scored items, number of items, 

number of response choices, reliability coefficients, ICCs and person and item 

parameters) were informed by research conducted by Bandelos and Enders (1996), Bond 

and Fox (2014), Gadermann et al. (2012), Lozano et al. (2008), Little (2013), Maas and 

Hox (2005), B. Muthén and Muthén (2000), Sheng and Sheng (2012), and Zumbo et al. 

(2007) as well as recommendations made by Linacre (2014), Nunnally and Bernstein 

(1994), Yurdugul (2008), and my dissertation committee. The distribution of data was 

inspired by Bandelos and Enders (1996) and Sheng and Sheng (2012) as well as advice. 

Finally, sampling designs were modeled after Maas and Hox (2005).  

The methods employed to answer the four research questions were supported by 

T. A. Brown (2015), Geldhof et al. (2014), Huang and Cornell (2016), van de Eijk and 

Rose (2015), and others. A simulation study was chosen to provide control over the data 

characteristics and allow for comparisons of relative bias in reliability estimates within-

and- across measurement frameworks. Guidelines for estimating and measuring relative 

bias in reliability coefficients were based on Geldhof et al. (2014) and Huang and Cornell 

(2016).  
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CHAPTER IV 

RESULTS 

Using reliability estimates computed for each data condition, sampling design, 

and measurement framework outlined in Chapter III, I examined the proportion of 

relative bias and associated confidence intervals and reported the results as percentages. 

Recall that relative bias is a measure of the proportion of bias as it relates to the known 

reliability coefficient in each data condition. One thousand replications for every data 

condition, across single-level and multilevel models, and two measurement frameworks, 

were simulated and exported into MS Excel spreadsheets. Reliability coefficients and 

standard errors of measurement within each data condition, sampling design, and 

measurement framework were then averaged and 95% confidence intervals and bias were 

computed and reported. 

Presentation of Results 

Results are presented by research question and hypothesis. Tables 14 and 15 

outline how the results of this dissertation are organized, and Table 16 illustrates the 

comparisons across measurement frameworks, data conditions, and data structures.  

To untangle the results, first I adopted Charter’s (1999) and Sijtsma’s (2009) 

recommendations to assess and report, not only the actual reliability estimates, but the 

standard errors and corresponding confidence intervals, and presented the results in Table 

17. Based on data conditions and type of reliability estimate, the proportions of 

coefficients falling outside the 95% reliability confidence intervals are presented in Table 
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18. Second, I followed the guidelines outlined by Muthén (1987) and Geldhof et al. 

(2014) who stipulated that relative bias ≤ 10% is acceptable, and present these results in 

Table 19. Finally, I conducted tests of hypotheses for all three average reliability 

coefficients and their corresponding standard errors and percentages of bias across all 

data conditions in IBM SPSS Statistics for Windows, Version 24.0 and present the results 

in Table 20.  

Recall that item reliability and person and item separation indices are reported in 

Winsteps and R, but neither reported nor compared within or across measurement 

frameworks in this dissertation. This decision was made based on two important factors: 

(a) Comparing these indices within the Rasch framework is beyond the scope of this 

dissertation, which focused only on measures of reliability analogous to Cronbach’s α, 

and is recommended for future research and (b) the properties of these indices do not 

permit direct comparison. For any Rasch model, cluster person reliability and item 

standard errors of measurement can be computed and assessed; however, for CTT, 

standard errors can only be computed and assessed for measures at the cluster mean of 

person ability, and not for cluster persons or items. Therefore, only person reliability 

estimates across frameworks were compared for both single and level-1of multilevel 

models. Level-2 comparisons were made by calculating between-level variance within 

the CTT and Rasch (RSM) frameworks and assessed by using intraclass correlation 

coefficients (ICC’s) to calculate Spearman-Brown coefficients across data conditions. 
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Table 14 
 
Presentation of Single-Level Results 

Single-Level Bias by Measurement Framework and Data Condition 

Measurement Framework Distribution Reliability 

Classical Test Theory Normal Cronbach's α 

  Polychoric ordinal  α 

 Mixed Cronbach's α 

  Polychoric ordinal  α 

 Non-Normal Cronbach's α 

  Polychoric ordinal  α 

Item Response Theory- 

Rating Scale Model 

Normal Person Reliability 

  Person Separation 

 Mixed Person Reliability 

  Person Separation 

 Non-Normal Person Reliability 

  Person Separation 
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Table 15 
 
Presentation of Multilevel Results 

Multilevel Bias by Measurement Framework and Data Condition 

Measurement Framework Distribution  Reliability  

Classical Test Theory  Normal Distribution Cronbach's α (Within groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

  Polychoric ordinal α (Within Groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

 Mixed Cronbach's α(Within groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

  Polychoric ordinal α (Within Groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

 Non-Normal Distribution Cronbach's α (Within groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

  Polychoric Ordinal α (Within Groups) 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 
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Table 15 (continued) 

Multilevel Bias by Measurement Framework and Data Conditions 

Measurement Framework Distribution  Reliability  

Item Response Theory (Rating Scale Model) Normal  Person Reliability 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

 Mixed Person Reliability 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 

 Non-Normal Person Reliability 

  
Intraclass Correlation and Spearman-Brown Coefficient 
(Between Groups) 
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Table 16 
 
Comparison of Bias Across Measurement Frameworks, Data Conditions, and Data Structures 

Comparison of Sampling Designs and Measurement 
Frameworks 

Reliability Coefficients Compared 

Classical Test Theory Single and Multilevel Models Comparing Cronbach's α and polychoric ordinal α in a single-level Classical 
Test Theory model to level-1 of a multilevel model 

Classical Test Theory Single-Level and Item 
Response Theory (Rating Scale Model) Single-Level 
Models 

Comparing Cronbach's α and polychoric ordinal α in single-level Classical 
Test Theory model to person reliability in an Item Response Theory (Rating 
Scale Model) single-level model 

Classical Test Theory Multilevel and Item Response 
Theory (Rating Scale Model) Multilevel Models 

1. Comparing Cronbach's a in level-1 of Classical Test Theory framework 
and person reliability in level-1 of an Item Response Theory (Rating Scale 
Model) framework. 

 2. Calculating and Comparing the Spearman-Brown Coefficients in level-2 
of the Classical Test Theory and Item Response Theory (Rating Scale 
Model) frameworks 
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Table 17 
 
Single-Level Sample Reliability Coefficient Results  

      95% Confidence Interval 

Sample 
Size 

Average 
Sample 

Reliability* 

Average 
Sample 

Reliability SE 
Average 

Lower Level 
Average 

Upper Level 

Cronbach's a:   

All Data Normally Distributed     

30 .682 .091 .500 .864 

50 .690 .070 .551 .830 

300 .703 .025 .655 .753 

Mixed Data Distribution     

30 .809 .056 .696 .921 

50 .857 .035 .787 .930 

300 .820 .144 .533 1.107 

Non-Normal Distribution     

30 .608 .153 .302 .914 

50 .607 .100 .408 .806 

300 .579 .033 .513 .645 

Polychoric Ordinal a   

All Data Normally Distributed     

30 .662 .100 .463 .862 

50 .669 .086 .497 .841 

300 .689 .031 .627 .751 
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Table 17 (continued) 

      95% Confidence Interval 

Sample 
Size 

Average 
Sample 

Reliability 

Average 
Sample 

Reliability SE 
Average 

Lower Level 
Average 

Upper Level 

Mixed Data Distribution     

30 .809 .059 .692 .926 

50 .783 44.000 .647 .918 

300 .820 .016 .787 .853 

Non-Normal Distribution     

30 .367 .211 -.054 .789 

50 .764 .081 .601 .927 

300 .622 .083T .456 .788 

Person Reliability (Rating Scale Model)     

All Data Normally Distributed     

30 .797 .060 .677 .917 

50 .846 .012 .822 .869 

300 .848 .012 .825 .871 

Mixed Data Distribution     

30 .590 .310 -.030 1.21 

50 .680 .380 -.080 1.44 

300 .610 .460 -.310 1.530 
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Table 17 (continued) 

      95% Confidence Interval 

Sample 
Size 

Average 
Sample 

Reliability 

Average 
Sample 

Reliability SE 
Average 

Lower Level 
Average 

Upper Level 

Non-Normal Distribution     

30 .430 .940 -1.450 2.310 

50 .410 .830 -1.250 2.070 

300 .380 .850 -1.310 2.080 

* Population reliability coefficients fixed to .70. 
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Table 18 
 
Absolute Value and Percentage of Bias Across Type of Reliability, Data Distribution, 
and Sample Size 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative 
Bias 

Percentage 
of Bias ≥ 

10% 

Average Bias ≥ 10%: 
Percentage 

Underestimated 

If Average Bias ≥ 
10%, Percentage 
Overestimated 

Cronbach's α: 

All Data Normally Distributed   

30 .104 39.50% 31.60% 7.90% 

50 .076 26.90% 26.90% 0.00% 

300 .029 0.50% 0.50% 0.00% 

Mixed Data Distribution   

30 .159 78.20% 0.50% 77.70% 

50 .172 99.80% 0.00% 99.80% 

300 .225 98.50% 0.70% 97.80% 

Non-Normal Distribution   

30 .175 55.90% 53.30% 2.60% 

50 .149 56.00% 51.70% 4.30% 

300 .173 94.40% 94.30% 0.10% 

Polychoric ordinal α 

All Data Normally Distributed   

30 .113 41.20% 36.10% 5.10% 

50 .082 29.90% 29.90% 0.00% 

300 .032 2.00% 2.00% 0.00% 
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Table 18 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative 
Bias 

Percentage 
of Bias ≥ 

10% 

Average Bias ≥ 10%: 
Percentage 

Underestimated 

If Average Bias ≥ 
10%, Percentage 
Overestimated 

Mixed Data Distribution   

30 .162 79.00% 1.70% 77.30% 

50 .172 68.60% 0.00% 68.60% 

300 .136 99.70% 4.50% 95.20% 

Non-Normal Distribution   

30 .475 96.60% 96.50% 0.10% 

50 .129 62.40% 10.40% 52.00% 

300 .111 55.90% 55.80% 0.10% 

Person Reliability (Rating Scale Model)   

All Data Normally Distributed   

30 .163 84.00% 0.00% 84.00% 

50 .208 100.00% 0.00% 100.00% 

300 .212 100.00% 0.00% 100.00% 

Mixed Data Distribution   

30 .157 18.00% 0.00% 18.00% 

50 .029 2.00% 0.00% 2.00% 

300 .000 0.00% 0.00% 0.00% 
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Table 18 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficien
t Relative 

Bias 

Percentage 
of Bias ≥ 

10% 

Average Bias ≥ 10%: 
Percentage 

Underestimated 

If Average Bias ≥ 
10%, Percentage 
Overestimated 

Non-Normal Distribution   

30 .386 100.00% 100.00% 0.00% 

50 .414 100.00% 100.00% 0.00% 

300 .457 100.00% 100.00% 0.00% 
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Table 19 
 
Results of Reliability Estimates and Standard Errors for Tests of Hypotheses (ANOVA's 1 and 2) 

DV IV Levels F statistic p-value 
Post-hoc/Additional 

Analysis Results 
Effect Size 

(η2** ) 

Reliability 
Coefficients 

Type of Reliability Cronbach's α, polychoric 
ordinal α, person 

reliability 

.630 .541   

 Sample Size 30, 50, 300 .413 .666   

 Distribution normal, mixed, non-
normal 

13.42 < .0001* Bonferonni: normal to non-
normal ( p =.001) and mixed to 

non-normal ( p < .0001) 

.582 

 Measurement 
Framework 

Classical Test Theory or 
Item Response Theory 
(Rating Scale Model) 

1.232 .278   

Standard Errors of 
Measurement 

Type of Reliability Cronbach's α, polychoric 
ordinal α, person 

reliability 

7.85 .002* Bonferonni: Cronbach α to 
person reliability (p=.007) and 
polychoric ordinal α to person 

reliability (p=.006) 

.395 

 Sample Size 30, 50, 300 .056 .946   

 Distribution normal, mixed, non-
normal 

3.482 .047* Bonferonni: normal to non-
normal (p = .045) 

.225 

 Measurement 
Framework 

Classical Test Theory and 
Item Response Theory 
(Rating Scale Model) 

4.044 < .0001*  .837 

* denotes a significant result at the a =.05 level of significance; ** eta squared is only reported when statistically significant differences exist 
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Table 20 
 
Results of Relative Bias and Percentage/Direction of Relative Bias for Tests of Hypotheses (ANOVA's 3 and 4) 

DV IV Levels F statistic p-value 
Post-hoc/Additional 

Analysis Results 

Effect 
size 

(η2** ) 

Absolute Value 
of Relative Bias 

in Reliability 
Estimates 

Type of 
Reliability 

Cronbach's α, 
polychoric ordinal α, 

person reliability 

625.865 < .0001* Bonferonni: Cronbach's α, 
to polychoric ordinal α,  
Cronbach's α to person 
reliability, polychoric 
ordinal α to person 

reliability (all p < .0001) 

.394 

 Sample Size 30, 50, 300 .167 .683   

 Distribution normal, mixed, non-
normal 

181.579 < .0001* Bonferonni: normal to 
mixed, normal to non-
normal, mixed to non-
normal (all p < .0001) 

.339 

 Measurement 
Framework 

Classical Test Theory 
and Item Response 

Theory (Rating Scale 
Model) 

75 < .0001  .239 



 

 

152 

 
Table 20 (continued) 

DV IV Levels F statistic p-value 
Post-hoc/Additional 

Analysis Results 

Effect 
size 

(η2** ) 

Proportion of 
Bias 

Underestimated 

Type of 
Reliability 

Cronbach's α, 
polychoric ordinal α, 

person reliability 

.008 .992   

 Sample Size 30, 50, 300 .070 .933   

 Distribution normal, mixed, non-
normal 

23.697 < .0001* Bonferonni: normal to 
non-normal (p = .001) and 
mixed to non-normal (p < 

.0001) 

.736 

 Measurement 
Framework 

Classical Test Theory 
and Item Response 

Theory (Rating Scale 
Model) 

.065 .949   
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Table 20 (continued) 

DV IV Levels F statistic p-value 
Post-hoc/Additional 

Analysis Results 

Effect 
size 

(η2** ) 

Proportion of 
Bias 

Overestimated 

Type of 
Reliability 

Cronbach's α, 
polychoric ordinal α, 

person reliability 

.031 .970   

 Sample Size 30, 50, 300 0.273 .764   

 Distribution normal, mixed, non-
normal 

23.697 < .0001* Bonferonni: normal to 
non-normal (p = .002) and 
mixed to non-normal (p < 

.0001) 

.753 

 Measurement 
Framework 

Classical Test Theory 
and Item Response 

Theory (Rating Scale 
Model) 

.212 .836   

* denotes a significant result at the a =.05 level of significance; ** eta squared is only reported when statistically significant 
differences exist 
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A Recap of Data Conditions and 
Reliability Terminology  
 

For this dissertation, using Monte Carlo simulation techniques, sample sizes and 

distributional characteristics were varied and levels of bias in reliability estimates were 

compared across single-level and two-level data structures. Standard errors of 

measurement for all reliability estimates as well as bias in estimates from the following 

reliability coefficients are reported and/or compared: Cronbach’s α (CA), polychoric 

ordinal α (PA), person reliability (PR), and Spearman-Brown Prophecy coefficients (SB). 

Detailed specifications for these varying data conditions and fixed parameters are found 

in Chapter III of this dissertation.  

Results by Research Questions and 
Hypotheses 
 

Q1 In a single-level model, to what degree do data conditions (sample size 
and distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person reliability? 

 
H1 Bias in reliability estimates will increase under the conditions of smaller 

sample sizes and non-normal or mixed distributions and polychoric 
ordinal α and person reliability will be less biased than Cronbach’s α. 

 
Classical Test Theory Single-Level 
vs. Rasch Rating Scale Model 
Single-Level Results 
 

Reliability and standard errors. Table 17, presented previously, represents the 

descriptive statistics for three average sample reliability estimates computed from 1,000 

simulated data sets for each reliability coefficient in a single-level sampling design by 

type of reliability estimate, sample size, data distribution, and measurement framework. 

Note in the simulated data, Cronbach’s α, polychoric ordinal α, and person reliability 

were fixed at .70. 



 

 

155 

A comparison of Cronbach’s α and polychoric ordinal α versus person reliability 

in a single-level model provided four key findings. First, Cronbach’s α and polychoric 

ordinal α provide similar results in reliability estimates and standard errors across sample 

sizes and normal and mixed data distributions, except under normally distributed data 

where polychoric ordinal α tended to underestimate reliability. Second, a review of the 

patterns of estimation shows that Cronbach’s α and polychoric ordinal α seldom fell 

outside of the 95% confidence intervals under normal and mixed distributions, and often 

fell outside of the 95% confidence intervals under non-normal data distributions. Third, 

person reliability overestimated reliability under conditions of normally distributed data 

across sample sizes, while standard errors were comparably low to the standard errors 

seen in Cronbach’s α and polychoric ordinal α, and underestimated reliability under 

conditions of mixed and non-normal distributions across sample sizes, where standard 

errors were found to be quite high compared to Cronbach’s α and polychoric ordinal α. 

Fourth, an unusual pattern emerged across data distributions for polychoric ordinal α and 

person reliability when N = 50. This pattern is explored further I Chapter V.  

The overestimated person reliability results were unexpected since Linacre (2012, 

2014) posited that person reliability, although analogous to Cronbach’s α, would tend to 

be slightly underestimated in the Rasch model at lower sample sizes. I found the opposite 

to be true in the data simulated for this dissertation, causing me to re-examine my data 

generation methods in both R and Winsteps. First, I reviewed how the Classical Test 

Theory data were generated across all data distributions and N = 50 to account for the 

anomalies in Cronbach’s α and polychoric ordinal α and then how Rasch RSM data were 

generated across sample sizes and data distributions to look for typos or incorrect coding. 
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Finding no typos or incorrect coding, I considered that person reliability depended upon 

(a) sample ability variance, (b) the number of response choices, (c) the number of items, 

and (d) was independent of sample size. For the data generated for this dissertation, 

sample ability variance was fixed to 1.0, as recommended by Zhang (2010), the number 

of response choices was fixed to 5, and the number of items was fixed to 10. Second, in a 

standard Rasch model, items are dichotomously scored, whereas in this dissertation, 

items were polytomously scored based on the Rasch rating scale model, and Linacre 

(2017) stated that a higher number of response categories would translate into higher 

person reliability estimates for smaller sample sizes in normally distributed data. My 

results showed clear evidence that under conditions of normally distributed data, on 

average, person reliability, though fixed at .70, was overestimated and under mixed and 

non-normal data distributions was severely underestimated. Finally, the lowest person 

reliability estimates and highest standard errors are seen under conditions of mixed and 

non-normal distributions, which are lower than estimates from Cronbach’s α and 

polychoric ordinal α. Each of these results is discussed further in Chapter V. Figure 5 is 

the visual representation of the three reliability coefficients (Cronbach’s α [CA], 

polychoric ordinal α [PA], and person reliability [PR]) found in Table 17 and shows that 

single-level reliability coefficients are similar across data conditions for CA and PA but 

vary considerably under the condition of non-normality.  
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Figure 5. Single-level reliability coefficients across distributions and sample size. 
 
 

Figure 6 is the visual representation of the three reliability estimate’s standard 

errors of measurement from Table 17, which was presented previously. This figure shows 

that standard errors are low across Cronbach’s α and polychoric ordinal α, but begin to 

rise for person reliability under conditions of a mixed data distribution, and rise even 

more so when data were non-normal. Finally, this figure shows that standard errors, while 

low, vary more for Cronbach’s α and polychoric ordinal α than for person reliability. 
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Figure 6. Single-level standard errors of reliability across distributions and sample size. 
 
 

Relative bias. Table 18 shows the average absolute values of relative bias by type 

of reliability, data distribution, and sample size. Additionally, if the percentage of bias is 

≥ 10%, then the percentage of reliability estimates either underestimated or overestimated 

are given. 

B. Muthén (1987) and Geldhof et al. (2014) stated that relative bias < 10% was 

acceptable for reliability coefficients. Therefore, when the absolute value of relative bias 

calculated from the data generated in this dissertation was ≥ 10%, the direction (whether 

underestimated or overestimated) and percentage of bias was also reported.  
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Based on assessing the absolute value of relative bias reported in Table 18, the 

primary findings are that Cronbach’s α and polychoric ordinal α were less biased than 

person reliability coefficients under normal data conditions and across sample sizes and 

relative bias was similar for Cronbach’s α and polychoric ordinal α, across all data 

distributions and sample sizes, except for polychoric ordinal α under the conditions of 

non-normality and N = 30, where bias was quite high. Table 18 shows that under the 

condition of normally distributed data, Cronbach’s α and polychoric ordinal α had a 

tendency to underestimate reliability in N = 30. This result makes sense since, according 

to Cronbach (1951), α represents the lower bound of reliability. Under larger sample 

sizes (N = 50 and N = 300), neither Cronbach’s α nor polychoric ordinal α showed an 

average bias ≥ 10%. Comparatively, under the same normal distribution and across 

sample sizes, person reliability overestimated reliability 84% of the time. This result was 

unexpected, as previously mentioned regarding high reliability coefficients, and is 

explored in Chapter V.  

Figure 7 shows that the average percentage of absolute relative bias based on data 

distribution and sample size is quite low for person reliability in a mixed distribution and 

quite high under smaller sample sizes and non-normal distributions across types of 

reliability. Overall the highest relative bias appeared to be for polychoric ordinal α under 

non-normal data when N = 30. 
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Figure 7. A visual representation of relative bias across data distributions and sample 
size. 
 
 

Figure 8 shows the direction and percentage of absolute relative bias by 

distribution and sample size only if the bias recorded was ≥ 10%. For example, under the 

conditions of normality, Cronbach’s α and polychoric ordinal α are underestimated, on 

average, between 30% and 36% of the time when N= 30, and never underestimated when 

N = 50 or N = 300 while person reliability is never underestimated, regardless of sample 

size. 
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Figure 8. A visual representation of the direction and percentage of average relative bias 
in a single-level model across types of reliability, data distributions, and sample size. 
 
 
Tests of Hypotheses for Research 
Question 1 
 

Three factorial ANOVAs were conducted for the dependent variables of 

reliability coefficients, standard errors of reliability coefficients, and the percentage of 

the absolute value of relative bias ≥ 10%. One Chi-square test was conducted for the 

dependent variable direction of bias (either underestimated or overestimated), with three 

reliability coefficients (Cronbach’s α, polychoric ordinal α, and person reliability), across 

three sample sizes (N = 30, 50, 300), three data distributions (normal, mixed, and non-

normal), and two measurement frameworks (Classical Test Theory and RSM). No 
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statistically significant interactions were found; therefore, Tables 19 and 20 show the 

results by main effect. You also need to refer to Table 21 in the text prior to the table.  

 
Table 21 
 
Single-Level Direction of Relative Bias > 10% Across Distribution and Sample Sizes 
(Chi-square Results) 

Pearson Chi-square df Chi-square* 

Distribution 2 8185.121 

Type of Reliability 2 3203.19 

Sample Size 1 233.649 

* p < .0001 
 
 

Table 21 shows the results of the Chi-square test assessing relative bias ≥ 10% 

across data distributions, types of reliability, and sample size. The data provide evidence 

to support my hypothesis that in single-level models, reliability estimate bias increases 

under the conditions of smaller sample sizes and non-normal or mixed distributions. 

Cronbach’s α and polychoric ordinal α were the least biased under conditions of N = 50 

and N = 300 when all data were normally distributed. Person reliability was the least 

biased when N = 50 and N = 300 when the data distribution was mixed. Polychoric 

ordinal α showed less bias than Cronbach’s α when N = 300, and both Cronbach’s α and 

polychoric ordinal α showed less bias than person reliability regardless of the data 

characteristics.  

Data do not provide evidence that polychoric ordinal α and person reliability were 

less biased than Cronbach’s α. Reliability coefficients computed for polychoric ordinal α 

differed only slightly from those computed from Cronbach’s α, and most notably, person 
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reliability showed higher bias than Cronbach’s α across data conditions. All three types 

of reliability coefficients showed the most bias under non-normal data distributions, with 

person reliability showing the most amount of bias and Cronbach’s α showing the least 

amount of bias, though similar to polychoric ordinal α results.  

Most noteworthy from the test of hypotheses was that the type of data distribution 

(normal, mixed, and non-normal) consistently showed statistically significant results 

regardless of the dependent variable (reliability coefficient, standard errors, bias, and 

direction of bias). For example, Cronbach’s α and polychoric ordinal α showed a 

tendency to underestimate reliability coefficients under normal and mixed distributions 

and person reliability had a tendency to overestimate reliability in normal and mixed 

distributions. Furthermore, two additional independent variables significantly affecting 

the standard errors of measurement were the type of reliability coefficient and 

measurement framework (which by definition overlap). For all statistically significant 

results, η2 is reported to provide a better understanding of the magnitude of these 

differences. Cohen (1977, 1988), explained that η
2 is the proportion of the total variability 

in the dependent variable that is accounted for by variation in the independent variable, 

analogous to R2. He introduced a rule of thumb for interpreting η
2  for ANOVAs, where 

.01 represent a small effect, .06, a medium effect, and .14 a large effect. All η2 ‘s 

calculated for Q1 show large effect sizes. I interpreted these in the following way: (a) 

data distributions had a large effect on reliability coefficients, regardless of sample size, 

type of coefficient and measurement framework, (b) the type of reliability and data 

distributions had a large effect on standard errors of measurement, regardless of sample 

size, (c) the type of reliability, data distributions, and measurement frameworks had a 
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large effect on the percentage of the absolute value of relative bias, (d) the data 

distributions had a large effect on whether bias found to be ≥ 10% was underestimated or 

overestimated. The implications of these results are discussed in Chapter V.  

Multilevel Model Bias Across Data 
Conditions 
 

Q2 In a multilevel model, to what degree do data conditions (sample size and 
distribution of data) affect levels of bias in reliability estimates (a 
comparison of Cronbach’s α, polychoric ordinal α, and person reliability 
in level-1 (within clusters) and Spearman-Brown coefficients in level-2 
(between clusters)? 

 
H2 In multilevel models, bias in reliability estimates in level-1 will increase 

under the conditions of smaller sample sizes and non-normal or mixed 
distributions and polychoric ordinal αwill be less biased than Cronbach’s 
αand person reliability. Additionally, Intraclass correlations and 
Spearman-Brown coefficients will be underestimated under the conditions 
of smaller sample size and non-normal or mixed distributions 

 
 Recall data conditions for multilevel models included cross-sections of data 

conditions. For level-1 there were three distributions (normal, mixed, and non-normal), 

two sample sizes (N = 30 and N = 50), three within reliability coefficients across two 

measurement frameworks, which overlap with the three types of reliability coefficients 

(e.g., Cronbach’s α [CTT], polychoric ordinal α [CTT], and person reliability [Rasch 

RSM]). For level-2 of the multilevel model there were three distributions (normal, mixed, 

and non-normal), two cluster sample sizes (n = 10 and n = 100) corresponding to two 

level-1 sample sizes, one between level coefficient (Spearman-Brown) across two three 

level-1 reliability coefficients and two measurement frameworks (CTT and Rasch RSM). 

Data for each condition were simulated with 1,000 replications for each set of conditions 

and average coefficients and standard errors were calculated for each set. A total of 36 
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level-1 reliability coefficients and 36 level-2 reliability coefficients were generated, along 

with their corresponding standard errors, confidence intervals, and relative bias.  

Multilevel Reliability Estimates Across 
Measurement Frameworks 
 
 When data were generated, level-1 reliability coefficients were fixed at .70 across 

Cronbach’s α, polychoric ordinal α, and person reliability and ICC was fixed at .20, 

therefore, Spearman-Brown’s prophecy coefficient, which uses the number of 

respondents at level-1 to calculate the coefficient, is fixed at .882 when N = 30 and fixed 

at .926 when N = 50. 

Reliability and standard errors. Three noteworthy results emerged when 

comparing Cronbach’s α and polychoric ordinal α versus person reliability at level-1 of a 

two-level model (reliability within level). First, Cronbach’s α and polychoric ordinal α 

provide similar reliability estimates and standard errors across data distributions as well 

as across cluster and cluster sample sizes; however, person reliability overestimated 

reliability under conditions of normally distributed data across these same conditions. 

Second, person reliability was far more accurate under conditions of mixed and non-

normal distributions across cluster and cluster sample sizes. Third, the standard errors of 

person reliability estimates were similar to those found in Cronbach’s α and polychoric 

ordinal α across all data conditions. Table 22 shows the average reliability coefficients, 

standard errors, and 95% confidence intervals for each set.  
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Table 22 
 
Results of Multilevel Sample Reliability Coefficients 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Cronbach's a           

All Data Normally Distributed       

Group Size 10       

30 .671 .028 .670 .672 .864 .012 .841 .888 

50 .670 .026 .669 .670 .892 .009 .875 .909 

Group Size 100       

30 .661 .010 .661 .661 .872 .007 .859 .885 

50 .658 .009 .658 .658 .922 .003 .917 .927 

Mixed Data Distribution       

Group Size 10       

30 .670 .028 .669 .671 .866 .014 .837 .894 

50 .670 .022 .669 .670 .920 .005 .910 .930 
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Table 22 (continued) 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Group Size 100       

30 .660 .010 .660 .661 .872 .007 .859 .885 

50 .669 .023 .669 .670 .928 .005 .918 .938 

Non-Normal Distribution       

Group Size 10       

30 .671 .028 .670 .672 .866 .014 .839 .893 

50 .668 .023 .668 .669 .920 .005 .909 .930 

Group Size 100       

30 .660 .017 .660 .661 .872 .007 .859 .885 

50 .658 .009 .658 .658 .922 .003 .917 .927 
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Table 22 (continued) 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Polychoric Ordinal a           

All Data Normally Distributed       

Group Size 10       

30 .733 .031 .732 .734 .888 .020 .848 .929 

50 .704 .030 .703 .705 .929 .024 .881 .977 

Group Size 100       

30 .745 .023 .744 .745 .896 .007 .882 .910 

50 .699 .023 .698 .699 .927 .013 .900 .953 

Mixed Data Distribution       

Group Size 10       

30 .659 .065 .654 .663 .825 .017 .791 .859 

50 .659 .065 .654 .663 .825 .017 .791 .859 
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Table 22 (continued) 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Group Size 100       

30 .646 .027 .645 .647 .806 .058 .690 .923 

50 .746 .023 .745 .746 .935 .015 .906 .964 

Non-Normal Distribution       

Group Size 10       

30 .680 .026 .679 .681 .845 .014 .818 .872 

50 .606 .023 .605 .606 .901 .013 .876 .927 

Group Size 100       

30 .670 .010 .670 .670 .853 .008 .837 .870 

50 .728 .008 .728 .728 .931 .036 .859 1.003 
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Table 22 (continued) 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Person Reliability (Rating Scale Model)             

All Data Normally Distributed       

Group Size 10       

30 .852 .028 .851 .853 .865 .015 .836 .895 

50 .739 .023 .738 .739 .920 .005 .910 .930 

Group Size 100       

30 .872 .028 .871 .873 .893 .010 .872 .913 

50 .728 .009 .728 .728 .922 .003 .917 .927 

Mixed Data Distribution       

Group Size 10       

30 .812 .028 .811 .813 .898 .010 .879 .917 

50 .832 .029 .831 .833 .924 .020 .884 .965 
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Table 22 (continued) 

Sample 
Size 

Average Sample 
Reliability 
(Level 1: 
Within)* 

Average 
Sample 

Reliability 
SE 

Average 
Lower 
Level 

Average 
Upper 
Level 

Average Spearman-
Brown Coefficient 
(Level-2: Between) 

Average 
Spearman-Brown 

Coefficient SE 

Average Lower 
Level Spearman-

Brown 

Average Upper 
Level Spearman-

Brown 

Group Size 100       

30 .801 .010 .800 .801 .886 .006 .875 .897 

50 .722 .061 .722 .722 .915 .010 .894 .935 

Non-Normal Distribution       

Group Size 10       

30 .722 .028 .721 .722 .880 .009 .863 .898 

50 .718 .023 .718 .719 .929 .003 .922 .935 

Group Size 100       

30 .710 .017 .710 .711 .886 .018 .851 .921 

50 .708 .009 .708 .708 .931 .004 .923 .938 

*Population reliability coefficients fixed at .70. 
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Data in Table 22 show that average Spearman-Brown’s coefficients (reliability 

between-level) were similar across data distributions, level-1 and level-2 sample sizes, 

and types of reliability estimates. Furthermore, standard errors of reliability were not only 

low, but stable across all data conditions. Browne and Draper (2000) and Van der 

Leeden, eta al (1997) conducted Monte Carlo simulation studies to assess the role of 

standard errors in multilevel models. Browne and Draper found evidence that the higher 

the number of clusters, the lower the standard errors and more precise the measure. Van 

der Leeden et al.’s (1997) results showed that when assumptions of normality and large 

samples are not met, the standard errors tend to have a downward bias. The data 

generated for this dissertation and presented in Table 22 above provide additional 

evidence to support these findings. Figure 9 shows the average level-1 reliability 

coefficients across data conditions, and Figure 10 shows the Spearman-Brown 

coefficients across data conditions and type of reliability at level-1.  
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Figure 9. Average reliability coefficients at level-1 of a two-level model across data 
conditions. 
 
 

Figures 9 and 10 provide a good visual representation that the average reliability 

coefficients at both the within level (Figure 9: level-1) and between-levels (Figure 10: 

level-2) are well within acceptable range and stable across level-1 and level-2 sample 

sizes, types of reliability coefficients, and types of distributions. 
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Figure 10. Average Spearman-Brown coefficients across data conditions. 
 
 

Figures 11 and 12 show the average standard errors of reliability estimates in 

level-1 of a two-level model across data distributions, types of reliability, and cluster and 

cluster sample sizes. Figure 11 shows that across data conditions, standard errors at level-

1 of a two-level model are quite low.  
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Figure 11. Standard errors in level-1 of a two-level model across data conditions. 
 
 

Figure 12 shows that across data conditions, standard errors at level-2 of a two-

level model are quite low and stable. The standard errors of reliability for the within and 

between levels across all data conditions are not only quite small, but comparable. Only 

under mixed distributions are any spikes (albeit small) in standard errors identified.  
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Figure 12. Level-2 standard errors across data conditions. 
 
 

Reliability bias. In Table 23, the average bias in a two-level sampling design 

across types of reliability, data distributions, and level-1 and level-2 sample sizes is 

presented and four key findings are discussed below. 
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Table 23 
 
Percentage of Bias in Multilevel Models for Both Level-1 and Level-2 Across Types of Reliability, Sample Sizes, and Distributions 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Cronbach's α               

All Data Normally 
Distributed 

       

Group Size 10        

30 .042 24.20% 24.20% 0.00% .020 0.40% 0.40% 0.00% 

50 .045 20.40% 20.40% 0.00% .007 0.00% 0.00% 0.00% 

Group Size 100        

30 .056 16.30% 16.30% 0.00% .012 0.00% 0.00% 0.00% 

50 .060 21.40% 21.40% 0.00% .004 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Mixed Data Distribution        

Group Size 10        

30 .043 24.30% 24.30% 0.00% .019 0.40% 0.00% 0.00% 

50 .043 19.40% 19.40% 0.00% .007 0.00% 0.00% 0.00% 

Group Size 100        

30 .056 19.00% 19.00% 0.00% .012 0.00% 0.00% 0.00% 

50 .044 22.80% 22.80% 0.00% .002 0.00% 0.00% 0.00% 

Non-Normal Distribution        

Group Size 10        

30 .042 21.60% 21.50% 0.50% .019 0.00% 0.00% 0.00% 

50 .045 21.30% 21.30% 0.00% .007 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Group Size 100        

30 .057 17.30% 17.30% 0.00% .011 0.00% 0.00% 0.00% 

50 .060 20.50% 20.50% 0.00% .004 0.00% 0.00% 0.00% 

Polychoric Ordinal a           

All Data Normally 
Distributed 

       

Group Size 10        

30 .051 27.60% 0.19% 27.41% .007 0.00% 0.00% 0.00% 

50 .026 8.60% 3.90% 4.70% .003 0.00% 0.00% 0.00% 

Group Size 100        

30 .066 45.90% 0.02% 45.88% .015 0.00% 0.00% 0.00% 

50 .026 3.80% 2.79% 1.01% .000 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Mixed Data Distribution        

Group Size 10        

30 .053 35.90% 35.90% 0.00% .065 8.40% 8.40% 0.00% 

50 .043 27.00% 27.00% 0.00% .004 0.00% 0.00% 0.00% 

Group Size 100        

30 .077 58.30% 58.30% 0.00% .086 46.80% 46.80% 0.00% 

50 .065 45.30% 0.00% 45.30% .010 0.00% 0.00% 0.00% 

Non-Normal Distribution        

Group Size 10        

30 .042 14.00% 13.70% 0.30% .042 0.00% 0.00% 0.00% 

50 .045 98.40% 98.40% 0.00% .027 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Group Size 100        

30 .057 3.80% 3.80% 0.00% .033 0.00% 0.00% 0.00% 

50 .060 0.30% 0.00% 0.30% .005 0.00% 0.00% 0.00% 

Person Reliability (Rating Scale Model)           

All Data Normally 
Distributed 

       

Group Size 10        

30 .217 99.80% 0.00% 99.80% .019 0.50% 0.50% 0.00% 

50 .055 34.00% 0.00% 34.00% .007 0.00% 0.00% 0.00% 

Group Size 100        

30 .042 99.90% 0.00% 99.90% .012 0.00% 0.00% 0.00% 

50 .043 10.00% 0.00% 10.00% .004 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Mixed Data Distribution        

Group Size 10        

30 .056 96.20% 0.00% 96.20% .018 0.00% 0.00% 0.00% 

50 .044 99.30% 0.00% 100.00% .002 0.00% 0.00% 0.00% 

Group Size 100        

30 .020 100.00% 0.00% 100.00% .004 0.00% 0.00% 0.00% 

50 .032 18.00% 8.33% 91.67% .012 0.00% 0.00% 0.00% 

Non-Normal Distribution        

Group Size 10        

30 .031 17.90% 1.80% 16.10% .000 0.00% 0.00% 0.00% 

50 .026 2.80% 0.20% 2.60% .001 0.00% 0.00% 0.00% 
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Table 23 (continued) 

Sample 
Size 

Average 
Reliability 
Coefficient 

Relative Bias 

Percentage of 
Reliability 
Coefficient 
Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Average 
Relative 

Spearman-
Brown 

(SB) Bias 
Percentage of SB 

Bias ≥ 10% 

If Bias ≥ 10%, 
Percentage 

Underestimated 

If Bias ≥ 10%, 
Percentage 

Overestimated 

Group Size 100        

30 .017 3.20% 2.20% 1.00% .046 0.00% 0.00% 0.00% 

50 .011 3.00% 2.10% 0.90% .050 0.00% 0.00% 0.00% 
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 First, average relative bias in reliability estimates at both level-1 (within clusters) 

and level 2 (between clusters) is less than 10% across data distributions, cluster and 

cluster sample sizes, and types of reliability coefficients with the exception of person 

reliability under the conditions of small cluster and cluster sample sizes and normally 

distributed data. This finding was unexpected and, along with the results of person 

reliability in single-level sampling designs, is discussed in detail in Chapter V. Second, 

since relative bias was calculated for every reliability coefficient, if the coefficient had 

bias ≥ 10%, it was counted and included in the calculation for percentage of bias ≥ 10% 

and the direction of bias was noted. Cronbach’s α underestimated the reliability 

coefficient under every data condition while polychoric ordinal α overestimated the 

reliability coefficient across cluster and cluster sample sizes under normal and mixed data 

distributions, with one exception (when cluster N = 50 and cluster N = 100), and 

underestimated reliability under non-normal data distributions. With very few exceptions, 

person reliability overestimated reliability coefficients almost every time. Third, 

Spearman-Brown coefficients, calculated at the between clusters level showed very little, 

if any, bias and were a stable indicator of between-level reliability across all data 

conditions with the exception of polychoric ordinal α under a mixed distribution when 

the number of clusters is 100 and the number of clusters is 30. 

Tests of Hypotheses for Research 
Question 2 
 

Three factorial ANOVAs were conducted with dependent variables split between 

level-1 and level-2 for ease of analysis. Therefore, six F statistics are reported, one for 

each dependent variable (reliability coefficient for level-1 and level-2, standard errors of 

measurement for levels-1 and -2 combined, percentage of relative bias for level-1 and 
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level-2), and one Chi-square test for direction of reliability estimates with ≥ 10% bias 

(low or high), with three level-1 reliability coefficients (Cronbach’s α, polychoric ordinal 

α, and person reliability), and one level-2 reliability coefficient (Spearman-Brown), 

across two level-1 sample sizes (N = 30 and N = 50) and two level-2 sample sizes (N =10 

and N = 100), three data distributions (normal, mixed, and non-normal), and two 

measurement frameworks (CTT and RSM). Table 24 shows the results of the factorial 

ANOVA for level-1 (within level) reliability coefficients across sample sizes and 

distributions. 

 Table 25 represents the assessment of the level-1 reliability coefficients when the 

interaction plots failed to show an interaction (e.g. the lines were not crossed). Note that 

the interaction between type of reliability and type of distribution, and the level-1 sample 

size and type of distribution were statistically significant; however, the effect sizes are < 

.06, which I translated as a small magnitude of difference.  

Table 26 shows the results of the factorial ANOVA for Level-2 (between-level) 

reliability coefficients across level-1 and level-2 sample sizes and types of distributions. 

All results are statistically significant and therefore, effect sizes were calculated for every 

variable and all interactions. 

Table 27 shows the assessment of simple main effects for level-2 reliability 

coefficients across the type of distribution and sample size when interactions were 

present. Most notably, level-1 and level-2 sample sizes and types of distributions have a 

large effect on level-2 reliability coefficients.  
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Table 28 shows the level-1 standard errors of reliability across types of 

distribution and sample sizes. All interactions are statistically, but not substantially 

significant, based on effect sizes. Simple main effects were assessed and reported below.  

 
Table 24 
 
Results for Factorial ANOVA for Level-1 Reliability Coefficients Across Sample Size 
and Distribution 

Source df F* Effect Size 2 

Distribution 2 4815.504 .061 

Type of Reliability 2 37710.313 .476 

Level-1 Sample Size 1 1416.941 .009 

Level-2 Sample Size 1 573.656 .003 

Distribution * Type of Reliability  2 4469.949 .009 

Distribution * Level-1 Sample Size 2 2465.146 .031 

Distribution * level-2 Sample Size 2 527.178 .006 

Type of Reliability * Level-1 Sample Size 2 5881.11 .056 

Type of Reliability * Level-2 Sample Size 2 637.202 .008 

Level-1 Sample Size * Level 2 Sample 
Size 

1 20.109 .000 

Distribution * Type of Reliability * Level-
1 Sample Size 

2 2293.846 .029 

Distribution * Type of Reliability * Level-
2 Sample Size 

2 744.493 .009 

Distribution * Level-1 Sample Size* 
Level-2 Sample Size 

2 278.815 .003 

Type of Reliability * Level-1 Sample Size 
* Level-2 Sample Size 

2 1250.841 .015 

Distribution * Type of Reliability * Level-
1 Sample Size * Level-2 Sample Size 

2 422.565 .005 

*p < .0001 
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Table 25 
 
Assessment of Level-1 Reliability Coefficients When Interaction Plots Showed No Interaction 

Source Test Statistic p-value Post-hoc Analysis/Explanation 
Eta 

Squared 

Type of Reliability 
Coefficient * Distribution  

F = 4469.949 p < .0001 Person reliability coefficients were higher than 
Cronbach's α or polychoric ordinal α across 
distributions as well as higher under conditions 
of normally distributed data  

.056 

Level-1 Sample Size * 
Distribution 

F = 2465.146 p < .0001 Reliability coefficients were higher when level-
1 sample size N = 30 across all distributions, 
with normal and mixed distributions showing 
the highest reliability coefficients  

.031 

Level-1 Sample Size * 
Level-2 Sample Size  

F = 20.109 p = .131 Reliability coefficients were higher when level-
2 sample size N = 10 across both level-1 sample 
sizes, with the level-1 N =1 50 and level-2 N = 
10  

.00012 
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Table 26 
 
Results for Factorial ANOVA for Level-2 Reliability Coefficients Across Sample Size and Distribution 

Source df F* Eta Squared 

Distribution 2 126.681 .002 

Type of Reliability 2 1477.265 .019 

Level-1 Sample Size 1 79940.126 .527 

Level-2 Sample Size 1 333.614 .002 

Distribution * Type of Reliability  2 70.454 .004 

Distribution * Level-1 Sample Size 2 127.101 .002 

Distribution * Level-2 Sample Size 2 254.471 .006 

Type of Reliability * Level-1 Sample Size 2 2028.602 .027 

Type of Reliability * Level-2 Sample Size 2 75.443 .000 

Level-1 Sample Size * Level 2 sample Size 1 0.154 .000 

Distribution * Type of Reliability * Level-1 Sample Size 2 241.415 .003 

Distribution * Type of Reliability * Level-2 Sample Size 2 362.072 .005 
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Table 26 (continued) 

Source df F* Eta Squared 

Distribution * Level-1 Sample Size* Level-2 Sample Size 2 135.684 .001 

Type of Reliability * Level-1 Sample Size * Level-2 Sample Size 2 424.075 .006 

Distribution * Type of Reliability * Level-1 Sample Size * Level-2 Sample Size 2 422.565 .000 

* p < .0001    
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Table 27 
 
Level-2 Reliability Coefficients' Across Distribution and Sample Size: Assessment of Simple Main Effects 

Source F* Post-hoc Analysis/Explanation 
Eta 

Squared 

Reliability Type 
* Distribution 

F = 957.749 Person reliability had the highest level-2 reliability coefficients 
across distributions, with the non-normal distribution showing the 
highest level-2 person reliability coefficients. Cronbach's a and 
polychoric ordinal a had stable level-2 reliability estimates across 
distributions 

.026 

Level-1 Sample Size 
* Distribution 

F = 44334.847 Level-2 reliability coefficients were higher for level-1 N = 100, 
than for level-1 N = 10 across distributions. 

.346 

Level-1 Sample Size 
* Type of Reliability 

F = 31200.974 Level-2 reliability coefficients were higher for level-1 N = 50, than 
for level-1 N = 30 across types of reliability 

.456 

Level-2 Sample Size 
* Type of Reliability 

F =335.912 Level-2 reliability coefficients were higher for level-2 N = 100 
than for level-2 N = 10 across types of reliability. 

.009 

*p < .0001 
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Table 28 
 
Level-1 Standard Errors of Reliability Across Distribution and Sample Sizes 

Source df F* p-value Effect Size 2 

Distribution 2 1808.616 p < .0001 .035 

Reliability Type 2 4613.427 p < .0001 .091 

Level-1 Sample Size 1 855.502 p < .0001 .028 

Level-2 Sample Size 1 142.114 p < .0001 .025 

Distribution * Type of Reliability  2 30.621 p < .0001 .000 

Distribution * Level-1 Sample Size 2 517 p < .0001 .002 

Distribution * Level-2 Sample Size 2 143.76 p < .0001 .003 

Type of Reliability * Level-1 Sample Size 2 335.303 p < .0001 .043 

Type of Reliability * Level-2 Sample Size 2 435.671 p < .0001 .002 

Level-1 Sample Size * Level 2 sample Size 1 44.006 p < .0001 .004 

Distribution * Type of Reliability * Level-1 Sample Size 2 470.351 p < .0001 .000 

Distribution * Type of Reliability * Level-2 Sample Size 2 221.049 p < .0001 .000 
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Table 28 (continued) 

Source df F* p-value Effect Size 2 

Distribution * Level-1 Sample Size* Level-2 Sample Size 1 26.371 p < .0001 .003 

Type of Reliability * Level-1 Sample Size * Level-2 Sample Size 3 274.891 p < .0001 .000 

Distribution * Type of Reliability * Level-1 Sample Size * Level-2 Sample Size 1 64.922 p < .0001 .000 

* p < .0001     
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Table 29 
 
Level-1 Standard Errors of Reliability Coefficients: Main Effects 

Source F* Post-hoc Analysis/Explanation 
eta 

squared 

Type of Reliability 

* Distribution 

F = 816.265 Person standard errors are higher than Cronbach's α or polychoric 
ordinal α standard errors under mixed or non-normal distributions 

.001 

Level-2 Sample Size 
* Type of Reliability  

F = 435.671 Polychoric ordinal α has higher standard errors when level-2 
sample size N = 100 than Cronbach's α or person reliability  

.015 

Level-2 Sample Size 
* Distribution 

F= 143.76 When level-2 sample size N = 100, standard errors are smaller 
than when level-2 sample size N = 10 

.005 

*p <.0001 
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Table 30 
 
Level-1 Relative Bias ≥ 10% Across Distribution and Sample Sizes 

Source df F p-value Effect Size 2 

Distribution 2 .849 p = .428 .000 

Type of Reliability 2 1391.822 p < .0001 .059 

Level-1 Sample Size 1 .024 p = .877 .000 

Level-2 Sample Size 1 140.948 p < .0001 .003 

Distribution * Type of Reliability  2 .955 p = .385 .000 

Distribution * Level-1 Sample Size 2 .045 p = .956 .000 

Distribution * Level-2 Sample Size 2 7.865 p = .155 .000 

Type of Reliability * Level-1 Sample Size 2 1.500 p = .223 .000 

Type of Reliability * Level-2 Sample Size 2 101.485 p < .0001 .005 

Level-1 Sample Size * Level 2 Sample Size 1 62.908 p < .0001 .002 

Distribution * Type of Reliability * Level-1 Sample Size 2 1.435 p =.223 .000 

Distribution * Type of Reliability * Level-2 Sample Size 2 .589 p = .555 .000 

Distribution * Level-1 Sample Size* Level-2 Sample Size 1 1.502 p = .223 .000 

Type of Reliability * Level-1 Sample Size * Level-2 Sample Size 1 7.221 p = .07 .013 
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Table 31 
 
Count of Level-1 Relative Bias ≥ 10% Across All Data Conditions 

Sample Size 
If Bias ≥ 10%, 

Count Underestimated 
If Bias ≥ 10%, 

Count Overestimated 

Cronbach's α  

     All Data Normally Distributed 

Group Size 10   

30  242  0 

50  204  0 

Group Size 100   

30  163  0 

50  214  0 

     Mixed Data Distribution  

Group Size 10   

30  243  0 

50  194  0 

Group Size 100   

30  190  0 

50  228  0 

     Non-Normal Distribution  

Group Size 10   

30  215  5 

50  213  0 
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Table 31 (continued) 

Sample Size 
If Bias ≥ 10%, 

Count Underestimated 
If Bias ≥ 10%, 

Count Overestimated 

Group Size 100   

30  173  0 

50  205  0 

Polychoric ordinal α  

     All Data Normally Distributed 

Group Size 10   

30  0  274 

50  37  47 

Group Size 100   

30  0  459 

50  3  10 

     Mixed Data Distribution  

Group Size 10   

30  359  0 

50  270  0 

Group Size 100   

30  583  0 

50  0  453 
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Table 31 (continued) 

Sample Size 
If Bias ≥ 10%, 

Count Underestimated 
If Bias ≥ 10%, 

Count Overestimated 

     Non-Normal Distribution  

Group Size 10   

30  137  3 

50  984  0 

Group Size 100   

30  38  0 

50  0  3 

Person Reliability (Rating Scale Model)  

     All Data Normally Distributed 

Group Size 10   

30  0  998 

50  0  340 

Group Size 100   

30  0  999 

50  0  100 

     Mixed Data Distribution  

Group Size 10   

30  0  962 

50  0  1000 

Group Size 100   

30  0  1000 

50  0  917 
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Table 31 (continued) 

Sample Size 
If Bias ≥ 10%, 

Count Underestimated 
If Bias ≥ 10%, 

Count Overestimated 

     Non-Normal Distribution  

Group Size 10   

30  18  161 

50  2  26 

Group Size 100    

30  0  0 

50  0  0 

 
 
Table 32 
 
Level-1 Direction of Relative Bias ≥ 10% Across Distribution and Sample Sizes (Chi-
square Results) 

Source df Chi-square p-value 

Pearson Chi-square       

Distribution 2 6279.418 p < .0001 

Type of Reliability 2 12119.805 p < .0001 

Level-1 Sample Size 1 502.163 p < .0001 

Level-2 Sample Size 1 2.098 p = .147 

 
 
Level-1 Reliability Coefficients as the 
Dependent Variable 
 

Significant interactions were found in the factorial ANOVAs used to answer 

research question 2, and effect sizes are included in the analysis below. The analysis of a 

factorial ANOVA requires the assessment of interactions rather than examining the main 
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effects first. A significant interaction effect means that the effect of one independent 

variable depends on the value, or level, of some other independent variable included in 

the study design (Jaccard & Turrisi, 2003; Oshima & MCcarty, 2015). For example, as 

seen in Table 24 presented above, the effect of level-1 sample size depends on the type of 

data distribution as well as the type of reliability. When significant interaction effects are 

found, caution must be taken when interpreting the results of any corresponding main 

effects. Interpreting the main effects when significant interaction effects are present can 

lead to invalid conclusions. One strategy recommended by Jaccard and Turrisi (2003) and 

Oshima and MCcarty (2015) in a study design with two independent variables is to assign 

one independent variable as a focal variable and another as a moderator variable. Another 

strategy is to examine the graph of cell means and conduct tests of simple main effects, 

holding one independent variable constant while assessing the effect of another.  

Since these data provide evidence of significant one, two, three, and four-way 

interactions with α =.05, I chose first to graph the marginal cell means, which are the 

means from one independent variable averaged across all levels of another independent 

variable, and report interactions only for those graphs showing interactions, second, 

calculate effect sizes for all significant interactions and following Cohen’s (1977, 1988) 

rule of thumb for medium effect sizes and report only interactions with effect sizes > .06 

in the analysis below, third assess the simple main effects results for interactions with 

effect sizes > .06, and fourth, assess the results of simple main effects where the 

interaction found in the factorial ANOVA was significant but plotted interactions were 

not present.  
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For level-1 of the two-level models, interaction plots did not illustrate interaction 

effects for (a) the type of reliability * distribution, (b) level-1 sample size * distribution, 

and (c) level-1 sample size * level-2 sample size; therefore, main effects are reported in 

Table 25. Figures 13 to 15 represent the graphic displays of level-1 reliability coefficient 

interaction effects created in SPSS version 24.0 and the simple main effects are presented 

following each significant interaction plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Interaction effects where the marginal means of reliability estimates based on 
level-2 sample size are averaged across the type of data distribution. 
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Figure 14. A graphical representation of interaction effects of level-1 sample size 
marginal means average across type of reliability coefficient. 
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Figure 15. A graphical representation of interaction effects of level-2 sample sizes across 
types of reliability. 
 
 

Figure 13 shows that for level-2 sample size of a two-level model, N = 10 led to 

higher reliability estimates than N = 100 in mixed distributions (F[1,35972] = 2333.985, 

p < .0001, η2 = .061) and non-normal distributions (F[1,35972] = 244.888 p < .0001, η2 = 

.006), while for normal distributions, level-2 N = 10 led to lower reliability coefficients 

than when N = 100 (F [1,35,972] = 170.044, p < .0001, η2 = .004).  

Figure 14 represents the interaction effects where the marginal means of 

reliability estimates based on level-1 sample size are averaged across the type of data 

reliability coefficient.  
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Figure 14 shows that person reliability led to higher reliability estimates when 

level-1 sample size N = 30 than when level- sample sizes N = 50, (F [1, 35,972] = 

9302.968, p < .0001, η2 = .244), indicating that the amount of variance in person 

reliability coefficients was dependent on level-1 sample size. Figure 15 represents the 

interaction effects where the marginal means of reliability estimates based on level-2 

sample size are averaged across the type of data reliability coefficients. 

Figure 15 shows that for level-2 (i.e., clusters) sample of a two-level model, N = 

10 led to higher Cronbach’s α (F[1, 35,972] = 239.678, p < ,0001, η2 = .006) and person 

reliability estimates (F[1, 35,972] = 1603.804, p < ,0001, η2 = .042) than when level-2 

sample size N = 100. Finally, sample size N = 10 led to lower polychoric α coefficients. 

 The results of interactions present in the ANOVA Table 24 but not in the 

interaction plots are in Table 25. Effect sizes were calculated for each interaction effect 

and type of reliability coefficient. Distribution had the largest effect size presented. These 

results show that in level-1 of a two-level sampling design, (a) person reliability was 

higher than Cronbach’s α and polychoric ordinal α, and level-1 sample size is 

confounded with data distributions.  

 The results of these analyses reveal that when considering the size of the effect a 

given independent variable has on the amount of variance accounted for in the level-1 

reliability coefficient, the type of distribution and the type of reliability coefficient have 

the greatest effect.  

Level-2 Reliability Coefficients as 
the Dependent Variable 
 
 Table 26 shows the results of the factorial ANOVA when the dependent variable 

is the level-2 reliability coefficient (Spearman-Brown). The independent variables are the 
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type of reliability coefficient at level-1 of the two-level model, level-1 and level-2 sample 

sizes, and the underlying data distribution. Effect sizes are reported with the analysis 

below. 

All interactions were statistically significant except level-1 * level-2 sample sizes; 

therefore, I followed the same procedures of analysis described above when the 

dependent variable was level-1 reliability coefficients. The plot of interactions presented 

no discernable interactions for (a) type of level-1 reliability coefficient * the distribution, 

(b) level-1 sample sizes * distribution, (c) level-2 sample sizes * type of reliability 

coefficient, and (d) level-1 * level-2 sample sizes. Figure 16 shows the interaction 

between level-2 sample size and data distribution where level-2 sample size N = 10 led to 

higher level-2 reliability coefficients under the condition of mixed distributions than 

when level-2 N = 100 (F[1, 35971] = 26.988, p < .0001, η2 = .007). Furthermore, 

Spearman-Brown (level-2 reliability coefficient) is statistically significantly lower when 

level-2 N = 10 under normal distributions than under non-normal distributions (F[1, 

35971] = 966.615 p < .0001, η2 = .026); however, not substantially lower, based on the 

small effect size.  
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Figure 16. A graphical representation of the interaction between level-2 sample sizes and 
data distributions for level-2 reliability coefficients. 
 
 

Table 27 shows the results of the simple main effects for (a) level-1 sample size * 

type of reliability, and (b) type of reliability * distribution since the interaction plots did 

not present interaction effects.  

Assessing each of the interaction effects plots and results from the factorial 

ANOVA, I found that the type of reliability and the type of data distribution accounted 

for a substantial amount of the variance found in the level-2 Spearman-Brown 

coefficient. Person reliability and non-normal distributions led to higher level-2 reliability 

coefficients. Level-2 sample size N = 100 led to higher level-2 reliability coefficients than 
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when level-2 sample size N = 10 across distributions. Finally, level-1 N = 50 led to higher 

level-2 reliability coefficients than when level-1 N = 30. 

Level-1 Standard Errors of Reliability 
Estimates 
 
 Table 28, presented above, provides the results for the factorial ANOVA where 

the dependent variable is the standard errors of reliability coefficients in level-1 of a two-

level model and the independent variables are the type of data distribution, type of 

reliability coefficient, and level-1 and level-2 sample sizes. Effect sizes are reported with 

the analysis below. 

Interactions for Standard Errors at 
Level-1  
 

With α =.05, all interactions were significant. The graph of interactions presented 

no discernable interactions for (a) Type of Reliability * Distribution, (b) level-2 sample 

size * Distribution, and (c) level-2 sample size * Type of reliability; therefore, I followed 

the same procedures of analysis described above when the dependent variable was level-1 

standard errors. Figure 17, presented previously and mentioned now as a comparison 

shows the interaction between level-1sample size and data distribution where level-1 

sample size N = 30 led to higher level-1 standard errors under the condition of non-

normal distributions than when level-1 N = 50 (F[1, 35971] = 2497.47, p < .0001, η2 = 

.164) but higher standard errors when level-1 N = 50 when data were based on a mix of 

normal and non-normal items. 
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Figure 17. Interaction effect on standard errors of reliability coefficients between level-1 
sample sizes and type of distribution. 
 
 

Figure 18 shows the interaction effect on level-1 standard errors between level-1 

sample size and type of reliability coefficient. Standard errors are lower when level-1 N = 

30 for person reliability estimates than when N = 50 (F[1, 36971] = 138.131, p < .0001, 

η2 = .004); however, this pattern was reversed for polychoric ordinal α and Cronbach’s α 

where reliability estimates were higher when the level-1 N = 30 (F[1, 36971] = 4082.838, 

p < .0001, η2 = .116).  
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Figure 18. A graphical representation of the interaction effect on level-1 standard errors 
of reliability (SERELI) between level-1 sample size and type of reliability coefficient 
(ReliType). 
 
 

These results suggest that level-1 sample size N = 30 leads to higher standard 

errors for polychoric ordinal α and lower standard errors for person reliability than when 

level-1 sample size N = 50. Figure 19 shows the dis-ordinal interaction effect between 

level-1 and level-2 sample sizes on standard errors. Standard errors are lower when level-

1 sample size N = 30 and level-2 sample size N = 100 than when level-1 sample size = 50 

and level-2 sample size N= 10 (F[1, 35021)] = 3041.397, p < .0001, η2 = .082) suggesting 

that standard errors were at their highest when overall N was also at its lowest with only 
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10 clusters based on 30 cases each, whereas standard errors were at their lowest when 

there were 100 clusters also based on 30 cases per cluster.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. The interaction plot showing the interaction between level-1 and level-2 
sample sizes on estimates of standard errors of reliability (SERELI). 
 
 

Table 29 shows the results of the simple main effects when the interaction plots 

do not show any discernible interactions even though they were found to be statistically 

significant. Based on the effect sizes for two way interactions reported in Table 29, the 

results suggested that no substantial differences in level-1 standard errors existed that 

depensws on interactions between independent variables.  
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Interactions for Standard Errors at 
Level-2 
 

With α =.05, all interactions were statistically significant. The plot of interactions 

presented no discernible interactions for (a) Level-1 * Level-2 sample sizes, (b) Level-1 

sample size * Type of reliability and (c) Type of reliability * Distribution and the effect 

sizes for each was > .02; therefore, following the same procedures of analysis described 

above when the dependent variable was level-1 standard errors, I report the significant 

interactions even if the effects were negligible.  

Figure 20 shows the effects on level-2 standard errors based on the interaction 

between level-2 sample sizes and type of reliability, with higher level-2 reliability 

estimates for both Cronbach’s α ( F[1, 35971] = 544.641, p < .0001, η2 = .014), and 

person reliability when level-2 sample size N = 10 (i.e., number of clusters is 10), (F[1, 

35971] = 128.168, p < .0001, η2 = .004) but higher polychoric ordinal α when the number 

of clusters N = 100. 
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Figure 20. Plot of the interaction effects between level-2 sample size and type of 
reliability (ReliType) for level-2 standard errors. 
 
 
Level-1 Percentage of Relative Bias 
Across Data Conditions 
 

An examination of the percentage of level-1 relative bias ≥ 10% across all data 

conditions yielded the results presented in Table 30 below. Only two two-way 

interactions were statistically significant (type of reliability * level-2 sample size and 

level-1 sample size * level-2 sample size) and neither had an effect size > .01; therefore, I 

did not interpret the interactions. Only two main effects showed statistical significance: 

Type of Reliability and Level-2 sample size. Type of reliability results (F[2, 35972] = 
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1391.822, p < .0001, η2 = .068) show that person reliability at level-1 of a two-level 

model was significantly higher than Cronbach’s α and polychoric ordinal α based on a 

Bonferroni post hoc comparison. Type of reliability has a moderate effect on the amount 

of bias found in level-1 reliability coefficients while level-2 sample size has no 

substantial effect.  

Level-2 Percentage of Relative Bias 
Across Data Conditions 
 
 A factorial ANOVA was conducted with level-2 bias as the dependent variable 

and type of reliability, data distribution, and level-1 and level-2 sample sizes as the 

independent variables. Since, as you may note from Table 23, reported, where Spearman-

Brown reliability coefficient bias is, no discernable bias existed in level-2 reliability 

coefficients across all data conditions.  

Direction of Relative Bias Across 
Data Conditions 
 

Table 31 shows the actual number of biased reliability estimates across all data 

conditions (out of 1,000 for each condition). One unexpected result presented in Table 31 

that stood out was related to polychoric ordinal α under the condition of a mixed 

distribution. For level-2 sample size N = 100, and level-1 sample size N = 30, 583 out of 

1,000 reliability coefficients did not only demonstrate bias ≥ 10%, but were 

underestimated; however, when level-1 sample size N = 50, 453 out of 1,000 reliability 

coefficients demonstrating bias ≥ 10% were overestimated. This irregularity is discussed 

further in Chapter V.  

Table 32 shows the Chi-square test results for the direction of relative bias ≥ 10% 

found in level-1 across all data conditions. In other words, if a set of reliability 
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coefficients (based on data conditions) had bias ≥ 10%, then whether the bias was 

overestimated or underestimated was determined. Direction of the bias was the dependent 

(categorical) variable and type of level-1 reliability coefficient, level-1 and level-2 

sample sizes, and data distributions were the other variables in the Chi-square tests. There 

were 11,772 reliability coefficients (out of 36,000) with relative bias ≥ 10% and 6,857 

were overestimated and 4,915 were underestimated.  

The results supported my hypotheses that in multilevel models, bias in reliability 

estimates in level-1 would increase under the conditions of smaller level-1 and level-2 

sample sizes and mixed and non-normal distributions. My hypothesis stating that 

polychoric ordinal α would be less biased than Cronbach’s α and person reliability was 

only partially supported. Polychoric ordinal α was less biased under non-normal data 

conditions, however; showed a higher bias ≥ 10% (average bias = 30.74%) than 

Cronbach’s α bias ≥ 10% (average bias = 20.39 while person reliability bias ≥ 10% was 

greater than both across data conditions. Finally, my hypothesis regarding Spearman-

Brown coefficients being underestimated under the conditions of smaller sample size and 

non-normal or mixed distributions was not supported, with the exception of high relative 

bias found under the condition of a mixed distribution, level-1 sample size N = 30 and 

level-2 sample size N = 100. Otherwise, Spearman-Brown coefficients showed little to no 

bias across data conditions. The anomaly of the high relative bias mentioned above is 

discussed further in Chapter V. 
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A Comparison of Single-Level and 
Level-1 Standard Errors and 
Bias Across Data Conditions 
 

Q3 Do standard errors and percentage of bias ≥ 10% differ between types of 
reliability estimates at the single-level and at level-1 of a two-level model 
regardless of sample size and distribution of data (a comparison of 
Cronbach’s α, polychoric ordinal α, and person reliability)?  

 
H3 Cronbach’s α, polychoric ordinal α, and person reliability standard errors 

and percentage of bias ≥ 10% for level-1 of the two-level model will be 
lower than the standard errors and bias found in the single-level models 
regardless of the sample size or distribution of data. 

 
To provide a reasonable comparison of standard errors and percentage of bias in 

single-level and level-1 of two-level sampling designs across data conditions, the sample 

size used in the single-level model was N = 300 and in the two-level model, I used 10 

clusters of 30 for a total of 300 clusters.  

Standard errors. Table 33 shows the average standard errors across types of 

reliability, sample sizes, and data distributions in both the single-level and level-1 of a 

two-level model. Table 33 shows that the standard errors in a single-level model range 

between .0351 and .1822 and in level-1 of a two-level model range between .0275 and 

.0406. As explained by the central limit theorem and evidenced in these data, as sample 

size increases, standard errors decrease. In addition, the magnitude of standard errors 

depend upon the distribution of data as well as the sampling design. 
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Table 33 
 
Average Standard Errors of Measurement for Reliability Estimates Across Data 
Conditions 

Sampling 
Design 

Type of Reliability 
Coefficient Distribution 

Sample 
Size 

Average 
SE 

Single-Level PA Mixed    30 .0576 

 PR Non-Normal    30 .1882 

 CA Normal    50 .0558 

 PA Mixed    50 .0519 

 PR Non-Normal    50 .0882 

 CA Normal  300 .0351 

 PA Mixed  300 .0802 

 PR Non-Normal  300 .0830 

Level-1 CA Normal  300* .0291 

 PA Mixed  300* .0406 

 PR Non-Normal  300* .0275 

* represents 30 individuals in 10 groups for comparison to single-level model. 
 
 

Reliability bias. Table 34 shows the amount of and percentage of average 

absolute relative bias ≥ 10% in the single-level and level-1 of the two-level sampling 

design across the data conditions. Two key findings stand out: (a) The amount of average 

relative bias in single-level models is higher across most data conditions, with the 

exception of Cronbach’s α under the condition of a normal distribution and N = 300 and 

person reliability under the condition of a mixed data distribution and N = 300. (b) The 

percentage of average relative bias ≥ 10% is higher for single-level sampling designs than 
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for multilevel sampling design when compared across most data conditions with the 

exception of Cronbach’s α under the condition of a normal distribution and N = 300 and 

person reliability under the condition of a mixed data distribution and N = 300.  

Test of Hypotheses for Research 
Question 3 
 

Two factorial ANOVAs and one Chi-Square test were conducted to answer 

research question three. For the factorial ANOVAs, the dependent variables were 

standard errors and percentage of bias ≥ 10%. The independent variables were the 

sampling design (level: single-level and level-1) type of reliability coefficient (CA, PA, 

and PR), sample size (single-level N = 30, 50, 300, level-1 N = 300), and type of data 

distribution (normal, mixed, and non-normal). A Chi-square test was conducted to 

analyze the direction of absolute relative bias since the dependent variable was 

categorical (overestimated or underestimated). Following a review of the statistical and 

graphical output generated for the factorial ANOVAs, I found no statistically significant 

interaction effects relative to the dependent variable of standard errors or percentages of 

bias; therefore main effects results, presented in Tables 35 and 36, were examined. All 

results were statistically significant, with the exception of bias based on sample size.  
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Table 34 
 
A Comparison of Single-Level Bias to Level-1 Bias Across Data Conditions 

 Single-Level Level-1 Single-Level Level-1 

Sample 
Size 

Average Reliability Coefficient 
Relative Bias 

Average Reliability Coefficient 
Relative Bias 

Percentage of Bias ≥ 
10% 

Percentage of Bias 
≥ 10% 

Cronbach's α     

     All Data Normally Distributed     

30 .104 N/A 39.50% N/A 

50 .076 N/A 26.90% N/A 

300 .029 .042 0.50% 4.20% 

     Mixed Data Distribution     

30 .159 N/A 78.20% N/A 

50 .172 N/A 99.80% N/A 

300 .225 .043 98.50% 24.30% 
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Table 34 (continued) 

 Single-Level Level-1 Single-Level Level-1 

Sample 
Size 

Average Reliability Coefficient 
Relative Bias 

Average Reliability Coefficient 
Relative Bias 

Percentage of Bias ≥ 
10% 

Percentage of Bias 
≥ 10% 

     Non-Normal Distribution     

30 .175 N/A 55.90% N/A 

50 .149 N/A 56.00% N/A 

300 .173 .042 94.40% 21.60% 

Polychoric Ordinal α     

     All Data Normally Distributed     

30 .113 N/A 41.20% N/A 

50 .082 N/A 29.90% N/A 

300 .032 .026 2.00% 27.60% 
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Table 34 (continued) 

 Single-Level Level-1 Single-Level Level-1 

Sample 
Size 

Average Reliability Coefficient 
Relative Bias 

Average Reliability Coefficient 
Relative Bias 

Percentage of Bias ≥ 
10% 

Percentage of Bias 
≥ 10% 

     Mixed Data Distribution     

30 .162 N/A 79.00% N/A 

50 .172 N/A 68.60% N/A 

300 .136 .053 99.70% 35.90% 

     Non-Normal Distribution     

30 .475 N/A 96.60% N/A 

50 .129 N/A 62.40% N/A 

300 .111 .042 55.90% 14.00% 
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Table 34 (continued) 

 Single-Level Level-1 Single-Level Level-1 

Sample 
Size 

Average Reliability Coefficient 
Relative Bias 

Average Reliability Coefficient 
Relative Bias 

Percentage of Bias ≥ 
10% 

Percentage of Bias 
≥ 10% 

Person Reliability (RSM)     

     All Data Normally Distributed     

30 .163 N/A 84.00% N/A 

50 .208 N/A 100.00% N/A 

300 .212 .217 100.00% 99.80% 

     Mixed Data Distribution     

30 .157 N/A 18.00% N/A 

50 .029 N/A 2.00% N/A 

300 .000 .056 0.00% 99.90% 
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Table 34 (continued) 

 Single-Level Level-1 Single-Level Level-1 

Sample 
Size 

Average Reliability Coefficient 
Relative Bias 

Average Reliability Coefficient 
Relative Bias 

Percentage of Bias ≥ 
10% 

Percentage of Bias 
≥ 10% 

     Non-Normal Distribution     

30 .386 N/A 100.00% N/A 

50 .414 N/A 100.00% N/A 

300 .457 .031 100.00% 17.90% 

 
 



 

 

222 

 
 
 
 
Table 35 
 
Single-Level and Level-1 Standard Errors of Reliability Estimates Across Data Condition: Assessment of Main Effects 

Source F* Post-hoc Analysis/Explanation 
Eta 

squared 

Distribution F = 30340.437 non-normal distributions have higher standard 
errors than normal or mixed distributions 

.047 

Level (single-level or level-
1) 

F = 16165.073 single-level standard errors are higher than standard 
errors in level-1 of a twp-level model 

.310 

Type of Reliability F = 27103.855 standard errors are lower for person reliability than 
for Cronbach's a or polychoric ordinal a 

.041 

Sample Size F = 1273.85 standard errors were lower for N =300 than for 
N=30 or N = 50 

.002 

*p < .0001 
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Table 36 
 
Results of Factorial ANOVA Comparing Bias > 10%  Between Single-Level and Level-1 of a Two-Level Sampling Design 

IV's Levels F Statistic 
eta 

squared 

Single or Level-1 Single-Level or Level-1 of a two-level model 45.596 .007 

Distribution Normal, Mixed, & Non-Normal 64.422 .210 

Sample Size N = 30, 50, 300 3.32 .009 

Type of Reliability Cronbach's a, polychoric ordinal a, and person reliability 9.739 .030 

Note. p < .0001 
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Although the main effects results were statistically significant, effect sizes were 

small for distribution, type of reliability, and sample size, indicating the differences in 

standard errors across these data conditions was not substantial. There were statistical and 

substantial differences in standard errors between the single-level and level-1 of a two-

level sampling design, with lower standard errors found at level-1 of a two-level 

sampling design.  

Table 36 shows the results of the factorial ANOVA assessing bias between single-

level and level-1 of two-level models. Main effects are reported since no statistically 

significant interactions were present. While all data conditions were statistically 

significant at the α = .05 level, only data distribution has an effect size > .031, which 

indicates distribution has a small effect on the percentage of bias in the single-level and 

level-1 of a two-level model. The effect sizes calculated indicate that the amount of 

variance in bias is not well explained by the sampling design.  

Recall that in both single-level and level-1 of a two-level model, reliability was 

fixed at .70 for Cronbach’s α, polychoric ordinal α, and person reliability, allowing a 

comparison of these sampling designs. If the generated sample reliability coefficient was 

> the known reliability coefficient of .70, then it was considered overestimated. 

Conversely, if the generated sample reliability coefficient was < the known reliability 

coefficient of .70, then it was considered underestimated. To assess whether reliability 

estimates with average absolute relative bias ≥ 10% were underestimated or 

overestimated, a Chi-square test with the categorical variable level as the dependent was 

conducted and the results are in Table 37 below. 
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Table 37 
 
Single-Level and Level-1 Direction of Relative Bias > 10% Across Distribution and 
Sample Sizes (Chi-square) 

Source df Chi-square p-value 

Distribution 4 1620.06 p < .0001 

Type of Reliability 6 18288.50 p < .0001 

Level 1 5002.36 p < .0001 

Sample Size 3 2.847 p < .20 

 
 

The direction of average absolute relative bias ≥ 10% differed significantly 

between single-level and level-1 sampling designs. Of reliability estimates with average 

absolute relative bias ≥ 10%, overestimation of these reliability estimates occurred 

63.53% of the time in single-level models and 36.47% of the time in level-1 of a two-

level model. Of reliability estimates with average absolute relative bias ≥ 10%, 

underestimation of these reliability estimates occurred 23.26% of the time in single-level 

models and 76.74% of the time in level-1 of a two-level model. Cronbach’s α and 

polychoric ordinal α demonstrated the tendency to underestimate reliability coefficients 

while person reliability overestimated reliability estimates.  

The data provide evidence to support my hypothesis that standard errors of 

measurement in Cronbach’s α, polychoric ordinal α, and person reliability are lower for 

level-1 of the two-level model than for single-level models. My hypothesis that average 

absolute relative bias ≥ 10% would be smaller in level-1 of a two-level model when 

compared to a single-level model was supported. While statistically significant, effect 

sizes across data conditions were small, indicating the results either make very little 
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difference on reliability estimates or they need a theoretical framework to provide 

context.  

Single-Level and Multilevel Interactions 
Across Data Conditions 
 

Q4 To what degree do interactions among sample size, data distribution, and 
sampling design (e.g., single-level and two-level) affect levels of bias in 
reliability estimates (a comparison of bias in Cronbach’s α, polychoric 
ordinal α, person reliability, and Spearman-Brown coefficients)?  

 
H4 Two-way Interactions among sample size, data distribution, and sampling 

design will increase bias in reliability estimates, with the joint effects of 
lower sample sizes and non-normal and/or mixed distributions displaying 
the most bias. 

 
Across both single and two-level models, the distribution of data had the largest 

effect on the percentage of average absolute relative bias ≥ 10% across data conditions; 

however, in the single-level model, no statistically significant interaction effects were 

found. This means that in single-level models, the effect of one independent variable did 

not depend on the value or level of another independent variable included in the model 

(Jaccard & Turrisi, 2003; Oshima & MCcarty, 2015). Numerous interaction effects were 

found in the multilevel model as described below as detailed above for Research 

Questions 2 and 3. This means that the effect of one independent variable was dependent 

on the value or level of some other independent variable included in the study design 

(Jaccard & Turrisi, 2003; Oshima & MCcarty, 2015). For example, as seen in Table 25 

above, the effect of level-1 sample size on level-1 reliability coefficients depends on the 

type of data distribution. In Table 27 presented above, the effect of level-1 sample size on 

level-2 reliability coefficients depend upon a combination of distribution and type of 

reliability. As presented in Table 28, presented previously and mentioned here as a 

comparison, complex level-1 interactions existed between data conditions. Untangling 
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and interpreting these complex interaction effects showed that the effect of level-1 and 

level-2 sample sizes was dependent on the data distribution and type of reliability 

coefficient. Normal and mixed distributions, as well as person reliability, showed more 

bias than non-normal distributions. These results were driven by the fact person 

reliability bias in non-normal distributions were unexpectedly low, due to such large 

standard errors. This is examined further in Chapter V. Finally, no interaction effects 

were present regarding level-2 bias. In addition, level-2 (Spearman-Brown) reliability 

estimates were low and stable with the exception of high relative bias under the 

conditions of mixed data distributions at level-1 N = 30.  

My hypothesis that interactions among sample size, data distribution, and 

sampling design would increase bias in reliability estimates was not supported in single-

level models as no interaction effects existed. This hypothesis was partially supported in 

multilevel models since the effects of level-1 and level-2 sample size was dependent on 

the data distribution and type of reliability coefficient, and normal and mixed 

distributions, as well as person reliability, showed more bias than non-normal 

distributions.  

Conclusions 

 While most single-level and multilevel estimates of reliability and percentage of 

the absolute value of relative bias ≥ 10% were expected, several single-level and 

multilevel results regarding bias were unexpected and are explored further in Chapter V. 

Single-Level Sampling Designs 

 Cronbach’s α and polychoric ordinal α reliability coefficients, along with their 

associated standard errors of measurement provided similar results across data conditions 
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while person reliability coefficients were high and standard errors were low under 

conditions of non-normality. Reliability coefficients were fairly stable across mixed data 

distributions and standard errors were low and ranged between .02 and .06, and reliability 

coefficients were low across non-normal data distributions and standard errors were high 

as seen in Figure 21. For example, in Figure 21, presented below, average single-level 

reliability coefficients are on the Y-axis, average standard errors are on the X-axis, and 

the data distribution and type of reliability coefficient are shown with results by sample 

size. For example, the graph shows that under the conditions of a normal distribution, 

reliability coefficients range between .60 and .90 and standard errors are low across type 

of reliability and sample sizes. Reading the graph from top to bottom and left to right, the 

bottom right cell shows that person reliability estimates were low while standard errors 

were unusually high.  

Normal distributions . Bias and direction of bias in Cronbach’s α and polychoric 

ordinal α were similar under normally distributed data conditions where bias decreased 

as sample size increased and reliability estimates were underestimated significantly more 

often than they were overestimated. Person reliability under normal data distributions 

showed high bias and was significantly overestimated.  
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Figure 21. Cronbach’s α and polychoric ordinal α reliability coefficients, along with 
their associated standard errors of measurement across data conditions. 
 
 

Mixed distributions . There are some discrepancies in bias in Cronbach’s α and 

polychoric ordinal α under mixed data distributions, where bias increased as sample size 

increased for Cronbach’s α and decreased at N = 300 for polychoric ordinal α, and where 

both were overestimated significantly more often than underestimated. Under mixed data 

distributions, bias decreased as sample size increased and at N = 300 no bias was visible. 

Where bias was seen, it was more often overestimated than underestimated. These results 

indicate that polychoric ordinal α provides a less biased estimate of reliability than 

Cronbach’s α under mixed distributions and larger sample sizes and person reliability 

provides the most unbiased estimates of reliability under these data conditions.  
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Non-normal distributions. Under non-normal data conditions, bias in 

Cronbach’s α and polychoric α is high and significantly more often underestimated than 

overestimated. Two noteworthy results are that polychoric ordinal α had unusually high 

bias when N = 30 and severely overestimated bias when N = 50. These results are 

explored further in Chapter V. Bias in person reliability was extremely high and 

underestimated 100% of the time.  

Conclusions for single-level results. A broad view of the single-level results 

indicates that Cronbach’s α and polychoric α provide good estimates of reliability across 

sample sizes and under the condition of normally distributed data. Under conditions of 

mixed and non-normal data distributions, person reliability provides the best estimates of 

reliability across sample sizes.  

Multilevel Sampling Designs 

Complex interaction effects are found in Level-1 of multilevel models, making 

interpretation difficult. After reviewing interaction plots and assessing simple main 

effects, the emerging results showed that Cronbach’s α and polychoric ordinal α 

provided (a) similar reliability estimates and standard errors across data distributions as 

well as across cluster and cluster sample sizes; however, person reliability overestimated 

reliability under conditions of normally distributed data across these same conditions. (b) 

person reliability was far more accurate under conditions of mixed and non-normal 

distributions across cluster and cluster sample sizes. (c) the standard errors of person 

reliability estimates were similar to those found in Cronbach’s α and polychoric ordinal 

α across all data conditions.  
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Normal distributions . Bias in Cronbach’s α and polychoric ordinal α at level-1 

was similar under normally distributed data conditions where bias remained low and 

stable across cluster and cluster sample sizes; however, bias in Cronbach’s α was 

significantly more often underestimated while bias in polychoric ordinal α was more 

often overestimated. Bias and the direction of bias in person reliability estimates was 

similar to polychoric ordinal α when the number of clusters was 100 and higher when the 

number of clusters was only 10 and cluster sample size was only 30.  

Mixed distributions . Bias in Cronbach’s α and polychoric ordinal α under mixed 

data distributions showed similar results where it was low and underestimated. Person 

reliability bias decreased as cluster sample size increased when the number of clusters 

was10 and conversely, bias in person reliability increased as sample size increased when 

the number of clusters was 100.  

Non-normal distributions. Under non-normal data conditions, bias in 

Cronbach’s α and polychoric α is higher when the number of clusters was higher (N = 

100) and significantly more often underestimated than overestimated. Bias in person 

reliability was lower when the number of clusters was 100 compared to when there were 

only 10 clusters and significantly lower than both Cronbach’s α and polychoric ordinal α 

Conclusions for multilevel results. A broad view of the multilevel results in 

level-1 of two-level models indicates that Cronbach’s α and polychoric α provide good 

estimates of reliability across sample sizes and under the condition of normally 

distributed data. Under conditions of mixed data distributions, polychoric ordinal α 

provides the least biased reliability coefficients and under non-normal data distributions, 

person reliability provides the best estimates of reliability across sample sizes. Spearman-
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Brown provides stable and accurate estimates of between level reliability coefficients 

with extremely low bias.  

 Overall, reliability estimates, standard errors and bias improve in multilevel 

sampling designs when compared to single-level sampling designs across normal 

distributions, types of reliability, and cluster and cluster level sample sizes. These results 

support the results from B. O. Muthén (1994), B. Muthén and Asparouhov (2011), 

Raykov and Penev (2010), and Snijders and Bosker (1999). Further, these results also 

support recommendations by Kamata (2001) and Raudenbush et al. (2003) about using 

multilevel sampling designs in IRT models. Further, results support Snijders and Bosker 

(1999) who suggested that if single-level models are used to assess parameters when 

multilevel sampling designs were employed, within-cluster variance and between-cluster 

variance would be confounded, leading to relatively biased reliability estimates in single-

level models since the assumption of independent residuals is violated. Finally, in the 

multilevel CTT framework, Cronbach’s α was slightly less biased than polychoric 

ordinal α at level-1 of the two-level model under normal data distributions while 

polychoric ordinal α was less biased than Cronbach’s α under mixed and non-normal 

data distributions. The multilevel Rasch modeling framework showed significantly less 

bias in person reliability estimates at level-1 of a two-level model under mixed and non-

normal data distributions than either Cronbach’s α and polychoric α. Several unexpected 

data anomalies were seen during the analyses of these data which are explored in more 

detail in Chapter V.  
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CHAPTER V 

CONCLUSIONS 

The principle focus of this dissertation was to assess the amount of bias in 

Cronbach’s α, polychoric ordinal α, and person reliability estimates found in 

polytomously scored items in a multilevel sampling design under mixed and non-normal 

data distributions. Gadermann et al. (2012) and Geldhof et al. (2014) advised examining 

polychoric ordinal α under varying sample sizes and distributional characteristics in 

multilevel models, Raykov and Penev (2010) and Sheng and Sheng (2012) suggested 

measuring corresponding levels of reliability bias under conditions of multilevel 

sampling designs and non-normal distributions, and Huang and Cornell (2016) proposed 

assessing reliability coefficients derived from polytomously scored items under non-

normal distributions.  

To meet these challenges, I used Monte Carlo simulation techniques to generate 

multivariate data representing normal, mixed, and non-normal distributions, varying 

individual and cluster level sample sizes, and single- and two-level sampling designs. 

Simulating the polytomously scored observed responses for this study allowed me to 

control the data characteristics and concentrate my analysis on the specific data 

conditions recommended by Gadermann et al. (2012), Geldhof et al. (2014), Raykov and 

Penev (2010), Sheng and Sheng (2012), and Huang and Cornell (2016).  

I generated multivariate data for both single- and two-level sampling designs to 

compare the behavior of and measure bias across three reliability estimates with the 
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primary objective of offering basic and applied researchers, clinicians, and educators 

recommendations on the least biased reliability coefficients in both single and multilevel 

sampling designs.  

To meet my goal of measuring the amount of bias found in Cronbach’s α, 

polychoric ordinal α, and person reliability estimates, I computed the reliability estimates 

across all data conditions, calculated the corresponding standard errors and 95% 

confidence intervals for these estimates, and, based on the advice of B. Muthén and 

Kaplan (1985) and Geldhof et al. (2014), calculated and recorded relative bias ≥ 10%. 

Through these processes, I encountered both expected and unexpected results in single 

and multilevel models and I highlight the key findings by sampling design below.  

Research Question 1: Single-Level 
Results and Discussion 

 
Expected Results 

Cronbach’s α and polychoric ordinal α provided similar estimates of reliability 

and standard errors under normal and mixed data distributions. Sample estimates of 

Cronbach’s α and polychoric ordinal α increased and drew closer to the known fixed 

reliability of .70, and standard errors decreased, as sample size increased. Cronbach’s α 

and polychoric ordinal α showed similar levels of relative bias under normal and mixed 

data distributions, which decreased as sample sizes increased, and both coefficients 

underestimated reliability under the condition of normally distributed data.  

Unexpected Results 

An unusual pattern emerged in mixed data distributions for Cronbach’s α, 

polychoric ordinal α, and person reliability across sample sizes. Cronbach’s α and 
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polychoric ordinal α overestimated reliability coefficients and person reliability 

underestimated reliability coefficients under these data conditions. Boomsa (1983) found 

that skew > 2 tended to overestimate Cronbach’s α reliability estimates while Linacre 

(2014) explained that reliability estimates that include extreme scores, as is the case in 

the mixed distributions, are usually lower than when scores meet the definition of 

normality. Furthermore, standard errors of reliability estimates for Cronbach’s α and 

polychoric ordinal α ranged between .06 and .144 and for person reliability, ranged 

between .31 and .46, which indicates person reliability estimates could not capture the 

“true” score as efficiently as Cronbach’s α or polychoric ordinal α in a mixed 

distribution. Another unexpected result was that person reliability was overestimated 

under conditions of normally distributed data across sample sizes with high standard 

errors for mixed and non-normal distributions. Linacre (2014) stated that person 

reliability, when compared to Cronbach’s α, tended to be underestimated in the Rasch 

IRT model. I found the opposite to be true in the data simulated for this dissertation. I 

reviewed the data generation techniques for any anomalies and found none. I then 

reviewed the literature and found Linacre (2017) suggested that the higher number of 

response categories would translate into higher person reliability estimates for smaller 

sample sizes and normally distributed data. Further analysis revealed that Zhang (2010) 

examined the issue of overestimated reliability estimates in the Rasch rating scale model 

(RSM) and explained that person reliability was overestimated at smaller sample sizes, 

which Zhang considered to be under 500. This may explain the overestimation of person 

reliability under the conditions of normally distributed data and sample sizes of 30, 50, 

and 300.  
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To explain the overestimation of standard errors in mixed and non-normal 

distributions, I turned to Daher, Ahmad, Winn, and Selamat’s (2015) study regarding the 

effect of standard errors on reliability estimates in Rasch rating scale models. The authors 

explained that the standard errors used in the calculation of CTT reliability coefficients 

are derived from the average of sample ability while in the RSM model, the person 

reliability coefficient is based on individual person ability. Therefore, the reliability error 

variance in the RSM model may be overestimated, especially under conditions of mixed 

and non-normal distributions, which is supported by my results.  

Research Questions 2 through 4: Multilevel 
Results and Discussion 

 
Expected Results 

Assessing reliability estimates derived from the multilevel model, polychoric 

ordinal α provided slightly more precise estimates of reliability across all data conditions 

than Cronbach’s α and significantly more precise estimates than person reliability under 

normal and mixed data distributions in level-1 of a two-level model. Furthermore, the 

corresponding standard errors in level-1 of a two-level model were substantially lower 

than the standard errors of a single-level model. Finally, significantly less bias was found 

in level-1 reliability estimates than in reliability estimates derived from single-level 

models. 

 Two concepts may intersect to explain these results. The first is based on 

Raudenbush and Bryk’s (1994) study where they found that in multilevel models, level-1 

standard errors had downward bias. Second, Maas and Hox (2005) found that smaller 

level-1 standard errors are due to the partitioning of error variance at the within and 

between levels of a two-level model. In other words, single-level models have more error 
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due to the fact clustering effects are not taken into account, whereas multilevel models 

spread the error across more than one level. It is noteworthy to add a caveat that may 

affect interpretation of results regarding parameter estimates. Raudenbush and Bryk 

(1994) rightly pointed out that smaller standard errors in multilevel models may lead to a 

Type I error. They explained that standard errors can be too small to provide interpretable 

results, especially when assessing reliability, which is measured between 0 and 1. 

Unexpected Results 

 Relative bias for person reliability under the conditions of normally distributed 

data, level-1 samples sizes N = 30 and level-2 sample size N =10 (i.e., number of 

clusters) was unexpectedly high (Relative bias = .217). This result was an artifact of the 

high average reliability estimate found in level-1 of the two-level model, which is 

partially explained by Zhang (2010) who attributed high person reliability estimates in 

RSM models to small sample sizes; however, this does not explain why the average 

relative bias was < 6% across all other person reliability data conditions. Future 

researchers may want to examine this anomaly in more detail.  

 Spearman-Brown coefficients had almost no bias, meaning that level-2 (between-

level) reliability estimates were decidedly accurate across types of level-1 reliability 

coefficients, level-1 and level-2 sample sizes, and data distributions. The Spearman-

Brown prophecy formula represents the proportion of level-1 scores accounted for by 

level-2 membership. Therefore, more precise estimates of Spearman-Brown coefficients 

demonstrate the importance of a multilevel model in the analysis of data.  

 Less average relative bias was seen in person reliability under non-normal data 

distributions than found in Cronbach’s α or polychoric ordinal α under the same data 
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conditions. This result was an artifact of the more precise average reliability estimates 

computed for person reliability under conditions of non-normality. Although the skew 

was > 2 in the non-normal distribution, the total level-1 and level-2 sample sizes likely 

made up for the underling distribution of data. In a two-level model, sample sizes were 

between 300 to 5,000 individuals across clusters, which Zhang (2010) demonstrated 

would provide more precise estimates of reliability. The data generated for this 

dissertation support Zhang’s conclusions.  

Finally, inconsistent results for polychoric ordinal α under the condition of a 

mixed distribution were revealed in the data generated for this dissertation. For level-2 

sample size N = 100, and level-1 sample size N = 30, 583 out of 1,000 reliability 

coefficients demonstrating bias ≥ 10% were underestimated; however, when level-1 

sample size N = 50, 453 out of 1,000 reliability coefficients demonstrating bias ≥ 10% 

were overestimated. The reasons are not clear and may just be an artifact of the 

characteristics of the mixed distribution. For example, since one fundamental assumption 

of these data was unidimensionality, the mixed distribution of data was accomplished by 

generating the first five items using a polychoric correlation matrix and multivariate 

distribution in R. The next five items were generated using a polychoic correlation matrix 

and an extremely non-normal distribution in R, with skew =3 and kurtosis = 7. Had 

mixed data been generated as 50% of the respondents representing a normal distribution, 

and 50% of the respondents representing an extreme non-normal distribution, the 

assumption of unidimensionality would have been violated. These types of data 

generation methods may have contributed to anomalies in the mixed distributions which 

were more apparent for polychoric ordinal α than for Cronbach’s α or person reliability.  



 

 

239 

Implications and Recommendations 

 During the development phase of any assessment tool, reliability and validity are 

considered “the two most important fundamental characteristics of any [psychometric] 

procedure” (Miller, 2004, p. 1). Miller (2004) explained that scores on an assessment 

instrument can be reliable (representing consistency and reproducibility) without being 

valid (representing accuracy) but cannot be valid without first being reliable. Therefore, 

understanding the amount of relative bias found in Cronbach’s α, polychoric ordinal α 

and person reliability estimates across data conditions is essential. Although most 

behavioral, educational, and social science data have a hierarchical structure (e.g., 

students nested within schools or patients nested within clinics), most researchers ignore 

the clustered nature of the data and use single-level modeling techniques to assess their 

results which suggests more research on these topics needs to be conducted.. Therefore, I 

utilized Monte Carlo simulation techniques in this dissertation to provide researchers, 

educators, and clinicians with more clarity regarding the computation and interpretation 

of reliability estimates derived from the scores on an assessment instrument, survey, or 

questionnaire.  

 The results of my dissertation support the recommendation of taking the structure 

of the data collected into account during the analytic phase made by T. A. Brown (2015), 

Gadermann et al. (2012), Geldhof et al. (2014), Huang and Cornell (2016), Nunnally and 

Bernstein (1994), Raudenbush and Bryk (2002), Raykov and Penev (2010), and Sheng 

and Sheng (2012). The results reported in this dissertation provide empirical evidence 

that if data collected for research are dependent on a higher order structure (such as 

students nested within schools), reliability coefficients in a multilevel model are less 
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biased than reliability coefficients derived from a single-level model. Additionally, 

results support the idea that polychoric ordinal α at level-1 of a two-level sampling 

design provided slightly more precise estimates of reliability across all data conditions 

than Cronbach’s α and significantly more precise estimates than person reliability under 

normal and mixed data distributions; however, the small gain in the precision of 

reliability estimates may not be worth the additional effort of using polychoric correlation 

matrices to estimate reliability for many clinicians and educators. Consequently, using 

Cronbach’s α under normal and mixed data conditions and across sample sizes is 

certainly acceptable, and far easier to estimate since it is available in most statistical 

software packages used in the social sciences. If behavioral, educational, and social 

science researchers and applied practitioners find their data to be extremely non-normal, 

my recommendation is to estimate reliability using the Rasch-RSM model since the effort 

to estimate reliability using the Rasch-RSM is worth the lower level of bias found under 

these conditions and across sample sizes. Finally, if computing either polychoric ordinal 

α or person reliability using the Rasch-RSM model causes extreme distress, Cronbach’s 

α is a good alternative under normal or non-normal distributions in both single and 

multilevel sampling designs as long as it is understood that Cronbach’s α is likely to be 

underestimated across data conditions and the results are reported inappropriately. 

Cronbach’s α is not a good choice for mixed data distributions in a multilevel model and 

should be avoided. I propose calculating and reporting polychoric ordinal α. Tables 38 

and 39 represent a tool that social science researchers can use to determine the most 

appropriate reliability coefficient to report based on level-1 and level-2 sample size and 

type of distribution, as well as the consideration of effort vs. benefit. The results also 
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show that a variety of different data properties, including data distribution and sample 

size, jointly affect reliability coefficients and care should be taken, not only to provide 

context to the data structure, but also a theoretical framework in which to interpret the 

results. Tables 38 and 39 are tools developed to guide applied social science researchers 

in their decisions regarding which reliability coefficient to report and how to compute 

that coefficient. The tools are based upon the most expeditious coefficient to calculate 

under each set of data conditions, taking into account any differences in levels of bias 

versus the effort of the computation and explanation. Table 38 represents 

recommendations for a single-level model and Table 39 represents recommendations for 

a two-level model. 
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Table 38 
 
A Single-Level Model Tool for Applied Researchers 

Sample 
Size 

Type of 
Distribution 

Reliability 
Coefficient 

Recommendations 
Measurement 
Framework 

Recommended 
Statistical 
Software 

30 Normal Cronbach’s α Classical Test Theory SPSS, SAS, STAT, R 

 Mixed    

 Non-Normal (skew and kurtosis = 
+/- 2) 

   

 Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory 
(Rating Scale Model) 

Winsteps, R 

50 Normal Cronbach’s α Classical Test Theory SPSS, SAS, STAT, R 

 Mixed    

 Non-Normal (skew and kurtosis = 
+/- 2) 

   

 Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory 
(Rating Scale Model) 

Winsteps, R 
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Table 38 (continued) 

Sample 
Size 

Type of 
Distribution 

Reliability 
Coefficient 

Recommendations 
Measurement 
Framework 

Recommended 
Statistical 
Software 

300 Normal Cronbach’s α Classical Test Theory SPSS, SAS, STAT, R 

 Mixed    

 Non-Normal (skew and kurtosis = 
+/- 2) 

   

 Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory 
(Rating Scale Model) 

Winsteps, R 
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Table 39 
 
A Two-Level Model Tool for Applied Researchers 

Size 
Level 1 

Size 
Level 2 Distribution 

Coefficient 
Recommendations 
(level-1 Within) Framework 

Statistical 
Software 

30 10 Normal Cronbach’s α Classical Test Theory SPSS, SAS, R, STATA 

  Mixed    

  Non-Normal (skew and kurtosis = 
+/- 2) 

   

  Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory (Rating 
Scale Model) 

Winsteps, R 

50 10 Normal Cronbach’s α Classical Test Theory SPSS, SAS, R, STATA 

  Mixed Polychoric ordinal α   

  Non-Normal (skew and kurtosis = 
+/- 2) 

Cronbach’s α   

  Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory (Rating 
Scale Model) 

Winsteps, R 
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Table 39 (continued) 

Size 
Level 1 

Size 
Level 2 Distribution 

Coefficient 
Recommendations 
(level-1 Within) Framework 

Statistical 
Software 

30 100 Normal Cronbach’s α Classical Test Theory SPSS, SAS, R, STATA 

  Mixed Polychoric ordinal α   

  Non-Normal (skew and kurtosis = 
+/- 2) 

Cronbach’s α   

  Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory (Rating 
Scale Model) 

Winsteps, R 

50 100 Normal Cronbach’s α Classical Test Theory SPSS, SAS, R, STATA 

  Mixed Polychoric ordinal α   

  Non-Normal (skew and kurtosis = 
+/- 2) 

Cronbach’s α   

  Extremely Non-Normal (skew = 
+/- 3, kurtosis = +/- 7) 

Person Reliability Item Response Theory (Rating 
Scale Model) 

Winsteps, R 

* The level-2 reliability coefficient recommendation is the Spearman-Brown Coefficient. 
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Limitations 

As with any Monte Carlo simulation study, several important limitations exist 

which may have affected the results. First, the inability to define or apply a theoretical 

framework from which to interpret the results beyond hypothetical situations is inherent 

to any simulation study. Second, Monte Carlo simulation procedures are data intensive 

designs requiring researchers to make numerous consequential decisions regarding data 

conditions and sampling designs. Choosing the methods of generating mixed and non-

normal distributions and their specific characteristics likely constrained generalizability 

of the results. For example, I originally generated non-normal distributions with a skew = 

1.75 and kurtosis = 3.0 as found in the literature; however, this yielded no discernable 

differences in reliability estimates. Therefore, I increased skew and kurtosis until I was 

able to detect differences in reliability estimates across data conditions and sampling 

designs. This threshold was met when skew = 3.0 and kurtosis = 7.0, which represents 

extremely non-normal data that may not often be found in real-world environments. Next, 

to generate mixed data distributions, I generated 5 of the 10 items in each data set using a 

multivariate normal distribution and the other five items using the non-normal data 

distribution described above. By mixing the distributions at the item level rather than the 

person level, I put more emphasis on individual items rather than total average scores. 

Third, to better manage the simulation, I chose to assess only a unidimensional model and 

to hold the number of items and number of response choices constant. In the single-level 

and level-1 of two-level models, I fixed reliability estimates to .70, which represents 

adequate but not excellent reliability. I made these decisions to better reflect real world 

data scenarios. Each of the decisions I made had consequences on the level of bias in the 
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reliability coefficients. Finally, Monte Carlo simulations will never capture all of the 

possible data conditions and sampling designs implemented by applied researchers, 

limiting the application and generalizability of the results.  

Recommendations for Future Research 

 To better understand relative bias in reliability estimates in multilevel models, 

future research should include Monte Carlo simulation studies examining polytomous 

responses within the Rasch RSM framework, not only for person reliability, but to 

include person separation, and item reliability and separation indices. In addition, 

responses choices and the number of items should be varied across sample sizes and data 

distributions. Since 2012, the examination of CTT reliability coefficients in multilevel 

models has gained momentum and this dissertation adds to that body of literature; 

however, more research into estimating reliability in single and multilevel models under 

the umbrella of IRT models, to include RSM and partial credit models is lacking. The 

results of this dissertation only scratch the surface of how much bias is found in 

reliability estimates in Rasch RSM models using polytomous response choices and do not 

address partial credit models or data representing more than one dimension.  

 Geldhof et al. (2014), Novick and Lewis (1967), Pastore and Lombardi (2014), 

Rodriguez and Maeda, (2006), Sijtsma (2009), Tavakol and Dennick (2011), Teo and Fan 

(2013), and Zumbo et al. (2007) argued that Cronbach’s α is not the best choice to assess 

internal consistency in single and multilevel models because (a) it is often underestimated 

as it represents the lower bound of reliability, (b) the assumption of tau-equivalence is 

unrealistic, and (c) the assumption of a unidimensional measure is rarely realized. These 

researchers explained that people continue to use Cronbach’s α to report reliability 
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estimates because they either do not know any better or because it is easy to use as it is 

readily available in statistical software packages. Prior to conducting the current study for 

my dissertation, I too felt that Cronbach’s α should be replaced by “better” estimates of 

reliability and that behavioral, educational, and social science researchers would need to 

accept the inevitability of the call by methodologists to learn another form of reliability 

estimation. The results of my dissertation show that the average relative bias found in 

Cronbach’s α in single and multilevel models, across data distributions and sample sizes 

was only slightly higher than polychoric ordinal α and in many cases was less than for 

polychoric ordinal α. Cronbach’s α remains a valid form of assessing reliability, as long 

as it is understood that reliability estimates may be underestimated and just as with 

polychoric ordinal α and person reliability, has more bias when distributions are mixed or 

non-normal. This is good news for applied social researchers because Cronbach’s α is 

readily available in software packages such as SPSS, SAS, and R, better understood than 

other estimates of reliability across disciplines, and easily interpretable. While perhaps 

Cronbach’s α is not the best choice under every data condition, underlying distribution, 

and sampling design, it is still a viable method for estimating reliability and should not be 

deserted for more complicated estimates.  

 These results are promising since behavioral, educational, and social scientists are 

often defensive about their use of Cronbach’s α yet resistant to using other forms of 

reliability estimates. Through the process of examining reliability coefficients under 

various data conditions and sampling designs, I have come to respect the commitment 

previous researchers have demonstrated in providing applied researchers and clinicians 

guidelines on the accurate use of reliability estimates in the fields of behavioral, 
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educational, and social science. I aspire, through the results of this dissertation, to exhibit 

that same level of commitment to providing meaningful guidance to behavioral, 

educational, and social science researchers.  
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GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR CROBACH’S ALPHA 

 
 
R-code for a single level model (normal distribution) and Cronbach’s alpha. Note that for this 

dissertation, the code allows for changes to sample size and type of distribution. The code below 

is for n = 300, normal distribution, 10 items, 5 response choices 

######################################################################## 
Pearson Correlation Matrix 
######################################################################## 
# stuff from last time: input parameters ----loading the packages 
library(psych) 
library(MASS) 
library(psy) 
library(MBESS) 
library(lavaan) 
# pop of 100,000, multivariate normal (7 items) (resampling from this) 
# mean of 0 (for all items), correlation between all items is .7 
#Pearson Correlation Matrix  
# 3 different 
# Load a library with a function that can generate multivariate normal data 
# This is the function that will generate multivariate random normal data 
#?mvrnorm 
 
# Setting population parameters ### 
## 
# Only change these numbers!  
set.seed(1842) 
n <- 300 #setting population 
sample.size <- 300 #for each iteration 
iterations <- 1000 #number of cronbachs alphas we want to find 
number.of.items <- 10 
sd.of.item <- 1 #within item sd, diagonals of correlation matrix 
des.alpha <- .7 #enter the desired alpha level 
cor <- des.alpha / (des.alpha + number.of.items - des.alpha*number.of.items) #se 
item.min <- 1 
item.max <- 5 
mean <- mean(c(item.min,item.max))+.5 # add .5 so that you're in the middle of truncated 
solutions 
### 
 
# Generating multivariate parameters from given input ==== 
# create the vector of means  
vec.means <- rep(mean, number.of.items) 
 
# set inter-item correlation matrix 
cor.mat <- matrix(cor, ncol=number.of.items, nrow=number.of.items) 
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# set diagonals of correlation matrix to 1 
diag(cor.mat) <- sd.of.item 
 
# Generate multivariate normal DATA for Population ==== 
# setting data as "population" 
population <- trunc(mvrnorm(n=n, mu=vec.means, Sigma=cor.mat)) 
# set minimum acceptable value to the "item.min" 
population <- pmax(population, 1) 
# set max acceptable value to the "item.max" 
population <- pmin(population, 5) 
#check data 
Population 
 
#Calculating Cronbach's alpha - 
cronbach(population) 
 
# draw histogram of item responses - 
# dev.off()  # clear plots (if there are any) 
# par(mfrow=c(2,4))   # Sets a "plot matrix", so that we can see all 7 plots at the same time 
#  
# for(i in 1:ncol(population))  
# { 
#   hist(population[,i], breaks=(item.min:(item.max+1)-.5), main=c("Item",i)) 
# } 
 
# Actually Sampling From Population #### 
#### getting the hang of it 
#set.seed(1842) #for repeatability 
ids <- sample(x=n, size=sample.size, replace=TRUE) #get identifiers of those in the sample 
sam <- population[ids,] #find the people in the population with the identifiers selected (with all 
columns) 
#cronbach(sam)$alpha 
 
#making the loop 
output <- numeric(length=iterations) #NOTE: MISSING IS 0 
 
for(i in 1:iterations){ 
  ids <- sample(x=n, size=sample.size, replace=TRUE) 
  sam <- population[ids,] 
  output[i] <- cronbach(sam)$alpha 
} 
 
#output 
 
summary(output) 
hist(output) 
 
#creating CI for the mean 
mean(output) + qnorm(c(.025,.975)) * sqrt(var(output)/length(output)) 
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# Graphing the alphas 
dev.off() #To clear out current plots 
hist(output) 
 
# Build CI around cronbachs alpha ---- 
#using MBESS to get confidence interval 
#ci.reliability 
#ci.reliability(data=population, type="alpha") 
 
# Error Checking ---- 
#Checking that the inter-item correlations are close to the desired inter-item correlations  
#cor.mat 
#cor(population) 
#check that item range is from 1 to 7 (nothing greater or less than) 
#range(population) 
#table(population) 
 
#checking normality 
#plot 
#hist(population, freq=FALSE) #freq=FALSE gives density instead of frequency 
#curve(dnorm(x, mean=2.75)*2, add=TRUE) #2.75 isn't the mean, it is the middle of the bin 
 
#write.csv(population, "c:/") 
# Getting the observed lphas into excel  
#filepath <- paste0("C:/Users/karen/Documents/KT ASUS/Documents/ASRM/Actual 
Dissertation/SNn30.csv"),"/RC", item.max - item.min + 1, "N", sample.size, "I", number.of.items, 
".csv") 
write.csv(population,"C:/Users/karen/Documents/DISDATA/IRT300norm_date.csv", 
row.names=FALSE) 
#write.csv(output,"C:/n200i15rc7Nprac.csv") 
 
output 
sd(output) 
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APPENDIX B 

GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR POLYCHORIC ORDINAL ALPHA 
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GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR POLYCHORIC ORDINAL ALPHA 

 
 
######################################################################## 

Polychoric matrix USE cor="poly" 10 items normal 

######################################################################## 

# stuff from last time: input parameters ---- 

library(psych) 

library(MASS) 

library(psy) 

library(MBESS) 

library(lavaan) 

# pop of 100,000, multivariate normal (7 items) (resampling from this) 

# mean of 0 (for all items), correlation between all items is .7 

# 3 different 

# Load a library with a function that can generate multivariate normal data 

# This is the function that will generate multivariate random normal data 

#?mvrnorm 

 

# Setting population parameters ### 

## 

# Only change these numbers!  

sample.size <- 300 #for each iteration 

iterations <- 1000 #number of cronbachs alphas we want to find 

number.of.items <- 10 

sd.of.item <- 1 #within item sd, diagonals of correlation matrix 

des.alpha <- .7 #enter the desired alpha level 

cor <- des.alpha / (des.alpha + number.of.items - des.alpha*number.of.items) #se 

item.min <- 1 

item.max <- 5 

mean <- mean(c(item.min,item.max))+.5 # add .5 so that you're in the middle of truncated 
solutions 

# Generating multivariate parameters from given input ==== 

# create the vector of means  

vec.means <- rep(mean, number.of.items) 
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cor="poly" 

# set inter-item correlation matrix 

#cor.mat <- matrix(cor, ncol=number.of.items, nrow=number.of.items) 

polycor.mat <-PMat(cor,ncol=number.of.items, nrow=number.of.items) 

 

# set diagonals of correlation matrix to 1 

diag(cor.mat) <- sd.of.item 

cor="poly #to create a polychoric matrix 

 

# Generate multivariate normal DATA for Population ==== 

# setting data as "population" 

population <- trunc(mvrnorm(n=n, mu=vec.means, Sigma=cor.mat)) 

# set minimum acceptable value to the "item.min" 

population <- pmax(population, item.min) 

# set max acceptable value to the "item.max" 

population <- pmin(population, item.max) 

#check data 

population 

#calculate polychoric ordinal alpha 

cronbach(population)#polymat 

# draw histogram of item responses - 

# dev.off()  # clear plots (if there are any) 

# par(mfrow=c(2,4))   # Sets a "plot matrix", so that we can see all 7 plots at the same time 

#  

# for(i in 1:ncol(population))  

# { 

#   hist(population[,i], breaks=(item.min:(item.max+1)-.5), main=c("Item",i)) 

# } 

 

# Actually Sampling From Population #### 

#### getting the hang of it 

#set.seed(1842) #for repeatability 

ids <- sample(x=n, size=sample.size, replace=TRUE) #get identifiers of those in the sample 

sam <- population[ids,] #find the people in the population with the identifiers selected (with all 
columns) 
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cronbach(sam)$alpha #polychoric since using polymath 

 

#making the loop 

output <- numeric(length=iterations) #NOTE: MISSING IS 0 

 

for(i in 1:iterations){ 

  ids <- sample(x=n, size=sample.size, replace=TRUE) 

  sam <- population[ids,] 

  output[i] <- cronbach(sam)$alpha 

} 

 

#output 

 

summary(output) 

hist(output) 

 

#creating CI for the mean 

mean(output) + qnorm(c(.025,.975)) * sqrt(var(output)/length(output)) 

 

 

# Graphing the alphas 

dev.off() #To clear out current plots 

hist(output) 

 

# Build CI around cronbachs alpha ---- 

#using MBESS to get confidence interval 

#ci.reliability 

#ci.reliability(data=population, type="alpha") 

 

# Error Checking ---- 

#Checking that the inter-item correlations are close to the desired inter-item correlations  

#cor.mat 

#cor(population) 

#check that item range is from 1 to 5 (nothing greater or less than) 

#range(population) 



 

 

288 

#table(population) 

 

#checking normality 

#plot 

#hist(population, freq=FALSE) #freq=FALSE gives density instead of frequency 

#curve(dnorm(x, mean=2.75)*2, add=TRUE) #2.75 isn't the mean, it is the middle of the bin 

 

#write.csv(population, "c:/") 

# Getting the observed lphas into excel  

#filepath <- paste0("C:/Users/karen/Documents/KT ASUS/Documents/ASRM/Actual 
Dissertation/i5N30SNn30.csv"),"/RC", item.max - item.min + 1, "N", sample.size, "I", 
number.of.items, ".csv") 

write.csv(output,"C:/Users/karen/Documents/KT ASUS/Documents/ASRM/Actual 
Dissertation/i5N50normPAreli.csv") 

write.csv(population,"C:/Users/karen/Documents/KT ASUS/Documents/ASRM/Actual 
Dissertation/i10N300normPADATA.csv") 

 

output 

sd(output) 

#skew(population) 

#kurtosi(population) 
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APPENDIX C 

GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR CROBACH’S ALPHA-POLYCHORIC 

ORDINAL ALPHA-MULTILEVEL 
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GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR CROBACH’S ALPHA-POLYCHORIC 

ORDINAL ALPHA -MULTILEVEL 
 
 
Monte Carlo Simulation for MCFA with Cronbch’s alpha ad ICCs. For polychoric ordinal alpha 
use polychori covariance Mtrix and bring it in as with the ACM input below.   
#-----------------Clear All---------------------------# 
rm(list=ls()) 
#---------------SPECIFICATIONS------------------------# 
############################################################### 
 
# This code calculates Monte Carlo within and between estimates of reliability (either 
Cronnbach’s alpha or polychoric ordinal alpha) use cor=”poly” and bring in at the ACM step 
#code uses CFA-derived factor loadings and residual variances. 
# Code is for normal distribution with 10 items, n = 300 at level 1 and N = 10 at level-2 and ICCs 
caclucated at level-2. All output to an excel file to develop 95% CI and SB coefficient to calculate 
bias.  
############################################################## 
# Install package MASS 
#install.packages("MASS") 
 
# Load package MASS require(MASS) 
 
############################################################## 
# User Input 
 
conf <- .95 # Confidence level (1 – Type I error rate) 
reps <- 1000 # Number of Monte Carlo simulations 
set.seed(1842) # Set random seed 
 
# Factor loadings and residual variances; used to calculate all reliability estimates wlambda <- 
as.matrix(c(.299,.299,.299,.299,.299,.299)) # Factor loadings within 
wtheta <- as.matrix(c(.905,.905,.905,.905,.905,.905)) # Residual variances within 
blambda <- as.matrix(c(.137,.137,.160,.160,.183,.183)) # Factor loadings between 
btheta <- as.matrix(c(.034,.034,.027,.027,.019,.019)) # Residual variances between 
#these can be adjusted as needed 
# Input full ACM ordered as lambda(within), theta(within), lambda(between), theta(between) 

# The ACM can be imported from an external file (as shown), or 
# inputted directly into the syntax as a matrix 

acmMCFA <- as.matrix(read.table("D:\\Traxler\\Monte Carlo CIs\\example.acov")) 
 
############################################################## 
 
#--------------- End User Input ------------------------# 
 
############################################################## 
 
pest <- rbind(wlambda,wtheta,blambda,btheta) # Combine parameter estimates into a single 
vector nwest <- sum(nrow(wlambda),nrow(wtheta))   # Count number of within-level parameter 
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estimates data <- mvrnorm(reps,pest,acmuse,empirical=T) # Generate random draws form joint 
distribution of 
# Parameters 
 Nlevel1 = 30 
Nlevel2  = 100 
ICC = .2 
items = 10 
rc = 5 
inter_cor <- .2 
 
# Compute within-level alphas 
 
# the within-level true score variance estimate as the sum of the within-level 
# true-score covariance matrix. Remove the indicator true-score variances 
# from the estimated true score variance such that the result equals two times 
# each unique coavariance. Divide this result by two to obtain the sum of the 
# within-level covariances 
wcovs <- (rowSums(data[,c(1:nrow(wlambda))])^2-rowSums(data[,c(1:nrow(wlambda))]^2))/2 
 
# Find the average within-level covariance 
AVGcovWI <- wcovs/((nrow(wlambda)*nrow(wlambda)-nrow(wlambda))/2) 
 
# Compute within-level alphas 
WIalpha <- (nrow(wlambda)^2*avgwcov)/(rowSums(data[,c(1:nrow(wlambda))])^2 + 
rowSums(data[,c((nrow(wlambda)+1):(nrow(wlambda)+nrow(wtheta)))])) 
 
#Compute the ICCs to calculate the between levels 
# Function used to calculate ICC. Single argument requires an lme4 object 
ICC_find <- function(model) { 
    temp <- VarCorr(model) 
    int_var <- (attr(temp[[1]], "stddev")[[1]]) ^ 2 
    err_var <- (attr(temp, "sc")) ^ 2 
    ICC_temp <- int_var / (int_var + err_var) 
    ICC_temp 
} 
 
# Recursive function used to reduce highly clustered data set to a desired ICC level 
shuffle_ICC <- function(observations, ICC) { 
    model <- lmer(tots ~ (1|group), observations) 
    ICC_temp <- ICC_find(model) 
    if(ICC_temp >= ICC) { 
        for(i in 1:j) { 
            sample1 <- sample(which(observations$group == i), 1) 
            sample2 <- sample(which(observations$group != i), 1) 
            group1 <- observations[sample1,"group"] 
            group2 <- observations[sample2,"group"] 
            observations[sample1, "group"] <- group2 
            observations[sample2, "group"] <- group1 
        } 
        shuffle_ICC(observations, ICC) 
    } else if(ICC_temp < (ICC / 2)) { 



 

 

292 

        shuffle_ICC(original_mat, ICC) 
    } else {return(observations)} 
 
# Print results 
# Diagnostics for fun!  
y <- sum(apply(observations[,1:items], 2, var)) 
x <- var(observations$tots) 
alpha_c <- (items / (items - 1)) * (1 - (y / x)) 
model <- lmer(tots ~ (1|group), observations) 
ICC_report <- ICC_find(model) 
mat_out <- matrix(nrow = 1, ncol = 6, c(j, n, items, rc, alpha_c, ICC_report), 
                  dimnames = list(c("Diagnostics"), c("j", "n", "Items","rc", "Alpha", "ICC"))) 
print(mat_out) 
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APPENDIX D 

GENERATING MULTIVARIATE DISTRIBUTIONS FOR 
PERSON RELIABILITY AT THE SINGLE LEVEL 
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GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR PERSON RELIABILITYAT THE 

SINGLE LEVEL 
 
 
#IRT simulation code ##### 
 
IRsim <- function(n_persons = NULL, n_questions = NULL, data_type = NULL, n_cat = NULL, 
thresh_var = FALSE, guess_p = NULL, dis_p = 1) { 
       
      n = n_persons # Number of persons 
      q = n_questions # Number of question 
       
      person <- rnorm(n, sd = 1) # Person ability range 
      item <- rnorm(q, sd = 1) # Item difficulty range 
      data <- matrix(nrow = n, ncol = q) # Simulated data frame 
       
      # Dichotomous data - rasch / specify a fixed discrimination parameter. Default set to 1 
       
      if(data_type == "dich") { 
             
            for(i in 1:q) { 
                  for(j in 1:n) { 
                        data[j,i] <- rbinom(1, 1, prob = (exp(1) ^ (dis_p * (person[j] - item[i]))) / (1 + 
exp(1) ^ (dis_p * (person[j] - item[i])))) 
                  } 
            } 
      } 
      # Polytonomous data - rasch / default discrimination parameter set to 1 and use RSM 
       
      if(data_type == "poly") { 
             
            item_thresh <- thresh_fun(item, n_cat - 1, thresh_var) 
             
            for(i in 1:n) { 
                  for(j in 1:q) { 
                        den <- vector() 
                        temp_prob <- vector() 
                         
                        for(z in 1:length(item_thresh[[j]])) { 
                              den[z] <- exp(1) ^ sum(dis_p * (person[i] - item_thresh[[j]][1:z])) 
                        } 
                        den <- 1 + sum(den) 
                         
                        for(z in 1:length(item_thresh[[j]])) { 
                              temp_prob[z] <- (exp(1) ^ sum(dis_p * (person[i] - item_thresh[[j]][1:z]))) / 
den 
                        } 
                         
                        temp_prob <- append(1 - sum(temp_prob), temp_prob) 
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                        data[i,j] <- sample(1:(length(item_thresh[[j]]) + 1), 1, prob = abs(temp_prob)) 
                  } 
            } 
      } 
thresh_fun <- function(item, thresholds, thresh_var) { 
      if(length(thresholds) == 1 && thresh_var == FALSE) { 
            item_thresh <- lapply(item, function(x) x + seq(from = -2, to = 2, length.out = thresholds)) 
      } else if(length(thresholds) == 1 && thresh_var == TRUE){ 
            item_thresh <- lapply(item, function(x) x + seq(from = -2, to = 2, length.out = thresholds) 
+ runif(thresholds, min = -.5, max = .5)) 
      } else if(length(thresholds) != 1 && thresh_var == FALSE){ 
            item_thresh <- list() 
            for(i in 1:length(thresholds)) { 
                  item_thresh[[i]] <- item[i] + seq(from = -2, to = 2, length.out = thresholds[i]) 
            } 
      } else { 
            for(i in 1:length(thresholds)) { 
                  item_thresh[[i]] <- item[i] + seq(from = -2, to = 2, length.out = thresholds[i]) + 
runif(thresholds[i], min = -.5, max = .5) 
            } 
      } 
      item_thresh 
} 
data_out <- function(data, name, dir = getwd()) { 
          setwd(dir) 
          write.table(data, file = paste(name, ".csv", sep = ""), sep = ",", row.names = FALSE) 
} 
 <- (n_persons=30, n_cat=5, n_questions=10, data_type="poly") 
#calibrate to winsteps and writeout person reliability (p.rel) 
winsteps(u, codes = c(0, 1), noprint = TRUE, ws.path = "C:/Winsteps/", prefix = paste("wstmp", 
as.integer(Sys.Date()), sep = ""), peo.mean = 0, item.mean = NULL, scale = 1, peo 
data_out<- function(p.rel , name, dir=getwd()) 
write.table(p.rel, file = paste(name, ".csv", sep = ""), sep = ",", row.names = FALSE) 
#Data written out and then looped into Rwinsteps for analysis after changing parameters as 
needed above 
#output is person reliability for 1000 iterations with specified parameters.  
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APPENDIX E 

GENERATING MULTIVARIATE DISTRIBUTIONS FOR 
PERSON RELIABILITY AT THE MULTILEVEL 
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GENERATING MULTIVARIATE DISTRIBUTIONS 
FOR PERSON RELIABILITYAT THE MULTILEVEL 

 
 
Multilevel data as generated using the Rcode from Appendix C was imported into 

Winsteps  

Example raw data form with level 1 n = 3, level-2 n = 2, 10 items, 5 response choices 

  

     X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 tots group 
164   4  3  5  4  4  3  5  4  3   4   39     1 
833   4  4  4  4  4  4  3  4  3   4   38     1 
856   4  5  4  3  4  4  3  4  3   4   38     1 
957   3  3  4  4  4  4  5  2  3   4   36     2 
994   3  4  3  4  3  3  4  4  4   4   36     2 
1400  4  4  4  3  4  4  3  4  3   3   36     2 

 

 

and the model was specified as: 

Model=Multilevel 

Rating scale = Multilevel, R5, G, K;  

Iteration = 1000 

Person reliabity is a part of the summary statistics. It is recorded for each iteration 
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