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ABSTRACT
Traxler, Karen.Estimating Bias in Multilevel Reliability Coefficits: A Monte Carlo

Simulation Published Doctor of Philosophy dissertation, &nsity of Northern

Colorado, 2017.

Purpose:The purpose of this dissertation was to genetaseroed scores under
complex data conditions often found in the realld/@and (a) investigate error in terms of
internal consistency reliability within the Clasalidest Theory framework (Cronbach’s
a and polychoric ordinak) and person reliability within Rasch Rating Sdslledel
(RSM); (b) inform applied researchers about possiblative bias in reliability
coefficients when more complex data structureswarttrlying distributions are
encountered; and (c) provide applied researcheseeence from which to interpret their
results Methods Using Monte Carlo simulation techniques to geteepmlytomous
response choices in single-level and multilevel eidsample reliability coefficients,
standard errors of reliability estimates, and Isw#labsolute relative bias were examined
and compared across a range of data conditiorlsding normal, mixed, and non-
normal distributions and varying sample siZzessults The results support taking the
structure of the data collected into account dutireganalytic phase and provide
empirical evidence that if data collected for reskare dependent on a higher order
structure, reliability coefficients in a multilevedodel are less biased than those derived

from a single-level model.



Additionally, results support the idea that polycb@rdinala at level-1 of a
two-level sampling design have slightly less bia®sas all data conditions than
Cronbach’sx, and under normal and mixed data distributiongp@rson reliability;
however, the small gain in the precision of religbestimates may not be worth the
additional effort of calculating polychoric ordinalfor many clinicians and educators.
Recommendations for Applied Researchesng Cronbach’st under normal and
mixed data conditions and across sample sizeseptable and easier to estimate due to
its availability in social science software. Fotremely non-normal data, the Rasch-
RSM model should be used since the effort is wrghiower level of bias. The results
also show that a variety of different data progsrjointly affect reliability coefficients
and care should be taken to provide both contekiaaheoretical framework in which to

interpret results.

Keywords:Reliability, Cronbach’sa, polychoric ordinala, multilevel models, multilevel

confirmatory factor analysis, Rasch item respoms®ty, rating scale model
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CHAPTER |
INTRODUCTION
In the United States the emphasis on evidence-kgasetices (EBPS) in the fields
of behavioral, educational, psychological, and @astiences propels the demand for
reliable and accurate results on a variety of sgrt and objective assessments.
Surveys and assessment instruments are a commbodneted to measure an
assortment of individual and group attributes saslattitudes, beliefs, cognitive
competencies, abilities, and performance. In masgs, individual certification or
licensure are at stake, therefore, clinicians,ltees; administrators, and other
stakeholders must be able to depend on the rexhdesved on the assessment
instruments employed (Townsend, Christensen, Krét&umBrunnen, 2010). The
development and implementation of effective treattsieinterventions, and programs
across the fields of education, psychology, andstwal sciences rely on assessments
that consistently measure the traits they wereldpee to measure. Therefore, it is
imperative that the systematic processes by wissbssments are developed and
administered and data are collected and analyzedtablished and practiced (Converse,
2009; Thorndike & Thorndike-Christ, 2010). Consetflig it is critical that, educational
and social researchers support these stakeholdergyh the rigorous examination of the
methodological issues involved in consistent arldivaeasurement of the individual and

group traits of interest, from attitudes to aptéudhis dissertation focused on the



reliability of scores related to measures of atttuspecifically polytomously scored
items using a multilevel sampling design.
Measuring Latent Traits

Quantification is the objective for many socialygsological, and behavioral
science researchers (Converse, 2009; Cronbach; Liett, 1932; Thorndike &
Thorndike-Christ, 2010; Thurstone, 1924). Unlike toncrete measurements used in
biology, physics, chemistry, and other natural isoés, measurements in socio-
behavioral research are more conceptual, requatastyact thinking and the formation of
theoretical constructs, also known as latent t@itiactors (Andrich, 1988; Pedhazur &
Schmelkin, 1991). In other words, since most phesttarof interest in socio-behavioral
sciences are measured indirectly, that is, infere@ce drawn based on various indicators
related to the traits being studied, social redeatitizing self-report and objective
assessment tools is seen as a practical methatatdllection and the use of these
instruments is now widely accepted. However, theatke of using fundamental
measurement processes with implicitly measuretstcaintinues. A deeper
understanding of the evolution of measurement thean the social sciences may
illuminate the rationale for the methods employedeasure unobserved phenomena.

An Overview of Measurement Theories

Measurement theories and statistical models useteasure latent traits and
assess accurate response scaling have evolvetraediistinct measurement theories
now dominate the research and application of assasgools: Classical Test Theory
(CTT; Spearman, 1904), Generalizability Theory (Bran, 1992), and Item Response

Theory (IRT; Rasch, 1960). Two important compon@fthese prevailing measurement



theories are the understanding and treatment ofumeaent error (Brennan, 1992;
Cronbach, 1951; Guttman, 1950; Likert, 1932, Ldi@62; Lord & Novik, 1968;

Masters, 1982; L. K. Muthén & Muthén, 2002; Rask®60; Spearman, 1904; Thurstone,
1928). In this dissertation | focused on CTT anddRaRT measurement theories. Rasch
IRT is a subset of IRT which evolved to addressesoifithe limitations of CTT such as
sample dependence, the lack of specific item leetrmation, and the inability to
partition variance (J. B. Kline, 2005). Both CTTddaRasch IRT use quantitative methods
to measure latent traits by assessing the trusmeships between empirical observations
(Pedhazur & Schmelkin, 1991). Measurement thearesubsumed within these widely
accepted measurement frameworks (CTT; and Rasch BEDardless of the
measurement framework embraced, by maximizing dimsistency and accuracy of the
results and minimizing measurement error throughsiistematic use of well-established
methods, measurement frameworks provide the teaessary to conceptualize
individual and/or group differences. Both CTT araksBh IRT will be discussed in more
detail in Chapter II.

Psychometric Analysis of Scores from
Assessment Instruments

As mentioned previously, in socio-behavioral reska€TT and Rasch IRT
frameworks are widely used to assess the relatipsfietween observed item responses
and unobserved latent traits of interest on assassimstruments using psychometric
analysis. The National Council on Measurement indation (Kolen & Tong, 2009)
defined psychometrics as “a field of study concdmwéh the theory and technique of
psychological measurement, assessment, and reletigdies” (para 1). The field of

psychometrics encompasses the objective measuremattitudes and aptitudes as well



as the development and validation of assessmentiiments such as personality tests,
guestionnaires, tests, and raters’ judgments. Bsyetric analytic techniques are
therefore used to examine bias in the observe@dscmrsponse scaling, item to sample
size ratio, multilevel data structures, and unolesgfatent traits measured. These aspects
are multifaceted and require intense scrutiny. Dyithe development phase of any
assessment tool, reliability and validity are cdesed “the two most important
fundamental characteristics of any [psychometmocpdure” (Miller, 2004, p. 1). Miller
(2004) explained that scores on an assessmeninmstit can be reliable (representing
consistency and reproducibility) without being daliepresenting accuracy) but cannot
be valid without first being reliable. Reliabiligpefficients are estimates of true measure
variance to observed measure variance and sinaelthbility of scores impacts validity,
the intent of this dissertation was to examine laiag in estimates of reliability across a
myriad of data conditions and sampling designssé&ldata conditions include varying
sample sizes and single and two-level data strestdihe premise being that both data
conditions and sampling designs have the poteatimtroduce measurement error which
may render the interpretation of results suspeair{ach, 1951; Guttman, 1950; Likert,
1932, Lord, 1952; Lord & Novick, 1968; Masters, 298. K. Muthén & Muthén, 2002;
Rasch, 1960; Spearman, 1904; Thurstone, 1928).

Reliability is not an index of quality but a measwf relative reproducibility and
as is well-known, reliability is not a propertytbie instrument itself but of the scores
obtained from a particular sample of examineedkyiristrument (American Educational
Research Association, 2014). Reliability is sang@pendent and predicated on the level

of measurement (dichotomous, ordinal or continusmases), distribution of scores,



number of items and response choices, the natureatlationship between the
variables and the latent trait of interest, and gmoup differences.

Reliability Within the Classical Test
Theory Framework

The most common reliability coefficient in publishsocial science literature is
Cronbach’su (Cronbach, 1951). Alpha, which emerged from CTa& mefficient of
internal consistency. Cronbachiss best suited for continuous data, although dtfien
used for polytomously (ordered) and dichotomousbtyred (yes/no, true/false,
correct/incorrect) data, which are then treatedogsinuous. The theoretical value of
Cronbach’'su falls between 0 and 1 and will increase as theriitém correlations
increase (Cronbach, 1951).

An adaptation of Cronbachésbeing revisited in contemporary research is the
polychoric ordinab used for polytomously scored variables such asetfiound in Likert
or Likert-type responses (Bonanomi, Ruscone, & Qen#13; Gadermann, Gruhn, &
Zumbo, 2012; Zumbo, Gadermann, & Zeisser, 2007¢. ddlychoric ordinah utilizes
the polychoric correlation coefficient introduceg Bearson (1900). Polychoric ordiral
is also recommended by Ekstrom (2009), Ekstrom@aldgado-Tello, Chacén-
Moscoso, Barbero-Garcia, and Vila-Abad (2008), Zmehbo et al. (2007) to measure
ordinal variables such as those obtained from dmakresponse scale.

Finally, CTT-based reliability of observed scoras @lso be estimated using
Confirmatory Factor Analysis (CFA) for single-levabdels and Multilevel
Confirmatory Factor Analysis (MCFA) for multilevetodels, where the objective is to
test whether the observed scores on an assessmgnotrient fit a hypothesized

measurement model T. A. Brown (2015); Geldhof, Eneg and Zyphur (2014),



Raudenbush and Bryk (1994, 2002). Though theretaex methods for producing CTT-
based reliability estimates, these are beyonddbpesof the current study and are thus
not described.

Reliability Within the Rasch Item
Response Theory Framework

Person reliability and person separation as weteas reliability and item
separation account for reliability estimates wittie Rasch IRT family of models. In
other words, reliability in Rasch IRT models varaesoss person ability levels, and
depends specifically on how well the items’ diffigumatches a person’s ability (Bond &
Fox, 2014; Rasch, 1960).

Since one main aspect of this dissertation wasdod on polytomously scored
(ordinal) assessment items with the same numberspbnse choices across items, the
rating scale model (RSM), an extension of the R#dhmodel, was examined

Problem Statement

With the national call for behavioral, educatioraid social interventions,
treatments, and programs based on empirical evid@mec: evidence based practices:
EBP’s), methodological studies regarding the caestsy and accuracy of the scores
obtained on measurement instruments used to sujh@se interventions and treatments
and programs are necessary. Stakeholders and jotikgrs alike count on the results of
these studies that utilize assessment tools toa#aesources and expand or dismantle
programs. Therefore, it is critical that these diecis are predicated on reliable, accurate,
and interpretable results, regardless of the coxitfde of the research design. As
mentioned previously, a thorough review of theréitare indicates that reliability is one

of the most important characteristics of any psyeéivic procedure, regardless of the



underlying measurement framework (Allen & Yen, 19€8oi, Dunlop, Chen, & Kim,
2011; Culligan, 2013; Culpepper, 2013; Dick & Hagei971; Fitzmaurice, 2002;
Gaberson, 1997; Gliner, Morgan, & Harmon, 200B.Xline, 1999, 2005; Shavelson &
Webb, 1991; Thorndike & Thorndike-Christ, 2010).nSmlering the high-stakes
decisions based on assessment results, provididgrge on how best to obtain accurate
estimates of reliability of the scores on any measient instrument across multiple
disciplines is paramount. Since reliability is hiaaffected by item and respondent
attributes of latent distributions, the standardreof measurement for any given latent
trait value will also be affected by these item aggpondent attributes (Culpepper,
2013). Issues related to reliability estimates wwithe CTT, and IRT frameworks have
been well documented; however; bias in estimatahiglility coefficients across these
frameworks using polytomous data and examining btathdard estimates and
polychoric coefficients under realistic data cir@iances is uncertain, especially in
multilevel sampling designs which are discussechane detail below.
Rationale for the Study

Charter (2003), Cicchetti (1994), Culpepper (20G3dermann et al. (2012),
Geldhof et al. (2014), Linacre (2012), Maas and K&B05), Nunnally and Bernstein
(1994), Wright and Stone (1979), Yurdugul (2008)nibo et al. (2007), and others
suggest building upon previous research relatedt¢arate reliability estimates in CTT
and Rasch IRT by further assessing the appropatele sizes and shapes of the latent
distributions with respect to ordinal response gem

Key considerations when estimating reliability wére level of measurement for

the response scale and the underlying structutteeodlata. For example, with greater



emphasis on EBPs, educational and social researohest be able to take into account
the effects of ordinal response scales and morglensampling designs on estimates of
reliability. These advanced designs are centrtid¢o research and the investigation into
the distinct sources of error variation must inelwgriable interactions (Bonito, Ruppel,
& Keyton, 2012; Davidson, Cooper, & Bullock, 20H);0. Muthén, 1994). Few studies
have examined the methodological issues inhereggtimating reliability using
multilevel modeling (Gadermann et al., 2012; Gefd¥taal., 2014; Huang & Cornell,
2016; Raykov & Penev, 2010; Sheng & Sheng, 2012lilé\these studies assess
multilevel data structures under varying data cbos, none of these researchers
specifically examined the consequences of non-nlodata on reliability coefficients in
multilevel models, nor did they assess polytomaata dnder the concurrent conditions
of non-normality and multilevel data even thougésth complex data structures are a
reality in educational and social science resedfttally, previous researchers examining
polychoric ordinab. recommend varying sample sizes and distributiohatacteristics
and measuring corresponding levels of bias to dmute to the methodological literature
regarding reliability estimation, providing guidanio clinicians, educators, stakeholders,
and applied researchers on the consequences afcbskesign decisions on reliability
estimates and inform academic, personal, profeakiand policy determinations based
on assessment results.
Purpose of the Study

The purpose of this dissertation was to assessétiability coefficients under

real world data conditions and sampling designkiwithe CTT and IRT frameworks by

conducting a Monte Carlo simulation. Three maireaspof this dissertation are (a) to



generate polytomously scored sample data whiclesept a myriad of population data
characteristics known to affect the reliabilitysafores obtained from a hypothetical
assessment tool, (b) to assess reliability estereate standard errors derived from both
single-level and two-level models, and c) to inigege and report any bias found in
reliability estimates across these data conditeordssampling designs.
Research Questions and Hypotheses

For this dissertation, using Monte Carlo simulatiechniques, sample sizes and
distributional characteristics were varied and lgewd bias in reliability estimates were
assessed, reported, and compared, when applieabbss single-level and two-level data
structures. Detailed specifications for the varyilaga conditions and fixed parameters
are found in Chapter Il of this dissertation. Teeearch questions answered in this study
are:

Q1 In a single-level model, to what degree do datalitions (sample size
and distribution of data) affect levels of biagétiability estimates (a
comparison of Cronbachts, polychoric ordinabr, and person
reliability)?

H1 In single-level models, bias in reliability esaites will increase under the
conditions of smaller sample sizes and non-normatiged distributions
and polychoric ordinak and person reliability will be less biased than
Cronbach’su.

Q2 In a multilevel model, to what degree do dataditions (sample size and
distribution of data) affect levels of bias in eddility estimates (a
comparison of Cronbachts, polychoric ordinabtr, and person reliability
in level-1 (within groups) and the Spearman-Browprgphecy coefficient
in level-2 (between groups)?

H2 In multilevel models, bias in reliability estitesa in level-1 will increase
under the conditions of smaller sample sizes amdnoomal or mixed
distributions and polychoric ordinalwill be less biased than Cronbach’s
o and person reliability. Additionally, Spearman-®ros prophecy

coefficient will be underestimated under the candi of smaller sample
size and non-normal or mixed distributions
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Q3 Do standard errors and levels of bias in rdligt@stimates (Cronbach’s
a, polychoric ordinabi, and person reliability) differ when data are $ng
level versus when data are at level-1 of a twollageoss sample size and
distribution of data?

H3  When comparing the standard errors and levetsasfin reliability
estimates of single-level and level-1 of two-lesaipling designs, across

three estimates of reliability, bias for level-1tbé two-level model will
be lower than the bias found in the single-levetieis.

Q4  To what degree do interactions among sample @gae distribution, and
sampling design (e.g., single-level and two-leadfigct levels of bias in
reliability estimates (Cronbachés polychoric ordinabi, person
reliability, and Spearman-Brown’s prophecy coe#i)?

H4 Interactions among sample size, data distrinyand sampling design
will increase bias in reliability estimates, witketjoint effect of lower
sample sizes and non-normal and/or mixed distobstdisplaying the
most bias.

Limitations

There are several limitations to this dissertatkerst, limitations inherent to
Monte Carlo simulation studies include the inapitd define or apply context (e.g.,
theoretical foundations) to the results beyond liypiical situations. In other words,
Monte Carlo simulation procedures are data-intensikperimental designs requiring
researchers to make numerous decisions regardiagdaditions and sampling designs
not always found in real-world data conditions,lsas levels of non-normality and
varying response patterns. Second, while the plbditontrol all data conditions selected
for the study is alluring, these decisions may ltaaisignificant consequences. For
example, in this dissertation, | held the numbeterhs and the number of response

choices constant for manageability of the desiggm(s = 10, response choices = 5), |

fixed Cronbach’si, polychoric ordinab, and person reliability to .70 and Intraclass



11

Correlation Coefficients (ICCs) in the multilevebdel to .20, and then standardized
person ability and item difficulty in order to r@skle a fairly well-developed assessment
tool administered to an ideal target populationdi#tidnally, | selected only three levels
of sample size and three item distributional charéstics (normally distributed data, a
mixed data distribution with %2 of the responsesmaily distributed and %2 of the item
responses non-normal, and a fully non-normal dhistion) in the single-level models and
two levels of sample size, two levels of group s&& three item distributional
characteristics in the multilevel model with théeimtion of replicating real world data
conditions. Each of these decisions has consegs@mcthe level of bias in the reliability
coefficients. Third, Monte-Carlo simulation will wer capture all of the possible data
conditions, sampling designs, and crossed desmpkemented by applied researchers,
limiting the application and generalizability oktihesults.
Chapter Summary

Measurement frameworks such as CTT and Rasch I&Tharmost commonly
utilized frameworks to develop, validate, and assedividual and group responses.
Since the use of assessment tools, specificallysunea of attitude using polytomously
scored rating scales developed within these framieswlmas increased to meet the
emphasis on EBPs in the fields of behavioral, etiieal, psychological, and social
sciences, consequences based on assessmenthasealistensified. Consequently,
methodological studies regarding the reliabilityegponses has become imperative
under a mélange of polytomously scored data, &tyatiata conditions and two-level
models. Currently a considerable amount of methaglodl literature addresses issues

relating to reliability estimation as almost areaftiought, as if the debate surrounding
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the ramifications of biased estimates were seltied ago. The truth is, for those handful
of researchers interested in the behavior of riilalestimates in the more complex
sampling designs emerging in the educational angissciences, the debate has been
renewed with vigor. The practical importance ofdsts designed to address reliability
estimate bias under the more realistic data chenatits found in applied educational
and behavioral research, such as small sampleamedata distributions not meeting the
assumptions of normality or independence, cannavieeemphasized. Building on
contemporary research conducted by Huang and G¢20dl6), Little (2013), Geldhof et
al. (2014), Raykov and Penev (2010), and Shendgsaedg (2012), through this
dissertation | endeavored to fill in some of thegm the literature regarding bias in
reliability estimation and generalization. Chaptgrresents the theoretical and research
literature supporting the need, purpose, data tiond, and distributional characteristics
used in this dissertation, with a thorough exannmadf the importance of calculating
and reporting reliability coefficients and the needinderstand the role measurement
error plays in estimating reliability. Chapter pilovides a detailed description of the
methods used to generate data and examine biakahility estimates across all data
conditions and sampling distributions for singledeand multilevel models. The results
are presented in Chapter 1V, organized by resegueltion and sampling design, In
Chapter V, | communicate my conclusions and recontatons for applied researchers,
clinicians, and educators and provide practicaflgnce on interpreting reliability

coefficients under varying data conditions.
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CHAPTER I
REVIEW OF THE LITERATURE

This review of the literature provides the emgitibasis to warrant, not only the
need for the current study, but the specific resequestions introduced in Chapter I. To
understand the full scope of the myriad of issedsted to accurate reliability estimates
of scores obtained from summated rating scale$(asi¢hose found in psychological
and educational research), Chapter Il begins wilseussion of fundamental
measurement in the realm of psychological and dthnad assessment. This is
proceeded by a reflection on the origins of conteragy scaling methods and their
relationship to fundamental measurement. Includdtis section are issues related to
item response scaling and the development of tleerithke (1919), Thurstone (1928),
Likert (1932), and Guttman (1950) response scatiethods. Next, levels of
measurement, recommended by Stevens (1946, 19al)seful way to classify
variables, are described. Data classification gpdd of data, such as dichotomous or
polytomous, are then explored and an additive é¢ohjoodel is introduced.

Following a thorough review of the foundations e$ponse scaling and item
calibration, two of the most commonly used framekgarf measurement are presented
and defined: CTT (Spearman, 1904) and Rasch IRTd(LI952; Lord & Novick, 1968;
Rasch, 1960). Since these measurement framewamksacaet of assumptions regarding
the underlying structure and distribution of datd aontain advantages and

disadvantages for their use, they are fully exgdirincluded in this section is the
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explanation for the reliance these measurementfinarks have on the reliability of the
scores obtained. Since reliability estimates méfigidbetween the two measurement
theories, data characteristics affecting religpgistimates, such as sample size, number
of items, type of response scale, and number pbrese choices are discussed.

The final section of this literature review focusesthe role sampling design,
specifically multilevel modeling, plays in accurgtestimating reliability coefficients
across measurement frameworks (Feldt, 1990). Aotlgir discussion of the precision of
reliability estimates in a multilevel model supottie need for and purpose of this
current study. Lastly, reliability estimation procges based on Cronback’¢Cronbach,
1951) and polychoric ordinal (Bonanomi, Nai Ruscone, & Osmetti, 2012; Zumbo, et
al., 2007) used within the CTT and MCFA framewos well as the person reliability
used in the Rasch rating scale model (RSM; Anddé&i8; Masters, 1982) are examined
in both single and multilevel models.

Fundamental Measurement

Recognizing the need to develop accurate and astepéasures of mental and
social phenomena, Thorndike (1904) introduced stisdef the social sciences to what he
called “mental measurement” (p. 3), which he adobpted modified from the physical
sciences. He explained that in the mental scierses the physical sciences, the need to
measure “differences, changes, relationships cermtdgncies” (p. 5) is just as important
but present what he termed “special problems” whenan factors are involved because
often judgments about what is being measured adnfihorndike posited that the
scientific method of measurement in the physicedrses is based on fundamental

mathematical measurement principles which werebkskeed to provide accurate and
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consistent measurement of the object or attribloégsy measured. He developed a
mental measurement scale which incorporated sevkttiaé fundamental measurement
principles. These principles are conservation sitafity, and unit iteration (Annenberg,
2012). In the physical sciences, conservationagtimciple that an object or attribute
maintains the same size and shape regardlesseotation. For example, a person’s
height remains constant whether her or she is stgmat lying down. Transitivity means
that when you cannot compare two objects or atiesdirectly you must compare them
via a third object or attribute. In other wordsAif B and B = C, then A = C. Unit
iteration refers to the determination of the carreat of measurement which requires a
deeper understanding of the attribute being meds&m@ example, with distance, height,
or length, a linear measurement is appropriatevdreh measuring area, two-
dimensional units are appropriate. Fundamental nneasent in the physical sciences
therefore requires a stability of measurement whanthbe expressed in comparable units
of measurement. If these three principles of funelatad measurement hold true, the
concatenation of like units is possible which gypleed every day in the physical
sciences to measure quantities such as weightythéeggth, width, and depth
(Lindquist, 1989).

Thorndike (1904) argued that the ability to quanteénd therefore, measure
human behavior was simply a matter of interpretivgunderlying mathematical
concepts to non-mathematicians. He provided thenpl&of measuring the spelling
ability among 10-year old boys. In essence, if wauwe to develop a list of 50 or 100
spelling words, who is to say that spellicgrtainlyis of equal difficulty to spelling

becaus® This measurement therefore, requires judgmenthwheans that agreement
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about ability must first be established. Thorndiken posited that measuring mental
traits such as abilities, beliefs, or attitudegureed an underlying continuum in which to
mark the appropriate observed level of the trdibridike then went on to develop an
objective scale of measurement for which judgeddcagree. His definition of
objectivity included aspects of reliability and iditly and laid the foundation for CTT.

Concurrently, Spearman, (1904) developed the frammevor CTT where a
theoretical true score and error were summed akedi to an observed score.
Spearman’s CTT framework relied heavily on theatglity of the scores in terms of the
amount of error in the observed scores.

The ability to measure psychological and sociangingena in a meaningful way
using fundamental measurement principles relietherdevelopment of response scales
and the establishment of levels of measuremengtterclassify, and therefore, identify
stable variable characteristics, mentioned heng tnillustrate the relationship between
fundamental measurement principles and responfiagcand discussed in more detail
in the next section. Thurstone (1928) demonstrétatiattitudes could be measured in a
similar manner as variables in the physical scisigeplacing responses on a linear scale
in order for researchers to make a “more or legs tf judgment” (p. 529) on a given
trait of interest. Likert (1932) introduced a simfipld version of Thurstone’s scaling
method which addressed some of Thurstone’s ungdrgssumptions in response scaling
for measurement in the social and psychologicanags. These assumptions are
discussed in the next section. Stevens (1946) ibescmeasurement as “the assignment
of numerals to objects or events according to fyl@s677) and introduced four new

scales or levels of measurement; quite controMeast@ie time, but still in use today:
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nominal, ordinal, interval, and ratio. These lev&isneasurement provide a good starting
point from which to choose the correct statistioathods for a given data set based on
the level of measurement of both independent apdriient variables. Thurstone and
Likert scales are ordinal scales which means timelb®us represent a position or rank in a
sequential response pattern. Guttman (1950) desélaggumulative scaling model
where items are ranked from easiest to most diffamd agreement with any particular
item implies agreement with the lower-difficultgms. Deviations from the ideal
Guttman pattern are considered random errors (Guttd950). This is extended to
achievement tests with dichotomous (correct ornrezd) outcomes where the
assumption is if the examinee can successfully angams of X difficulty, s/he would
be able to answer preceding items of lower diffizul

Applying fundamental measurement principles of qiyng variables by
placing their measurement on a continuum from leagteatest amount, in conjunction
with use of various scaling procedures, which &scdbed later in the chapter, allows
parameter estimators to be computed with greaterezfcy. These principles laid the
theoretical foundation for later IRT models by exgiag the definition of fundamental
measurement to include, (a) measurement whichtideroved from other measurements
and (b) measurement which is produced by an a@ditv equivalent) measurement
operation (Luce & Tukey, 1964; Rasch, 1960). Traefenitions are discussed in more
detail in the section on IRT.

Following is a discussion regarding the developnoéniiree progressive
response scales and the establishment of leveleasurement to classify and identify

stable variable characteristics in order to appé/fundamental measurement principles
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of conservation, transitivity, and unit iteratianrhore precisely measure social and
psychological phenomena.
Response Scaling

Response scaling is at the core of psychometeiarth Psychometric theory
enables comparisons between individual test saorgslividual item scores by scaling
differences among individuals based on a specifenpmenon or attribute of interest
(Wright, Gaskell, & O’'Muircheartaigh, 1997). Scalimodels are developed for “three
related but distinct purposes” (Mclver & Carmin&881, p. 8): confirmatory,
exploratory, or parallel analysis.

Confirmatory analysis is used to test hypothesesekample, a psychometrician
may test the hypothesis that there is a single ismea of hope underlying mental health
recovery. The scaling model is then used as a pbicdmparison to evaluate how well
the observed data fit the specified model. Exptosaanalysis is used to describe the
underlying structure of data. For example, it carubed to determine whether scores
obtained on a survey developed to measure levdisqd confirm a unidimensional or
multidimensional scale. The purpose of an exployatoaling analysis is not to test a
hypothesis of dimensionality but merely to discoaent traits related to a construct of
interest, such as hope, depression, or self-effidaoally, parallel analysis is used as a
benchmark for related measures. For example, @éezloping a unidimensional
measure of hope, a psychometrician will assesserae@of concurrent validity by
correlating the scores on their scale with scorea similar measure of hope.

Mclver and Carmines (1981) explained that “scatimadels may be used to scale

persons, stimuli, or both persons and stimuli"dp.Three scaling methods are elucidated
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below, followed by a discussion of the evolutiorregponse scaling to encompass item
response theory (IRT).

Thurstone (1928), Likert (1932), and Guttman (1%0)leveloped
unidimensional scales to measure attitudes. Eastsnale developer identified the
strengths and weaknesses of previous scales atkedvir extend their usefulness in
measuring psychological and educational phenonfRoiger (1996) argued that “most
attitude measurement concentrates on attitudiff@rednces and is thus psychometric,
whereas Guttman scaling investigates attitudinakeasus [patterns of agreement] and is
thus more suitable for the study of social repregens” (p. 11). She explained that
these response scales can be extended beyondetbtinclude scientific understanding
of psychological and educational phenomena.

Thurstone Response Scaling

Thurstone (1928) devised a method of measurinyidés along a continuum by
counting the number of opinions either rejectedaepted by the respondent. For
example, drawing from current events, one respanaey be more in favor of same-sex
marriage than another respondent. The Thurstorieggaocedures provide a “more or
less type of judgement” (Thurstone, 1928, p. 53B¢ne these opinions are located on a
stated continuum based on attitudes conveyed.ddesarch in and development of The
Law of Comparative Judgment led to the developmétiiree methods of response
scaling: paired comparisons, consecutive intenaald,equivalent-appearing intervals
(Mclver & Carmines, 1981). Thurstone’s methodsadatimuli and then persons
(Salkind, 2010). Thurstone provided the attitud@adifism as an example and described

the steps involved in his scaling method. He dgy&doa qualitative continuous measure
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of pacifism in which he (a) clearly defined paatfis(b) used a set of opinions as
anchors; (c) explained that pacifism could be regméed by a single point on that
continuum; and (d) used a series of graduatednséatts selected by judges for their
representation of a single point on the continu@tivben extreme pacifism and extreme
militarism. When participants either endorsed ggced each statement, Thurstone was
able to assess the strength and direction of #tiude toward pacifism. Further, by
dividing the continuum into class intervals, he dastrated the ability to count the
frequency of the data points at each interval @hgidescribing a group of individuals by

means of a frequency distribution as illustratedrlgure 1 below:

LExtreme Neutra/ Lxtreme
Pacifism \ Militarism

Figure 1 An example of Thurstone’s (1928) continuum of sueted group ability.

Thurstone’s (1928) unidimensional method of scplimhile clearly defined,
made several assumptions difficult to meet. Thuestassumed that the aspect of
measuring attitudes was “just as legitimate [agap that we are measuring tables or
men” (p. 531). Next, he assumed the opinion ofnaividual was a statement of attitude
and that individuals would be honest in their opimg. Finally, he had individuals write

statements of opinion for a given variable of iagtrand used judges to specify the point
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on the continuum represented by that statement. gralolems with this approach can be
immediately identified: First, the judges were selected based on specific expertise, but
opinion; second, his method required hundredsddgs’ opinions, making the approach
impractical, which brings the scale into questiBegardless of these oft unmet
assumptions, Thurstone made an important contabud attitude response scaling and
the ability to measure psychological phenomena.
Likert Response Scaling

Likert (1932) addressed some of the issues invailvedcial and behavioral
measurement and developed a summative scale tessddisadvantages in Thurstone’s
(1928) scaling. For example, he discussed at lethgtinumber of unverified assumptions
included in Thurstone’s attitude scales such asnthependence of the scale values from
the distribution of attitudes of the readers areluke of judges to correlate responses.
Likert (1932) emphasized the need to simplify wiateferred to as “exceedingly
laborious” (p. 6) methods. Building on the sociadlgsychological research of
Thorndike (1904, 1913, 1918), Moore (1925), Allp@d®29), G. Murphy (1929), and G.
Murphy and Murphy (1931), Likert emphasized therol theory in social and
behavioral research and introduced the use ofeadoint response scale. His scaling
methods were used to scale subjects based onla stimgulus (level of agreement or
disagreement). His unidimensional scale involvedeé@es of propositions to be
responded to by the wordfrongly approve, approve, undecided, disapprowe, a
strongly disapprove’{(p. 14). In order to quantify and measure thearasps, Likert

coded and ordered them from 1 to 5 with dtrongly disapprovéo 5 =strongly
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approve with higher scores indicating more of the traing measured, and summed the
scores across all the items.

Likert advanced two main assumptions of his scatmglel: the data of the
summed scores are normally distributed and eqtexvials of the ranges existed. To
support the assumption of normality, Likert (1988ted that “it seems justifiable for
experimental purposes to assume that attitudedistrédouted fairly normally and to use
this assumption as the basis for combining thesgbfit statement” (p. 22). To support the
assumption of equal intervals, Likert posited “[#oale] retains most of the advantages
present in methods now used, such as yielding s¢besunits of which are equal
throughout the entire range” (p. 42). Developedrasrdinal scale, these data are often
treated as interval level data due to the summatioasponses across all items which
provides a total score. Additional research sugpiit underlying assumptions of
normality and equal intervals of Likert's 5-poimisponse scale which enables the use of
parametric statistical tests such as t-tests an@¥As to analyze data (Allen & Seaman,
2007). Likert’'s 5-point response scale and itsatarns (Likert-type response scales:
scales with fewer than or more than five categdrssual analog scales, and response
scales based on anchor points rather than levelppybval) have been the primary scales
used in survey research and self-report measures their introduction in 1932.

Guttman Response Scaling

Guttman (1950, 1967) developed a scaling techriigbe used as an alternative
to Thurstone or Likert response scaling where es@ef statements of attitude
characterizes a progressively larger (or smalleyp@rtion of the population. For

example, “a person who endorses the most demairtdimgshould also endorse the most
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consensual” (Roiser, 1996, p. 14). In other worfdsie assumption of a Guttman (1950)
scale is met (i.e., unidimensionality of the scaled an individual endorses the most
difficult item, then all items prior will also bendorsed. Therefore, the Guttman scale can
be characterized as a cumulative scale, suggdsighe variation in the proportions of
agreement, avoided in Thurstone or Likert scakeaf the heart of measurement, where

the actual number of items endorsed is the recosderk as illustrated in Table 1.

Table 1

An Example of a Consistent Guttman Cumulative Scale

Person ltem 1 ltem 2 ltem 3 Item 4 ltem 5
1 Yes Yes Yes Yes Yes

2 Yes Yes Yes Yes No

3 Yes Yes Yes No No

4 Yes Yes No No No

5 Yes No No No No

Note Yes signifies the endorsement of the item. Adajftem Oppenheim, 1986, p.
147.
Roiser (1996) pointed out two critical differendetween the Guttman scale and
the Likert (or Thurstone) scale:
Similar Likert scores may be achieved by endorsliffgrent selections of items,
[whereas] individuals with the same score may ctially have the same
attitudes and two individuals scoring equally o@w@ttman scale must be in
complete agreement both on the items that theyresadmd reject. (p. 15)
Item-level data collected using Likert and Likeyp¢ scales are polytomous in

nature while item-level data collected using a @att scale are dichotomously scored.

Although not perfect representations of psycholalgoghenomena, Likert and Guttman
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scales are still in use today and provide imporitafiormation for survey researchers,
clinicians, and educators. As previously evidentlee type of scaling method used is a
key ingredient in survey research, self-report mess and the assessment of aptitude,
attitude, and objective measures of phenomena.h&néey component of measurement
which is closely aligned with summative responsdescis the level of measurement
(nominal, ordinal, interval, and ratio) introdudey Stevens (1946, 1951). These levels of
measurement are commensurate with the scaling ohetimsen.

Levels of Measurement

Stevens (1946) proposed definitive classes oldenfemeasurement based on the
mathematical properties of the scales. He argustdidlir levels of measurement existed:
nominal, ordinal, interval, and ratio “based on ¢&mepirical operations needed to create
each type of scale” (p. 678). He defined each |bwéh by its basic empirical operations
and mathematical group structure and went on tudssthe type of statistical analysis
appropriate at each level. Table 2 details Steviens’levels of measurement, which are
routinely used in modern psychometrics.

The development and maturation of response saakshe establishment of
levels of measurement to accurately capture adgwhd attributes invites spirited debate
in the field of psychometrics, but nonethelessisdmental to the development and
evolution of measurement frameworks such as CTTFM@Gnd the one parameter IRT

model. These three measurement frameworks aresdisdun detail later in this chapter.
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Table 2

Stevens’ Four Levels of Measurement

Basic Empirical Mathematical Permissible
Scale Observations Group Structure Statistics
Nominal Determination of Permutation group Number of cases
equality Mode
Contingency correlation
Ordinal Determination of Isotonic group: Any Median percentiles
greater or less monotonic increasing
function
Interval Determination of General linear group Mean
equality of intervals or Standard Deviation
differences Rank order correlation

Product moment correlation

Ratio Determination of Similarity group Coefficient of variation
equality of ratios

Note Adapted from Stevens (1946).

Response Scaling

Scaling methods are not limited to survey resedttinicians, educators, and
applied researchers embrace various response scaesasure and assess aptitude,
attitude, and objective measures of a variety ehngmena. It is important to note that
Guttman and Likert scales are found most oftersgeasments of aptitude or attitude and
are discussed in that realm here.

Dichotomous vs. Polytomous Response
Scaling

Aptitude tests are more likely to have dichotomgussiored items, for which an
item can be marked as correct or incorrect. Atetateasures frequently follow a
response pattern with items measuring beliefs aalinigs, where the respondent may

choose between dichotomously scored options suttiesr false, yes or no, or agree or
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disagree. More commonly used in the measuremeattibides is a rating scale response
where the respondent chooses from a range of ardesponses (polytomously scored
options). Most contemporary researchers preferighoy more than two choices to
measure the latent trait of interest and previodugiss provide strong evidence that a
respondent’s ability to choose among a range giareses will provide more
measurement information than just two choices (B&ja77; Kamakura &
Balasubramanian, 1989; Masters, 1988). Samejim&/(1®79) advised that polytomous
data increase the statistical information of a gitem when compared to dichotomous
data, and in fact, when polytomous data are aglficdichotomized, substantial
information is lost. Since dichotomous and orduteatla are categorical in nature, the
categories represent imprecise locations alongitctontinuum. Polytomous response
options provide an advantage since there are negponse categories from which to
choose, providing more information over a widergawof the trait continuum than the
range offered by dichotomous response optionsiO&tNering, 2006). The current
study focuses on items with five ordered respohséces developed by Likert (1932)
since these are the most commonly used resporisg satles in aptitude and attitude
assessment.

The polytomously ordered categories discussekisndissertation are
characterized by thresholds, or boundaries, alongpsaerved response continuum used
to measure the latent trait of interest. These Hatias separate the various categories
and as logic dictates, they always comprise oreeldeandary than category. For
example, with three categories (Like, Neutral, Biglike), there will always be one

category defined by two boundaries and with fiviegaries, there will be four
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boundaries separating them (Ostini & Nering, 2008th polytomous data, since the
probability of a specific response in a given catggeflects a respondent’s observed
level of a measured trait, psychometricians focuthese boundaries because the
probability of responding within a category is gowed by the characteristics of the two
neighboring boundaries. For example, consider dinm@nsional assessment of hope
using a 5-point Likert-type scale (1 through 5).enen1l Jow levels of hopand 5 =
strong levels of hop& Wright map is created to visualize the persod idem data on
the same metric. The left side of the Wright magates the person ability measures
along the variablaope where persons are signified by the # symbol. figtg side of
the Wright map locates the item difficulty measuaesg the variablbope,where items
are identified by item number. Higher scores intian increased level of hope. Items
with low difficulty would be endorsed only by indduals with a low level of hope and
items with high difficulty would be endorsed only persons with the greatest level of
hope. Figure 2 below is a Wright map representaig dollected to measure the latent
variablehopeusing the 12-item Snyder Hope Scale (Snyder, 1994).

Note that high positive thresholds indicate thedstpoint at which a person with
a high level of hope would endorse an item of hgficulty (e.g., item 5) and low
negative thresholds would indicate the lowest patrwhich a person with a low level of

hope would endorse an item of low difficulty (eigem 11).
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Figure 2 Wright map for a measure of Hope on a 12-itemesyurAdapted from Linacre
(2014)

Assessing individual and group responses, regagdiethe response scaling
method utilized or the way in which items are sddigichotomously or polytomously),
requires theories related to measurement. In th@aimg section, | discuss the evolution
of measurement theories and explore the advantagkdisadvantages of each.

The Evolution of Measurement Theories

Introduction to Measurement
Theories

In educational and psychological research, mathealahodels are used to
elucidate the underlying theoretical concepts tdrigst, provide a framework for
comparisons, and define a context from which tadoghanalysis and interpret results

(Ostini & Nering, 2006). Mathematical models pravithe means by which
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psychometricians can quantify phenomena of intefldst simplest mathematical model
is a count, for example, observing the numberroés a given individual answers each
test item correctly. For more complex analysis phanomenon of interest, more than
one mathematical model is often employed to meamudeassess underlying theoretical
concepts of interest. Two such models are discussskethgth here: Classical Test Theory
(CTT) and item response theory (IRT). CTT is adehathematical models which
evolved from research conducted by Spearman (1&@dpuilds on fundamental
measurement described previously. IRT is an extensi CTT which allows for
simultaneous measurement of person and item pagesnet

Classical Test Theory

The early 20th century was a time of “exploratioid fimeasurement] theory
development” (Thorndike & Thorndike-Christ, 20104p in the emerging field of
psychology. Researchers began to recognize theepgesof errors in measurement,
understand errors as random variables, and coralgg@uhe idea of “correcting a
correlation coefficient for attenuation due to megasment error [in order to] obtain the
index of reliability” (Traub, 1997, p. 2). By diffentiating between observed variable
scores and error scores, the theory of measurernatgsced into what was known as
true test theory, and finally regarded as CTT.

The framework of CTT was detailed by Spearman (1804 others throughout
the first half of the 28 century, culminating in the work of Lord and Nokwi@ 968) and
Allen and Yen (1979) regarding the use and anabfsisental tests and the precision of
the test score (McDonald, 1999). Equation 1 istie score model and is the basis of

classical measurement theory:
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X=T+E 1)

The premise of CTT is that a given observed s@d§y®n a test is comprised of
two components: a hypothetical true scarevfhich represents the average score taken
over recurrent independent testing, and randont @oTherefore, the less random
error in a given score, the better the raw scdteats the hypothetical true score. The
true score of a person is found by taking the nszamne that the person would get on the
same test if he or she had an infinite number gifrig sessions (or trials). The goal of
CTT is to provide a framework to assess the obskeseere X) of a test-taker by
partitioning out the estimated random erigy from the hypothetical true scor€)( Allen
and Yen (1979) explained that if the true and esomre assumptions are met, and an
individual were to take the same test 1,000 tirttessaverage of the individual’s raw
scores would be the best estimate of the true scbrathermore, using the standard
deviation of the distribution of random errors arduhe true score (known as the
standard error of measurement) as an index, Alheinyan demonstrated that if 1,000
people were to take the same test one time eaelyud and error score assumptions are
still met. This substitution simplified data colten and analysis enormously.

Assumptions of Classical Test TheoryAllen and Yen (1979) explained that the
foundation ofCTT was the idea of the true value of a varialflg,). Classical Test
Theory (CTT) assumes that the true values of samesvariableX, in a given
population of interest follow a normal distributidenoted asl(0, 1) The observed
distribution of the scores on the variallés denoted ab. The population mean is

denoted by and the population standard deviation is denoyedrh. Using this
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notation, modified from Allen and Yen (1979), thetdbution of the true value for a

population of participants is found in Equation 2:

D(XTrue) = N(,u ,O:I'rue) (2)

The population parametersand ore differ from those used in a sample due to
sampling error. CTT focuses on how the observedegbfX (Xn9 are related to the true
valuesof X (Xtrye). Since CTT purports that the observed values amrdination of the
true values plus a component of random measureeneart CTT makes three
assumptions about the error component:

1. The error component will have a mean of zero. Tioeegthe observed
mean will not be systematically distorted away fribra true value by the error

2. The measurement errors are assumed to follow aalatistribution.

3. The measurement errors are uncorrelated with tieevialues.

Equation 3 represents the expression for the bligtan of X,ps:

D(Xob9 = D(Xtrue) + N(O, Gerr) 3)

whereD is the observed distribution of the varialleand o, is the standard deviation of
the normal random error term. Equation 4 showsftitadin individual ith) participant,

the Equation 4 expression could be written as:

Xi = XiTrue + &i (4)

whereX; t,e denotes the value & efor participant, drawn from the true value

distributionN; (¢ ,0ue), and&; denotes the error term for thla participant, drawn from
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the error distributiomM,(0, g.ry). From these three assumptions, it follows that th
expected value of the sample mean, (Expf§s 4. In addition, the sample standard
deviation §) of X,psis going to be larger thasi, e as the random error component (with
a standard deviation @ky) increases the variation Xpps

Equation 5 represents the expected sample var{afa& a composite score.
Imagine two variablea andb, and a variable (observed scoreyhich is the sum o&

andb. The variance of the new varialdés given by:

Var (c) = Var (a) + Var (b) + 2rap*\[Var(a) * Var(b)] (5)

wherer 4, is the correlation betweenandb

Since the observed values are the sum of thevaues and random measurement
error, using “true” and “error” instead of “a” afid,” the expected value of the sample
variance is simply the sum of the variances oftthe score and error terms. The final
term in Equation 6 is absent because of the assomibiat the measurement errors are
uncorrelated with the true values. It is importenéstimate the expected value of the
variance in the observed scosd {n order to determine the amount of variance aixgld

by the true scorefe?) as seen in Equation 6:

EXp{Sz} = Ufruez + Uérrz (6)

Advantages of Classical Test TheoryClassical Test Theory does not involve a
complex theoretical model to assess (a) a testtafibility to correctly respond to a
specific item (aptitude) or (b) to measure a speeaititude, but instead collectively

assesses a pool of test-takers. As this dissertatimcused on measuring attitude,
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ideally, the observed score reflects the test gkare attitudes with minimal error. In
other words, the observed score is similar to lleeretical true score. In this regard,
ability refers to the ability to indicate more bktattitude being measured when the
attitude is high. Lord (1953) explained that apistores are test independent while
observed and true scores are test dependent.énwtrds, test takers come to the test
with a certain level of ability on the attitude hgimeasured, while the observed and true
scores will “depend upon the selection of assesstasks [drawn] from the domain of
assessment tasks over which their ability scoreslefined” (cited in Hambleton &

Jones, 1993, p. 253) In the case of measuringudptiCTT models the test-takers’
proportion of correct responses to a specific itexsimg dichotomous scoring. This is
known as the P value of the item (not to be cordwsih thep-value as an indication of
significance in hypotheses testing) and is usati@mdex for item difficulty, with lower
values indicating a harder item and higher valndgating an easier item. P is the
proportion of respondents who answer the item ctgreThe ideal P value is .5,

meaning that 50% of the test-takers endorse orthassem, which J. B. Kline (2005)
explains provides “the highest levels of differatiobn between individuals in a group”

(p. 96). More relevant to this dissertation is ¢ase of measuring attitudes using
polytomous rating scale-scoring. As with dichotomsigiscored items, polytomous items
are used to quantify true score values on a tfaitterest, defined here as the underlying
ability of interest (the trait intended to be measl). As values of the true score increase,
responses to items representing the same conaaytisiiso increase. In other words,
there should be a monotonically increasing relatgm between true scores and observed

scores, assuming that responses are coded saghat hesponses indicate more of the
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measured trait. Item difficulty is represented msnalex of the mean score of the item
across test-takers (DeMars, 2010) with higher \salndicating greater overall
endorsement of the attitude trait.

Another important characteristic of items is disgnation. A higher
discrimination index indicates that the item diffietiates well between test-takers with
different levels of the construct being measurext.éxample, in aptitude testing this
means that the item discriminates well betweenttdsrs of low and high ability. In
attitude assessments, this means that the itemmdisates well between test-takers with
more versus less positive attitudes regardingrtheldeing measured. Therefore, high
discrimination is preferred since it means the jtegat, or measure is able to differentiate
between those who know the material and those whwod or those with positive
attitudes and those with negative attitudes. Wiretean discriminates well between
higher and lower ability (or attitude) test takere relationship between the test taker’s
score and the overall scores on the test will smee For polytomously scored items, the
item discrimination value is computed using therBaa product-moment correlation
coefficient. For dichotomously scored items, pdirgerial correlation is computed.
When the correlation is positive, individuals whalersed (or answered correctly) the
item “score higher on the sum of the remaining ge(@eMars, 2010, p. 5) than those
who do not endorse the item (answer incorrectly).

Disadvantages of Classical Test Theoryrhe main disadvantage of CTT is that
item statistics are sample dependent and examhr@adateristics (such as ability) are
item-dependent. Fan (1998) described this as “@rdependency” (p. 1) in that not only

are the true scores (person parameters such ég)abst dependent, the item difficulty



35

and item discrimination values (item parameters)sample dependent (Lance &
Vandenburg, 2010). For example, the unidimensioredsure of the attitudeope
contains items easy for a hopeful person to endaesel set attainable goals), but
difficult items for a less hopeful person to endorfo summarize, the observed scores
for the more hopeful person will increase and thgeoved scores for the less hopeful
person will decrease. In other words, a hopefusqes ability estimate will increase
with items considered more difficult for a less bap person to answer. Conversely, a
less hopeful person’s ability estimate will deceebscause he or she is less able to
endorse a more difficult item (i.e., | am never@amed about the future). Comparing
true scores across tests would be difficult dut¢odifferences in test properties.
Additionally, item discrimination will be higher isamples that represent a large range of
abilities. Finally, the item difficulty parameteepgends upon the ability level of the
sample. For example, if an exam regarding the @ehimit Theorem were given to fifth
graders and the same exam to statistics majodlgge, the item difficulty indices
would vary substantially because what is hardHerfifth graders to conceptualize may
be easy for the statistics majors.

Item parameter estimation (i.e., item difficultydagiscrimination) is certainly an
important disadvantage of CTT since these parasatertest and sample dependent
which limits the generalizability of the result® ®vercome this disadvantage, Thurstone
(1928) proposed absolute scaling, which is an eogbirad hoc procedure to measure
invariance, and more commonly referred to withie lRT framework. The method
employs standardizing scores so that the sameamnguised to assess a respondent’s

location within the distribution of test scores.
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Other disadvantages of CTT include the assumphianhthe standard error of
measurement (SEM) of scores from a given testuslegrross an entire population
(Spearman, 1904). The SEM is frequently used &rpmét individual test scores but is
only useful if the test scores demonstrate higlaldity and the obtained score for the
individual test taker does not deviate significafitbm the mean test scores of all test-
takers. J. B. Kline (2005) explained that this nsethre “standard error does not differ
from person to person but is instead generatedidgge Inumbers of individuals taking the
test” (p. 94). For example, regardless of the ntagei of the observed score, the standard
error for each examinee is assumed to be the saheh is unrealistic (J. B. Kline,

2005). In CTT, the standard errors for all examinae expected to cancel each other out
and therefore, sum to 0 (Lord, 1953). Howevers important to note that test-takers
with the same total score may have different stahdeors and that raw score standard
errors are larger for overall scores closer tontlean than for extreme scores (Brennan &
Lee, 1999) Finally, when the assumptions of CTTreremet, researchers may “convert
scores, combine scales, and do a variety of okiiegg to the data to ensure an
assumption is met” (J. B. Kline, 2005, p. 94). Klidescribed the manipulation of data as
problematic because of the possibility of ignorsygtematic error. However, CTT is
based on three parameters, observed score, trtes aod error and most analysis
conducted within the CTT framework is based on sumgrthe observed scores across
items, reducing error, and estimating true scoaset on the model.

Estimating reliabilty in Classical Test Theory Reliability is the overall
consistency of the observed scores of a measurthariiree most commonly used

estimates of reliability in CTT are:
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1. Test-retest reliability refers to the consistentgapres when the same test
is given to the same people at different times (Nuliy & Bernstein, 1994)

2. Parallel-forms reliability refers to the consistgrd scores when different
people receive more than one form of a test meaagtine same construct (Nunnally &
Bernstein 1994).

3. Internal-consistency reliability refers to the cgtency of scores across
items (Cronbach, 1951).

Lord and Novick’s (1968) defined reliability withthe CTT framework as the
ratio of true score variance’r, to the observed score varianeg;, where the reliability
of the observed test scorés,is denoted as? (see Equation 7). Pickering (2001)
demonstrated the conceptual model of reliabilitydshon computing the proportion of

true score variance relative to total variancequdiion 8:

2 _ % __ %
Pxtr = = — =, = (7)
UX UT‘T UX
Reliability = Grué / (G + Tor) (8)

Two Coefficients to Estimate Internal
Consistency

While several coefficients to estimate reliabilitithin the CTT framework have
been developed, this dissertation focuses on twfficents to estimate internal
consistency for polytomous data: Cronbach’s cokeifitn. (Cronbach, 1951) and
polychoric ordinab. (Gadermann et al., 2012; Bonanomi et al, 2012; xuet al., 2007).

Cronbach’s coefficient alpha In the CTT framework, Cronbach’s coefficient

alpha ) is the most frequently reported reliability coeiffint for summated scales using



38

polytomously scored items (i.e., Likert or Likeype scales; Hogan, Benjamin, &
Brezinski, 2000). Developed by Cronbach (1951)ddrass the issues of simple split-
half reliability examined by Spearman (1910) andBiwn (1910), Cronbachsis a
maximum likelihood (ML) estimator of the parametarother words, the reliability of
the scores cannot be less than the value of thasreter (Zeller & Carmines, 1980). Van
Zyl, Neudecker, and Nel (2000) explained that Cemfitsa is equal to reliability under
the assumption of tau equivalence; otherwiseused as a lower bound estimate of the
reliability of scores obtained on an assessmerg.adsumption of tau equivalence is
addressed under the section on assumptions ofaentf. Cronbach’sy is a function of
the number of items on a given assessment, thageeovariance between item-pairs,
and the variance of the total score. It can be gttas the average correlation of a set of
items measuring a specific construct or dimensiam apnstruct. The coefficientis

defined in Equation 9:

KI(K-1) [ 120 ootal] (9)

whereK represents the number of iters;’ represents the sum of the variance of scores
on each item ana.w” represents the total variance of overall scoreghBtmore, van

Zyl et al. (2000) explained that the ratio of vadas expressed by Cronbactk’'®llows

the general linear model (GLM) and as shown in Equé, Cronbach’s is item
dependent. In other words, if the number of itencsaases, Cronbachiswill increase,

and conversely, with fewer items Cronbaahwill be lower when holding all other

factors constant. In addition, if the number oimteis held constant, and the average

inter-item correlation is low, Cronbachiswill change as a function of sample size. As
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the average inter-item correlation increases, Gaohlsa increases (Cronbach, 1951;
van Zyll et al., 2000).

Cronbach (1951) demonstrated that the coefficiaat‘the average of all
possible split-half coefficients for a given te§” 310). Cronbach’a is more frequently
used to assess the reliability of scores obtair@d polytomously scored items such as
Likert response scales. Recent research suggestsliicy of relying on Cronbachés
when polytomous data are used (Pastore & Lomb2@di4; Rodriguez & Maeda, 2006;
Sijtsma, 2009; Tavakol & Dennick, 2011; Teo & Fa013; Zumbo et al., 2007).

Assumptions of coefficient alphaCronbach’sy is rooted in two important
assumptions:

1. Cronbach’sy assumes unidimensionality of the measure, whérneals
measure the same underlying construct or lateit tirghe assumption of
unidimensionality is violated, Cronbachiswill underestimate the reliability of the
scores obtained (Geldhof, et al., 2014; Pastor@&lhardi, 2014; Rayvok & Peneyv,
2010; Rodriguez & Maeda, 2006; Sijtsma, 2009; Tal&Dennick, 2011; Teo & Fan,
2013; Zumbo et al., 2007).

2. Cronbach’sx is grounded in amssentially tau equivalembodel. This
means that each item measures the same latenbleasiathe same scale with the same
degree of precision, but that the individual itemoevariances are allowed to differ from
one another, suggesting it is possible for each ttehave its own amount of random
error. This translates to all variance unique $pecific item is assumed to be the result

of error (Raykov, 1997a, 1997b).
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Advantages of coefficient alpha. Cronbach’s: has three main advantages. First,
it is included in all contemporary computer-basedistical packages such as SPSS,
SAS, and R and therefore, is available to reseasdwoss a wide range of academic
fields. Second, it is a single measure of interalations between items on a continuous
scale, only requires one test administration, aagl be more easily conceptualized by
researchers than other estimates. Third, it isrtbst frequently reported reliability
estimate in the world. Consequently, literaturengitCronbach’s: across a variety of
academic fields is easy to find.

Disadvantages of coefficient alpha. Cronbach’sy has several distinct
disadvantages. The first disadvantage is relatéigetstandard error of Cronbach’s
(SE), which provides an estimate of the amount ofreéisand with the given scores. In
turn this shows the spread of the inter-item catiehs (Duhachek, Coughlan, &
lacobucci, 2005). Th8E,is inversely related to sample size and as statdalibhachek et
al. (2005), “heterogeneity within the covariancenmanegatively impacts reliability” (p.
299). Therefore, as tHE, increases, reliability decreases (Cortina, 19%tiel 1985;
Schmitt, 1996). In the simplest case where allriiteam correlations are equal to the

average of inter-item correlationy,(Cronbach’sx can be expressed as Equation 10:

kr
a= 1+r (k—1) (10)

and the standard error @fis expressed as Equation 11:

(SEa ) = w’% (11)
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wherek is the number of items,is the sample size, and Q represents the maximum
likelihood estimator of alpha based on a standasdm@mption of multivariate normality

(van Zyl et al., 2000). As n to, /n (SE, —a) is normally distributed with a mean =0

and variance represented by Q (described aboEjuation 12:

2k(1—+2)
Q=

- 12
(k=1 1+r(k—1n= (12)

The importance of the Equation 12 is that a comib@einterval for Cronbachis
can be derived using tf&E,, which provides more information than a simplenpoi
estimate regarding reliability. As described by &iipns 10, 11, and 12, the importance
of considering th&E, cannot be ignored, yet is rarely examined, catedlaor reported
by behavioral, educational, and social sciencearebers (Cortina, 1993; Hattie, 1985;,
Schmitt, 1996). Second, as Duhachek et al. (200&)yan Zyl et al. (2000) suggested,
from these equations, it was clear Cronbachias both dependent on the number of
items in an assessmek} and the sample size)( This meant thakt, n, andr have a
noticeable (negative or positive) effect on Crorithaa, and researchers can affect inter-
item correlations which in turn affeatssimply by changing (increasing or decreasig)
or n. The effects ok or n are discussed in detail later in this chapter.

Third, many researchers wrongly assume that Cidriba is a measure of
unidimensionality of a scale and do not understaedelationship among Cronbach’s
inter-item correlations, an8E,. For these reasons, it is more often misintergratel
over-utilized by well-meaning researchers (Cortit293; Schmitt, 1996; Sijtsma, 2009).
This single coefficient then takes on inflated megwhen it comes to making decisions

regarding assessment development and analysig stthres. If Cronbachismust be
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used, assessing and reporting confidence intefma(Sronbach’sx would help guide
these decisions (Sijtsma, 2009).

Fourth, since Cronbachésis the default coefficient in statistical packages
commonly used by researchers and frequently repp@ctarectly or incorrectly) in
scholarly journals, it has become the “go-to” cmééht for reliability estimation, even
when other reliability estimators would be moreaiie based on the type of data and
level of measurement (Sijtsma, 2009). Relevantidissertation is thatver the past 20
years, researchers have provided compelling eveldrat Cronbach’a is not
appropriate for polytomous data (Bentler, 2009; &ultek et al., 2005; Kopalle &
Lehmann, 1997; Schmitt, 1996; Liu, Wu, & Zumbo, 208ideridis, 1999; Sijtsma,
2009; Yang & Green, 2011; Zumbo et al., 2007), spadly Likert or Likert-type data
such as those collected on a multi-item measureswatt as a survey or attitude scale.
Goodman and Kruskal (1979) and Norman (2010) dessythat Cronbachis was not
appropriate for polytomous data amdjued that even though the item responses are on a
ordinal scale, the summated scores are on a canignscale, which they felt suggested
that Cronbach’s was an appropriate measure of internal consistesttypolytomous
data. There is, however, convincing evidence tatwrary. (Duhachek et al., 2005;
Gadermann et al., 2012; Kopalle & Lehmann, 199i;dtial, 2009; Schmitt, 1996;
Sideridis, 1999; Yang & Green, 2011). Since thewation of Cronbach’s involves
inter-item correlations, the Pearson covarianceirmiat employed. In other words, “as
measurement error increases, the observed intaraterelations will become more
attenuated” (Fisher, 2014, p. 1). For example, atatdrealth client’s score on an

instrument measuring hope (where higher scoresatelimore of the trait) may decrease
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between the first and second administration ofteument because she was just fired
from her job. In this instance, the client’s desezhhope score likely reflects
measurement error rather than an underlying deeiiegbe trait of hope.

Consequences of Underestimating
Alpha

Most relevant to this dissertation is that atteadatorrelations will produce
underestimated internal consistency reliabilityfioents. Spearman (1904) explained
that if reliability estimates are underestimateghtithose estimates would affect the
correction for attenuation, which includes Cronbgalsince “measurement error refers
to the inconsistency of measurement” (Fisher, 2@14). An important assumption for
the use of a Pearson covariance matrix is thatatataontinuous. Violations of this
assumption can “substantively distort . . . theajBen covariance matrix]” (Gadermann
et al., 2012, p. 2). When data are from an ordnale rather than a continuous scale, the
“desired distributional properties of continuousadgOlsson, 1979, p. 443) are not
present. Therefore, the evidence suggests th&aheson correlation coefficient
underestimates the true relationship between drd#sponses and the item inter-
correlations (Haldago-Tello, Chacdén-Moscoso, Barigarcia, & Vila-Abad, 2008).
Cronbach (1951) discussed the difficulties in uedemating the coefficient when data
lack variance.

When data are continuous, the numbers imply a ptiopate rank order along a
continuum, whereas, when data are polytomous, uh&ers represent an ordered
categorical label but do not necessarily have pitapwate rank order (Rothke, 2010).
Since variance is the average of the squared davsafrom the mean, due to a restricted

range of response choices, polytomous data camowide as much variance and,
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therefore, may underestimate Cronbaeh(dlunnally, 1978). In addition, since the
distance between 1 and 2 on a Likert or Likert-tgpale may not be the same as the
distance between 3 and 4 on that same scale, p@auismeaningful measurement
becomes more complex. For example, on an attitcale svhere the item response
choices are from 1 to 4, with 1 indicating a lowdkeof the measured trait and 4
indicating a high level of the measured trait, test-takers choosing the response option
of 2 may differ in their actual level of the traiith individual one considering the lower
bound of 2 and individual 2 considering the uppaurim of 2. Therefore, the number of
response choices will substantially affect thearace of the scores obtained on each

item.

Polychoric ordinal a. To address the misuse and underestimation oflaairis
a when assumptions such as essential tau equivadenizer unidimensionality are
violated, Zumbo et al. (2007) tested a coefficeefdr ordinal (polytomous) data. Known
as the polychoric ordinai, the coefficient uses the polychoric correlatioatx
(Pearson, 1900; Zumbo et al., 2007), which takesancount the ordered categorical
data structure rather than Pearson’s correlatidnxnavhich assumes an interval level
data structure (Haldago-Tello et al., 2008) andésely underestimates the true
relationship between two continuous variables wihertwo variables manifest
themselves in a skewed distribution of observedaeses” (Gadermann et al., 2012, p.
2).

The polychoric correlation matrix was proposed@arson (1900) where the
measure of the relationship between two varialdkss on the assumption of an

underlying joint bivariate normal distribution andn be extended to ordinal data with a
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joint normal distribution fundamental to his propb@earson, 1907). In other words, the
“polychoric correlation coefficient is the lineawreelation of the postulated joint normal
distribution” (Ekstrom, 2009, p. 3). The computatiaf this matrix is quite complex and
beyond the scope of the proposed dissertationnidie differences between the Pearson
correlation for continuous data and the polychoarelation for ordinal data are the
underlying distributions from which they are estieth Both the Pearson correlation
coefficient and polychoric correlation coefficiaagsume variables have an underlying
bivariate normal distribution; however the polydeatistribution is based on the
underlying latent continuous trait representedigydrder categories while the Pearson
correlation coefficient assumes a continuous stahdarmal distribution and represents
the strength of the linear relationship betweenrtve and column variables.

Advantages of polychoric ordinale. There are three distinct advantages to using
polychoric ordinab. for polytomous scales. Firstpnceptually, ordinalk is equivalent to
Cronbach’sy, but it is based on the polychoric correlationmmatather than the Pearson
correlation matrix. Therefore, empirical evidenoggests it is a more accurate estimate
for measurements involving polytomous data (Gadanma al., 2012; Zumbo et al.,
2007). Second, polychoric ordinakonsiders polytomous responses as expressions of
the underlying latent trait and interprets theatality of the observed ordinal scores
using the observed item responses, where Cronbaafierprets the reliability of the
observed scores by treating them as continuousg(@shn et al., 2012). Third,
computer software packages such as SPSS (usiitbéMAT add-on), R, and SAS
(using POLYCHOR) have advanced to the point thktutating or entering a polychoric

correlation matrix to use in the polychoric ordinastimation can be accomplished and
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the polychoric ordinad coefficient is easily interpretable since the h&sg metric is
between 0 and 1 with O = no reliability and 1 =feet reliability (Lewis, 2007; Zumbo et
al., 2007).
Item Response Theory

Addressing the limitations of CTT to estimate itparameters that weren’t
sample dependent, and person parameters that Wwersindependent, item response
theory (IRT) grew through the work of Richardsof3®), Lawley (1943), Lord (1952),
Birnbaum (1957), Rasch (1960), Wright (1967), anddLand Novick (1968). The focus
of this dissertation regarding IRT models is the¢kamodel, advanced in 1960 by
George Rasch. Rasch developed a special case afi¢hegarameter logistic (1PL) IRT
model to address the need for fundamental measutgmaciples in psychological
measurement. Based largely on the work of LuceTarkety (1964), the Rasch 1PL-IRT
model places item difficulty and person ability thie same latent continuum by
combining fundamental measurement with the comealséory of simultaneous conjoint
measurement and continuous quantities to quargifghmlogical attitudes or attributes.

One of the assumptions for the Rasch IRT modélagésponses across items
should be uncorrelated, or locally independengradontrolling for person ability. For
example, each endorsement or correct item resgshmsdd be based solely on person
ability and not ortrait or response dependen@s explained by Marais and Andrich
(2008). Marais and Andrich described local indegeee as being depicted in two ways.
First, there may beait dependencenvhere person parameters other than ability arte pa
of the response (a violation of unidimensionalif§gcond, there may besponse

dependenceayhere the same person with the same level of wbitis a response on one
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item that depends on a response given for a previem (a violation of local
independence). For examplait dependences often found when tests are constructed
to measure a single trait but the items are draam fa test bank in which each item is
intended to measure a different aspect of thedfartterestResponse dependerise
found when a correct answer on a test provideseatol the answers on successive items.

Luce and Tukey (1964) posited that simultaneougotminmeasurement is a new
type of measurement that includes both fundamemtéiderived measurement.
Fundamental measurement refers to measurementitgitéitive unit values” (Bond &
Fox, 2014, p. 15) such as weight and height, wdeleved measurement means that “the
attribute itself (e.g., temperature and densityincd be physically added together” (p.
16). Bond and Fox (2014) used weight, volume, asmibidy to help readers conceptualize
conjoint measurement in the non-physical world hsag measures of attitude and
aptitude. In the case of weights, volume, and dgsiscribed by Bond and Fox (2014),
“the key to conjoint measurement does not residbearcollusion of fundamental
measurement scales to produce a third derived mexasut scale of density that
conserves the crucial properties of scientific measent already inherent in weight and
volume” (p. 9). In other words, density is contaivethin weight and volume.
According to Luce and Tukey, conjoint measuremantize seen as the observable
relationships between and among the variable meglis.

Person and item characteristics are simultanedgashjointly) measured and
modeled by the Rasch model where person abilityitena difficulty can be used to
estimate the probability that a person of giveritgwill respond correctly to an item of

a given difficulty (Rasch, 1960, 1977). Therefdtes independent variables of ability and
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difficulty can be represented on an interval sgdate common units of measurement as

seen in Equation 13 (Bond & Fox, 2014):

eb(©-b)

Ty (13)

R(©)
whered is the person ability estimatejs the item difficulty, andP (©)  is the
probability that a respondent of a given abilitylwespond correctly to an item of a
given difficulty level (Rasch, 1960).

To illustrate Rasch’s (1960) model of combining gitaneous conjoint
measurement with concatenation, an example usatpttimously scored data collected
on a subset drawn from the Geo-Science Concephlome(GCI v.1.0; Libarkin &
Anderson, 2005) is provided. The GCI v.1.0 was t®pex] to measure the latent trait of
geo-science knowledge in topic areas such as egmllkq, volcanos, and plate tectonics.
Each item on the GCl is scored as either corréabr(incorrect (0).

Furthermore, a monotone transformation, or wayasgdforming the numbers
representing correct and incorrect responses 06@ies.1.0 into another set of numbers
without losing the original order of the data, ceamplished in the Rasch model by using
an inverse logistic transformation. For exampleyd&opn 14 represents that for some
monotonic transformatioll (Perline, Wright, & Wainer, 1979):

M(ey) = nG—5) (14)
i
wherep; is the probability of a person) @nswering correctly to itenp)(on the GCI v.1.0

andIn is the natural logarithm. That is, the Rasch maslatlditive in the person ability
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(6) and item difficulty b) parameters which allows for practical applicasiam the
estimate of these parameters (Perline et al., 1979)

The dichotomous Rasch model is presented hereotader background
information and lay the groundwork for an extensibthe Rasch model when scores are
polytomously scored. One addition to the Rasch rhigd&e rating scale model (RSM;
Andrich, 1978) which Masters (1982), Wright (1984nd Andrich (1978, 2004)
explained was an extension of the 1PL-Rasch IRTaiadbe used when data are
polytomous and the same number of thresholds agisss items.
Rating Scale Model

The rating scale model (RSM) is a unidimensionatleli@sed to assess ratings
with two or more ordered categories. RSM requirésesd number of response
categories for every item measuring the latent (Englehard, 2014). There are two
different approaches to the RSM. Andersen (19Ardduiced a response function, shown
in Equation 15, in which the values of the categmgres are directly used as a part of

the function:

eWiG—aih

Pix (@ = ZZCn_lewig_aih (15)

wherews,Ws, ..., Wy are the category scores, or numeric values assdondth each rating
scale point, which prescribe how tlmresponse categories are scored,andre item
parameters such as item difficulty and invariamosnected with the items and

categories. An important assumption of this mosi¢hat the category scores are
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equidistant. In Andrich’s RSM, item response fumies to account for item thresholds are

computed in Equation 16 as:

exp Z;D (@ (& +e, )
>oalexp Y (60— (5 +d,))

7,(0)= (16)

wheredy is the relative difficulty of score categaxyf itemi.

Assumptions of Rasch Item Response
Theory and the Rating Scale Model

The Rasch IRT family of models has several stssuanptions: (a)
unidimensionality of the test, (b) local indepencien(c) nature of the item characteristic
curve (ICC), and (d) parameter invariance.

1. Unidimensionality. As with CTT, unidimensionalitgquires that the
items on a test or survey only measure one lateitor construct.

2. Local independence. Local independence is the gssumthat item
responses are independent given a person’s afilgrefore, if person ability
determines success on each item then ability isthefactor that systematically affects
item performance. Once person ability is knownifested), responses to items are
uncorrelated.

3. Nature of the item characteristic curve. The lagi&inction specifies a
monotonically increasing function so that higheitighresults in a higher probability of
success. In other words, item performance is regreen the test-takers’ ability. In
addition, since the probability of endorsing amitis bounded at 0 and 1, the slope of the
ICC captures the nonlinear relationship between itesponses and the latent trait of

interest.
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4. Parameter invariance. ltem and ability parametersal vary over
samples of examinees from the population of intetether words, two groups may
differ in the distributions of the latent trait, tthe same model should fit both.

Advantages of the Rasch Item Response
Theory and the Rating Scale Model

The Rasch model of measurement is a special cdB offhere are several
advantages to using the Rasch family of models 6vd@r models. The Rasch model is
based on estimating the probability of observinghe&sponse to an item as a function of
ability on the latent trait being measured. Rascddefing involves examining the
probability of success (correct response) as aifomof the item’s difficulty and the
person’s ability. CTT is unable to separate peedahty from item difficulty. Each item
in Rasch IRT has its own item response functiorr{IfRRpresented by the item
characteristic curve (ICC) which reflects item difiity when ability is held constant.
Therefore, an item’s psychometric properties akenanto consideration by the model.
Another advantage to the Rasch model is that iteaextended to polytomous data such
as with the RSM. A third advantage, according toyn@searchers, is that Rasch is an
excellent tool for evaluating construct validitydais invaluable in test development
(Bond & Fox, 2014; Messick, 1989, 1996; Rasch, 1960
Disadvantages of the Rasch Item
Response Theory and the
Rating Scale Model

The first disadvantage of fitting data to the Raswdel is the
mathematical complexity of IRT models in generalged with access to the software

used in IRT. Applied researchers often lack trajnmmeasurement theories and rely on

the more accessible tools developed for CTT. Armadisadvantage is that the one-
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parameter model (1PL) assumes that all items ithidef model have equivalent item
discriminations. This is especially true with thaseh model where all item
discriminations are assumed to be = 1.0. There&aeh item is only described by a
single parametertémdifficulty) which the model assumes is the only item charatieri
influencing performancd=inally, opponents of the Rasch family of modelsipthat
these models are not robust to guessing, and thstassider guessing as a separate
parameter. Proponents of the Rasch family of moebgitain that there are two types of
“guessing.”random guessingvhich provides no information about item diffipuand
person ability, anthformed guessing/hich contains information about item difficulty
and person ability. Smith (1993) provided sevexalneples of how the Rasch model was
able to detednformed guessin@y assessing the person ability, item difficuibye
probability of answering an item correctly, and thsponse patterns of two individuals
with a similar ability levels.
Estimating Reliability

The focus of this dissertation is to estimate bty when data are
polytomous in CTT, MCFA, and Rasch IRT framewoiRsliability in CTT, MCFA, and
Rasch theory “reports the reproducibility of therss or measure, not their accuracy or
quality” (Linacre, 2012, p. 23). In Rasch, two adlility estimates are calculated and each
can range between 0 and 1, with values closeiriditating higher reliability. The first
is aperson reliability which is equivalent to score reliability in CTTlo achieve higher
person reliability, a study must include eithereagon sample with a large range of
ability and/or an instrument with many items. Tleeand istem reliability, which is not

reported in CTT but provides information about tbasistency of the items and locating
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the items on the latent variable (Boone, StaveYa&, 2014). To achieve higher item
reliability, a study must include either an instemhwith a large range of item difficulties
and/or a large sample of persons. Reliability gokeifits for all three measurement
frameworks (CTT, MCFA, and IRT) are estimates @& tatio oftrue measure varianc®
observed measure variancehe height of the ICC can be used to assessragability.

Linacre (2012) provided three rules of thumb fdiatality estimates for Rasch models:

1. If the item reliability is less than .80, a beggample is required.
2. If the person reliability is less than .80, mibeens are needed in the test.
3. High item reliability doesot compensate for low person reliability.

The Importance of Reporting Reliability
Estimates

The idea of reliability in the context of educat@band psychological assessments
is mired in misunderstanding (Baugh, 2002; Coe220unnally, 1978, 1982;
Thompson & Snyder, 1998). Often graduate studenejsgping themselves for a career in
the educational, psychological, and social sciereesvell as some faculty members,
scholars, educators, and researchers in thess,fegldbneously consider reliability to be
a stable attribute of a given assessment tool rétla@ dependent upon the scores
obtained from the administration of these assesstoels (Thompson, 2003; Vacha-
Haase, 1998). These scholars and leaders ofteto fahlize that reliability is not
subsumed within the instrument but instead relrethe scores obtained using the
instrument. This misunderstanding leads to anythimgn misinformation and the
endorsement of meaningless assessments or intengid improper high stakes
decisions. A variety of methods have been developedtimate the reliability of scores

related to an assessment instrument within the feaMework. These include inter-rater,
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test-retest, parallel forms, split-half, KR-20 anternal consistency reliability

coefficients (Clark, 2008; Cortina, 1993; Cronbat®51; Henson, 2001; Nunnally &
Bernstein, 1994; Spearman, 1904). This dissertdtionsed on the measure of internal
consistency credited to Cronbach (1951) sincehefforementioned methods of
reliability, Cronbach’sx is said to be the most commonly used method okoresy
reliability (Geldhof et al., 2014; Raudenbush, 19R3aykov & Penev, 2010, and others).
One reason is that Cronbach’'san be calculated from a single test administnatio

which saves both time and money over other metheglsring more than one
administration of a test (i.e., test-retest andipalrforms). Cronbach foretold that his
internal consistency coefficient (Cronbach)s‘is a tool that we expect to become
increasingly prominent in the research literaty&onbach, 1951, p. 299). His

prediction has certainly come true. However, siati@bility is a characteristic of the
scores obtained from an assessment tool rathermthamber assigned to the assessment
tool for all time, applied researchers in the ediocal, psychological, and social fields
often do not understand the impact low reliabitifythe scores on a given assessment has
on other results, which is discussed in more de&dw.

In 1999, The American Psychological Association fAFask Force on
Statistical Inference (Wilkinson, 1999) publishedammendations for appropriately
reporting statistical results in scholarly reseaf@he of these recommendations
emphasized the need to include estimates of rétiabf the scores obtained from a
given educational or psychological assessment. tljndg this recommendation was the
understanding that “score unreliability attenuatetected study effects” (Hogan et al.,

2000, p. 524). The APA taskforce explained the irteoae of remembering that a test is



55

neither reliable nor unreliable. Reliability is eoperty of the scores on a test for a
particular population of examinees (Feldt & BrennBs89). Thus, authors should
provide reliability coefficients of the scores the data being analyzed even when the
focus of their research is not psychometric

While anecdotally, researchers appear to rely @pambach’sx as a measure of
internal consistency in an overwhelming numberrttias, no empirical evidence
regarding the frequency of use has been provideohéwe than 13 years. Hogan et al.
(2000) and Charter (2003) addressed this issugediréquency of use of Cronbach’sn
educational, social, and psychological researclgardcaet al. (2000) reviewed the number
of times Cronbach’s, along with other methods of estimating reliabjlivas reported
between 1991 and 1995. Employing a systematic sagi@chnique of every third entry
from 37 scholarly journals published between 199d H995, Hogan and his colleagues
examined tests found in Timarectory of Unpublished Experimental Mental Meassur
Volume 7 (Goldman & Mitchell, 2008Y,ests in Print (L. Murphy, Impara, & Plake,
1999),Tests: A Comprehensive Reference for Assessmdvggachology, Educatioand
BusinesgMaddox, 1997), and the Educational Testing Ser(iCES) Test Collection
(e.q., ETS, 1995). They selected 696 out of 2,@t&ational, psychological, and
sociological tests and found that Cronbachigas reported in 533 out of the 696 tests
(66.5%). The next most commonly reported reliapitivefficient was test-retest
reliability which accounted for 152 of the 696 #8£19.0%) selected.

Revisiting the work of Hogan et al. (2000), Chaf&003) reviewed the literature
regarding the frequency of use of reliability esttes. He gathered data from 2,733 test

critiques, 8 journal articles, and 47 test manpalslished between 1927 and 2001 with
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92.5% of the data from the years 1960 to 1990 andd 937 reliability coefficients he
deemed “sufficient enough to be used . . .” (p.)2%4ble 3 shows the reliability
coefficients used along with their frequency of.udete that Cronbach's (Alpha) was
used more frequently than any other method exesptrétest. Charter acknowledged the
discrepancies in the use of these various methudiexplained that Hogan et al. (2000)
used unpublished tests in 37 journals between 28811995 while he used mainly
published tests from 1960 to 1990. An additionakom, which was not explored, is that
data gathered by Charter include dates prior tokaoh’s (1951) publication on

reliability as a measure of internal consistency.

Table 3

Frequency of Reliability Estimation Methods Betw&8a7 and 2001

Method Frequency Relative Frequency
Alpha 140 14.94%
Alternate Forms 40 4.27%
Inter-judge 84 8.96%

KR-20 62 6.62%

Other or unknown 46 4.91%

Split Half 126 13.45%
Test-Retest 439 46.85%

These gaps in the research literature pose sassuss regarding the use, and
possibly misuse, of Cronbachis For example, in the past 20 years, the use of

Cronbach’sx has continued; however, (a) no comprehensive dtadyocused on either
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the number of times Cronbachishas been used in educational and psychological
research, (b) the number of researchers overloakiapility estimates when reporting
results from their studies is unknown, and (c) infation regarding data characteristics
when using Cronbachisto estimate reliability is not available.

Regardless of the methods of estimating reliabifaiting to consider reliability
evidence puts into question any interpretatioresearch results since reliability is not
only affected by data characteristics but affetiteiostatistical properties as well. These
data characteristics and statistical propertieslm@issed in the next section.

Statistical and Psychometric Properties
Affected by Reliability

Reliability is not only affected by data characgas such as sample size, number
of items on an assessment, number of responseeshaicd sampling design, which are
discussed in detail in the next section, but affether statistical properties such as effect
size, validity,p-value, power, and Type Il error. Each of thesé@stieal and
psychometric properties are discussed below asatresselated to reliability. Whether as
stand-alone statistics or when combined, thesegptiep express meaningful results and
allow for accurate inferences.

Effect Size

Effect size, also known as practical significareedependent of sample size and
refers to the magnitude of the impact of one vadgian another (Huberty, 2002). The
two most common types of effect size are (a) thecekize which focuses on the
standardized mean differences between groups (GotieGohen, 1969, 1988) and (b)
the effect size focusing on the amount of covariabetween the independent and

dependent variables (e.g., a squared multiple latioa, adjusted?’, or #°). Cohen’sd
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(Cohen, 1969, 1988), which is the standardized nddérence between groups, is

shown in Equation 17:

d— ﬂ/jgr'oupl - A/jgr'oup2
SDpooled

(17)

where the numerator is the difference between twamgmeans and the denominator is

the pooled standard deviation as described in kxuas:

S‘Df’l’mff-'ff = \/(SDﬁru'upl + S‘D;—;-r'o-u-_rﬂ)/2 (18)

where the standard deviations of both groups arerseed and divided by two. If within-
group variance is reduced, effect size increasesnirman, Williams, & Zumbo, 1993).
An example of the relationship between power affecegize is provided by Cohen

(1988) in Equation 19:
ES = ESP(Vrxx") (29)

where ES is observed effect size, ESP is the ptpnlaffect size, and. represents
reliability. Therefore, when reliability is 1, tlobserved ES is equal to ESP; but when
reliability is < 1, the observed ES is a value derghan the true ESI andz,® measure
the degree to which variability among observaticas be attributed to the conditions or

explanatory variables as represented in EquatiofC@@en, 1977; Huberty, 2002):
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/72 SStreatment
SSto tal (20)

where S&eameniS the sum of squares for the treatment groupsharpnon-treatment
categorical variables and §&is the total sum of squares in the model. Thompson
(1994) explained that “score reliability inherendligenuates effects sizes . . . [and] we
may not accurately interpret the effect sizes instudies if we do not consider the
reliability of the scores” (p. 840). More recentBaugh (2002), Coe (2000), Durlak
(2009), Gerhart, Wright, McMahan, and Snell (206R0)Kline (2009), Wilkinson (1999),
and others have provided evidence that effectrsitects other characteristics of a study
such as estimates of internal consistency reltgbilihompson and Snyder (1998) studied
issues related to reliability in peer-reviewed etional and psychological research and
found that;

The concern for score reliability in substantivguiry is not just some vague

statistician’s nit-picking. Score reliability dirdg (a) affects our ability to achieve

statistical significance and (b) attenuates theotf$izes for the studies we
conduct. In other words, because measurement\variance is generally
considered random, measurement error inherentdnadtes effect sizes. It
certainly may be important to consider these dyraras part of result
interpretation, once the study has been condu@ted38)

According to CTT, the “observed” score is compriséd “true” score, together
with a component of “error,” which can be concepasal as “augmenting and
diminishing [observed values]” (Spearman, 1904189). Therefore, the amount of
variation in true scores in a given sample will elegh on the variation of both observed

and error scores. This fluctuation in variatioreaté both Cronbachis and effect size.

Poor reliability will yield low Cohen’sl (Thompson & Snyder, 1998).
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Validity

In the broadest sense, validity of scores obtagredn assessment tool refer to
the degree to which scores measure the latenofraiterest. There can be no validity of
scores without first achieving reliability. Scomen be consistent (reliable) but unless
they reflect what is actually being measured, ttogess may not be valid (Moss, 1994;
Weiner, 2007).
P-value

Thep-value is used in hypothesis testing and represkatprobability of
obtaining the observed effect (or larger) undeulhmypothesis, or hypothesis of no
effect or difference. Ideally p-value refers to the degree to which the resultaiobtl by
the sample are representative of the populatiolesarthe sample contains bias.
Therefore, a smaf-value (i.e., under a given threshold of .05 o)) i@dlicates that the
observed effect is not likely to have happenedhiance and provides statistical evidence
against the null hypothesis. Therefore, a low Camhfso indicates more measurement
error which translates to a highgwralue (J. B. Kline, 2005).
Power

Power of a statistical test ()-refers to the ability to detect group differenoes
relationships between variables when they actudist. In other words, the power of a
statistical test is the probability that the nutpbthesis was correctly rejected. Power is
expressed between 0 and 1, with numbers closemmidating more power. Therefore,
as power increases, the probability of a typ@)lefror decreases. Power analysis can be
used to calculate the minimum sample size requiredder to be reasonably likely to

detect a given effect size and conversely, powalyais can be used to calculate a
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minimum effect size one can expect from a given@arsize. Reliability affects
statistical power through effect size (refer to &upns 17, 18, 19 and 20 above). Since
reliability is characterized by “observed variamc&onjunction with true or error
variance, power changes as reliability changes ibollyserved score variance changes
simultaneously” (Zimmerman & Williams, 1986, p. 3}28dditionally, “if true score
variance remains constant but lower reliabilityde#o increased error variance, then
statistical power will be reduced because of tlvesased observed score variance”
(Kanyongo, Brook, Kyei-Blankson, & Gocmen, 20078B).
Type Il Error

Type Il error @) refers to failing to reject the null hypothesikem in fact the null
hypothesis is false. In other words, finding ndediénce or relationship when, in fact,
there was a difference or relationship. Poor réltglrould lead to decreased statistical
power in the presence of increased observed seoi@nece, whi