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ABSTRACT

Floren, Michael. On the Small Count Inflated Poisson Distribution. Published Doctor of
Philosophy dissertation, University of Northern Colorado, 2018.

Inflated count distributions are used in situations where counts of an underlying

distribution of a population are larger than expected by traditional count distributions.

One of the most commonly used inflated count distributions is the zero-inflated Poisson

distribution. This work demonstrates the construction of a small count inflated Poisson

distribution, of which the zero-inflated Poisson distribution is a special case. Model

construction and parameter estimation are shown. Simulations analyzing asymptotic

properties, group prediction, and count prediction are presented. Conclusions and

recommendations for future research are discussed.
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CHAPTER I

INTRODUCTION

Count regression models are used to explain an outcome variable whose values

fall within the whole numbers. This data type is quite common, and can be seen: in the

number of pills an individual takes on a daily basis, in the number of cars in a parking lot

at a certain time, or in the number of trees in a forest. A common source of count data is

education: the number of students who engage in an activity, the number of detentions

received by students in a given time, or the number of new teachers hired in the last year.

Another common source is in health care: the number of cigarettes smoked by an

individual in the last week, the number of high-risk behaviors engaged in by individuals,

or the number of visits to an emergency room (ER) by individuals. All of these situations

clearly have whole number values: that is, they have response values that are non-negative

integers. The modeling of these values have a wide and growing applicability in

education, health care, and politics. Additionally, as count modeling becomes more

accessible, the use of count regression models has been increasing in recent years (Atkins,

Baldwin, Zheng, Gallop, & Neighbors, 2013).

Count Data and Modeling

Count data are data that have observations falling within the whole numbers.

These observations are traditionally assumed as being from the Poisson distribution, or in

the case of overdispersion (a break in the mean variance relationship assumed by the

Poisson), from a generalized Poisson or one of a series of negative binomial distributions

(Agresti, 2002; Hilbe, 2011). As with many statistical assumptions, assumptions

regarding the distribution of count data are usually made a-priori, and thus may or may
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not be correct for a given data situation. Additionally, the requirement of the assumption

of normality for general linear models is inappropriate with count data, as count data are

inherently non-negative (Agresti, 2002). To account for this, a generalized linear model

(GLM) framework is used in the modeling of count data (McCullagh & Nelder, 1989).

This framework is built via three pieces: a random component, a systematic component,

and a link component. The random component is the assumed distribution of the

outcome. For count variables, this is usually the Poisson or a negative binomial

distribution. The systematic component allows for covariates to be related to the outcome.

The link component allows for a relationship between the expectation of the outcome and

the covariates to change, further specifying the model. A common link function for count

regression is the natural log link, which eliminates the possibility of predicting values

outside the response space (e.g., negative numbers).

Excess-Zero Models

One common issue with count models is that the amount of zeros exceeds that

which would be expected by the count distribution. This is known as “excess-zero” data,

and has provoked a separate class of models to deal with its occurrence. Some common

situations where this may arise could be: the number of cups of coffee had by an

individual in a week, the number of alcoholic beverages consumed in the previous week,

or the number of emergency room visits by an individual in the last year. All of these

situations are cases where the population of counts can be split into users and non-users

(for instance, smokers and non-smokers), with both groups exhibiting different

characteristics. Excess-zero models attempt to determine likelihood of an observation

coming from a population. After the population has been determined, they attempt to

predict the count for the “users” using GLM.

There are two main classes of models used for excess-zero cases: the zero-inflated

model, and the hurdle model. Both of these models split the observations into

classifications based on group. They differ, however, in the distribution allowed to the
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“users” group. The zero-inflated model allows participants in this group to take on a value

of zero, while the hurdle model forces all participants classified as users to be non-zero.

To account for this, the hurdle uses truncated versions of the Poisson or negative binomial

distributions. In essence, these models each use two components: a logistic component, to

determine group membership, and a count component, to predict the count. The

zero-inflated and hurdle differ in the distribution allowed to the count component: a

hurdle model uses a zero-truncated distribution, a zero-inflated model uses an

un-truncated distribution.

The choice between the two models is often made based off of the situation. The

hurdle model assumes that an observed zero defines a classification. On the other hand,

the zero-inflated model allows observed zeros to come from two sources: the “non-users”

group, and the “users” group. In an applied situation, the researcher must consider which

model is best supported based on theoretical considerations of the groups. For example,

consider the goal of modeling the number of cigarettes smoked in the past week. If the

researcher believes that smokers may have smoked zero cigarettes, a zero-inflated model

would be selected. If the researcher believes that all smokers smoked more than zero

cigarettes in the past week, a hurdle model should be selected.

Just as general linear models are inappropriate for modeling count data, so too are

count models inappropriate for modeling excess-zero count data. The heavy weight in the

0 observations creates an overdispersion issue which cannot be resolved by use of the

negative binomial distribution (Perumean-Chaney, Morgan, McDowall, & Aban, 2013) .

The cost is bais in the model’s parameter estimates and standard errors

(Perumean-Chaney et al., 2013).

Finite Mixture Models

Finite mixture models (FMM) are a class of models that combines a finite number

of probability distribution functions to better model the data (Everitt & Hand, 1981;

McLachlan & Peel, 2000; Shalizi, 2012). These are best used when multiple populations
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contribute to the observed outcome. A classic example of this is in the production of

stamps, where multiple production sites may each have a different distribution of stamp

widths in their production. This example also demonstrates the unknown nature of the

outcome variable in that, on observation of a single stamp, we do not know the source site

or distribution. Finite mixture models are a class of models designed to estimate the

outcome for such a variable.

In general, all excess-zero models can be considered a subset of finite mixture

models. In the FMM framework, a zero-inflated model would consist of the combination

of two distributions: a degenerate distribution at zero, and a count distribution over the

whole numbers. Similarly, a hurdle model would consist of a combination of two

distributions: a degenerate distribution at zero, and a count distribution over the natural

numbers (whole numbers, not including zero).

Beyond Zero

In recent years, there has been a growing interest in modeling excess counts

beyond just zero. The zero-and-one inflated model allows counts of zero and one to be

inflated (Alshkaki, 2016, 2017; Lin & Tsai, 2013; Melkersson & Olsson, 1999; Zhang,

Tian, & Ng, 2016). This may better model situations such as the casual drinker, who only

has one drink per week. This model closely follows how zero-inflated models are

constructed, save that it determines membership among three groups: the zero count

group, the one count group, and the Poisson group. The zero-and-k inflated model allows

counts of zero and an arbitrary k to be inflated (Lin & Tsai, 2013). This better models

situations such as the number of dental visits in a previous year, where there is a clear

inflation at zero (those who don’t go) and two (those who go the recommended number of

times). This model is very similar to the zero-and-one inflated model, save that it

determines membership among the zero count group, k count group, and the Poisson

group. Finally, zero-to-k models allow multiple counts to be inflated from zero to an

arbitrary k (Giles, 2007). These models are also called multinomially-inflated models,
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indicating that multiple counts are allowed to be inflated. This model uses a multinomial

distribution to assign membership among k+ 1 groups: the zero group, the one group, ...,

the k group, and the Poisson count group.

Though this recent surge in broader models has been growing, research in the area

has focused on individual points of inflation. That is, with multiple points of inflation in

the small counts, each count value (zero, one, etc) is given its own prediction via

probability. From this framework, relationships between the small count inflated values

are not specified, even in cases where a clear theoretical relationship may exist. For

instance, consider the number of emergency room visits by college students in a given

year. Though the counts of zero and one may be inflated, it is theoretically supported that

the inflation of zero is greater than the inflation of one. In such a case, a model that allows

a relationship between the inflated counts would be appropriate.

Study Objectives

This study proposed a small count inflated model that allows the inflated small

counts to follow a pre-specified distribution. In the appropriate situation, this model

allows researchers to use a theoretical backing to better explain data situations where

there is a relationship between small count inflated values. Though this model has a more

complicated structure than data with single point inflation (e.g., zero-inflated), for data

with multiple point inflation (e.g., zero-one inflated, zero-k inflated) the model specifies

equivalent or fewer components than existing models.

The purpose of this study was to construct a small count inflated Poisson (SCIP)

model, including maximum likelihood estimation of parameters. Additionally, this study

compared the performance of the proposed model to that of other models that may be

used in similar situations. Analysis of both simulated and observed data was used.

Research Questions

The following questions were addressed:

Q1 How can a SCIP distribution be specified?
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Q2 How can parameters be estimated for the SCIP distribution?

Q3 How can a SCIP distribution be implemented in R?

Q4 In terms of percentage correct and area under the ROC curve, how well
will the SCIP distribution predict group membership compared to the
zero-inflated and multinomially-inflated Poisson models?

Q5 In terms of mean squared error (MSE), how well will the SCIP
distribution predict counts compared to the zero-inflated and
multinomially-inflated Poisson models?

Study Limitations

This study only addressed a small count inflated Poisson model while, for cases

where a cutoff is misspecified, a negative binomial model may be more forgiving.

Additionally, this study only considered situations analogous to the zero-inflated model,

and not those analogous to the hurdle model. That is, this study allowed the distributions

for small and large counts to overlap in the small count section.

Overview

This dissertation consists of five chapters. Chapter I introduces a brief history of

the field, including where the current model builds on previous research. It ends with the

questions this dissertation addresses, including a brief discussion of the limitations.

Chapter II offers a deeper discussion of the history of the field, including

specification of previously used models. The literature review provided shows the gap in

current research, and illustrates the applicability for the current research.

Chapter III illustrates the SCIP distribution, including the process of estimating

parameters via maximum likelihood. The chapter closes with a discussion of how the

research questions will be addressed.

Chapter IV describes the SCIP model and estimation via simulation. Comparisons

between previous models and the SCIP model using both simulated and observed data are

shown.

Chapter V discusses the results and presents conclusions. Limitations and calls for

future work are also discussed.
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CHAPTER II

LITERATURE REVIEW

Counts

Count Data

Many natural phenomena take a form known as “count data”. In general, instances

of these variables indicate the number of times an event occurs within a fixed period of

time. Examples in applied research include the number of manufacturing defects

(Lambert, 1992), the number of cups of coffee consumed by an individual in a day

(Mullahy, 1986), or the number of bacteria in leucocytes (Giles, 2007). Count variables

such as these are natively nonnegative, and can only take on integer values.

Modeling of data for prediction or explanation can be more powerful if the

underlying distribution of the outcome is known. Because of this, it is advantageous for

researchers to identify distributions of potential outcome variables. The nature of each

variable necessitates the use of a distribution which can align to the nature of the data (in

this case, nonnegative integers). Several distributions used in the modeling of count data

are now be presented.

Poisson distribution. One distribution, the Poisson distribution, can be used to

model certain instances of count data. This distribution is a discrete distribution that

expresses the probability of a given number of independent events occurring within a

given amount of time. The probability mass function (PMF) for this distribution is given

in Equation 1,

f (y|λ ) = e−λ λ y

y!
, (1)
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where k = 0,1,2, . . . , λ is the rate of occurrence, and Y a random count variable. The

mean and variance of the Poisson distribution are equivalent, and are shown in Equation 2

to be

E[Y ] = λ ,

Var(Y ) = λ .

(2)

Negative binomial distribution. Another distribution, the Negative Binomial

distribution, can also be used in the modeling of count data. This distribution is also a

discrete distribution that expresses the probability of a certain number of independent

events occurring before a specified number of successes. This distribution differs from the

Poisson distribution in that the Negative Binomial allows the variance to exceed the mean

(overdispersion). The negative binomial distribution is a commonly used solution for

modeling overdispersed data.

Binomial distribution. The Binomial distribution may be used in specific cases

of modeling count data. This distribution expresses the probability of k successes in a

sequence of n independent trials. The Bernoulli distribution is a special case of this, and is

modeled by the Binomial when n = 1. The PMF for this distribution is given in Equation

3,

P(Y = k) =
(

n
k

)
π

k(1−π)n−k, (3)

where k = 0,1, . . . ,n is the number of successes, n is the number of trials, π is the

probability of success, and Y is the random count variable. The mean and variance of the

Binomial distribution are shown in Equation 4 to be

E[Y ] = π,

Var(Y ) = nπ(1−π).

(4)
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Truncated distributions. Certain count models use zero-truncated versions of the

Poisson distribution in addition to its traditional form. In general, zero-truncated

distributions are calculated as

fZT (y) =
f (y)

1− f (0)
,y ∈N+, (5)

where f (y) is the PMF and fZT (y) is the zero-truncated PMF. The zero-truncated Poisson

PMF thus takes on the form

f (y|λ ) =
e−λ λ y

y!

1− e−λ
, (6)

where y = 1,2, . . . is the observed count and λ is the rate of occurrence.

Count Models

The modeling of count data falls under the generalized linear model (GLM)

framework of models. GLM allows a large degree of flexibility when modeling count

data. Broadly, the GLM allows the mean of a nonnormal response to be functionally

related to the predictors. This provides a powerful tool for the analysis of nonnormal data

(Nelder & Wedderburn, 1972). Examples of such models are the number of pulmonary

embolisms prevented by different brands of catheter, the number of emergency room

patients by location of a facility, and the number of death notices given by season

(Hasselblad, 1969).

The GLM is made up of three components: a random component, a systematic

component, and a link function. The random component specifies the assumed

distribution from which the outcome variable is expected. It can take on any distribution

from the exponential family, including the Poisson distribution. The systematic

component specifies the predictors and their associated parameters, which is related to the

mean of the distribution through a link component. The model can be seen in Equation 7

where Y is the n× 1 response vector, µµµ is the n× 1 mean vector, X is the n× p design

matrix, βββ is the p× 1 vector of parameters, and g is the link function. Each element of Y
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is assumed to be realized from a distribution in the exponential family (the random

component), and Xβββ (the systematic component) is related to µµµ via the differentiable,

monotone link function g,

E [Y] = µµµ = g−1(Xβββ ). (7)

The flexibility of the GLM allow its use in many situations where the outcome is

assumed to be nonnormal.

Poisson generalized linear model. An application with a Poisson distributed

count outcome is straightforward, with the random component being defined as a Poisson

distribution and the link component being defined appropriately (traditionally the natural

log). The GLM model is given in Equation 8,

E[Y] = λλλ = e(Xβββ ), (8)

where Y is the n× 1 response vector, λλλ is the n× 1 mean vector, X is the n× p design

matrix, and βββ is the p×1 vector of parameters.

Poisson GLMs are utilized when the outcome variable is assumed to be a count

variable where the mean and variance are the same. In this case, the each of the β ’s can

be interpreted as the multiplicative change in the outcome for a unit change in the

respective independent variable.

Bernoulli generalized linear model. A separate application with a Bernoulli

outcome is equally convenient, with the random component being defined as a Bernoulli

distribution and the link component being defined appropriately (traditionally the logit

function). This model is also known as logistic regression. The GLM model is given in

Equation 9,

E[Y] = πππ = logit−1(Xβββ ), (9)
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where Y is the n× 1 response vector, πππ is the n× 1 mean vector, X is the n× p design

matrix, βββ is the p× 1 vector of parameters, and the logit function is defined as the log of

the odds. That is,

logit(π) = log
(

π

1−π

)
. (10)

Bernoulli GLMs are utilized when the outcome variable is binary. In this case,

each of the β ’s can be interpreted as the log of the odds ratio between the two outcome

classes and two populations separated by a unit change in the respective independent

variable.

Estimation and hypothesis testing. Estimation and hypothesis testing for GLM

are performed via maximum likelihood (ML). First, the likelihood function is found from

the PDF. In general, the PDF is taken to be the likelihood function, though the likelihood

function is viewed as a function of the parameters given the data, while the PDF is a

function of the data given the parameters. After the likelihood function is obtained, the

derivative of the likelihood function is taken, set equal to zero, and solved for βββ to obtain

parameter estimates via the estimating equations. In equation form, the estimating

equations are given as
∂L
∂βββ

= 0, (11)

where L is the log-likelihood, βββ are the parameters shown in Equation 7, and ∂ is the

partial derivative.

Standard errors of the parameter estimates are found by first taking the second

derivative of the log-likelihood function to find the information matrix. That is,

asymptotically,

ˆCov
(

β̂ββ

)
=

(
−E

[
∂ 2L
∂βββ 2

∣∣∣∣
β̂ββ

])−1

, (12)

where L is the log-likelihood, βββ are the parameters shown in Equation 7, and ∂ 2 is the

partial second derivative represents the information matrix. The expected value of the

information matrix is used, and in practice parameter estimates are used in place of
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unknown parameters. The standard errors are the square roots of the diagonal elements of

the inverse information matrix (Agresti, 2002).

So long as regularity conditions are met, ML parameter estimates and standard

errors can be used to perform hypothesis testing, with the ratio of the parameter to its

standard error being compared to a given hypothesized value (usually zero). That is, with

a nonnull standard error (denoted SE) of β̂ , the test statistic

z =
(β̂ −β0)

SE
(13)

has an approximate normal distribution when β = β0, which may be compared to a

standard normal table. For a two-sided alternative to the standard normal, z2 has a

chi-squared distribution with one degree of freedom. This type of statistic is called a Wald

statistic (Agresti, 2002; Wald, 1943).

Excess-Zeros

Excess-Zero Data

Though the GLM is an excellent tool for modeling count data, often situations

arise where counts do not strictly follow a Poisson distribution. One of these cases is

known as an “excess-zero” case: where observed counts of zero exceed that which is

expected by a Poisson distribution (Mullahy, 1986). Examples of these cases include the

number of rare animals in a specified region, the number of cups of coffee had per day, or

the number of detentions received by students in a school. The commonality of such data,

including the importance of using appropriate methods to account for the overdispersion

introduced by excess-zeros, has been recently discussed (He, Tang, Wang, &

Crits-Christoph, 2014). These cases often can be seen as two populations who are mixed

together: a population of individuals who have zeros, and a population of individuals who

have a count either with or without a zero.
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There are two classes of models which can describe this situation. The hurdle

model, designed by Mullahy (1986), sets a “hurdle” which must be exceeded to move

from the zero group to the count group. In this situation, individuals whose outcome is

zero are always classified as the zero group. For example, consider the number of days a

patient spends in a hospital. As a patient’s first day in the hospital counts as day one, it

would not be appropriate to assume that a patient in the hospital can record zero days. In

this case, all records of zero days in the hospital represent participants who have not been

to the hospital. One consequence of this is the implication that the count group can never

obtain a count of zero, which may be unreasonable in certain situations.

The zero-inflated (ZI) model, introduced by Lambert (1992), allows individuals

who are classified into the count group to have a count of zero. For example, consider

participant use of marijuana in the previous day. Participants can be classified into “non-

users”, which don’t use at all (zero), and “users”, which use a certain amount of times

(count). However, users may not have used the previous day, allowing the count to be zero

or another number.

The analysis strategy in both cases is to consider a joint model. The first

component uses a logistic regression to determine which group the individual is from.

The second component uses a count GLM which predicts the count for an individual,

conditional on count group membership. For the hurdle model, the count component is

defined using a zero-truncated distribution. This reflects the assumption of the hurdle

model: that any observed zeros are assumed to not be from the count distribution. For the

ZI regression, an untruncated distribution is used. Both of these models, including their

Poisson and Negative Binomial counterparts, will now be shown in further detail.

Zero-Inflated Models

Zero-inflated models are applied when observed zero values are assumed to come

from multiple sub-populations: the zero population and the count population. In this case,

count distributions with zeros are used to allow the zeros to come from either
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sub-population. These models, originally presented by Lambert (1992), add to the work

of authors such as Mullahy (1986) by using a full Poisson distribution for the counts (in

contrast to the zero-truncated Poisson). Several versions of ZI models are now presented.

Zero-inflated Poisson model. The PMF for the ZI model of a Poisson distributed

outcome is readily described. Let π0 represent the probability of being assigned to the

zero count group, and πP be the probability of being assigned to the Poisson group. Note

that membership in these groups is mutually exclusive. That is, π0 +πP = 1. The variable

Y is said to follow a zero-inflated Poisson (ZIP) distribution, denoted Y ∼ ZIP(π0,λ ), if

its PMF is given by

f (y|π,λ ) =


π0 +πPe−λ , y = 0

πP
e−λ λ y

y!
, y > 0,

(14)

where λ is the rate of occurrence of the Poisson.

The likelihood function is defined as follows. Let Z0 and ZP be used as indicators,

with Z0 = 1 when the observation is from the zero count group (and 0 otherwise), and

ZP = 1 when the observation is from the Poisson group. It can be seen that Z0 and ZP are

mutually exclusive. That is, for any given participant, Z0 +ZP = 1. Given these, the PMF

shown in Equation 14 can be expressed as shown in Equation 15, with

f (y|Z0,π0,λ ) =
(

π0 +πPe−λ

)Z0

(
πP

e−λ λ y

y!

)ZP

. (15)

The ZIP model can be written in terms of a joint GLM with systematic, random,

and link components. Lambert (1992) describes how λλλ = (λ1, . . . ,λn)
′ and

πππ0 = (π01, . . . ,π0n)
′ satisfy

log(λλλ ) = Bβββ , and

logit(πππ0) = Gγγγ,
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where B is an n× p covariate matrix, G is an n×q covariate matrix, βββ is a p×1 vector of

parameters, γγγ is a q× 1 vector of parameters, λλλ is an n× 1 rate of occurrence vector, and

πππ0 is an n× 1 vector of probabilities of the ith observation being in the zero count group.

These identify the structural components as Bβββ and Gγγγ with the link functions as log and

logit, respectively. The assumed distribution of the outcome is Y ∼ ZIP(π0,λ ).

In this case, the parameters βββ and γγγ take on separate interpretations. The γγγ

parameters relate to the probability that a case will fall in the zero or Poisson groups,

while the βββ parameters are interpreted as parameters related to the count variables,

conditional on the participant not being a part of the zero count group (though they may

still have an observed value of zero). The eγγγ vector can be interpreted as odds ratios while

the eβββ vector can be interpreted as the multiplicative change in expected counts.

Parameter estimates of the ZIP are obtained using the maximum likelihood

estimation (MLE) via the expectation-maximization (EM) algorithm. MLE uses the

likelihood function to find parameter estimates and standard errors. Parameters are found

by solving the first derivative of the log-likelihood function for zero. Standard errors are

found by evaluating the second derivative of the log-likelihood function. The EM

algorithm is a numerical estimation method used in solving the above equations. An

example of this process, using the ZIP model, is given below.

The first step in using maximum likelihood is to identify the likelihood equation.

The log-likelihood may be maximized in place of the likelihood, as the log is a

monotonically increasing function. For the ZIP model, the log-likelihood equation is

shown as
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L(γγγ,βββ |y) = ∑
yi=0

log
(

eGiγγγ + e−eBiβββ
)

+ ∑
yi>0

(
yiBiβββ − eBiβββ

)
−

n

∑
i=1

log
(

1+ eGiγγγ
)

− ∑
yi>0

log(yi!) ,

(16)

where Bi is the ith row of an n× p covariate matrix B, Gi is the ith row of an n× q

covariate matrix G, βββ is a p× 1 vector of parameters, γγγ is a q× 1 vector of parameters, y

is an n×1 vector of responses, and yi is the ith response.

Parameter estimates are found by taking the first derivative of the log-likelihood

function and solving for zero for all parameters. In equation form, this can be shown as

∂L
∂βββ

= 0,

∂L
∂γγγ

= 0.
(17)

Standard errors can be solved for by first finding the information matrix. That is,

by determining the second derivative with regard to all sets of parameters. In equation

form, if we let

τττ =


βββ

γγγ

 ,
the standard errors can be found by first determining

ˆCov(τ̂ττ) =
(
−E
[

∂ 2L
∂τττ2

∣∣∣∣
τ̂ττ

])−1

(18)
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for τττ . The standard errors are the square roots of the diagonal elements for this inverse

information matrix (Agresti, 2002).

The EM algorithm is often used to find solutions for maximum likelihood, and is

well demonstrated by Lambert (1992). The method from Lambert (1992) assumes that

one knows which group the zero is from, and then calculates the log-likelihood. That is,

suppose it could be observed that Zi = 1 when Yi is from the zero group and Zi = 0 when

Yi is from the count group. Lambert (1992) calculates the modified log-likelihood as

Lc(γ,βγ,βγ,β |y,z) =
n

∑
i=1

log( f (zi|γγγ))+
n

∑
i=1

log( f (yi|zi,βββ ))

=
n

∑
i=1

(
ziGiγγγ− log

(
1+ eGiγγγ

))
+

n

∑
i=1

(1− zi)
(

yiBiβββ − eBiβββ
)

−
n

∑
i=1

(1− zi)log(yi!)

=Lc(γγγ|y,z)+Lc(βββ |y,z)−
n

∑
i=1

(1− zi)log(yi!),

(19)

where Bi is the ith row of an n× p covariate matrix B, Gi is the ith row of an n× q

covariate matrix G, βββ is a p× 1 vector of parameters, γγγ is a q× 1 vector of parameters, y

is an n× 1 vector of responses, and yi is the ith response. Because the terms additively

separate, the log-likelihood of γγγ and βββ can be maximized separately and the

log-likelihood becomes easier to maximize.

The EM algorithm alternates between the expectation step and maximization step.

The estimation step estimates Zi under the current estimates of γγγ and βββ . The

maximization step fixes the Zi’s with their estimated value, then maximizes Lc(γ,βγ,βγ,β |y,z).

The algorithm ends after the Zi’s, γγγ’s, and βββ ’s converge. Details on each of these steps is

now provided.



18

For the expectation step, Lambert (1992) estimates zi by its posterior mean Z(k)
i

(for the kth iteration) under the estimates of γγγ(k) and βββ (k). That is

Z(k)
i = P[0|yi,γγγ

(k),βββ (k)]

...

=

(
1+ eGiγγγ

(k)−eBiβββ
(k)
)−1

if y1 = 0

= 0 if yi = 1,2, . . .

(20)

For the maximization step to find γγγ(k+1) and βββ (k+1), Lambert (1992) maximizes

Lc(γγγ|y,Z(k)) and Lc(βββ |y,Z(k)), respectively (see Equation 19). Lambert (1992) notes that,

in the βββ case, this amounts to a weighted Poisson regression (with weights of 1−Z(k)) as

presented by McCullagh and Nelder (1989).

Hurdle Models

Hurdle models are applied when observed zero values are all assumed to come

from the same sub-population. In this case, zero-truncated count distributions are used to

distinguish the source of zero counts. These models were originally presented by Mullahy

(1986) and are the first to address data with excess zeros. Several versions of the hurdle

model are now presented.

Poisson hurdle model. The PMF for the hurdle model of a Poisson distributed

outcome is readily described. Let π0 represent the probability of being assigned to the

zero count group, and πT P be the probability of being assigned to the zero-truncated

Poisson group. Note that membership in these groups is mutually exclusive. That is,

π0 + πT P = 1. The variable Y is said to follow a Poisson hurdle distribution, denoted

Y ∼ PH(π0,λ ), if its PMF is given by
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f (y|π0,λ ) =


π0, y = 0

πT P
λ ye−λ

y!(1− e−λ )
, y > 0,

(21)

where λ is the rate of occurrence of the zero-truncated Poisson.

The likelihood function is defined as follows. Let Z0 and ZT P be used as

indicators, with Z0 = 1 when the observation is from the zero count group (and 0

otherwise), and ZT P = 1 when the observation is from the zero-truncated Poisson group.

It can be seen that Z0 and ZT P are mutually exclusive. That is, for any given participant,

Z0 +ZT P = 1. Given these, the PMF shown in Equation 21 can be expressed as shown in

Equation 22, with

f (y|Z0,π0,λ ) = (π0)
Z0

(
πT P

λ ye−λ

y!(1− e−λ )

)ZT P

. (22)

The Poisson hurdle model can be written in terms of a joint GLM with systematic,

random, and link components. This is shown as

log(λλλ ) = Bβββ , and

logit(πππ0) = Gγγγ,

where B is an n× p covariate matrix, G is an n×q covariate matrix, βββ is a p×1 vector of

parameters, γγγ is a q× 1 vector of parameters, λλλ is an n× 1 rate of occurrence vector, and

πππ0 is an n× 1 vector of probabilities of the ith observation being in the zero count group.

These identify the structural components as Bβββ and Gγγγ with the link functions as log and

logit, respectively.

In this case, the parameters βββ and γγγ take on separate interpretations. The γγγ

parameters relate to the probability that a case will fall in the zero or Poisson groups,

while the βββ parameters are interpreted as parameters related to the count variables,

conditional on the participant not having an observed count of zero. The eβ j’s can be
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interpreted as the multiplicative change in expected counts for the population with

non-zero values.

Due to the truncated nature of the count distribution, estimation and hypothesis

testing for the zero group and Poisson group can happen independently. This allows the

parameters to be estimated using the ML processes shown previously for GLMs. That is,

parameter estimates are calculated by taking Equation 22 as the likelihood function with

hypothesis tests following from Wald statistics.

Zero-and-One Inflated

Zero-and-One Inflated Data

Allowing a mixture of the modeling of zero counts allowed a great deal of

flexibility, however recent work has been done allowing mixtures of ones in addition to

zeros, called the zero-and-one inflated Poisson (ZOIP) distribution. This work is an

attempt to reflect models that are traditionally viewed as excess zero, but where counts of

both zeros and ones may be in excess. For example, Melkersson and Olsson (1999) and

Zhang et al. (2016) present examples of the number of dental visits in the past twelve

months, while Zhang et al. (2016) presents other examples of criminal acts, fetal lamb

movement, death notice data, and ammunition factory accidents.

Zero-and-One Inflated Models

Models in this class focus on a multinomial group placement, and split groups

into three categories: a zero, a one, or a larger count. As with the ZIP models, individuals

classified into the larger count group have counts modeled using a Poisson regression.

Originally presented in an unpublished paper by Melkersson and Olsson (1999)

regarding dental visits, research into the ZOIP distribution fell off for several years. Later

picked up by Zhang et al. (2016), they note that “to our best knowledge, only two

papers... involve the ZOIP to date” (p. 11). Though such models for the hurdle

distribution have been previously considered (for instance, see Silva and Covas (2000)),

full development of these models in the ZI case is relatively recent.
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The PMF of the ZOIP model can be readily described, and is quite similar to that

shown in Equation 14 (Alshkaki, 2016, 2017; Lin & Tsai, 2013; Melkersson & Olsson,

1999; Zhang et al., 2016). Let π0 represent the probability of being assigned to the zero

count group, π1 represent the probability of being assigned to the one count group, and

πP represent the probability of being assigned to the Poisson group. Note that

membership in these groups is mutually exclusive. That is, π0 + π1 + πP = 1. The

variable Y is said to follow a ZOIP distribution, denoted Y ∼ ZOIP(λ ,π0,π1), if its PMF

is given by

f (y|λ ,π0,π1) =



π0 +πPe−λ , y = 0

π1 +πPλe−λ , y = 1

πP
λ ye−λ

y!
, y = 2,3, . . . ,

(23)

where λ is the rate of occurrence of the Poisson.

The likelihood function is defined as follows. Let Z0,Z1, and ZP be used

indicators, with Z0 = 1 when the observation is from the zero count group (and 0

otherwise), Z1 = 1 when the observation is from the one count group, and ZP = 1 when

the observation is from the Poisson group. It can be seen that Z0,Z1, and ZP are mutually

exclusive. That is, for a given participant, Z0 +Z1 +ZP = 1. Given these, the PMF shown

in Equation 23 can be expressed as shown in Equation 24, with

f (y|λ ,π0,π1,Z0,Z1) =
(

π0 +πPe−λ

)Z0
(

π1 +πPλe−λ

)Z1

×

(
πP

λ ye−λ

y!

)ZP

.

(24)

Though these authors have defined the ZOIP distribution, they have not presented

a specified model. For presentation of a model, a generalized logit function will be



22

assumed. The ZOIP can then be written in terms of a joint GLM with systematic, random,

and link components. This is shown as

log(λλλ ) = Bβββ ,

log
(

πππ1

πππ0

)
= Gγγγ, and

log
(

πππP
πππ0

)
= Aααα,

where B is an n× p covariate matrix, G is an n× q covariate matrix, A is an n× r

covariate matrix, βββ is a p× 1 vector of parameters, γγγ is a q× 1 vector of parameters, ααα is

an r×1 vector of parameters, λλλ is an n×1 rate of occurrence vector, πππ1
πππ0

is an n×1 vector

of ratios of the probability of the ith observation being in the one count group to being in

the zero count group, and πππP
πππ0

is an n× 1 vector of ratios of the probability of the ith

observation being in the Poisson group to being in the zero count group. Parameter

estimates are constructed using a maximum likelihood approach (Alshkaki, 2016; Zhang

et al., 2016).

Though this model describes zero-and-one inflated count situations, it does not

extend to inflations beyond one.

Zero-and-K Inflated

Zero-and-K Inflated Data

In addition to allowing counts of 0 and 1 to be inflated, Lin and Tsai (2013)

proposed a more generic series of models where counts of 0 and an arbitrary k can be

inflated. They present an example dataset of the number of Pap tests in the last six years,

which is shown to be inflated at zero and six.

Zero-and-K Inflated Models

Lin and Tsai (2013) define the PMF of the zero-and-k inflated Poisson (ZKIP)

similarly to that of Equation 23. To avoid confusion, the point of inflation other than zero

will be denoted K. Let π0 represent the probability of being assigned to the zero count
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group, πK represent the probability of being assigned to the one count group, and πP

represent the probability of being assigned to the Poisson group. Note that membership in

these groups is mutually exclusive. That is, π0 + πK+ πP = 1. The variable Y is said to

follow a ZKIP distribution, denoted Y ∼ ZKIP(λ ,π0,πK), if its PMF is given by

f (y|λ ,π0,πK) =



π0 +πPe−λ , y = 0

πK+πP
λ ye−λ

y!
, y =K

πP
λ ye−λ

y!
, y ∈N+\{K},

(25)

where λ is the rate of occurrence of the Poisson.

The likelihood function is defined as follows. Let Z0,ZK, and ZP be used as

indicators, with Z0 = 1 when the observation is from the zero count group (and 0

otherwise), ZK = 1 when the observation is from the K group, and ZP = 1 when the

observation is from the Poisson group. It can be seen that Z0,ZK, and ZP are mutually

exclusive. That is, for a given participant, Z0 +ZK+ZP = 1. Given these, the PMF shown

in Equation 25 can be expressed as shown in Equation 26, with

f (y|λ ,π0,π1,Z0,Z1) =
(

π0 +πPe−λ

)Z0

(
πK+πP

λKe−λ

K!

)ZK

×

(
πP

λ ye−λ

y!

)ZP

.

(26)

Lin and Tsai (2013) present a model with the form of a generalized logit. The

ZKIP using this model can be written in terms of a joint GLM with systematic, random,

and link components. This is shown as
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log(λλλ ) = Bβββ ,

log
(

πππK
πππ0

)
= Gγγγ, and

log
(

πππP
πππ0

)
= Aααα,

where B is an n× p covariate matrix, G is an n× q covariate matrix, A is an n× r

covariate matrix, βββ is a p× 1 vector of parameters, γγγ is a q× 1 vector of parameters, ααα is

an r× 1 vector of parameters, λλλ is an n× 1 rate of occurrence vector, πππK
πππ0

is an n× 1

vector of ratios of the probability of the ith observation being in the K count group to

being in the zero count group, and πππP
πππ0

is an n× 1 vector of ratios of the probability of the

ith observation being in the Poisson group to being in the zero count group. Parameter

estimates are constructed using a maximum likelihood approach (Lin & Tsai, 2013).

Though this model describes zero-and-k inflated count situations, it does not allow

inflated counts between zero and k.

Multinomially-Inflated and Models

Multinomially-Inflated Data

In addition to allowing counts of 0 and K to be inflated, Giles (2007) proposed a

series of models allowing counts from 0 to K to be inflated. Additionally, applied

practitioners have pursued the modeling of this data type through non-traditional forms of

hurdle models (e.g., the double-hurdle model introduced by Miranda (2010)). Giles

(2007) presents several example datasets: leucocyte data, which counts the number of

bacteria in leucocytes; Botswana fertility data, which counts the number of living children

for a sample of women from Botswana; and hits on the Hot 100 chart, which counts the

number of weeks that a given recording is at the top spot in the Hot 100 chart.
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Multinomially-Inflated Models

Giles (2007) defines the PMF of the zero-to-K multinomially-inflated Poisson

(MIP) similarly to that of Equation 25. Let π j represent the probability of being assigned

to the jth count group, where j = 0,1, . . . ,c. In this instance, c represented the “cutoff”

of inflation, as no values above c are treated as inflated. Additionally, let πP represent the

probability of being assigned to the Poisson count group. Note that membership in these

groups is mutually exclusive. That is, ∑π j +πP = 1. The variable Y is said to follow an

MIP distribution, denoted Y ∼MIP(λ ,π0, . . . ,πc), if its PMF is given by

f (y|λ ,π0, . . . ,πc) =



π0 +πPe−λ , y = 0

π1 +πPλe−λ , y = 1

...

πc +πP
λ ce−λ

c!
, y = c

πP
λ ye−λ

y!
, y > c,

(27)

where λ is the rate of occurrence of the Poisson.

The likelihood function is defined as follows. Let Z j for j = 0, . . . ,c be used as

indicators, with z j = 1 when the observation is from the jth count group (and 0 otherwise).

Additionally, let ZP = 1 when the observation is from the Poisson group. It can be seen

that these groups are mutually exclusive. That is, for any given participant, ∑∀ j Z j +ZP =

1. Given these, the PMF shown in Equation 27 can be expressed as shown in Equation 28,

with

f (y|λ ,π0,π1,Z0,Z1) =
(

π0 +πPe−λ

)Z0
(

π1 +πPλe−λ

)Z1
×·· ·

×

(
πc +πP

λ ce−λ

c!

)Zc
(

πP
λ ye−λ

y!

)ZP

.

(28)
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Giles (2007) presents a model with a multinomial logistic form. The MIP can then

be written in terms of a joint GLM with systematic, random, and link components. This is

shown as

log(λλλ ) = Bβββ ,

log
(

πππ0

πππP

)
= G0γγγ0,

...

log
(

πππc

πππP

)
= Gcγγγc,

where B is an n× p covariate matrix, G j are n×q j covariate matrices, βββ is a p×1 vector

of parameters, γγγ j are q j×1 vectors of parameters, λλλ is an n×1 rate of occurrence vector,

and πππ j
πππP

are n× 1 vectors of ratios of the probabilities of the ith observation being in the

jth count group to being in the Poisson group (for j = 0, . . . ,c). Parameter estimates are

constructed using a maximum likelihood approach (Giles, 2007).

Giles (2007) defines ω as

ωi j =
eG′iγ j

1+
J−1
∑

l=0
eG′iγl

, (29)

for j = 0,1, . . . ,J, with γJ = 0 imposed. Using this, Giles (2007) defines the log-likelihood

function based on a sample of n independent observations as
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L(β ,γ1,γ2, . . . ,γJ) = ∑
yi∈R0

log

(
ωi0 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ ∑
yi∈R1

log

(
ωi1 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ . . .

+ ∑
yi∈RJ−1

log

(
ωiJ−1 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ ∑
yi∈RJ

log

((
1−

J−1

∑
l=0

ωil

)
Pi

)
,

(30)

where

Pi =
e−λiλ

yi
i

yi!
, (31)

is the Poisson probability. Estimation for the MIP follows the previously discussed

maximum likelihood process.

Though this model describes zero-to-K inflated count situations, it does not allow

for relationships among related counts. This model is also computationally intensive at

higher levels of K due to the number of parameters being estimated.

Finite Mixture Models

The excess zero models discussed above can be classified as versions of a finite

mixture model (FMM). Finite mixture models can be used in a wide variety of situations

and circumstances, and are gaining increasing traction in the statistical literature (Everitt

& Hand, 1981; McLachlan & Peel, 2000). From a broad perspective, FMM are a

weighted combination of multiple density functions or classes.

Density Function

In general, finite mixture model densities may be expressed as

f (y) =
g

∑
i=1

πi fi(y|θθθ i), (32)
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where y are the n× 1 vector of observed responses, fi is the conditional probability

density function for the observed response in the ith class, πi is the probability for the ith

class, and θθθ i are the vector of parameters for each class. The πi’s are subject to the further

constraint that they are between zero and one, and sum to one; that is,

0≤ πi ≤ 1 (i = 1, . . . ,g) (33)

and
g

∑
i=1

πi = 1. (34)

The quantities π1, . . . ,πg are called the mixing proportions or weights (McLachlan

& Peel, 2000).

Estimation

Since the discovery of the EM algorithm, almost all papers that utilize ML

estimation of FMM do so via the EM algorithm (McLachlan & Peel, 2000). Details of the

utilization of the EM algorithm for FMM follow closely with its example provided for the

ZIP.

Identifiability

An important concept in FMM is that of identifiability. In many ways, the

estimation and interpretation of the parameters based on the observations are only

meaningful if the parameters are identifiable. In general, identifiability indicates if a

parameter can be estimated from experimental data (Raue & Timmer, 2013). As FMM

uses multiple component densities, identifiability can be impacted simply by changing

component labels (the “label-switching problem”). The lack of identifiability is generally

handled by imposing a constraint on the parameters (say, that the mixing proportions are

in a specified order). Another approach is to avoid restriction and simply report the result

of one possible arrangement of the parameters. Using this approach, McLachlan and Peel

(2000) state, “this lack of identifiability is not of concern in the normal course of events in
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the fitting of mixture models by maximum likelihood, say, via the EM algorithm” (p. 27).

Though these are potential solutions to the label-switching identifiability issue in FMM,

other issues with identifiability may exist even when these solutions are implemented.

Discussions of identifiability for previously used inflation models is scarce in the

current literature. Though Li (2012) conducts an initial thorough exploration of

identifiability for the ZIP, explorations of the identifiability of the ZOIP, ZKIP, and the

MIP models have yet to be conducted.

Zero to K Inflated Data

As presented by Giles (2007), there are many situations involving inflation from

zero to K. Additional situations include be the number of detentions received by students,

the number of ER visits made by patients, or the number of cigarettes smoked in the last

week. Situations such as these clearly have inflation in the lower counts. While the model

presented by Giles (2007) accounts for this inflation, it doesn’t take into account the

relationship that occurs among the inflated values. While Giles uses the multinomial

model, the multinomial distribution isn’t applied (the only limit on the probabilities is that

they sum to one). In this case, models that account for relationships among small count

inflation may offer better prediction of counts and group membership. The purpose of this

dissertation is to address this gap in the literature by demonstrating the construction of a

general zero-to-K inflated model using FMM. This model is named the small count

inflated (SCI) model.

SCI models extend models such as ZI models, ZOI models, ZKI models, and MI

models, which address count inflation of inflated counts individually. Building on MI

models, the SCI model accounts for inflation by using two (instead of k + 2) classes,

where the first class represents the inflation and the second class represents the count

distribution. As an MI model may be viewed as an FMM with K+ 2 groups (K+ 1 of

which are degenerate), a SCI model may be viewed as an FMM with 2 groups, the first of

which is a truncated count distribution designed to capture the small count inflation, the
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second which is the un-truncated count distribution. The purpose of this dissertation was

to address this.
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CHAPTER III

METHODS

The multinomially-inflated Poisson (MIP) model is an effective approach for the

modeling of count data with multiple points of inflation above that expected by the

Poisson distribution. Giles (2007) also demonstrates the necessity and usefulness of such

models in applied situations, above and beyond previous models (e.g., Lambert, 1992).

However, due to the independent estimations of counts from zero to K, Giles

(2007) method does not place any order on the estimation of counts below K. That is,

there is assumed to be no relationship between the levels of inflation at values below K.

Additionally, as K increases, the sample size needed to form multinomial estimates of

group membership also increase. This study proposes to add a distributional assumption

on counts from zero to K, extending research by Giles (2007) to include parametric

estimation and by Lambert (1992) and Lin and Tsai (2013) to include a range of inflation

from zero to K.

Small count inflated (SCI) models extend models such as zero-inflated (ZI)

models, zero and one inflated (ZOI) models, zero and k inflated (ZKI) models, and

multinomially-inflated (MI) models, which address count inflation under the finite

mixture model (FMM) framework. Building on MI models, the SCI model accounts for

inflation by using two (instead of K) classes, where the first class represents the inflation

and the second class represents the count distribution. A MI model may be viewed as an

FMM with K+2 groups, K+1 of which are degenerate. In contrast, a SCI model may be

viewed as an FMM with 2 groups, the first of which is a truncated count distribution
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designed to capture the small count inflation, the second which is the un-truncated count

distribution.

Research Questions

This study addressed the following questions:

Q1 How can a SCIP distribution be specified?

Q2 How can parameters be estimated for the SCIP distribution?

Q3 How can a SCIP distribution be implemented in R?

Q4 In terms of percentage correct and area under the ROC curve, how well
will the SCIP distribution predict group membership compared to the
zero-inflated and multinomially-inflated Poisson models?

Q5 In terms of mean squared error (MSE), how well will the SCIP
distribution predict counts compared to the zero-inflated and
multinomially-inflated Poisson models?

This chapter will first present the construction of the general SCI model using a

finite mixture model (FMM) framework. The likelihood function will then be discussed,

followed by score functions to obtain estimates of parameters and standard errors. Finally,

evaluation methods of the proposed model will be discussed.

Small Count Inflation Poisson Model

This section is written to address the first research question. The SCI model is an

appropriate model for data involving inflation of “small” counts. Examples may be the

number of cigarettes smoked in a week, the number of detentions received by students in

the previous year, and the number of times people visit the emergency room in the

previous year. Previous studies have considered inflation of such counts on a case by case

basis, using multinomial logistic regression to model the inflated counts individually

(Giles, 2007). This study extends such methods to allow relationship between the inflated

counts.

The SCIP model is a member of the finite mixture model family, and is formed by

mixing a truncated and un-truncated Poisson distribution. The truncated Poisson

distribution is a right truncated distribution, with the cutoff being chosen based on theory.



33

This distribution models the inflated nature of the lower counts. The un-truncated Poisson

distribution models the larger counts, and overlaps with the truncated distribution at and

below the cutoff. The expectation of both distributions is related to the parameters via a

log link. Additionally, the mixing proportions represent the probability of an observation

coming from a given population, and are described by a binomial distribution. The

expectation of this distribution is linked to the parameters via a logit link function.

Following the form of a finite mixture distribution shown in Equation 32, the

probability mass function (PMF) for the SCIP is readily described in answer to research

question one. Let πS represent the probability of an observation originating from the

truncated Poisson group, and let πL be the probability of an observation originating from

the un-truncated Poisson group. Note that membership in these groups is mutually

exclusive. That is, πS + πL = 1. The random variable Y is said to follow a SCIP

distribution, denoted Y ∼ SCIP(πS ,λP ,λT P), if its PMF is given by

f (y|π0,λ ) =



πS

e−λSλ
y
S

y!

(
c

∑
k=0

e−λSλ k
S

k!

)−1


+(1−πS)

(
e−λLλ

y
L

y!

)
, y≤ c

(1−πS)

(
e−λLλ

y
L

y!

)
, y > c,

(35)

or

f (y|πS ,λS ,λL) = Iy≤c πS

e−λSλ
y
S

y!

(
c

∑
k=0

e−λSλ k
S

k!

)−1


+(1−πS)

(
e−λLλ

y
L

y!

)
,

(36)

where y is the count, λS is the rate of occurance for the truncated Poisson, λL is the rate

of occurance for the un-truncated Poisson, c is the truncation value (with the truncated
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distribution being defined for integers from 0 to c), and Iy≤c is an indicator function (one

when y≤ c, and zero otherwise).

Using Equation 35, the PMF for n independent samples is

n

∏
i=1

f (yi|πS ,λS ,λL) (37)

for observations y1,y2, . . . ,yn. The SCIP model can be written in terms of a joint

generalized linear model (GLM), and can be expressed as

log(λλλS) = Sϡϡϡ,

log(λλλL) = Kϟϟϟ,

logit(πππS) = Gγγγ,

(38)

or

λλλS = eSϡϡϡ,

λλλL = eKϟϟϟ,

πππS =
eGγγγ

1+ eGγγγ
,

(39)

where S is an n× p covariate matrix, K is an n×q covariate matrix, G is an n×r covariate

matrix, ϡϡϡ is a p× 1 vector of parameters, ϟϟϟ is a q× 1 vector of parameters, γγγ is an r× 1

vector of parameters, λλλS is an n× 1 rate of occurrence vector for the truncated Poisson,

λλλL is an n× 1 rate of occurrence vector for the un-truncated Poisson, and πππS is an n× 1

vector of probabilities that the observation is in the truncated Poisson group.

In this case, the parameter vectors ϡϡϡ, ϟϟϟ, and γγγ take on separate interpretations. The

r× 1 γγγ parameter vector relates to the probability that a case will fall into the truncated

Poisson group, the p× 1 ϡϡϡ parameter vector relates to the truncated Poisson count group

conditional on membership in the truncated Poisson group, and the q× 1 ϟϟϟ parameter

vector relates to the un-truncated Poisson count group conditional on membership in the
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un-truncated Poisson group. The eγγγ vector can be interpreted as odds ratios, while the eϡϡϡ

vector can be interpreted as the multiplicative change in expected counts for the truncated

Poisson group and the eϟϟϟ vector can be interpreted as the multiplicative change in the

expected counts for the un-truncated Poisson group.

Parameter Estimation

This section is written to address the second research question. Parameter

estimates of the SCIP are obtained using the maximum likelihood estimation (MLE)

procedure via the expectation-maximization (EM) algorithm in answer to research

question two. As before, MLE uses the likelihood function to find parameter estimates

and standard errors. Parameters are found by solving the first derivative of the likelihood

function for zero, while standard errors are found by evaluating the second derivative of

the likelihood function.

Likelihood Function

The likelihood function for the SCIP is shown in Equation 37. Using this equation

as a likelihood, however, we reverse the conditions to condition the parameters on the

data. That is, we set

fi(yi|πS ,λS ,λL) = `i(πS ,λS ,λL|yi) (40)

and take the likelihood to be

`=
n

∏
i=1

`i(πS ,λS ,λL|yi). (41)

First Derivatives

For simplification of the process of taking the first derivatives, we will first

consider the derivative of a generic FMM as shown by Shalizi (2017), matching notation

by replacing `i with f . For a generic FMM, the likelihood can be expressed as

`=
n

∏
i=1

f (θθθ |yi), (42)
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where θθθ is a vector of the mixing weights and distributional parameters and yi is the

observed outcome for the ith participant. Taking the logarithm of the likelihood, we find

L =
n

∑
i=1

log( f (θθθ |yi))

=
n

∑
i=1

log

(
K

∑
k=1

πk fk(θθθ k|yi)

)
,

(43)

where πk is the mixing weight of the kth distribution, fk is the kth PDF, θθθ k is the vector of

parameters for the kth distribution, and K is the total number of distribution in the FMM.

Taking the derivative of Equation 43 with respect to a generic parameter vector θθθ j, we

find

∂L
∂θθθ j

=
n

∑
i=1

1

∑
K
k=1 πk fk(θθθ k|yi)

π j
∂ f j(θθθ j|yi)

∂θθθ j

=
n

∑
i=1

π j f j(θθθ j|yi)

∑
K
k=1 πk fk(θθθ k|yi)

1
f j(θθθ j|yi)

∂ f j(θθθ j|yi)

∂θθθ j

=
n

∑
i=1

((
π j f j(θθθ j|yi)

∑
K
k=1 πk fk(θθθ k|yi)

)(
∂ log

(
f j(θθθ j|yi)

)
∂θθθ j

))
.

(44)

Using this form of the derivative of the FMM, we will now show the derivative of

the SCIP. First, pieces of the derivatives will be shown. Then, the derivatives will be given

with respect to the three sets of parameters (ϡϡϡ, ϟϟϟ, and γγγ).

Derivative of the logarithm of the Poisson distribution. Let fP be a Poisson

distribution with λ as the rate parameter and y as the count. The logarithm fP can be

simplified as follows:

log( fP) = log

(
e−λ λ y

y!

)

= log
(

e−λ

)
+ log(λ y)− log(y!)

=−λ + y log(λ )− log(y!).

(45)
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Taking the derivative of this equation with respect to λ , it can be seen that

∂ log( fP)
∂λ

=−1+
y
λ
−0

=
y−λ

λ
.

(46)

Derivative of the logarithm of the truncated Poisson distribution. Let fT P be

a right truncated Poisson distribution with λ as the rate parameter, y as the count, and

include the truncation value denoted c. The logarithm of fT P can be simplified as

follows:

log( fT P) = log

e−λ λ y

y!

(
c

∑
k=0

e−λ λ k

k!

)−1


= log
(

e−λ

)
+ log(λ y)− log(y!)− log

(
c

∑
k=0

e−λ λ k

k!

)

=−λ + y log(λ )− log(y!)− log

(
c

∑
k=0

e−λ λ k

k!

)
.

(47)

Taking the derivative of this equation with respect to λ , it can be seen that

∂ log( fT P)

∂λ
=

y−λ

λ
− 1

∑
c
k=0

e−λ λ k

k!

c

∑
k=0

(−1)e−λ λ k +(k)e−λ λ k−1

k!

=
(y−λ )∑

c
k=0

e−λ λ k

k! −λ

(
∑

c
k=0

e−λ λ k−1

k! (k−λ )
)

λ

(
∑

c
k=0

e−λ λ k

k!

)
=

(
∑

c
k=0

(
e−λ λ k

k! (y−λ )
))
−
(

∑
c
k=0

(
e−λ λ k

k! (k−λ )
))

λ

(
∑

c
k=0

e−λ λ k

k!

)
=

∑
c
k=0

(
e−λ λ k

k! ((y−λ )− (k−λ ))
)

λ

(
∑

c
k=0

e−λ λ k

k!

)
=

∑
c
k=0

e−λ λ k

k! (y− k)

λ

(
∑

c
k=0

e−λ λ k

k!

) .

(48)
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Derivatives of the log-likelihood of the mixture model. Using the above

derivations and the general form of derivatives for FMMs shown in Equation 44, the

derivatives with respect to the parameters of the SCIP will now be shown. The derivative

of the SCIP with respect to λS for the ith observation is found for yi ≤ c, and takes the

form

∂L
∂λSi

=


πSi

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1


πSi

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
+(1−πSi)

(
e
−λLi λ

yi
Li

yi!

)


×

∑
c
k=0

e
−λSi λ k

Si
k! (yi− k)

λSi

(
∑

c
k=0

e
−λSi λ k

Si
k!

)
 .

(49)

The derivative of the SCIP with respect to λL for the ith observation takes the form

∂L
∂λLi

=


(1−πSi)

(
e
−λLi λ

yi
Li

yi!

)

πSi

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
+(1−πSi)

(
e
−λLi λ

yi
Li

yi!

)


×
(

yi−λLi

λLi

)
.

(50)
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The derivative of the SCIP with respect to πS for the ith observation is based

Equation 43 instead of Equation 44, and takes the form

∂L
∂πSi

=

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
−(e

−λLi λ
yi
Li

yi!

)

πSi

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
+(1−πSi)

(
e
−λLi λ

yi
Li

yi!

) . (51)

These derivatives are taken with respect to the shape parameter of the three

distributions. However, Equation 39 shows these parameters to be functions of a set of

covariates and a vector of parameters. Derivatives with respect to these vectors of

parameters can be easily calculated via the chain rule, and will now be shown. The

derivative of the SCIP with respect to ϡϡϡ for the ith observation is
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∂L
∂ϡϡϡ

=
∂L

∂λSi

∂λSi

∂ϡϡϡ

=
∂L

∂λSi

SieSiϡϡϡ

=
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∂λSi

SiλSi
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πSi
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Si
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(
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Si
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πSi
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Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
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Li
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∑
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e
−λSi λ k

Si
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λSi

(
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c
k=0

e
−λSi λ k

Si
k!

)
SiλSi,

(52)

where Si is the ith row of the design matrix S.

Similarly, the derivative of the SCIP with respect to ϟϟϟ for the ith observation is

∂L
∂ϟϟϟ

=
∂L

∂λLi

∂λLi

∂ϟϟϟ

=
∂L

∂λLi

KieKiϟϟϟ

=
∂L

∂λLi

KiλLi

=


(1−πSi)

(
e
−λLi λ

yi
Li

yi!

)

πSi

 e
−λSi λ

yi
Si

yi!

(
c
∑

k=0

e
−λSi λ k

Si
k!

)−1
+(1−πSi)

(
e
−λLi λ

yi
Li

yi!

)


×
(

yi−λLi

λLi

)
KiλLi,

(53)

where Ki is the ith row of the design matrix K.
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Finally, the derivative of the SCIP with respect to γγγ for the ith observation is

∂L
∂γγγ

=
∂L

∂πSi

∂πSi

∂γγγ

=
∂L

∂πSi

(
GieGiγγγ

)(
1+ eGiγγγ

)
−
(
eGiγγγ

)(
GieGiγγγ

)(
1+ eGiγγγ

)2

=
∂L

∂πSi

GieGiγγγ(
1+ eGiγγγ

)2

=
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∂πSi

GiπSi (1−πSi)
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 e
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yi!

(
c
∑
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e
−λSi λ k

Si
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)

πSi
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Si
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(
c
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e
−λSi λ k

Si
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+(1−πSi)

(
e
−λLi λ
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)


×GiπSi (1−πSi) ,

(54)

where Gi is the ith row of the design matrix G.

These equations are the estimating equations used to find parameter estimates.

Parameter estimates are found by setting these equal to zero and solving. In equation

form, this is shown as

∂L
∂ϡϡϡ

=0,

∂L
∂ϟϟϟ

=0,

∂L
∂γγγ

=0.

Note that the derivatives with respect to each of the parameters are not

independent. That is, each of the derivatives with respect to one parameter includes all of

the other parameters.
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Expectation Maximization Implementation

This section discusses the EM implementation of the SCIP. Note that a similar

discussion is also provided in Chapter IV to address the third research question.

Implementation of the EM algorithm for the SCIP follows the same principles as EM

implementation for the ZIP. A Poisson model was used to determine initial parameter

estimates for the small and large count components, while logistic regression (with the

outcome being defined as 1 if yi < c and 0 otherwise) was used to determine initial

parameter estimates for the logistic component. Given these parameters, initial

probabilities of group membership were calculated. Using initial values, the process

alternated between estimating group membership and estimating parameters, using the

most updated estimates of each at each step. The process iterated until the change in

parameters from one iteration to the next met convergence criterion (all changes were less

than 10−9) or met the maximum number of iterations (100). First, let

ΨΨΨ =



ϡϡϡ

ϟϟϟ

γγγ


. (55)

Following the algorithm described by McLachlan and Peel (2000), the kth iteration of the

algorithm uses

τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
) =

π̂
(k)
Si

fT P(yi, λ̂
(k)
Si

)

π̂
(k)
Si

fT P(yi, λ̂
(k)
Si

)+(1− π̂
(k)
Si

) fP(yi, λ̂
(k)
Li

)
(56)

as the next estimate of group membership in the small count inflated group, where

τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
) is the function of updated estimates of group membership given the ith

observed count (yi) and the estimated parameters from the current iteration (Ψ̂ΨΨ
(k)

), π̂
(k)
Si

is
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ith element of the current estimated population proportion of the small count inflated

group, fT P(yi, λ̂
(k)
Si

) is the evaluation of the ith element of the truncated Poisson given the

observed count and the current estimate of its mean, and fP(yi, λ̂
(k)
Li

) is the evaluation of

the ith element of the Poisson given the observed count and the current estimate of its

mean. Similarly, McLachlan and Peel (2000) globally maximize

Q(ΨΨΨ,Ψ̂ΨΨ
(k)
) =

n

∑
i=1

(
τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
)log(πSi fT P(yi,λSi))+

(1− τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
))log((1−πSi) fP(yi,λLi))

) (57)

with respect to ΨΨΨ to give the updated estimate ΨΨΨ(k+1). Note that because ΨΨΨ is made up of

ϡϡϡ,ϟϟϟ, and γγγ which define πSi , λSi , and λLi , the means in Equation 70 are not the kth

iteration estimates because Q is being maximized with respect to them in order to

determine their estimates.

Hypothesis Testing

Standard errors of the parameter estimates are found by first taking the second

derivative of the likelihood function to find the information matrix. The expected value

of the information matrix is used, and in practice parameter estimates are used in place of

unknown parameters. The standard errors are the square roots of the diagonal elements of

the inverse information matrix (Agresti, 2002). In equation form, if we let

ΨΨΨ =



ϡϡϡ

ϟϟϟ

γγγ


, (58)

the inverse information matrix is given as

Cov(ΨΨΨ) =

(
−E
[

∂ 2L
∂ΨΨΨ∂ΨΨΨ′

])−1

, (59)
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while the empirical inverse information matrix can be given as

ˆCov
(

Ψ̂ΨΨ

)
=

(
−E
[

∂ 2L
∂ΨΨΨ∂ΨΨΨ′

∣∣∣∣
Ψ̂ΨΨ

])−1

. (60)

So long as regularity conditions are met, ML parameter estimates and standard

errors are used to perform hypothesis testing, with the Wald ratio being compared to a

standard normal distribution. That is, with a nonnull standard error (denoted SE) of β̂ , the

test statistic

z =
(β̂ −β0)

SE
(61)

has an approximate normal distribution when β = β0, which may be compared to a

standard normal table. For a two-sided alternative to the standard normal, z2 has a

chi-squared distribution with one degree of freedom. This type of statistic is called a Wald

statistic (Agresti, 2002; Wald, 1943), and is used as the primary means of hypothesis

testing for the SCIP.

Model Comparisons

The third research question is addressed via R code alluded to in this section, and

provided in Appendix B. A live version of this code is currently available as a package,

and includes all code used for models and the simulation shown in this dissertation. It is

available at https://github.com/flor3652/BigD. The package can be directly installed to R

by following directions included in the read-me file.

This section is written to address the fourth and fifth research questions. In

Chapter IV, simulated and observed data (available at http://tiny.cc/cdcdata1) are

analyzed. The observed dataset contains health data from the Centers for Disease Control

and Prevention (CDC) Behavioral Risk Factor Surveillance System (BRFSS). The data

are collected via phone, with more than 400,000 adults being interviewed each year. The

2016 dataset will be used in this study. This dataset includes variables on behaviors such

as drinking, smoking, and overall health. Performance in the analysis of simulated data

https://github.com/flor3652/BigD
http://tiny.cc/cdcdata1
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based on this dataset will be compared between the SCIP, zero-inflated Poisson (ZIP), and

multinomially-inflated Poisson (MIP) models to address research questions four and five.

The ZIP model constructed by Lambert (1992) is a common solution for modeling

data that have inflation at zero. This model splits the observations into a degenerate

population (at zero) and a count population, where the count population are allowed to

have counts of zero. In this model, however, any count above zero is forced to belong to

the count population. The MIP model constructed by Giles (2007) is a more recent

solution to the inflated counts problem, and allows inflation in the same counts as the

SCIP. The MIP splits observations into multiple degenerate groups (at the points of

inflation) and a count population, where the count population can have counts at all of the

points of inflation. The MIP model, however, does not specify a relationship between the

points of inflation. That is, the order and pattern of the count values in the small

population are not considered. In essence, each inflated count is treated as its own

distribution, and is given a separate probability of occurrence.

Candidate Models

This section presents the specific models that are compared in both empirical and

simulated data situations. The empirical comparison uses the variables as listed, while the

simulation generates data which mimics the values observed from the empirical fit.

Generated data will mimic the descriptives for each variable (e.g., mean and variance) in

addition to the parameter estimates attained from fitting the SCIP model. For these

models, the number of days a participant has participated in binge drinking (5 or more

drinks B) in the previous month is used as the outcome, and the participant’s weight (W )

is used as the predictor. The cutoff value of c = 8 is used for the models below. The

construction of the models is shown below.
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Zero-Inflated Model

For the ZIP, the model is shown as

log(λBi) = β0 +β1xWi,

logit(π0i) = γ0 + γ1xWi.

(62)

Note that the ZIP model has only two components: the zero inflation component,

and the Poisson count component.

Multinomially-Inflated Model

For the MIP, the model is shown as

log(λBi) = β0 +β1xWi,

log
(

π0i

πPi

)
= γ00 + γ10xWi,

log
(

π1i

πPi

)
= γ01 + γ11xWi,

log
(

π2i

πPi

)
= γ02 + γ12xWi,

log
(

π3i

πPi

)
= γ03 + γ13xWi,

log
(

π4i

πPi

)
= γ04 + γ14xWi,

log
(

π5i

πPi

)
= γ05 + γ15xWi,

log
(

π6i

πPi

)
= γ06 + γ16xWi,

log
(

π7i

πPi

)
= γ07 + γ17xWi,

log
(

π8i

πPi

)
= γ08 + γ18xWi.

(63)
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Note that the MIP has 8 + 2 = 10 components: a component for each of the

inflated counts from one to eight, a component for the probability of a Poisson, and a

component for the Poisson count.

Small Count Inflated Model

For the SCIP, the model is shown as

log(λSBi) = ϡ0 +ϡ1xWi,

log(λLBi) = ϟ0 +ϟ1xWi,

logit(πSBi) = γ0 + γ1xWi.

(64)

Note that the SCIP model has three components: the small count Poisson

component, the large count Poisson component, and the mixing weight component.

Comparisons of Group Membership

All three models being compared assign observations to respective groups. It is of

interest to know how well each of these models classifies the observation into the correct

group. Through the generation of data with known groups, correct classification of group

membership can be compared for each of the three models. Curves illustrating the correct

classifications, such as ROC curves, are presented. Additionally, area under the ROC

curve will also be presented.

Predicted group membership for the ZIP and SCIP will be based on their logistic

components. Predicted group membership for the MIP will use the sum of all of the

inflated groups probabilities as the estimate for membership in the inflated count group.

That is,

πππS =
c

∑
g=0

πππg, (65)

where πππS is the vector of probabilities of an observation being in the small count inflated

group and c is the cutoff of inflation. This formulation of πππS was used to best compare

with predictions of the ZIP and the SCIP.
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Comparison of Predicted Counts

In addition to group membership, accuracy of predictions for each of the three

models is of interest. This method of comparison is based upon the theory that the MIP

may accurately model an observed distribution (as each value may represent the observed

probability in a training dataset), but the specification of a correct underlying distribution

will prevent such models from overfitting. In this way, though error estimates of the SCIP

and MIP may be similar for a training dataset, prediction errors may differ. Comparison

of the MSE for predictions of known outcomes is conducted. The equation used to

calculate MSE is

MSE =
1
n

n

∑
i=1

(
Ŷi−Yi

)2
, (66)

where Ŷi is the ith predicted value, Yi is the ith value, and n is the number of observations

in the test set. Additionally, plots of predicted values over weight ranges will be given for

the models.

Simulation

The simulation for this study was conducted using the most recent version of R

(currently 3.4.1). Separate values of c (the cutoff for inflation) and n (the sample size of

the training dataset) were used.

Cutoffs of c = 2,c = 6, and c = 8 are used. Giles (2007) demonstrates the use of

two-inflated count models, while Lin and Tsai (2013) shows an example of a six-inflated

count model. The cutoff of eight was additionally selected as a theoretical relationship to

the empirical situation: it is the number of nights that higher drinking behavior may be

expected in a four week month (a.k.a. number of weekend nights).

Sample sizes of training datasets used in simulation are

n = 25,n = 50,n = 100,n = 200, and n = 500, representing multiple ranges of samples

that may be seen in practice. Zhang et al. (2016) demonstrates the use of sample sizes

from n = 50 to n = 500 in their simulation study on zero-and-one inflated Poisson
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distributions. A sample size of 25 is included to evaluate the relative accuracy of these

models in small sample data situations. The optim function in R is used to solve the

derivatives to obtain maximum likelihood estimates (R Core Team, 2017)

Data Generation

Data generation will use randomly generated outcomes and independent variables,

with parameters from the empirical fitting of the SCIP. First, the independent variable

weight is generated according to the observed mean and variance of the weight variable

from the BRFSS. Second, estimated parameters from fitting the SCIP model to the

BRFSS dataset are used as population parameters in the data generation. That is,

parameter estimates from the model

log(λSBi) = ϡ̂0 + ϡ̂1xWi

log(λLBi) = ϟ̂0 + ϟ̂1xWi

logit(πSBi) = γ̂0 + γ̂1xWi

(67)

are used as population parameters for generating data. Third, given these parameter

estimates, a Bernoulli distribution with probability πSBi randomly generates group

membership. Finally, if the observation falls within the small count group, a

right-truncated Poisson (truncated at c) is generated with shape parameter λSBi . If the

observation does not fall into the small count group (it falls into the large count group), an

un-truncated Poisson is generated with shape parameter λLBi .

Starting values for the Poisson components are calculated via fitting a GLM to the

data, while starting values for the logistic component are calculated through a logistic

regression with the dataset split at c. An expectation-maximization process is conducted,

alternating between estimation of the parameters and estimation of the group

membership. Following the process of Zhang et al. (2016), this parameter estimation

procedure occur with k = 1000 datasets. For each dataset, models shown in Equation 62,

Equation 63, and Equation 64 are fitted.
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After all parameter estimates have been obtained, research question four is

addressed by comparing average correct group classification percentages and average area

under the ROC curve. Research question five is addressed by comparing average

prediction MSEs. Models with higher classification percentages, higher area under the

ROC curve, and lower average MSEs will be judged as more efficient.
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CHAPTER IV

RESULTS

This chapter presents the empirical and simulation statistics used to evaluate the

model that is presented in Chapter 3. First, review of previously addressed topics is

provided. Then, details on implementation are provided, ending with results of the fitting

of the empirical dataset. Finally, details and results of the simulation study are presented.

Specification

To address research question one, specification of the small count inflated Poisson

(SCIP) distribution has been demonstrated in Chapter III. This includes piecewise and

joint probability mass functions (PMFs) for the SCIP, as well as details on designating a

SCIP model.

Parameter Estimation

To address research question two, parameter estimation for the SCIP has been

demonstrated in Chapter III. This includes the definition of the likelihood function and

determining derivatives of the log-likelihood with respect to parameter vectors, setting

these derivatives to zero, and solving simultaneously for the parameter estimates. The

expectation-maximization (EM) algorithm, further discussed below, is used to determine

an iterative solution for the parameters (Dempster, Laird, & Rubin, 1977).

Implementation

To address research question three, R code demonstrating the implementation is

included in the Appendix B. Details of SCIP implementation is discussed below. First, the

EM process is briefly discussed. Then, asymptotic distributions of parameter estimates
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using the implemented process are presented. Finally, application of the implemented

process to a large dataset is demonstrated.

Expectation Maximization

The EM algorithm is a popular method for parameter estimation, used for

estimation by a majority of the finite mixture model (FMM) literature since its discovery

(McLachlan & Peel, 2000). The process leverages the fact that were group membership

known, estimation would be straightforward. Using this process, the EM algorithm

alternates between estimating group membership (given the parameters) and estimating

parameters (given group membership). This process iterates until convergence criterion

are met. A detailed example of the process is provided for the ZIP in Chapter II.

Implementation of the EM algorithm for the SCIP follows the same principles. A

Poisson model was used to determine initial parameter estimates for the small and large

count components, while logistic regression (with the outcome being defined as 1 if yi < c

and 0 otherwise) was used to determine initial parameter estimates for the logistic

component. Given these parameters, initial probabilities of group membership were

calculated. Using initial values, the process alternated between estimating group

membership and estimating parameters, using the most updated estimates of each at each

step. The process iterated until the change in parameters from one iteration to the next

met convergence criterion (all changes were less than 10−9) or met the maximum number

of iterations (100). First, let

ΨΨΨ =



ϡϡϡ

ϟϟϟ

γγγ


. (68)
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Following the algorithm described by McLachlan and Peel (2000), the kth iteration of the

algorithm uses

τ̂
(k+1)
S (yi,Ψ̂ΨΨ

(k)
) =

π̂
(k)
Si

fT P(yi, λ̂
(k)
Si

)

π̂
(k)
Si

fT P(yi, λ̂
(k)
Si

)+(1− π̂
(k)
Si

) fP(yi, λ̂
(k)
Li

)
(69)

as the next estimate of group membership in the small count inflated group, where

τ̂
(k+1)
S (yi,Ψ̂ΨΨ

(k)
) is the function of updated estimates of group membership given the ith

observed count (yi) and the estimated parameters from the current iteration (Ψ̂ΨΨ
(k)

), π̂
(k)
Si

is

ith element of the current estimated population proportion of the small count inflated

group, fT P(yi, λ̂
(k)
Si

) is the evaluation of the ith element of the truncated Poisson given the

observed count and the current estimate of its mean, and fP(yi, λ̂
(k)
Li

) is the evaluation of

the ith element of the Poisson given the observed count and the current estimate of its

mean. Similarly, McLachlan and Peel (2000) globally maximize

Q(ΨΨΨ,Ψ̂ΨΨ
(k)
) =

n

∑
i=1

(
τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
)log(πSi fT P(yi,λSi))+

(1− τ̂
(k+1)
Si

(yi,Ψ̂ΨΨ
(k)
))log((1−πSi) fP(yi,λLi))

) (70)

with respect to ΨΨΨ to give the updated estimate ΨΨΨ(k+1). Note that because ΨΨΨ is made up of

ϡϡϡ,ϟϟϟ, and γγγ which define πSi , λSi , and λLi , the means in Equation 70 are not the kth

iteration estimates because Q is being maximized with respect to them in order to

determine their estimates.

Asymptotics

Chapter II discusses the importance of identifiability in FMM. As discussed, there

is little research into identifiability of excess-zero models (and beyond), with the

zero-inflated Poisson (ZIP) being the only model in this class where identifiability has

been shown (Li, 2012). Additionally, McLachlan and Peel (2000) discuss that the

label-switching problem for identifiability is not of concern when utilizing the EM
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algorithm (and presenting a possible arrangement of parameters). This said, it is

important to determine asymptotic properties of parameter estimates, especially when

lack of identifiability from other sources is of question. Though a formal proof of

identifiability is not included as it is not the focus of this study, this section demonstrates

that the parameter estimates of the SCIP used for the simulation show desirable

asymptotic properties.

A simulation of 1000 replications was run with the SCIP, using a cutoff of c = 8

and sample sizes of n = 25,50,100,200, and 500. Parameters were set at an intercept of

-0.99 and slope of 0 for the small count inflated group, an intercept of 2.52 and a slope of

0 for the Poisson count group, and an intercept of 2.21 and a slope of 0 for the logistic

regression (parameter estimates from the empirical example, shown in Table 2). For each

sample size, histograms of parameter estimates were calculated. In these histograms,

there are three main characteristics that were checked: the center of the distribution, the

shape of the distribution, and the spread of the distribution. It is expected for parameter

estimates to be asymptotically normal, centered on the actual value, and to have a reduced

spread as the sample size increases.

Especially in the smaller sample sizes, there are large outliers that make

meaningful visual summary of the data difficult. To most clearly illustrate the patterns of

the estimates, histograms were constructed both with and without the outliers included,

and are shown in Figures 1 and 2. A value was calculated to be an outlier for a parameter

if it exceeded 1.5 times the interquartile range of the parameter estimates at that sample

size. For convenience and clarity, the percentage of observations removed in creating the

graph is noted in each histogram’s subtitle (0% for all graphs in Figure 1).

To better illustrate the relative comparison among parameters and sample sizes,

Table 1 shows the variance of each of the parameter estimates at each sample size. Note

that outliers are not removed for the calculations shown in Table 1. It is clear that these
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variances decrease as the sample size increases, and that the pattern is consistent across

all parameters.

Table 1.

Asymptotic Variation For Each Small Count Inflated Poisson Parameter by Sample Size

n

25 50 100 200 500

Small Count Intercept 31.373817 1.899284 0.765476 0.331990 0.144733

Small Count Slope 0.000574 0.000048 0.000019 0.000008 0.000004

Large Count Intercept 222.668992 25.519419 0.935186 0.170806 0.046214

Large Count Slope 0.006363 0.000602 0.000021 0.000004 0.000001

Logistic Intercept 8718.888224 23.275833 3.430233 1.624473 0.575867

Logistic Slope 0.210430 0.000415 0.000083 0.000040 0.000014

In addition to other observations, is clear that the logistic and large count

components require the largest sample sizes to produce estimates without outliers. A

likely reason for this slow convergence is the large weight assigned to the small count

group, making group prediction and estimation of the large count group (with a much

lower relative sample size) difficult. Further discussion of this is presented in Chapter 5.
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Figure 1. Empirical Asymptotic Distribution of SCIP Parameter Estimates Without

Outliers Removed
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Figure 2. Empirical Asymptotic Distribution of SCIP Parameter Estimates With Outliers

Removed

Figures 1 and 2 illustrate that SCIP parameter estimates have the three desired

traits of parameter estimates. Each shows that the distribution is roughly centered around

the actual value (shown via the vertical dotted line). It is also clear that as the sample size

increases, the variation decreases. This is best seen through the change in range of values

shown on the x-intercept of the graphs (not held constant for relative viewing, especially

in Figure 1, because of the drastic differences in range of parameter estimates between

sample sizes). Finally, as the sample size increases, the distribution of each of the

parameter estimates appears to approach normality.

Empirical Example

For an empirical example on the use of the SCIP, the model was fit to the 2016

Behavioral Risk Factor Surveillance System (BRFSS) data collected by the Centers for

Disease Control and Prevention (CDC). Binge drinking behavior over the previous 30

days is used as the outcome and weight is used as the independent variable. Two
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histograms of binge drinking behavior are shown in Figure 3. The histogram on the left

shows all data, including the scale of inflation at zero. The histogram on the right

illustrates the small population of individuals who display more regular binge drinking

behavior.

Figure 3. Histogram of Binge Drinking Behavior from the Behavioral Risk Factor

Surveillance System

Figure 3 clearly illustrates the heavy weighting of the dataset towards smaller

amounts of binge drinking episodes with a relatively small population of individuals with

more binge drinking episodes. An estimated 90% of individuals fall into the “small count

inflated” group, while roughly 10% of individuals fall into the “regular count” group.

The model is given as

log(λSBi) = ϡ0 +ϡ1Wi,

log(λLBi) = ϟ0 +ϟ1Wi,

logit(πSBi) = γ0 + γ1Wi,

(71)

with Wi as the weight of the ith observation, λSBi as the small count inflated rate of

occurrence of binge drinking for the ith observation, λLBi as the Poisson rate of
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occurrence of binge drinking for the ith observation, and πSBi as the probability of the

small count inflated population for the ith observation.

Due to the heavy proportion of values in the small count group, the sample is

limited to males (which are slightly more heterogeneous). Cleaning of the data involved

translating survey codes into R, removing female respondents, and removing observations

with missing values. For an example of the code cleaning, the codes 77 and 99 were used

to identify missing values for binge drinking days, while 7777 and 9999 were used to

identify missing values for weight. Additionally, values of 888 and 999 were removed as

being outside of the realm of reasonable possibility (likely a coding error). Females and

individuals with missing responses were completely removed from the cleaned sample.

After cleaning, a sample size of n = 113277 respondents remained and were used for

analysis. Table 2 shows the fit of the SCIP with the cutoff set to 8. SCIP models with

other cutoffs (2 and 6) were also fit and gave similar results. These tables are shown in

Appendix A.

Table 2.

Coefficients from Fitting the Small Count Inflated Poisson Model to the Behavioral Risk
Factor Surveillance System, c = 8

Inflated Count Poisson Count Logistic

(Intercept) -0.989 2.520 2.208

Weight 0.001 0.000 0.000

Interpreting Table 2, the most obvious takeaway is the small relationship between

weight on the binge drinking behavior of males in 2016. In the inflated count population,

a 1 pound increase in weight corresponds with a multiplicative increase of e0.001 = 1.001

in the expected number of binge drinking episodes for males in 2016. In the Poisson

count population, an increase in weight appears to have no relationship with the expected

number of binge drinking episodes for males in 2016. Also, weight appears to have no
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relationship with the expected probability of a male being in the inflated count population

vs in the Poisson population.

Due to the small relationship between weight and binge drinking behavior shown

in Table 1, the intercepts become the primary areas of interest. The inflated count

intercept at -0.989 implies that the expected number of binge drinking episodes per month

for males in the inflated count population is e−0.989 = 0.37 episodes. The Poisson count

intercept of 2.520 implies that the expected number of binge drinking episodes per month

for males in the Poisson population is e2.520 = 12.43 episodes. The logistic regression

intercept of 2.208 implies that the odds of being in the inflated count population are

e2.208 = 9.10 times that of the odds of being in the Poisson count population.

Practically, this information defines two heavily unbalanced populations: a small

count population (which has a large majority of the participants) that rarely binges, and a

Poisson population that binges multiple times per week. Weight appears to have no

relationship with the number of binge drinking episodes in either population, nor a

relationship with the probability that an individual belongs to one population or the other.

Simulation Details

To address research questions four and five, a simulation study was conducted.

This section will describe details of the general simulation procedure, while future

sections will describe further details specific to each research question. First, details of

the simulation conditions are discussed. Second, details of the data generation procedure

are presented. Next, information on the implementation of comparison models are shown.

Then, convergence information for all models is given. Finally, information on model

predictions is included.

Simulation Conditions

Simulation conditions are presented in Chapter III. The simulation conducted

1000 trials over each of three models, five sample sizes, and three cutoffs of inflation. The

multinomially-inflated Poisson (MIP) and the ZIP were used to compare with the SCIP
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(Giles, 2007; Lambert, 1992). Cutoff values of c = 2,6, and 8 were used (Giles, 2007; Lin

& Tsai, 2013). Sample sizes of n = 25,50,100,200, and 500 were used for model fitting,

while sample sizes of n = 5,10,20,40, and 100 (20% of the training sample sizes) were

used for model prediction (Zhang et al., 2016).

Data Generation

The data generation procedure for SCIP data was also designed for this

dissertation. The function takes a sample size, design matrix, cutoff of inflation, and a

vector for each set of population parameters. First, the function calculates λλλ S,λλλ L, and πππS

based on their respective parameter vectors and the design matrix (see Equation 39).

Then, a random Bernoulli is generated with probability πSi . This represents the actual

group that is the source of an observation’s count. After this, if the observation is from the

small count group, a value is generated from the truncated Poisson distribution using λSi

as the mean parameter (with a maximum of c). If the observation is not from the small

count group, a value is generated from the Poisson distribution using λLi as the mean

parameter.
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Figure 4. Example Histogram of Small Count Inflated Poisson Data Generation

Figure 4 shows an example histogram of sample generated data for demonstration

purposes with the population curves overlayed. A series of these histograms generated

with a variety of parameters were examined to determine if the resulting datasets seemed

reasonable. The population parameters used to generate Figure 4 set all values of the

independent variable to zero, set λS = log(2) for the intercept of the small count inflated

group, λL = log(10) as the intercept for the Poisson group, and 0 for the intercept of the

logistic regression. The resulting distribution is evenly balanced between inflated data and

Poisson data, with the inflated counts centered at 2 and the Poisson counts centered at 10

(shown by the red and blue dotted lines, respectively). The example histogram shown in

Figure 4 displays the expected mean, variation, and shape, indicating that data appear to

be generated appropriately.

In addition to histograms, the examination into the asymptotics of the SCIP

parameters offered a separate chance to test the correctness of the data generation
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function. As the parameters were consistently centered on population parameters given to

the data generation function, there is evidence of alignment between SCIP estimation and

data generation.

Comparison Model Implementation

This section presents details of implementation of the comparison models to

supplement discussion on implementation of the SCIP. All models were implemented in R

version 3.4.3 (R Core Team, 2017). The ZIP model was implemented via the zeroinfl

function from the pscl package (Zeileis, Kleiber, & Jackman, 2008). No freely available

program or package for the implementation of the MIP was found. Because of this, a

custom function was created to implement the MIP based on Giles (2007) paper.

As Giles (2007) method gives a log-likelihood for the MIP, the implementation

focused on recreation and direct maximization of the log-likelihood through the use of

optim (as opposed to an EM approach). Giles (2007) defines the log-likelihood function

based on a sample of n independent observations as

L(β ,γ1,γ2, . . . ,γJ) = ∑
yi∈R0

log

(
ωi0 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ ∑
yi∈R1

log

(
ωi1 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ . . .

+ ∑
yi∈RJ−1

log

(
ωiJ−1 +

(
1−

J−1

∑
l=0

ωil

)
Pi

)

+ ∑
yi∈RJ

log

((
1−

J−1

∑
l=0

ωil

)
Pi

)
,

(72)

where

Pi =
e−λiλ

yi
i

yi!
, (73)
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is the Poisson probability and ω is defined as

ωi j =
eG′iγ j

1+
J−1
∑

l=0
eG′iγl

, (74)

for j = 0,1, . . . ,J, with γJ = 0 imposed.

Giles method allows for distinct parameters for each of the inflated values, the

implementation allowed distinct parameters for each inflated value. Implementation used

the Poisson group as the reference group for each of the logistic regressions and used an

adapted notation from (Giles, 2007) original method.

To test the implementation of the three models, all three were fit to the same zero-

inflated data using the zero-inflated reductions of the MIP and SCIP. Based on theory, all

of the models should have the same parameter estimates (to within rounding error). Trials

showed all models to match exactly to the thousandths place, indicating that the SCIP and

MIP implementations match the ZIP (which has already been ratified) with zero-inflated

data. This also demonstrates how the traditional ZIP model is a subset of the MIP and

SCIP.

It is important to note that while the MIP and ZIP are implemented via a single

optimization of the likelihood through the use of optim, the SCIP is implemented via the

EM algorithm (and uses optim during each iteration). There are many considerations for

optimization of a model, each of which can have important impacts on parameter

estimation and convergence percentages. For instance, changes in the maximum number

of iterations may directly affect model convergence. Additionally, differing starting values

and methods of optimization may effect parameter estimation and convergence for a given

model. This dissertation does not propose to address the breadth of these conditions to

implement ideal optimization for each model under the current data situation. Instead,

standard system defaults are used for each implementation. For SCIP implementation,

optim defaults are used for maximization within each iteration. For MIP implementation,
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optim defaults are used for maximization. For ZIP implementation, zeroinfl defaults

are used.

Model Fitting

Under each of the simulation conditions, data were generated and all models were

fit. Model information and fit statistics were stored for each iteration. In addition to

parameter estimates, information was stored for the run-time, iterations, model

convergence, and errors.

Convergence

Table 3 shows convergence percentages for all models and all trials. Convergence

issues of the ZIP are reported directly from the zeroinfl function, while convergence

issues from the SCIP are marked when the maximum number of iterations is reached. As

parameter estimation for the MIP uses a direct maximization of the log-likelihood,

convergence is reported directly from optim (which uses the default of 500 for the

maximum number of iterations). As discussed previously, conditions under which the

likelihood for each set of parameters is optimized may have a direct impact on the

convergence rates shown in Table 3. As such, convergence rates should be considered not

just in the context of each model, but also in context of each model’s optimization

procedure.
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Table 3.

Convergence Percentages by Model, Cutoff of Inflation, and Sample Size

n

25 50 100 200 500

c = 2

ZIP 99.6% 99.9% 100% 100% 100%

MIP 0.2% 0% 0.1% 0% 0%

SCIP 92.1% 98.4% 100% 100% 100%

c = 6

ZIP 99% 100% 100% 100% 100%

MIP 0% 0% 0% 0% 0%

SCIP 92.2% 98% 99.9% 100% 100%

c = 8

ZIP 99.5% 100% 100% 100% 100%

MIP 0% 0% 0% 0% 0%

SCIP 90.5% 98.2% 99.8% 100% 100%

Some degree of lack of convergence was present for all models in the smallest

sample size. The ZIP and the SCIP show clear improvement in convergence as the sample

size increases, while the MIP shows no apparent growth. It can be seen that the MIP

rarely converges, even for the lowest cutoff. Also, convergence of the MIP doesn’t seem

to improve as the sample size increases. The lack of convergence for the MIP may be due

to the large numbers of parameters being estimated or the optimization procedure used,

and results in skepticism regarding MIP parameter estimates. Unfortunately, previous

convergence rates of the MIP under similar data conditions could not be found for

comparison.

Investigation into issues of non-convergence for the SCIP indicated that one

reason for non-convergence of the SCIP is complete or quasi-complete separation of the

data (Albert & Anderson, 1984). In such a case, the parameters from the logistic

component cannot be estimated, and the SCIP cannot maximize the likelihood (causing

the error and non-convergence). Similarly, one reason for lack of convergence for the ZIP



67

was from a singularity error, likely due to the small size of the dataset relative to the

heavy weighting towards the small count inflated population. In such cases, the Poisson

count group membership is a “rare event,” causing instability in parameter estimates.

Overall, the ZIP seems to have the best convergence for very small sample sizes,

though both the ZIP and the SCIP consistently converge. At more reasonable sample sizes

(as low as n = 100), both the ZIP and the SCIP converge almost 100% of the time.

Though not considered here, use of an optimization method that results in consistent

convergence may improve results for models when convergence criterion were not met

(the SCIP in small sample sizes, the MIP for all sample sizes).

Prediction

For each set of parameter estimates, new data of size n = 5,10,20,40, and 100

were generated using actual parameters. All actual values were compared to predictions

of the three models based on the simulated data. Predicted summary statistics for each

run (MSE, AUC, percent correct) were saved and aggregated across 1000 runs. Due to

outliers (especially at the low sample sizes), medians are presented in conjunction with

empirical 95% confidence intervals. Sample size labels on tables and graphics presented

represent the sample size the models were trained on (e.g., n = 25,50,100,200, and 500)

as opposed to the sample size the models were tested on (e.g., n = 5,10,20,40, and 100,

respectively).

Group Prediction

To address research question four, this section presents results of group prediction

from the simulation study. Estimates of group membership for the ZIP and SCIP used

the logistic component to indicate predicted group membership. For the MIP, all inflated

logistic components (from 0 to c) were summed to give the most accurate prediction of

inflated group membership. That is,

πππS =
c

∑
g=0

πππg, (75)
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where πππS is the vector of probabilities of an observation being in the small count inflated

group and c is the cutoff of inflation.

These were compared to a cutoff of 0.5: if above, the predicted group was the

small count inflated group, and if below, the predicted group was the Poisson group. Each

prediction was compared to actual group membership via % correct and AUC statistics,

with percentage correct being directly calculated and AUC being calculated through use

of the pROC package (Robin et al., 2011).

Percentage Correct Classification

Observed percentage correct classification values for all methods are shown in

Figure 5 and Table 4.

Table 4.

Percent Correct Classification Medians with Empirical 95% Confidence Intervals by
Model, Cutoff of Inflation, and Sample Size

n

25 50 100 200 500

c = 2

ZIP 0.8 (0, 1) 0.8 (0.3, 1) 0.85 (0.6, 0.951) 0.85 (0.725, 0.95) 0.85 (0.77, 0.92)

MIP 0.8 (0.4, 1) 0.9 (0.6, 1) 0.85 (0.7, 1) 0.85 (0.725, 0.95) 0.85 (0.78, 0.92)

SCIP 0.8 (0.4, 1) 0.9 (0.6, 1) 0.85 (0.7, 1) 0.85 (0.725, 0.95) 0.85 (0.78, 0.92)

c = 6

ZIP 0.6 (0, 1) 0.7 (0, 1) 0.85 (0.15, 1) 0.875 (0.475, 0.975) 0.89 (0.75, 0.95)

MIP 1 (0.6, 1) 0.9 (0.7, 1) 0.9 (0.75, 1) 0.9 (0.8, 0.975) 0.9 (0.83, 0.95)

SCIP 0.8 (0.4, 1) 0.9 (0.7, 1) 0.9 (0.75, 1) 0.9 (0.8, 0.975) 0.9 (0.83, 0.95)

c = 8

ZIP 0.6 (0, 1) 0.7 (0, 1) 0.85 (0.2, 1) 0.875 (0.549, 0.975) 0.89 (0.76, 0.95)

MIP 1 (0.6, 1) 0.9 (0.7, 1) 0.9 (0.75, 1) 0.9 (0.8, 0.975) 0.9 (0.83, 0.95)

SCIP 1 (0.4, 1) 0.9 (0.6, 1) 0.9 (0.75, 1) 0.9 (0.8, 0.975) 0.9 (0.83, 0.95)

It can be seen that the ZIP model has the worst prediction accuracy of all of the

models and the widest confidence interval. The ZIP confidence intervals are also wider

for larger values of c. The SCIP and MIP models seem extremely similar in terms of

prediction accuracy, with the confidence intervals of the SCIP also being wider for larger

values of c at lower sample sizes. As the sample size increases, all three models appear to

approach the same median prediction accuracy and confidence interval for all values of c.



69

Figure 5. Percentage Correct Classification Medians with Empirical 95% Confidence

Intervals by Method, Cutoff of Inflation, and Sample Size

Area Under the Curve

During the prediction process, errors appeared in the calculation of the AUC

statistic. Review indicated that generated datasets (especially at smaller sample sizes and

larger cutoffs) were generating all observations from the same group (the small count

inflated group), making fitting of the logistic model and calculation of the AUC

impossible. In such cases, calculation of AUC statistics continued with remaining datasets

(% correct statistics were not impacted). Error rates for the AUC of the SCIP are

presented in Table 5, and are almost identical for all models (tables for other models

shown in Appendix A).
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Table 5.

Error Rate of the Area Under the Curve by Cutoff of Inflation and Sample Size for the
Small Count Inflated Poisson Model

n

25 50 100 200 500

c = 2 44.3% 20.5% 3.2% 0% 0%

c = 6 56.9% 35.1% 10.5% 1.1% 0%

c = 8 59% 34.8% 9.1% 1% 0%

Observed AUC values for all methods are shown in Figure 6 and Table 6.

Table 6.

Area Under the Curve Medians with Empirical 95% Confidence Intervals by Model,
Cutoff of Inflation, and Sample Size

n

25 50 100 200 500

c = 2

ZIP 0.75 (0.5, 1) 0.688 (0.438, 1) 0.639 (0.451, 0.947) 0.589 (0.451, 0.827) 0.555 (0.449, 0.689)

MIP 0.75 (0.5, 1) 0.688 (0.438, 1) 0.639 (0.444, 0.947) 0.59 (0.451, 0.829) 0.555 (0.449, 0.687)

SCIP 0.75 (0.5, 1) 0.688 (0.438, 1) 0.639 (0.446, 0.947) 0.589 (0.451, 0.827) 0.555 (0.449, 0.689)

c = 6

ZIP 0.75 (0.5, 1) 0.714 (0.5, 1) 0.667 (0.457, 1) 0.605 (0.45, 0.921) 0.558 (0.457, 0.731)

MIP 0.75 (0.5, 1) 0.688 (0.5, 1) 0.667 (0.466, 1) 0.605 (0.447, 0.921) 0.558 (0.457, 0.731)

SCIP 0.75 (0.5, 1) 0.714 (0.481, 1) 0.667 (0.451, 1) 0.605 (0.447, 0.921) 0.558 (0.457, 0.731)

c = 8

ZIP 0.75 (0.5, 1) 0.688 (0.5, 1) 0.667 (0.451, 1) 0.611 (0.451, 0.897) 0.561 (0.454, 0.736)

MIP 0.75 (0.5, 1) 0.688 (0.5, 1) 0.667 (0.444, 1) 0.611 (0.45, 0.897) 0.561 (0.454, 0.736)

SCIP 0.75 (0.5, 1) 0.688 (0.5, 1) 0.667 (0.451, 1) 0.611 (0.451, 0.897) 0.561 (0.454, 0.736)

Results for each method appear almost identical in terms of the AUC statistic,

both in terms of median prediction and in terms of the confidence intervals. Confidence

intervals for all methods are smallest for c = 2, though the median estimates of AUC

increase slightly as c increases. Also, as n increases, the AUC decreases for all cutoffs of

inflation and methods.
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Figure 6. Area Under the Curve Medians with Empirical 95% Confidence Intervals by

Model, Cutoff of Inflation, and Sample Size

For all methods, confidence intervals decrease in width as the sample size

increases. Unlike the percentage correct statistic, estimates of the AUC decrease as

sample size increases. A discussion of AUC and percentage correct behavior follows.

Group Statistic Behavior

At first glance, behavior of the AUC across sample size seems to be at odds with

that indicated by the percentage correct statistic. The percentage correct seems to indicate

that group prediction accuracy increases as the sample size increases, while the AUC

seems to indicate that it decreases as sample size increases. The apparent discrepancy is

due to the different meanings and properties of the different statistics.

Percentage correct is a raw percentage, comparing the predicted group

membership with the actual group membership. Due to the heavy weighting of the sample

towards the small count inflated group and the small relationship between the dependent
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variable (DV) and independent variable (IV), static predictions of group membership

(a.k.a just guessing 1 every time) can seem to perform well. In this case, the success of

static prediction is due to the heavy weighting of the variable towards the small count

inflated group (and the small relationship between the DV and IV, giving the model

minimal information to better predict). This would explain why group prediction shown

in Figure 5 levels off at the inverse-logit of the intercept from the logistic model (.86 for

c = 2, .90 for c = 6, and .90 for c = 8).

In contrast to percentage correct, ROC curves (and thus AUC statistics) are

insensitive to changes in the distribution of classes (Fawcett, 2006). Fawcett (2006)

explains how examination of a confusion matrix indicates the reason for this insensitivity:

percentage correct statistics compare the number correct to the total number of attempts,

while ROC curves compare true positives and false positives. Essentially, this places

equal weight on correct classification within each population. Again, the low sample size

in the Poisson count population may explain the behavior of the classification statistic. In

the case of the smallest sample size, all AUC statistics included in Figure 6 have at least

one value that comes from each distribution, and likely only one value that comes from

the Poisson count distribution. Considering correct classification in terms of each group,

each model’s group prediction is likely to correctly classify all of the observations coming

from the heavy weighted population (the small count inflated population). For the value(s)

coming from the Poisson count population, each model may correctly or incorrectly

classify these values, but is less likely to have a correct classification due to the large

weight towards the small count population and the small relationship between the IV and

DV.

Given only one value from the Poison count population, a 75% AUC (shown

across values of c for n = 25 in Figure 6) indicates an average ranking of a false positive

in the middle of rankings of true positive values (a.k.a the inability of the model to

distinguish between the small count inflated and Poisson count groups). As the sample
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size increases, the probability of the inclusion of more instances of the Poisson group

increases. Decreases in the AUC as the sample size increases indicate the increasing

probability of false prediction relative to true prediction as the samples begin to better

represent both populations. In other words, the AUC indicates that accurate distinction

between the small count inflated group and the Poisson group is poor. The statistics are

deceptive at small sample sizes due to the large probability of belonging to the small

count inflated group, and thus, the small probability that small samples include values

from the Poisson count group. This is evidenced by the decreasing AUC as the sample

increases and includes more and more instances of the Poisson count group. The decrease

appears to converge to 0.5 (random guessing), which is consistent with a small predictor

effect.

Count Prediction

To address research question five, this section presents results of count prediction

from the simulation study. Values of predicted mean squared error (MSE) for all methods

are shown in Figure 7 and Table 7.

Table 7.

Mean Squared Error Medians with Empirical 95% Confidence Intervals by Model, Cutoff
of Inflation, and Sample Size

n

25 50 100 200 500

c = 2

ZIP 9.8 (0, 56.313) 12.4 (0.1, 43.802) 13.3 (0.599, 33.883) 13.55 (3.424, 27.702) 13.455 (6.778, 21.843)

MIP 7.4 (0, 58.005) 12.275 (0.1, 44.504) 13.225 (0.499, 34.561) 13.562 (3.374, 27.702) 13.46 (6.788, 21.843)

SCIP 7.155 (0.028, 56.898) 11.129 (0.118, 42.502) 12.393 (0.381, 32.657) 12.698 (3.153, 26.461) 12.69 (6.286, 20.79)

c = 6

ZIP 8.401 (0.039, 74.41) 12.252 (0.2, 53.101) 13.881 (0.55, 40.772) 14.525 (2.775, 33.422) 15.185 (5.967, 26.421)

MIP 1 (0, 78.605) 10.55 (0.2, 52.807) 13.625 (0.4, 42.156) 14.488 (2.599, 33.081) 15.17 (6.018, 26.47)

SCIP 1.089 (0.101, 81.825) 9.601 (0.182, 50.169) 12.667 (0.312, 39.49) 13.331 (2.239, 31.014) 14.062 (5.522, 24.63)

c = 8

ZIP 7.8 (0.036, 68.727) 12.752 (0.2, 57.005) 14.045 (0.55, 38.862) 14.65 (3.272, 34.3) 15.14 (6.91, 26.319)

MIP 1 (0, 72.415) 11.2 (0.1, 57.825) 13.5 (0.4, 40.377) 14.488 (2.474, 34.504) 15.085 (6.818, 26.45)

SCIP 1.118 (0.109, 72.28) 11.107 (0.18, 55.26) 12.604 (0.323, 37.369) 13.435 (2.15, 32.543) 13.966 (6.181, 24.547)

It can be seen that confidence intervals are smallest for a cutoff of c = 2, while the

size of the confidence intervals decrease for all models and cutoffs as the sample size

increases. For almost all conditions, the SCIP has a slightly lower median MSE and
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slightly smaller confidence interval than the ZIP and the MIP, which are nearly identical

to one another. The exception of this is for the smallest sample size (n = 25), where the

SCIP and MIP have more comparable MSEs and confidence intervals.

Figure 7. Mean Squared Error Medians with Empirical 95% Confidence Intervals by

Model, Cutoff of Inflation, and Sample Size

Summary

To address research questions three through five, implementation of the SCIP

(outlined in Chapter III) has been presented alongside details of a simulation study.

Results were presented for a variety of cutoffs of inflation and sample sizes, chosen to

align with previous research. Problems in sparse data introduced errors which made

logistic fitting and AUC calculation impossible. Confidence intervals of statistics

evaluating fit of the SCIP overlapped with those of the ZIP and MIP in metrics of group

prediction and in the metric of count prediction for all cutoffs of inflation and sample

sizes.
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CHAPTER V

CONCLUSION

In this dissertation, a small count inflated Poisson (SCIP) model was developed to

model count data with multiple points of inflation that are related through an underlying

distribution. Maximum likelihood estimation via the expectation-maximization (EM)

algorithm was used to determine parameter estimates. Implementation of the SCIP

method was described, coded in R, and demonstrated through the fitting of the Behavioral

Risk Factor Surveillance System (BRFSS) dataset. A simulation study was conducted

using parameter estimates calculated from the fitting of the BRFSS as population

estimates. The simulation fitted the SCIP as well as two comparison models: the

zero-inflated Poisson (ZIP) and multinomially-inflated Poisson (MIP).

Research questions one and two were addressed in Chapter III, with the

specification of the distribution and parameter estimation for the SCIP. Research

questions three, four, and five were addressed in Chapter IV and included an illustration

of implementation with fitting of empirical data, group prediction comparisons between

the models, and count prediction comparisons between the models.

Discussion

Convergence

Simulation results empirically demonstrate convergence issues with the MIP that

were an inciting reason for this study. Table 3 shows the MIP rarely converging, even at

large sample sizes. Though convergence criterion are calculated by different programs for

the three models, the use of a standardized function in R (optim) makes observed results

comparable across other algorithms. In addition to lack of convergence for the MIP, Table
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3 also shows convergence issues for the SCIP at small sample sizes. Though not

exclusive, issues with separation (prohibiting logistic prediction) contributed to the

convergence issues for the SCIP.

Though the MIP rarely converged, results do not indicate a drop in performance

when comparing to the models that consistently converged. In fact, the MIP provided

equivalent group prediction accuracy when compared to the other models, and slightly

better count prediction accuracy than the ZIP. This may be for a variety of reasons. First,

due to the small relationship between weight and binge drinking, lack of convergence in

slopes may not appreciably affect overall performance of model prediction. Second, due

to heavy weighting of the small count inflated population, lack of estimation specificity

may not fully be exemplified. Third, though default settings in optim were used, alternate

settings may provide better estimation specifically for the MIP. As the purpose of this

dissertation was not a detailed investigation into the fitting of the MIP, alternate settings

were not considered during parameter estimation.

The SCIP seemed to have decent convergence rates at the smallest sample size,

n = 25, and converged almost all of the time at sample sizes of n = 50. Similar to the

MIP, it is expected that convergence percentages will differ as the underlying population

parameters differ (e.g., a higher convergence rate for more balanced populations and

better predictors).

Group Prediction

In addition to issues of convergence, problems with the AUC lowered the effective

simulation size for AUC calculation considerably, especially for lower sample sizes. Due

to the lack of multiple groups, AUC was unable to be calculated for over 50% of the

n = 25 simulation. Instead of treating these as errors, however, the lack of multiple groups

can be treated as information in its own right. The presence of only one group (the small

count inflated group) for more than 50% of the simulations for the sample size of n = 25

can give information on the prediction accuracy shown in the percentage correct tables.
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Namely, were models to predict only one, we would expect high prediction accuracy

given that the majority of the simulations were made up of only ones (for the n = 25

sample size). This also explains why there is such a discrepancy between AUC and

percentage correct, especially at the lower sample sizes.

Percentage correct indicated that all models performed well. MIP and SCIP

percentage correct group prediction were almost identical, with the SCIP having wider

confidence interval bands at lower sample sizes. As c increases, the ZIP did increasingly

poorer as a group predictor, showing both lower median prediction percentages and wider

confidence intervals. Though this information seems promising at first glance, insight into

the AUC errors and the AUC graphics indicate that the shown “accuracy” is likely due to

a naive prediction: that is, predicting the same group for all observations. There are two

major reasons for this. The very high proportion of small count inflated observations

relative to Poisson count observations gives a lot of weight to just predicting one

population. Also, the small coefficient of weight in the logistic model (shown in Table 2)

provides little information for models to distinguish between populations.

AUC was virtually identical for each of the models and each of the cutoffs. As the

sample size rose, the widths of the confidence intervals decreased while the median

estimates also decreased, appearing to approach 0.5 (random guessing). This is indicative

of the increased presence of observations from both groups. Again, the high relative

frequency of one population and the low coefficient of weight in the logistic model play

key roles in lack of group prediction accuracy. As explained in Chapter 4, though the

AUC appears to be counter-intuitively decreasing as the sample size increases, this likely

results from the naive prediction method employed coupled with the small sample sizes.

As sample size increases, heterogeneity in the sample for each run increases, and the

AUC shows a decrease (as it gets closer to its true value).

Overall, there was little to distinguish between the models in terms of group

prediction in this simulation. Though the ZIP appears to have performed worse than the
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MIP or the SCIP for smaller sample sizes according to the median percentage correct

statistic, it is virtually identical according to the AUC. Also, as all of the confidence

intervals of models cross for all cutoffs and sample sizes, there can be no claim of

superiority in group membership prediction. Again, the size of the coefficient of the

predictor and the relative frequency of the populations may influence the relative

performance of these parameters.

It is somewhat unexpected that the ZIP is comparable to the MIP and SCIP, as the

latter account for similar natures of inflation that aren’t included in the ZIP model. This

said, the MIP and SCIP model the information differently than one another, yielding

different parameter estimates and different interpretations. Comparability of the two in

terms of group prediction allows theory to guide model selection, and encourages

practitioners to select the model they believe represents population.

Count Prediction

Mean squared error (MSE) for the three models, shown in Figure 7, also appeared

to be equivalent. For all models, as the sample sizes increase, the confidence interval for

the MSE shrinks. For most sample sizes and all cutoffs of inflation, the SCIP appears to

have a slightly smaller median MSE and slightly narrower confidence interval than the

other models. Though this may indicate some small superiority of the SCIP (as the

confidence intervals are empirical), there is still wide overlap among the confidence

intervals.

Reasons for increasing median error as the sample size increases align with those

presented in group prediction. In short: if group prediction is more accurate (e.g., for the

small sample sizes), the MSE will be smaller. As sample sizes increase, groups become

more and more heterogeneous, and prediction error becomes larger and larger for models

using a naive group prediction. In addition to group prediction components, the small

relationship between weight and binge drinking episodes in the small count inflated and

Poisson count populations may also play a role in the poor prediction by the models.
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Overall

It appears that groups and count prediction suffered in all models. The two

primary reasons are the heavy weighting of the small count inflated population over the

Poisson count population, and the small coefficient of weight in all of the population

models (small count, large count, and logistic). All models seemed to perform roughly

equally, with mild exceptions (the ZIP was slightly inferior in percentage correct group

prediction, and the SCIP was slightly superior in MSE). Ultimately, given a difficult data

situation, the SCIP performed as well or better than current available methods, with a

much higher convergence percentage than the MIP.

Recommendations

Reviewing these results, there seems little to distinguish between models in terms

of prediction in situations where the underlying population is similar to that used in this

study. Because of this, a theoretical guide is recommended when selecting an inflated

count model. For instances where theory explains that an underlying population has an

inflation at zero (and nowhere else), the ZIP would be recommended. In cases where

theory explains that an underlying population has multiple, unrelated points of inflation,

the MIP would be recommended. In cases where theory explains a single cause for

underlying inflation at multiple related points, the SCIP would be recommended. Similar

model prediction accuracy demonstrated in this study shows that, at least in the data

situation presented here, model selection may occur purely for the theory one wishes to

test (and not for prediction accuracy).

If prediction is the only goal of model selection, statistics not presented (e.g.,

runtime) may be a more influential factor than model accuracy for similar data situations.

In this, the SCIP loses outright (much longer runtimes than the other two). If convergence

is of concern, tis implementation of the MIP should not be selected (though it is notable

that it performed comparable to other models, even with convergence issues). For count
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prediction accuracy, the SCIP seems to be slightly better than the other two; for group

prediction, the ZIP seems to be slightly worse than the other two.

The SCIP offers a unique look at the potential underlying structure of data. When

it is believed that the underlying distribution is made up of two populations, a count

population and a truncated count population, the SCIP allows interpretation of parameters

that relate to both underlying populations as well as parameters that influence the

difference between the two, which is not offered by other methods currently available.

Additionally, this study has demonstrated that the SCIP can handle prediction as well or

better than other methods across a range of sample sizes and inflated counts.

Convergence issues and heavy outliers, as displayed in the asymptotic plots,

indicate that the SCIP should be used with a minimum sample of 50 to 100 for consistent

results with populations of similar characteristics to the one used in this study. If used

with a smaller sample, extreme results may be an indication of an outlier and should not

be used (or, at the least, treated with extreme caution). Additionally, convergence and

iterations should be checked when examining results. Though not presented in this study,

there appeared to be a correlation between extremely low and high iterations (e.g., 2

iterations, 100 iterations) and outliers.

This said, as Figure 1 indicates, the distributions for each of the components of the

model (small count, large count, logistic) have different asymptotic properties for this

population. In this data situation, the small count component seems to perform much

better at lower sample sizes than the large count or logistic components. This should also

be taken into account when considering model use.

In a larger context, it is likely that the SCIP (and the other models, for that matter)

will improve in performance as the underlying populations are more balanced and as the

predictor has a larger relationship with the outcome. A meaningful predictor in the SCIP

logistic component will likely improve group prediction, while further adding a

meaningful predictor to the count components will likely improved count prediction.
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Further study is needed to determine relative group and count prediction accuracy among

models in these data situations.

Future Research

This dissertation used a Poisson distribution to model both the small count

inflation and the larger count population. Though Poisson models are widely used for

count data, a negative binomial distribution may also be considered, especially for the

large count population. Additionally, the SCIP model applied in this dissertation assumed

data were collected at only a single time. For instance, analyses of the BRFSS used data

from only the 2016 survey. Longitudinal applications through use of mixed models or the

generalized estimating equations (GEE) would provide more information for model fitting

when data over time is available, as is often the case in potential applications for the SCIP.

As the SCIP model is based upon a finite mixture model (FMM) framework,

incorporation of other distributions may also be used. For instance, in the BRFSS data, a

spike at 30 days (drinkers who binge drink every day) may be modeled through a

degenerate distribution built on top of the SCIP via FMM. Additionally, with enough data,

spikes at popular intervals (e.g., 5, 10, 15) may be accounted for. Though such flexibility

continues to blur the lines between traditional FMM and inflated count modeling, it can

allow for more precise modeling when the nature of the outcome is suspected or known.

Finally, formal investigation into the identifiability of the SCIP model (and other inflated

models) is recommended

Though not the focus of this dissertation, work with the MIP has indicated several

areas for growth. One such area is a proportional odds extension of the MIP, which may

help with issues of MIP non-convergence, especially for higher levels of c.

In addition to theoretical changes in the models, practical changes in the

simulation conditions are also recommended. It would be of interest to compare these

three models in a more balanced data situation, with a higher relationship between the

predictor and outcome. Implementation of such a study would be straightforward,
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utilizing a minor change in starting conditions of the simulation. Also of interest may be

the relative importance of strong predictors versus balanced groups in group and count

prediction accuracy for the three models.
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Coefficients from Fitting the Small Count Inflated Poisson Model to the Behavioral Risk
Factor Surveillance System, c = 2

Inflated Count Poisson Count Logistic

(Intercept) -1.489 2.268 1.791

Weight 0.001 0.000 0.000

Coefficients from Fitting the Small Count Inflated Poisson Model to the Behavioral Risk
Factor Surveillance System, c = 6

Inflated Count Poisson Count Logistic

(Intercept) -0.992 2.518 2.200

Weight 0.001 0.000 0.000

Error Rate of the Area Under the Curve by Cutoff of Inflation and Sample Size for the
Zero-Inflated Poisson Model

n

25 50 100 200 500

c = 2 44.5% 20.5% 3.2% 0% 0%

c = 6 57.1% 35.1% 10.5% 1.1% 0%

c = 8 58.5% 34.8% 9% 1% 0%

Error Rate of the Area Under the Curve by Cutoff of Inflation and Sample Size for the
Multinomially-Inflated Poisson Model

n

25 50 100 200 500

c = 2 44.3% 20.5% 3.2% 0% 0%

c = 6 56.9% 35.1% 10.5% 1.1% 0%

c = 8 58.5% 34.8% 9% 1% 0%
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APPENDIX B

R CODE
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Making a Right-Truncated Poisson Density Function

#’ @title Right -Truncated Poisson Probability Mass

Function

#’

#’ @description PMF of a right truncated Poisson

distribution.

#’

#’ @param y The vector of counts.

#’ @param lambda The vector of means

#’ @param c The cutoff of inflation

#’

#’ @author Michael Floren

dtpois <- function(y, lambda , c){

n <- length(y)

out <- numeric(length=n)

b <- numeric ()

for(i in 1:n){

for(j in 0:c){

b[j+1] <- ((exp(-lambda[i])*lambda[i]^j)/(factorial(

j)))

}

b <- sum(b)

out[i] = dpois(x=y[i], lambda=lambda[i]) / b

}

out[y>c] <- 0 #this PMF is 0 by definition for y>c

out

}
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Making the Small Count Inflated Poisson Model

#’ @title SCIP Function

#’

#’ @description Fits a Small Count Inflated Poisson model.

#’

#’ @author Michael Floren

scip <- function(y, desmat , c, conv=1e-9, maxit =100){

### Functions used later on ###

tau_s <- function(y, desmat , param , c){ #take the design

matrix with sampi , koppa , gamma , and the design

matrix (written short as "gamma" is a system word)

sam <- param [1: ncol(desmat)]

kop <- param [(ncol(desmat)+1):(2*ncol(desmat))]

gam <- param [(2*ncol(desmat)+1):(3*ncol(desmat))]

lam_s <- exp(desmat %*% sam)

lam_l <- exp(desmat %*% kop)

pi <- exp(desmat%*%gam) / (1+exp(desmat%*%gam))

scip_pmf <- pi*dtpois(y=y, lambda=lam_s, c=c) + (1-pi)

*dpois(x=y, lambda=lam_l)

out <- (pi * dtpois(y=y, lambda=lam_s, c=c)) / scip_

pmf

out[y>c] <- 0 #if the outcome is greater than c,

manually set the tau to be zero (it should be

anyways , but the auto -zero of the dtpois has been

removed for problems in the logarithm)
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out

}

Q <- function(y, desmat , tau , param , c){

sam <- param [1: ncol(desmat)]

kop <- param [(ncol(desmat)+1):(2*ncol(desmat))]

gam <- param [(2*ncol(desmat)+1):(3*ncol(desmat))]

lam_s <- exp(desmat %*% sam)

lam_l <- exp(desmat %*% kop)

pi <- exp(desmat%*%gam) / (1+exp(desmat%*%gam))

sum(log((pi*dtpois(y=y, lambda = lam_s, c = c))^tau) +

log(((1-pi)*dpois(x=y, lambda = lam_l))^(1-tau))

)

}

log_pdf_scip <- function(y, desmat , tau , param , c){

sam <- param [1: ncol(desmat)]

kop <- param [(ncol(desmat)+1):(2*ncol(desmat))]

gam <- param [(2*ncol(desmat)+1):(3*ncol(desmat))]

lam_s <- exp(desmat %*% sam)

lam_l <- exp(desmat %*% kop)

pi <- exp(desmat%*%gam) / (1+exp(desmat%*%gam))

pois <- dpois(x=y, lambda=lam_l) #so that you only

calculate it once
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sum(log(pi*(dtpois(y=y, lambda=lam_s, c=c) - pois) +

pois))

}

### Actual implementation ###

# Creating estimates for sampi , koppa , and gamma.

Tracking all iterations currently (don’t have to do

it this way: could just wipe the previous iteration

out on each run...)

est_param <- matrix(ncol=3*ncol(desmat))

init_est_sampi <- coef(glm(y~desmat[,-1], family=poisson

))

init_est_koppa <- coef(glm(y~desmat[,-1], family=poisson

))

init_est_gamma <- coef(glm(as.numeric(y<c)~desmat[,-1],

family=binomial))

est_param [1,] <- c(init_est_sampi , init_est_koppa , init_

est_gamma)

# Creating initial weights: not tracking these for each

iteration

tau <- tau_s(y=y, desmat=desmat , param=est_param[1,], c=

c)

for(i in 2: maxit){
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#optimization function for parameters (only takes

parameters as arguments)

of_param <- function(param){

Q(y=y, desmat=desmat , tau=tau , param=param , c=c)

}

#solving the derivative for the current iteration

est_param <- rbind(est_param , optim(est_param[i-1,],

of_param , control = list(fnscale =-1))$par)

#updating tau

tau <- tau_s(y=y, desmat=desmat , param = est_param[i

,], c=c)

#checking if convergence has been reached

check <- max(abs(est_param[i,] - est_param[i-1,]))

if(check < conv){

break

}

}

convergence_issue = 0

if(i >= maxit){

warning("Convergence not met")

convergence_issue = 1

}

# setting output
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est_sam <- est_param[i, 1:ncol(desmat)]

est_kop <- est_param[i, (ncol(desmat)+1):(2*ncol(desmat)

)]

est_gam <- est_param[i, (2*ncol(desmat)+1) :(3*ncol(

desmat))]

# out

list(sc = est_sam , lc=est_kop , logistic=est_gam ,

iterations=i, convergence_issue=convergence_issue)

}

Generating Truncated Poisson Data

#’ @title Generation of truncated Poisson data

#’

#’ @description This function generates truncated Poisson

data , with a truncation at c (counts can include c).

#’

#’ @param n The number of data points to be generated.

#’ @param lambda The mean parameter for the truncated

Poisson.

#’ @param c The cutoff of inflation.

#’

#’ @details This generates data from a right truncated

Poisson distribution , where generated y’s are in the

range \eqn{0 \le y \le c}.

#’

#’ @examples
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#’ #show a histogram of right truncated Poisson data

#’ hist(tp_dat(n=3000, lambda=3, c=5))

#’

#’ @author Michael Floren

#’ @md

tp_dat <- function(n, lambda , c){ #truncated Poisson

if(n != length(lambda) & length(lambda) >1)

stop("The length of lambda must be 1 or match n.") #

only support if a different lambda is given for

each n, or the same lambda is given for all of them

...

if(c <= lambda)

stop("You ’re being an idiot (lambda is greater than c)

") #doesn ’t make sense for the mean of the

distribution to be larger than the cutoff (tell

user their being an idiot)

if(length(lambda)!=n){ #this would be the length(lambda)

==1 and n>1 case...

lambda <- rep(lambda , n)

}

out <- numeric ()

for(j in 1: length(lambda)){

probs <- numeric ()

for(i in 0:c){
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probs[i+1] <- ((exp(-lambda[j])*lambda[j]^i)/(

factorial(i)))

}

probs = probs/(sum(probs))

#sample(seq(0,c), n, replace=TRUE , prob=probs)

out[j] <- sample (0:c, size=1, prob=probs)

}

out

}

Generating Small Count Inflated Poisson Data

#’ @title Generation of Small Count Inflated Poisson Data

#’

#’ @description This function generates small count

inflated Poisson (SCIP) data , giving a list of values

and group membership.

#’

#’ @param n The number of data points to be generated.

#’ @param desmat The design matrix to use for data

generation.

#’ @param sam A vector of parameters to use for the small

count distribution.

#’ @param kop A vector of parameters to use for the large

count distribution.

#’ @param gam A vector of parameters to use for the

binomial distribution (1 is small count group).
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#’ @param c The cutoff of inflation

#’

#’ @details This function takes a set of arguments and

returns a vector of two elements. The first element is

the generated count from the SCIP distribution , the

second element is the group of membership (for

dissertation purposes). The returning of the group

membership element may be removed at a later date.

#’

#’ @return This function currently returns a list of two

vectors

#’ \item{y}{A vector of the generated count variables}

#’ \item{g}{A vector of the group each generated count

belongs to}

#’

#’ @examples

#’ #show a histogram of small count inflated data

#’ hist(scip_dat(n=3000, desmat=matrix(rep(1, 3000), ncol

=1), sampi=log(.1), koppa=log(4), gamma=log(1), c=3)$y)

#’

#’ @author Michael Floren

scip_dat <- function(n, desmat , sam , kop , gam , c){

if(!all.equal(ncol(desmat), length(sam), length(kop),

length(gam)))

stop("Dimensional issues between design matrix , sampi ,

 koppa , and gamma. Please check dimensions (ncol of
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 design matrix should match length of sampi , koppa ,

 and gamma).")

lam_s <- exp(desmat%*%sam) #lambda_s

lam_l <- exp(desmat%*%kop) #lambda_l

pi <- exp(desmat%*%gam) / (1+exp(desmat%*%gam)) #pi_s

obs <- numeric ()

group <- numeric ()

for(i in 1:n){

group[i] <- rbinom(1,1,pi)

if(group[i] == 1){

obs[i] <- tp_dat(n=1, lambda=lam_s[i], c=c)

} else{

obs[i] <- rpois(n=1, lambda=lam_l[i])

}

}

list(y=obs , g=group)

}

Making the Multinomially Inflated Poisson Model

#’ @title Multinomially Inflated Poisson Model

#’

#’ @description This is the multinomially inflated Poisson

distribution as demonstrated by Giles (2007).

#’
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mip <- function(y, desmat , c){

# log -liklihood given outcome , parameters , and design

matrix...

ll <- function(y, desmat , param){

#reading in gammas and betas from the long list of

parameters

p <- ncol(desmat)

c <- length(param)/ncol(desmat) - 2

param_mat <- matrix(ncol=c+3, nrow=p)

for(i in 1:(c+1)){ #so this is 0:c (doesn ’t do gamma_J

)

param_mat[,i] <- param[(i*p-(p-1)):(i*p)]

}

param_mat[,c+2] <- rep(0,p)#this is gamma_J

param_mat[,c+3] <- param [((c+2)*p-(p-1)):((c+2)*p)]

colnames(param_mat) <- c(paste0("gamma" ,0:(c+1)), "

beta") #remember: gamma_(c+1) is gamma_J (0’s)

# prepping omega calculation

denom_for_omega_mat <- matrix(ncol=c+1, nrow=length(y)

)

for(i in 0:c){ #for all the gammas except for gamma

zero , cause this is what the denom sum is. gamma_(c

+1) is gamma_J (so including J). Gamma_J is zero.

denom_for_omega_mat[,i+1] <- exp(desmat %*% param_

mat[,paste0("gamma",i)])

}
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denom_for_omega <- 1 + apply(denom_for_omega_mat , 1,

sum)

# calculating omegas : something weird going on here (

matches the long hand through the log-likelihood

output) ******************************************

omega_mat <- matrix(ncol=c+2, nrow=length(y))

for(i in 0:(c+1)){ #creating an omega_(c+1) (aka,

omega_J)

omega_mat[,i+1] <- exp(desmat %*% param_mat[,paste0(

"gamma",i)])/denom_for_omega #right now, desmat %

*% param (not exponentiated) looks to be a good

prediction of the weights (for whatever reason) (

if you use the optimized values for your

parameters and run through this line by line...).

Almost just proportional: cbind(desmat[,2],

desmat%*%param_mat[,1], desmat[,2]-desmat%*%param

_mat[,1], (desmat[,2]-desmat%*%param_mat[,1])/

desmat%*%param_mat[,1])

}

colnames(omega_mat) <- paste0("omega", 0:(c+1)) #

remember: omega_(c+1) = omega_J

#calculating coefficient for poisson

coef_p <- 1-apply(omega_mat[,-ncol(omega_mat), drop=

FALSE], 1, sum)# take off the last column (the c+2

nd column (omega_(c+1) aka omega_J)) from omega mat
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#calculating pois

lambda <- exp(desmat %*% param_mat[,"beta"])

pois <- (exp(-lambda)*lambda^y)/(factorial(y))

ll_out_vec <- numeric(length=c+2) #this is each of the

sums in the log likelihood from Giles (0 to J (

which is c+1)), listed as a vector (eventually will

be summed for the log-likelihood).

for(i in 0:c){

ll_out_vec[i+1] <- sum((y==i)*log((omega_mat[,paste0

("omega",i)] + (coef_p)*pois))) #add everything

up (add 0’s unless y is i)

}

ll_out_vec[c+2] <- sum((y>c)*log((coef_p)*pois)) #

doing the poisson alone by hand

ll_out <- sum(ll_out_vec) #matches with longhand...

ll_out

}

p <- ncol(desmat)

#starting guess for parameters (just use 0 vector I

guess?)

initial_guess_param <- rep(0, p*(c+2)) #gammas from 0

through c, then beta (each has p parameters)...
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of <- function(params){ #optimization function (just a

function of parameters)

ll(y=y, desmat=desmat , param=params)

}

full_out <- optim(initial_guess_param , of, control =

list(fnscale =-1))

est <- full_out$par

convergence_issue <- full_out$convergence!=0

out <- list()

for(i in 1:(c+1)){ #so this is gamma_0:c

out[[i]] <- est[(i*p-(p-1)):(i*p)]

names(out)[i] <- paste0("logistic",i-1)

}

out[[c+2]] <- est [((c+2)*p-(p-1)):((c+2)*p)]

names(out)[c+2] <- "beta"

out$convergence_issue <- convergence_issue

out

}

Designing a Function for Model Fitting for the Dissertation Simulation

#’ @title Simulation Function for Dissertation

#’

#’ @description This function will run the simulation for

my dissertation. Some of the aspects of the function
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are specifically designed for this dissertation (such

as population parameters), and won ’t be included as

arguments.

#’

#’

#’

sim <- function(n, c, k=1000, meta_time_unit="s", progress

=TRUE){

p <- 2

mean_of_IV <- 197.7828

sd_of_IV <- 40.21599

# setting different true values depending on c

if(c==2){

true_sampi <- c( -1.4890070090395 ,

0.000896026713969103)

true_koppa <- c(2.26780053964254 ,

-0.000373799698134193)

true_gamma <- c(1.79118900609313 ,

-0.000338077141916478)

} else if (c==6){

true_sampi <- c( -0.991816836348344 ,

0.000632613090524932)

true_koppa <- c(2.51780279408921 ,

-0.000375747468669122)

true_gamma <- c(2.1998559804243 , -0.00025944850892789)
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} else if (c==8){

true_sampi <- c( -0.989457553026938 ,

0.000623795679864685)

true_koppa <- c(2.51994084026393 ,

-0.000385423153504593)

true_gamma <- c(2.20836925037315 ,

-0.000300453184670207)

} else{

stop(paste0("Population parameters for c=",c," not set

. Simulation stopped."))

}

#creating the place to save all of the results. These

will have elements named for each piece of the output

(e.g., sc, lc, logistic), where each row is a

different run

zip_results <- list()

scip_results <- list()

mip_results <- list()

meta <- list()

#creating list elements for each piece of output

for(i in 1:2){
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zip_results [[i]] <- matrix(ncol=p, nrow=k) #columns is

the number of parameters (in this case , intercept

and slope)

}

for(i in 1:3){

scip_results [[i]] <- matrix(ncol=p, nrow=k)

}

for(i in 1:(c+2)){ #0-c and beta

mip_results [[i]] <- matrix(ncol=p, nrow=k)

}

names(zip_results) <- c("count", "logistic") #the names

and order from zeroinfl

names(scip_results) <- c("sc","lc","logistic")

names(mip_results) <- c(paste0("logistic" ,0:c),"beta")

#creating a place to store meta -information (iterations

for SCIP , runtime for all) for each run and overall.

NA’s by default (don’t want 0’s by default , as they

may not get noticed as errors (if they aren ’t

overwritten , for some reason))

zip_results$runtime <- as.numeric(rep(NA ,k))

zip_results$convergence_issue <- as.numeric(rep(NA ,k))

mip_results$runtime <- as.numeric(rep(NA ,k))

mip_results$convergence_issue <- as.numeric(rep(NA ,k))

scip_results$runtime <- as.numeric(rep(NA,k))

scip_results$iterations <- as.numeric(rep(NA,k))

scip_results$convergence_issue <- as.numeric(rep(NA,k))
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meta$runtime <- as.numeric(rep(NA,k))

#creating an error log for each of the methods

zip_results$error_log <- data.frame(error_bin=rep(0,k),

error_msg=character(length=k), stringsAsFactors=FALSE

)

mip_results$error_log <- data.frame(error_bin=rep(0,k),

error_msg=character(length=k), stringsAsFactors=FALSE

)

scip_results$error_log <- data.frame(error_bin=rep(0,k),

error_msg=character(length=k), stringsAsFactors=

FALSE)

#performing the trials

for(i in 1:k){

#starting the run clock

meta_starttime <- Sys.time()

# generating the dsign matrix

desmat <- cbind(rep(1,n), rnorm(n, mean=mean_of_IV, sd

=sd_of_IV)) #these are the population parameters

from weight in the BRFSS (agam , manually entered)

# generating data
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y <- scip_dat(n=n, desmat=desmat , sam=true_sampi , kop=

true_koppa , gam=true_gamma , c=c)$y

### Fitting the ZIP ####

# Making a dataset for the ZIP

zip_dat <- cbind(y=y,x=desmat [,-1])

# fitting the zip model

#library(pscl) #eventually need to take this out

zip_start <-Sys.time()

zip_attempt <- tryCatch(zip_mod <- pscl:: zeroinfl(y~.,

data=as.data.frame(zip_dat)), error=function(e) c(

error_bin=1,e))

zip_stop <-Sys.time()

if("error_bin" %in% names(zip_attempt)){ #if an error

zip_results$error_log$error_bin[i] <- zip_attempt$

error_bin

zip_results$error_log$error_msg[i] <- zip_attempt$

message

} else { #record the fit

zip_results$count[i,] <- zip_mod$coefficients$count

zip_results$logistic[i,] <- zip_mod$coefficients$

zero
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zip_results$runtime[i] <- difftime(zip_stop , zip_

start , units=meta_time_unit)

zip_results$convergence_issue[i] <- 1-zip_mod$

converged

}

### Fitting the SCIP ####

scip_start <-Sys.time()

scip_attempt <- tryCatch(scip_mod <- scip(y=y, desmat=

desmat , c=c), error=function(e) c(error_bin=1,e))

scip_stop <-Sys.time()

#error checking and recording results (if no error)

if("error_bin" %in% names(scip_attempt)){ #if an error

scip_results$error_log$error_bin[i] <- scip_attempt$

error_bin

scip_results$error_log$error_msg[i] <- scip_attempt$

message

} else { #record the fit

scip_results$sc[i,] <- scip_mod$sc

scip_results$lc[i,] <- scip_mod$lc

scip_results$logistic[i,] <- scip_mod$logistic

scip_results$runtime[i] <- difftime(scip_stop , scip_

start , units=meta_time_unit)

scip_results$iterations[i] <- scip_mod$iterations
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scip_results$convergence_issue[i] <- scip_mod$

convergence_issue

}

### Fitting the MIP ####

mip_start <-Sys.time()

mip_attempt <- tryCatch(mip_mod <- mip(y=y, desmat=

desmat , c=c), error=function(e) c(error_bin=1,e))

mip_stop <-Sys.time()

#error checking and recording results (if no error)

if("error_bin" %in% names(mip_attempt)){ #if an error

mip_results$error_log$error_bin[i] <- mip_attempt$

error_bin

mip_results$error_log$error_msg[i] <- mip_attempt$

message

} else { #record the fit

# as they should all be named the same , using the

names from one to iterate over the other...

for(j in c(paste0("logistic" ,0:c),"beta")){ #the

names of the mip_results columns that don’t have

to do with meta stuff...

mip_results [[j]][i,] <- mip_mod[[j]]

}

mip_results$runtime[i] <- difftime(mip_stop , mip_

start , units=meta_time_unit)
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mip_results$convergence_issue[i] <- mip_mod$

convergence_issue

}

#ending the run clock

meta_endtime <- Sys.time()

#Recording meta -time (time for the full run)

meta$runtime[i] <- difftime(meta_endtime , meta_

starttime , units = meta_time_unit)

if(progress)

cat(paste0("\r",round(i/k*100),"% complete (working 

on ", toOrdinal :: toOrdinal(i+1)," run). Last run 

took ", round(meta$runtime[i],2), " ", meta_time_

unit ,". Average run is ", round(mean(meta$runtime

, na.rm=TRUE) ,2), " ", meta_time_unit , ". 

Predicted completion time is ", Sys.time()+round(

mean(meta$runtime , na.rm=TRUE))*(k-i),"."))

}

list(zip_results=zip_results , scip_results=scip_results ,

mip_results=mip_results , meta=meta , n=n, c=c)
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}

Designing a Function for Prediction for the Dissertation Simulation

#’ @title Prediction Function for Dissertation

#’

#’

#’ @description This function will run the prediction for

my dissertation. The goal is to establish prediction

accuracy for each of the models. So, we’ll need to

generat a design matrix , generate some data , have a

predicted value based on the design matrix , have an

actual value , then also have an actual group vs a

predicted group for each of the models...

#’

#’ I want to matrix multiple all of the things , then use

logistic to determine which one I should actually use

...

#’

#’ @param n The sample size to use. This should be 20\% of

the actual data used in the simulation.

#’ @param c The cutoff to use. This should match that used

in the simulation.

#’ @param sim_dat Data from the simulation function.

#’

#’ @author Michael Floren

pred <- function(sim_dat){

### initial parameters ###
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percent_for_test <- .2 #test sample size is 20% of the

actual sample. May choose to use 25% instead , but not

a big deal...

n <- sim_dat$n*percent_for_test

c <- sim_dat$c

### functions ###

mse <- function(y,yhat){ #mean squared error

sum((yhat -y)^2)/length(y)

}

#the next couple functions need a threshhold to compare

to

thresh <- .5

pc <- function(g, ghat){ #percent correct , given

decimals for ghat. Remember: 1 is small count , 0 is

large count (this works either way, but g and ghat

have to be consistent ...)

sum((ghat >thresh)==g)/length(g)

}

auc <- function(g, ghat){

tryCatch(pROC::auc(pROC::roc(as.numeric(g),as.numeric(

ghat))),error=function(x)NA)

}
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# all overall numbers should be the same as for the

simulation

k <- nrow(sim_dat$zip_results$count) #the number of rows

for any of these should be the same...

p <- ncol(sim_dat$zip_results$count)

mean_of_IV <- 197.7828

sd_of_IV <- 40.21599

if(c==2){

true_sampi <- c( -1.4890070090395 ,

0.000896026713969103)

true_koppa <- c(2.26780053964254 ,

-0.000373799698134193)

true_gamma <- c(1.79118900609313 ,

-0.000338077141916478)

} else if (c==6){

true_sampi <- c( -0.991816836348344 ,

0.000632613090524932)

true_koppa <- c(2.51780279408921 ,

-0.000375747468669122)

true_gamma <- c(2.1998559804243 , -0.00025944850892789)

} else if (c==8){

true_sampi <- c( -0.989457553026938 ,

0.000623795679864685)

true_koppa <- c(2.51994084026393 ,

-0.000385423153504593)

true_gamma <- c(2.20836925037315 ,

-0.000300453184670207)
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} else{

stop(paste0("Population parameters for c=",c," not set

. Simulation stopped."))

}

# making generic lists to hold the information

verbose_results <- list()

results <- list()

#defining matrices for the results

for(i in 1:3){

results [[i]] <- as.data.frame(matrix(ncol=3, nrow=k))

colnames(results [[i]]) <- c("zip","mip","scip")

}

names(results) <- c("mse","percent_cor", "auc")

results$weighted_mse <- as.data.frame(matrix(ncol=3,

nrow=k))

colnames(results$weighted_mse) <- c("zip", "scip", "mip"

)

for(i in 1:k){

# generating data for the run

desmat <- cbind(rep(1,n), rnorm(n, mean=mean_of_IV, sd

=sd_of_IV))

actual <- scip_dat(n=n, desmat=desmat , sam=true_sampi ,

kop=true_koppa , gam=true_gamma , c=c)
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verbose_results [[i]] <- as.data.frame(matrix(ncol=p+8,

nrow=n)) #the verbose results for the iteration/

run. Columns: p for desmat , 2 for out (group and

count), 2 for predictions (count and group) for ZIP

, SCIP , and MIP

colnames(verbose_results [[i]]) <- c(paste0("desmat",

seq(0,ncol(desmat) -1)), "y", "g", "yhat_zip", "ghat

_zip", "yhat_scip", "ghat_scip", "yhat_mip", "ghat_

mip")

#setting info for the run

for(j in 1:ncol(desmat))

verbose_results [[i]][, paste0("desmat",j-1)] <-

desmat[,j]

verbose_results [[i]]$y <- actual$y

verbose_results [[i]]$g <- actual$g

#### Predictions: ZIP ####

zip_group_pred <- exp(desmat%*%sim_dat$zip_results$

logistic[i,])/(1+exp(desmat%*%sim_dat$zip_results$

logistic[i,])) #exp(x\beta)/(1+exp(x\beta))

zip_count_pred <- exp(desmat%*%sim_dat$zip_results$

count[i,])
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#setting the weighted mse

results$weighted_mse$zip[i] <- mse(y=actual$y,

yhat=zip_group_pred

*0 + (1-zip_

group_pred)*zip_

count_pred)

#for logistic results that point towards zero , set the

predicted count to 0 (use same threshold as above)

zip_count_pred[zip_group_pred >thresh] <- 0

#set the verbose results information

verbose_results [[i]]$yhat_zip <- zip_count_pred

verbose_results [[i]]$ghat_zip <- zip_group_pred

#set the results information

results$mse$zip[i] <- mse(y=actual$y, yhat=zip_count_

pred)

results$percent_cor$zip[i] <- pc(g=actual$g, ghat=zip_

group_pred)

results$auc$zip[i] <- auc(g=actual$g, ghat=zip_group_

pred)

#### Predictions: SCIP ####
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# Just treating the logistic piece as the group

prediction...

scip_group_pred <- exp(desmat%*%sim_dat$scip_results$

logistic[i,])/(1+exp(desmat%*%sim_dat$scip_results$

logistic[i,])) #the logistic piece

scip_sc_pred <- exp(desmat%*%sim_dat$scip_results$sc[i

,])

scip_lc_pred <- exp(desmat%*%sim_dat$scip_results$lc[i

,])

scip_count_pred <- ifelse(scip_group_pred >thresh , scip

_sc_pred , scip_lc_pred)

#set the verbose results information

verbose_results [[i]]$yhat_scip <- scip_count_pred

verbose_results [[i]]$ghat_scip <- scip_group_pred

#set the results information

results$mse$scip[i] <- mse(y=actual$y, yhat=scip_count

_pred)

results$percent_cor$scip[i] <- pc(g=actual$g, ghat=

scip_group_pred)

results$auc$scip[i] <- auc(g=actual$g, ghat=scip_group

_pred)

results$weighted_mse$scip[i] <- mse(y=actual$y,

yhat= scip_group_

pred*scip_sc_

pred + (1-scip_
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group_pred)*

scip_lc_pred)

#### Predictions: MIP ####

names_of_logistic_pieces <- paste0("logistic", 0:c)

#doing the denominator first

denom_for_logistic_mat <- matrix(ncol=c+1, nrow=n)

for(j in 1:(c+1)){ #for all the gammas except for

gamma zero , cause this is what the denom sum is.

gamma_(c+1) is gamma_J (so including J). Gamma_J is

zero.

denom_for_logistic_mat[,j] <- exp(desmat %*% sim_dat

$mip_results [[names_of_logistic_pieces[j]]][i,])

}

denom_for_logistic <- 1 + apply(denom_for_logistic_mat

, 1, sum)

#determining the logistic prediction pieces

mip_logistic <- as.data.frame(matrix(ncol=c+2, nrow=n)

)

colnames(mip_logistic) <- c(names_of_logistic_pieces ,

"logisticJ")

for(j in 1:(c+1)){
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mip_logistic[,j] <- exp(desmat%*%sim_dat$mip_results

[[names_of_logistic_pieces[j]]][i,])/denom_for_

logistic

}

mip_logistic$logisticJ <- 1-apply(mip_logistic[,-ncol(

mip_logistic)], 1, sum)

mip_group_pred <- 1-mip_logistic$logisticJ #the

probability of being in the small count is 1-\pi_l

mip_count_pred <- exp(desmat%*%sim_dat$mip_results$

beta[i,])

#setting the weighted MSE information

weighted_mip <- mip_logistic

for(j in 1:(c+1))

weighted_mip[,j] <- mip_logistic[,j]*(j-1) #the

column times its count

weighted_mip$logisticJ <- mip_logistic$logisticJ * mip

_count_pred #the count probability times the count

prediction

results$weighted_mse$mip[i] <- mse(y=actual$y,

yhat=apply(weighted

_mip , 1, sum))

#for each row , check which logistic piece is higher

group <- apply(mip_logistic , 1, function(x) which(x==

max(x))[1]) -1 #if multiple are tied , just take the
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first one... subtract 1 to match the column index

with the meaning (first column is a count of zero)

for(j in 0:c){ #don’t do J, as if the max group is J

we want to leave it alone. Only change for

mip_count_pred[group ==j] <- j

}

#set the verbose results information

verbose_results [[i]]$yhat_mip <- mip_count_pred

verbose_results [[i]]$ghat_mip <- mip_group_pred

#set the results information

results$mse$mip[i] <- mse(y=actual$y, yhat=mip_count_

pred)

results$percent_cor$mip[i] <- pc(g=actual$g, ghat=mip_

group_pred)

results$auc$mip[i] <- auc(g=actual$g, ghat=mip_group_

pred)

}

list(verbose_results=verbose_results , results=results)

}
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