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If 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑝)
𝑇
 is a vector, it is used 𝜋(𝜃) = [det 𝑱(𝜽)]

1
2 with 𝑱(𝜽) is Fisher 

information matrix. The Fisher information is  

                                                𝐽𝑖𝑗(𝜃) = −𝐸𝜃 (
𝜕2 𝑙𝑜𝑔𝑓(𝑌|𝜃)

𝜕𝜃𝑖 𝜕𝜃𝑗
) ,                                             (22) 

with 𝑖 = 1, 2,⋯ , 𝑝 and  𝑗 = 1, 2,⋯ , 𝑝. 

Informative priors. For large samples, if a low-informative prior is stated, the 

results are hardly influenced by the type of the prior. The more prior information is added, 

the more subjective it becomes. Informative prior is beneficial because:  

(a) findings from previous research can be incorporated into the analyses.  

(b) Bayesian credible intervals will be smaller.  

Note that a prior distribution needs to be specified for each and every parameter in the 

model. It is assumed that a distribution for each and every parameter, including covariances 

for using Bayesian statistics.  

The conjugate prior is informative prior, which is an initial probability assumption 

expressed in the same distribution type (parameterization) as the posterior probability or 

likelihood function; for example, the beta distribution is a conjugate prior for the binomial 

distribution. This means the posterior is also beta. In addition, if the likelihood function is 

normal with known variance, then a normal prior gives a normal posterior. This means that 

the normal distribution is its own conjugate prior. 

Generally, selecting prior is based on the parameter information available or not. If 

the parameter information is available, we use informative prior. Informative prior has a 

significant effect on the posterior distribution and more subjective (Gelman et al., 2014). If 

the parameter information is not available, we use non-informative prior, which is more 

objective than most classical analyzes.  

https://deepai.org/machine-learning-glossary-and-terms/probability
https://deepai.org/machine-learning-glossary-and-terms/posterior-probability
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Likelihood Function 

The second element of Bayesian analysis is the information in the data themselves. 

It is the observed evidence for our parameters in the data. This information is obtained by 

the likelihood function containing the information about the parameters given the data set. 

The likelihood function is defined as a function of the parameter θ equal to (or sometimes 

proportional to) the density of the observed data with respect to a reference measure. The 

likelihood is a tool for summarizing the data’s evidence about unknown parameters. The 

likelihood function is one of the most fundamental concepts of modern statistics. It is an 

important component of both frequentist and Bayesian analyses, where it is also obtained 

when non-Bayesian studies are conducted using ML estimation. Note that the likelihood 

function is not a probability density function.  

In defining likelihood functions in terms of probability density functions, we can 

suppose the joint probability density function of your sample, 𝑌 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛), is 

𝑓(𝑌|𝜃), where 𝑦𝑖 is independent, and 𝜃 is a parameter. 𝑌 = 𝑦 is an observed sample point, 

then the likelihood function defined as a function of 𝜃: 

                                                  𝐿(𝜃|𝑌) = ∏ 𝑓(𝑦𝑖|𝜃)
𝑛
𝑖=1 .                                                  (23) 

Posterior Distribution 

The third component is the posterior distribution, which is based on combining the 

first two components (the prior knowledge and the observed evidence) via Bayes' theorem. 

The posterior distribution reflects updating knowledge, balancing background knowledge 

(the prior) with observed data (the likelihood). The posterior distribution represents 

knowledge after taking the data into account (Bernardo & Smith, 2009). The posterior 

results are affected by the prior specification. The higher the prior precession, the smaller 

the posterior variance.  

https://www.statisticshowto.datasciencecentral.com/joint-probability-distribution/
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With a non-informative prior, the posterior estimate may not be influenced by 

choice of the prior much at all. In most cases, obtaining the posterior distribution is done by 

simulation, using the Markov Chain Monte Carlo (MCMC) methods (Gelman et al., 2014).  

Bayes’ Rule for Posterior: 

The Bayesian approach is of interest in computing the posterior distribution of the 

unknown parameter θ given the observed data Y, assuming the data are fixed and all 

unknown parameters as random variables. This is obtained by: 

                 𝑃(𝜃|𝑦) =
𝑃(𝑦, 𝜃)

𝑃(𝑦)
                                    [𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙] 

                   =
𝑃(𝑦|𝜃)𝑃(𝜃)

𝑃(𝑦)
                           [𝐵𝑎𝑦𝑠 𝑟𝑢𝑙𝑒]                     

                                      =
𝑃(𝑦|𝜃)𝑃(𝜃)

∫ 𝑃(𝑦, 𝜃) 𝑑𝜃
Θ

                        [𝐿𝑜𝑤 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦]          

                                           =
𝑃(𝑦|𝜃)𝑃(𝜃)

∫ 𝑃(𝑦|𝜃)𝑃(𝜃) 𝑑𝜃
Θ

 .              [𝐵𝑎𝑦𝑠 𝑟𝑢𝑙𝑒]                                   (24) 

The final result depends only on sampling distribution (Likelihood) 𝑃(𝑦|𝜃), and the prior 

distribution 𝑃(𝜃). Because the denominator 𝑃(𝑦) = ∫ 𝑃(𝑦|𝜃)𝑃(𝜃) 𝑑𝜃
Θ

  does not depend 

on θ, then we can consider it as a constant: 

                                                      𝑃(𝜃|𝑦) ∝ 𝑃(𝑦|𝜃)𝑃(𝜃),                                                (25) 

where. 

 𝑃(𝜃) Prior distribution function   

𝑃(𝑌|𝜃) Likelihood function, which is the joint probability function from Y as the 

random sample, if θ is known.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b16
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𝑃(𝜃|𝑌) Posterior distribution function, which is essentially a combination of the 

evidence provided by the observed data and prior relevant data from past 

research evidence.  

The proportion of the product of the prior distribution of the parameters and the 

likelihood function of the sample data provides the posterior distribution, which could be 

used to obtain parameter estimates through Bayesian inference (Bernardo & Smith, 2009).  

Markov Chain Monte Carlo 

For estimating posterior distributions in Bayesian inference, Markov Chain Monte–

Carlo (MCMC) is a popular method for obtaining information about posterior distributions 

(Gilks, Richardson, & Spiegelhaler, 1996; Kruschke, 2014; Lee, 2012). When focusing 

upon posterior distributions using analytic examination, which are often difficult to work 

with, MCMC is the practical method which has led to an explosion of computational 

algorithms and created a real revolution in the implementation of Bayesian methods 

(Ravenzwaaij, Cassey, & Brown, 2018). If posterior distributions are characterized by 

closed forms (normal, gamma, beta, Poisson, etc.), it is possible to conduct simulations 

directly by using computer programming routines. In cases where the posterior 

distributions have complicated or unusual or high dimensional models, the achievement of 

an approximation of the posterior distribution can be obtained by aligning differing 

algorithms used to construct and sample arbitrary posterior distributions. In this case, the 

complex nature of posterior, using MCMC permits the approximation of posterior 

distributions that cannot be directly calculated (Gamerman & Lopes, 2006; Gilks et al., 

1996).  

Historically, the algorithms of the MCMC method have been used for close to 60 

years. They have served as a reference method to analyze Bayesian complex models, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862921/#CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862921/#CR5
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particularly in the early 1990s. Gelfand and Smith (1990) and Gelman et al. (2014) noted 

that a particularly strong attribute of MCMC is its use in drawing samples from 

distributions even where that is known about the distribution is a method for calculating the 

density for different samples. 

Inspecting the name MCMC reveals the combination of two properties: Monte 

Carlo and Markov Chain. Monte Carlo is the practice of estimating the properties of 

distribution by examining random samples from the distribution. A Monte Carlo approach 

would draw a large number of random samples from the distribution, and calculate the 

properties of distribution (mean, variance, etc.) It can be much easier than calculating the 

properties of distribution directly from the distribution’s equations. This advantage is 

apparent in cases where it is easy to draw random samples, and the equations of the 

distribution are challenging to work with (Gilks et al., 1996).   

Markov Chain’s aspect of MCMC rests upon the construct that the random samples 

are obtained through a particular sequential process, where each random sample becomes a 

steppingstone in order to get the next random sample, hence the inclusion of the ‘chain.’ It 

is noteworthy to mention that in this process, each new sample is dependent upon the 

preceding sample, but any new sample is not dependent on any sample before the 

preceding one, which is called the Markov property (Ravenzwaaij et al., 2018). 

As Lee (2012) stated, MCMC methods provide an excellent approach for parameter 

estimation in a Bayesian framework. In addition, he pointed out that a key feature of 

MCMC approaches regards inferences about an analytically intractable posterior, often in 

high dimensions, and how they are conducted by generating a Markov chain converging to 

a chain of drawing taken from the posterior distribution. In summary, MCMC methods are 

used to draw samples from some target densities, which are mostly non-standard or 
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complex forms of distributions, where the target density in Bayesian applications is the 

joint posterior, or the posterior density of the model parameters (Ravenzwaaij et al., 2018).  

By using MCMC, it is possible to analyze all of the parameters or functions of 

parameters through a posterior distribution via Bayesian applications (O’Neill, 2002). 

Mathematically, the posterior summaries for individual parameters or joint distributions of 

parameters such as means, medians, variances. The Markov Chain Monte Carlo generates a 

sequence of 𝜃(1), 𝜃(2),⋯ , 𝜃(𝑡) random variables of some set T, (𝑡 ≥ 0), the next state 

𝜃(𝑡+1) is sampled from the conditional distribution of 𝜃(𝑡+1) given 𝜃(1), 𝜃(2),⋯ , 𝜃(𝑡) 

depending only on the current state of the chain, 𝜃(𝑡) (Gelman et al., 2014; Gilks et al., 

1996). Therefore, the unknown parameter at time t+1, 𝜃(𝑡+1), is conditionally independent 

of the previous values: 

                               𝑃(𝜃(𝑡+1)|𝜃(0), 𝜃(1),⋯ , 𝜃(𝑡)) = 𝑃(𝜃(𝑡+1)|𝜃(𝑡)),                                  (26)  

where the random variable at time t+1, 𝜃(𝑡+1), does not depend further on 𝜃(0), 𝜃(1),⋯, 

𝜃(𝑡−1).  (Gilks et al., 1996; Sitthisan, 2016). 

There are two primary sampling methods of constructing the chains within MCMC, 

including Metropolis-Hastings Algorithms, which was studied by Metropolis, Rosenbluth, 

Rosenbluth, Teller, and Teller (1953) and Hastings (1970) and Gibbs sampling, which was 

initially introduced by Geman and Geman (1984). 

The Metropolis-Hastings Algorithms 

Another sampling method that also functions as a basis for all other sampling 

methods was proposed by Metropolis et al. (1953), which used a modified Monte Carlo 

scenario. Later, the Metropolis et al. (1953) algorithm was adapted by Hastings (1970) in 

order to relax the assumption of asymmetric proposal distribution, and this adaptation has 

become known as the Metropolis-Hastings algorithm. This Metropolis-Hastings algorithm 
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is a form of the MCMC method often utilized in sampling from a specified target 

distribution that is itself a posterior distribution within Bayesian analysis (Gelman et al., 

2014). It is often employed in solving numerical problems related to statistical analysis as it 

is both simple but also powerful for a variety of issues (O’Neill, 2002). 

The Metropolis-Hasting algorithm is an MCMC method that can be used for 

sampling from the specified target distribution, which is a posterior distribution in 

Bayesian analysis (Gelman et al., 2014). Each iteration of the Metropolis-Hastings 

algorithm is divided into three steps:  

(a) Generate a line, which is starting point 𝜃(0) from a starting distribution 𝜋0(𝜃), 

by sampling from a candidate, proposal, or a jumping distribution 𝑞(𝜃∗|𝜃(𝑡−1)). 

(b) Propose a new state through the line, and evaluate 

                                             𝛼(𝜙|𝜃) = min [
𝜋(𝜙)𝑞(𝜃|𝜙)

𝜋(𝜃)𝑞(𝜙|𝜃)
, 1],                                                   (27) 

where, 

𝜋(𝜃) is a distribution 𝜋 with respect to a sequence of random variables 𝜃 =

𝜃(1), 𝜃(2),⋯, drawn via Markov chain, 

𝑞(𝜙|𝜃) is a transition kernel or a transition probability, which is constructed from 

the current state 𝜃(𝑡−1) = 𝜃 to the next realized state 𝜃∗ = 𝜙,  

𝛼(𝜙|𝜃) is the probability of moving, which is introduced to reduce the number of 

moves from 𝜃 to 𝜙, 

(Chib & Greenberg, 1995; Gamerman & Lopes, 2006; Mengersen & Tweedie, 1996; 

Roberts & Smith, 1994; Sitthisan, 2016; Tierney, 1994). 

(c) Accept or reject the proposed state according to the Metropolis-Hastings 

probability; or, keep the current state. 
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The decision to move the state can be made referring to the probability of the move, 

𝛼(𝜙|𝜃). If the chain is at a point 𝜃, then it generates a candidate value 𝜙 for the next step. 

If the candidate point is accepted, the next state becomes 𝜙, so the probability of going 

from state 𝜃 (i. e, 𝜃𝑡−1) to state 𝜙(𝜃∗) is shown as: 

                                       𝑝∗(𝜙|𝜃) = {
𝑞(𝜙|𝜃)𝛼(𝜙|𝜃)     if    𝜃 ≠ 𝜙
    0                          if    𝜃 = 𝜙

 ,                                  (28) 

which is also defined as the off-diagonal density of a Metropolis kernel (Lee, 2012; 

Tierney, 1994). If the candidate point is rejected, the chain remains in the present state 𝜃. 

The probability when the algorithm remains at 𝜃 is set as  

                                        𝑟(𝜃) = 1 − ∑ 𝑞(𝜙|𝜃)𝛼(𝜙|𝜃)𝜙 .                                                 (29) 

The simulation of a draw from a target (posterior) distribution can be summarized as: 

1. Draw a starting point 𝜃(0) from a starting distribution 𝑝0(𝜃). 

2. (a) Sample a proposal or a candidate point 𝜃∗ from a proposal distribution 

𝑞(𝜃∗|𝜃𝑡−1) at time t. 

 (b) Calculate the ratio 𝛼(𝜃∗|𝜃𝑡−1) =
𝜋(𝜃∗|𝑦)/𝑞(𝜃∗|𝜃𝑡−1)

𝜋(𝜃𝑡−1|𝑦)/𝑞(𝜃𝑡−1|𝜃∗)
 . 

3. Generate U from an independent Uniform distribution on (0, 1). 

4. Compare U with 𝛼(𝜃∗|𝜃𝑡−1), 

if U ≤ 𝛼(𝜃∗|𝜃𝑡−1) the move is accepted and define 𝜃𝑡 = 𝜃∗, 

if U > 𝛼(𝜃∗|𝜃𝑡−1) the move is accepted and define 𝜃𝑡 = 𝜃𝑡−1, 

5. Change the time t to t+1 and return to step 2 to get the sequence of random 

variable 𝜃(1), 𝜃(2), ⋯ , 𝜃(𝑡),  

(Chib & Greenberg, 1995; Gamerman & Lopes, 2006; Lee, 2012; Sitthisan, 2016). 
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Gibbs Sampling 

In Geman and Geman’s study (1984), the focus was upon image-processing models 

(Casella & George, 1992).  This original work yielded a widely accepted principle 

theoretical contribution for investigating the Markov random field in the sampling and 

computation of the mode of the posterior distribution. The applications of the Gibbs 

sampling have been used in sampling complicated models (those with various unknown 

parameters or high dimensional integration) by Smith and Robert (1993), Zhang, 

Hamagami, Wang, Nesselroade, and Grimm (2007), and Lu, Zhang, and Lubke (2011).  At 

this point, the Gibbs sampling has become the default algorithm in most software, where it 

uses an iterative process when all the parameters of the model (e.g., means, variances, 

regression parameters, etc.) are estimated repeatedly. These repeated estimations are able to 

be summarized by creating plot diagrams of the results from each iteration. Then, this 

distribution can be used in computing means or confidence intervals, allowing for multiple 

chains to be specified and sampling from a greater range of locations that are within the 

posterior distribution. Theoretically, the results of sampling multiple chains will, after 

many iterations, converge to reflect the same marginal distribution of the model parameters 

(Casella & George, 1992; Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2019). 

An integral characteristic of the Gibbs sampling technique is reflected by the 

drawing of samples from the full conditional distributions (Smith & Robert, 1993), which 

are distributions of the parameter of focus that is predicated on the known information 

available from all the other parameters. Gamerman and Lopes (2006) rephrased this key 

feature by stating that the Gibbs sampling approach relies upon the full conditional 

distributions. Let 𝜋(𝜽) be the density function of interest with q unknown parameters (𝜽 =

𝜃1, 𝜃2, ⋯ , 𝜃𝑞). Each component 𝜃𝑖 can be considered as a scalar, a vector, or a matrix 
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(Gamerman & Lopes, 2006). Let 𝜋(𝜽) = 𝜋(𝜃1, 𝜃2, ⋯ , 𝜃𝑞) denote the joint density 

function, then 𝜋𝑖(𝜽𝒊) = 𝜋(𝜃𝑖|𝜃1, 𝜃2, ⋯ , 𝜃𝑖−1, 𝜃𝑖+1, ⋯ , 𝜃𝑞 ) = 𝜋(𝜃𝑖|𝜃−𝑖 ), 𝑖 = 1, 2,⋯ , 𝑞 

denote the full conditional densities for each of the components 𝜃𝑖, given all the 

components of 𝜃, except for 𝜃𝑖 at the current values. Gibbs sampling provides an 

alternative scheme to draw samples directly from a known marginal distribution when the 

full conditional densities are known. This technique samples one parameter at a time. For 

each iteration of the Gibbs sampler, the value of each component cycles through the 

subvectors of 𝜃. At iteration t, each subset 𝜃𝑖
𝑡 is sampled individually from the conditional 

distribution given all the other components of 𝜃, 𝜋(𝜃𝑖
𝑡|𝜃−𝑖

𝑡−1). The Gibbs sampling 

algorithm is defined by the following iterations: 

1. Choose a starting values of the chain,  j = 0;  𝜽(0) = 𝜃1
(0), 𝜃2

(0),⋯ , 𝜃𝑞
(0); 

2. At time 𝑡, starting at j = 1, obtain the single cycle by drawing a new values 

𝜽(𝑡) = 𝜃1
(𝑡), 𝜃2

(𝑡),⋯ , 𝜃𝑞
(𝑡)

  from successive random drawings from the full 

conditional distributions 𝜋(𝜃𝑖
𝑡|𝜃−𝑖

𝑡−1, 𝑥), 𝑖 = 1,⋯ , 𝑘 as follows: 

sample 𝜃1
𝑡~𝜗1|𝜃2

𝑡−1, 𝜃3
𝑡−1, ⋯ , 𝜃𝑞

𝑡−1 

sample 𝜃2
𝑡~𝜗2|𝜃1

𝑡−1, 𝜃3
𝑡−1, ⋯ , 𝜃𝑞

𝑡−1 

sample 𝜃3
𝑡~𝜗3|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃4

𝑡−1, ⋯ , 𝜃𝑞
𝑡−1 

⋮ 

sample 𝜃𝑞−1
𝑡 ~𝜗𝑞−1|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃3

𝑡−1, ⋯ , 𝜃𝑞−2
𝑡−1 , 𝜃𝑞

𝑡−1 

sample 𝜃𝑞
𝑡~𝜗𝑞|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃3

𝑡−1, ⋯ , 𝜃𝑞−1
𝑡−1 

3. Increment t and repeat until the chain convergence criterion is satisfied (noting 

that convergence is to stationarity rather than to a point, as it would be for 

iteratively calculated randomization-based estimators). 
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When convergence is reached, this means 𝜃(𝑡) is sampled from 𝜋 (Gamerman & Lopes, 

2006; Sitthisan, 2016).  

Theoretically, both The Gibbs sampling method and the Metropolis-Hastings 

algorithm are simple and straightforward, utilized in simulations of a posterior distribution 

on spaces of fixed dimension (Richardson & Green, 1997). In addition, both of them are 

designed to ensure the final convergence to the stationary distribution. When the process 

stops, a Monte Carlo standard error indicates how close the last values are likely to be to 

the actual ML estimates (Agresti, 2015). 

Convergence of the Markov Chain Monte 

Carlo Algorithms 

 

Markov Chain Monte Carlo (MCMC) algorithms have been used frequently as a 

way to fit complicated statistical models when it is challenging to apply traditional 

estimation techniques. The concept of an MCMC algorithm is to develop a process that has 

a stationary distribution that matches a posterior distribution of interest. One problem in 

using an MCMC algorithm is in the determination of the convergence of the algorithm. 

Convergence technically happens when the Markov chain generated converges in 

distribution to be a posterior distribution of interest. The convergence is in distribution (not 

to point), and the generated values will vary even after convergence. As a way to calculate 

generally some form of statistical analysis to assess convergence of the MCMC algorithms, 

various convergence diagnostics have been suggested.  

It is important to raise a question that is related to applying the convergence 

diagnostics to a practical problem: “How many parameters to monitor?” Gelman and Rubin 

(1992) suggest monitoring the convergence of all the model’s parameters. Monitoring 

convergence only for the parameters of interest, particularly when the problem contains 
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high dimensional parameters, may lead to a mistake of diagnosing convergence too early 

(Carlin & Louis, 1996). 

With respect to another question that is frequently asked, “How many chains to 

employ,” there is a variety of expert opinions. Geyer (1992) recommends using one very 

long chain as he claims that will have the best chance of exploring the whole parameter 

space, particularly for a slowly moving chain. In contrast, Gelman and Rubin (1992) 

recommend running several long chains. It is important to note that some of the popular 

MCMC convergence diagnostics work only for multiple chains. Several diagnostic tests 

can be applied and will be reviewed in this dissertation. 

Convergence Diagnostics 

There are several numbers of samples tools currently in existence to make the 

MCMC convergence assessment and provide useful feedback about the convergence of the 

MCMC (Brooks & Roberts, 1998; Cowles & Carlin, 1996; Roberts & Smith, 1994), 

including: 

Trace plots (Time series plots). The trace plot, which is sometimes referred to as a 

time-series plot, shows the sampled values of a parameter over time. This is the plots of the 

iterations versus the generated values and helps in judging how rapidly the MCMC 

procedure converges in distribution 

Autocorrelation functions plot. Autocorrelation is a term that is used about a 

pattern of serial correlation in the chain, where sequential draws of a parameter, say 𝜃(𝑡), 

from the conditional distribution, are correlated. For this, the autocorrelation is computed 

as 

                                                    𝑐𝑜𝑟(𝜃(𝐵), 𝜃(𝐵+𝑡)),                                                           (30) 
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where B is the burn-in period. Monitoring autocorrelations has a handy feature since low or 

high values indicate fast or slow convergence, respectively. Since it will take a very long 

time to explore the entire posterior distribution, this feature is essential. It should be noted 

that if the level of autocorrelation is high for a parameter of interest, then a trace plot will 

be a poor diagnostic for convergence. 

Posterior variance of the parameter (𝑹̂). For any given parameter, the estimated 

posterior variance of the parameter, (𝑅̂), was used to assess convergence. The estimated 

posterior variance of the parameter was estimated by 

                                                     𝑅̂ = √𝑣𝑎𝑟̂(
𝜓
𝑦⁄ )

𝑊
,                                                              (31) 

where 𝜓 was the simulated value, which was specified as 𝜓𝑖𝑗 , (𝑖 = 1,⋯ , 𝑛  ;   𝑗 =

1,⋯ ,𝑚). The subscripts 𝑖 and 𝑗 were specified after discarding the warm-up iterations. 

Then the post-burn-in iterations were split into the first and second half (i.e., 𝑚 is the 

number of subgroups and 𝑛 is the number of lengths of each chain). This posterior 

estimated variance consists of the between-sequence variances (B) and within-sequence 

variances (W). B and W can be computed from the following equations: 

  𝐵 =
𝑛

𝑚 − 1
∑(𝜓̅∙𝑗 − 𝜓̅∙∙)

𝑚

𝑗=1

,    where,    𝜓̅∙𝑗 =
1

𝑛
∑𝜓𝑖𝑗

𝑛

𝑖=1

    and     𝜓̅∙∙ =
1

𝑛
∑𝜓∙𝑗

𝑛

𝑖=1

,           (32) 

                            𝑊 =
𝑚

𝑚
∑𝑠𝑗

2

𝑚

𝑗=1

,    where,    𝑠𝑗
2 =

1

𝑛 − 1
∑(𝜓𝑖𝑗 − 𝜓∙𝑗)

2
𝑛

𝑖=1

,                           (33) 

                                                  𝑣𝑎𝑟̂ (
𝜓
𝑦⁄ ) =

𝑛 − 1

𝑛
𝑊 +

1

𝑛
𝐵,                                                     (34) 

where 𝜓∙𝑗 is the within-sequence means, 𝜓̅ is the grand mean, and 𝑠𝑗
2 is the variance within 

the chain (Gelman et al., 2014). 
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Heidelberger and Welch convergence diagnostic. This diagnostic applies to a 

single chain. The user pre-specifies ε, which is the desired relative half-width for 

confidence intervals. The stationarity test of Schruben, Singh, and Tierney (1983) is 

applied to the chain. If the test rejects the null hypothesis, the first 10% iterations of the 

chain are discarded. The stationarity test is repeated until 50% of iterations have been 

dropped. In this latter case, the failure of the chain to pass the stationarity test is an 

indication of the need to run the MCMC longer. A half-width test is performed on that 

portion of the chain that does pass the stationarity test for each parameter. Spectral density 

estimation yields an estimate of the standard error of the mean, leading to an estimated 

half-width of the confidence interval for the mean. In the case where the latter estimate is 

less than ε times the sample mean from the retained portion of the chain, the process is 

stopped, and the sample mean and confidence interval are reported. 

The convergence of the simulation is calculated from the unknown parameters to 

ensure a precise estimation. When all the convergence tests have been passed, the total of 

parameters will be summarized, based on the four groups for each estimation, as 

recommended by the Bayesian method.  

Bayesian Analysis 

While there are many attractive features of a Bayesian approach, Bayesian methods 

do insist that prior distributions that are not straightforward be specified, especially about 

variance components (Agresti, 2015). There is also the issue of computation because the 

commonly used implementation is through a Markov chain Monte Carlo (MCMC), 

requiring a large computational overhead. 

There has been increased interest in the simultaneous analysis of a joint model of 

longitudinal outcome and informative time in the last few years. It often appears in 
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practical applications. For example, in clinical trials, the measurements of some biomarkers 

are collected repeatedly over time for each patient, while some patients may experience 

death or dropout during the study. This can be seen in clinical trials involving the 

measurement of biomarkers, which are gathered repeatedly over time for each participant 

where there may be cases of death or participant dropout during the study. The joint model 

of longitudinal outcome and informative time is rapidly evolving (Alomair, 2017; Bronsert, 

2009; Liang et al., 2009; Lin, 2011; Seo, 2015). At present, longitudinal data analysis does 

not rest on any assumptions regarding regular times for observation, and due to a large 

number of parameters in relation to sample size, difficulties can arise in unstructured 

covariance matrices. This situation has led to the progress of a variety of statistical models 

and methods that can handle irregular correlated data (Pullenayegum & Lim, 2016).  

Baghfalaki, Ganjali, and Hashemi (2014) adopted the Bayesian approach using the 

Markov-chain Monte Carlo method for parameter estimation. Chan and Wan (2011) 

considered the Bayesian approach via MCMC method for the longitudinal bivariate binary 

data with informative dropout model. 

Employing a Bayesian analysis of generalized linear models necessitates the 

specification of a proper prior to account for the unknown parameters and can take a 

variety of forms (Agresti, 2015; Carlin & Louis, 2008; Gelman et al., 2014). In generalized 

linear models, the posterior distribution normally has no closed-form expression. A 

presenting difficulty is in the determination of the appropriate constant, which will allow 

the posterior to integrate to 1 by evaluating the denominator integral that determines the 

normalizing constant, which is often intractable, or overly complicated. The Markov chain 

Monte Carlo (MCMC) is commonly employed as the predominant simulation method. 

Sweeting (1981), for example, used noninformative priors in examining a more general 

https://onlinelibrary-wiley-com.unco.idm.oclc.org/doi/full/10.1002/bimj.201400064#bimj1636-bib-0010
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class of models beyond the GLM’s. Extending Sweeting’s findings to GLMs using 

informative normal prior to regression coefficients were West, Harrison, and Migon (1985) 

and Albert (1988). Ibrahim and Laud (1991) observed that uniform priors, Jeffrey’s prior or 

diffuse priors, serve very frequently as conventional noninformative priors. It is only with 

great difficulty, however, that priors are elicited directly on regression parameters in a 

GLM, with the possibility of obtaining improper posterior distributions, resulting in an 

undesirable uniform prior (O’Hagan, Woodward, & Moodaley, 1990). A more accessible 

alternative is to obtain prior to canonical parameters, as shown by Das and Dey (2007), in 

their study that obtained prior to canonical parameters. They demonstrated that with a full 

rank assumption of the design matrix, a proper prior to the regression parameters could be 

induced by the various elicited prior to canonical parameters. After that, the usual Bayesian 

analysis based on the induced prior can be carried out. 

Now that there is a user-friendly software program, WinBUGS and/or OpenBUGS, 

for use with Bayesian analysis that employs MCMC techniques, estimating parameters has 

become much more attainable for nonexperts (Spiegelhalter, Myles, Jones, & Abrams, 

2000). It is possible to extend Lin’s (2011) model in Bayesian inference utilizing the 

MCMC algorithm for the joint model of longitudinal outcome with informative time due to 

the computational ease, flexibility regarding model extension, and the good knowledge, 

where can be summarized into a prior distribution for some of the parameters of the model, 

but where knowledge on the rest of the parameters lacks or unavailable.  

Conclusion 

Longitudinal designs serve an important function in many areas of research that 

enhance our understanding of research objectives unattainable in other analytical 

approaches. The literature is replete with a large number of different longitudinal designs 
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and approaches with their model assumptions as an attempt to accommodate varying 

response data, types, and design issues. 

The key characteristic of longitudinal designs is their ability to measure the change 

in outcomes and/or predictors at an individual level over time. Although there have been a 

variety of methods developed and presented to address the many different outcomes, 

research design issues, nearly all these methods rest on assumptions regarding the time 

intervals that they are fixed and/or predetermined. In reality, however, there are occasions 

where time points need to be based on prior outcomes, resulting in an individual 

measurement of response at different sets of time points. For this particular kind of 

research design including irregular measurement, traditional methods are not appropriate 

for longitudinal design with informative time data, given their assumption of a fixed time. 

Giving rise to newer approaches, joint model, to better answer research objectives when 

time points are not fixed or predetermined. 

Thus, in the current study, I will use the Bayesian Approach (noninformative, 

informative, and semi-informative prior) to estimate the parameters of the joint model of 

Lin (2011). His model was designed to handle longitudinal outcomes that distributed to be 

a normal distribution with an informative time that followed an exponential distribution. 

Another aim of this dissertation is to present the Bayesian analysis and its terminology in 

an easier to comprehend manner without the use of large numbers of formulae. I will 

illustrate the attractions of the Bayesian approach and present an explanation on how to 

estimate a model developed within a Bayesian perspective that relies on background 

knowledge in the actual data analysis, followed by an interpretation of the results. Bayesian 

computation and an introduction to the Markov Chain Monte Carlo method will also be 

presented.
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CHAPTER III 

 

METHODOLOGY 

 

The joint model by Bronsert (2009) and extended by Lin (2011) was developed 

under the assumption that outcomes follow a normal distribution, and time follows an 

exponential distribution. Later, Seo (2015) adapted and modified Bronsert and Lin's joint 

model to show the parameter estimates of the extended joint models satisfy the normality 

assumption when the distribution of outcomes is a member of the exponential family of 

distributions. The purpose of this study is to find Bayesian estimates for the parameters of 

the joint model longitudinal outcomes and informative time, assuming that the outcomes 

will follow a normal distribution, whereas time will follow an exponential distribution. 

In order to employ the Bayesian model in estimating the value of unknown 

parameters, it is necessary to place previous knowledge about the parameters upon the 

model parameters in terms of the distribution. The distributions of these parameters are 

called prior distribution, which can take on different levels of information. In the review of 

the literature, I used in deriving the previous information for the unknown parameters, 

including both informative and noninformative priors. In the current study, I focus on three 

types of prior information (informative, noninformative, semi-informative priors). 

Using simulation for data sets via Markov chain Monto Carlo simulation, the 

Bayesian estimation approach was implemented to investigate the performance resulting to 

provide an estimate of the parameters of the joint model of longitudinal outcomes and 
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informative time. Finally, the statistical inference was conducted based on the samples 

from the posterior distribution created from the generated Markov chain.  

Joint Model with the Notation 

The outcome for the 𝑖𝑡ℎ individual measured at the 𝑗𝑡ℎ time point is given by 𝒴𝑖𝑗; so 

the 𝑖𝑡ℎ individual has a vector of outcomes 𝓨𝑖 = (𝒴𝑖1, 𝒴𝑖2, ⋯ , 𝒴𝑖𝑛𝑖)
′
 collected at a vector of time 

𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑛𝑖)
′
,  

where, 

the individuals range from 𝑖 = (1, 2,⋯ ,𝑚),  

the time range from 𝑗 = (1, 2,⋯ , 𝑛𝑖),  

𝑛𝑖 allows the measured time to vary from one individual to another individual. The 

joint distribution of outcomes (𝓨
𝑖
) and time points (𝒕𝑖) is in general given by: 

                                            𝑓𝚯(𝓨𝑖
, 𝒕𝑖) = 𝑓𝚯(𝓨𝑖

| 𝒕𝑖) ∙ 𝑓𝚯(𝒕𝑖),                                                                (35) 

where, 

𝚯 is a vector of unknown parameters.  

A general model can be derived by using this joint distribution of (𝓨
𝑖
) and (𝒕𝑖). Therefore, 

the general model under the assumptions that the current outcome is dependent on the one-

step prior outcome (𝒴
𝑖𝑗−1
), current outcome (𝒴

𝑖𝑗
), and current time point (𝑡𝑖𝑗) becomes 

        𝑓𝚯(𝓨𝑖 , 𝒕𝑖) = 𝑓𝚯(𝒴𝑖1| 𝑡𝑖1) ∙ 𝑓𝚯(𝑡𝑖1) ∙∏𝑓𝚯(𝒴𝑖𝑗| 𝑡𝑖𝑗, 𝒴𝑖𝑗−1) ∙ 𝑓𝚯(𝑡𝑖𝑗|𝒴𝑖𝑗−1)

𝑛𝑖

𝑗=2

.              (36) 

Based on this general model, a joint model was developed for each member of the 

exponential family of distributions, while assuming time to follow an exponential 

distribution. The special case will be termed the Gaussian-Exponential model (GE), can be 

represented as the following: 
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𝑓𝚯(𝓨𝑖 , 𝒕𝑖) =
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖1 − 𝑿𝑖1
′ 𝜷)2

𝜎2
) × 𝑓(𝑡𝑖1)

×∏{
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖𝑗 − 𝛾𝑡𝑖𝑗 − 𝜙𝒴𝑖(𝑗−1) − 𝑿𝑖𝑗
′ 𝜷)

2

𝜎2
)

𝑛𝑖

𝑗=2

× 𝑒𝑥𝑝(𝛼 + 𝛿𝑖𝒴𝑖(𝑗−1)) 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝒴𝑖(𝑗−1)𝑡𝑖𝑗)} .                                             (37) 

It is assumed that 𝑓(𝑡𝑖1) does not depend on 𝚯, so for the purpose of the likelihood 

function, we can ignore it. Furthermore, the resulting function of the initial observation, 

 𝑦
𝑖1

 is conditioned on time of observation, 𝑡𝑖1, which is the same approach found in 

traditional longitudinal models. However, under the Gaussian-Exponential case, the 

response variable is considered to be conditionally normal given time, while the time of 

observation is assumed to be distributed exponentially. In addition, it is assumed that the 

initial observation is a function only of the unknown regression parameters and that the 

subsequent responses are then conditioned on these unknown parameters as well as the 

effects of the prior response outcome and observation times. This conditional association 

on prior response outcomes contributes to this model’s ability to analyze informative time 

data. 

Bayesian Estimation for the Joint Model 

Although the classical ML has theoretical appeal, its estimation of model 

parameters is complicated in that numerical methods are necessary to evaluate some 

complex marginal likelihood functions of the joint model in the equation. The rise of 

simulation-based Bayesian MCMC methods over the past few years has seen its acceptance 

as a popular tool for a variety of complicated statistical models. In fact, given a large 
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sample size and appropriate regularity conditions, the Bayesian estimator is deemed 

asymptotically equivalent to ML estimators (Ghosal, Lund, Moin, & Akselvoll, 1995). 

The Bayesian procedure, by incorporating both data and prior information for 

parameters, generates the posterior distribution of unknown parameters. With prior 

information unavailable, noninformative priors with large variance are used. With 

informative priors as normal for parameters are included, and inverse gamma (1G) priors 

for positive parameters as in the variance σ2, are adopted. In order to obtain the desired 

joint posterior distribution, the MCMC algorithm, with its ability to construct an irreducible 

and aperiodic Markov chain, is used to generate the equilibrium distribution. 

The application of the Gibbs sampler can produce a sequence of samples of one or 

more variables at a time that is taken from the set of full conditional distributions. To 

conduct a posterior analysis, outputs are taken from the simulated chain; i. e., parameters 

are estimated by their posterior means. In situations where the full conditional distributions 

are not standard, other methods are permissible, such as the Metropolis-Hastings. An 

advantage of the MCMC algorithm utilizing Gibbs sampler is its ease in implementation 

using Bayesian software OprnBUGS and R programming. 

High posterior correlations are present between some of the parameters because of 

the complexity of the models, slowing down convergence rates in the Gibbs samplers. As a 

way to address this predicament, the number of iterations needs to be substantial enough to 

obtain a stationary sample. Checking for independence and convergence of the sample is 

accomplished with trajectory plots, autocorrelation plots, of the simulated values. In 

addition, the convergence test uses the Cramer-von-Mises statistic to test the null 

hypothesis that the sampled values come from a stationary distribution is applied as well. 
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The Bayesian hierarchies and joint posterior distributions for all the models are then 

presented. 

Likelihood Functions 

An assumption of the model described above is that 𝑓(𝑡𝑖1)  does not depend on 𝚯𝒊, 

and can, therefore, be ignored with respect to the likelihood function. Also, the function 

thus obtained from the initial observation, 𝒴𝑖1, is conditioned on time of observation, 𝑡𝑖1, 

which is the identical approach found in traditional longitudinal models. However, 

subsequent observations of the response variable, 𝒴𝑖𝑗 , are no longer exclusively conditioned 

on time of observation, 𝑡𝑖𝑗, alone but are now also conditioned on the most recent previous 

observation, 𝒴𝑖𝑗−1, and time of observation. Thus, the likelihood function for the above joint 

model is the product of the density functions for m individuals, namely: 

𝐿(Θ,𝒴1,𝒴2, ⋯ ,𝒴𝑚) =∏𝑓𝚯(𝓨𝑖, 𝒕𝑖)

𝑚

𝑖=1

=∏{
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖1 − 𝑿𝑖1
′ 𝜷)

2

𝜎2
)

𝑚

𝑖=1

×∏[(
1

√2𝜋(𝜎2)
∙ 𝑒𝑥𝑝(−

1

2

(𝒴𝑖𝑗 − 𝛾𝑡𝑖𝑗 − 𝜙𝒴𝑖(𝑗−1) −𝑿𝑖𝑗
′ 𝜷)

2

𝜎2
))

𝑛𝑖

𝑗=2

× 𝑒𝑥𝑝 (𝛼 + 𝛿𝑖𝒴𝑖(𝑗−1)) ∙ 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝒴𝑖(𝑗−1)𝑡𝑖𝑗)]} .                                      (38) 

Prior Distribution 

The model parameters that we need to estimate in the current dissertation project by 

using Bayesian approach, as shown in the likelihood function for the joint model, are a 

vector of explanatory variables (𝜷),  the variance (𝜎2), the coefficient (𝜙), accounts for the 
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effect of the prior outcome on the mean response, the coefficient (𝛾), accounts for the 

effect of the current time on the mean response, parameters associated with modeling time 

of observation include a constant parameter (𝛼), and a coefficient that maps time of 

observation (𝛿). 

Requirements for employing a Bayesian method for estimating the parameters in 

the joint model include the specification of the priors for the model parameters and the 

utilization of these priors for the calculation of the posterior distribution of each parameter. 

It is imperative that the priors be carefully selected for accuracy in making inferences for 

the parameters in the joint model. There can be a high relationship between the posterior 

distribution for each parameter and its prior chosen, which can extend to the priors selected 

for the other unknown parameters of the joint models. 

Priors can take two forms: informative and noninformative. Even though 

researchers commonly use a noninformative prior distribution in the Bayesian analysis, 

using informative priors is preferable (Depaoli, 2014). With this consideration, the current 

project takes into account both informative and noninformative priors in estimating the 

unknown parameters in the joint model. The noninformative priors on some of the 

parameters will be set up as a proper vague prior. In this dissertation, we will adopt three 

scenarios for the prior distribution:  

1. The prior distributions of all unknown parameters as shown in the likelihood 

function of this current dissertation, are informative prior, which will be set to 

be specific informative prior; such as normal for unrestricted parameters, 

N(a,b), where a and b are determined by previous studies; for positive 

parameters such as the variance σ2, should be inverse Gamma (IG) priors.  
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2. The prior distributions of all unknown parameters are noninformative prior, 

which will be set to be a uniform distribution or vague prior, such as N(0, 1e6). 

3. A combination of two above scenarios, so the prior distributions of some 

unknown parameters are noninformative, and the others are informative. 

The first scenario is all unknown parameters are informative prior. In this 

scenario, we have to determine the hyperparameters from the previous studies.  Since some 

historical datasets of the proposed joint model were available, then they can be used to 

estimate the hyperparameters and set up informative prior for this dissertation. The 

Bayesian approach with informative prior is conducted using the same model as the 

classical approach that used in the previous studies, such as Bronsert (2009), Lin (2011), 

and Seo (2015).  

Therefore, the prior for the vector of explanatory variables (𝜷) is the multivariate 

normal distribution denoted as 

                                                       𝜷~𝑁(𝝁𝛽 , 𝑎𝚺𝛽),                                                           (39) 

where 𝝁𝛽 is the hyperparameter representing the mean vector with the value of 0.4𝐈𝑚, and 

𝚺𝛽 is the hyperparameter representing the covariance matrix defined as the identity matrix, 

𝑰𝑚. The dimension of both depends on m individuals and the hyperparameter. a. is set to be 

4.0. The multivariate normal distribution has the density function 

                        𝑝(𝛽) = (2𝜋)
𝑚

2 |𝚺𝛽|
−
1

2 exp (−
1

2
(𝛽 − 𝝁𝛽)

′
(𝚺𝛽)

−1
(𝛽 − 𝝁𝛽)).                   (40) 

The priors for the amount of variance (𝜎2) is Inverse Gamma (IG) distribution 

denoted as 

                                                            𝜎2~𝐼𝐺(𝑎1, 𝑎2),                                                      (41) 
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where the hyperparameters 𝑎1and 𝑎2 are set to be 0.2. The inverse Gamma has density 

function, 

                                𝑝(𝜎2) =
𝑎2

𝑎1

Γ(𝑎1)
 (𝜎2)−(𝑎1+1)𝑒−𝑎2 (𝜎2)⁄ ,           (𝜎2) > 0.                       (42) 

The prior for the coefficient, (𝜙), which is accounts for the effect of the prior 

outcome on the mean response is normal distribution denoted as  

                                                            𝜙~𝑁(𝜇𝜙, 𝜏𝜙
2 ),                                                        (43) 

where 𝜇𝜙 is the hyperparameter, which is known with a mean vector with the value of 0.2, 

and the hyperparameter 𝜏𝜙
2  is set to be 0.2. the normal distribution has the density function 

                                             𝑝(𝜙) =
1

√2𝜋 𝜏𝜙
2
exp (−

1

2
(𝜙 − 𝜇𝜙)

2
).                                   (44) 

Similarly, the prior for the coefficient (𝛾), accounts for the effect of the current time 

on the mean response is normal distribution denoted as  

                                                             𝛾~𝑁(𝜇𝛾, 𝜏𝛾
2),                                                         (45) 

where 𝜇𝛾 is the hyperparameter, which is known with a mean vector with the value of 0.5, 

and the hyperparameter 𝜏𝛾
2 is set to be 0.5.  

The priors for the parameters associated with modeling time of observation include 

a constant parameter (𝛼), and a coefficient that maps time of observation (𝛿) are also the 

same as normal distribution denoted as  

                                 𝛼~𝑁(𝜇𝛼, 𝜏𝛼
2)         and         𝛿~𝑁(𝜇𝛿 , 𝜏𝛿

2),                                       (46) 
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Table 20 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.137 0.010 0.156 0.119 0.696 0.057 0.794 0.609 

𝜷𝟎 0.404 0.126 0.656 0.158 0.404 0.088 0.579 0.233 

𝜷𝟏 0.215 0.128 0.470 -0.037 0.200 0.090 0.378 0.023 

𝜷𝟐 0.310 0.129 0.558 0.059 0.298 0.091 0.474 0.120 

𝜷𝟑 0.090 0.132 0.348 -0.171 0.103 0.091 0.282 -0.078 

𝜷𝟒 0.300 0.132 0.561 0.039 0.307 0.092 0.486 0.126 

𝜷𝟓 0.402 0.057 0.514 0.292 0.400 0.040 0.480 0.321 

𝜷𝟔 0.908 0.060 1.025 0.791 0.903 0.046 0.994 0.812 

𝜹 -0.001 0.003 0.005 -0.006 -0.056 0.005 -0.048 -0.064 

𝜸 0.100 0.008 0.115 0.085 0.100 0.005 0.110 0.090 

𝝓 0.793 0.026 0.845 0.742 0.797 0.019 0.834 0.760 

𝝈𝟐 1.008 0.076 1.167 0.871 1.005 0.053 1.115 0.907 

Parameters Scheme = 3      

𝜶 0.137 0.009 0.155 0.120 0.568 0.090 0.717 0.436 

𝜷𝟎 0.408 0.252 0.907 -0.083 0.406 0.174 0.752 0.068 

𝜷𝟏 0.213 0.256 0.725 -0.289 0.198 0.179 0.553 -0.155 

𝜷𝟐 0.316 0.257 0.810 -0.187 0.310 0.182 0.662 -0.044 

𝜷𝟑 0.094 0.265 0.612 -0.428 0.092 0.181 0.448 -0.267 

𝜷𝟒 0.302 0.262 0.821 -0.217 0.300 0.183 0.657 -0.060 

𝜷𝟓 0.410 0.112 0.630 0.192 0.402 0.080 0.561 0.247 

𝜷𝟔 0.917 0.112 1.137 0.697 0.906 0.086 1.075 0.737 

𝜹 -0.001 0.002 0.004 -0.005 -0.037 0.007 -0.026 -0.049 

𝜸 0.101 0.015 0.130 0.071 0.101 0.011 0.122 0.081 

𝝓 0.785 0.039 0.861 0.708 0.792 0.028 0.847 0.738 

𝝈𝟐 4.030 0.302 4.670 3.483 3.997 0.211 4.433 3.607 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 21 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.375 0.025 0.425 0.328 0.370 0.017 0.405 0.337 

𝜷𝟎 0.395 0.250 0.889 -0.093 0.400 0.173 0.743 0.063 

𝜷𝟏 0.211 0.255 0.720 -0.290 0.213 0.179 0.569 -0.140 

𝜷𝟐 0.330 0.256 0.822 -0.170 0.301 0.182 0.652 -0.053 

𝜷𝟑 0.100 0.264 0.616 -0.419 0.101 0.181 0.457 -0.259 

𝜷𝟒 0.312 0.260 0.826 -0.202 0.298 0.183 0.655 -0.062 

𝜷𝟓 0.403 0.111 0.619 0.186 0.406 0.079 0.565 0.251 

𝜷𝟔 0.907 0.109 1.121 0.693 0.906 0.083 1.071 0.742 

𝜹 -0.007 0.010 0.012 -0.026 -0.007 0.007 0.007 -0.021 

𝜸 0.100 0.041 0.179 0.020 0.099 0.028 0.155 0.044 

𝝓 -0.015 0.060 0.102 -0.132 -0.010 0.042 0.073 -0.093 

𝝈𝟐 4.002 0.300 4.636 3.458 4.007 0.212 4.444 3.615 

Parameters Scheme = 6      

𝜶 0.371 0.026 0.424 0.322 0.369 0.019 0.407 0.332 

𝜷𝟎 0.404 0.063 0.528 0.281 0.402 0.044 0.489 0.317 

𝜷𝟏 0.203 0.064 0.331 0.077 0.201 0.045 0.290 0.113 

𝜷𝟐 0.302 0.064 0.426 0.177 0.303 0.046 0.391 0.214 

𝜷𝟑 0.099 0.066 0.228 -0.031 0.099 0.045 0.188 0.009 

𝜷𝟒 0.301 0.066 0.433 0.170 0.301 0.046 0.391 0.210 

𝜷𝟓 0.402 0.029 0.459 0.345 0.400 0.021 0.441 0.360 

𝜷𝟔 0.902 0.034 0.966 0.836 0.902 0.026 0.952 0.851 

𝜹 -0.006 0.008 0.011 -0.022 -0.006 0.007 0.007 -0.020 

𝜸 0.100 0.010 0.120 0.080 0.100 0.007 0.114 0.086 

𝝓 0.797 0.018 0.833 0.762 0.798 0.014 0.825 0.771 

𝝈𝟐 0.252 0.019 0.291 0.217 0.250 0.013 0.277 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 



107 
 

 

Table 22 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.903 0.012 0.922 0.883 0.589 0.120 0.761 0.404 

𝜷𝟎 0.400 0.066 0.531 0.274 0.376 0.163 0.702 0.059 

𝜷𝟏 0.203 0.065 0.332 0.074 0.248 0.161 0.571 -0.069 

𝜷𝟐 0.303 0.066 0.431 0.175 0.331 0.157 0.634 0.022 

𝜷𝟑 0.103 0.066 0.233 -0.027 0.120 0.149 0.415 -0.175 

𝜷𝟒 0.304 0.067 0.434 0.173 0.328 0.159 0.639 0.012 

𝜷𝟓 0.400 0.028 0.456 0.346 0.424 0.073 0.566 0.282 

𝜷𝟔 0.901 0.035 0.969 0.832 0.888 0.109 1.101 0.674 

𝜹 -0.049 0.001 -0.047 -0.050 -0.027 0.007 -0.016 -0.037 

𝜸 0.100 0.004 0.107 0.093 0.100 0.009 0.117 0.083 

𝝓 0.799 0.009 0.817 0.781 0.794 0.018 0.830 0.759 

𝝈𝟐 1.000 0.038 1.078 0.929 1.003 0.095 1.206 0.836 

Parameters Scheme = 3      

𝜶 0.924 0.014 0.946 0.902 0.711 0.110 0.874 0.544 

𝜷𝟎 0.394 0.124 0.639 0.153 0.352 0.261 0.865 -0.160 

𝜷𝟏 0.220 0.126 0.468 -0.029 0.315 0.269 0.851 -0.205 

𝜷𝟐 0.319 0.128 0.566 0.071 0.352 0.265 0.863 -0.169 

𝜷𝟑 0.120 0.127 0.370 -0.129 0.154 0.258 0.665 -0.350 

𝜷𝟒 0.313 0.128 0.562 0.061 0.395 0.272 0.926 -0.136 

𝜷𝟓 0.402 0.055 0.512 0.297 0.457 0.133 0.717 0.198 

𝜷𝟔 0.902 0.063 1.027 0.778 0.845 0.195 1.225 0.462 

𝜹 -0.043 0.001 -0.042 -0.044 -0.030 0.006 -0.020 -0.038 

𝜸 0.100 0.007 0.114 0.086 0.101 0.017 0.134 0.067 

𝝓 0.797 0.015 0.826 0.769 0.785 0.030 0.843 0.727 

𝝈𝟐 4.009 0.153 4.320 3.723 4.007 0.377 4.811 3.340 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 23 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.012 0.393 0.346 0.374 0.029 0.434 0.319 

𝜷𝟎 0.383 0.122 0.622 0.148 0.323 0.252 0.819 -0.169 

𝜷𝟏 0.216 0.126 0.463 -0.031 0.302 0.266 0.833 -0.214 

𝜷𝟐 0.314 0.127 0.560 0.067 0.343 0.263 0.851 -0.175 

𝜷𝟑 0.118 0.127 0.367 -0.132 0.172 0.257 0.683 -0.329 

𝜷𝟒 0.317 0.128 0.565 0.066 0.379 0.269 0.905 -0.148 

𝜷𝟓 0.403 0.055 0.512 0.298 0.425 0.123 0.663 0.187 

𝜷𝟔 0.900 0.059 1.015 0.784 0.828 0.190 1.200 0.457 

𝜹 -0.007 0.005 0.002 -0.016 -0.007 0.011 0.013 -0.028 

𝜸 0.099 0.020 0.139 0.060 0.097 0.048 0.191 0.004 

𝝓 -0.003 0.029 0.053 -0.060 -0.020 0.068 0.115 -0.152 

𝝈𝟐 4.010 0.153 4.321 3.723 4.006 0.377 4.809 3.340 

Parameters Scheme = 6      

𝜶 0.369 0.013 0.395 0.344 0.364 0.034 0.433 0.301 

𝜷𝟎 0.400 0.033 0.466 0.337 0.396 0.087 0.571 0.228 

𝜷𝟏 0.201 0.033 0.267 0.136 0.214 0.087 0.387 0.042 

𝜷𝟐 0.301 0.034 0.366 0.236 0.313 0.084 0.475 0.148 

𝜷𝟑 0.100 0.033 0.166 0.034 0.106 0.079 0.261 -0.050 

𝜷𝟒 0.300 0.034 0.367 0.234 0.310 0.085 0.475 0.140 

𝜷𝟓 0.400 0.015 0.429 0.372 0.409 0.040 0.487 0.331 

𝜷𝟔 0.900 0.020 0.940 0.860 0.901 0.061 1.020 0.781 

𝜹 -0.007 0.003 -0.001 -0.012 -0.005 0.005 0.004 -0.015 

𝜸 0.100 0.005 0.110 0.090 0.100 0.011 0.122 0.077 

𝝓 0.800 0.007 0.813 0.787 0.797 0.013 0.822 0.772 

𝝈𝟐 0.251 0.010 0.270 0.233 0.254 0.024 0.305 0.211 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 24 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.760 0.046 0.831 0.687 0.915 0.019 0.945 0.884 

𝜷𝟎 0.391 0.103 0.595 0.192 0.393 0.082 0.556 0.234 

𝜷𝟏 0.216 0.101 0.417 0.019 0.209 0.080 0.367 0.051 

𝜷𝟐 0.312 0.103 0.511 0.111 0.315 0.083 0.474 0.154 

𝜷𝟑 0.119 0.107 0.325 -0.091 0.107 0.079 0.262 -0.050 

𝜷𝟒 0.312 0.104 0.516 0.106 0.302 0.083 0.464 0.138 

𝜷𝟓 0.402 0.047 0.493 0.311 0.404 0.038 0.479 0.330 

𝜷𝟔 0.902 0.053 1.005 0.797 0.902 0.051 1.001 0.801 

𝜹 -0.039 0.003 -0.035 -0.043 -0.054 0.001 -0.052 -0.056 

𝜸 0.100 0.006 0.111 0.089 0.100 0.005 0.109 0.091 

𝝓 0.797 0.013 0.824 0.771 0.798 0.012 0.821 0.775 

𝝈𝟐 1.003 0.061 1.130 0.890 1.004 0.047 1.100 0.917 

Parameters Scheme = 3      

𝜶 0.767 0.048 0.842 0.693 0.893 0.024 0.929 0.855 

𝜷𝟎 0.372 0.183 0.732 0.018 0.362 0.150 0.658 0.073 

𝜷𝟏 0.237 0.186 0.604 -0.126 0.231 0.152 0.528 -0.067 

𝜷𝟐 0.327 0.191 0.697 -0.047 0.323 0.156 0.624 0.018 

𝜷𝟑 0.153 0.197 0.534 -0.234 0.134 0.150 0.429 -0.162 

𝜷𝟒 0.344 0.192 0.721 -0.035 0.338 0.157 0.644 0.029 

𝜷𝟓 0.416 0.091 0.593 0.240 0.402 0.073 0.547 0.261 

𝜷𝟔 0.901 0.097 1.090 0.708 0.900 0.093 1.080 0.716 

𝜹 -0.036 0.002 -0.032 -0.040 -0.046 0.001 -0.044 -0.048 

𝜸 0.101 0.011 0.123 0.078 0.100 0.009 0.117 0.083 

𝝓 0.793 0.021 0.836 0.751 0.796 0.018 0.831 0.760 

𝝈𝟐 4.019 0.245 4.528 3.569 4.006 0.188 4.388 3.657 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 25 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.372 0.019 0.411 0.336 0.370 0.014 0.398 0.342 

𝜷𝟎 0.362 0.179 0.712 0.014 0.378 0.145 0.663 0.100 

𝜷𝟏 0.240 0.186 0.606 -0.122 0.221 0.152 0.516 -0.077 

𝜷𝟐 0.333 0.190 0.702 -0.041 0.317 0.156 0.617 0.011 

𝜷𝟑 0.148 0.197 0.527 -0.239 0.130 0.150 0.426 -0.165 

𝜷𝟒 0.328 0.191 0.703 -0.050 0.326 0.157 0.630 0.019 

𝜷𝟓 0.403 0.089 0.577 0.231 0.404 0.072 0.547 0.265 

𝜷𝟔 0.895 0.089 1.070 0.717 0.890 0.087 1.059 0.718 

𝜹 -0.007 0.007 0.007 -0.021 -0.007 0.006 0.004 -0.018 

𝜸 0.100 0.032 0.162 0.038 0.099 0.024 0.148 0.052 

𝝓 -0.009 0.045 0.079 -0.097 -0.006 0.035 0.064 -0.075 

𝝈𝟐 4.025 0.246 4.534 3.573 4.011 0.189 4.395 3.662 

Parameters Scheme = 6      

𝜶 0.367 0.022 0.412 0.325 0.368 0.017 0.401 0.337 

𝜷𝟎 0.399 0.052 0.503 0.298 0.399 0.041 0.481 0.319 

𝜷𝟏 0.205 0.052 0.308 0.103 0.207 0.041 0.288 0.126 

𝜷𝟐 0.305 0.053 0.406 0.202 0.304 0.042 0.386 0.223 

𝜷𝟑 0.102 0.055 0.208 -0.006 0.101 0.040 0.180 0.022 

𝜷𝟒 0.301 0.053 0.406 0.195 0.301 0.043 0.384 0.217 

𝜷𝟓 0.401 0.025 0.449 0.353 0.401 0.021 0.441 0.361 

𝜷𝟔 0.901 0.031 0.962 0.840 0.902 0.030 0.962 0.842 

𝜹 -0.006 0.004 0.001 -0.014 -0.006 0.004 0.001 -0.014 

𝜸 0.100 0.008 0.115 0.085 0.100 0.006 0.112 0.088 

𝝓 0.799 0.009 0.818 0.781 0.798 0.009 0.816 0.781 

𝝈𝟐 0.252 0.015 0.283 0.223 0.251 0.012 0.276 0.230 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 26 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.705 0.058 0.803 0.616 0.140 0.018 0.177 0.108 

𝜷𝟎 0.391 0.085 0.561 0.226 0.364 0.214 0.785 -0.053 

𝜷𝟏 0.207 0.088 0.380 0.035 0.230 0.193 0.612 -0.149 

𝜷𝟐 0.313 0.089 0.484 0.140 0.359 0.209 0.762 -0.047 

𝜷𝟑 0.108 0.089 0.282 -0.069 0.147 0.207 0.554 -0.260 

𝜷𝟒 0.309 0.091 0.488 0.130 0.357 0.209 0.766 -0.056 

𝜷𝟓 0.403 0.039 0.482 0.327 0.429 0.124 0.673 0.186 

𝜷𝟔 0.903 0.045 0.991 0.815 0.898 0.158 1.203 0.586 

𝜹 -0.056 0.005 -0.048 -0.065 -0.001 0.003 0.006 -0.007 

𝜸 0.100 0.005 0.111 0.090 0.101 0.012 0.124 0.077 

𝝓 0.796 0.018 0.832 0.761 0.787 0.033 0.851 0.723 

𝝈𝟐 1.002 0.053 1.111 0.904 1.003 0.126 1.278 0.782 

Parameters Scheme = 3      

𝜶 0.603 0.082 0.738 0.481 0.141 0.019 0.179 0.110 

𝜷𝟎 0.366 0.157 0.674 0.064 0.314 0.307 0.916 -0.289 

𝜷𝟏 0.238 0.165 0.563 -0.085 0.271 0.311 0.882 -0.339 

𝜷𝟐 0.335 0.167 0.661 0.007 0.415 0.320 1.044 -0.210 

𝜷𝟑 0.147 0.168 0.476 -0.183 0.192 0.327 0.841 -0.447 

𝜷𝟒 0.328 0.170 0.660 -0.007 0.424 0.324 1.058 -0.213 

𝜷𝟓 0.406 0.077 0.558 0.258 0.441 0.212 0.859 0.028 

𝜷𝟔 0.901 0.084 1.066 0.736 0.857 0.250 1.343 0.353 

𝜹 -0.039 0.006 -0.029 -0.049 -0.001 0.003 0.004 -0.006 

𝜸 0.100 0.010 0.121 0.080 0.100 0.023 0.145 0.054 

𝝓 0.792 0.027 0.845 0.739 0.776 0.049 0.873 0.682 

𝝈𝟐 4.011 0.212 4.446 3.620 4.020 0.504 5.125 3.139 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 27 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.370 0.017 0.405 0.337 0.381 0.037 0.457 0.311 

𝜷𝟎 0.373 0.156 0.678 0.071 0.290 0.299 0.880 -0.290 

𝜷𝟏 0.233 0.164 0.558 -0.090 0.252 0.310 0.860 -0.355 

𝜷𝟐 0.324 0.167 0.649 -0.004 0.396 0.317 1.020 -0.224 

𝜷𝟑 0.122 0.168 0.451 -0.208 0.182 0.326 0.828 -0.454 

𝜷𝟒 0.325 0.170 0.656 -0.009 0.389 0.320 1.018 -0.241 

𝜷𝟓 0.404 0.076 0.554 0.258 0.427 0.206 0.831 0.022 

𝜷𝟔 0.895 0.082 1.057 0.733 0.811 0.238 1.281 0.336 

𝜹 -0.007 0.007 0.007 -0.020 -0.006 0.015 0.023 -0.035 

𝜸 0.099 0.028 0.155 0.044 0.097 0.064 0.221 -0.029 

𝝓 -0.007 0.042 0.076 -0.089 -0.028 0.092 0.153 -0.209 

𝝈𝟐 4.005 0.211 4.439 3.614 4.014 0.502 5.113 3.134 

Parameters Scheme = 6      

𝜶 0.370 0.019 0.408 0.333 0.375 0.040 0.457 0.299 

𝜷𝟎 0.398 0.044 0.485 0.313 0.389 0.123 0.633 0.150 

𝜷𝟏 0.203 0.045 0.292 0.115 0.214 0.106 0.424 0.007 

𝜷𝟐 0.304 0.045 0.391 0.216 0.322 0.118 0.552 0.091 

𝜷𝟑 0.102 0.046 0.191 0.012 0.116 0.114 0.338 -0.109 

𝜷𝟒 0.302 0.046 0.393 0.210 0.325 0.118 0.557 0.090 

𝜷𝟓 0.400 0.020 0.440 0.361 0.414 0.068 0.547 0.281 

𝜷𝟔 0.901 0.025 0.949 0.852 0.906 0.094 1.089 0.721 

𝜹 -0.007 0.006 0.006 -0.019 -0.005 0.009 0.014 -0.023 

𝜸 0.100 0.007 0.114 0.086 0.100 0.016 0.132 0.068 

𝝓 0.799 0.013 0.824 0.774 0.792 0.024 0.840 0.745 

𝝈𝟐 0.251 0.013 0.279 0.227 0.255 0.032 0.325 0.199 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 28 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.627 0.079 0.752 0.515 0.893 0.028 0.936 0.851 

𝜷𝟎 0.419 0.120 0.661 0.187 0.400 0.100 0.598 0.205 

𝜷𝟏 0.201 0.118 0.437 -0.031 0.204 0.095 0.392 0.017 

𝜷𝟐 0.302 0.114 0.521 0.082 0.300 0.094 0.482 0.116 

𝜷𝟑 0.093 0.114 0.318 -0.134 0.111 0.097 0.301 -0.081 

𝜷𝟒 0.306 0.118 0.539 0.073 0.305 0.097 0.493 0.113 

𝜷𝟓 0.407 0.051 0.506 0.310 0.399 0.045 0.488 0.313 

𝜷𝟔 0.915 0.072 1.055 0.774 0.907 0.050 1.005 0.808 

𝜹 -0.037 0.006 -0.029 -0.045 -0.047 0.002 -0.044 -0.049 

𝜸 0.100 0.006 0.113 0.088 0.101 0.005 0.110 0.091 

𝝓 0.795 0.015 0.824 0.766 0.798 0.011 0.820 0.776 

𝝈𝟐 1.008 0.066 1.146 0.887 1.002 0.054 1.113 0.903 

Parameters Scheme = 3      

𝜶 0.625 0.075 0.745 0.515 0.889 0.028 0.935 0.846 

𝜷𝟎 0.434 0.234 0.902 -0.017 0.435 0.196 0.826 0.056 

𝜷𝟏 0.207 0.237 0.680 -0.257 0.209 0.190 0.583 -0.166 

𝜷𝟐 0.310 0.228 0.748 -0.132 0.312 0.187 0.677 -0.055 

𝜷𝟑 0.116 0.228 0.567 -0.338 0.083 0.193 0.463 -0.301 

𝜷𝟒 0.340 0.234 0.802 -0.122 0.291 0.193 0.666 -0.092 

𝜷𝟓 0.416 0.100 0.611 0.223 0.414 0.088 0.590 0.244 

𝜷𝟔 0.935 0.135 1.200 0.671 0.920 0.092 1.099 0.736 

𝜹 -0.030 0.005 -0.024 -0.038 -0.041 0.001 -0.039 -0.043 

𝜸 0.101 0.012 0.125 0.077 0.100 0.010 0.120 0.081 

𝝓 0.786 0.023 0.832 0.740 0.791 0.018 0.827 0.755 

𝝈𝟐 4.030 0.265 4.584 3.545 4.015 0.215 4.458 3.620 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 29 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.371 0.019 0.410 0.335 0.369 0.016 0.401 0.338 

𝜷𝟎 0.414 0.224 0.860 -0.023 0.410 0.190 0.788 0.042 

𝜷𝟏 0.210 0.236 0.683 -0.253 0.208 0.189 0.580 -0.163 

𝜷𝟐 0.307 0.227 0.743 -0.135 0.318 0.186 0.679 -0.047 

𝜷𝟑 0.090 0.228 0.538 -0.365 0.087 0.193 0.465 -0.295 

𝜷𝟒 0.297 0.230 0.750 -0.157 0.298 0.191 0.669 -0.082 

𝜷𝟓 0.408 0.098 0.601 0.216 0.403 0.086 0.575 0.236 

𝜷𝟔 0.908 0.125 1.154 0.662 0.905 0.082 1.066 0.744 

𝜹 -0.007 0.008 0.008 -0.022 -0.007 0.006 0.005 -0.019 

𝜸 0.100 0.034 0.168 0.034 0.100 0.028 0.154 0.046 

𝝓 -0.015 0.049 0.081 -0.109 -0.012 0.039 0.066 -0.089 

𝝈𝟐 4.035 0.265 4.589 3.546 4.004 0.214 4.448 3.609 

Parameters Scheme = 6      

𝜶 0.370 0.022 0.415 0.328 0.368 0.019 0.405 0.332 

𝜷𝟎 0.405 0.059 0.521 0.291 0.402 0.049 0.499 0.307 

𝜷𝟏 0.205 0.059 0.323 0.089 0.205 0.048 0.300 0.110 

𝜷𝟐 0.306 0.057 0.415 0.195 0.303 0.047 0.395 0.210 

𝜷𝟑 0.099 0.057 0.211 -0.014 0.100 0.048 0.195 0.004 

𝜷𝟒 0.302 0.060 0.420 0.183 0.301 0.049 0.395 0.204 

𝜷𝟓 0.405 0.027 0.458 0.353 0.402 0.023 0.448 0.357 

𝜷𝟔 0.907 0.042 0.988 0.824 0.904 0.029 0.961 0.845 

𝜹 -0.006 0.004 0.002 -0.015 -0.006 0.003 0.000 -0.012 

𝜸 0.100 0.008 0.116 0.084 0.100 0.007 0.113 0.087 

𝝓 0.797 0.011 0.819 0.776 0.799 0.008 0.815 0.783 

𝝈𝟐 0.251 0.017 0.285 0.221 0.250 0.013 0.278 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 30 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.951 0.007 0.962 0.939 0.143 0.021 0.187 0.105 

𝜷𝟎 0.400 0.060 0.519 0.283 0.462 0.301 1.071 -0.130 

𝜷𝟏 0.201 0.058 0.315 0.087 0.208 0.294 0.786 -0.372 

𝜷𝟐 0.300 0.058 0.412 0.187 0.333 0.301 0.917 -0.261 

𝜷𝟑 0.099 0.057 0.211 -0.014 0.084 0.301 0.679 -0.513 

𝜷𝟒 0.298 0.059 0.414 0.184 0.286 0.296 0.869 -0.299 

𝜷𝟓 0.400 0.025 0.449 0.350 0.415 0.158 0.728 0.106 

𝜷𝟔 0.901 0.032 0.963 0.839 0.964 0.150 1.254 0.664 

𝜹 -0.049 0.000 -0.048 -0.050 0.000 0.007 0.015 -0.013 

𝜸 0.100 0.003 0.106 0.094 0.101 0.018 0.137 0.065 

𝝓 0.800 0.008 0.816 0.783 0.753 0.073 0.899 0.611 

𝝈𝟐 1.001 0.033 1.069 0.939 1.028 0.187 1.460 0.720 

Parameters Scheme = 3      

𝜶 0.944 0.008 0.957 0.930 0.144 0.021 0.187 0.105 

𝜷𝟎 0.397 0.117 0.629 0.170 0.541 0.594 1.745 -0.624 

𝜷𝟏 0.207 0.115 0.434 -0.021 0.218 0.588 1.374 -0.942 

𝜷𝟐 0.312 0.116 0.535 0.086 0.353 0.598 1.514 -0.828 

𝜷𝟑 0.103 0.115 0.328 -0.122 0.056 0.605 1.250 -1.144 

𝜷𝟒 0.305 0.118 0.535 0.077 0.298 0.595 1.466 -0.878 

𝜷𝟓 0.406 0.049 0.503 0.310 0.409 0.316 1.032 -0.210 

𝜷𝟔 0.909 0.057 1.021 0.796 1.021 0.272 1.546 0.480 

𝜹 -0.043 0.000 -0.042 -0.043 -0.001 0.005 0.010 -0.011 

𝜸 0.100 0.006 0.112 0.088 0.103 0.036 0.174 0.031 

𝝓 0.798 0.013 0.822 0.773 0.698 0.104 0.903 0.494 

𝝈𝟐 4.006 0.133 4.275 3.756 4.082 0.743 5.793 2.860 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 31 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.010 0.389 0.351 0.395 0.055 0.510 0.294 

𝜷𝟎 0.402 0.113 0.627 0.181 0.423 0.581 1.599 -0.711 

𝜷𝟏 0.202 0.115 0.428 -0.025 0.235 0.581 1.377 -0.911 

𝜷𝟐 0.301 0.116 0.522 0.076 0.350 0.590 1.492 -0.815 

𝜷𝟑 0.105 0.115 0.328 -0.121 0.098 0.598 1.277 -1.088 

𝜷𝟒 0.304 0.117 0.534 0.077 0.330 0.587 1.485 -0.832 

𝜷𝟓 0.402 0.048 0.497 0.309 0.449 0.315 1.069 -0.167 

𝜷𝟔 0.905 0.052 1.008 0.804 0.973 0.258 1.470 0.461 

𝜹 -0.007 0.004 0.001 -0.015 -0.005 0.022 0.038 -0.048 

𝜸 0.100 0.017 0.134 0.066 0.101 0.098 0.294 -0.094 

𝝓 -0.004 0.025 0.044 -0.053 -0.100 0.142 0.178 -0.379 

𝝈𝟐 4.010 0.133 4.279 3.759 4.046 0.736 5.739 2.835 

Parameters Scheme = 6      

𝜶 0.368 0.011 0.389 0.347 0.390 0.055 0.505 0.289 

𝜷𝟎 0.400 0.030 0.458 0.342 0.424 0.151 0.728 0.127 

𝜷𝟏 0.200 0.029 0.258 0.143 0.208 0.147 0.497 -0.081 

𝜷𝟐 0.301 0.029 0.357 0.244 0.317 0.152 0.611 0.018 

𝜷𝟑 0.100 0.029 0.156 0.043 0.089 0.150 0.385 -0.210 

𝜷𝟒 0.301 0.030 0.359 0.243 0.299 0.148 0.590 0.007 

𝜷𝟓 0.401 0.014 0.427 0.374 0.407 0.080 0.564 0.251 

𝜷𝟔 0.901 0.019 0.938 0.864 0.928 0.088 1.096 0.753 

𝜹 -0.007 0.002 -0.002 -0.011 -0.002 0.022 0.042 -0.044 

𝜸 0.100 0.004 0.108 0.092 0.100 0.025 0.149 0.052 

𝝓 0.800 0.006 0.811 0.788 0.780 0.052 0.884 0.679 

𝝈𝟐 0.250 0.008 0.267 0.235 0.258 0.047 0.367 0.181 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 32 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.140 0.016 0.172 0.111 0.136 0.011 0.158 0.116 

𝜷𝟎 0.385 0.192 0.762 0.007 0.376 0.147 0.669 0.089 

𝜷𝟏 0.212 0.232 0.665 -0.244 0.222 0.140 0.500 -0.051 

𝜷𝟐 0.347 0.196 0.728 -0.036 0.335 0.144 0.616 0.051 

𝜷𝟑 0.162 0.202 0.560 -0.234 0.141 0.143 0.423 -0.145 

𝜷𝟒 0.326 0.199 0.719 -0.070 0.332 0.147 0.623 0.041 

𝜷𝟓 0.410 0.170 0.741 0.078 0.405 0.066 0.535 0.277 

𝜷𝟔 0.912 0.117 1.141 0.677 0.904 0.078 1.054 0.749 

𝜹 -0.001 0.003 0.005 -0.008 -0.001 0.002 0.004 -0.005 

𝜸 0.100 0.012 0.124 0.077 0.100 0.008 0.117 0.084 

𝝓 0.785 0.035 0.854 0.717 0.792 0.024 0.840 0.744 

𝝈𝟐 0.997 0.125 1.273 0.777 1.007 0.088 1.194 0.850 

Parameters Scheme = 3      

𝜶 0.138 0.015 0.169 0.111 0.137 0.011 0.159 0.118 

𝜷𝟎 0.343 0.291 0.912 -0.227 0.337 0.240 0.809 -0.132 

𝜷𝟏 0.230 0.348 0.914 -0.457 0.274 0.243 0.758 -0.200 

𝜷𝟐 0.369 0.313 0.979 -0.243 0.370 0.249 0.858 -0.121 

𝜷𝟑 0.242 0.318 0.869 -0.383 0.181 0.247 0.668 -0.307 

𝜷𝟒 0.349 0.317 0.965 -0.273 0.374 0.252 0.868 -0.123 

𝜷𝟓 0.429 0.286 0.985 -0.129 0.401 0.125 0.650 0.158 

𝜷𝟔 0.881 0.193 1.258 0.496 0.894 0.138 1.161 0.622 

𝜹 -0.001 0.003 0.004 -0.006 -0.001 0.002 0.003 -0.005 

𝜸 0.100 0.023 0.145 0.054 0.100 0.016 0.132 0.068 

𝝓 0.776 0.051 0.877 0.675 0.783 0.036 0.854 0.713 

𝝈𝟐 3.973 0.498 5.066 3.102 4.001 0.349 4.743 3.378 

Note. P = Parameters of interest, Par. Sch. = Parameters Scheme. 
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Table 33 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.382 0.036 0.455 0.314 0.375 0.026 0.427 0.327 

𝜷𝟎 0.317 0.284 0.873 -0.237 0.330 0.237 0.789 -0.132 

𝜷𝟏 0.234 0.348 0.918 -0.455 0.253 0.242 0.733 -0.218 

𝜷𝟐 0.346 0.310 0.950 -0.257 0.345 0.247 0.828 -0.142 

𝜷𝟑 0.246 0.317 0.870 -0.377 0.179 0.246 0.667 -0.308 

𝜷𝟒 0.345 0.316 0.959 -0.275 0.368 0.250 0.856 -0.123 

𝜷𝟓 0.418 0.286 0.974 -0.140 0.398 0.124 0.645 0.158 

𝜷𝟔 0.862 0.185 1.222 0.496 0.871 0.132 1.126 0.611 

𝜹 -0.007 0.015 0.022 -0.035 -0.007 0.011 0.014 -0.028 

𝜸 0.096 0.064 0.221 -0.030 0.099 0.045 0.188 0.011 

𝝓 -0.026 0.092 0.153 -0.207 -0.018 0.065 0.110 -0.145 

𝝈𝟐 4.015 0.503 5.121 3.135 4.009 0.350 4.753 3.384 

Parameters Scheme = 6      

𝜶 0.381 0.037 0.458 0.311 0.374 0.027 0.429 0.323 

𝜷𝟎 0.396 0.107 0.607 0.186 0.390 0.078 0.544 0.239 

𝜷𝟏 0.212 0.131 0.468 -0.045 0.214 0.074 0.360 0.070 

𝜷𝟐 0.316 0.109 0.526 0.102 0.311 0.077 0.459 0.161 

𝜷𝟑 0.113 0.112 0.332 -0.109 0.110 0.075 0.257 -0.041 

𝜷𝟒 0.309 0.110 0.528 0.090 0.313 0.078 0.468 0.159 

𝜷𝟓 0.408 0.093 0.590 0.227 0.403 0.035 0.472 0.336 

𝜷𝟔 0.914 0.072 1.052 0.769 0.906 0.047 0.997 0.811 

𝜹 -0.008 0.010 0.011 -0.028 -0.006 0.007 0.008 -0.021 

𝜸 0.100 0.017 0.133 0.068 0.101 0.011 0.123 0.078 

𝝓 0.792 0.025 0.842 0.744 0.795 0.018 0.831 0.761 

𝝈𝟐 0.257 0.032 0.328 0.200 0.252 0.022 0.298 0.212 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 34 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.881 0.029 0.928 0.837 0.933 0.012 0.953 0.913 

𝜷𝟎 0.391 0.094 0.576 0.209 0.400 0.074 0.547 0.255 

𝜷𝟏 0.213 0.093 0.399 0.032 0.208 0.069 0.344 0.072 

𝜷𝟐 0.305 0.092 0.481 0.128 0.310 0.072 0.451 0.169 

𝜷𝟑 0.112 0.090 0.287 -0.065 0.106 0.071 0.244 -0.034 

𝜷𝟒 0.316 0.092 0.496 0.136 0.304 0.072 0.446 0.163 

𝜷𝟓 0.406 0.049 0.501 0.312 0.403 0.031 0.464 0.343 

𝜷𝟔 0.902 0.060 1.020 0.783 0.903 0.041 0.983 0.822 

𝜹 -0.046 0.002 -0.043 -0.048 -0.045 0.001 -0.044 -0.046 

𝜸 0.100 0.005 0.110 0.090 0.100 0.004 0.108 0.093 

𝝓 0.798 0.012 0.821 0.775 0.798 0.009 0.816 0.780 

𝝈𝟐 1.000 0.054 1.111 0.902 0.999 0.041 1.082 0.922 

Parameters Scheme = 3      

𝜶 0.873 0.032 0.924 0.824 0.903 0.014 0.925 0.881 

𝜷𝟎 0.370 0.168 0.700 0.046 0.402 0.137 0.672 0.137 

𝜷𝟏 0.241 0.173 0.589 -0.098 0.228 0.133 0.490 -0.033 

𝜷𝟐 0.320 0.172 0.652 -0.014 0.325 0.138 0.594 0.055 

𝜷𝟑 0.144 0.168 0.476 -0.186 0.117 0.136 0.384 -0.151 

𝜷𝟒 0.336 0.172 0.672 -0.005 0.314 0.139 0.587 0.043 

𝜷𝟓 0.422 0.094 0.606 0.240 0.402 0.060 0.519 0.286 

𝜷𝟔 0.906 0.109 1.122 0.691 0.903 0.073 1.047 0.757 

𝜹 -0.041 0.002 -0.039 -0.043 -0.039 0.001 -0.038 -0.040 

𝜸 0.100 0.010 0.119 0.080 0.100 0.008 0.115 0.085 

𝝓 0.794 0.018 0.830 0.758 0.796 0.014 0.824 0.768 

𝝈𝟐 4.004 0.214 4.445 3.611 3.997 0.164 4.332 3.691 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 35 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.371 0.016 0.403 0.340 0.369 0.012 0.393 0.346 

𝜷𝟎 0.377 0.161 0.693 0.065 0.373 0.131 0.630 0.121 

𝜷𝟏 0.232 0.173 0.580 -0.105 0.223 0.133 0.484 -0.037 

𝜷𝟐 0.320 0.171 0.649 -0.014 0.322 0.137 0.589 0.052 

𝜷𝟑 0.128 0.168 0.460 -0.201 0.129 0.136 0.397 -0.139 

𝜷𝟒 0.317 0.171 0.652 -0.022 0.317 0.138 0.588 0.047 

𝜷𝟓 0.407 0.092 0.589 0.228 0.403 0.058 0.517 0.292 

𝜷𝟔 0.888 0.100 1.087 0.692 0.899 0.066 1.030 0.771 

𝜹 -0.007 0.006 0.005 -0.020 -0.007 0.005 0.002 -0.017 

𝜸 0.100 0.027 0.155 0.047 0.099 0.021 0.141 0.058 

𝝓 -0.007 0.039 0.071 -0.084 -0.002 0.030 0.058 -0.062 

𝝈𝟐 4.008 0.214 4.450 3.613 4.008 0.165 4.343 3.701 

Parameters Scheme = 6      

𝜶 0.369 0.018 0.405 0.335 0.369 0.013 0.394 0.343 

𝜷𝟎 0.401 0.047 0.493 0.310 0.399 0.037 0.472 0.327 

𝜷𝟏 0.203 0.047 0.298 0.110 0.202 0.035 0.272 0.133 

𝜷𝟐 0.305 0.047 0.395 0.213 0.304 0.037 0.376 0.232 

𝜷𝟑 0.104 0.046 0.194 0.013 0.101 0.036 0.172 0.031 

𝜷𝟒 0.304 0.047 0.396 0.212 0.300 0.037 0.373 0.228 

𝜷𝟓 0.403 0.026 0.454 0.353 0.402 0.017 0.435 0.369 

𝜷𝟔 0.905 0.035 0.973 0.835 0.901 0.025 0.950 0.852 

𝜹 -0.007 0.003 0.000 -0.013 -0.007 0.002 -0.002 -0.011 

𝜸 0.100 0.007 0.113 0.087 0.100 0.005 0.110 0.090 

𝝓 0.798 0.008 0.815 0.782 0.799 0.007 0.813 0.786 

𝝈𝟐 0.252 0.014 0.279 0.227 0.251 0.010 0.272 0.232 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 36 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.142 0.028 0.200 0.093 0.138 0.016 0.170 0.109 

𝜷𝟎 0.365 0.229 0.820 -0.078 0.373 0.176 0.716 0.029 

𝜷𝟏 0.236 0.262 0.748 -0.280 0.241 0.187 0.611 -0.119 

𝜷𝟐 0.347 0.243 0.821 -0.126 0.328 0.191 0.702 -0.049 

𝜷𝟑 0.200 0.258 0.712 -0.312 0.135 0.187 0.502 -0.232 

𝜷𝟒 0.368 0.254 0.864 -0.134 0.339 0.186 0.701 -0.026 

𝜷𝟓 0.415 0.102 0.615 0.217 0.412 0.102 0.609 0.209 

𝜷𝟔 0.882 0.161 1.193 0.561 0.903 0.099 1.097 0.706 

𝜹 0.001 0.007 0.015 -0.012 0.000 0.005 0.011 -0.011 

𝜸 0.101 0.018 0.136 0.066 0.100 0.012 0.123 0.076 

𝝓 0.778 0.058 0.895 0.665 0.784 0.048 0.878 0.690 

𝝈𝟐 1.030 0.184 1.449 0.727 1.005 0.122 1.271 0.793 

Parameters Scheme = 3      

𝜶 0.144 0.026 0.198 0.099 0.138 0.015 0.169 0.111 

𝜷𝟎 0.341 0.324 0.978 -0.286 0.331 0.273 0.867 -0.206 

𝜷𝟏 0.259 0.369 0.982 -0.466 0.307 0.302 0.904 -0.282 

𝜷𝟐 0.373 0.359 1.081 -0.324 0.360 0.309 0.960 -0.252 

𝜷𝟑 0.297 0.369 1.022 -0.427 0.192 0.302 0.793 -0.398 

𝜷𝟒 0.416 0.364 1.119 -0.301 0.356 0.301 0.943 -0.234 

𝜷𝟓 0.422 0.186 0.790 0.057 0.411 0.187 0.776 0.041 

𝜷𝟔 0.812 0.259 1.311 0.297 0.876 0.176 1.218 0.525 

𝜹 0.000 0.005 0.010 -0.011 -0.001 0.004 0.007 -0.008 

𝜸 0.101 0.034 0.168 0.034 0.100 0.024 0.146 0.053 

𝝓 0.770 0.086 0.941 0.602 0.771 0.066 0.902 0.642 

𝝈𝟐 4.011 0.710 5.618 2.842 4.017 0.486 5.077 3.169 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 37 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.396 0.060 0.521 0.288 0.382 0.038 0.460 0.310 

𝜷𝟎 0.348 0.320 0.976 -0.271 0.323 0.271 0.855 -0.210 

𝜷𝟏 0.249 0.369 0.970 -0.474 0.289 0.301 0.884 -0.298 

𝜷𝟐 0.389 0.359 1.096 -0.307 0.347 0.308 0.945 -0.263 

𝜷𝟑 0.283 0.368 1.007 -0.438 0.191 0.302 0.792 -0.400 

𝜷𝟒 0.408 0.363 1.108 -0.306 0.359 0.301 0.945 -0.229 

𝜷𝟓 0.418 0.186 0.785 0.054 0.400 0.186 0.762 0.032 

𝜷𝟔 0.801 0.254 1.291 0.296 0.869 0.174 1.208 0.523 

𝜹 -0.006 0.022 0.037 -0.048 -0.006 0.016 0.024 -0.037 

𝜸 0.096 0.092 0.278 -0.083 0.098 0.064 0.223 -0.028 

𝝓 -0.046 0.134 0.217 -0.308 -0.030 0.095 0.156 -0.218 

𝝈𝟐 4.022 0.711 5.631 2.851 4.022 0.486 5.083 3.172 

Parameters Scheme = 6      

𝜶 0.382 0.068 0.523 0.258 0.383 0.041 0.468 0.307 

𝜷𝟎 0.389 0.136 0.663 0.122 0.388 0.097 0.579 0.198 

𝜷𝟏 0.209 0.156 0.511 -0.098 0.217 0.102 0.419 0.020 

𝜷𝟐 0.308 0.140 0.580 0.035 0.315 0.104 0.518 0.111 

𝜷𝟑 0.137 0.153 0.441 -0.168 0.110 0.101 0.308 -0.089 

𝜷𝟒 0.331 0.150 0.628 0.034 0.307 0.101 0.506 0.110 

𝜷𝟓 0.409 0.054 0.515 0.305 0.404 0.054 0.509 0.298 

𝜷𝟔 0.902 0.094 1.084 0.715 0.908 0.058 1.022 0.791 

𝜹 0.001 0.022 0.047 -0.040 -0.007 0.018 0.028 -0.042 

𝜸 0.102 0.025 0.151 0.053 0.100 0.017 0.133 0.068 

𝝓 0.788 0.041 0.870 0.708 0.790 0.036 0.861 0.721 

𝝈𝟐 0.263 0.047 0.372 0.185 0.254 0.031 0.321 0.200 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 38 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.172 0.046 0.273 0.122 0.902 0.034 0.957 0.854 

𝜷𝟎 0.413 0.122 0.659 0.175 0.410 0.095 0.599 0.226 

𝜷𝟏 0.203 0.121 0.442 -0.037 0.197 0.095 0.384 0.010 

𝜷𝟐 0.306 0.123 0.543 0.065 0.298 0.094 0.482 0.114 

𝜷𝟑 0.091 0.121 0.330 -0.150 0.100 0.093 0.282 -0.083 

𝜷𝟒 0.300 0.132 0.561 0.040 0.304 0.096 0.490 0.115 

𝜷𝟓 0.405 0.053 0.510 0.303 0.401 0.040 0.481 0.324 

𝜷𝟔 0.906 0.071 1.042 0.767 0.908 0.050 1.006 0.808 

𝜹 -0.004 0.004 0.002 -0.012 -0.052 0.002 -0.049 -0.055 

𝜸 0.100 0.007 0.113 0.087 0.100 0.005 0.110 0.090 

𝝓 0.796 0.016 0.829 0.764 0.797 0.013 0.823 0.771 

𝝈𝟐 1.006 0.071 1.155 0.876 1.003 0.055 1.116 0.902 

Parameters Scheme = 3      

𝜶 0.157 0.029 0.220 0.121 0.875 0.039 0.937 0.819 

𝜷𝟎 0.426 0.242 0.911 -0.045 0.408 0.187 0.780 0.047 

𝜷𝟏 0.206 0.242 0.685 -0.273 0.217 0.190 0.592 -0.157 

𝜷𝟐 0.327 0.245 0.799 -0.156 0.320 0.189 0.688 -0.050 

𝜷𝟑 0.086 0.243 0.563 -0.397 0.107 0.186 0.470 -0.261 

𝜷𝟒 0.303 0.263 0.824 -0.214 0.304 0.192 0.676 -0.075 

𝜷𝟓 0.414 0.105 0.622 0.214 0.407 0.078 0.563 0.256 

𝜷𝟔 0.925 0.137 1.188 0.655 0.907 0.095 1.092 0.719 

𝜹 -0.002 0.003 0.002 -0.008 -0.045 0.002 -0.042 -0.048 

𝜸 0.101 0.013 0.127 0.074 0.100 0.010 0.121 0.080 

𝝓 0.787 0.027 0.840 0.735 0.793 0.021 0.834 0.751 

𝝈𝟐 4.016 0.284 4.610 3.498 4.014 0.219 4.466 3.609 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 39 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.372 0.022 0.418 0.330 0.371 0.017 0.405 0.338 

𝜷𝟎 0.414 0.238 0.889 -0.048 0.407 0.183 0.771 0.053 

𝜷𝟏 0.193 0.241 0.669 -0.285 0.198 0.190 0.571 -0.174 

𝜷𝟐 0.304 0.244 0.772 -0.175 0.308 0.188 0.673 -0.061 

𝜷𝟑 0.095 0.243 0.572 -0.388 0.091 0.186 0.453 -0.276 

𝜷𝟒 0.299 0.262 0.816 -0.217 0.307 0.191 0.678 -0.070 

𝜷𝟓 0.406 0.103 0.611 0.210 0.405 0.076 0.559 0.257 

𝜷𝟔 0.914 0.134 1.173 0.650 0.901 0.089 1.076 0.724 

𝜹 -0.007 0.009 0.009 -0.024 -0.007 0.007 0.006 -0.020 

𝜸 0.101 0.037 0.173 0.028 0.099 0.029 0.156 0.043 

𝝓 -0.018 0.053 0.087 -0.121 -0.009 0.041 0.072 -0.090 

𝝈𝟐 4.015 0.284 4.609 3.497 3.996 0.218 4.448 3.593 

Parameters Scheme = 6      

𝜶 0.369 0.026 0.422 0.320 0.368 0.019 0.407 0.331 

𝜷𝟎 0.403 0.060 0.524 0.286 0.402 0.047 0.496 0.311 

𝜷𝟏 0.203 0.061 0.323 0.083 0.203 0.048 0.297 0.109 

𝜷𝟐 0.304 0.062 0.423 0.182 0.305 0.047 0.398 0.213 

𝜷𝟑 0.100 0.061 0.220 -0.020 0.099 0.046 0.190 0.007 

𝜷𝟒 0.300 0.066 0.431 0.170 0.298 0.048 0.391 0.203 

𝜷𝟓 0.403 0.028 0.458 0.350 0.403 0.021 0.444 0.363 

𝜷𝟔 0.905 0.038 0.979 0.830 0.903 0.029 0.959 0.846 

𝜹 -0.006 0.005 0.004 -0.016 -0.006 0.004 0.002 -0.014 

𝜸 0.100 0.009 0.118 0.083 0.100 0.007 0.114 0.087 

𝝓 0.798 0.011 0.820 0.775 0.798 0.009 0.817 0.780 

𝝈𝟐 0.251 0.018 0.288 0.219 0.251 0.014 0.279 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 40 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.930 0.009 0.945 0.914 0.939 0.003 0.943 0.933 

𝜷𝟎 0.392 0.074 0.540 0.247 0.397 0.053 0.500 0.293 

𝜷𝟏 0.210 0.071 0.350 0.071 0.205 0.050 0.302 0.107 

𝜷𝟐 0.311 0.071 0.448 0.173 0.305 0.050 0.401 0.206 

𝜷𝟑 0.104 0.070 0.241 -0.034 0.104 0.050 0.202 0.007 

𝜷𝟒 0.305 0.071 0.445 0.165 0.304 0.051 0.404 0.205 

𝜷𝟓 0.402 0.033 0.468 0.337 0.401 0.022 0.445 0.358 

𝜷𝟔 0.901 0.039 0.977 0.824 0.902 0.028 0.955 0.846 

𝜹 -0.041 0.000 -0.040 -0.041 -0.039 0.000 -0.039 -0.039 

𝜸 0.100 0.004 0.108 0.093 0.100 0.003 0.105 0.095 

𝝓 0.799 0.008 0.815 0.783 0.800 0.006 0.812 0.787 

𝝈𝟐 0.998 0.041 1.082 0.922 1.000 0.029 1.059 0.945 

Parameters Scheme = 3      

𝜶 0.914 0.010 0.930 0.896 0.960 0.003 0.965 0.955 

𝜷𝟎 0.390 0.138 0.662 0.123 0.398 0.100 0.595 0.203 

𝜷𝟏 0.224 0.136 0.493 -0.043 0.208 0.097 0.399 0.016 

𝜷𝟐 0.322 0.136 0.586 0.057 0.310 0.098 0.499 0.118 

𝜷𝟑 0.124 0.134 0.389 -0.139 0.113 0.097 0.306 -0.079 

𝜷𝟒 0.317 0.137 0.586 0.048 0.308 0.100 0.504 0.113 

𝜷𝟓 0.407 0.065 0.536 0.280 0.403 0.044 0.489 0.318 

𝜷𝟔 0.905 0.072 1.046 0.763 0.902 0.050 0.998 0.802 

𝜹 -0.036 0.000 -0.035 -0.037 -0.036 0.000 -0.036 -0.037 

𝜸 0.100 0.008 0.115 0.085 0.100 0.005 0.111 0.089 

𝝓 0.796 0.014 0.823 0.769 0.798 0.010 0.818 0.779 

𝝈𝟐 4.013 0.165 4.348 3.706 4.008 0.117 4.244 3.787 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 41 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.013 0.394 0.345 0.369 0.009 0.386 0.353 

𝜷𝟎 0.379 0.132 0.639 0.126 0.384 0.095 0.570 0.199 

𝜷𝟏 0.224 0.135 0.493 -0.042 0.215 0.097 0.406 0.024 

𝜷𝟐 0.318 0.135 0.581 0.053 0.314 0.098 0.503 0.122 

𝜷𝟑 0.126 0.134 0.392 -0.137 0.114 0.097 0.307 -0.077 

𝜷𝟒 0.320 0.136 0.587 0.052 0.312 0.100 0.507 0.117 

𝜷𝟓 0.401 0.064 0.527 0.278 0.401 0.043 0.485 0.319 

𝜷𝟔 0.892 0.064 1.019 0.765 0.898 0.045 0.986 0.810 

𝜹 -0.007 0.005 0.002 -0.017 -0.007 0.003 -0.001 -0.014 

𝜸 0.099 0.021 0.141 0.057 0.100 0.015 0.130 0.071 

𝝓 -0.003 0.030 0.056 -0.063 -0.003 0.021 0.039 -0.045 

𝝈𝟐 4.018 0.165 4.353 3.710 4.003 0.116 4.238 3.782 

Parameters Scheme = 6      

𝜶 0.367 0.015 0.396 0.339 0.368 0.009 0.386 0.350 

𝜷𝟎 0.401 0.037 0.475 0.329 0.399 0.026 0.450 0.348 

𝜷𝟏 0.202 0.036 0.273 0.131 0.202 0.025 0.251 0.153 

𝜷𝟐 0.301 0.036 0.371 0.231 0.302 0.025 0.351 0.252 

𝜷𝟑 0.102 0.035 0.171 0.032 0.102 0.025 0.151 0.053 

𝜷𝟒 0.300 0.037 0.372 0.229 0.300 0.026 0.351 0.249 

𝜷𝟓 0.400 0.018 0.435 0.366 0.401 0.012 0.424 0.377 

𝜷𝟔 0.901 0.023 0.946 0.856 0.900 0.017 0.933 0.866 

𝜹 -0.006 0.002 -0.002 -0.011 -0.007 0.002 -0.003 -0.010 

𝜸 0.100 0.005 0.110 0.090 0.100 0.004 0.107 0.093 

𝝓 0.799 0.006 0.811 0.788 0.800 0.005 0.809 0.791 

𝝈𝟐 0.252 0.010 0.273 0.232 0.251 0.007 0.265 0.237 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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The point estimates, confidence intervals, and standard deviations provide 

information to assess the performance of the Bayesian method and to estimate unknown 

parameters of the proposed joint model (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙, 𝜎
2). 

Looking across all parameter schemes considered in this study, there are a few general 

trends worth noting. First, the parameter schemes influence heavily the estimation of 

unknown parameters of the joint model except 𝛼 and 𝜎2. For any of the parameter 

schemes, Bayesian estimation seems to be the appropriate method for identifying all 

unknown parameters except 𝛼 and 𝜎2 on the joint model. The estimates are significantly 

higher or lower than the true values of (𝛼 = 1 𝑜𝑟 2, 𝑎𝑛𝑑 𝜎2 = 0.5, 1, 𝑜𝑟 2), depending on 

the parameter schemes, which are severely misleading even though the model has 

converged. Further, the Bayesian method correctly identified the other remaining 

parameters (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙) (all true values were contained in the 

95% CI) on the proposed joint model for all sample sizes and prior distributions.  

Second, the design structures (balanced or unbalanced) had relatively little 

influence on parameters estimation. Third, it is interesting to observe that all parameter 

schemes correctly specified all model parameters except 𝛼 and 𝜎2, as shown by falling in 

the range of the bounds. Depending on the narrowest range of 97.5% confidence intervals, 

the estimation of model parameters that used informative priors produced sometimes more 

accuracy in the estimation than the others (noninformative, semi-informative). On the other 

hand, sometime noninformative priors produced more precision in the estimates than the 

others (semi-informative and informative). It is surprising that the results of average 

estimation for unknown parameters were not stable at a different kinds of the prior 

distributions, which was disappointing.  
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Specifying informative priors on unknown parameters indicates that the researcher 

has knowledge about the unknown parameters. Previous information of all unknown 

parameters was added. It was of interest whether or not these priors were appropriate and 

would be able to identify the correct extraction of model parameters with ignorance about 

the other conditions of the proposed joint model. Fourth, the minor difference between 

large and small sample sizes in all conditions not only demonstrates that the Bayesian 

method used in the study can estimate the parameters of the proposed joint model quite 

adequately, even with small sample sizes but also eliminated the problem of failing to 

converge. 

In general, the Bayesian method performed well under conditions of parameter 

schemes regardless of the size of the observations and the design structures of data 

collection. As can be seen from the findings of this dissertation, the estimation for the 

model parameters showed a minor difference between informative, noninformative, and 

semi-informative priors in each case. 

Summary of the Estimation 

The summary results are concerned with the point estimation of the parameters of 

interest, (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙, 𝜎
2) of each condition. The Bayesian 

method using the MCMC algorithm with and without information set on the unknown 

parameters estimated the model parameters accurately. The accuracies were seen across a 

parameter’s schemes regardless of the information of prior and sample size. As a result, the 

estimation was most likely to identify all model parameters except 𝛼 and 𝜎2 for all levels 

of information of prior distribution. The reason that the estimate of both parameters (𝛼 and 

𝜎2) are severely misleading may be that they were placed in incorrect prior distributions. 

The Bayesian method, however, was accurate in certain settings. 
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CHAPTER V 

 

CONCLUSION AND DISCUSSIONS 

 

The purpose of this dissertation is to develop an R program with OpenBUGS 

software to obtain Bayesian estimates for the unknown parameters of the proposed joint 

(Gaussian-Exponential) model (Bronsert, 2009; Lin, 2011). In this dissertation, a joint 

model was developed to model a longitudinal outcome with an informative time jointly. 

The outcome distribution considered in this study was the Gaussian distribution. Also, it is 

assumed that time and covariates are independent of each other, and that time should be 

informative and exponentially distributed.  

The simulation studies were conducted with six parameter schemes to observe how 

the results change with different parameter values, two different design structures 

(balanced and unbalanced),  and five sample sizes, to evaluate the performance of a 

program by using Bayesian approach of estimation in the proposed joint model analysis 

with different level of information concerning the parameters of interest. Furthermore, the 

computing package using R with OpenBUGS was developed to handle and fit the proposed 

joint model in order to obtain parameter estimates to ensure the accuracy of the R package 

estimation for applied researchers conducting the joint model analysis. The joint models 

presented in this study rely on the relation among the one-step prior outcome, current time, 

and potential covariates. If any of these assumptions are not satisfied, the joint models 

proposed in this study should be considered with caution. In this chapter, I summarize and 
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discuss the prior distribution, convergence, and parameter estimates. Then, 

recommendations for future research are presented. 

Prior Distribution 

The main concern in applying Bayesian estimation using the MCMC algorithm is 

the prior distribution of unknown parameters, which was of interest in the current 

dissertation. As can be seen, in this dissertation, the prior distributions were placed on all 

unknown parameters in the proposed joint model, as specified in Chapter 3. However, 

determining three forms of prior information (informative, noninformative, and semi-

informative) about the parameters of interest, (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙,

𝜎2), were applied through an MCMC algorithm. 

Since convergence was not an issue, it was concluded that 20,000 iterations of the 

simulation are enough to yield the proper posterior distribution of all unknown parameters. 

However, the current investigation showed in the results that there was variation in the 

sample of the unknown parameters in each iteration of the simulation method. Thus, in 

calculating the posterior mean of the unknown parameters from this posterior distribution, 

it was found that some parameters were not accurate in some conditions. As a result, the 

prior distributions on these parameters should be changed; otherwise, the MCMC algorithm 

can be considered an inappropriate method for posterior distribution sampling. 

Some results that showed up in this dissertation concerned the effect of 

noninformative, informative, and semi-informative priors, including:  

1. The estimation performance of the unknown parameters showed a lack of 

difference in identifying the correct parameters for all types of priors while 

holding the sample size constant. It was known that informative prior provides 



131 
 

 

influence positively on the validity and accuracy of parameter estimates; it was 

also found that influence when noninformative prior was used.  

2. It is surprising that the impact of the degree of informativeness in the current 

project was not stable when the sample size was constant. For example, in terms 

of the 97.5% confidence interval, semi-informative priors sometimes give the 

narrowest range than the others, and sometimes noninformative priors gave the 

narrowest range as compared as the others when the sample size was constant. 

Some unknown parameters were more sensitive to small samples than others were. 

In other words, with small sample sizes, the value of the estimated parameter increased 

when the value of the hyperparameter on the prior distribution increased in the analysis of 

the model (Berger & Bernado, 1992; Lambert, Sutton, Burton, Abrams, & Jones, 2005). 

When applying the Bayesian approach for the unknown parameters in the joint model, it is 

important to consider prior distributions for two main reasons:  

1. When the research was conducted with small amounts of data, the estimation of 

some unknown parameters becomes sensitive to the hyperparameter specified in 

informative priors (Gifford & Swaminathan, 1990). This suggests that 

researchers desiring to uphold the use of the MCMC method to assess these 

parameters on the proposed joint model should change the type of prior 

distribution on these parameters. For example, t distribution, Cauchy 

distribution, or any different distribution other than normal distribution. 

Alternatively, researchers could maintain the same type of those prior 

distributions but instead change the hyperparameter for each one. 

2. Researchers need to take into account the effect of the priors’ input on the other 

parameters of the joint model. It is well to consider that prior information 
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regarding these parameters may have an important influence when estimating 

other parameters in the same model. 

Convergence 

In order to express the representative subset of the parameter space, convergence 

diagnostics were performed for all unknown parameters. Within the variety of ways for 

testing convergence of iterative simulations or joint posterior density such as Heidelberger 

and Welch diagnostic (HW) tests and trace plot, for this study, the monitoring of the output 

of the HW test was selected. There are 12 unknown parameters in the proposed joint model 

that needed to be estimated, so all of them were diagnosed for the convergence because of 

the parameters’ characteristics (Gelman et al., 2014). This particular diagnostic consists of 

two tests: 

1. The stationary test, which determines whether the trace of simulated values 

arises from a stationary stochastic process. 

2. The halfwidth test which, determines if there are enough iterations to estimate 

the mean of the process with acceptable precision.  

In this dissertation, there were no problems in convergence overall with the 

proposed joint model data generated. Convergence results across all parameters in the 

model with various sample sizes were almost identical and were 1 for both tests. The HW 

tests equal one means passed test, and the sequences of samples have mixed, showing a 

good indication of representativeness of the sample in the simulation. Another way to see if 

the chain has converged is to see how well the chain is moving or mixing around the 

parameter space through visual inspection, for example, the trace-plot of the parameters 

mean, the density plots, and the autocorrelations plots, that are displayed and monitored for 

each parameter as well. In this dissertation, 20,000 iterations could represent an adequate 
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number of iterations for running Markov Chain Monte Carlo simulations for the estimation 

of unknown parameters in the proposed joint model regardless of sample sizes. The finding 

in the current dissertation confirms that the sequences are mixed and suggests that it is not 

necessary to run any more simulations. 

Parameter Estimates 

The R program developed for the current dissertation was tested using 120 data sets 

with six parameters schemes, five sample sizes, and four different observations on the 

proposed joint model, including three types of prior distributions, resulting in 360 

simulations. Each simulation was run one and three times with 20,000 iterations each to 

provide one and three chains of posterior distributions of each parameter, respectively. For 

Bayesian inference, four important values to assess the performance of MCMC applied in 

this dissertation are the estimated parameters, 97.5% confidence intervals on the posterior 

inference for a parameter, and standard deviations. The properties of the simulation seem 

acceptable. That is, the sequences of the values in the chain were mixed, which means that 

there was no autocorrelation of simulations, indicating it was not necessary to run any more 

simulations.  

However, when 97.5% posterior inference for a parameter of interest was 

introduced across sample size, parameter schemes, and prior information on unknown 

parameters, the true values for 𝛼 and 𝜎2 in the proposed joint model were out of bounds for 

most situations. In general, for the proposed joint model, all true values of parameters 

except 𝛼 and 𝜎2 were contained in the 97.5% confidence interval. The true values of 

unknown parameters are dependent on the parameter schemes and consistent with previous 

research (Alomair, 2017; Bronsert, 2009; Lin, 2011; Seo, 2015).  
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As expected, there was a higher level of accuracy seen in the larger sample size. 

However, unexpectedly, there was a higher level in the accuracy of estimations in the 

smaller samples as well. Inspecting the 97.5% posterior inference confidence intervals very 

carefully sometimes did not indicate that the narrowest interval occurred with a large 

sample size as was expected for some conditions regardless of the number of observations 

or parameter schemes. The narrowest interval sometimes happened with a small sample 

size. However, the posterior mean of all unknown parameters was estimated. Theoretically, 

the sample mean of all Markov chain Monte Carlo samples should be a reasonably good 

estimate whenever the mean is calculated from large sample sizes. But it was not always 

true for Bayesian estimation in the current dissertation. Nevertheless, it should be noted 

that MCMC under the Bayesian framework permits a very large amount of model 

flexibility when evaluation of high-dimensional integration around the unknown 

parameters (Gelman et al., 2014).  

The other finding in the current dissertation is a demonstration of the advantage of 

the Bayesian approach in comparison with the frequentist approach as it treats unknown 

parameters as random variables. It can be seen how important the role of the posterior 

distribution is, providing researchers with a way of obtaining the inferential statistics in 

which they are interested.  

Recommendation for Future Research 

Carrying out further simulation studies and/or real longitudinal data investigation 

may shed additional light in determining the helpfulness of the Bayesian approach for the 

evaluation of the appropriateness of constraints that are imposed on the estimation and 

might clarify the comprehensive development of a statistical software program for 

estimating the unknown parameters within the proposed joint model in Bayesian 
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framework. One particular need is the continuing exploration of the impact of different 

informative prior distributions on the parameters. 

 It is essential that researchers who conduct joint model analysis employing the 

MCMC algorithm sampling method keep in mind the characteristics of the parameters and 

the distribution that matches them, in line with previous studies. For example, researchers 

who are interested in adapting the MCMC algorithm sampling technique should need the 

recommended to conduct joint model analysis that includes covariates with both small and 

large sample sizes for comparison purposes of their performance. Additionally, research is 

also indicated in the development of methods using the Bayesian approach for simulating 

posterior distributions.  

Furthermore, the joint models carry multiple assumptions, limiting the use of these 

joint models. When those assumptions are relaxed, it then is possible to expand the joint 

models to be more flexible. Next, the researchers can attempt to find parameters estimation 

for the extended model with the new assumption by applying the Bayesian approach. For 

example: 

1. The response in the proposed joint model in this study is assumed to be 

dependent upon the one-step prior outcome. However, the current response may 

depend on the two-step prior outcome or even three-step prior outcome. Next, 

the Bayesian approach can be applied to find parameters estimation for the 

extended model with the new assumption 

2. Time is assumed to follow an exponential distribution. The distribution of time 

can be different based on the research design. If that is the situation, the 

appropriate distribution can be applied to the time process; then, the Bayesian 
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parameter estimates from the time process can be obtained. Also, this study 

considers the outcome variable to follow a normal distribution. 

However, Seo (2015) developed and extended the current model to handle longitudinal 

outcomes distribution from a member of the exponential family of distributions such as 

Bernoulli, Poisson, and Gamma. Next, the Bayesian parameter estimates from generalized 

linear models can be obtained. 

3. In the current model, time and covariates are assumed to be independent of each 

other. If they are related, another term can be added to define the relations 

between them in the models. However, Alomair (2017) adapted the current 

model to be able to incorporate informative time and time-dependent covariates 

with a longitudinal response. Next, the Bayesian parameter estimates from 

depended covariate models can be obtained. 

All of the alternative assumptions mentioned above are technically possible; and can be 

further explored by a researcher in order to improve the joint models, and then the 

Bayesian approach can be applied to the improved model. Finally, Bayesian predictions are 

recommended as it is an important objective of the joint model besides the estimation and 

the testing. Bayesian predictions are outcome values simulated from the posterior 

predictive distribution, which is the distribution of the unobserved (future) data given the 

observed data.  

Conclusion 

This dissertation provides a demonstration into the extent to which an alternative 

method under the Bayesian framework was able to estimate all unknown parameters in the 

proposed joint model. There is a little previous research to estimate parameters of joint 

model in Bayesian approach which has manipulated a variety of fit indexes and tests for 
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determining the correct parameter estimation. In this dissertation, OpenBUGS with R code 

was developed to both generate data sets for the proposed joint model and analyze the data 

drawn using the MCMC algorithm as a sampling method to estimate the unknown 

parameters in joint model with different prior information. It is particularly striking that 

there was correct identification of the hyperparameters of prior distribution in at least some 

cases. This method of estimation, however, performs accurately in most conditions, and it 

can be considered as the pioneer of using the theory associated with a Bayesian approach 

on joint models in estimating the unknown parameters. Further validation employing joint 

models or adopting more advanced methods in both the MCMC technique and Bayesian 

estimations will clarify and expand the usefulness of this approach.
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################################################################## 

# Packages # 

################################################################## 

install.packages('R2OpenBUGS')            # provide rep(dat,times) 

install.packages('MASS')                  # provide rep(dat,times) 

install.packages('coda')        # provide rep(dat,times) 

install.packages('maxLik')                  # maxLik 

install.packages('AlgDesign')                  # gen.factorial 

install.packages('mefa')        # provide rep(dat,times) 

install.packages('doParallel')        # provide rep(dat,times) 

install.packages('parallel')        # provide rep(dat,times) 

 

library(R2OpenBUGS) 

library(MASS) 

library(coda) 

library(maxLik) 

library(AlgDesign) 

library(mefa) 

library(doParallel) 

library(parallel) 

 

################################################################## 

# Parameter Setting (Pscheme: 1 to 6) # 

################################################################## 

parameter = matrix(c(1,1,2,2,0.5,0.5, #1:sigma 

                     0.4,0.4,0.4,0.4,0.4,0.4, #2:beta0 

                     0.2,0.2,0.2,0.2,0.2,0.2, #3:beta1 

                     0.3,0.3,0.3,0.3,0.3,0.3, #4:beta2 

                     0.1,0.1,0.1,0.1,0.1,0.1, #5:beta3 

                     0.3,0.3,0.3,0.3,0.3,0.3, #6:beta4 

                     0.4,0.4,0.4,0.4,0.4,0.4, #7:beta5 

                     0.9,0.9,0.9,0.9,0.9,0.9, #8:beta6 

                     0.8,0.8,0.8,0.0,0.0,0.8, #9:phi 

                     0.1,0.1,0.1,0.1,0.1,0.1, #10:gamma 

                     2,1,2,1,2,1, #11:alpha 

                     0.01,0.02,0.01,0.02,0.01,0.02),#12:delta 

                   nrow=6) 

 

################################################################ 

# create design matrix (X) with two cat & two cont vars # 

################################################################ 

design=function(level=c(3,3),m=18,c=2){ 

  catg=gen.factorial(levels=level,center=FALSE,factors='all') 

  ext=rep(catg,m/(prod(level))) 

  des=model.matrix(~.,data=ext) #'~.' is supported by {AlgDesign} 

  cont=data.frame(matrix(NA,nrow=m,ncol=c)) 

  for (i in 1:c){ 
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    cont[i]=rnorm(m) 

  } 

  xmatrix=as.matrix(cbind(des,cont)) 

  xmatrix 

} 

 

################################################################ 

# Create Data: c('outcome','time','subject') # 

################################################################ 

outcome<- function(m=m,num=num,parm=parm){ 

  if (num == 1) {n1 = 10; n2=10} 

  if (num == 2) {n1 = 5; n2=3} 

  if (num == 3) {n1 = 10; n2=5} 

  if (num == 4) {n1 = 20; n2=6} 

  ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T) 

  nn=cumsum(c(1,ndesign[-length(ndesign)])) 

  raw = matrix(NA,sum(ndesign),3) #Null matrix 

  mu = xmatrix %*% parm[2:8] # mu is matrix 

  raw[nn,1]= mu + rnorm(m)*parm[1] 

  raw[nn,2] = rexp(m) 

  for (i in 1:m){ 

    for (j in 2:ndesign[i]){ 

      yjmin1 = raw[nn[i] - 1 + j - 1,1] 

      raw[nn[i] - 1 + j,2] = rexp(1)* 

        exp(parm[11] +parm[12] * yjmin1) 

      raw[nn[i] - 1 + j,1] =mu[i] + yjmin1 * parm[9] + 

        raw[nn[i]-1+j,2]*parm[10]+rnorm(1)*parm[1] 

      raw[nn[i],3]=i 

      raw[nn[i]-1+j,3]=i 

    } #j 

  }#i 

  result=list(raw=raw,nn=nn,ndesign=ndesign) 

  result 

} #outcome 

 

########################################################## 

# The Bayesian Model   #   First scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod1.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 

      



151 
 

 

    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 

    ## First scenario: Informative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.4, 4.0) 

    } 

    gamma ~ dnorm (0.5, 0.5) 

    phi ~ dnorm (0.2, 0.2) 

    alpha ~ dnorm (2.0, 0.2) 

    delta ~ dnorm (0.2, 0.1) 

    tau ~ dgamma(0.2, 0.2) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

} 

 

", fill=TRUE)  

sink() 

 

########################################################## 

# The Bayesian Model   #   Second scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod2.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 

      

    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 
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    ## Second scenario: Noninformative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.0, 1.0E-6) 

    } 

    gamma ~ dnorm (0.0, 1.0E-6) 

    phi ~ dnorm (0.0, 1.0E-6) 

    alpha ~ dnorm (0.0, 1.0E-6) 

    delta ~ dnorm (0.0, 1.0E-6) 

    tau ~ dgamma(0.001, 0.001) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

} 

 

", fill=TRUE)  

sink() 

 

########################################################## 

# The Bayesian Model   #   Third scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod3.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 

      

    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 

    ## Third scenario: Semi-informative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.4, 4.0) 

    } 

    gamma ~ dnorm (0.0, 1.0E-6) 

    phi ~ dnorm (0.0, 1.0E-6) 

    alpha ~ dnorm (0.0, 1.0E-6) 
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    delta ~ dnorm (0.0, 1.0E-6) 

     tau ~ dgamma(0.2, 0.2) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

 

} 

", fill=TRUE)  

sink() 

 

########################################################## 

# Simulation # 

########################################################## 

#Pschem = r  # parameter schemes, 1 to 6 

 

m = 18      # sample sizes, 18, 36, 54, 90, 180 

num = 4    # design structure 1(10,10), 2(5,3),3(10,5),4(20,6) 

p = 6         # the explanatory variables.  

 

xmatrix=design(level=c(3,3),m=m,c=2) 

 

fsim<-function(){ 

  out = array(NA,c(6,ncol(parameter), 4)) 

  for (r in 1:6){ 

    parm = parameter[r,] 

  

   # compute some info to be used in optimization 

    result=outcome(m=m,num=num,parm=parm) 

    y=c(result$raw[,1]) 

    t=c(result$raw[,2]) 

    nn=c(result$nn) 

    ndesign=c(result$ndesign) 

    p = 6  # the explanatory variables.  

     

    # Read in the data frame for BUGS: 

    sim.dat.bugs <- list( "y" , "m" , "p" , "t", "nn", "ndesign", "xmatrix") 

 

    ## Define the parameters whose posterior distributions we are  

    ## interested in summarizing: 

    bayes.mod.params <- c("sigma", "beta", "phi", "gamma", "alpha", "delta", "tau") 

 

    ## Define the starting values for BUGS.  

    bayes.mod.inits <- function(){  

      list("tau" = parm[1], "beta" = parm[2:8], "phi" = parm[9],  

           "gamma" = parm[10], "alpha" = parm[11], "delta" = parm[12]) 

    } 

     

    ## Now, we are ready to use the bugs() function, which calls OpenBUGS.  

    ## We have to specify the location of the model file, the data, the parameters,  
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    ## the initial values, as well as how many chains we want to fit and how long  

    ## we want to run them.  

 

    bayes.mod.fit.R2OpenBUGS <- bugs( data = sim.dat.bugs, 

                                      model.file = "bayesmod1.txt",  

                                      parameters.to.save = bayes.mod.params,  

                                      inits = bayes.mod.inits,  

                                      n.chains = 1,  

                                      n.iter = 20000,  

                                      n.burnin = 10000,  

                                      n.thin = 1,  

                                      debug=FALSE, 

                                      codaPkg=TRUE) 

     

    code.object <- read.bugs(bayes.mod.fit.R2OpenBUGS) 

    ## Heidelberger and Welch Convergence Diagnostic 

    hw <- heidel.diag(code.object)[[1]][,1][-c(10,14)] 

 

    hw1[hw==""]<-0 

    hw1[is.na(hw)] <- 0 

     

    ## 1 = pass the stationarity test and halfwidth test 

    ## 0 = failure of the chain to pass 

    if (sum(hw)==12){ 

      Bayes.Est1 <- summary(code.object)$statistics[,c("Mean","SD")][-c(10,14),] 

      Bayes.Est2 <- summary(code.object)$quantiles[,c("2.5%","97.5%")][-c(10,14),] 

      Bayes.Est <- as.matrix(cbind(Bayes.Est1,Bayes.Est2)) 

    } else { 

      Bayes.Est <- NA 

    } 

    out[r,,]=Bayes.Est 

  } 

  return(out) 

} 

 

cl <- makeCluster(32)                        ########################################## 

registerDoParallel(cl)             ## TO MAKE SIMULATION FASTER THAN USUAL ##  

pack<-c("R2OpenBUGS","coda")     ########################################## 

rep=1000 

 

system.time({ results<-foreach(r=1:rep, .packages=pack) %dopar% fsim() }) 

 

results 


