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ABSTRACT

Kofi Kermah Wagya. Time Series for the Boolean Random Sets. Published Doctor of
Philosophy dissertation, University of Northern Colorado, 2020.

Although Random closed sets (RACS) are rich in modeling complex objects, its model

parameter inference is simple. The most important type of the RACS is Boolean random

set (BRS). BRS is a parametric model that is formed by placing random closed sets

(grains) at points of a Poisson process (germs), and taking union of these sets. The radius

of these grains may be fixed and known, fixed but unknown, and random. Furthermore,

the intensity parameter λ , which is one source of randomness in the BRS model, has been

estimated by the method of Intensity, method of Minimum contrast, method of moments,

and ordinary and generalized least squares regression for the independent BRS. A time

series model was then developed for the intensity estimation of the correlated BRS using

maximum-likelihood, and method of moments for the radius estimation. The model used

past observations (n+t or n̂t), and past intensity to estimate current intensity. In addition,

twelve parameter schemes were employed to study the properties of these parameter

estimates, including biasness, consistency, and asymptotic normality. Simulation results

showed that the parameter estimates inherited the properties of maximum likelihood

estimators. Thus, the future intensity of phenomena that are correlated random sets

(Boolean) in nature can be predicted, using the model built in this study. This model was

built for the Rocky Mountain Pine Beetle data from 2001 to 2010, which consisted of

iii



seasonal attacks of trees by Pine Beetles in the Rocky Mountain region. This was then

used to predict the intensity for the year 2010.
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CHAPTER I

INTRODUCTION

The Boolean random set is formed by placing random closed sets (referred to as

grain) at points of a Poisson process (germ) and taking unions of these sets. Two

components of the BRS are the homogeneous Poisson point process, with intensity λ and

a sequence of independent random closed sets independent of the Poisson point process.

For example, during the in–cloud seeding experiment, the clouds are bombarded

with bits of magnesium oxide. Some craters appear in points, which hit these bits, and

with some approximation, the shape of their projection on R2 are circles centered at the

hit points with random radius (Khazaee, 2004). This can be taken as a Boolean random set

realization. Another interesting example is fire destruction in the forest. The scar of an

area burnt as a result of fire can also be modeled as a Boolean random set. If one takes the

position where the fire first started burning as the point of a Poisson process, then the scar

can be approximated as a closed set in R2. Taking unions of such scars results in a

Boolean random set.

Given this, the intensity of these occurrences (RACS) is of interest to scientists,

specifically, the intensity across time, which enables future intensity predictions of these

sets. Hence, the subject of this study.

Boolean models have been used extensively throughout the years. From Armitage

(1949) in the random clumping of dust or powder particles, to Widom & Rowlinson
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(1970) in the system of water droplets in the study of liquid-vapor phase transitions, to

Diggle (1981) in the distribution of heather in forests, to Garcia-Sevilla & Petrou (1999)

in classifying binary and spatial textures to Mattfeldt, Gottfried, Schmidt, & Kestler

(2000) in classifying spatial textures in benign and cancerous tissues, to Kärkkäinen,

Jensen, & Jeulin (2002) in orientational characteristics of fibers in digital images, and to

Khazaee (2004) in modeling the effect of some explanatory variables on a BRS. Even

though interest in the Boolean model has grown over the years, more work is needed to

expand its frontiers.

Count data appear in diverse phenomena, from monthly numbers of people with

certain diseases to the daily number of customers at a particular branch of a bank. Time

series for count data is simply defined as dependent count observations of a random

phenomenon. For example, the weekly number of customers at a bank over the course of a

year can be viewed as a count time series.

In ordinary linear regression, the problem is to relate the mean response of a

variable to the explanatory variables by means of a linear equation under the assumption

of independent and normal data. However, there are situations where non-normal data,

such as count, leads to wrong conclusions due to failures in assumptions of normality.

Generalized linear models bridge this gap. A lot of literature has been built on this. The

work of Nelder & Wedderburn (1972) can be used as a point of reference. Furthermore,

when observations are not independent, then models such as time series are used to

capture the dependency that exist in the data. Specifically, for dependent count data, count

time series is a solution to the non-independent assumption failure.
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For example, let Yt , t = 1, ...,N denote a time series for count data, which consists

of nonnegative integer values. Therefore, we can naturally assume that the conditional

density of the Yt given the past observation is Poisson with mean µt . With this choice, we

know that the conditional expectation of the response is equal to the conditional variance.

The problem is to relate the conditional expectation to some covariates. Kedem &

Fokianos (2005) used partial likelihood and generalized linear model methodologies to

solve this problem. Fokianos, Rahbek, & Tjøstheim (2009); Fokianos & Tjøstheim (2011)

provided a framework that accounts for both positive and negative correlations. Additional

review of this framework will be discussed in chapter two of this study.

Statement of the Problem

Every statistical model should take the dependency or the correlational structure of

the data into consideration. Liang & Zeger (1993) stated that the impact of ignoring the

correlation among observations produced incorrect variance. And as a result, the

discrepancy between the correct and incorrect variances increased with the degree of

correlation ρ . Another effect was the loss of efficiency, meaning that the uncertainty in

biased estimates β was greater than the uncertainty in the best unbiased estimate. Any of

the above discrepancies impacts scientific conclusions negatively. Thus, models that take

the correlation of observations into account will be preferred in modeling the effects of

explanatory variables along with past observations on the intensity of the Boolean model

across time.

Purpose of the Study

The Boolean model has two sources of randomness. This includes the Poisson

process D, which is responsible for the germ distribution, and a sequence of independent
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random closed sets independent of D, with their distributions identical to that of Z0.

Khazaee (2004) studied the effect of some explanatory variables observed along the BRS

on the model’s behavior and prediction. In doing so, Khazaee classified the explanatory

variables into three categories, i.e.: propagation variables, which affect D, growth

variables, affect Z0, and propagation-growth variables, affect both D, and Z0.

The purpose of this research was to build a count time series, specifically, the

log-linear Poisson autoregression. It modeled the intensity of the Boolean random sets

across time, the effect of past observations, past intensities, and time-dependent covariates

(propagation variables) on the estimation of its parameters. In addition, the log-linear

model catered to both negative and positive correlational structures across time (lags).

The maximum-likelihood based method was used to estimate the parameters of the

models under a set of different conditions.

Research Questions

The following questions guided this study:

Q1 Can we build a model to estimate the intensity of a time-dependent BRS?

Q1a How do both time-dependent covariates and past observations affect
the estimation of the intensity?

Q1b How do the past observations of BRS affect the estimation of the
intensity?

Q1c How do time-dependent covariates affect the estimation of the
intensity?

Q2 Are the estimators of parameters of these models unbiased?

Q3 What are the characteristics of these estimates under different times?

Q3a When the radius of the grains is known and fixed?
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Q3b When the radius of the grains is unknown and fixed?

Q3c When the radius of the grains is random?

Q4 Are these estimators asymptotic normal and consistent?

To answer the above questions, simulations were conducted to study the properties

of this model for the Boolean random set. The proposed model was then applied to a real

world data set—the Rocky Mountain Pine Beetle data. The mountain pine beetles

seasonally attack the host tree species (trees where the damage has taken place) on the

Rocky Mountains. Thus the seasonal (yearly) nature of these attacks produce sets (data)

that are correlated across time. Kaufeld (2014) applied the Generalized Method of

Moments Approach for Spatial-Temporal Binary Data to the Pine Beetle data from 2001

to 2010. This data were collected by the United States Forest Service through aerial

survey methods. The weather variable, which is the mean annual precipitation in inches,

was obtained from the PRISM dataset, which is publicly available at the prism site of the

Oregon State University website. Thresholding and smoothing were applied to the data

and a stationary grid of dimension 42 x 55 was constructed at each site. These data were

treated as Boolean random sets, with the location of the damaged trees as the point of a

Poisson process and a grain distribution of radius of 0.02.

Definitions

Random closed set (RACS) is a measurable map Y : Ω 7−→ F from a probability

space (Ω,U,P) to a family of closed sets in a locally compact, Hausdorff, and separable

space (LCHS) E.

Boolean random set (BRS) is a special type of RACS formed by placing a

random closed sets at points of a Poisson process and taking their union.
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Germ is a point from the Poisson process in the formulation of BRS.

Grain is a random closed set placed at the points of the Poisson process in the

formulation of BRS.

The layout of this study is as follows: Chapter 2 presented a relevant review of

existing literature on the subject of RACS, BRS, time series for count models, and

estimation methods used in fitting them. We also reviewed some properties of the Boolean

random model and some advancements made in this field. In Chapter 3, the model and its

estimation methods that were used in answering the above research questions was

presented. The results of the simulation study was presented and discussed in Chapter 4,

along with the application of the model to the Rocky Mountain Pine Beetle data. Finally,

in Chapter 5, conclusions for the Time Series for the Boolean random sets as well as

future developments and limitations were presented.
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CHAPTER II

REVIEW OF LITERATURE

In this section, we review the relevant literature and advancements made in the

field of Random set theory, especially, the Boolean random set.

Review of Random Closed Sets

Molchanov (2005) posits that the study of random geometrical objects dates back

to the Buffon needle problem. In fact, the concept of Geometric Probability traces back to

the origins of probability. Together with the mathematical foundations of probability

theory, the concept of random set was mentioned for the first time.

Not only did Kendall (1974) and Matheron (1975) introduce the mathematical

theory of random sets, but the idea of random sets with different shapes as well. In regards

to the development of relevant probabilistic and geometric techniques, the modern

definition of random set is attributed to Georges Matheron.

Fundamentals of Topology

Fundamental definitions needed to define random closed sets are given as follows:

Topological space. Let E be a set, then a collection of subsets φ of E is called a

topology if the following are satisfied:

i. /0 and E belong to φ .

ii. Union of any subcollections of φ belongs to φ .
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iii. Intersection of any finite subcollections of φ belongs to φ .

The set E along with the topology φ is called a topological space denoted by

(E,φ), where elements of φ are called open sets.

Base of a topology. Let B be a collection of subsets of E, such that for every

e ∈ E:

i. There is at least a member B ∈B, such that e ∈ B.

ii. If e ∈ B1,B2, then there is a B3 ∈B such that e ∈ B3, and B3 ⊂ B1∩B2.

Then, B is called base of a topology such that any open set is can be constructed

as a union of elements of B. A topology φB generated by a base B is defined as “ the

subset U from B with respect to φB is open, if for each e ∈U , there is an element B ∈B,

such that e ∈ B and B⊂U .

Hausdorff topological space. The topological space (E,φ) is Hausdorff, if for

every distinct pair of elements x,y ∈ E, there are open sets, U of x, and V of y such that

U ∩V = /0. Thus, distinct pairs of points have distinct neighborhoods.

Separable topological space. Let (E,φ) be a topological space, C ⊂ E is closed

(with regards to φ ), if its complement (a subset of E) is an open set. The intersection of all

closed sets containing C is termed ”the closure of C” and denoted by C̄. A subset C of E

whose closure is E is called a dense subset. i.e. C̄ = E. If E has a countable dense subset,

then (E,φ) is a separable topological space.

Locally compact topological space. If any open covering of E has a finite

sub-covering, then (E,φ) is said to be compact. Stated differently, if {Oα |α ∈ I} is a

collection of open subsets, such that E = ∪α∈IOα , then there are α1,α2, ...,αm ∈ I such
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that E = ∪m
i=1Oαi . If any element e ∈ E has a compact neighborhood, (E,φ) is called a

locally compact topological space.

The Euclidean space Rd is the most common locally compact Hausdorff separable

topological space (LCHS space). An example of a base is the collection of all open balls

such that B(v,r) = {w ∈ Rd|, |w− v|d < r},∀v ∈ Rd , with |.|d as the usual d-dimensional

Euclidean norm. φRd is the topology generated by the base.

Algebra and σ -algebra. A family of sets is called an algebra if this family

contains /0 and is closed under taking complements and finite unions. An algebra U is

called a σ -algebra if it is closed under countable unions. If M is any family of sets, then

σ(M) denotes the smallest σ -algebra generated by M. The minimal σ -algebra which

contains the family G of all open sets is called the Borel σ -algebra on E and denoted by

B(E).

Fell topology. Let F be the space of closed subsets of a topological space.

Topologies on F are often introduced by describing their sub-bases. To define one of such

sub-bases;

for A⊂ E, define

FA = {F ∈ F : F ∩A 6= /0} FA = {F ∈ F : F ∩A = /0},

as the family of closed sets, which have non-empty intersection with A (in other words,

the family of closed sets that hits A), and as the family of closed sets, which miss A

respectively. The Fell topology has a sub-base, which consists of FG ∀ G ∈ G and FK ∀

K ∈K , where G and K are collections of open subsets and compact subsets of a
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Hausdorff, separable and locally compact topological space E. Let the collection of

elements of F which ‘hit’ the sets G1,G2, ...,Gn ∈ G and ‘miss’ K ∈K be denoted by

FK
G1,G2,...,Gn

, then FK
G1,G2,...,Gn

= FK ∩FG1 ∩ ...∩FGn when n 6= 0 otherwise

FK
G1,G2,...,Gn

= FK (Molchanov, 2005). Matheron (1975) used this class FK
G1,G2,...,Gn

as a

base of a topology on F. This topology is called the hit-or-miss topology. This hit-or-miss

topology is crucial in generating a σ -field used in defining random closed sets.

Definition of Random Closed Set

Let Σ be the σ -field in F generated by the hit-or-miss topology. This field can be

generated separately by the family {FK|K ∈K } and likewise by {FG|G ∈ G }.

Molchanov (2005) gives the following definitions:

Definition 1. Let E be a Locally compact, Hausdorff, and Separable space

(LCHS), F, Σ be defined as above and (Ω,U,P) be a probability space. A random closed

set (RACS) Y on E is defined as a measurable map Y : Ω 7−→ F from a probability space

(Ω,U,P) to a family of closed sets in a LCHS space E. For each ω ∈Ω, Y (ω) is a closed

subset of E and for all V ∈ Σ,

Y−1(V ) = {ω ∈Ω|Y (ω) ∈V} ∈ U.

Definition 2. Let E be a LCHS. A measurable map Y : Ω 7−→ F is called a random

closed set if Y is measurable with respect to the Borel σ -algebra on F with respect to the

Fell topology, i.e. for each y ∈B(F)

Y−1(y) = {ω ∈Ω|Y (ω) ∈ χ} ∈ U.
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Note that Y−1(V ) = {ω : Y (ω) ∈V} ∈ U can be restated as

Y−1(FK) = {ω : Y (ω) ∈ FK} ∈ U.

The probability distribution PY on Σ defined by X is

PY = P(Y−1(V )), V ∈ Σ.

Example 1 (half line). If ξ is a real-valued random variable with distribution

function Fξ (.), then Y = (−∞,ξ ] is a random closed set on the line E = R. Let K = [a,b],

then observe that, {Y ∩K 6= /0}= {ξ ≥ infK} is a measurable event for every K ⊂ E with

probability:

PY (Y ∩K 6= /0) = P({ω : Y (ω)∩K 6= /0}) = Pξ (ξ ≥ a) = 1−Fξ (a).

Along the same lines, Y = (−∞,ξ1 ]× (−∞,ξ2 ]× ...× (−∞,ξd ] is a random closed

subset of Rd if (ξ1, ...,ξd) is a d-dimensional random vector (Molchanov, 2005).

Example 2 (random triangle and random ball). Let (ξ1,ξ2,ξ3) be random

vectors in Rd , then the triangle with vertices ξ1,ξ2, and ξ3 is a random closed set. If ξ is a

random vector in Rd and η is a non-negative random variable, then the random ball Bη(ξ )

of radius η centered at η is a random closed set (Molchanov, 2005). The above examples

show that probabilities such as: PY (Y ∩K 6= /0) for K ∈K entirely determines the

probability distribution of RACS Y .
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Hitting Functional and Choquet Theorem

In the above section, it was noted that the knowledge of PY (Y ∩K 6= /0) determines

entirely the distribution of RACS Y. However, the most important tool for determining the

probability properties of RACS is the hitting functional.

Definition 3. The functional TY : K 7−→ [0,1] given by

TY (K) = PX(FK) = PY{Y ∩K 6= /0}, K ∈K ,

is said to be the capacity (hitting) functional of Y denoted by TY (K).

The functional defined above for RACS is analogous to the distribution function of

a random variable. Hence, it is straightforward to show that, if TY (.) is defined on K , then

the probability distribution PY (.) of RACS Y is entirely determined. In addition, Choquet

(1954); Kendall (1974); Matheron (1975), state some properties of the hitting functional,

that are easily verified:

i. TY ( /0) = 0, since no closed set Y hits the empty set. i.e. Y ∩ /0 = /0. Also,

TY being probability satisfies 0≤ TY (K)≤ 1, for every K ∈K

ii. The functional is increasing on K ; i.e. K1,K2 ∈K and K1 ⊆ K2 implies

TY (K1)≤ TY (K2).

iii. TY (K) is upper semi-continuous on K , which, is equivalent to Kn ↓ K in

K ⇒ TY (Kn) ↓ TY (K). Let K,Ki ∈K , i = 1,2, ..., recursively define the
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functionals Q(0)
Y ,Q(1)

Y , ... by:

Q(0)
Y (K) = QY (K) = PY (Y ∩K = /0) = 1−TY (K),

and

Q(1)
Y (K;K1) = Q(0)

Y (K)−Q(0)
Y (K∪K1),

and for n = 2,3, ...

Q(n)
Y (K;K1,K2, ...,Kn) =

Q(n−1)
Y (K,K;K1,K2, ...,Kn−1)−Q(n−1)

Y (K∪Kn;K;K1,K2, ...,Kn−1).

It can easily be shown that:

Q(n)
Y (K;K1,K2, ...,Kn) = PY (Y ∩K = /0, & Y ∩Ki 6= /0, i = 1,2, ...,n).

Thus, Q(n)
Y (K;K1,K2, ...,Kn) is the probability that the RACS Y misses K

and hits Ki, i = 1,2, ...,n.

iv. 0≤ Q(n)
Y (K;K1,K2, ...,Kn)≤ 1, for K,Ki ∈K , i = 1,2, ...,n and for

every n≥ 1.

The functional QY (K) is known as the generating functional of RACS Y or the

finite-dimensional distribution functional of the Y . Additionally, properties (ii− iV )

makes TY a Choquet capacity of infinite order (Matheron, 1975). Hence, TY is also a

Choquet capacity, which satisfies TY ( /0) = 0 and 0≤ TY (K)≤ 1 for every K ∈K .
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A groundbreaking theorem for random set theory is the Choquet theorem. This

theorem was proven independently by Kendall (1974) and Matheron (1975). Hence, we

state it without proof.

Theorem 1 (Choquet). Let T be a real-valued functional on K . Then, ∃ a

probability space (Ω,U,P) and RACS Y , (Y : (Ω,U)→ (F,Σ)) satisfying:

P({ω ∈Ω|Y (ω)∩K 6= /0}) = T (K) K ∈K ,

if and only if T is a Choquet capacity of infinite order, such that T ( /0) = 0 and

0≤ TY (K)≤ 1 for every K ∈K .

Furthermore, any probability distribution PY on Σ such that

PY (FK) = T (K) ∀ K ∈K , is necessarily unique.

Choquet’s theorem implies that the probability distribution of a RACS Y is

completely determined by the hitting (capacity) functional TY (K), K ∈K . This theorem

gives a rather computationally simple way of deriving probabilistic properties of random

sets.

Review of the Boolean Random Set

A very important class of random closed sets is the Boolean random set. It is a

very simple structured parametric model with a lot of applications in the field of random

set theory. We formally define Boolean random set (BRS) below:

Definition of the Boolean Random Set

Definition 4. Let D = {x1,x2, ...} be a homogeneous Poisson point process in Rd ,

with intensity of λ . Also, suppose Z1,Z2, .. is a sequence of independent random closed
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sets independent of D, with their distributions identical to that of Z0. Then, the Boolean

model (BRS) is defined as:

Y =
⋃

xi∈D

(Zi⊕ xi), (1)

where Zi⊕ xi = {z+ xi|x ∈ Zi} is the Minkowski sum of Zi and xi. The points of the

Poisson process are called germs and the corresponding RACS Zi are called grains.

Commonly used examples of grains are line segments of random length, balls of random

radius and random finite clusters of points, where the Boolean model becomes a

Neymann-Scott process (Dietrich & Helga, 1994).

The Hitting Functional

The Boolean model, like other random closed sets, has its hitting functional TY .

Mattfeldt (1996) showed that

TY (K) = 1− exp{−λE[νd(Z̆0⊕K)]}, K ∈K , (2)

where νd(.) is the Lebesgue measure and Z̆0 = {−z|z ∈ Z0}. Analogously,

TY (K) = 1− exp{−λE[νd(Z̆0⊕K)]}= 1− exp{−λE[νd(Z0⊕ K̆]},

using the relationship (Z̆0⊕K) =−(Z0⊕ K̆) (Khazaee, 2004).
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Some Characteristics of the Model

When the test set K is a compact set, in K , then very “nice” descriptive

characteristics can be obtained. Khazaee (2004) summarized some of the properties of the

Boolean model. We state the relevant ones below :

Stationarity and isotropicity. If E[νd(Z0⊕ K̆)] = E[νd((Z0⊕ x)⊕ K̆)], ∀x ∈ Rd,

and TY⊕x(K) = TY (K), using (2) then the BRS Y is said to be stationary. Similarly, for an

isotropic Z0, E[νd(Z0⊕ K̆)] = E[νd(Rα(Z0)⊕ K̆)] implies that Y is isotropic.

Porosity (q). If a point of the space falls in the complement of RACS Y, then

porosity is the probability of falling in the pores, i.e.:

q = P(x ∈ Y c) = 1−TY ({x}),

using (2.2.2),

= exp{−λE[νd(Z0)]}. (3)

Volume fraction (p) . Let B be a Borel set with measure one, i.e.: (νd(B) = 1).

For RACS Y, the expected value of the ratio of B covered by Y is defined as the volume

fraction, pB. When Y is stationary, then pB is independent of the region B and can be

interpreted as the mean proportion of space covered by Y . Note that p = P(x ∈ Y ), and

p = E[νd(Y ∩B)] = E
∫
Rd

IY∩B(Y )dνd(x)

= E
∫

B
IY (Y )dνd(x) =

∫
B

P(x ∈ Y )dνd(x)

= P(x ∈ Y )νd(x) = P(x ∈ Y ). (4)
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That of the Boolean model is of the form:

p = 1− exp{−λE[νd(Z0)]}. (5)

Estimation of Model Parameters

Molchanov (1997) introduced two classes of parameters of the Boolean model.

These include the macroscopic and microscopic parameters. Whilst the macroscopic

parameters are determined by visible set, microscopic parameters are not directly

observable. Moreover, macroscopic parameters deal with aggregate properties whilst

microscopic deals with individual properties. Examples of macroscopic parameters

include the volume fraction, covariance, hitting functional, and contact distribution

functions. Microscopic includes intensity of the Poisson process, expected value of

perimeter, and area of grains. Below, we discuss the methods of estimating some of these

parameters:

Volume fraction (p). The volume fraction can be thought of as the mean

proportion of space covered by the RACS Y, then a natural estimator of p is the proportion

of W covered by Y, i.e.:

p̂ =
νd(Y ∩W )

νd(W )
. (6)
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Using a digitalized image as done in practice, Khazaee (2004) shows the estimator takes

the form:

p̂ =
N(Y ∩W )

N(W )

=
∑x∈W IY∩W (x)

N(W )
. (7)

Where x is a pixel of a digitalized image and N(W ), the number of pixels inside W. With

Y stationary, a similar proof of (4) can be used to show that (6) and (7) are unbiased. Thus,

the variance is:

Var(p̂) =
1

N(W )2 ∑
x,y∈W

Cov(IY∩W (x), IY∩W (y))

=
1

N(W )2 ∑
x,y∈W

[P(x ∈ Y ∩W,y ∈ Y ∩W )− p2]

=
1

N(W )2 ∑
x,y∈W

C(x− y)− p2, (8)

where C(.) is the covariance of Y . In a similar manner to (6),

Var(p̂) =
1

ν2
d (W )

∫
W 2

(C(x− y)− p2)dνd(x)dνd(y). (9)

These estimators of p are strongly consistent, i.e.: p̂→ p a.s.,W → Rd and

νd(W )(p̂− p) D−→ N(0,σ2), where σ2 =
∫
Rd C(r)dr− p2 (Mase, 1982).
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Covariance function C(r). The covariance function C(r) of the Boolean model

can be estimated as:

Ĉ(r) =
νd({x|x ∈ (Y ∩W ),x+ r ∈ (Y ∩W )})

νd({x|x ∈W,x+ r ∈W})

=
νd((Y ∩W )∩ ((Y ∩W )⊕{−r})

νd(W ∩ (W ⊕{−r}))

=
νd((Y ∩W )	{o,−r})

νd(W 	{o,−r})
. (10)

Observe that (10) is an estimator of the volume fraction of RACS Y 	{o,−r} in the

window W 	{o,−r}. Hence, Ĉ(r) is an unbiased estimator of C(r). In pixel context, we

have the form:

Ĉ(r) =
1

Nr(W ) ∑
x∈W	{o,−r}

IY	{o,−r}(x), (11)

where Nr(W ) = N(W 	{o,−r}) (Khazaee, 2004).

Coverage probability. It is obvious that IK⊂Y (.) is an unbiased estimator of

P(K ⊂ Y ). However, when RACS Y is stationary, estimators of the form IKx⊂Y (.) are still

unbiased estimators of P(K ⊂ Y ) ∀x ∈ Rd , where Kx is the dilation of K by x. In practice,

the estimator used is the mean of estimators of IKx⊂W

P̂(K ⊂ Y ) =
∑x∈W I(Kx⊂Y∩W )(x)

∑x∈W I(Kx⊂W )(x)
(12)

=
νd({x|Kx ⊂ Y ∩W})

νd({x|Kx ⊂W})
. (13)
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Since

{x|Kx ⊂W}= {x|x+ y ∈W, ∀y ∈ K}

=
⋂
y∈K

{x|x+ y ∈W}

=
⋂
y∈K

{z− y|z ∈W}=W 	 K̆,

then from (13),

P̂(K ⊂ Y ) =
νd((Y ∩W )	 K̆)

νd(W 	 K̆)
. (14)

Hitting probability. With the relation

P(K ⊂ Y c) = P(Y ∩K = /0) = Qx(K) = 1−TY (K), the hitting probability can be derived

from TY (K) = 1−P(K ⊂ Y c). Thus, an unbiased estimator of TY (K) can be obtained

using (13) as follows:

T̂Y (K) = 1− P̂(K ⊂ Y c)

= 1− νd({x|Kx ⊂ Y c∩W})
νd({x|Kx ⊂W})

=
νd({x|Kx ⊂W})−νd({x|Kx ⊂W,Kx ⊂ Y c})

νd({x|Kx ⊂W})

=
νd({x|Kx ⊂W ,(Kx ⊂ Y c)c})

νd({x|Kx ⊂W})

=
νd({x|Kx ⊂W ,Kx∩Y 6= /0})

νd({x|Kx ⊂W})
,
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and with the relation:

{x|Kx∩Y 6= /0}= {x|∃y ∈ K 3 x+ y ∈ Y,}

=
⋃
y∈K

{x|x+ y ∈ Y}

=
⋃
y∈K

{z− y|z ∈ YW}= Y 	 K̆,

T̂Y (K) =
νd(W 	 K̆)∩ (Y ⊕ K̆))

νd(W 	 K̆)
. (15)

And, the pixel equivalent:

T̂Y (K) =
1

N(W 	 K̆)
∑

x∈W	K̆

IY⊕K̆(x). (16)

From TY⊕K({o}) = TY (L), it can be concluded that TY (K) is the volume fraction of the

BRS Y ⊕ K̆. Therefore, T̂Y (K) is an estimator for the volume fraction in the window

W 	Y . And from previous results, T̂Y (K) is an unbiased and strongly consistent estimator

for TY (K) with (TY (K)− T̂Y (K))
D−→ N(0,σ2) (Khazaee, 2004).

Next, we review some spatial means and their estimators besides the volume

fraction, which is considered the simplest spatial mean.

Specific boundary length (L). Specific boundary length is defined as the length

per unit area for planar random sets. Matheron (1975) showed that

L = (1− p)λE[U(Z0)], (17)
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where U(Z0) is the perimeter of Z0. Suppose l(A) denotes the perimeter of A, then:

L̂ =
l(Y ∩W )

ν2(W )
. (18)

Positive tangent points process and special convexity number (N+). Suppose

each grain Z0 is associated with its tangent point nu(Z0), where u is a fixed direction in

Rd . If u is directed upwards, then the lower tangent point of Z0 is defined as the

lexicographical minimum among all points at which a hyperplane orthogonal to u first

touches Z0. Consider the set of such tangent points determined for all shifted grains.

Although grains may cover some points, the exposed tangent points form a point process

denoted by N+(u) with intensity λ (1− p). This is called the special convexity number. If

n+ is the number of lower tangent points in window W , then

N̂+ =
n+

ν2(W )
, (19)

is an unbiased and strong consistent estimator of N+ (Molchanov, 1995).

Specific Euler-Poincaré and special connectivity number. Euler-Poincaré

characteristics are defined as:

i. χ( /0) = 0

ii. χ(K) = 1 for any nonempty compact convex set K
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iii. Suppose K admits the representation K = ∪p
i=1Ki for compact convex

sets Ki, i = 1, ..., p, then

χ(K) =∑
i

χ(Ki)− ∑
i1<i2

χ(Ki1∩Ki2)+ ...+(−1)p−1
χ(K1∩K2∩ ...∩Kp).

(20)

It can be shown that the value χ(K) is not dependent on the representation of K = ∪p
i=1Ki.

In addition, let χ(K) = the number of connected components of K—the number of holes

in K. If Y is a planar BRS with almost surely (a.s.) convex grain, the mean of the

Euler-Poincaré characteristics in the unit area is called specific Euler-Poincaré

characteristics or specific connectivity number of Y denoted by χ . Kellerer (1984) showed

that

χ = (1− p)λ (1− λ

4π
{E[U(Z0]}2). (21)

Suppose χ(Y ∩W ) is the Euler-Poincareé characteristics for the realization Y in window

W , then an estimator of χ is :

χ̂ =
χ(Y ∩W )

ν2(W )
, (22)

where Kellerer (1984) showed that χ(Y ∩W ) = N(N+(u)∩W )−N(Nc(−u)∩W ). Note

that Nc(−u) is the point process of tangent points in the complement of Y in the direction

of −u and N(Nc(−u)∩W ) is the number of points in window W. Below, we review some

methods of estimation for the microscopic parameters of the Boolean model.

Method of intensities. Molchanov (1997) stated that similar to the method of

moments in classical statistics, the intensity method chooses the estimators of the

parameters to match the empirical values of the aggregate parameters. In the plane,
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equations (5) , (17) and (21) make it possible to express λ , E[U(Z0)], E[ν2(Z0)] through

p, L, and χ . Equations (17) and (21) can be solved to get:

λ =
χ

1− p
+

1
4π

L2

(1− p)2 , (23)

and

E[U(Z0)] =
4πL(1− p)

4π(1− p)χ +L2 . (24)

The final step is to replace the aggregate parameters with their empirical counterparts in

(6), (18), and (22). The estimators resulting from the method of intensities are biased, but

strongly consistent and asymptotic normality. However, it is difficult to express the

variance of the limiting distribution through the parameters of the grain (Molchanov,

1997). Khazaee (2004) used N+ = λ (1− p) instead of (21) and arrived at

λ̂ =
N̂+

1− p̂
, (25)

which is also consistent, asymptotically normal and [ν2(W )]
1
2 (λ̂ −λ ) converges weakly to

a centered normal distribution with variance λ

1−p .

Method of minimum contrast. With this method, the contact distribution

functional is written in polynomial terms using the Steiner formula, where the coefficients

of the polynomial are functions of the unknown parameters. These parameters are

estimated by statistical methods, such as method of moments, ordinary least squares or

generalized least squares.
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Let d = 2, Y be a Boolean model with almost surely convex grain Z0, and K ∈K ,

then by the Steiner formula in (2),

QY (K) = 1−TY (K)

= exp{−λ [E[ν2(Z0)]+
1

2π
E[U(Z0)]U(K)+ν2(K)]}. (26)

In the planar case, the distribution of the Boolean model is completely determined by λ ,

E[ν2(Z0)], and E[U(Z0)]. Below are some methods for estimating the parameters.

Method of moments. When the test sets are K0—the origin, K1—straight line

segment of length l, and K2—the closed square of side l, equation (26) becomes,

QY (K0) = exp{−λE[ν2(Z0)]},

QY (K1) = exp{−λE[ν2(Z0)]+
l
π

E[U(Z0)]},

QY (K2) = exp{−λ [E[ν2(Z0)]+
2l
2π

E[U(Z0)]U(K)+ l2]}.

Equation (16) can be used to calculate Q̂Y (Ki) = 1− T̂Y (Ki), i = 0,1,2, then substituted

into the above equations and solved for the method of moment estimators. Khazaee

(2004), solved the following estimators:

λ̂ =
Ŝ
l2 , Ê[ν2(Z0)] =−

l2

Ŝ
ln Q̂Y (K0),

Ê[U(Z0)] =−
πl
S

ln

[
Q̂Y (K1)

Q̂Y (K0)

]
,

Ŝ = ln

[
Q̂Y (K1)

Q̂Y (K0)Q̂Y (K2)

]
.
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Ordinary least squares method (OLS). Suppose in (26) the test sets K are circles

with variable radius (i.e. Kt could be a circle with radius t = t1, t2, ..., tn), then for t, we can

rewrite QY (Kt) as:

QY (Kt) = exp{−λ [E[ν2(Z0)]+E[U(Z0)]t +πt2 (27)

− lnQY (Kt) =−λ{[E[ν2(Z0)]+E[U(Z0)]t +πt2} (28)

= β0 +β1t +β2t2, (29)

where, β0 = λE[ν2(Z0), β1 = λE[U(Z0)], β2 = λπ . We can use (26) to compute and

substitute Q̂Y (Kt), t = t1, t2, ..., tn for QY (Kt). Now, treating − ln Q̂Y (Kt) as the dependent

variable, and (1, t, t2) as independent variables, we can fit the linear regression model (29).

Let Y = (− ln Q̂Y (Kt1), ...,− ln Q̂Y (Ktn))
′
and T be an n×3 matrix with ith row

(1, t, t2), then the OLS estimator of β = (β0,β1,β2) is

β̂ = (T
′
T )−1T

′
Y.

With the estimates from the OLS, equation (??) will take the form:

λ̂ =
β̂2

π
, Ê[U(Z0)] =

β̂1

λ̂
, and Ê[ν2(Z0)] =

β̂0

λ̂
,

(Khazaee, 2004).

Generalized least squares method (GLS). In the OLS, we assumed that

− ln Q̂Y (Kt)
′s for t = t1, t2, ..., tn had constant variances and were uncorrelated, but that
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will be an invalid assumption in the context of BRS. Khazaee (2004) showed that

Ct,u =Cov(Q̂Y (Kt), Q̂Y (Ku)

= ∑
xi∈Wt

∑
x j∈Wu

ct,u(xi− x j)/NtNu, (30)

where Wt =W 	 K̆t , Wu =W 	 K̆u, Nt = N(Wt), Nu = N(Wu), and

ct,u{exp{λE[ν2((Z0⊕ K̆t)∩ (Z0⊕{−h}⊕ K̆u)]}−1}×QY (Kt)QY (Ku).

Cov(Q̂Y (Kt), Q̂Y (Ku) =
1

NtNu
∑

xi∈Wt

∑
x j∈Wu

[E(1− IY	K̆t
(xi))×

(1− IY	K̆u
(x j))]−QY (Kt)QY (Ku). (31)

The empirical estimator Ĉt,u for Ct,u is obtained by substituting

ĉt,u(h) = [ ∑
xi,x j∈M(h)

(1− IY	K̆t
(xi))(1− IY	K̆u

(x j))/N(M(h))]

−QY (Kt)QY (Ku), (32)

where M(h) = {(xi,x j) : xI ∈Wt ,x j ∈Wu,xi− x j = h}.

Let Σ be the variance-covariance matrix of Y = (− ln Q̂Y (Kt1), ...,− ln Q̂Y (Ktn))
′
,

then the elements of Σ can be approximated by

Cov(− ln Q̂Y (Kt),− ln Q̂Y (Ku))≈
Ct,u

QY (Kt),QY (Ku)
. (33)
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(16) and (32) can then be used to estimate elements of Σ̂. Thus, the GLS estimator

of β becomes:

β̂ ∗ = (T
′
Σ̂T )−1T

′
Σ̂Y. (34)

The initial parameter estimators of the Boolean model can be used to calculate the intimal

estimates of Σ̂′s element by (33). Denote the resulting positive definite matrix by Σ0. Also,

suppose the GLS estimators of β using Σ0 is denoted by ˆ
β (1)∗, then

ˆ
β (1)∗ = (T

′
Σ̂0T )−1T

′
Σ̂0Y.

An iterative process can be continued using ˆ
β (i)∗, i = 1,2, ... to calculate the elements

Σ(i−1) for Σ to get

ˆ
β (i)∗ = (T

′
Σ̂i−1T )−1T

′
Σ̂i−1Y,

which is a better approximation for β (Khazaee, 2004).

Advancement of the Model

The Boolean model has seen a lot of advancement and application since Solomon

(1953) first considered it. We list a few below:

Marcus (1966, 1967) applied the Boolean model to the study of meteoroidal

impact hypothesis for the origin of lunar craters. Dupač (1980) considered the etching of

tracks formed by the fission of randomly located uranium atoms in a fission material as a

Boolean random set. Also, Ohser & Stoyan (1980) modeled the form of geological

deposits of potassium as a BRS. Whilst Serra (1981) used the BRS in the ore-sintering,
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Diggle (1981) applied it to the incidence of heather in a forest. Robbins (1945) and

Neyman & Scott (1972) studied random closed sets with such application in view.

More recent developments include Molchanov & Chiu (2000) studying smoothing

techniques and estimation methods for non-stationary Boolean models with applications to

coverage processes. Khazaee & Shafie (2006) introduced regression models for Boolean

random sets, in order to model the effects of explanatory variables on the distribution of

random sets. In addition, Khazaee & Shafie (2010) worked on the propagation models and

fitted them to set-valued observations. Gallego, Ibanez, & Simó (2015) studied parameter

estimation in Non-Homogeneous Boolean models. And, Last & Gieringer (2017)

investigated the concentration inequalities for measures of a Boolean model.

Review of Count Time Series

A time series is a collection of sequential observations made through time. When

the observations are counts, we call it count time series. Count time series appear in

diverse areas. Take for example, the monthly number of people with a certain disease and

the number of trees attacked by a seasonal pest. Cox et al. (1981), classified

time-dependent data models into two groups, namely, observation-driven and

parameter-driven.

Observation-Driven Count Time Series

For this model, the dependence structure is introduced via the incorporation of

lagged values of the observed count into the model. An example is the integer-valued

autoregressive moving average (INARMA) class of models. These are some of the most

important members of observation-driven time series, which employs the use of
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appropriate thinning operations to replace the scalar multiplications in the Gaussian

ARMA framework. Other groups of observation-driven models are the generalized linear

autoregressive moving average (GLARMA). They incorporate the serial correlation as

well as binomial variation in the data into the generalized linear model framework by

specifying the log of the conditional mean process as a linear function of previous

observations. See Davis, Dunsmuir, & Streett (2003) for more on this model. The

autoregressive conditional Poisson (ACP) is similar to the GLARMA. Both of these

models, GLARMA and ACP, allow for easy incorporation of covariates—an advantage

over the INARMA models (Heinen, 2003).

Parameter-Driven Count Time Series

The parameter-driven extends the generalized linear models by incorporating into

the conditional mean function a latent dynamic process whose evolution is independent of

past observations. Let θt = log µt be the canonical parameter for log µt = β T xt (log-linear

model). Then, θt is assumed to depend on a latent noise process εt , which introduces the

autocorrelation and over-dispersion in the observations. The conditional distribution of

yt |(xt ,µt) is assumed to be Poisson with mean µt = exp{x/t β}εt , t : 1, ...,T . i.e.

yt |(xt ,µt)∼ Pois(exp{x/t β}εt), t : 1, ...,T. (35)

Zeger (1988) first introduced the specifications for parameter-driven models. Below, we

review some estimation methods used in analyzing these types of models.
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Some Estimation Methods

Count time series like any other statistical models have their estimation. The

relevant ones to this study are discussed below:

Iterative weighted and filtered least-squares algorithm (Zeger-Approach).

This method is analogous to the quasi-likelihood proposed by McCullagh et al. (1983) for

independent data. The β̂ , which is equal to the root of

U(β ) =
n

∑
t=1

∂ µ
′
t

∂β
ν
−1
t (yt−µt) = 0, (36)

is consistent, asymptotically Gaussian, and optimal in the extended Gauss-Markov sense.

For the time series’ estimating equations, Zeger (1988) proposed the following: if we let

y = (y1, ..,yn)
′
, X = (x1, ..,xn)

′
, µ = (µ1, ..,µn)

′
, V = var(y),

then the estimating equation can be rewritten as,

∂ µ
′

∂β
V−1(y−µ) = 0. (37)

It is worth noting that with the time series, the off-diagonal terms of V has dependence on

the nuisance parameters. In addition, if we let Rε be an n×n autocorrelation matrix with

j,k element ρε(| j− k|), then for the parameter-driven model,

V = var(y) = A+σ2ARεA,where A = diag(µ1, ..,µn). Hence, we estimate β by solving
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the p×1 system of equations,

∂ µ
′

∂β
V−1(β ,θ)(y−µ) = 0. (38)

Equation (37) depends on both the nuisance parameter θ and β . Suppose θ̂ is an

√
n-consistent estimate of θ that depends on the observations and β , then let β̂ be a

solution of

U(β ) =
∂ µ

′

∂β
V−1{β , θ̂(β )}(y−µ) = 0. (39)

Zeger (1988) proposed the following proposition:

Proposition 1. Suppose εt is a stationary process. Under mild regularity

conditions and given
√

n(θ̂ −θ) = op(1) for some fixed θ ,
√

n(β̂ −β ) is asymptotically

multivariate Gaussian with zero mean and covariance matrix

V
β̂
= lim

n→∞

(
∂ µ
′

∂β
V−1 ∂ µ

∂β
/n
)−1

. An analogous proof is found in Liang & Zeger (1986). To

compute β̂ for a given β , an iterative weighted least-squares is used. The parameter

estimates at the j+1th iteration β̂ ( j+1), are given by

β̂
( j+1) =

(
∂ µ

′

∂β
V−1 ∂ µ

∂β

)−1(
∂ µ

′

δβ
V−1Z

)
, (40)

where Z = (∂ µ
′

∂β
)β +(y−u). β̂ is found by alternately solving (39) for β̂ ( j+1) given θ̂ ( j),

then updating β̂ ( j+1) to find θ̂ ( j+1) until convergence.

In the solution of (39), there is difficulty in the inversion of V due to the absence of

stationary autocorrelation function for the parameter driven process. An approximation of

Rε in (37) leads to an approximate V−1
R u D

−1
2 L

′
LD

−1
2 where D = diag(µt +σ2µ2

t ) and
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LL applies the autoregressive filter i.e. Ly has elements yt−α1yt−1− ...−αpyt−p(t > p).

This leads to

β̂
( j+1)
R =


(

LD
−1
2

δ µ

δβ

)′(
LD

−1
2

δ µ

δβ

)
−1(

LD
−1
2

δ µ

δβ

)′
(LD

−1
2 Z), (41)

which is referred to as Iterative weighted and filtered least-squares algorithm. The

nuisance parameters (σ2,ρε ) can be estimated by a method of moments i.e:

σ̂
2 =

n

∑
t=1
{(yt− µ̂t)

2− µ̂t}/
n

∑
t=1

µ̂t
2 (42)

ρ̂ε = σ̂
−2

n

∑
t=τ+1

{(yt− µ̂t)(yt−τ − ˆµt−τ)}/
n

∑
t=τ+1

µ̂t ˆµt−τ . (43)

For more see Zeger (1988).

Quasi maximum likelihood method. Denote a count time series by {nt : t ∈ N}

and a time-varying r-dimensional covariate vector {Xt : t ∈ N}, say Xt = (Xt,1, ...Xt,r)
T .

Also, denote by Ft−1, the history of the joint process {nt−1,λt−1,Xt : t ∈ N} up to time

t−1, including the covariate information at time t. Then, observe that the conditional

nt |Ft−1 ∼ Poisson(λt). Hence, we model the conditional mean E(nt |Ft−1) of the count

time series by a process, {λt : t ∈ N}, such that E(nt |Ft−1) = λt . The general form of the

model is,

g(λt) = β0 +
p

∑
k=1

βkg̃(nt−ik)+
q

∑
l=1

αlg(λt− jl)+η
T Xt , (44)

where g : R+ −→ R is a link function and g̃ : N0 −→ R is a transformation function. The

parameter vector η = (η1, ....ηr)
T corresponds to the effects of covariates. For example,
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Liboschik, Fokianos, & Fried (2015) assumed g(m) = log m, g̃(x) = log (x+1),

p = q = 1, and X = 0 (for simplicity), so that (44) reduces to

log λt = β0 +β1log (nt−1 +1)+α1logλt−1, (45)

where λt is the intensity of the Poisson process nt |Ft−1. They studied the likelihood

inference for (45), with the three dimensional parameter space of θ = (β0,β1,α1), and the

initial value of λ0 in terms of observations n1, ...,nT . Thus, the conditional likelihood

function for θ was given by:

L(θ) =
T

∏
t=1

exp(λt(θ))λ
nt(θ)
t

nt!
,

where λt(θ) = exp(β0 +β1log(nt−1 +1)+α1 logλt−1).

If we let logλt = γt . Then, the log-likelihood function has the form,

l(θ) =
T

∑
t=1

(ntγt(θ)− exp(γt(θ))− lognt),

where γt(θ) = β0 +β1log(nt−1 +1)+α1γt−1. Furthermore, the score function wass given

by

ST (θ) =
∂ l(θ)

∂θ
=

T

∑
t=1

(nt− exp(γt(θ)))
∂γt(θ)

∂θ
,

where ∂γt(θ)
∂θ

is a vector with components:

∂γt

∂β0
= 1+α1

∂γt−1

∂β0
,

∂γt

∂β1
= log(1+nt−1)+α1

∂γt−1

∂β1
,

∂γt

∂α1
= γt−1 +α1

∂γt−1

∂α1
.
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The solution of ST (θ) = 0, i.e θ̂ , yields the conditional maximum likelihood estimator of

θ , if it exists. The Hessian matrix of (45) was obtained from

HT (θ) =
∂ 2l(θ)

∂θ 2 =
T

∑
t=1

(exp(γt(θ))

(
∂γt(θ)

∂θ

)(
∂γt(θ)

∂θ

)′
−

T

∑
t=1

(nt− exp(γt(θ)))
∂ 2γt(θ)

∂θ∂θ
′ .

Fokianos et al. (2009) and Fokianos & Tjøstheim (2011) showed the asymptotic normality

of θ̂ . For more, see Liboschik et al. (2015); Fokianos et al. (2009); Fokianos & Tjøstheim

(2011).
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CHAPTER III

METHODOLOGY

In this chapter, we proposed models for dependent Boolean random sets and their

estimation method. We began with a review of the work of Khazaee (2004) on regression

for the Boolean model. It laid the foundation for time series for the Boolean random sets

and its fitting methods, which was the subject of this study.

Regression Model for the Boolean Random Sets

If we let Y be a Boolean random set, and X a vector of explanatory variable that

affects Y , then the distribution of Y depends on X , i.e.:

YX =
⋃

di∈DX

(ZiX ⊕di). (46)

Z′iX s are independent copies of Z0X , ∀ i, and DX is a Poisson point process with

intensity λX .

Khazaee (2004) developed regression models for the intensity for independent

Boolean random sets, with propagation explanatory variables. Also, the dependence of X

on Y in (46) takes the following form:

YX =
⋃

di∈DX

(Zi⊕di), (47)
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where DX is a Poisson point process with intensity λX = f (X ,β ) — f , a positive function.

Furthermore, β = (β1, ...,βp)
′
is a vector of unknown parameters of the model. Finally,

the observations are (Yi,Xi), i = 1,2, ...,n, where, Yi are realizations of the Boolean model

YXI in a window Wi with Lebesgue measure 1. Xi = (xi1, ...,xik) is an observation of X .

Then, the number of points in DXi , ni in a window Wi with Lebesgue measure 1 has a

Poisson distribution with mean λi = λXi . If we let λi = f (Xi,β ) = h(Y
′
i β ), where h is a

differentiable monotonic function, the estimation of β then becomes a parameter

estimation of a generalized linear model (glm) in the Poisson family, with link function

g(.) = h−1(.) problem.

Khazaee (2004) used iterative reweighted least squares algorithm to obtain the

maximum likelihood estimate of β from the linear regression model zi = X
′
i β + εi, where

zi = g(λi)+(ni−λi)g
′
(λi), (48)

with weights wi = [Var(zi)]
−1 = [Var(ni)]

−1[g
′
(λi)]

−2 and adjusted weights

w∗i '
[
[g
′
(λi)]

(2)ν2(Wi)
λi

1−pi

]−1
. Since the germs ni cannot be observed for overlapping

grains, Zhazaee used

n̂i =

[
n+i

1− p̂i

]
(49)

as an estimate for ni in (48). The number of observable lower tangent points, n+i in Wi, and

p̂i is the estimated volume fraction for the ith Boolean model. An unbiased estimator of p
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when Y is observed in a window W is given by,

p̂ =
|Y ∩W |
|W |

. (50)

A second estimate used by Khazaee (2004), was n+i , the observable lower tangent points

in Wi. These tangent points, according to Molchanov (1995), has an approximate Poisson

distribution, i.e.:

n+ ∼ Poisson
(
ν2(Wi)λi exp{−E[ν2(Z0)]λi}

)
. (51)

Then, with the log-likelihood function of β given by

l(β ) =
n

∑
i=1
{λ ∗i +(n+i ) lnλ

∗
i }−

n

∑
i=1

lnn+i ,

the parameter estimates β̂ are the solution to the above equation.

Clearly, these Boolean random sets in the above estimations were assumed to be

independent. However, in practice, these observations are often correlated, and the above

models may produce inaccurate results. Therefore, this dissertation sought to propose a

new model for dependent Boolean random sets. As stated earlier in chapter one, the

questions that guided this study are as follows:

Q1 Can we build a model to estimate the intensity of a time-dependent BRS?

Q1a How do both time-dependent covariates and past observations affect
the estimation of the intensity?

Q1b How do the past observations of BRS affect the estimation of the
intensity?

Q1c How do time-dependent covariates affect the estimation of the
intensity?
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Q2 Are the estimators of parameters of these models unbiased?

Q3 What are the characteristics of these estimates under different times?

Q3a When the radius of the grains is known and fixed?

Q3b When the radius of the grains is unknown and fixed?

Q3c When the radius of the grains is random?

Q4 Are these estimators asymptotic normal and consistent?

In order to answer the above questions, we propose time series models for the

Boolean random set and their parameter estimation methods in the next section.

Time Series Model for the Boolean Random Set

As stated before, our aim in this study was to introduce time series models for

random sets (RACS) i.e. Y = (Y1, ...,YT )
′
, estimate the parameters, and study the

properties (behavior) of these estimators. Suppose we let

YXt =
⋃

dt∈DXt

(Zt⊕dt),

where Zt , t = 1,2, ... are independent copies of the random closed set Z0. Also, Zt⊕dt is a

realization of the a.s bounded RACS translated to point dt of a homogeneous Poisson

process DXt . Furthermore, the intensity parameter λt , of DXt , and the probability law of

the bounded random grain Z0, are independent sources of randomness in the Boolean

model. Then, Xt only affects Dt and not Zt . Hence, the intensity parameter of YXt is

equivalent to the number of points in the Poisson process Dt (nt) , in the window Wt of

Lebesgue measure 1.
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We denote a count time series by {nt : t ∈ N}, and a time-varying r-dimensional

covariate vector as Xt = (Xt,1, ...Xt,r)
T . Also, denote by Ft−1, the history of the joint

process {nt−1,λt−1,Xt} up to time t−1, including the covariate information at time t.

Then, the conditional distribution of nt giving the history Ft−1, is distributed as

nt |Ft−1 ∼ Poisson(λt). (52)

We propose the following methodologies to answer the research questions stated earlier.

Research Question 1

In order to answer the first research question, we denote the conditional mean

E(nt |Ft−1) of the count time series by {λt : t ∈ N}. Then, E(nt |Ft−1) = λt is modeled.

We propose the following count time series model:

g(λt) = β0 +
p

∑
k=1

βkg̃(nt−ik)+
q

∑
l=1

αlg(λt− jl)+η
T Xt , (53)

where g : R+ −→ R is a link function and g̃ : N0 −→ R is a transformation function. The

parameter vector η = (η1, ....ηr)
T corresponds to the effects of covariates. When

g(m) = log m, and g̃(x) = log (x+1), then, the above model takes the form oulined

byLiboschik et al. (2015). The advantage to this form lies in the model’s ability to cater to

both negative and positive correlations in any data. This is what we adopt for our study.

Also, for simplicity, we let p = q = 1, and η—be the effect from one-dimensional
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time-dependent covariate. Then, (53) reduces to an AR(1) model of the form

log λt = β0 +β1log (nt−1 +1)+α1 logλt−1 +ηXt , (54)

where λt is the intensity of the Poisson point process of the Boolean RACS. i.e.: nt |Ft−1.

We assume all realizations of nt |Ft−1 are observed in window Wt of Lebesgue

measure of 1. Also, we assume Zt in the Boolean RACS YXt are independent of DXt . For

our study, the grains are circles of radius Rt . Hence, we can study the intensity of the BRS

Y through nt |Ft−1, by studying the relation in (54), since the λt controls the point process.

To incorporate the information of nt−1 in (54), we use the suggested bijective

transformation by Liboschik et al. (2015) i.e., g̃(nt−1) = log (nt−1 +1), instead of nt−1.

This ensures that the nt−1 is transformed onto a similar scale as the rates λ ′t s and also deal

with zero values of nt−1.

The special cases of (54) that address research question 1, subparts (i) and (ii)

respectively, are as follows:

log λt = β0 +β1log (nt−1 +1)+α1logλt−1, (55)

log λt = β0 +α1logλt−1 +η
T Xt . (56)

In the ensuing sections, we will propose two methods for fitting (54). For brevity, we treat

only (54), with the result extending naturally to (55) and (56), since they are a reduced

form of (54).
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Fitting method I. In practice, we cannot observe nt for overlapping grains. We

use an estimate proposed by Khazaee & Shafie (2006) instead i.e.:

n̂t = [|Wt |λ̂t ] =

[
n+t

1− p̂t

]
, (57)

where, n+t and p̂t are the number of lower tangent points and estimated volume fraction

obtained from (1) in window Wt . Then, we can learn about nt |Ft−1 ∼ Poisson(λt),

instead, by studying

n̂t |Ft−1 ∼ Poisson(λ̂t).

We can now model the conditional mean E(n̂t |Ft−1) of the count time series by a process

say, {λ̂t : t ∈ N}, such that E(n̂t |Ft−1) = λ̂t . Let log λ̂t = νt , then

νt = β̂0 + β̂1 log(n̂t−1 +1)+ α̂1νt−1 + η̂Xt . (58)

We will call this Method I.

Fitting method II. In Method I, we employed the use of exposed lower tangent

points n+t in the estimation of n̂t . However, n+t has an approximate Poisson distribution

(see Molchanov (1995)) i.e.:

n+t ∼ Poisson(λ+
t ), where λ

+
t = |Wt |λtexp[−E|Z0|λt ]

Hence, we can use n+t in (54), then use the relationship between λ
+
t and λ̂t to derive the

effect of the parameters on the intensity. The estimate n+t was obtained by counting the
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lower tangent point of the set-valued observation in window Wt . This can be achieved by

Laslett’s transformation implemented in the Spatstat package by Baddeley, Rubak, &

Turner (2015) in R Core Team (2019). The Laslett function returns the number of exposed

lower tangent points. Then, we use that as an estimate to model the conditional mean

E(n+t |Ft−1) = λ
+
t . Again, let logλ

+
t = µt , then,

µt = β
+
0 +β

+
1 log(n+t−1 +1)+α

+
1 µt−1 +η

+Xt . (59)

However, to get the estimates of (54) from µt , we use the relationship

λ
+
t = |Wt |λtexp[−E|Z0|λt ]. By the first order Taylor expansion of the relationship,

approximation of parameters in (54) through µt are as follows:

β0 ≈
β
+
0 +C
1−C

, β1 ≈
β
+
1

1−C
, α1 ≈

α
+
1

1−C
, η

T ≈ η+T

1−C
, where C = E|Z0|= πr2 (60)

This, we call Method II.

Thus, to answer research question 1, we can use the proposed models in (58) and

(59) to study the effects of propagation explanatory variables on the evolution of Yt . With

the same models, we can predict the future rate of the nt+1|FT , and by extension, of the

Boolean random set Y .

Estimation and likelihood inference. The likelihood inference for (54), with

parameter space of θ = (β0,β1,α1,η), is presented here. With initial value of λ0, the
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conditional likelihood function for θ is given in terms of observations n1, ...,nT , by

L(θ)=
T

∏
t=1

exp(−λt(θ))λ
nt(θ)
t

nt!
,where λt(θ)= exp(β0+β1 log(nt−1+1)+α1 logλt−1+ηXt).

We let logλt = γt . Then, the log-likelihood function has the form up to a constant,

l(θ)≈
T

∑
t=1

(ntγt(θ)− exp(γt(θ))), where γt(θ) = β0 +β1 log(nt−1 +1)+α1γt−1 +ηXt .

(61)

The score function is given by,

ST (θ) =
∂ l(θ)

∂θ
=

T

∑
t=1

(nt− exp(γt(θ)))
∂γt(θ)

∂θ
. (62)

The ∂γt(θ)
∂θ

is a vector with components,

∂γt

∂β0
= 1+α1

∂γt−1

∂β0
,

∂γt

∂β1
= log(1+nt−1)+α1

∂γt−1

∂β1
,

∂γt

∂α1
= γt−1 +α1

∂γt−1

∂α1

∂γt

∂ηs
=

q

∑
l=1

α1
∂γt−1

∂ηs
+Xt,s, s = 1, ...,r.

The solution of ST (θ) = 0 i.e. θ̂ yields the conditional maximum likelihood estimator of

θ , if it exists.

The Hessian matrix of (54) is obtained from

HT (θ) =
∂ 2l(θ)

∂θ 2 =
T

∑
t=1

(exp(γt(θ))

(
∂γt(θ)

∂θ

)(
∂γt(θ)

∂θ

)′
−

T

∑
t=1

(nt− exp(γt(θ)))
∂ 2γt(θ)

∂θ∂θ
′ .
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With the estimates from the solution of ST (θ) = 0, we will get a fitted model, which will

be able to estimate the intensity of a time-dependent BRS.

Research Questions 2, 3, and 4

Fokianos et al. (2009) and Fokianos & Tjøstheim (2011) proved the following

theorem for θ̂ :

Theorem 2. Consider model (54) and that at the true value θ0, |α10 +β10 |< 1, if

both α10,β10 have the same sign, and α2
10
+β 2

10
< 1, if both α10,β10 have the different

signs. Then, there exists a fixed open neighborhood O = O(θ0) of θ0- such that with

probability tending to 1, as T→ ∞, the log-likelihood has a unique maximum point θ̂ .

Furthermore, θ̂ . is consistent and asymptotically normal;

√
T
(

θ̂ −θ0

)
D−→N (0,G−1).

A consistent estimator of G is given by GT(θ̂), where

GT(θ) =
T

∑
t=1

(exp(γt(θ))

(
∂γt(θ)

∂θ

)(
∂γt(θ)

∂θ

)′
.

The above theorem shows the existence of a unique solution of (61), which is actually

consistent and asymptotically normal. Therefore, we will study the characteristics of the

estimators under different times, and confirm the unbiasedness and asymptotic behavior

through simulation.
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Estimation of radius. The grain of z0 in this study is a circle with radius R. Also,

note that zt are independent copies of z0. Hence, R may be known and fixed, or unknown

but fixed, or random. The estimation of R under each case is presented below:

i. Known radius: Suppose the radius R of grain is known and fixed, then

the fitted model of the Boolean random sets realizations has estimates:

θ̂ = (β̂0, β̂1, α̂1, η̂1) with known radius R.

θ̂ are the solutions from ST (θ) = 0 using the BRS YXt of grains with

radius R.

ii. Unknown but fixed radius : Suppose, the radius R is unknown but fixed.

Then, R is estimated along with θ . Hence, we estimate R, by using the

relationship between the volume fraction of a Boolean model, p, and the

hitting functional, p = 1−exp
{
−λE[|Z0|]

}
. If we let c = E[|Z0|] = πR2,

and since the grains are assumed to be circles with radius R, then

p = 1− exp{−λtπR2},

1− p = exp{−λtπR2},

ln(1− p) =−λtπR2,

R =

√
− ln(1− p)

πλ
.
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Hence, the method of moment estimator of Rt for the tth realization is

R̂t =

√
− ln(1− p̂t)

πλ̂t
. (63)

Where p̂t can be obtained (50) and λ̂t from (49). The mean of these

R̂t , t = 1, ...,T can be used as the estimator of

R̂ =
1
T

T

∑
t=1

√
− ln(1− p̂t)

πλ̂t
. (64)

iii. Grains with random radius: In estimating the random radius for the

Boolean random sets regression model, Khazaee (2004) assumed the

radius was uniformly distributed on (a,b), i.e.

Rt ∼Uni f orm(a,b).

Then, one can solve for a and b using the first and second moment

equations below;

E[Rt ] =
a+b

2
, (65)

E[R2
t ] =

a2 +ab+b2

3
. (66)
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These parameters a and b, have the form,


a = E[Rt ]−

√
3(E[R2

t ]−E[Rt ]
2)1/2,

b = E[Rt ]+
√

3(E[R2
t ]−E[Rt ]

2)1/2.

With suitable estimators Ê[R2
t ] and Ê[R]t of E[R2

t ] and E[Rt ], we get as

moment methods estimators:


â = Ê(Rt)−

√
3(Ê(R2

t )− Ê(Rt)
2)1/2,

b̂ = Ê(Rt)+
√

3(Ê(R2
t )− Ê(Rt)

2)1/2.

We observe from (63) that,

E(R2
t ) =−

ln(1− pt)

πλt
. (67)

Also, p̂t can be obtained from(50) and λ̂t from (49). Hence, it can be

shown that:

Ê(R2) =
1
T

T

∑
t=1

Êt(R2
t )

=
1
T

T

∑
t=1

− ln(1− p̂t)

πλ̂t
. (68)
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With the method of minimum contrast formula in (26), along with

random grains of circles, (26) takes the form:

QX(Kh) = exp{−λ [πE(R2
t )+2πhE(Rt)+πh2]}.

Then, method of moment estimator of E(Rt)is given by,

Ê(Rt) =
1

2πh

[
− ln Q̂Xt

λ̂t
−πÊt(R2

t )−πh2

]
. (69)

The mean of these E(Rt), t = 1, ...,T , gives,

Ê(R) =
1

2πhT

T

∑
t=1

[
− ln Q̂Xt

λ̂t
−πÊt(R2

t )−πh2

]
. (70)

Hence, along with these estimators and the intensity parameter estimators from above, we

will be able to answer the research questions stated.

Simulation Setup

We present the setup for the simulation in order to answer the research questions.

To simulate the Boolean model, we first simulated the germs from a homogeneous

Poisson point process. The grains were then simulated from circles with given radii.

Secondly, the discs function in R Core Team (2019) package Spatstats by Baddeley &

Turner (2005) was used to generate the Boolean realization in a window Wt of Lebesgue

measure 1. Then, the Laslett’s transform function implemented in the Spatstats package
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was used to compute the number of exposed lower tangent points n+. Finally, the number

of exposed tangent points, along with (50) and (49) were used to compute p̂t and n̂t .

Moreover, we took λ0 to be a known initial intensity. This λ0 can be obtained from

prior information or an educated guess. If we let ν0 = µ0 = 1, then, the estimated λ̂t can

be obtained from the model equation (58) or (59). Also, for simplicity, we assumed that

X = (x1, ..,xT )
′
is a T x1 vector. This vector was simulated from a Normal distribution

with mean (µ = 0.5) and variance (σ2 = 0.04) as suggested by Liboschik et al. (2015), so

that their effect sizes were comparable. We then set the time T to take different values,

i.e., T=10, 50, 100, 200, 500, 1000, & 2500. Finally, with these conditions α2
1 +β 2

1 < 1

and |α1 +β1|< 1, and one thousand, we solved our research problems.

Schemes of Parameters

Below are the schemes of parameters setup for the simulations. The parameters’

value combinations for this limited simulation are given below.

Table 1
Parameter Schemes for Simulation

Scheme β0 β1 α1 η1 Radius a b Condition
1 -0.5 0.65 -0.5 0.5 0 0.1 α2

1 +β 2
1 < 1

2 0.5 -0.35 -0.5 0.5 0 0.1 |α1 +β1|< 1
3 1.7 0.65 -0.5 0.5 0.01 α2

1 +β 2
1 < 1

4 5.5 -0.35 -0.5 0.5 0.01 |α1 +β1|< 1
5 -0.5 0.65 -0.5 0 0 0.1 α2

1 +β 2
1 < 1

6 0.5 -0.35 -0.5 0 0 0.1 |α1 +β1|< 1
7 1.7 0.65 -0.5 0 0.01 α2

1 +β 2
1 < 1

8 5.5 -0.35 -0.5 0 0.01 |α1 +β1|< 1
9 -0.5 0 -0.5 0.5 0 0.1 α2

1 +β 2
1 < 1

10 0.5 0 0.5 0.5 0 0.1 |α1 +β1|< 1
11 5.5 0 -0.5 0.5 0.01 α2

1 +β 2
1 < 1

12 1.7 0 0.5 0.5 0.01 |α1 +β1|< 1
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Table 1 contains the different schemes that are applied to models (58) and (59).

The schemes from 1 to 4 correspond to models with time-dependent covariate, where

schemes 1 and 2 use random radius, whilst 3 and 4 have fixed radius. Also, schemes 5 to 8

correspond to models without time-dependent covariate, with random radius (5, and 6)

and fixed radius (7 and 8). And finally, schemes 9 to 12 corresponds to models without

past observation n̂ or n+, with random radius (9 and 10) and fixed radius (11 and 12).

Also, the conditions α2
1 +β 2

1 < 1 and |α1 +β1|< 1 are used to ensure stationarity of the

intensity (Liboschik et al., 2015). Then, each scheme will be applied to

T = 10, 50, 100, 200, 500, & 1000, 2500. Lastly, to study the asymptotic behavior of

these estimators, we used T = 1000, and 2500.

Application to the Mountain Pine Beetle Data

As stated earlier in chapter one, we applied the models built in this research to the

mountain pine beetle data from the Rocky Mountain region. We treated this data as

Boolean random set realizations with a fixed unknown radius of 0.02. In addition, the

annual average precipitation was used as a time-dependent covariate. Then, we applied

thresholding and smoothing to the data. The parameter estimates were obtained using data

from 2001 to 2009. Then, with the estimated parameters, we predicted the intensity λ2010

of Y2010. Below are the data from 2001 to 2002, with the remaining 2003 to 2010 in

Appendix A



52

Figure 1. The Rocky Mountain Pine Beetle Data from 2001 to 2002.
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CHAPTER IV

RESULTS

In this chapter, we present and discuss the results of this study. In the previous

chapter, two methods were introduced. That is, the estimated number of points n̂, and the

number of exposed lower tangents points n+. Both were used in modeling the log

intensity of the Boolean random sets. In addition, log λ̂t = νt and logλ+ = µt . Using

twelve different schemes, which were discussed in chapter 3, the Boolean RACS

realizations were simulated. These schemes ensured that the Boolean realizations were

generated from grain processes with unknown radii, and random radii from a uniform

distribution. Additionally, the schemes controlled β1 and α1, which ensured stationarity of

the realizations. The results consist of maximum likelihood estimates for the model

parameter and method of moments estimates of the unknown and random radii. Also, the

biases, and standard errors for the estimators for different schemes are presented and

discussed. Thus, answering the research questions raised. This chapter consists of two

sections, which discuss the results of each method.

Results for Method I

The conditional mean E(n̂t |Ft−1) of the count time series for method I is given by:

νt = β̂0 + β̂1log(n̂t−1 +1)+ α̂1νt−1 + η̂1xt .
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The conditions, β 2
1 +α2

1 < 1, and |β1 +α1|< 1 ensure stationarity. Also, the log intensity

allows for both positive and negative lag 1 correlations. Below in Figure 2 and Table 2, are

examples of a Boolean realization and statistics extracted from the same.

Figure 2. Boolean Realization With Fixed rt = 0.05 and Random Radius, rt ∼Uni f (0,0.1).
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Table 2
Statistics from Ten (10) Boolean Realizations Using Scheme 1

Time = t nt n+t p∗t n̂t r̂t xt Qt E(R2
t ) E(Rt) λ̂t

1 0.00 0.00 0.00 0.00 -0.00 0.69 0.00 0.00 0.00 0.52
2 2.00 2.00 0.01 2.02 0.05 0.19 0.01 0.00 0.06 0.93
3 0.00 0.00 0.00 0.00 -0.00 0.23 0.00 0.00 0.00 1.44
4 1.00 1.00 0.01 1.01 0.08 0.59 0.02 0.01 0.08 0.68
5 2.00 2.00 0.03 2.07 0.09 0.24 0.04 0.01 0.10 1.31
6 5.00 4.00 0.06 4.24 0.13 0.14 0.07 0.02 0.21 1.16
7 1.00 0.00 0.00 0.00 -0.00 0.54 0.00 0.00 0.00 2.36
8 0.00 0.00 0.00 0.00 -0.00 0.38 0.00 0.00 0.00 0.75
9 2.00 2.00 0.02 2.05 0.09 0.52 0.03 0.01 0.11 0.91
10 3.00 2.00 0.01 2.01 0.03 0.36 0.01 0.00 0.03 1.56

The nt are points generated from a random Poisson process. Where n+t is the

number of exposed tangent points recovered from the tth Boolean realization. Whilst, n̂t is

the estimates for nt using (49). In addition, p∗t is the volume fraction and Qt the hitting

functional value for each image. Simulated from Normal distribution with µ = 0.50 and

σ = 0.04, we can take xt as a time-dependent covariate. Then, λ̂t is the estimated intensity

from (58). E(R2
t ) and E(Rt) are the first and second moment estimates, which are used in

solving for a and b for the unknown parameters of the Uniform distribution. In order to

answer research questions 1i, and 3iii corresponding to (58), we ran the schemes in

Table 1. i.e.: schemes 1 to 2. The results are displayed in the tables below:
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Table 3
Results from Scheme 1

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 -0.50 -0.4756049 1.7474151 -0.0243951 0.1240 <0.001

β1 0.65 0.1867123 0.7572443 0.4632877 0.1496 <0.001
α1 -0.50 -0.1244810 0.7445394 -0.3755190 0.1221 <0.001
η1 0.50 0.3540084 3.0381681 0.1459916 0.1170 <0.001
a 0.00 -0.0370609 0.0168511 0.0370609 0.0998 <0.001
b 0.10 0.1041074 0.0258972 -0.0041074 0.0451 1e-04

50 β0 -0.50 -0.5843659 0.5113693 0.0843659 0.0168 0.7053
β1 0.65 0.4825539 0.3569580 0.1674461 0.0831 <0.001
α1 -0.50 -0.3169092 0.5237645 -0.1830908 0.0961 <0.001
η1 0.50 0.4990660 0.8142450 0.0009340 0.0201 0.4189
a 0.00 -0.0428164 0.0060557 0.0428164 0.0422 2e-04
b 0.10 0.1096714 0.0117068 -0.0096714 0.0312 0.0228

100 β0 -0.50 -0.5716119 0.3587157 0.0716119 0.0205 0.3896
β1 0.65 0.5370042 0.2165289 0.1129958 0.0170 0.6901
α1 -0.50 -0.5176675 0.3370081 0.0176675 0.0762 <0.001
η1 0.50 0.4556020 0.5143164 0.0443980 0.0190 0.5108
a 0.00 -0.0430681 0.0043712 0.0430681 0.0432 2e-04
b 0.10 0.1108408 0.0080706 -0.0108408 0.0169 0.700

200 β0 -0.50 -0.5918654 0.2587009 0.0918654 0.0239 0.1794
β1 0.65 0.5486800 0.1461364 0.1013200 0.0143 0.8867
α1 -0.50 -0.4311021 0.2410231 -0.0688979 0.0678 <0.001
η1 0.50 0.4941714 0.3702917 0.0058286 0.0208 0.3711
a 0.00 -0.0434383 0.0030744 0.0434383 0.0321 0.0169
b 0.10 0.1110467 0.0057893 -0.0110467 0.0174 0.6528

500 β0 -0.50 -0.5899845 0.1538225 0.0899845 0.0319 0.0182
β1 0.65 0.5546322 0.0957894 0.0953678 0.0196 0.4595
α1 -0.50 -0.4482066 0.1427250 -0.0517934 0.0294 0.0411
η1 0.50 0.4952096 0.2121559 0.0047904 0.0257 0.1121
a 0.00 -0.0437036 0.0018408 0.0437036 0.0278 0.0663
b 0.10 0.1113458 0.0036703 -0.0113458 0.0274 0.0742

1000 β0 -0.50 -0.5834755 0.1052596 0.0834755 0.0204 0.3951
β1 0.65 0.5575079 0.0641257 0.0924921 0.0198 0.4445
α1 -0.50 -0.4361159 0.0940835 -0.0638841 0.0438 0.0001
η1 0.50 0.4870386 0.1501619 0.0129614 0.0138 0.9152
a 0.00 -0.0437323 0.0013123 0.0437323 0.0178 0.6180
b 0.10 0.1114453 0.0025959 -0.0114453 0.0174 0.6537

2500 β0 -0.50 -0.5825164 0.0649762 0.0825164 0.0216 0.3087
β1 0.65 0.5565001 0.0402819 0.0934999 0.0143 0.8873
α1 -0.50 -0.4371118 0.0584869 -0.0628882 0.0307 0.0271
η1 0.50 0.4896683 0.0922974 0.0103317 0.0124 0.9685
a 0.00 -0.0437374 0.0008245 0.0437374 0.0218 0.2991
b 0.10 0.1114021 0.0016339 -0.0114021 0.0198 0.4425
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Table 3 shows the results of simulations from scheme 1 for various times T . The

grains Zt of these realizations were circles with random radius R from Uni f orm (0,0.1).

Then, using a test set—a circle with center at the origin with radius of 0.01—the method

of moment estimates of a and b, stabilizes across T . Also we note that the method of

moment estimates equations in â = Ê(R)−
√

3(Ê(R2)− Ê(R)2)1/2 and

b̂ = Ê(R)+
√

3(Ê(R2)− Ê(R)2)1/2 are not range preserving. Hence, the underestimation

of a. However, the standard errors of these estimates decrease with increasing sample size

(T ), with the distribution of estimates passing the normality test.

Furthermore, the maximum likelihood estimates θ̂ improves to parameter values

with increasing sample size t. Especially at T = 2500, the biases and the standard errors

become significantly small, thus confirming the characteristics of maximum likelihood

estimates. In addition, the distribution of the estimates also approach normal, which was

seen in the p-values of the Kolmogorov-Smirnov normality tests. Thus, with both past

observations n̂t and time dependent covariates xt in the model (58), we can accurately

estimate the intensity parameter λt of the Boolean model.

Similar behaviors and patterns are seen in Table 4 for scheme 2, for both method

of moments, and maximum likelihood estimates. Thus, for both conditions i.e.:

β 2
1 +α2

1 < 1, and |β1 +α1|< 1, the Boolean model Yt with grains Zt of random radius

from Uni f (0,0.1), with intensity λ̂t can be estimated using model (58) accurately.
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Table 4
Results from Scheme 2

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 0.50 0.0581898 1.2843532 0.4418102 0.0622 <0.001

β1 -0.35 -0.2910588 0.6933754 -0.0589412 0.1533 <0.001
α1 -0.50 -0.0572888 0.7447230 -0.4427112 0.1085 <0.001
η1 0.50 0.3480330 2.2473791 0.1519670 0.0570 <0.001
a 0.00 -0.0385806 0.0148499 0.0385806 0.0843 <0.001
b 0.10 0.1062335 0.0226632 -0.0062335 0.0296 0.0392

50 β0 0.50 0.1737841 0.4519590 0.3262159 0.0269 0.0845
β1 -0.35 -0.3338667 0.3020805 -0.0161333 0.0155 0.8132
α1 -0.50 -0.2803542 0.5414197 -0.2196458 0.0998 <0.001
η1 0.50 0.4999262 0.7164263 0.0000738 0.0455 <0.001
a 0.00 -0.0425677 0.0057413 0.0425677 0.0528 <0.001
b 0.10 0.1106224 0.0106214 -0.0106224 0.0235 0.1986

100 β0 0.50 0.1954056 0.2909666 0.3045944 0.0344 0.0073
β0 -0.35 -0.3081971 0.2002832 -0.0418029 0.0367 0.003
α0 -0.50 -0.4217077 0.4119127 -0.0782923 0.1172 <0.001
η1 0.50 0.4960932 0.4574629 0.0039068 0.0199 0.4391
a 0.00 -0.0432584 0.0037808 0.0432584 0.0318 0.0184
b 0.10 0.1109860 0.0072991 -0.0109860 0.0285 0.0533

200 β0 0.50 0.2284459 0.2016789 0.2715541 0.0209 0.3638
β1 -0.35 -0.3141885 0.1283050 -0.0358115 0.0201 0.4228
α1 -0.50 -0.4490368 0.2920806 -0.0509632 0.1145 <0.001
η1 0.50 0.4961666 0.3038345 0.0038334 0.0260 0.1048
a 0.00 -0.0433141 0.0027568 0.0433141 0.0463 <0.001
b 0.10 0.1110261 0.0053745 -0.0110261 0.0130 0.9515

500 β0 0.50 0.2496623 0.1196900 0.2503377 0.0287 0.0504
β1 -0.35 -0.3248081 0.0763713 -0.0251919 0.0257 0.1118
α1 0.50 0.4895231 0.1846565 0.0104769 0.0204 0.398
a 0.00 -0.0436906 0.0016713 0.0436906 0.0391 0.001
b 0.10 0.1112172 0.0034137 -0.0112172 0.0158 0.7856

1000 β0 0.50 0.2531837 0.0851960 0.2468163 0.0218 0.2951
β1 -0.35 -0.3188453 0.0551241 -0.0311547 0.0161 0.7665
α1 -0.50 -0.5241991 0.0908810 0.0241991 0.0457 <0.001
η1 0.50 0.4901651 0.1261732 0.0098349 0.0231 0.2214
a 0.00 -0.0437230 0.0012354 0.0437230 0.0221 0.276
b 0.10 0.1115092 0.0023900 -0.0115092 0.0115 0.9874

2500 β0 0.50 0.2579814 0.0517617 0.2420186 0.0203 0.4094
β1 -0.35 -0.3226764 0.0327150 -0.0273236 0.0189 0.5211
α1 -0.50 -0.5262106 0.0531311 0.0262106 0.0293 0.0425
η1 0.50 0.4869960 0.0780131 0.0130040 0.0207 0.3720
a 0.00 -0.0437757 0.0007407 0.0437757 0.0127 0.9590
b 0.10 0.1113730 0.0014925 -0.0113730 0.0175 0.6417
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Research questions 1i, and 3ii correspond to (58). Table 5 below is an example of

descriptive statistics from the BRS generated from schemes 3, and 4 in Table 1. Where the

grain Zt have fixed and unknown radius R.

Table 5
Statistics from Ten (10) Boolean Realizations from Scheme 3

Time = t nt n+t p∗t n̂t R̂t xt λ̂t R
1 20.0000 20.0000 0.0058 20.1166 0.0119 0.4166 13.1040 0.0100
2 16.0000 16.0000 0.0052 16.0844 0.0107 0.5709 14.5549 0.0100
3 10.0000 11.0000 0.0032 11.0357 0.0098 0.3543 10.8024 0.0100
4 9.0000 9.0000 0.0029 9.0259 0.0093 0.5791 10.5731 0.0100
5 11.0000 11.0000 0.0034 11.0371 0.0100 0.7202 10.7791 0.0100
6 9.0000 9.0000 0.0029 9.0264 0.0090 0.6351 11.5183 0.0100
7 8.0000 9.0000 0.0024 9.0220 0.0097 0.2610 8.2088 0.0100
8 7.0000 6.0000 0.0021 6.0125 0.0080 0.5282 10.3783 0.0100
9 6.0000 6.0000 0.0017 6.0103 0.0078 0.6182 8.9429 0.0100
10 9.0000 8.0000 0.0028 8.0225 0.0100 0.6326 8.8970 0.0100

From Table 5, we observe that when the radius was sufficiently small, the Laslett

function was able to recover a lot of the exposed lower tangent points. This is because,

with a sufficiently small grain radius, the grains shrink towards the germ from the point

process. Also, n̂t is the estimates for nt using (49). p∗t is 1 minus the hitting functional

value Qt for each image. xt is the time-dependent covariate simulated from normal

distribution with µ = 0.50 and σ = 0.04. λ̂t is the estimated intensity from (58) and R̂t is

the estimate for Rt .
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Table 6
Results from Scheme 3

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 1.70 1.9942575 0.8457011 -0.2942575 0.0524 <0.001

β1 0.65 0.2993197 0.6207261 0.3506803 0.1318 <0.001
α1 -0.50 -0.2690104 0.7307089 -0.2309896 0.1586 <0.001
η1 0.50 0.4436066 0.7493935 0.0563934 0.0595 <0.001

Radius 0.01 0.0098352 0.0005410 0.0001648 0.0336 0.0098
50 β0 1.70 1.7871003 0.6059542 -0.0871003 0.0172 0.669

β1 0.65 0.5769652 0.1582886 0.0730348 0.0285 0.0539
α1 -0.50 -0.4683012 0.2589570 -0.0316988 0.0593 <0.001
η1 0.50 0.4846358 0.2246510 0.0153642 0.0211 0.3466

Radius 0.01 0.0098288 0.0002331 0.0001712 0.0244 0.1578
100 β0 1.70 1.7571994 0.4203642 -0.0571994 0.0313 0.0223

β1 0.65 0.5864859 0.1073966 0.0635141 0.0279 0.0641
α1 -0.50 -0.4675856 0.1614900 -0.0324144 0.0360 0.0038
η1 0.50 0.4946568 0.1597091 0.0053432 0.0166 0.7197

Radius 0.01 0.0098226 0.0001641 0.0001774 0.0149 0.8540
200 β0 1.70 1.7359856 0.3038111 -0.0359856 0.0258 0.1082

β1 0.65 0.5878822 0.0770359 0.0621178 0.0210 0.3557
α1 -0.50 -0.4586346 0.1117631 -0.0413654 0.0252 0.1279
η1 0.50 0.4921712 0.1048772 0.0078288 0.0171 0.6811

Radius 0.01 0.0098225 0.0001223 0.0001775 0.0133 0.9387
500 β0 1.70 1.7104920 0.1914353 -0.0104920 0.0184 0.5665

β1 0.65 0.5927031 0.0468776 0.0572969 0.0176 0.6385
α1 -0.50 -0.4527485 0.0686246 -0.0472515 0.0205 0.3893
β1 0.50 0.4932953 0.0708219 0.0067047 0.0166 0.7204

Radius 0.01 0.0098234 0.0000761 0.0001766 0.0251 0.1311
1000 β0 1.70 1.7040678 0.1325939 1.5674061 0.0190 0.5125

β1 0.65 0.5906505 0.0334899 0.0593495 0.0230 0.2251
α1 -0.50 -0.4473722 0.0471905 -0.0526278 0.0224 0.2594
η1 0.50 0.4929810 0.0467460 0.0070190 0.0198 0.4463

Radius 0.01 0.0098257 0.0000528 0.0001743 0.0190 0.5123
2500 β0 1.70 1.7012990 0.0816827 -0.0012990 0.0197 0.4517

β1 0.65 0.5940552 0.0220534 0.0559448 0.0109 0.9947
α1 -0.50 -0.4501487 0.0296920 -0.0498513 0.0228 0.2353
η1 0.50 0.4944287 0.0300216 0.0055713 0.0262 0.0984

Radius 0.01 0.0098243 0.0000327 0.0001757 0.0266 0.0928

Table 6 shows the results of simulations from scheme 3 for various times T . The

grains Zt of these realizations were fixed, but unknown radius, ie.: R = 0.01. Similarly,

using the same test set, the method of moment estimates of R̂ across T improves to the

parameter value. Also, the standard errors and biases of the estimates decrease with
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increasing sample size (T ). Thus, both approach approximately zero with increasing T.

This scheme’s parameter estimates also achieve asymptotic normality, which was evident

in the table.

Likewise, the maximum likelihood estimates θ̂ approached parameter values with

increasing sample size t. In addition, at T = 2500, the biases and the standard errors were

approximately zero, confirming the characteristics of maximum likelihood estimates.

Moreover, the distribution of the estimates also approached normal, seen in the p-values of

the Kolmogorov-Smirnov normality tests. Thus, with both past observations n̂t , time

dependent covariates xt in the model (58) and unknown but fixed radius R = 0.01, we can

accurately estimate the intensity parameter λt of the Boolean model.

Similar behavior and pattern are seen Table 7 below for scheme 4 for both the

method of moments and maximum likelihood estimates. For both conditions, β 2
1 +α2

1 < 1

and |β1 +α1|< 1, the Boolean model Yt with a grains Zt with fixed but unknown radius

R = 0.01, the intensity of the n̂t |Ft−1 ∼ Poisson(λ̂t) can be estimated using model (58)

accurately.

Given this, observe that for research questions 1i and 3i, corresponding to (58), the

result was similar to that of Tables 6 and 7. Also, we do not estimate R. Thus, the

maximum likelihood estimation of Schemes 3 and 4, without the method of moment

estimation of radius is the solution for research questions 1i, 3i.
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Table 7
Results from Scheme 4

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 5.50 4.2376823 1.1167344 1.2623177 0.0332 0.0115

β1 -0.35 -0.4892052 0.3364832 0.1392052 0.0869 <0.001
α1 -0.50 0.1495335 0.6575786 -0.6495335 0.0979 <0.001
η1 0.50 0.1798061 2.1549719 0.3201939 0.0603 <0.001

Radius 0.01 0.0098649 0.0004275 0.0001351 0.0208 0.3692
50 β0 5.50 5.2761800 0.6048663 0.2238200 0.2060 <0.001

β1 -0.35 -0.5234261 0.1334463 0.1734261 0.0731 <0.001
α1 -0.50 -0.2769451 0.2399359 -0.2230549 0.1857 <0.001
η1 0.50 0.6724066 0.4573186 -0.1724066 0.0376 0.002

Radius 0.01 0.0098953 0.0001641 0.0001047 0.0178 0.6225
100 β0 5.50 5.4430438 0.2306754 0.0569562 0.0893 <0.001

β1 -0.35 -0.4876263 0.0863276 0.1376263 0.0607 <0.001
α1 -0.50 -0.3655698 0.1164948 -0.1344302 0.0724 <0.001
η1 0.50 0.5988273 0.2250217 -0.0988273 0.0282 0.0594

Radius 0.01 0.0099039 0.0001071 0.0000961 0.0226 0.2449
200 β0 5.50 5.4523947 0.1299340 0.0476053 0.0318 0.0187

β1 -0.35 -0.4342370 0.0614069 0.0842370 0.0257 0.1115
α1 -0.50 -0.4211310 0.0763940 -0.0788690 0.0411 0.0004
η1 0.50 0.5456752 0.1259152 -0.0456752 0.0282 0.0585

Radius 0.01 0.0098978 0.0000780 0.0001022 0.0162 0.7536
500 β0 5.50 5.4401678 0.0773314 0.0598322 0.0245 0.1542

β1 -0.35 -0.3863618 0.0398661 0.0363618 0.0188 0.5310
α1 -0.50 -0.4641789 0.0464301 -0.0358211 0.0237 0.1887
η1 0.50 0.5138528 0.0595666 -0.0138528 0.0327 0.0136

Radius 0.01 0.0099010 0.0000485 0.0000990 0.0264 0.0977
1000 β0 5.50 5.4409038 0.0564279 0.0590962 0.0336 0.0097

β1 -0.35 -0.3617414 0.0281792 0.0117414 0.0133 0.9372
α1 -0.50 -0.4890881 0.0336776 -0.0109119 0.0174 0.6533
η1 0.50 0.5023116 0.0374019 -0.0023116 0.0285 0.0534

Radius 0.01 0.0098972 0.0000345 0.0001028 0.0275 0.0723
2500 β0 5.50 5.4417141 0.0347971 0.0582859 0.0142 0.8969

β1 -0.35 -0.3424395 0.0178288 -0.0075605 0.0114 0.9887
α1 -0.50 -0.5077921 0.0216477 0.0077921 0.0278 0.0664
η1 0.50 0.4923831 0.0203014 0.0076169 0.0221 0.2747

Radius 0.01 0.0099005 0.0000212 0.0000995 0.0241 0.1710

We noted that without the time-dependent covariate, (58) reduced to (55), thus

leaving only the effect of past observations in the model. Also, with a similar setup and

η1 = 0, schemes 5 to 8 repeats similar analyses to the one above, where the investigation

of the estimation of λt without the covariate effect can be seen. Tables 8 to 11 below

presents the results of the simulation study.
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Table 8
Results from Scheme 5

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 -0.50 -0.3347657 0.7069925 -0.1652343 0.0780 <0.001

β1 0.65 0.1117826 0.7637328 0.5382174 0.1572 <0.001
α1 -0.50 -0.0428181 0.6940062 -0.4571819 0.0906 <0.001
a 0.00 -0.0361794 0.0178552 0.0361794 0.0992 <0.001
b 0.10 0.1036912 0.0277260 -0.0036912 0.0466 <0.001

50 β0 -0.50 -0.5058920 0.3970688 0.0058920 0.0286 0.0518
β1 0.65 0.4543833 0.3924313 0.1956167 0.0965 <0.001
α1 -0.50 -0.2203802 0.5737438 -0.2796198 0.1154 <0.001
a 0.00 -0.0420547 0.0071099 0.0420547 0.0565 <0.001
b 0.10 0.1099430 0.0119235 -0.0099430 0.0236 0.1947

100 β0 -0.50 -0.5993220 0.2431623 0.0993220 0.0360 0.0038
β1 0.65 0.5519261 0.2109249 0.0980739 0.0195 0.4752
α1 -0.50 -0.4612838 0.3387734 -0.0387162 0.0675 <0.001
a 0.00 -0.0428222 0.0047946 0.0428222 0.0349 0.006
b 0.10 0.1113204 0.0087453 -0.0113204 0.0267 0.0906

200 β0 -0.50 -0.5876557 0.1861741 0.0876557 0.0246 0.1492
β1 0.65 0.5535943 0.1779451 0.0964057 0.0224 0.2619
α1 -0.50 -0.4021627 0.3183430 -0.0978373 0.0816 <0.001
a 0.00 -0.0432908 0.0033083 0.0432908 0.0230 0.2243
b 0.10 0.1110780 0.0063313 -0.0110780 0.0296 0.0382

500 β0 -0.50 -0.5996980 0.1029191 0.0996980 0.0254 0.1230
β1 0.65 0.5689125 0.1058278 0.0810875 0.0170 0.6878
α1 -0.50 -0.4522304 0.1577205 -0.0477696 0.0397 0.0008
a 0.00 -0.0436061 0.0020011 0.0436061 0.0162 0.7534
b 0.10 0.1114748 0.0038976 -0.0114748 0.0259 0.1059

1000 β0 -0.50 -0.5972694 0.0739679 0.0972694 0.0136 0.9261
β1 0.65 0.5670747 0.0744655 0.0829253 0.0146 0.8697
α1 -0.50 -0.4565785 0.1097052 -0.0434215 0.0449 0.0001
a 0.00 -0.0436799 0.0014368 0.0436799 0.0182 0.5851
b 0.10 0.1113546 0.0027209 -0.0113546 0.0119 0.9801

2500 β0 -0.50 -0.5988478 0.0486692 0.0988478 0.0329 0.0129
β1 0.65 0.5727167 0.0481620 0.0772833 0.0368 0.0028
α1 -0.50 -0.4495354 0.0690978 -0.0504646 0.0325 0.0146
a 0.00 -0.0437907 0.0009416 0.0437907 0.0242 0.1647
b 0.10 0.1114041 0.0017694 -0.0114041 0.0205 0.3943

Table 8 shows the results of simulations from scheme 5 for various times T . Here,

the grains Zt of these realizations are circles with random radius R from Uni f orm (0,0.1).

The results are very similar to Scheme 1 in Table 3. This was due to the fact that the serial

dependence of the covariate does not interact with the dependency in the observations.
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The standard errors of these estimates decreased with increasing sample size (T ), with the

distribution of estimates approaching normality over time.

The maximum likelihood estimates θ̂ improved with increasing sample size t,

similar to results in Table 3. At T = 2500, the biases and the standard errors became

significantly small, thus confirming the characteristics of maximum likelihood estimates.

The distribution of the estimates also approach normal distribution, which can be seen in

the p-values of the Kolmogorov-Smirnov normality tests. As a result, with past

observations n̂t in the model (55), we can accurately estimate the intensity parameter λt of

the Boolean model.

Similar behavior and pattern are seen in Table 9 below for scheme 6 for both the

method of moments and maximum likelihood estimates. Thus, for both conditions,

β 2
1 +α2

1 < 1 and |β1 +α1|< 1, the Boolean model Yt with grains Zt of random radius

from Uni f (0,0.1), the intensity of the n̂t |Ft−1 ∼ Poisson(λ̂t) can be estimated using

model (55), accurately.
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Table 9
Results from Scheme 6

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 0.50 0.2044597 0.6632083 0.2955403 0.1142 <0.001

β1 -0.35 -0.4139489 0.6505817 0.0639489 0.1838 <0.001
α1 -0.50 0.0550340 0.6320331 -0.5550340 0.0802 <0.001
a 0.00 -0.0368994 0.0173446 0.0368994 0.1171 <0.001
b 0.10 0.1048638 0.0250135 -0.0048638 0.0396 9e-04

50 β0 0.50 0.2663501 0.2337756 0.2336499 0.0485 <0.001
β1 -0.35 -0.3971586 0.3036582 0.0471586 0.0517 <0.001
α1 -0.50 -0.0672672 0.5550388 -0.4327328 0.0956 <0.001
a 0.00 -0.0423578 0.0058369 0.0423578 0.0462 <0.001
b 0.10 0.1098913 0.0117255 -0.0098913 0.0270 0.0817

100 β0 0.50 0.2515484 0.1783202 0.2484516 0.0431 2e-04
β1 -0.35 -0.3346904 0.2095204 -0.0153096 0.0173 0.66
α1 -0.50 -0.4196551 0.4225002 -0.0803449 0.1115 <0.001
a 0.00 -0.0432270 0.0040237 0.0432270 0.0368 0.0028
b 0.10 0.1107726 0.0075212 -0.0107726 0.0179 0.6131

200 β0 0.50 0.2531008 0.1170876 0.2468992 0.0265 0.0961
β1 -0.35 -0.3300965 0.1383019 -0.0199035 0.0301 0.0329
α1 -0.50 -0.3774909 0.3876433 -0.1225091 0.1351 <0.001
a 0.00 -0.0434270 0.0028671 0.0434270 0.0293 0.0416
b 0.10 0.1110546 0.0054744 -0.0110546 0.0301 0.0324

500 β0 0.50 0.2575159 0.0751384 0.2424841 0.0191 0.5048
β1 -0.35 -0.3312770 0.0889700 -0.0187230 0.0169 0.6939
α1 -0.50 -0.4970832 0.1823180 -0.0029168 0.0845 <0.001
a 0.00 -0.0437265 0.0018438 0.0437265 0.0406 5e-04
b 0.10 0.1113912 0.0035799 -0.0113912 0.0243 0.1621

1000 β0 0.50 0.2587403 0.0523489 0.2412597 0.0213 0.3321
β1 -0.35 -0.3255645 0.0605186 -0.0244355 0.0220 0.2822
α1 -0.50 -0.5123642 0.1203780 0.0123642 0.0549 <0.001
a 0.00 -0.0437147 0.0012951 0.0437147 0.0260 0.103
b 0.10 0.1114175 0.0025302 -0.0114175 0.0148 0.8607

2500 β0 0.50 0.2570308 0.0334176 0.2429692 0.0167 0.7148
β1 -0.35 -0.3235941 0.0388293 -0.0264059 0.0238 0.1859
α1 -0.50 -0.5222265 0.0701911 0.0222265 0.0280 0.0615
a 0.00 -0.0437945 0.0007711 0.0437945 0.0139 0.9125
b 0.10 0.1113376 0.0016393 -0.0113376 0.0263 0.0957

The ensuing Tables 10 and 11 are for Boolean random sets with grains of fixed but

unknown radius R = 0.01.
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Table 10
Results from Scheme 7

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 1.70 1.8723692 0.7090535 -0.1723692 0.0549 <0.001

β1 0.65 0.3936916 0.5106610 0.2563084 0.1294 <0.001
α1 -0.50 -0.3304898 0.6007120 -0.1695102 0.1325 <0.001

Radius 0.01 0.0098009 0.0006341 0.0001991 0.0240 0.1766
50 β0 1.70 1.8014570 0.5920243 -0.1014570 0.0371 0.0025

β1 0.65 0.5754635 0.1557404 0.0745365 0.0268 0.087
α1 -0.50 -0.4805663 0.2566208 -0.0194337 0.0573 <0.001

Radius 0.01 0.0097794 0.0002797 0.0002206 0.0219 0.2911
100 β0 1.70 1.7342172 0.4184706 -0.0342172 0.0310 0.0241

β1 0.65 0.5848675 0.1115658 0.0651325 0.0147 0.8630
α1 -0.50 -0.4594400 0.1835352 -0.0405600 0.0342 0.0079

Radius 0.01 0.0097677 0.0001941 0.0002323 0.0167 0.7143
200 β0 1.70 1.7157622 0.3021399 -0.0157622 0.0202 0.4177

β1 0.65 0.5942236 0.0794240 0.0557764 0.0216 0.3088
α1 -0.50 -0.4581225 0.1226270 -0.0418775 0.0429 0.0002

Radius 0.01 0.0097749 0.0001354 0.0002251 0.0171 0.6828
500 β0 1.70 1.7104079 0.1743871 -0.0104079 0.0168 0.7083

β1 0.65 0.5933565 0.0505177 0.0566435 0.0213 0.3310
α1 -0.50 -0.4544700 0.0690476 -0.0455300 0.0263 0.0960

Radius 0.01 0.0097740 0.0000900 0.0002260 0.0198 0.4497
1000 β0 1.70 1.7122275 0.1236519 -0.0122275 0.0189 0.5257

β1 0.65 0.5942075 0.0350559 0.0557925 0.0217 0.3012
α1 -0.50 -0.4565386 0.0509232 -0.0434614 0.0234 0.2024

Radius 0.01 0.0097715 0.0000614 0.0002285 0.0163 0.7462
2500 β0 1.70 1.7042273 0.0827892 -0.0042273 0.0269 0.0842

β1 0.65 0.5947220 0.0224310 0.0552780 0.0216 0.3124
α1 -0.50 -0.4528117 0.0317134 -0.0471883 0.0164 0.7411

Radius 0.01 0.0097739 0.0000386 0.0002261 0.0185 0.5550

Similar to Tables 6 and 7, the standard errors and biases of the estimates in

table 10 decrease with increasing sample size (T ), approaching approximately zero at

T = 2500. Here also, the distribution of the estimates pass the normality test, thus

establishing asymptotic normality.

Whilst the maximum likelihood estimates θ̂ improved with increasing sample size

t, at T = 2500, the biases and standard errors decreased significantly, which confirmed the

characteristics of maximum likelihood estimates. The distribution of the estimates also
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approach normal, as seen in the p-values of the Kolmogorov-Smirnov normality tests.

Hence, with only past observations n̂t in the model (55) and unknown but, fixed radius

R = 0.01, we can accurately estimate the intensity parameter λt of the Boolean model.

Additionally, the results in Table 7 below for scheme 4 is comparable to that of

scheme 8. Which is true for both the method of moments and maximum likelihood

estimates. For both conditions, β 2
1 +α2

1 < 1 and |β1 +α1|< 1, the Boolean model Yt with

grains Zt with fixed, but unknown radius R = 0.01, the intensity of the

n̂t |Ft−1 ∼ Poisson(λ̂t) can be estimated using model (55) accurately.

We observed that for research questions 1ii, and 3i corresponding to (55), the

result were similar to that of the Tables 10 and 11. Because we do not estimate R, the

maximum likelihood estimation of Schemes 7 and 8 without the method of moment

estimation of radius is the solution for research questions 1ii, 3i.
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Table 11
Results from Scheme 8

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 5.50 5.4902651 0.4662198 0.0097349 0.1005 <0.001

β1 -0.35 -0.4754661 0.1565197 0.1254661 0.0946 <0.001
α1 -0.50 -0.2446484 0.2510843 -0.2553516 0.1095 <0.001

Radius 0.01 0.0098270 0.0004538 0.0001730 0.0268 0.0867
50 β0 5.50 5.4110923 0.3307174 0.0889077 0.1872 <0.001

β1 -0.35 -0.5134992 0.1001124 0.1634992 0.0789 <0.001
α1 -0.50 -0.2958641 0.1608498 -0.2041359 0.1076 <0.001

Radius 0.01 0.0098785 0.0001742 0.0001215 0.0283 0.0574
100 β0 5.50 5.4093050 0.3487685 0.0906950 0.2149 <0.001

β1 -0.35 -0.4637240 0.0710972 0.1137240 0.0265 0.0956
α1 -0.50 -0.3579586 0.1341100 -0.1420414 0.1100 <0.001

Radius 0.01 0.0098904 0.0001193 0.0001096 0.0173 0.6599
200 β0 5.50 5.4496695 0.1845474 0.0503305 0.1131 <0.001

β1 -0.35 -0.4226373 0.0573960 0.0726373 0.0232 0.2133
α1 -0.50 -0.4216338 0.0887348 -0.0783662 0.0361 0.0038

Radius 0.01 0.0098885 0.0000850 0.0001115 0.0190 0.5149
500 β0 5.50 5.4504262 0.1070550 0.0495738 0.0609 <0.001

β1 -0.35 -0.3804772 0.0406186 0.0304772 0.0207 0.3719
α1 -0.50 -0.4691927 0.0620927 -0.0308073 0.0313 0.0224

Radius 0.01 0.0098906 0.0000519 0.0001094 0.0319 0.018
1000 β0 5.50 5.4415728 0.0756987 0.0584272 0.0433 0.0001

β1 -0.35 -0.3584342 0.0283397 0.0084342 0.0169 0.6954
α1 -0.50 -0.4902872 0.0427330 -0.0097128 0.0228 0.2377

Radius 0.01 0.0098897 0.0000352 0.0001103 0.0244 0.1587
2500 β0 5.50 5.4418969 0.0516802 0.0581031 0.0284 0.0558

β1 -0.35 -0.3416311 0.0180800 -0.0083689 0.0301 0.0332
α1 -0.50 -0.5082133 0.0284640 0.0082133 0.0219 0.2934

Radius 0.01 0.0098919 0.0000236 0.0001081 0.0238 0.1828

In the following tables, the result of how only time-dependent covariate affect the

estimation of the intensity presented from schemes 9 and 12. Both random radius and,

unknown but fixed radius results are presented below.
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Table 12
Results from Scheme 9

Time θ Parameters θ̂ Std.Error Bias Statistic p value
10 β0 -0.5 -1.2121520 9.0640439 0.7121520 0.3443 <0.001

α1 -0.5 -0.5096134 0.5488904 0.0096134 0.1858 <0.001
η1 0.5 -1.1136221 30.8403348 1.6136221 0.4077 <0.001
a 0.0 -0.0366682 0.0179839 0.0366682 0.0951 <0.001
b 0.1 0.1022382 0.0281244 -0.0022382 0.0479 <0.001

50 β0 -0.5 -0.7395628 0.4905854 0.2395628 0.0518 <0.001
α1 -0.5 -0.6800055 0.4517623 0.1800055 0.2394 <0.001
η1 0.5 0.3055890 0.7791583 0.1944110 0.0685 <0.001
a 0.0 -0.0423787 0.0068114 0.0423787 0.0599 <0.001
b 0.1 0.1101738 0.0123652 -0.0101738 0.0326 0.014

100 β0 -0.5 -0.6582016 0.3875375 0.1582016 0.0278 0.0656
α1 -0.5 -0.2359352 0.5242940 -0.2640648 0.0866 <0.001
η1 0.5 0.5475800 0.6149299 -0.0475800 0.0731 <0.001
a 0.0 -0.0429870 0.0047452 0.0429870 0.0486 <0.001
b 0.1 0.1103703 0.0087170 -0.0103703 0.0218 0.2977

200 β0 -0.5 -0.7009021 0.2427061 0.2009021 0.0260 0.1027
α1 -0.5 -0.7234316 0.3703806 0.2234316 0.2276 <0.001
η1 0.5 0.3487078 0.4194353 0.1512922 0.1039 <0.001
a 0.0 -0.0434029 0.0033630 0.0434029 0.0359 0.004
b 0.1 0.1113126 0.0062622 -0.0113126 0.0172 0.6756

500 β0 -0.5 -0.6739123 0.1833469 0.1739123 0.0529 <0.001
α1 -0.5 -0.3880041 0.4011278 -0.1119959 0.1052 <0.001
η1 0.5 0.5118461 0.2433074 -0.0118461 0.0256 0.1143
a 0.0 -0.0435910 0.0020490 0.0435910 0.0263 0.0966
b 0.1 0.1113053 0.0039265 -0.0113053 0.0252 0.1296

1000 β0 -0.5 -0.6794796 0.1201047 0.1794796 0.0201 0.4255
α1 -0.5 -0.6028536 0.3280836 0.1028536 0.1130 <0.001
η1 0.5 0.3987543 0.2686625 0.1012457 0.0999 <0.001
a 0.0 -0.0437452 0.0014621 0.0437452 0.0263 0.0957
b 0.1 0.1114228 0.0028400 -0.0114228 0.0193 0.4906

2500 β0 -0.5 -0.6887554 0.0790816 0.1887554 0.0437 1e-04
α1 -0.5 -0.4749012 0.1889841 -0.0250988 0.0767 <0.001
η1 0.5 0.4948373 0.1156905 0.0051627 0.0265 0.0961
a 0.0 -0.0437410 0.0009323 0.0437410 0.0230 0.2242
b 0.1 0.1114504 0.0018170 -0.0114504 0.0168 0.7038

Table 12 shows the results of simulations from scheme 9 for various times T .

Again, the grains Zt of these realizations are circles with random radius R from

Uni f orm (0,0.1). The results were not different from Scheme 1 and 5 in Tables 3 and 8.
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The standard errors of these estimates decreased with increasing sample size (T ), with the

distribution of estimates passing the normality test.

The maximum likelihood estimates θ̂ increased towards parameter values with

increasing sample size t, similar to results in Table 3. Also, at T = 2500, the biases and

standard errors decreased significantly, thus confirming the characteristics of maximum

likelihood estimates. Finally, the distribution of the estimates also approached normal

distribution, as seen in the p-values of the Kolmogorov-Smirnov normality tests. Thus,

time-dependent covariate xt in the model (56), does not change the estimation of the

intensity parameter λt of the Boolean model.

Similar behavior and trends are seen in Table 13 below for scheme 10, for both the

method of moments and maximum likelihood estimates. Thus, for both conditions, i.e:

β 2
1 +α2

1 < 1 and |β1 +α1|< 1, the Boolean model Yt with grains Zt of random radius

from Uni f (0,0.1), with intensity λ̂t can accurately be estimated using model (56).
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Table 13
Results from Scheme 10

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 0.5 1.0727646 1.0477631 -0.5727646 0.0869 <0.001

α1 0.5 -0.0537654 0.5663579 0.5537654 0.0685 <0.001
η1 0.5 0.4809130 1.2800679 0.0190870 0.0663 <0.001
a 0.0 -0.0405973 0.0085884 0.0405973 0.0568 <0.001
b 0.1 0.1084605 0.0182022 -0.0084605 0.0306 0.0281

50 β0 0.5 0.8350797 0.7808077 -0.3350797 0.1562 <0.001
α1 0.5 0.1817967 0.5227505 0.3182033 0.1241 <0.001
η1 0.5 0.4841498 0.4271517 0.0158502 0.0591 <0.001
a 0.0 -0.0428560 0.0034706 0.0428560 0.0213 0.3293
b 0.1 0.1110672 0.0079636 -0.0110672 0.0173 0.6594

100 β0 0.5 0.9216591 0.8038451 -0.4216591 0.1739 <0.001
α1 0.5 0.1224047 0.5646708 0.3775953 0.1428 <0.001
η1 0.5 0.4538953 0.3076223 0.0461047 0.0506 <0.001
a 0.0 -0.0434254 0.0023878 0.0434254 0.0258 0.1103
b 0.1 0.1114786 0.0056105 -0.0114786 0.0273 0.0756

200 β0 0.5 0.5255728 0.4040953 -0.0255728 0.1498 <0.001
α1 0.5 0.4166399 0.3084371 0.0833601 0.1287 <0.001
η1 0.5 0.4907473 0.1834603 0.0092527 0.0237 0.1885
a 0.0 -0.0433873 0.0017090 0.0433873 0.0155 0.8137
b 0.1 0.1111841 0.0041660 -0.0111841 0.0182 0.582

500 β0 0.5 0.5181749 0.4128508 -0.0181749 0.1997 <0.001
α1 0.5 0.4249701 0.2949630 0.0750299 0.1643 <0.001
η1 0.5 0.4821159 0.1387734 0.0178841 0.0433 1e-04
a 0.0 -0.0435789 0.0010611 0.0435789 0.0193 0.4908
b 0.1 0.1112946 0.0025204 -0.0112946 0.0200 0.4313

1000 β0 0.5 0.4370888 0.1501523 0.0629112 0.0604 <0.001
α1 0.5 0.4857096 0.1230046 0.0142904 0.0412 4e-04
η1 0.5 0.4845004 0.0821328 0.0154996 0.0246 0.152
a 0.0 -0.0435825 0.0007169 0.0435825 0.0176 0.6387
b 0.1 0.1113224 0.0017804 -0.0113224 0.0294 0.0409

2500 β0 0.5 0.4250141 0.0914333 0.0749859 0.0587 <0.001
α1 0.5 0.4970918 0.0752941 0.0029082 0.0518 <0.001
η1 0.5 0.4797896 0.0512439 0.0202104 0.0199 0.4412
a 0.0 -0.0435531 0.0004652 0.0435531 0.0244 0.1576
b 0.1 0.1114625 0.0011671 -0.0114625 0.0248 0.1442
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Table 14
Results from Scheme 11

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 5.50 4.0577566 1.9541283 1.4422434 0.1320 <0.001

α1 -0.50 -0.1306595 0.6613829 -0.3693405 0.2054 <0.001
η1 0.50 0.6238600 1.6459018 -0.1238600 0.1565 <0.001

Radius 0.01 0.0099352 0.0002419 0.0000648 0.0248 0.1426
50 β0 5.50 5.5770392 1.0494701 -0.0770392 0.2374 <0.001

α1 -0.50 -0.5398369 0.2916777 0.0398369 0.2959 <0.001
η1 0.50 0.6108057 0.3067851 -0.1108057 0.0820 <0.001

Radius 0.01 0.0099347 0.0001054 0.0000653 0.0199 0.4419
100 β0 5.50 5.6814662 0.3417724 -0.1814662 0.0258 0.1090

α1 -0.50 -0.5682357 0.0763343 0.0682357 0.0194 0.4840
η1 0.50 0.5572583 0.1514100 -0.0572583 0.0373 0.0023

Radius 0.01 0.0099354 0.0000732 0.0000646 0.0160 0.7698
200 β0 5.50 5.5842694 0.2376955 -0.0842694 0.0170 0.6923

α1 -0.50 -0.5416309 0.0569045 0.0416309 0.0204 0.4023
η1 0.50 0.5155057 0.0840732 -0.0155057 0.0264 0.0989

Radius 0.01 0.0099338 0.0000542 0.0000662 0.0227 0.2417
500 β0 5.50 5.4982054 0.1605428 0.0017946 0.0237 0.1897

α1 -0.50 -0.5197265 0.0398378 0.0197265 0.0268 0.0874
η1 0.50 0.4989020 0.0419911 0.0010980 0.0186 0.5445

Radius 0.01 0.0099307 0.0000346 0.0000693 0.0161 0.7618
1000 β0 5.50 5.4613960 0.1166063 0.0386040 0.0188 0.5316

α1 -0.50 -0.5099119 0.0293461 0.0099119 0.0168 0.7039
η1 0.50 0.4929193 0.0260312 0.0070807 0.0207 0.3743

Radius 0.01 0.0099324 0.0000232 0.0000676 0.0143 0.8886
2500 β0 5.50 5.4363288 0.0769723 0.0636712 0.0238 0.1855

α1 -0.50 -0.5035972 0.0193122 0.0035972 0.0232 0.2147
η1 0.50 0.4902750 0.0157619 0.0097250 0.0350 0.0058

Radius 0.01 0.0099312 0.0000145 0.0000688 0.0280 0.0614

Similar to Tables 6, 7, 10, and 11 the standard errors and biases of the estimates in

table 10 decreased with increasing sample size (T ), approaching approximately zero at

T = 2500 with the distribution of the estimates passing the normality test. With increasing

sample size t, the maximum likelihood estimates θ̂ improved. Also, at T = 2500, the

biases and standard errors significantly decreased, which prove the characteristics of

maximum likelihood estimates. In addition, the distribution of the estimates attained

asymptotic normality. Which was evident in the p-values of the Kolmogorov-Smirnov
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normality tests. Hence, with only time-dependent covariate xt in the model (56) and

unknown but fixed radius R = 0.01, we can accurately estimate the intensity parameter λt

of the Boolean model.

Similar results are seen in Table 15 below for scheme 12 comparable to scheme

11. That applies to both method of moments and maximum likelihood estimates. For both

conditions, β 2
1 +α2

1 < 1 and |β1 +α1|< 1, the Boolean model Yt with a grains Zt with

fixed but unknown radius R = 0.01, the intensity of the n̂t |Ft−1 ∼ Poisson(λ̂t) can be

estimated using model (55) accurately.

Observe that for research questions 1iii, and 3i corresponding to (56), the result is

same as that of the Tables 14 and 15—especially since we do not have to estimate R.

Hence the maximum likelihood estimation of Schemes 11 and 12 without the method of

moment estimation of radius is the solution for research questions 1iii, 3i.
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Table 15
Results from Scheme 12

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 1.70 1.8582177 2.1010080 -0.1582177 0.3693 <0.001

α1 0.50 0.4241947 0.5124538 0.0758053 0.3220 <0.001
η1 0.50 0.5833665 0.6903803 -0.0833665 0.1814 <0.001

Radius 0.01 0.0099085 0.0002788 0.0000915 0.0148 0.8594
50 β0 1.70 0.8250173 0.2923081 0.8749827 0.1676 <0.001

α1 0.50 0.7185515 0.0788668 -0.2185515 0.1410 <0.001
η1 0.50 0.5119432 0.1069982 -0.0119432 0.0420 3e-04

Radius 0.01 0.0099291 0.0001088 0.0000709 0.0152 0.8341
100 β0 1.70 0.8955234 0.1684820 0.8044766 0.0463 <0.001

α1 0.50 0.7061393 0.0499808 -0.2061393 0.0456 <0.001
η1 0.50 0.4654575 0.0724253 0.0345425 0.0321 0.017

Radius 0.01 0.0099316 0.0000760 0.0000684 0.0244 0.1592
200 β0 1.70 1.0817690 0.1967864 0.6182310 0.0352 0.0054

α1 0.50 0.6579855 0.0561720 -0.1579855 0.0295 0.0392
η1 0.50 0.4616129 0.0567894 0.0383871 0.0167 0.7194

Radius 0.01 0.0099306 0.0000535 0.0000694 0.0171 0.6785
500 β0 1.70 1.3941794 0.1591340 0.3058206 0.0240 0.1737

α1 0.50 0.5745655 0.0439522 -0.0745655 0.0234 0.2047
η1 0.50 0.4788495 0.0338068 0.0211505 0.0158 0.7904

Radius 0.01 0.0099325 0.0000330 0.0000675 0.0154 0.8181
1000 β0 1.70 1.5345716 0.1177747 0.1654284 0.0235 0.1995

α1 0.50 0.5373571 0.0322013 -0.0373571 0.0206 0.3797
η1 0.50 0.4850831 0.0249818 0.0149169 0.0149 0.8497

Radius 0.01 0.0099330 0.0000240 0.0000670 0.0219 0.2923
2500 β0 1.70 1.6221029 0.0714763 0.0778971 0.0177 0.6310

α1 0.50 0.5142504 0.0194545 -0.0142504 0.0137 0.9211
η1 0.50 0.4886399 0.0147932 0.0113601 0.0204 0.3991

Radius 0.01 0.0099341 0.0000144 0.0000659 0.0191 0.5021

The findings in the above results and analyses show that, indeed, we can build

various models to estimate the intensity of time-dependent or correlated Boolean random

sets Yt . Moreover, the estimators for the models parameters, exhibit maximum likelihood

characteristics. Finally, method of moments estimators for the radius estimations, are

unbiased and asymptotically normal.

Theorem 2 states that given the conditions of the above simulations, the θ̂ is

consistent and asymptotically normal. Tables 16, 17, and 18, show the asymptotic
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behavior of θ̂MLEs for all schemes. It is evident that these estimates are consistent. Thus,

as T → ∞, the biases approach zero., i.e.: θ̂MLE → θ .

Table 16
Asymptotic Behavior of Estimates

Scheme Time θ Parameters θ̂ Std.Error Bias Statistic P value
1 2500 β0 -0.50 -0.5825164 0.0649762 0.0825164 0.0216 0.3087

β1 0.65 0.5565001 0.0402819 0.0934999 0.0143 0.8873
α1 -0.50 -0.4371118 0.0584869 -0.0628882 0.0307 0.0271
η1 0.50 0.4896683 0.0922974 0.0103317 0.0124 0.9685
a 0.00 -0.0437374 0.0008245 0.0437374 0.0218 0.2991
b 0.10 0.1114021 0.0016339 -0.0114021 0.0198 0.4425

2 2500 β0 0.50 0.2579814 0.0517617 0.2420186 0.0203 0.4094
β1 -0.35 -0.3226764 0.0327150 -0.0273236 0.0189 0.5211
α1 -0.50 -0.5262106 0.0531311 0.0262106 0.0293 0.0425
η1 0.50 0.4869960 0.0780131 0.0130040 0.0207 0.3720
a 0.00 -0.0437757 0.0007407 0.0437757 0.0127 0.9590
b 0.10 0.1113730 0.0014925 -0.0113730 0.0175 0.6417

3 2500 β0 1.70 1.7012990 0.0816827 -0.0012990 0.0197 0.4517
β1 0.65 0.5940552 0.0220534 0.0559448 0.0109 0.9947
α1 -0.50 -0.4501487 0.0296920 -0.0498513 0.0228 0.2353
η1 0.50 0.4944287 0.0300216 0.0055713 0.0262 0.0984

Radius 0.01 0.0098243 0.0000327 0.0001757 0.0266 0.0928
4 2500 β0 5.50 5.4417141 0.0347971 0.0582859 0.0142 0.8969

β1 -0.35 -0.3424395 0.0178288 -0.0075605 0.0114 0.9887
α1 -0.50 -0.5077921 0.0216477 0.0077921 0.0278 0.0664
η1 0.50 0.4923831 0.0203014 0.0076169 0.0221 0.2747

Radius 0.01 0.0099005 0.0000212 0.0000995 0.0241 0.1710

Figures 3 and 4 show graphically, the approximate normality of the estimates for

conditions found in schemes 1 and 3. When both past observations n̂ and Xt are present in

the model, the estimates are both consistent and asymptotically normal.
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Figure 3. Normal Density Plots for Scheme 1, T = 2500.
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Figure 4. Normal Density Plots for Scheme 3, T = 2500.

Tables 17 and 18 show the asymptotic behavior of θ̂MLEs for schemes 6 to 8 and 9

to 12 respectively. The estimates are consistent in that as T → ∞, the biases approach

zero., i.e θ̂MLE → θ .
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Table 17
Asymptotic Behavior of Estimates

Scheme Time θ Parameters θ̂ Std.Error Bias Statistic P value
5 2500 β0 -0.50 -0.5988478 0.0486692 0.0988478 0.0329 0.0129

β1 0.65 0.5727167 0.0481620 0.0772833 0.0368 0.0028
α1 -0.50 -0.4495354 0.0690978 -0.0504646 0.0325 0.0146
a 0.00 -0.0437907 0.0009416 0.0437907 0.0242 0.1647
b 0.10 0.1114041 0.0017694 -0.0114041 0.0205 0.3943

6 2500 β0 0.50 0.2570308 0.0334176 0.2429692 0.0167 0.7148
β1 -0.35 -0.3235941 0.0388293 -0.0264059 0.0238 0.1859
α1 -0.50 -0.5222265 0.0701911 0.0222265 0.0280 0.0615
a 0.00 -0.0437945 0.0007711 0.0437945 0.0139 0.9125
b 0.10 0.1113376 0.0016393 -0.0113376 0.0263 0.0957

7 2500 β0 1.70 1.7042273 0.0827892 -0.0042273 0.0269 0.0842
β1 0.65 0.5947220 0.0224310 0.0552780 0.0216 0.3124
α1 -0.50 -0.4528117 0.0317134 -0.0471883 0.0164 0.7411

Radius 0.01 0.0097739 0.0000386 0.0002261 0.0185 0.5550
8 2500 β0 5.50 5.4418969 0.0516802 0.0581031 0.0284 0.0558

β1 -0.35 -0.3416311 0.0180800 -0.0083689 0.0301 0.0332
α1 -0.50 -0.5082133 0.0284640 0.0082133 0.0219 0.2934

Radius 0.01 0.0098919 0.0000236 0.0001081 0.0238 0.1828

Figures 5 and 6 graphically show the approximate normality of the estimates, for

conditions found in schemes 1 and 3. When past observations n̂ are present in the model

alone, the estimates are both consistent and asymptotically normal.
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Figure 5. Normal Density Plots for Scheme 6, T = 2500.
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Figure 6. Normal Density Plots for Scheme 8, T = 2500.

Table 18 shows the asymptotic behavior of θ̂MLEs for schemes 9 to 12 respectively.

We observe that estimates are consistent. Thus, as T → ∞, the biases approach zero., i.e.:

θ̂MLE → θ .
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Table 18
Asymptotic Behavior of Estimates.

Scheme Time θ Parameters θ̂ Std.Error Bias Statistic P value
9 2500 β0 -0.5 -0.6887554 0.0790816 0.1887554 0.0437 1e-04

α1 -0.5 -0.4749012 0.1889841 -0.0250988 0.0767 <0.001
η1 0.5 0.4948373 0.1156905 0.0051627 0.0265 0.0961
a 0.0 -0.0437410 0.0009323 0.0437410 0.0230 0.2242
b 0.1 0.1114504 0.0018170 -0.0114504 0.0168 0.7038

10 2500 β0 0.5 0.4250141 0.0914333 0.0749859 0.0587 <0.001
α1 0.5 0.4970918 0.0752941 0.0029082 0.0518 <0.001
η1 0.5 0.4797896 0.0512439 0.0202104 0.0199 0.4412
a 0.0 -0.0435531 0.0004652 0.0435531 0.0244 0.1576
b 0.1 0.1114625 0.0011671 -0.0114625 0.0248 0.1442

11 2500 β0 5.50 5.4363288 0.0769723 0.0636712 0.0238 0.1855
α1 -0.50 -0.5035972 0.0193122 0.0035972 0.0232 0.2147
η1 0.50 0.4902750 0.0157619 0.0097250 0.0350 0.0058

Radius 0.01 0.0099312 0.0000145 0.0000688 0.0280 0.0614
12 2500 β0 1.70 1.6221029 0.0714763 0.0778971 0.0177 0.6310

α1 0.50 0.5142504 0.0194545 -0.0142504 0.0137 0.9211
η1 0.50 0.4886399 0.0147932 0.0113601 0.0204 0.3991

Radius 0.01 0.0099341 0.0000144 0.0000659 0.0191 0.5021

Theorem 2 states the θ̂MLE attains multivariate normality. In the above tables, we

showed that univariate normality tests were attained as T → ∞ for individual estimates.

Even though multivariate normality is difficult to show, due to the sensitivity to outliers,

Table 19 shows that some multivariate normality are attained for schemes 1 and 3. Thus,

with both past observations and time-dependent covariate in the model, estimates attain

multivariate normality. And confirm the theorem.

Table 19
Asymptotic Multivariate Normality Test Using T=2500.

(a) Scheme 1 (b) Scheme 3
Test Statistic P value MVN

E-statistic 1.15 0.10 YES
Royston 9.60 0.02 NO

Henze-Zirkler 0.88 0.68 YES
Mardia Skewness 42.823 0.002 NO
Mardia Kurtosis 1.298 0.194 YES
Mardia-MVN NO

Test Statistic P value MVN
E-statistic 1.13 0.10 YES
Royston 8.71 0.04 NO

Henze-Zirkler 1.01 0.13 YES
Mardia Skewness 20.657 0.418 YES
Mardia Kurtosis -0.843 0.400 YES
Mardia-MVN YES
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When only past observations were present in the model, estimates attained

multivariate normality for fixed radius (scheme 8). Table 20 shows that multivariate

normality are attained in some of the tests. Additionally, when the grains have random

radius, the presence of outliers hinder the proof of multivariate normality. However, for

the most part, univariate normality are attained.

Table 20
Asymptotic Multivariate Normality Test Using T=2500

(a) Scheme 6 (b) Scheme 8
Test Statistic P value MVN

E-statistic 1.56 0.00 NO
Royston 11.59 0.01 NO

Henze-Zirkler 1.10 0.04 NO
Mardia Skewness 69.060 0.00 NO
Mardia Kurtosis 3.191 0.001 NO
Mardia-MVN NO

Test Statistic P value MVN
E-statistic 1.10 0.05 NO
Royston 4.96 0.05 YES

Henze-Zirkler 1.14 0.02 NO
Mardia Skewness 21.283 0.019 NO
Mardia Kurtosis -0.117 0.907 YES
Mardia-MVN NO

Finally, with only time-dependent covariates in the model, estimates attained

multivariate normality for fixed radius (scheme 12). Table 21 shows that multivariate

normality are attained in some of the tests.

Table 21
Asymptotic Multivariate Normality Test Using T=2500

(a) Scheme 10 (b) Scheme 12
Test Statistic P value MVN

E-statistic 3.62 0.00 NO
Royston 29.41 0.00 NO

Henze-Zirkler 2.00 0.00 NO
Mardia Skewness 150.072 0.00 NO
Mardia Kurtosis 5.327 0.00 NO

MVN NO

Test Statistic P value MVN
E-statistic 0.96 0.16 YES
Royston 0.20 0.71 YES

Henze-Zirkler 0.83 0.59 YES
Mardia Skewness 17.063 0.073 YES
Mardia Kurtosis -0.273 0.785 YES

MVN YES
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Results for Method II

According to Molchanov (1995), n+t has an approximate Poisson distribution, i.e.:

n+t ∼ Poisson(λ+
t ),where λ

+
t = |Wt |λtexp[−E|Z0|λt ]. In this method, we modeled the

conditional mean E(n+t |Ft−1) = λ
+
t . Again, let logλ

+
t = µt , then

µt = β
+
0 +β

+
1 log(n+t−1 +1)+α

+
1 µt−1 +η

+Xt

However, to get the estimates of (54) from µt , we used the relationship

λ
+
t = |Wt |λtexp[−E|Z0|λt ]. Thus, by the first order Taylor expansion, approximate

estimates of parameters in (54) through µt are as follows:

β0 ≈
β
+
0 +C
1−C

, β1 ≈
β
+
1

1−C
, α1 ≈

α
+
1

1−C
, η ≈ η+

1−C
, where C = E|Z0|= πR2.

Observe that, the parameter estimate of logλt is just an approximate constant multiple of

logλ
+
t . Thus, we can analyze the result for µt and extend the results naturally to logλt .

Hence, we present and discuss the result of method II below. Similar to method I, to

answer research questions 1i,and 3iii corresponding to (59), we again ran the schemes in

Table 1 i.e.: schemes 1 to 2. The results are displayed in the tables below:
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Table 22
Results from Scheme 1

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 -0.50 -0.4759523 1.7480788 -0.0240477 0.1247 <0.001

β1 0.65 0.1865244 0.7575065 0.4634756 0.1495 <0.001
α1 -0.50 -0.1240170 0.7449906 -0.3759830 0.1223 <0.001
η1 0.50 0.3520870 3.0398495 0.1479130 0.1173 <0.001
a 0.00 -0.0370609 0.0168511 0.0370609 0.0998 <0.001
b 0.10 0.1041074 0.0258972 -0.0041074 0.0451 1e-04

50 β0 -0.50 -0.5844218 0.5114097 0.0844218 0.0168 0.706
β1 0.65 0.4824701 0.3569630 0.1675299 0.0832 <0.001
α1 -0.50 -0.3169425 0.5237804 -0.1830575 0.0961 <0.001
η1 0.50 0.4988620 0.8139187 0.0011380 0.0200 0.4296
a 0.00 -0.0428164 0.0060557 0.0428164 0.0422 2e-04
b 0.10 0.1096714 0.0117068 -0.0096714 0.0312 0.0228

100 β0 -0.50 -0.5709625 0.3588177 0.0709625 0.0209 0.3607
β1 0.65 0.5366315 0.2168096 0.1133685 0.0181 0.5962
α1 -0.50 -0.5181557 0.3374225 0.0181557 0.0766 <0.001
η1 0.50 0.4545392 0.5142931 0.0454608 0.0194 0.4821
a 0.00 -0.0430681 0.0043712 0.0430681 0.0432 2e-04
b 0.10 0.1108408 0.0080706 -0.0108408 0.0169 0.700

200 β0 -0.50 -0.5918920 0.2586015 0.0918920 0.0239 0.1794
β1 0.65 0.5486244 0.1460701 0.1013756 0.0141 0.8988
α1 -0.50 -0.4308836 0.2410083 -0.0691164 0.0671 <0.001
η1 0.50 0.4940830 0.3702445 0.0059170 0.0210 0.3545
a 0.00 -0.0434383 0.0030744 0.0434383 0.0321 0.0169
b 0.10 0.1110467 0.0057893 -0.0110467 0.0174 0.6528

500 β0 -0.50 -0.5904171 0.1522223 0.0904171 0.0304 0.0300
β1 0.65 0.5549402 0.0943657 0.0950598 0.0168 0.7083
α1 -0.50 -0.4475017 0.1417100 -0.0524983 0.0276 0.0705
η1 0.50 0.4953259 0.2118498 0.0046741 0.0265 0.0958
a 0.00 -0.0437036 0.0018408 0.0437036 0.0278 0.0663
b 0.10 0.1113458 0.0036703 -0.0113458 0.0274 0.0742

1000 β0 -0.50 -0.5832961 0.1051667 0.0832961 0.0198 0.4469
β1 0.65 0.5573317 0.0640943 0.0926683 0.0199 0.4381
α1 -0.50 -0.4360885 0.0940858 -0.0639115 0.0439 0.0001
η1 0.50 0.4866967 0.1501133 0.0133033 0.0133 0.9375
a 0.00 -0.0437323 0.0013123 0.0437323 0.0178 0.6180
b 0.10 0.1114453 0.0025959 -0.0114453 0.0174 0.6537

2500 β0 -0.50 -0.5824615 0.0649542 0.0824615 0.0205 0.3884
β1 0.65 0.5563652 0.0402725 0.0936348 0.0134 0.9347
α1 -0.50 -0.4370555 0.0585051 -0.0629445 0.0300 0.0342
η1 0.50 0.4895029 0.0922204 0.0104971 0.0123 0.9714
a 0.00 -0.0437374 0.0008245 0.0437374 0.0218 0.2991
b 0.10 0.1114021 0.0016339 -0.0114021 0.0198 0.4425
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Table 22 shows the result of simulations from scheme 1 for various times T . With

the same setup as Method I, the results are similar to using n+t . The standard errors of

these estimates decreased with increasing sample size (T ), with the distribution of

estimates passing the normality test. The maximum likelihood estimates θ̂ improved to

parameter values with increasing sample size t. At T = 2500, the biases and standard

errors became significantly small and confirmed the characteristics of maximum

likelihood estimates. The distribution of the estimates also approach normal, as seen in the

p-values of the Kolmogorov-Smirnov normality tests. Thus, with both past observations

n+t and time-dependent covariates xt in the model (59), we can accurately estimate the

intensity parameter λt of the Boolean model. Similar results are seen in Table 23 below

for scheme 2 for both the method of moments and maximum likelihood estimates. Now,

in order to find the estimates Θ̂ of Θ from Θ+, we find C = πR2 using the expected value

of R∼U(a,b) for each T .

Let’s take T = 2500 as an example, then C will be the expected value of

R∼Uni f (−0.04,0.11) from Table 22, i.e. C = π(0.0338)2 = 0.00360. Thus the

β̂0 ≈
−0.5825+0.00360

1−0.00360
=−0.581, β̂1 ≈

0.5564
1−0.00360

= 0.558,

α̂1 ≈
−0.4371

1−0.00360
=−0.439, η̂ ≈ 0.4895

1−0.00360
= 0.491.
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Table 23
Results from Scheme 2

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 0.50 0.06 1.28 0.44 0.0622 <0.001

β1 -0.35 -0.29 0.69 -0.06 0.1533 <0.001
α1 -0.50 -0.06 0.74 -0.44 0.1085 <0.001
η1 0.50 0.35 2.25 0.15 0.0570 <0.001
a 0.00 -0.04 0.01 0.04 0.0843 <0.001
b 0.10 0.11 0.02 -0.01 0.0296 0.0392

50 β0 0.50 0.17 0.45 0.33 0.0269 0.0856
β1 -0.35 -0.33 0.30 -0.02 0.0155 0.8106
α1 -0.50 -0.28 0.54 -0.22 0.0997 <0.001
η1 0.50 0.50 0.72 0.00 0.0458 <0.001
a 0.00 -0.04 0.01 0.04 0.0528 <0.001
b 0.10 0.11 0.01 -0.01 0.0235 0.1986

100 β0 0.50 0.20 0.29 0.30 0.0347 0.0064
β1 -0.35 -0.31 0.20 -0.04 0.0367 0.0029
α1 -0.50 -0.42 0.41 -0.08 0.1178 <0.001
η1 0.50 0.50 0.46 0.00 0.0197 0.4567
a 0.00 -0.04 0.00 0.04 0.0318 0.0184
b 0.10 0.11 0.01 -0.01 0.0285 0.0533

200 β0 0.50 0.23 0.20 0.27 0.0208 0.3663
β1 -0.35 -0.31 0.13 -0.04 0.0194 0.483
α1 -0.50 -0.45 0.29 -0.05 0.1136 <0.001
η1 0.50 0.50 0.30 0.00 0.0245 0.1541
a 0.00 -0.04 0.00 0.04 0.0463 <0.001
b 0.10 0.11 0.01 -0.01 0.0130 0.9515

500 β0 0.50 0.25 0.12 0.25 0.0281 0.0601
β1 -0.35 -0.32 0.08 -0.03 0.0259 0.1058
α1 -0.50 -0.50 0.15 0.00 0.0753 <0.001
η1 0.50 0.49 0.18 0.01 0.0206 0.3795
a 0.00 -0.04 0.00 0.04 0.0391 0.001
b 0.10 0.11 0.00 -0.01 0.0158 0.7856

1000 β0 0.50 0.25 0.09 0.25 0.0224 0.2599
β1 -0.35 -0.32 0.06 -0.03 0.0158 0.7858
α1 -0.50 -0.52 0.09 0.02 0.0457 <0.001
η1 0.50 0.49 0.13 0.01 0.0228 0.2364
a 0.00 -0.04 0.00 0.04 0.0221 0.276
b 0.10 0.11 0.00 -0.01 0.0115 0.9874

2500 β0 0.50 0.26 0.05 0.24 0.0193 0.4881
β1 -0.35 -0.32 0.03 -0.03 0.0183 0.5714
α1 -0.50 -0.53 0.05 0.03 0.0282 0.0591
η1 0.50 0.49 0.08 0.01 0.0183 0.5724
a 0.00 -0.04 0.00 0.04 0.0127 0.9590
b 0.10 0.11 0.00 -0.01 0.0175 0.6417
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For research questions 1i, 3ii corresponding to (59), the schemes in Table 1, i.e.:

schemes 3 and 4, where the grain Zt have a fixed but, unknown radius R were ran for each

T .

Table 24
Results from Scheme 3

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 1.70 1.9942575 0.8457011 -0.2942575 0.0524 <0.001

β1 0.65 0.2993197 0.6207261 0.3506803 0.1318 <0.001
α1 -0.50 -0.2690104 0.7307089 -0.2309896 0.1586 <0.001
η1 0.50 0.4436066 0.7493935 0.0563934 0.0595 <0.001

Radius 0.01 0.0098352 0.0005410 0.0001648 0.0336 0.0098
50 β0 1.70 1.7871003 0.6059542 -0.0871003 0.0172 0.669

β1 0.65 0.5769652 0.1582886 0.0730348 0.0285 0.0539
α1 -0.50 -0.4683012 0.2589570 -0.0316988 0.0593 <0.001
η1 0.50 0.4846358 0.2246510 0.0153642 0.0211 0.3466

Radius 0.01 0.0098288 0.0002331 0.0001712 0.0244 0.1578
100 β0 1.70 1.7571994 0.4203642 -0.0571994 0.0313 0.0223

β1 0.65 0.5864859 0.1073966 0.0635141 0.0279 0.0641
α1 -0.50 -0.4675856 0.1614900 -0.0324144 0.0360 0.0038
η1 0.50 0.4946568 0.1597091 0.0053432 0.0166 0.7197

Radius 0.01 0.0098226 0.0001641 0.0001774 0.0149 0.8540
200 β0 1.70 1.7359856 0.3038111 -0.0359856 0.0258 0.1082

β1 0.65 0.5878822 0.0770359 0.0621178 0.0210 0.3557
α1 -0.50 -0.4586346 0.1117631 -0.0413654 0.0252 0.1279
η1 0.50 0.4921712 0.1048772 0.0078288 0.0171 0.6811

Radius 0.01 0.0098225 0.0001223 0.0001775 0.0133 0.9387
500 β0 1.70 1.7104920 0.1914353 -0.0104920 0.0184 0.5665

β1 0.65 0.5927031 0.0468776 0.0572969 0.0176 0.6385
α1 -0.50 -0.4527485 0.0686246 -0.0472515 0.0205 0.3893
η1 0.50 0.4932953 0.0708219 0.0067047 0.0166 0.7204

Radius 0.01 0.0098234 0.0000761 0.0001766 0.0251 0.1311
1000 β0 1.70 1.7040678 0.1325939 -0.0040678 0.0190 0.5125

β1 0.65 0.5906505 0.0334899 0.0593495 0.0230 0.2251
α1 -0.50 -0.4473722 0.0471905 -0.0526278 0.0224 0.2594
η1 0.50 0.4929810 0.0467460 0.0070190 0.0198 0.4463

Radius 0.01 0.0098257 0.0000528 0.0001743 0.0190 0.5123
2500 β0 1.70 1.7012990 0.0816827 -0.0012990 0.0197 0.4517

β1 0.65 0.5940552 0.0220534 0.0559448 0.0109 0.9947
α1 -0.50 -0.4501487 0.0296920 -0.0498513 0.0228 0.2353
η1 0.50 0.4944287 0.0300216 0.0055713 0.0262 0.0984

Radius 0.01 0.0098243 0.0000327 0.0001757 0.0266 0.0928
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Table 24 shows the results of simulations from scheme 3 for various times T . The

grains Zt of these realizations have fixed but unknown radius R = 0.01. Similar to method

I, the method of moments estimates of R̂ were stable across T . The standard errors and

biases of the estimates decreased with increasing sample size (T ). They approached

approximately zero at Time = 2500 with the distribution of the estimates exhibiting

asymptotic normality.

The maximum likelihood estimates θ̂ improved towards parameter values with

increasing sample size t. The biases and standard errors decreased significantly with

increasing T, thus confirming the characteristics of maximum likelihood estimates. The

distribution of the estimates also approached normal, which was evident in the p-values of

the Kolmogorov-Smirnov normality tests. Hence, with both past observations n̂+t and

time-dependent covariates xt in the model (59) and unknown but fixed radius R = 0.01, we

can accurately estimate the intensity parameter λt of the Boolean model. Similar results

are seen in Table 25 below for scheme 4 for both the method of moments and maximum

likelihood estimates.

Note that for the research questions 1i, 3i corresponding to (59), the results were

the similar to that of the Tables 24 and 25. Since we do not estimate R, the maximum

likelihood estimation of schemes 3 and 4 without the method of moments estimation of

radius, is the solution for research questions 1i, 3i.
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Table 25
Results from Scheme 4

Time θ Parameters θ̂ Std.Error Bias Statistic P value
10 β0 5.50 4.2523439 1.1205878 1.2476561 0.0267 0.0906

β1 -0.35 -0.4986284 0.3370451 0.1486284 0.0838 <0.001
α1 -0.50 0.1484715 0.6508758 -0.6484715 0.0954 <0.001
η1 0.50 0.2002153 2.0924682 0.2997847 0.0621 <0.001

Radius 0.01 0.0098649 0.0004275 0.0001351 0.0208 0.3692
50 β0 5.50 5.2786373 0.5942747 0.2213627 0.2025 <0.001

β1 -0.35 -0.5260311 0.1328037 0.1760311 0.0743 <0.001
α1 -0.50 -0.2754984 0.2401429 -0.2245016 0.1990 <0.001
η1 0.50 0.6652643 0.4448693 -0.1652643 0.0302 0.0319

Radius 0.01 0.0098953 0.0001641 0.0001047 0.0178 0.6225
100 β0 5.50 5.4439079 0.2267121 0.0560921 0.0868 <0.001

β1 -0.35 -0.4816842 0.0831125 0.1316842 0.0567 <0.001
α1 -0.50 -0.3711715 0.1125614 -0.1288285 0.0657 <0.001
η1 0.50 0.5907560 0.2157583 -0.0907560 0.0224 0.2597

Radius 0.01 0.0099039 0.0001071 0.0000961 0.0226 0.2449
200 β0 5.50 5.4536964 0.1318726 0.0463036 0.0333 0.0111

β1 -0.35 -0.4313700 0.0601840 0.0813700 0.0361 0.0038
α1 -0.50 -0.4243167 0.0772416 -0.0756833 0.0626 <0.001
η1 0.50 0.5421889 0.1212027 -0.0421889 0.0297 0.0373

Radius 0.01 0.0098978 0.0000780 0.0001022 0.0162 0.7536
500 β0 5.50 5.4390388 0.0766778 0.0609612 0.0229 0.2280

β1 -0.35 -0.3847900 0.0391853 0.0347900 0.0187 0.5440
α1 -0.50 -0.4653583 0.0463613 -0.0346417 0.0262 0.0982
η1 0.50 0.5125823 0.0578612 -0.0125823 0.0351 0.0056

Radius 0.01 0.0099010 0.0000485 0.0000990 0.0264 0.0977
1000 β0 5.50 5.4403944 0.0558459 0.0596056 0.0277 0.0684

β1 -0.35 -0.3606201 0.0277894 0.0106201 0.0135 0.9284
α1 -0.50 -0.4900243 0.0334542 -0.0099757 0.0178 0.6199
η1 0.50 0.5015649 0.0368154 -0.0015649 0.0200 0.4327

Radius 0.01 0.0098972 0.0000345 0.0001028 0.0275 0.0723
2500 β0 5.50 5.4417443 0.0350822 0.0582557 0.0234 0.2060

β1 -0.35 -0.3418183 0.0175787 -0.0081817 0.0133 0.9385
α1 -0.50 -0.5084093 0.0214671 0.0084093 0.0228 0.2334
η1 0.50 0.4920419 0.0201854 0.0079581 0.0215 0.3152

Radius 0.01 0.0099005 0.0000212 0.0000995 0.0241 0.1710

Again, to find the estimates Θ̂ of Θ from Θ+, we find C = πR2 using the expected

value of R̂ as the estimate for R.
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When T = 1000 is used an example, the expected value of R̂ = 0.0098972 from

Table 25, and C = π(0.0098972)2 = 0.0003077334. Thus, the

β̂0 ≈
5.440+0.00031

1−0.00031
= 5.4424, β̂1 ≈

−0.361
1−0.00031

=−0.3607,

α̂1 ≈
−0.4900

1−0.00031
=−0.4902, η̂ ≈ 0.5016

1−0.00031
= 0.5017.

For all T ′s, Θ̂ can be found using the procedure in the above example.

The results of the simulations from schemes 5 to 12 for method II have similar

discussions as that of method I for various times T . The standard errors of these estimates

decreased with increasing sample size (T ), with the distribution of estimates passing the

normality test.

The maximum likelihood estimates θ+ improved to parameter value with

increasing sample size t, which is similar to results from method I in Table 8 to 15. At

T = 2500, the biases and standard errors decreased significantly to zero, thus confirming

the characteristics of maximum likelihood estimates. The distributions of these estimates

also approached normal, which is seen in the p-values of the Kolmogorov-Smirnov

normality tests across all schemes. Thus, with past observations n+t in the model (55), we

can accurately estimate the intensity parameter λt of the Boolean model. And with only

time-dependent covariate xt in the model (56), it does not change the estimation of the

intensity parameter λt of the Boolean model.
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We do observe that both methods I and II are functions of n+. Hence, similar

behavior, trends, and results were expected under the same schemes. To avoid repetition,

Tables 31 to 38 are included in Appendix A.

Figures 7 and 8 show the approximate normality of the estimates, for conditions

found in scheme 2 and 4. When both past observations n+t and Xt were present in the

model, the estimates were both consistent and asymptotically normal.
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Figure 7. Normal Density Plots for Scheme 2, T = 2500.
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Figure 8. Normal Density Plots for Scheme 4, T = 2500.
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Even though multivariate normality is difficult to show due to the presence of

outliers, Table 26 shows that some multivariate normality tests are attained for both when

the Boolean model is formed by grains Zt with random radius (scheme 2) and fixed and

unknown radius (scheme 4). Thus, with both past observations and time-dependent

covariate in the model, estimates attain multivariate normality.

Table 26
Asymptotic Multivariate Normality Test Using T=2500

(a) Scheme 2 (b) Scheme 4
Test Statistic P value MVN

E-statistic 1.575 0 NO
Royston 4.882 0.154 YES

Henze-Zirkler 1.131 0.006 NO
Mardia Skewness 52.483 9.680e-05 NO
Mardia Kurtosis 0.303 0.762 YES

MVN NO

Test Statistic P value MVN
E-statistic 1.098 0.165 YES
Royston 2.766 0.314 YES

Henze-Zirkler 0.919 0.4814571 YES
Mardia Skewness 23.240 0.277 YES
Mardia Kurtosis -0.197 0.843 YES

MVN YES

Figures 9 and 10 shows the approximate normality of the estimates for conditions

found in scheme 5 and 7. When both past observations n+t and Xt were present in the

model, the estimates were both consistent and asymptotically normal.
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Figure 9. Normal Density Plots for Scheme 5, T = 2500.
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Figure 10. Normal Density Plots for Scheme 7, T = 2500.
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Table 27 shows that some multivariate normality tests are attained for both when

the Boolean model is formed by grains Zt with random radius (Scheme 5) and fixed but

unknown radius (Scheme 7).

Table 27
Asymptotic Multivariate Normality Test Using T=2500

(a) Scheme 5 (b) Scheme 7
Test Statistic P value MVN

E-statistic 1.774 0 NO
Royston 24.035 1.642e-05 NO

Henze-Zirkler 1.337 0.001 NO
Mardia Skewness 57.383 1.129e-08 NO
Mardia Kurtosis -0.134 0.893 YES

MVN NO

Test Statistic p value MVN
E-statistic 0.803 0.582 YES
Royston 24.035 1.642e-05 NO

Henze-Zirkler 0.787 0.729 YES
Mardia Skewness 10.081 0.433 YES
Mardia Kurtosis 0.483 0.629 YES

MVN YES

Figures 11 and 12 shows the approximate normality of the estimates, for

conditions found in scheme 1 and 3. When only past observations n+t was present in the

model, the estimates were both consistent and asymptotically normal.
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Figure 11. Normal Density Plots for Scheme 10, T = 2500.
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Figure 12. Normal Density Plots for Scheme 11, T = 2500.
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Table 28 shows that some multivariate normality tests are attained for both when

the Boolean model is formed by grains Zt with random radius (scheme 10) and fixed but

unknown radius (scheme 11).

Table 28
Asymptotic Multivariate Normality Test Using T=2500

(a) Scheme 10 (b) Scheme 11
Test Statistic P value MVN

E-statistic 3.676 0 NO
Royston 31.087 4.526e-08 NO

Henze-Zirkler 2.010 1.339e-09 NO
Mardia Skewness 154.193 5.107e-28 NO
Mardia Kurtosis 5.473 4.416e-08 NO

MVN NO

Test Statistic P value MVN
E-statistic 0.980 0.139 YES
Royston 0.179 0.727 YES

Henze-Zirkler 0.845 0.546 YES
Mardia Skewness 18.013 0.05475 YES
Mardia Kurtosis -0.191 0.849 YES

MVN YES

Thus, the above results of method I and II give similar answers to the research

questions for this study.

Rocky mountain pine beetle data application

In this section, we applied the AR(1) times series models built to the mountain pine

beetles data. The data consist of correlated images taken over time, with time-dependent

covariate mean annual precipitation (inches). Below, we discuss the results.
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Table 29
Descriptive Statistics from the Beetle Data.

Year n+t p∗t n̂t Precip(in)
2001 357 0.35 546.00 644
2002 293 0.38 476.00 622
2003 311 0.47 585.00 522
2004 355 0.44 639.00 457
2005 248 0.40 416.00 668
2006 269 0.46 495.00 616
2007 240 0.46 445.00 679
2008 260 0.46 482.00 608
2009 313 0.39 513.00 618
2010 316 0.36 491.00 645
Mean 296.2 0.416 508.8 620.3
Median 302.0 0.424 493.0 608
Std. Dev 41.62 0.047 65.95 21.58
Cor n+ p∗ n̂ Precip
n+ 1.00 -0.46 0.82 -0.56
p∗ -0.46 1.00 0.13 -0.40
n̂ 0.82 0.13 1.00 -0.89
Precip -0.56 -0.40 -0.89 1.00

Table 29 shows the average number of tangent points n+ across the years is 296

and n̂ is 508 with an average area of damage of 0.41 units. The correlation between n+

and n̂ is 0.82, which was expected. p∗ and n̂ have a correlation of 0.13.
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Table 30
Results from the Mountain Pine Beetle Data.

Method I (a)
Parameter θ̂ Std.Error CI(lower) CI(upper)
β0 6.3169012 0.6909231 4.9627167 7.6710856
β1 -0.8655854 0.6175579 -2.0759766 0.3448059
α1 0.9999997 0.5892992 -0.1550054 2.1550048
η1 -0.0015651 0.0002898 -0.0021331 -0.0009972

(b)
β0 5.2175867 0.3515736 4.5285151 5.9066584
β1 0.0719525 0.7263160 -1.3516007 1.4955057
α1 0.1657881 0.7411295 -1.2867990 1.6183752
η1 -0.0015281 0.0002879 -0.0020923 -0.0009639

(c)
β0 2.5938431 1.6590583 -0.6578513 5.8455375
β1 -0.3177490 0.1227373 -0.5583096 -0.0771883
α1 0.9018683 0.2833472 0.3465181 1.4572186
Method II (d)
Parameter θ̂ Std.Error CI(lower) CI(upper)
β0 4.5293637 5.8116154 -6.8611932 15.9199205
β1 0.1463701 0.1470922 -0.1419253 0.4346655
α1 0.0570623 1.0548821 -2.0104686 2.1245932

(e)
β0 6.5499817 0.26777400 6.0251543 7.0748091
α1 0.1147018 0.03445781 0.0471658 0.1822379
η1 -0.0017403 0.00021100 -0.0021538 -0.0013267

(f)
β0 5.1505975 0.3845394 4.3969142 5.9042808
α1 0.2460171 0.0451076 0.1576078 0.3344265
η1 -0.0014981 0.0002830 -0.0020527 -0.0009435

The models with (and without) covariates in Tables 30 indicated that, when the

average annual precipitation (inches) increased, the rate of mountain pine beetle damage

decreased. However, the dependence on past observations has negative effect for method I

compared to positive effect from method II. The estimated unknown fixed radius is 0.0185

and 0.024 from (c) and (d).



103

2010 Prediction of Mountain Pine Beetle Damage

Using model (c), νt = 2.594−0.318log(n̂t−1 +1)+0.902νt−1 and (d),

µt = 4.529+0.146log(n+t−1 +1)+0.057µt−1 from Table 30, the predicted rate for 2010

are λ̂ = 529.742 and λ̂+ = 297.154 respectively.

Below are the images from the original datum from 2010, the predicted images

from model c and d respectively.

Figure 13. 2010 Datum and Predicted Images.
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Regarding the predicted intensity for 2010, method II predicts the number of

damaged trees comparable to the original data. However, the predicted images are not

comparable. An explanation of this anomaly is that the model proposed in this study does

not include the location of the damages in its formulation. Therefore, the time series

model for the BRS will predict to some accuracy, the future intensity, but will fail to

predict exact location of damaged trees.
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CHAPTER V

CONCLUSIONS

The Boolean Random Set (BRS) is formed as a result of a union of two processes.

These include, the Poisson point process, which is responsible for the random location of

germs in the window, and an independent grain-process which places grains around the

germs present.

A review of the literature for count time series and the Boolean model showed that

there was a need for a time series model to predict the intensity of the Boolean model.

Hence, the purpose of this study. This study proposed a model for estimating and

predicting the intensity of Boolean random sets that are correlated over time. Additionally,

the lagged observable points n̂t and exposed lower tangent points n+t from the BRS were

used as observations in a log-linear Poisson autoregressive model. Then, maximum

likelihood estimation was used to estimate the parameters of the models, whilst the

method of moments were used for the parameters of the radius estimation. Moreover,

simulations based on twelve (12) schemes in Table 1 for each model proposed were used

to study the properties of these estimates, and also to answer the research questions raised

in this study. Finally, these two models were applied to the mountain pine beetle data from

2001 to 2009. The resulting model was then used to predict the rate for the BRS for the

year 2010.
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Findings

Based on the methodologies proposed and the simulations carried, the results

showed that when both time-dependent covariate xt and past observations n̂ or n+t are

included in the model, both biasedness and standard errors of the parameter estimates

approached zero as time T was increased from 10 to 2500 for the maximum likelihood

estimator of the model. The estimates improved towards parameter values, thus proving

the large sample properties of maximum likelihood estimators. Also, the method of

moments estimators for the uniform distribution’s parameters a and b also showed similar

results in the biasedness and standard errors.

When the radius was unknown but fixed, which was found in schemes 3 and 4,

both maximum likelihood estimators and method of moments estimates had similar

results. Also, the results were similar for fixed and known radius. We conclude that the

estimators are unbiased for estimating the intensity of the Boolean random sets. This

applies to models with and without covariates. However, when there is significant serial

dependency from the covariate, the estimation results must be accepted with caution.

Since the covariate’s dependency could interact with that of the time series. The above

estimators showed asymptotic normality and consistency, which was observed for

sufficiently large T. Thus, we can estimate the intensity of the Boolean model using the

time series built in this study.

In schemes 5 to 8, we showed that a model can be built to estimate the intensity of

a time-dependent BRS that depends only on past observations i.e.: n̂t−1 or n+t−1. The

results were similar to the model with the covariates, i.e.: estimators were unbiased,

consistent and asymptotically normal. Additionally, from schemes 9 to 12, it was shown
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that a model based only on time-dependent covariate xt had similar results as the models

with the covariates. However, without dependence on past observations, the dependence

on past values of the linear predictor may have no effect. Therefore, such models need to

be considered with great care.

In all models, when the radii were non-random, the biasness and standard errors

approached zero relatively faster than when radii were random. Also, under all conditions

in all the models, when the radius was sufficiently large, the recovery rate for the lower

tangent points was lower than when radii were small. This is due to the big grains

absorbing smaller neighboring grains in the Boolean model.

The proposed models were applied to the Rocky Mountain pine beetle data, which

captured the damages of trees in the region from 2001 to 2010. We used the annual

average precipitation as a time-dependent covariate, covering the area of [−107,−105.5]

longitudes by [39.5,41] latitudes. Also, the smoothing parameter for these images was

assumed to be constant across time. Finally, to test the predictive strength of the models

built, the estimated models were used to predict the intensity for 2010, which was

comparable to the original intensity of 2010 datum. However, predicting the location was

not successful, due to the absence of a location parameter in the proposed model.

Limitations and Recommendations

Some limitations encountered in this study reveal suggestions for future research.

These suggestions are stated below. In this study, the location was not modeled.

Therefore, as seen in the application, the intensity of the correlated images were predicted

accurately. However, the future image’s prediction of the locations of the germ was not

quite accurate. Thus, a future study should include a location parameter. This will ensure
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an accurate prediction of location is achieved in addition to the intensity prediction. Also,

different time-dependent covariates should be included in the model to study the effect of

different covariates’ dependencies on the estimation and prediction of the intensity of the

Boolean model. In application of the time series model to data, different nonrandom radii

should be studied to see the effect of large and small fixed radii on the estimation process.

Finally, in method II of this study, the first order Taylor series approximation was used to

study the relationship between Θ+ and Θ̂. Future studies should investigate the nonlinear

relationship rather than an approximation.

Closing Remarks

In conclusion, this study has expanded the field of Boolean random sets by

creating a time series for correlated Boolean random sets. Both options of past

observations n̂ and the exposed lower tangent points n+ can be used accurately in

estimating and predicting the future intensity of Boolean random sets.
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APPENDIX A

ROCKY MOUNTAIN PINE DATA

Figure 14. The Rocky Mountain Pine Beetle Data for 2003.
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Figure 15. The Rocky Mountain Pine Beetle Data for 2004.

Figure 16. The Rocky Mountain Pine Beetle Data for 2005.
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Figure 17. The Rocky Mountain Pine Beetle Data for 2006.

Figure 18. The Rocky Mountain Pine Beetle Data for 2007.
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Figure 19. The Rocky Mountain Pine Beetle Data for 2008.

Figure 20. The Rocky Mountain Pine Beetle Data for 2009.
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Figure 21. The Rocky Mountain Pine Beetle Data for 2010.
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APPENDIX B

ADDITIONAL TABLES

Table 31
Results from Scheme 5, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 -0.50 -0.3348769 0.7069161 -0.1651231 0.0781 <0.001

β1 0.65 0.1118793 0.7638203 0.5381207 0.1572 <0.001
α1 -0.50 -0.0428348 0.6940198 -0.4571652 0.0906 <0.001
a 0.00 -0.0361794 0.0178552 0.0361794 0.0992 <0.001
b 0.10 0.1036912 0.0277260 -0.0036912 0.0466 <0.001

50 β0 -0.50 -0.5059213 0.3970740 0.0059213 0.0287 0.0514
β1 0.65 0.4543636 0.3924046 0.1956364 0.0965 <0.001
α1 -0.50 -0.2204758 0.5736681 -0.2795242 0.1154 <0.001
a 0.00 -0.0420547 0.0071099 0.0420547 0.0565 <0.001
b 0.10 0.1099430 0.0119235 -0.0099430 0.0236 0.1947

100 β0 -0.50 -0.5993548 0.2431495 0.0993548 0.0371 0.0025
β1 0.65 0.5520103 0.2108221 0.0979897 0.0187 0.5413
α1 -0.50 -0.4610817 0.3387216 -0.0389183 0.0678 <0.001
a 0.00 -0.0428222 0.0047946 0.0428222 0.0349 0.006
b 0.10 0.1113204 0.0087453 -0.0113204 0.0267 0.0906

200 β0 -0.50 -0.5875698 0.1860492 0.0875698 0.0252 0.1297
β1 0.65 0.5533976 0.1778275 0.0966024 0.0226 0.2485
α1 -0.50 -0.4021167 0.3184057 -0.0978833 0.0807 <0.001
a 0.00 -0.0432908 0.0033083 0.0432908 0.0230 0.2243
b 0.10 0.1110780 0.0063313 -0.0110780 0.0296 0.0382

500 β0 -0.50 -0.5996991 0.1028733 0.0996991 0.0258 0.1087
β1 0.65 0.5688350 0.1058154 0.0811650 0.0168 0.7069
α1 -0.50 -0.4521468 0.1578867 -0.0478532 0.0401 0.0007
a 0.00 -0.0436061 0.0020011 0.0436061 0.0162 0.7534
b 0.10 0.1114748 0.0038976 -0.0114748 0.0259 0.1059

1000 β0 -0.50 -0.5972771 0.0739390 0.0972771 0.0135 0.9309
β1 0.65 0.5670460 0.0744259 0.0829540 0.0146 0.8699
α1 -0.50 -0.4565769 0.1096523 -0.0434231 0.0448 0.0001
a 0.00 -0.0436799 0.0014368 0.0436799 0.0182 0.5851
b 0.10 0.1113546 0.0027209 -0.0113546 0.0119 0.9801

2500 β0 -0.50 -0.5988528 0.0486666 0.0988528 0.0327 0.0134
β1 0.65 0.5726614 0.0481791 0.0773386 0.0384 0.0014
α1 -0.50 -0.4495280 0.0691031 -0.0504720 0.0325 0.0144
a 0.00 -0.0437907 0.0009416 0.0437907 0.0242 0.1647
b 0.10 0.1114041 0.0017694 -0.0114041 0.0205 0.3943
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Table 32
Results from Scheme 6, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 0.50 0.2042058 0.6629356 0.2957942 0.1143 <0.001

β1 -0.35 -0.4138851 0.6505584 0.0638851 0.1838 <0.001
α1 -0.50 0.0549702 0.6320740 -0.5549702 0.0802 <0.001
a 0.00 -0.0368994 0.0173446 0.0368994 0.1171 <0.001
b 0.10 0.1048638 0.0250135 -0.0048638 0.0396 9e-04

50 β0 0.50 0.2662686 0.2337222 0.2337314 0.0486 <0.001
β1 -0.35 -0.3971686 0.3036561 0.0471686 0.0516 <0.001
α1 -0.50 -0.0672230 0.5550209 -0.4327770 0.0956 <0.001
a 0.00 -0.0423578 0.0058369 0.0423578 0.0462 <0.001
b 0.10 0.1098913 0.0117255 -0.0098913 0.0270 0.0817

100 β0 0.50 0.2514346 0.1782821 0.2485654 0.0434 1e-04
β1 -0.35 -0.3346234 0.2094961 -0.0153766 0.0174 0.654
α1 -0.50 -0.4197436 0.4223442 -0.0802564 0.1114 <0.001
a 0.00 -0.0432270 0.0040237 0.0432270 0.0368 0.0028
b 0.10 0.1107726 0.0075212 -0.0107726 0.0179 0.6131

200 β0 0.50 0.2529204 0.1169736 0.2470796 0.0267 0.0908
β1 -0.35 -0.3300212 0.1382172 -0.0199788 0.0292 0.0435
α1 -0.50 -0.3774756 0.3876345 -0.1225244 0.1351 <0.001
a 0.00 -0.0434270 0.0028671 0.0434270 0.0293 0.0416
b 0.10 0.1110546 0.0054744 -0.0110546 0.0301 0.0324

500 β0 0.50 0.2573642 0.0751298 0.2426358 0.0195 0.4674
β1 -0.35 -0.3311777 0.0889402 -0.0188223 0.0167 0.7185
α1 -0.50 -0.4971447 0.1823686 -0.0028553 0.0855 <0.001
a 0.00 -0.0437265 0.0018438 0.0437265 0.0406 5e-04
b 0.10 0.1113912 0.0035799 -0.0113912 0.0243 0.1621

1000 β0 0.50 0.2586189 0.0523329 0.2413811 0.0209 0.3603
β1 -0.35 -0.3255176 0.0605023 -0.0244824 0.0215 0.3187
α1 -0.50 -0.5122990 0.1203847 0.0122990 0.0541 <0.001
a 0.00 -0.0437147 0.0012951 0.0437147 0.0260 0.103
b 0.10 0.1114175 0.0025302 -0.0114175 0.0148 0.8607

2500 β0 0.50 0.2568855 0.0334128 0.2431145 0.0164 0.7396
β1 -0.35 -0.3235158 0.0388118 -0.0264842 0.0229 0.2278
α1 -0.50 -0.5222168 0.0702031 0.0222168 0.0275 0.0716
a 0.00 -0.0437945 0.0007711 0.0437945 0.0139 0.9125
b 0.10 0.1113376 0.0016393 -0.0113376 0.0263 0.0957
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Table 33
Results from Scheme 7, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 1.70 1.8723692 0.7090535 -0.1723692 0.0549 <0.001

β1 0.65 0.3936916 0.5106610 0.2563084 0.1294 <0.001
α1 -0.50 -0.3304898 0.6007120 -0.1695102 0.1325 <0.001

Radius 0.01 0.0098009 0.0006341 0.0001991 0.0240 0.1766
50 β0 1.70 1.8014570 0.5920243 -0.1014570 0.0371 0.0025

β1 0.65 0.5754635 0.1557404 0.0745365 0.0268 0.087
α1 -0.50 -0.4805663 0.2566208 -0.0194337 0.0573 <0.001

Radius 0.01 0.0097794 0.0002797 0.0002206 0.0219 0.2911
100 β0 1.70 1.7342172 0.4184706 -0.0342172 0.0310 0.0241

β1 0.65 0.5848675 0.1115658 0.0651325 0.0147 0.8630
α1 -0.50 -0.4594400 0.1835352 -0.0405600 0.0342 0.0079

Radius 0.01 0.0097677 0.0001941 0.0002323 0.0167 0.7143
200 β0 1.70 1.7157622 0.3021399 -0.0157622 0.0202 0.4177

β1 0.65 0.5942236 0.0794240 0.0557764 0.0216 0.3088
α1 -0.50 -0.4581225 0.1226270 -0.0418775 0.0429 0.0002

Radius 0.01 0.0097749 0.0001354 0.0002251 0.0171 0.6828
500 β0 1.70 1.7104079 0.1743871 -0.0104079 0.0168 0.7083

β1 0.65 0.5933565 0.0505177 0.0566435 0.0213 0.3310
α1 -0.50 -0.4544700 0.0690476 -0.0455300 0.0263 0.0960

Radius 0.01 0.0097740 0.0000900 0.0002260 0.0198 0.4497
1000 β0 1.70 1.7122275 0.1236519 -0.0122275 0.0189 0.5257

β1 0.65 0.5942075 0.0350559 0.0557925 0.0217 0.3012
α1 -0.50 -0.4565386 0.0509232 -0.0434614 0.0234 0.2024

Radius 0.01 0.0097715 0.0000614 0.0002285 0.0163 0.7462
2500 β0 1.70 1.7042273 0.0827892 -0.0042273 0.0269 0.0842

β1 0.65 0.5947220 0.0224310 0.0552780 0.0216 0.3124
α1 -0.50 -0.4528117 0.0317134 -0.0471883 0.0164 0.7411

Radius 0.01 0.0097739 0.0000386 0.0002261 0.0185 0.5550
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Table 34
Results from Scheme 8, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 5.50 5.4675300 0.4651444 0.0324700 0.1121 <0.001

β1 -0.35 -0.4855162 0.1541317 0.1355162 0.1028 <0.001
α1 -0.50 -0.2334213 0.2530244 -0.2665787 0.1188 <0.001

Radius 0.01 0.0098270 0.0004538 0.0001730 0.0268 0.0867
50 β0 5.50 5.4090830 0.3384554 0.0909170 0.1972 <0.001

β1 -0.35 -0.5154164 0.1048428 0.1654164 0.0919 <0.001
α1 -0.50 -0.2945414 0.1687878 -0.2054586 0.1206 <0.001

Radius 0.01 0.0098785 0.0001742 0.0001215 0.0283 0.0574
100 β0 5.50 5.4186821 0.3187415 0.0813179 0.1895 <0.001

β1 -0.35 -0.4637671 0.0704384 0.1137671 0.0367 0.003
α1 -0.50 -0.3617153 0.1310982 -0.1382847 0.1117 <0.001

Radius 0.01 0.0098904 0.0001193 0.0001096 0.0173 0.6599
200 β0 5.50 5.4441611 0.1883983 0.0558389 0.1197 <0.001

β1 -0.35 -0.4219371 0.0563366 0.0719371 0.0230 0.2221
α1 -0.50 -0.4208008 0.0898216 -0.0791992 0.0427 2e-04

Radius 0.01 0.0098885 0.0000850 0.0001115 0.0190 0.5149
500 β0 5.50 5.4491965 0.1036190 0.0508035 0.0601 <0.001

β1 -0.35 -0.3797037 0.0402148 0.0297037 0.0233 0.2094
α1 -0.50 -0.4696825 0.0606426 -0.0303175 0.0314 0.0217

Radius 0.01 0.0098906 0.0000519 0.0001094 0.0319 0.018
1000 β0 5.50 5.4408511 0.0754698 0.0591489 0.0456 <0.001

β1 -0.35 -0.3580998 0.0280942 0.0080998 0.0155 0.8107
α1 -0.50 -0.4904535 0.0425579 -0.0095465 0.0225 0.2531

Radius 0.01 0.0098897 0.0000352 0.0001103 0.0244 0.1587
2500 β0 5.50 5.4417913 0.0516558 0.0582087 0.0292 0.0437

β1 -0.35 -0.3413752 0.0179233 -0.0086248 0.0294 0.0410
α1 -0.50 -0.5084564 0.0283505 0.0084564 0.0186 0.5463

Radius 0.01 0.0098919 0.0000236 0.0001081 0.0238 0.1828
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Table 35
Results from Scheme 9, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 0.5 -1.2121520 9.0640439 0.7121520 0.3443 <0.001

α1 0.5 -0.5096134 0.5488904 0.0096134 0.1858 <0.001
η1 0.5 -1.1136221 30.8403348 1.6136221 0.4077 <0.001
a 0.0 -0.0366682 0.0179839 0.0366682 0.0951 <0.001
b 0.1 0.1022382 0.0281244 -0.0022382 0.0479 <0.001

50 β0 -0.5 -0.7395628 0.4905854 0.2395628 0.0518 <0.001
α1 -0.5 -0.6800055 0.4517623 0.1800055 0.2394 <0.001
η1 0.5 0.3055890 0.7791583 0.1944110 0.0685 <0.001
a 0.0 -0.0423787 0.0068114 0.0423787 0.0599 <0.001
b 0.1 0.1101738 0.0123652 -0.0101738 0.0326 0.014

100 β0 -0.5 -0.6581751 0.3874993 0.1581751 0.0279 0.065
α1 -0.5 -0.2359442 0.5242861 -0.2640558 0.0866 <0.001
η1 0.5 0.5475080 0.6147918 -0.0475080 0.0731 <0.001
a 0.0 -0.0429870 0.0047452 0.0429870 0.0486 <0.001
b 0.1 0.1103703 0.0087170 -0.0103703 0.0218 0.2977

200 β03 -0.5 -0.7003852 0.2426265 0.2003852 0.0262 0.0976
α13 -0.5 -0.7240535 0.3702756 0.2240535 0.2281 <0.001
η13 0.5 0.3473088 0.4187347 0.1526912 0.1041 <0.001

a 0.0 -0.0434029 0.0033630 0.0434029 0.0359 0.004
b 0.1 0.1113126 0.0062622 -0.0113126 0.0172 0.6756

500 β0 -0.5 -0.6739350 0.1833481 0.1739350 0.0529 <0.001
α1 -0.5 -0.3879736 0.4011155 -0.1120264 0.1053 <0.001
η1 0.5 0.5118753 0.2432981 -0.0118753 0.0257 0.1135
a 0.0 -0.0435910 0.0020490 0.0435910 0.0263 0.0966
b 0.1 0.1113053 0.0039265 -0.0113053 0.0252 0.1296

1000 β0 -0.5 -0.6793971 0.1201818 0.1793971 0.0204 0.3987
α1 -0.5 -0.6036172 0.3281188 0.1036172 0.1135 <0.001
η1 0.5 0.3981635 0.2689254 0.1018365 0.1003 <0.001
a 0.0 -0.0437452 0.0014621 0.0437452 0.0263 0.0957
b 0.1 0.1114228 0.0028400 -0.0114228 0.0193 0.4906

2500 β0 -0.5 -0.6887593 0.0790802 0.1887593 0.0436 1e-04
α1 -0.5 -0.4748855 0.1889638 -0.0251145 0.0767 <0.001
η1 0.5 0.4948276 0.1156884 0.0051724 0.0265 0.0953
a 0.0 -0.0437410 0.0009323 0.0437410 0.0230 0.2242
b 0.1 0.1114504 0.0018170 -0.0114504 0.0168 0.7038
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Table 36
Results from Scheme 10, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 0.5 1.0720303 1.0431434 -0.5720303 0.0821 <0.001

α1 0.5 -0.0548839 0.5657680 0.5548839 0.0704 <0.001
η1 0.5 0.4719820 1.2706779 0.0280180 0.0693 <0.001
a 0.0 -0.0405973 0.0085884 0.0405973 0.0568 <0.001
b 0.1 0.1084605 0.0182022 -0.0084605 0.0306 0.0281

50 β0 0.5 0.8395556 0.7738290 -0.3395556 0.1585 <0.001
α1 0.5 0.1780761 0.5231464 0.3219239 0.1263 <0.001
η1 0.5 0.4715788 0.4202374 0.0284212 0.0598 <0.001
a 0.0 -0.0428560 0.0034706 0.0428560 0.0213 0.3293
b 0.1 0.1110672 0.0079636 -0.0110672 0.0173 0.6594

100 β0 0.5 0.9584053 0.8195898 -0.4584053 0.1720 <0.001
α1 0.5 0.0957730 0.5762771 0.4042270 0.1389 <0.001
η1 0.5 0.4374326 0.3059018 0.0625674 0.0496 <0.001
a 0.0 -0.0434254 0.0023878 0.0434254 0.0258 0.1103
b 0.1 0.1114786 0.0056105 -0.0114786 0.0273 0.0756

200 β0 0.5 0.5294143 0.4054557 -0.0294143 0.1513 <0.001
α1 0.5 0.4150226 0.3120527 0.0849774 0.1266 <0.001
η1 0.5 0.4782288 0.1783724 0.0217712 0.0191 0.503
a 0.0 -0.0433873 0.0017090 0.0433873 0.0155 0.8137
b 0.1 0.1111841 0.0041660 -0.0111841 0.0182 0.582

500 β0 0.5 0.5244617 0.4208695 -0.0244617 0.2037 <0.001
α1 0.5 0.4216998 0.3034599 0.0783002 0.1679 <0.001
η1 0.5 0.4690289 0.1366033 0.0309711 0.0423 2e-04
a 0.0 -0.0435789 0.0010611 0.0435789 0.0193 0.4908
b 0.1 0.1112946 0.0025204 -0.0112946 0.0200 0.4313

1000 β0 0.5 0.4397909 0.1513448 0.0602091 0.0571 <0.001
α1 0.5 0.4854633 0.1243818 0.0145367 0.0409 5e-04
η1 0.5 0.4716539 0.0809193 0.0283461 0.0276 0.0708
a 0.0 -0.0435825 0.0007169 0.0435825 0.0176 0.6387
b 0.1 0.1113224 0.0017804 -0.0113224 0.0294 0.0409

2500 β0 0.5 0.4275567 0.0920702 0.0724433 0.0657 <0.001
α1 0.5 0.4970404 0.0762144 0.0029596 0.0530 <0.001
η1 0.5 0.4668783 0.0506389 0.0331217 0.0244 0.1571
a 0.0 -0.0435531 0.0004652 0.0435531 0.0244 0.1576
b 0.1 0.1114625 0.0011671 -0.0114625 0.0248 0.1442
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Table 37
Results from Scheme 11, Method II

Time θ Parameters θ+ Std.Error Bias Statistic P value
10 β0 5.50 4.1025967 1.9743443 1.3974033 0.1341 <0.001

η1 -0.50 -0.1422244 0.6612251 -0.3577756 0.2091 <0.001
η1 0.50 0.6064356 1.5648207 -0.1064356 0.1516 <0.001

Radius 0.01 0.0099352 0.0002419 0.0000648 0.0248 0.1426
50 β0 5.50 5.6080685 0.9897076 -0.1080685 0.2272 <0.001

η1 -0.50 -0.5478898 0.2739805 0.0478898 0.2824 <0.001
η1 0.50 0.5938495 0.2840626 -0.0938495 0.0778 <0.001

Radius 0.01 0.0099347 0.0001054 0.0000653 0.0199 0.4419
100 β0 5.50 5.6806234 0.3368184 -0.1806234 0.0240 0.1769

η1 -0.50 -0.5674997 0.0762205 0.0674997 0.0175 0.6448
η1 0.50 0.5416910 0.1425714 -0.0416910 0.0360 0.0039

Radius 0.01 0.0099354 0.0000732 0.0000646 0.0160 0.7698
200 β0 5.50 5.5829587 0.2365030 -0.0829587 0.0225 0.2519

η1 -0.50 -0.5408385 0.0571011 0.0408385 0.0177 0.6312
η1 0.50 0.5033355 0.0795408 -0.0033355 0.0261 0.1016

Radius 0.01 0.0099338 0.0000542 0.0000662 0.0227 0.2417
500 β0 5.50 5.4981918 0.1605679 0.0018082 0.0254 0.1228

η1 -0.50 -0.5192521 0.0400266 0.0192521 0.0296 0.0388
η1 0.50 0.4883774 0.0401201 0.0116226 0.0175 0.6422

Radius 0.01 0.0099307 0.0000346 0.0000693 0.0161 0.7618
1000 β0 5.50 5.4623418 0.1166546 0.0376582 0.0169 0.6985

η1 -0.50 -0.5096782 0.0294426 0.0096782 0.0170 0.6935
η1 0.50 0.4828624 0.0250903 0.0171376 0.0186 0.5489

Radius 0.01 0.0099324 0.0000232 0.0000676 0.0143 0.8886
2500 β0 5.50 5.4379128 0.0768518 0.0620872 0.0233 0.2072

η1 -0.50 -0.5035102 0.0193260 0.0035102 0.0261 0.1005
η1 0.50 0.4804499 0.0153021 0.0195501 0.0375 0.0021

Radius 0.01 0.0099312 0.0000145 0.0000688 0.0280 0.0614
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Table 38
Results from Scheme 12, Method II

Time θ Parameters θ+ Std.Error Bias Statistic p value
10 β0 1.70 1.8752622 2.1071622 -0.1752622 0.3685 <0.001

α1 0.50 0.4202676 0.5143893 0.0797324 0.3216 <0.001
η1 0.50 0.5750847 0.6881455 -0.0750847 0.1808 <0.001

Radius 0.01 0.0099085 0.0002788 0.0000915 0.0148 0.8594
50 β0 1.70 0.8179122 0.2767546 0.8820878 0.1609 <0.001

α1 0.50 0.7216200 0.0750452 -0.2216200 0.1299 <0.001
η1 0.50 0.5010218 0.1048514 -0.0010218 0.0438 1e-04

Radius 0.01 0.0099291 0.0001088 0.0000709 0.0152 0.8341
100 β0 1.70 0.8880910 0.1655180 0.8119090 0.0471 <0.001

α1 0.50 0.7094483 0.0490928 -0.2094483 0.0484 <0.001
η1 0.50 0.4531031 0.0705764 0.0468969 0.0301 0.0324

Radius 0.01 0.0099316 0.0000760 0.0000684 0.0244 0.1592
200 β0 1.70 1.0718956 0.1954907 0.6281044 0.0361 0.0037

α1 0.50 0.6619998 0.0558025 -0.1619998 0.0286 0.0519
η1 0.50 0.4483626 0.0555596 0.0516374 0.0160 0.7717

Radius 0.01 0.0099306 0.0000535 0.0000694 0.0171 0.6785
500 β0 1.70 1.3897121 0.1594671 0.3102879 0.0199 0.4386

α1 0.50 0.5771351 0.0440648 -0.0771351 0.0255 0.1180
η1 0.50 0.4652310 0.0331490 0.0347690 0.0150 0.8454

Radius 0.01 0.0099325 0.0000330 0.0000675 0.0154 0.8181
1000 β0 1.70 1.5349361 0.1182146 0.1650639 0.0215 0.3187

α1 0.50 0.5386175 0.0323246 -0.0386175 0.0211 0.3488
η1 0.50 0.4715798 0.0243838 0.0284202 0.0151 0.8424

Radius 0.01 0.0099330 0.0000240 0.0000670 0.0219 0.2923
2500 β0 1.70 1.6254592 0.0715460 0.0745408 0.0179 0.6079

α1 0.50 0.5147115 0.0194706 -0.0147115 0.0135 0.9298
η1 0.50 0.4751259 0.0144324 0.0248741 0.0212 0.3401

Radius 0.01 0.0099341 0.0000144 0.0000659 0.0191 0.5021
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