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ABSTRACT 

Harding, Justin. Performance of Shared Parameter Missing Data Models for Intensive  

Longitudinal Data. Published Doctor of Philosophy dissertation, University 

of Northern Colorado, 2024. 

 

Ecological Momentary Assessment (EMA) studies, also known as Intensive Longitudinal 

Data (ILD), involve participants that are intensively measured over time.  Intermittent missing 

data tends to occur due to participants not responding when prompted.  The high volume of 

assessments and intermittent nature of missingness have made some traditional longitudinal 

missing data methods unsuited to handle the missingness of EMA data.  Two recent missing 

models intended for ecological momentary assessment missing data situations have emerged that 

jointly model the outcome and missingness, providing information about the latent trait of 

responding to prompts. Both models implement a shared parameter as a random effect but do so 

in different ways.  X. Lin et al. (2018) model the missing process by using a random intercept 

logistic regression model for the binary missing prompt indicators. Cursio et al. (2019) model the 

missing process using item response theory to model responsiveness to the prompting device as a 

latent trait.  The purpose of this study was to compare these two joint models used to handle 

missing data in ecological momentary assessment (EMA) studies and to evaluate their 

performance under different assessment and missing data scenarios.  A simulation was designed 

to compare these two joint models under a few different assessments and percentage of missing 

prompts scenarios to evaluate their performance in terms of parameter estimate bias, empirical 

standard errors, and computation run time.  Results in this missing data simulation displayed that 

the joint shared parameter missing data models consistently outperformed statistical software’s 
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default missing data method list-wise deletion displaying the value of these models in ILD 

missing data situations. The Latent Trait Shared Parameter Mixed Model (LTSPMM) performed 

superior in this simulation and is recommended as a missing data model in ILD studies.  The 

results of this study provides researchers with guidance on the performance of both shared 

parameter missing data models under missing data conditions that might be observed in real ILD 

data situations.   
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CHAPTER I  

INTRODUCTION TO THE STUDY 

Missing data is a frequent problem in longitudinal studies as participants miss 

observations or drop out completely.  The loss of information from missing data causes severe 

bias and reduces precision in estimation that compromises inferences and potentially bias the 

results.  Knowing how to manage missing data will prove extremely valuable to reduce bias and 

lessen misleading inferences.  The result of poorly informed missing data handling is often loss 

of statistical power, as well as biased and inefficient parameter estimates that may lead to 

incorrect conclusions about the nature of variable relationships in the population (Black et al., 

2011).  This chapter will provide an introduction on longitudinal data, missing data mechanisms 

(Rubin, 1976), and missing data methods for longitudinal studies.  The following section will 

introduce ecological momentary assessment studies, their missing data situation, emerging 

missing data models, and concludes with research questions and study limitations.        

Longitudinal studies involve repeated measurements of the same properties from the 

same individuals with the intentions of capturing trends over time.  These studies offer the ability 

to study within- and between-subject variations.  The fluctuations of the participants can be 

assessed through time-independent and time-dependent covariates. The goal of researchers is that 

all participants have the same number of measurements over the course of the study.  However, 

tracking individuals over time has proven to be complicated with missing measurements or 

dropout occurring at any time throughout the study for a multitude of reasons.  A common type 

of missingness in longitudinal studies is dropout.  The problem with the missing responses is loss 
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of power and efficiency resulting from larger standard errors and bias.  For example, sometimes 

the participants have missing data for a reason and the collection of participants that stick around 

may not represent the populations intended.   Next, I will give a brief background on longitudinal 

missing data models.               

Flawed methods for handling missing data involve removing observations of incomplete 

data or by filling in a single missing value (i.e., list-wise deletion and single imputation).  

Deleting the missing data is a strategy that is firmly entrenched in statistical software packages 

and is exceedingly common in many research disciplines (Peugh & Enders, 2004).  As a default 

option in some statistical software packages, list-wise deletion is still used today even though it 

requires a strict assumption about the missing data and is prone to substantial bias.  In a meta-

analysis of longitudinal studies from three major journals between the years 2000 to 2006, Jelicic 

et al. (2009) found that 82 out of 100 articles were using traditional missing data methods that 

are statistically problematic. The implication of not addressing missing data can lead to biased 

misleading inferences so properly handling missing data will help mitigate the bias while gaining 

a more accurate understanding of individuals over time.   

A breakthrough for missing data happened when Rubin (1976) outlined a theoretical 

framework for missing data problems that remains in widespread use today.  The missing data 

mechanisms were designated Missing Completely At Random (MCAR), Missing At Random 

(MAR) and Missing Not At Random (MNAR) which will be described in detail in chapter 2.  

Properly applying Rubin’s mechanisms helps the researcher to understand their missing data 

situation and modern longitudinal missing data methods help improve their analysis with the 

possibility of estimating unbiased estimators.   
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Longitudinal missing data methods have received considerable attention in the 

methodological literature during the past 50 years.  Researchers applied Rubin’s mechanisms to 

create different longitudinal missing data models depending on the mechanism and probability of 

missing.   For example, full information maximum likelihood (FIML) and multiple imputation 

(MI) are missing data methods that are useful in MAR missingness scenarios and aim to preserve 

key relationships among variables and better estimate the variability in the data.  Selection of 

missing data techniques should be done with the primary goal of preserving the distributional 

characteristics of the variables of interest, as well as their interrelationships with other variables 

for the purpose of deriving valid and meaningful inferences from the available data (Schafer, 

1997; Schafer & Graham, 2002).  As the literature has grown and researchers have gained more 

knowledge about missing data, along with increased statistical software capabilities, there has 

been a rise in implementing missing methods in longitudinal studies. Hayati Rezvan et al. (2015) 

identified 103 articles in medical research that used multiple imputation in an increasing trend 

from the years 2008 to 2013.      

There is not one perfect method to manage missing data and the literature is constantly 

growing with missing data techniques to help researchers for the many diverse data situations. 

Enders (2010) warns that missing data handling techniques are only as good as the veracity of 

the assumptions they rely on, so thoughtfully applying these models is always important.   

Ecological Momentary Assessment 

 Ecological Momentary Assessments (Stone & Shiffman, 1994) are a modern version of 

longitudinal projects where researchers gather a high frequency of observations on participants.  

These types of studies are sometimes referred to as Intensive Longitudinal Data (Walls & 

Schafer, 2006) or experience sampling (deVries, 1992; Hektner et al., 2007; Larson & 
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Csikszentmihalyi, 1983).  The primary goal is to study psychological and behavior events by 

repeatedly collecting the momentary states of the participants in their natural environment over a 

predetermined timeframe.  The assessments capture events, behaviors, and moods in the moment 

or after a slight time lapse with the hope of avoiding participant recall bias.  For example, the 

self-report assessments are setup to ask about the current or recent emotional states of the 

participants, rather than asking them to recall or summarize their states over longer periods of 

time.  What ecological momentary assessments (EMA) studies have in common is the collection 

of assessments of subjects’ current or recent states, sampled repeatedly over time, in their natural 

environments (Shiffman et al., 2008).  The observations get real-time, real-world behaviors in 

the participants’ daily settings warranting ecological validity.  For example, if one is interested in 

how subjects feel in a relationship, asking them in their daily life as it unfolds will provide better 

information than asking them in a research clinic.  EMA research ensures ecological validity by 

collecting data in the real world, ensuring that the data represent the full range of real-life 

experience (Stone et al., 2007).  EMA addresses the unchanging nature of cross-sectional surveys 

by analyzing dynamic association over time.   

The repeated sampling in EMA studies allows researchers to capture experiences and 

changes within-subjects over time and across contexts during their everyday life.  The within-

subject relationships reveal subtle and immediate effects of momentary states allowing 

researchers to gain a better understanding about the process of behaviors and events.  Analyses 

of within-subject relations yield insights into the dynamic association between variables and their 

dependence on situational circumstances (Bolger et al., 2003).  For example, to examine if 

people have a positive state after being physically active, measuring the within-subject states 

over time will help to provide context of activity.  The repeated real time assessments allow 
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time-dependent processes to expose contextual information of both within and between 

participant momentary states.     

EMA studies often examine the sequences of experiences leading to behaviors or events.  

In this type of analyses, the order of events or experiences are the key focus and are explicitly 

studied.  The degree to which an individual’s emotional state at a given time point is predictive 

of his/her emotional state at subsequent time points (Jahng et al., 2008).  For example, does high 

craving of a substance at one time point predict substance use at following time points?  The 

temporal sequence enables researchers to describe and analyze events and state behaviors over 

periods of hours or days.  This is another way that EMA can display dynamic relationships over 

time.     

 EMA procedures entail repeatedly prompting participants to complete short surveys over 

the course of hours, days, or weeks.  In modern computerized EMA designs, participants are first 

‘‘beeped’’ by a device or a beeper, Personal Digital Assistant (PDA), phone call, or text message 

sent to a smartphone, and then complete a brief questionnaire about what they are doing, 

thinking, and feeling at the moment (Hektner et al., 2007).  Researchers determine the number of 

prompts allowing enough time to capture how behaviors and events unfold in the context of their 

research questions.  Although it is subjective and content-dependent, these studies tend to 

generate large numbers of observations per participant.  Shiffman et al. (2008) indicated that 

assessing subjects 3 to 5 times per day is common.  Particular threats to repeated measures 

studies, and specifically those involving momentary assessment, are fatigue, forgetfulness, 

noncompliance, and dropout (Black et al., 2011).  The random nature of the prompting 

mechanism combined with participants going about their daily lives inevitably leads to some 

participants having nonresponse on the prompts.  Participants often ignore the “beep” as they are 
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in their natural environment, not the constrained context of a research lab (Silvia et al., 2013).  

Unlike longitudinal studies, it is rare for participants to drop out; instead, they miss a prompt 

then return to the study, which is termed intermittent missingness.  Typically, EMA procedures 

involve instant short surveys from individuals over the course of hours, days, and weeks, where 

relatively large numbers of measurements per subject are produced and intermittent missingness 

due to non-responses can be an issue (Sokolovsky et al., 2014).  This leads to each participant 

having varying amounts of recorded measurements and non-response for a high frequency of 

observations.  Recent meta-analyses report that the compliance rates to the prompting device 

across multiple disciplines ranges between seventy and eighty percent (Jones et al., 2019; Liao et 

al., 2016; Wen et al., 2017).   

 In many situations, modern longitudinal missing data methods may not be appropriate for 

EMA missing data.  For example, a small number of unique patterns are needed for pattern 

mixture models to be successful.  Intermittent missingness among the participants can create a 

considerable number of missing patterns making it more difficult to implement a pattern mixture 

model.  The assumptions about the nature of the missing data are typically unknown in EMA 

studies and, in many cases, the missing data is complex and highly irregular (Cursio et al., 2019).  

In recent years, two models have emerged that offer ways of analyzing the missing EMA 

data with intermittent response patterns.  X. Lin et al. (2018) presented a shared parameter 

modeling approach that links the primary longitudinal outcome with informative missingness by 

a common set of random effects that summarize subjects’ specific traits in terms of their mean 

(location) and variability (scale).  Cursio et al. (2019) presented a model that utilized item 

response theory to model responsiveness to the prompting device as a latent trait.  In this 

situation, the latent trait is modeled jointly with a mixed model for bivariate longitudinal 



7 

 

 

 

outcomes.  To date, these two EMA missing models have been studied separately and have not 

been evaluated under simulated datasets in one study.  The purpose of this study was to compare 

these two joint models used to handle missing data in ecological momentary assessment (EMA) 

studies and to evaluate their performance under different assessment and missing data scenarios.  

In this dissertation, I intend to compare the performance of these two models by simulation and 

the illustration of an application to real intermittently missing data by the EMA models under 

various prompting and missingness conditions.   

Research Questions 

 The following list of research questions will be answered by comparing the performance 

of the two shared parameter missing data models.   

Q1  Which model, ILD missing data models LTSPMM (Cursio et al., 2019), SPLR 

(X. Lin et al., 2018), or the full mixed-effect location random effects model using 

list-wise deletion, perform better under different combinations of number of 

prompts (25, 40) and intermittent missingness scenarios (20%, 30%) in terms of 

raw bias percentage? 

 

Q2 Which model, ILD missing data model LTSPMM (Cursio et al., 2019), SPLR (X. 

Lin et al., 2018), or the full mixed-effect location random effects model using list-

wise deletion perform better under different combinations of number of prompts 

(25, 40) and missingness scenarios (20%, 30%) in terms of empirical standard 

errors? 

 

Q3 Which ILD missing data model LTSPMM (Cursio et al., 2019) or the SPLR 

model (X. Lin et al., 2018), performs more computationally efficient in terms of 

computational run time? 

 

Limitations of Study 

This study has some possible limitations.  Most computational simulation models are 

simplified to allow for an easier understanding of a complex phenomenon.  Real world data 

situations may incorporate many variable types with diverse distributions making the missing 

data more complex.  Building models that are too complicated are not feasible as they can lead to 
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difficulty demonstrating the effect that the missing data models have on the results.  The 

specification of deciding which factors to include in the model is another limitation.  The 

simulation model uses variables based on an empirical study focusing on certain factors that are 

relevant to a theory or hypothesis being studied.  However, designing EMA studies is quite 

complex with several factors influencing each other.  Thus, specifying the factors that are 

incorporated in this model ensure that the model is not so simplified that it would generate 

results of little significance.        

In terms of organization for this dissertation, chapter II will provide a literature review on 

modern longitudinal and EMA missing data models.  First, a background on missing data for 

longitudinal studies, which includes the longitudinal mixed-effects model, missing data patterns, 

missing data mechanisms, traditional and modern missing data techniques.  The second part of 

the literature review will provide information on EMA missing data models using multiple 

imputation, shared parameter with item response theory and shared parameter location scale 

model.  Chapter III will include information on the proposed method for analyzing the two EMA 

missing data models by simulation as well as a real data application.  The results will be 

discussed in Chapter IV and the discussion and conclusion in Chapter V.    
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CHAPTER II 

REVIEW OF LITERATURE 

The goal of this section is to provide a theoretical overview of missing data mechanisms 

and common missing data techniques for longitudinal and Intensive Longitudinal Data (ILD) 

studies.  The chapter will begin with a discussion on longitudinal missing data providing 

background on the linear mixed-effects model, missing data mechanisms, traditional and modern 

missing data models. In the following section, there will be a review of ILD, patterns of missing 

data, and an introduction to the linear mixed-effects location scale model.  The chapter will 

conclude with review on three distinct types of ILD missing data models:  multiple imputation 

missing data technique, shared parameter missing model utilizing item response theory and 

shared parameter missing model applying a logistic regression model.   

Longitudinal and ILD research projects involve collecting repeated observations on the 

same individuals over time.  One of the main obstacles for them is what to do when individuals 

miss observations or drop out completely.  The loss of information from missing data can cause 

imbalanced data, loss of precision and in some circumstances can introduce bias that led to 

misinformed inferences.  Understanding the association that the missing data has with the 

variables may lead to unbiased conclusions.  Rubin (1976) and colleagues (Little & Rubin, 2002) 

produced a classification system to describe relationships between the probability of missing data 

and variables.  Properly understanding the type of missing data is a fundamental part of the data 

analysis process that leads to better results.    
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Linear Mixed-Effects Model 

The modeling procedure that researchers in longitudinal and ILD studies typically use to 

account for these data situations is the linear mixed-effects model (LMM) introduced by Laird 

and Ware (1982).  According to Molenberghs and Verbeke (2001), the LMM has become the 

primary method for analysis of longitudinal data.  The multilevel model includes random subject 

effects that account for individual fluctuations allowing researchers to assess the inter-

individuals along with between person variations by relaxing the homogeneity of variance 

assumption from the classical models.  LMM offers more flexibility in terms of repeated 

measures as participants can have different numbers of observations and time can be continuous 

rather than a fixed set of points.  The covariance structure among repeated measures offers 

flexible specification.  LMM is more flexible in term of repeated measures and does not require 

restrictive assumptions concerning missing data across time and the variance–covariance 

structure of the repeated measures (Nakai & Ke, 2011). The LMM equation is  

𝑌𝑖𝑡 =  𝑿𝒊𝒕
𝑻 𝜷 + 𝒁𝒊𝒕𝒖𝒊 +  𝜀𝑖𝑡.     (2.1)  

In this equation, 𝑖 refers to the participant and 𝑖 = 1, … , 𝑁 where 𝑁 is equal to the total number 

of participants.  The number of time points 𝑡 is measured for each participant and can vary by 

participant 𝑡 = 1, … , 𝑛𝑖 .  The vector 𝑌𝑖𝑡 refers to collected longitudinal responses for a given 

participant.  The design matrix for the model covariates 𝑿𝒊𝒕 includes all fixed and time-

dependent covariates including a column of ones for the intercept term and has the dimension 

𝑛𝑖 × 𝑝. The vector 𝜷 includes all fixed coefficients, which includes time in the model and has 

dimension 𝑝 × 1.  The term 𝑍𝑖𝑡 represents the 𝑛𝑖 × 𝑟 design matrix for the random effects terms 

𝑢𝑖, which are the random intercept 𝑢0𝑖 and random slope 𝑢1𝑖 (r=2) in this study.  This design 

matrix includes a column of ones for the random intercept term 𝑢0𝑖 and additional columns for 
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covariates that are allowed to vary among participants.  In most situations, the columns in 𝑍𝑖𝑡 are 

a subset of columns included in 𝑿𝒊𝒕.  The assumptions for the LMM involve validity of the 

model, independence of the data points, linearity of the relationship between the predictors and 

the response, and absence of measurement error in the predictor.   The random effects 𝑢𝑖 are 

(𝑢0, 𝑢1) ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝜀
2) and a variance/covariance structure of  

G = (𝑢) = (
𝜎𝑢0

2 𝜎𝑢01

𝜎𝑢01
𝜎𝑢1

2 ),     (2.2) 

𝜀𝑖𝑡 is an independent error term with the distribution of 𝜀𝑖𝑡~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝜀
2), and lastly 𝜀𝑖𝑡 and 𝑢𝑖 

are independent.          

Missing Data Mechanisms 

What follows is a brief description of the characteristics of longitudinal data situations. 

The outcome vector is 𝒀𝒊𝒕 and 𝑿𝒊𝒕 is the fixed design matrix with 𝑖 representing the subject and 𝑡 

represents the time point of the assessments.  The participants receive multiple assessments of 

data collection at non-fixed times resulting in intra-subject correlation amongst the observations 

of each subject.  Missing data can occur to the dependent and independent variables at any time 

for a multitude of reasons.  Participants may miss full assessments.  Common types of missing 

data for longitudinal studies are attrition or drop out.  For example, the researcher could lose 

track of participants thus losing them in the study.  As participants miss assessments, the data 

structure is typically unbalanced with each participant having a different number of total 

responses.  Longitudinal studies typically involve an interest in both the within-subject and 

between-subject time trends.  The data collected can measure both time-independent and time-

dependent predictors.  The results may be biased, or incorrect conclusions could be made if the 

proper modeling procedures are not used to manage the many diverse types of missing data 

situations.      
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Rubin (1976) had a theory that the missingness is its own variable that has a probability 

distribution, and thus proposed missing data mechanisms.  Missing data mechanisms are 

descriptions of relationships between measured or unmeasured variables and the probability of 

missing data.  Rubin perceived the data as a complete data set that includes the observed and 

missing values for each variable.  This creates a probability distribution for each variable and a 

probability for the missingness, determining whether the probability of missing for the variables 

are related in the data set.  The type of the relationship between missing values and the data 

provides information distinguishing the type of missing data mechanisms.  Knowing about the 

missing data mechanisms are important because the missing information may influence the 

estimation of the variables.  Information from the missing data mechanisms provides information 

about how to analyze the missing data in the data set.  Rubin (1976) and his colleagues (Little & 

Rubin, 2002) branded the three missing data mechanisms on how to differentiate the 

missingness: missing completely at random, missing at random, and missing not at random.      

 Missing Completely At Random (MCAR) is the mechanism when missing data are 

completely unsystematic.  The mechanism occurs when the probability of missing data on a 

variable X is not related to the other variables and the possible values of those variables   

    𝑃(𝑚𝑖𝑡|𝑌𝑖𝑡
𝑜 , 𝑌𝑖𝑡

𝑚, 𝑋𝑖𝑡) = 𝑃(𝑚𝑖𝑡).    (2.3) 

The likelihood of missing is independent of all the observed and unobserved values.  The 

indicator is 𝑚𝑖𝑡 of missingness for individual 𝑖 at time point 𝑡, 𝑌𝑖𝑡
𝑜 are the given observed 

responses, 𝑌𝑖𝑡
𝑚 are the unobserved responses and 𝑋𝑖𝑡 are the independent variables.  When the 

data is MCAR, the observed data is considered a random subsample if the data had been 

complete.  The results of the data analysis on the data with missing values have no bias but lower 

power than having all the information in a complete dataset.  For example, students could 
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unexpectedly be absent on the day that achievement exams are taken and missing the exam has 

nothing to do with the scores they would have achieved.  MCAR is a restrictive assumption that 

assumes missingness is entirely unrelated to the data set, making it a rare occurrence in 

longitudinal datasets.  Jelicic et al. (2009) state that in real-world social science applications, data 

that are MCAR are the least likely.   

 Data are Missing At Random (MAR) when the probability of missing data on an outcome 

variable 𝑌𝑖𝑡 is related to some other measured variable in the model but not to the values of 𝑌𝑖𝑡.  

There exists a systematic relationship between one or more measured variable and the 

probability of missing data.  Suppose 𝑚𝑖𝑡 is the indicator of missingness for individual 𝑖 at time 

point 𝑡, 𝑌𝑖𝑡
𝑜 are the given observed responses, 𝑌𝑖𝑡

𝑚 are the unobserved responses and 𝑋𝑖𝑡 are the 

independent variables. The model    

    𝑃(𝑚𝑖𝑡|𝑌𝑖𝑡
𝑜 , 𝑌𝑖𝑡

𝑚, 𝑋𝑖𝑡) = 𝑃(𝑚𝑖𝑡|𝑌𝑖𝑡
𝑜 , 𝑋𝑖𝑡)    (2.4) 

displays the likelihood of missing is independent of unobserved values but can depend on 

observed outcome and independent variables.  The missingness is believed to be a by-product of 

other variables that are measured in the study.  For example, if some of the students were judged 

exempt for the achievement exam because of their strong class performance.  The likelihood of 

missing data clearly depends on 𝑋 = performance, which gives bias to the population.  MAR is a 

much more flexible missing data mechanism than MCAR.   

  Data are Missing Not At Random (MNAR) when the probability of missing data on a 

variable can be a function of unobserved values (Rubin, 1976).  Suppose 𝑚𝑖𝑡 is the indicator of 

missingness for individual 𝑖 at time point 𝑡, 𝑌𝑖𝑡
𝑜 are the given observed responses, 𝑌𝑖𝑡

𝑚 are the 

unobserved responses and 𝑋𝑖𝑡 are the independent variables.  The probability of the missing data 

is determined by the variable that is missing   
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    𝑃(𝑚𝑖𝑡|𝑌𝑖𝑡
𝑜 , 𝑌𝑖𝑡

𝑚, 𝑋𝑖𝑡) = 𝑃(𝑚𝑖𝑡|𝑌𝑖𝑡
𝑜 , 𝑌𝑖𝑡

𝑚, 𝑋𝑖𝑡).   (2.5) 

In this situation, the likelihood of missing can depend on unobserved values.  When missingness 

are thought to be MNAR, it cannot be ignored and is the most problematic of all the missing data 

mechanisms.  In this situation, the problem of missing data should not be ignored as individuals 

in the study have chosen not to respond or dropped out completely which are related to the 

variables and values in the study.  For example, if achievement exams are scheduled in a way 

that creates conflicts with struggling students’ schedules that makes them unable to attend.   The 

likelihood of missing data depends on something we did not observe and can never be 

determined by the data resulting in a biased sample.  In these situations, researchers cannot make 

proper conclusions because of the unobserved responses and need to find a missing data method 

remedy.  While the Little MCAR test (Little, 1988) can eliminate if the missing data mechanism 

is MCAR, the practical problem for researchers is confirming the missingness between MAR and 

MNAR, which cannot be tested.  When missingness is non-ignorable, it means that we cannot 

predict future responses, conditional on past-observed responses; instead, we need to incorporate 

a model for the missingness mechanism (Nakai & Ke, 2011). 

Longitudinal Missing Data Methods 

 Traditional missing data methods need to be examined to highlight the strengths of 

modern missing data methods.  The two types of traditional methods in the literature are 

reduction and single augmentation methods.  Reduction methods encompass removing cases 

with incomplete data.  Augmentation methods are implemented by filling in values for the 

missing incomplete data with a single value.  Both methods are problematic even if the 

missingness is MCAR and not recommended if the probability of missing data mechanisms is 

MAR or MNAR. 
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Reduction Methods          

 Reduction methods are amongst the most commonly used missing data methods in 

literature (Lang & Little, 2018; Peugh & Enders, 2004).  The two techniques are list-wise 

deletion and pairwise deletion.  List-wise deletion completely removes any case that has one or 

more missing values from the analysis.  Pairwise deletion maximizes all data available by an 

analysis-by-analysis basis.  A correlation is calculated using all cases for which data is available 

computing each element in a correlation matrix.  The method attempts to use as much of the data 

as possible and tends to have higher power than list-wise deletion.  An advantage of reduction 

methods is that they are standard options in statistical software packages and are easy to 

implement (Peugh & Enders, 2004; Enders, 2010).  However, discarding data reduces power and 

wastes information about variables in the data set.  Reduction methods have been researched 

extensively producing biased parameters when the MCAR assumption does not hold and are 

found to be some of the worst possible missing data methods to apply (Bodner, 2006; Enders & 

Bandalos, 2001; Wilkinson, 1999).       

Single Augmentation Methods 

Augmentations methods involve generating a value that fills in data to the missing values 

prior to analysis.  Filling in all the missing values produces a complete dataset providing 

convenience of analysis and making use of all the collected data.  The problem arises when 

generating single imputation values.  The disadvantage is that imputing a single value treats the 

value as real data and cannot reflect sampling variability under one model.  Single imputations 

techniques underestimate the standard errors.  Augmentation methods that replace missing values 

with a single value is a bad missing data process.                
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Last observation carried forward (LOCF) replaces missing values by the last observed 

value from the same participant-preceding dropout.  The final available observation will fill in all 

the subsequent missing values after the participant leaves the study.  For example, if a participant 

drops out after the fourth week of a six-week study, the week four score fills in the remaining 

waves of data.  This method artificially populates the sample size by an implicit assumption that 

participants would have maintained their last observed levels on all variables.  LOCF reduces 

variability underestimating the standard errors in the outcome and can seriously compromise a 

study’s inferences and lead to highly invalid conclusions (Enders, 2010; van Buuren, 2011).  The 

bias in LOCF studies is difficult to predict and are likely to produce misleading parameter 

estimates even when the probability of missing is MCAR (Molenberghs et al., 2004). 

Mean imputation fills in all missing values with the average value of the available 

observed cases.  Like LOCF, mean imputation is convenient for analysis because it produces a 

complete data set inflating power.  The downside of this method is that the mean is biased, and 

variance is reduced (Donders et al., 2006).  This approach severely biases the resulting parameter 

estimates, even when the data are MCAR.  Nakai and Ke (2011) emphasize that mean imputation 

is an unaccepted method.       

 Conditional mean imputation (also known as regression imputation) builds a regression 

model for all observed values and fills in the missing values from the fitted estimates of the 

model.  The key idea to this approach uses information from the complete variables to fill in all 

the incomplete variables into one complete data set.  Conditional mean imputation will impute 

the data with a perfectly correlated score.  The problem is that it does not account for variability 

in the unobserved value and produce biased means (Greenland & Finkle, 1995; Olinsky et al., 
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2003; van Ginkel et al., 2020).  The result will overestimate correlations and 𝑅2 statistics for all 

missing data scenarios. 

Missing at Random Missing Data Models 

The two types of missing data techniques researchers turn to when the probability of 

missing data is considered MAR are Full Information Maximum Likelihood (FIML) and 

Multiple Imputation (MI).  FIML uses all available information while MI fills in all the missing 

values.  The two methods are asymptotically equivalent and tend to produce similar results.     

Full Information Maximum Likelihood 

FIML (Anderson, 1957) is a maximum likelihood estimator that is robust to ignorable 

item nonresponse.  This method is easy to implement and available in statistical software 

packages, making it an attractive tool to manage missing data on longitudinal datasets.  FIML is 

a missing data technique that when used under a MAR data situation produces unbiased 

parameter estimates (Enders, 2010).  The theory behind FIML employs the probability density 

function of a multivariate distribution.  The estimation procedure involves continually looking 

for the population parameters that represent the best fit for the data.  FIML tend to be more 

powerful than traditional data techniques because no data are thrown out (Baraldi & Enders, 

2010).  FIML uses different individual log-likelihoods that can vary with each participant 

utilizing only the variables and parameters that have observed data from that participant.  It 

oversees different missing data patterns for each participant.  The main goal of maximum 

likelihood estimation is to maximize the parameter estimates based on the log-likelihood of the 

data available.  Under the assumption of multivariate normality, the log likelihood function of 

each participant 𝑖 is:   

  𝑙𝑜𝑔𝐿𝑖 = 𝐾𝑖 −
1

2
log |𝚺𝑖| −

1

2
(𝒚𝑖 − 𝝁𝑖)ʹ 𝚺𝑖

−1 (𝒚𝑖 − 𝝁𝑖),   (2.6) 
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where 𝑥𝑖 is the vector of observed values for case 𝑖, 𝐾𝑖 is a constant that is determined by the 

number of observed variables for case 𝑖, and 𝜇 and Σ are, respectively, the mean vector and 

covariance matrix that are to be estimated (Enders, 2001).  By summing the 𝑁 case-wise 

likelihood functions for the overall discrepancy value are as follows: 

    𝑙𝑜𝑔𝐿(𝛽, 𝜎2) = ∑ 𝑙𝑜𝑔𝐿𝑖
𝑁
𝑖=0 .     (2.7)  

FIML is a tool for missing data that is MCAR or MAR by maximizing the statistical power of 

the data by using the observed information to calculate parameter estimates.  On the other hand, 

there are consequences if the researcher does not correctly define the missing data mechanism 

leading to potentially seriously biased estimates if the data is MNAR.  FIML, similar to most 

modern missing data methods, was not applied often to missing data in the early 2000s (Peng et 

al., 2006).  The use of FIML for a missing data model has become more relevant in longitudinal 

research studies as there is more familiarity with the method and improved technology.  For 

example, Dong and Peng (2013) reviewed quantitative studies published in the Journal of 

Educational Psychology, from 2009 to 2010 and found 12 of 46 (26%) implemented FIML as a 

missing data technique.   

Multiple Imputation 

 Multiple Imputation (Rubin, 1987) is an alternative method to FIML that has the same 

assumptions that the missing data is MAR. Multiple imputation enables all participants to be 

included in the analysis and may reduce bias and improve precision of the parameter estimates 

compared to a complete case analysis (De Silva et al., 2017).  The imputation phase generates 

researcher-defined copies of the data set each of which contain different estimates of the missing 

values.  Multiple imputation analysis consists of three steps:  the imputation phase, the analysis 
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phase, and the pooling phase.  In Figure 1, van Buuren, (2018) displays a scheme of the main 

steps in multiple imputation.   

Figure 1 

Diagram for the Multiple Imputation Process 

 

The procedure for the imputation phase has two steps to make each imputation copy:  I-

step and P-step. The goal in this phase is to generate a number of researchers defined complete 

data sets with different estimates for the missing data.  The I-step builds a set of regression 

equations from estimates of the mean vector and the covariance matrix where a comparison of 

the missing data pattern to the completed data predicts incomplete variables for that pattern.  

Using the observed data in these equations creates predicted scores into the missing variables.  

This step amounts to regression imputation as the predicted scores relate directly to the 

regression predicted line.  Inserting a normal distributed residual term to each predicted value 

adds variability between imputations procedures.  The following equation summarizes the I-step 

     𝑌𝑖𝑡
∗~ 𝑝(𝑌𝑖𝑡

𝑚|𝑌𝑖𝑡
𝑜 , 𝜃𝑖𝑡−1

∗ )     (2.8)  
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where 𝑌𝑖𝑡
∗ represents the imputed values at I-step 𝑡, 𝑌𝑖𝑡

𝑚 is the missing portion of the data, 𝑌𝑖𝑡
𝑜 is 

the observed portion of data, and 𝜃𝑖𝑡−1
∗  denotes the mean vector and the covariance matrix from 

the preceding P-step.   

The P-step uses Bayesian analysis to define the mean vector and covariance matrix of the 

posterior distribution.  This step takes the estimates of the mean vector and covariance matrix 

from the I-step and creates new parameter values by adding a random residual term in the 

complete-data mean vector and covariance matrix.  The goal is to sample new estimates of the 

mean vector and covariance matrix from the posterior distributions.  The next I-step uses these 

new parameter values to create another set of regression coefficients.  The multiple draws are 

made to move away from the initial values.  Repeating this process until a specified number of 

copies are generated, give each copy unique estimates for the missing values.  In this step, the 

following displays the distributions for 

    𝑌𝑖𝑡
∗~ 𝑁(0, 1),      (2.9) 

     𝑢~ 𝑁(0, 𝜎𝑢
2),      (2.10) 

     𝜎2~ г(𝛼, 𝛽).      (2.11) 

Here is a summary of the P-step equation: 

     𝜃𝑖𝑡
∗ ~ 𝑝(𝜃|𝑌𝑜𝑏𝑠, 𝑌𝑖𝑡

∗)     (2.12) 

where 𝜃𝑖𝑡
∗  denotes the simulated parameter values from P-step 𝑡, 𝑌𝑖𝑡

𝑜 is the observed data, and 𝑌𝑖𝑡
∗  

contains the imputed values from the preceding I-step.   

After the imputation phase creates the filled in imputed data sets, the researcher then 

must analyze the datasets in the analysis phase. Graham et al. (2007) simulation studies suggest 

that 20 imputations are sufficient for many realistic situations and increasing the number of 

imputations beyond 20 will only affect power if the fraction of missing is very high.  Each data 
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set compiled different estimates for the parameters of interest.  The statistical analysis is a 

regression analysis, and it consists of analyzing every imputed data set, which will all be 

complete.  All the missing values now have new estimated values; the analysis will be of a 

complete data.  The tiresome process of analyzing up to twenty newly created imputed 

regression analysis are made easier by software packages with built in routines.  The analysis 

phase is the easiest part of the multiple imputation analysis.   

The pooling phase combines all the estimates into each parameter  are possibly unbiased 

if the data is MAR or MCAR.  Instead of using a single imputed data to estimate parameters, 

multiple imputation analysis combines all the newly imputed estimates into single point 

estimates.  Rubin (1987) outlined formulas for pooling parameter estimates and standard errors.  

The pooled parameter estimates are the mean value of all the imputed 𝑚 estimated values   

     𝛽̅ =  
1

𝑚
∑ 𝛽̂𝑚

𝑡=1 t ,     (2.13) 

where 𝛽̂t is the parameter estimate from data set 𝑡 and 𝛽̅ is the pooled estimate.  Combing the 

total standard errors uses a within and between source of variation.  The within variation is the 

mean value of the squared standard errors and compile the fluctuation that would have resulted if 

there was no missing data.  The within imputation variance is the average of the 𝑚 sampling 

variances    

     𝑉𝑤 =  
1

𝑚
∑ 𝑆𝐸𝑡

2𝑚
𝑡=1 ,     (2.14) 

where 𝑉𝑤 denotes the within imputation variance, and 𝑆𝐸𝑡
2 is the squared standard error from 

data set 𝑡.  The between variation accounts for the estimates across all the imputed estimates.  

The between imputation variance quantifies the variability of a parameter estimate across the 𝑚 

data sets and has the following equation:   

     𝑉𝐵 =  
1

𝑚−1
∑ (–𝑚

𝑡=1 t − 𝛽̅)2     (2.15) 
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where 𝑉𝐵 denotes the between imputation variance, 𝛽̂t is the parameter estimate from data set 𝑡 

and 𝛽̅ is the average point estimate from Equation 2.13.  The total sampling variance combines 

the within imputation variance with the between imputation variance, as follows 

𝑉𝑇 = 𝑉𝑤 + 𝑉𝐵 +
𝑉𝐵

𝑚
.       (2.16) 

The total sampling variance is the sum of the within and between imputation components plus 

the calculation of 
𝑉𝐵

𝑚
, which is the average parameter estimate.  Together the within and between 

imputation variance account for the total error due to the missing data.    

Researchers are nervous about using multiple imputation procedures because the 

procedure “creates data” while others say it “makes up data.”  However, multiple imputation 

creates an average of parameter estimates that account for the uncertainty of missing data.  The 

purpose of multiple imputation is to have proper inferential methods, use evidence we have of 

what we are missing to fix our hypothesis tests.   

Single-level multivariate multiple imputation rationale conditions the predictors to 

preserve the relationship among the outcome in the imputed data.  However, practical problems 

often arise when imputing multivariate missing data.  For example, the variables are often 

diverse types (e.g., binary, ordered, continuous) making a convenient model like multivariate 

normal theoretically inappropriate.  The relationship between the outcome and the predictors can 

be complex and nonlinear.  Over time, multiple imputation has developed many different 

methods for the diversity of missing data problems; however, not one single method works best 

for all situations.  The two main strategies for imputing single-level multivariate data are joint 

modeling (JM) imputation (Rubin & Schafer, 1990; Schafer, 1997) and fully conditional 

specification (FCS) imputation (van Buuren et al., 2006).   



23 

 

 

 

 The single-level JM assumes incomplete variables follow a multivariate normal 

distribution.  Van Buuren (2018) indicates that if a joint model is specified, it is nearly always 

the multivariate normal model.  Commonly using a multivariate normal model for all incomplete 

variables JM draws missing values simultaneously.  The missing values are imputed using a joint 

model (e.g., the multivariate normal model).  Meanwhile, single-level FCS (also referred to as 

imputation by chained equations) imputes multivariate missing data on a variable-by-variable 

basis drawing values from a series of univariate conditional distributions.  This requires 

specification of a separate imputation model for each incomplete variable.  Missing values are 

imputed one variable at a time until all the missing values in the variable are filled.  This 

complete data predictor is used in the next imputation model continuing until the algorithm 

cycles iteratively through all the incomplete variables.  Hughes et al. (2014) concluded that FCS 

and JM imputation are equivalent in single level data sets with multivariate normal variables.   

 Missing values in multilevel data adds to the complexity of using multiple imputation.  

The imputation model must account for random effects to correctly manage the clustering in the 

data.  Multilevel missing imputation procedures use imputation models based on the linear 

mixed-effects model.  The JM and FCS have extended approaches for multilevel imputation.  

The JM (Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008) specifies a single model for all 

incomplete variables in data.  The FCS (van Buuren, 2011) iterates univariate multilevel 

imputation over the variables. Researchers have compared the JM and FCS multilevel 

approaches and found that both the JM and FCS imputation are appropriate for random intercept 

analyses, finding unbiased estimates for balanced data and normally distributed variables when 

the missing data mechanism is MAR or MCAR (Enders et al., 2016; Kunkel & Kaizar, 2017; 

Mistler & Enders, 2017).  Enders et al. (2016) found the JM method superior for analyses that 
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focus on within and between cluster associations while FCS provided dramatic improvement 

over the JM in random slope models.  Van Buuren (2018) stresses that there is not one “super” 

method that will address all longitudinal missing data issues.  Several extensions of the standard 

JM and FCS approaches for imputing diverse types of missing longitudinal/cluster data issues 

have been proposed in the literature over recent years (Enders et al., 2018; Goldstein et al., 2009; 

Nevalainen et al., 2009; Quartagno & Carpenter, 2016; Resche-Rigon & White 2018; van 

Buuren 2011;).  For further research on the multilevel extensions, Huque et al. (2018) provide an 

overview of twelve different MI techniques that include the standard FCS and JM methods plus 

eight FCS and two JM extensions.  They conducted a simulation study to compare imputed 

incomplete longitudinal covariates results for all the methods and concluded that the FCS and JM 

standard methods performed well.      

Missing not at Random Missing Data Models 

 There are two types of MNAR missing data techniques researchers typically choose, the 

selection model and the pattern mixture model.  Both methods use a joint distribution to describe 

the data and the probability of missingness.  Although, the two methods attempt to do so in 

vastly different ways.  Both models include an additional component into the estimation process 

to decrease or eliminate bias that results from the MAR methods.  

Selection Models     

 The classic selection model (Heckman, 1976) was proposed for MNAR data as a method 

for correcting bias in a regression model.  It is a two-part model that combines the substantive 

analysis with an additional regression equation that models response probabilities.  For the 

selection model, the probability of missingness represented by 𝑃 the probability distribution, 𝑿 
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represents the sample data, and 𝑀 is the corresponding missing data indicator   

                                     𝑃(𝑿𝑖𝑡, 𝑀) = 𝑃(𝑀|𝑿𝑖𝑡) ∗ 𝑃(𝑿𝑖𝑡).    (2.17) 

The two-parts of the selection model use the joint distribution into the product of 𝑃(𝑀|𝑿𝑖𝑡) as 

the conditional distribution of missingness, given 𝑿𝑖𝑡 (sample data), and 𝑃(𝑿𝑖𝑡) is the marginal 

distribution of the data.  𝑃(𝑿𝑖𝑡) is the part of the model that would have been estimated with no 

missing data.  Here is a look at this regression model 

     𝑦𝑖𝑡 = 𝛽𝑿𝑖𝑡 + 𝜀1     (2.18)    

 where 𝑦𝑖𝑡 denotes the dependent variable, 𝑿𝑖𝑡 denotes the independent variables, 𝛽 denotes the 

parameters to be estimated and 𝜀1 is an error term that is normally distributed with a mean of 

zero and a standard deviation of 𝜎.  The conditional distribution defines the probability that a 

participant with a particular value of X has missing data.  This is the second part of the selection 

model 𝑃(𝑀|𝑿𝑖𝑡) that predicts response probabilities through the regression equation 

                                       𝑀∗ = 𝛽0 +  𝛽1𝑋 + 𝜀2.     (2.19)    

Where 𝑀∗ is not the binary missing indicator but is an individual’s latent propensity for missing 

data, 𝛽0 and 𝛽1 denote the regression intercept and slope, and 𝜀2 is a normally distributed 

residual term with a mean of zero and a standard deviation of one.  The conditional probability 

distribution in the regression model describes the probability that a participant with a score has a 

missing value.  Correlated residuals link the regression model with missing data correcting for 

bias in the substantive model.  The equation for the correlated residuals from the error terms in 

Equations 2.18 and 2.19 above is  

                                         𝑐𝑜𝑟𝑟(𝜀1, 𝜀2) = 𝜌,     (2.20)   

where 𝜌 represents the correlation between the two error terms.   
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Diggle and Kenward (1994) adapted the selection model for longitudinal analyses for 

data with monotone missingness.  The method combines growth curve analysis with regression 

equations that predict response probabilities.  Their model assumes the missingness mechanism 

is MNAR combining the LMM with a logistic regression for the dropout process.  The margin 

model for 𝒀𝑖𝑡 is combined with a model for the dropout process, conditional upon if there is a 

measurement by the participant. Here is the model     

𝑓(𝒚𝒊𝒕, 𝐷𝑖𝑡| 𝛽, 𝜑) = ∫ 𝑓( (𝒚𝒊𝒕, 𝐷𝑖𝑡| 𝛽, 𝜑)𝑑𝑦𝑖
𝑚 =  ∫ 𝑓 (𝒚𝒊𝒕|𝛽)𝑓(𝐷𝑖𝑡|𝒚𝒊𝒕, 𝜑)𝑑𝑦𝑖

𝑚 (2.21) 

where 𝑖 refers to the participant and 𝑖 = 1, … , 𝑁, where 𝑁 is equal to the total number of 

participants.  The outcome 𝒀𝑖𝑡 is measured at time point 𝑡 for each participant and is allowed to 

differ, therefore, 𝑡 = 1, … , 𝑛𝑖, resulting in a vector of observed outcomes.  The term 𝐷𝑖𝑡 is the 

occasion where dropout occurs and is the second part of the model implementing a logistic 

regression for the binary missing data indicators that describe the likelihood of dropout at each 

wave of data collection. The model assumes the measured variables are multivariate normal.  

The logistic dropout model is 

              𝑙𝑜𝑔𝑖𝑡[𝑃(𝐷𝑖 = 𝑡 | 𝐷𝑖  ≥ 𝑡, 𝒚𝒊𝒕, 𝜑)] =  𝜑0 +  𝜑1𝒚𝒊𝒕 +  𝜑2𝒚𝒊,𝒕−𝟏 , (2.22) 

where vector 𝒀𝑖𝑡 refers to collected longitudinal responses for each participant. If dropout occurs, 

𝒀𝑖𝑡 is partially observed.  The drop out term is 𝐷𝑖 and denotes the occasion 𝑡 at which subject 𝑖 

drop out occurs. The conditional probability 𝑃(𝐷𝑖 = 𝑡 | 𝐷𝑖  ≥ 𝑡, 𝒚𝒊𝒕, 𝜑) is used to calculate the 

probability of dropout at each measurement occasion.   Others have used this approach to 

analyze longitudinal data that involves missing mechanisms assumed to be MNAR (Little, 1995; 

Molenberghs & Kenward, 2007).  For non-monotone missing data, Ibrahim et al. (2001) 

proposed a method for estimating parameters in the generalized linear mixed-effects model using 

a selection model with non-ignorable missing response data.  The random coefficients selection 
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model is another model for longitudinal data analysis (Little, 1995; Shih et al., 1994).  This 

model uses individual growth curves to predict the probability of missing data.   

Pattern Mixture Models 

 The pattern mixture model (Glynn et al., 1986; Little, 1993, 1994) creates subgroups of 

cases that share a similar missing data pattern and estimates the substantive analysis model from 

each pattern.  For pattern mixture models the probability of missingness represents 𝑃 the 

probability distribution, 𝑋 represents the sample data, and 𝑀 is the corresponding missing data 

indicator   

𝑃(𝑿𝑖𝑡, 𝑀) = 𝑃(𝑿𝑖𝑡|𝑀) ∗ 𝑃(𝑀).              (2.23) 

The conditional distribution 𝑃(𝑿𝑖𝑡|𝑀) for the sample data given a particular value of 𝑀, and 

𝑃(𝑀) is the marginal distribution of missingness.  The conditional distribution is the probability 

of obtaining different 𝑋 values within a subgroup that share the same missing pattern.  The 

marginal distribution describes the different missing data patterns. The cases are stratified into 

subgroups, which provides parameter estimates for each.  Then a computed weighted average 

compiles the stratified specific estimates into a single set of estimates.  The pattern mixture 

model extends to longitudinal analysis by estimating the growth model separately for each 

missing data pattern by averaging their regression coefficients into a single estimate.  The linear 

mixed model from Equation (2.1) adds in all dropout patterns    

𝒀𝒊𝒕 =  𝛽00 + 𝛽10𝑋𝑖𝑡 + 𝛽01𝐷𝑖 +  𝛽11𝐷𝑖𝑋𝑖𝑡 + 𝜇0𝑖 + 𝜇1𝑖 +  𝜀𝑖𝑡.  (2.24) 

The new term is 𝐷𝑖, which is a factor that puts the participants into missing data pattern groups.  

The following interpretation for the rest of the regression coefficients are:  𝛽00 is the baseline for 

completers, 𝛽10 is the growth rate for completers, 𝛽01 is the baseline mean difference between 

the completers and the dropouts, and 𝛽11 is the growth rate difference between the two patterns.  
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Note this is the simplest case of two groups; pattern mixture models can have many dropout 

patterns.    

 The literature for pattern mixture models on MNAR longitudinal data focuses on 

maximum likelihood methods of a mixed-effects model with normally distributed outcomes.  

Typical research assumes monotone missing data patterns where participants miss a 

measurement occasion and drop out for the rest of the study. The researcher can then use the 

point where participants drop out as natural forming patterns and compare them with the 

completers for the pattern mixture model (Hogan & Laird, 1997; Little, 1995; Molenberghs et 

al., 1998; Thijs et al., 2002).  Extensions of pattern mixture models allow random effects to be 

included in a pattern mixture model.  Random coefficient pattern mixture models (Demirtas & 

Schafer, 2003; Fitzmaurice et al., 2001; Hedeker & Gibbons, 1997; Little, 1995) divide the 

subjects into groups as subject level covariates based on their missing data pattern and examine 

the effect of the different patterns on the outcome of interest.  Using these models, we try to 

capture an underlying process that the drop out or missing data are related to the outcomes.  

Pattern mixture models have been adapted to the longitudinal missing data scenario of 

non-monotone missingness.  Latent class pattern mixture models (H. Lin et al., 2004; Roy, 2007) 

explore intermittent missing data by forming patterns based on latent classes.  Roy (2007) 

describes latent class models that could be used for characterizing missing data patterns in 

longitudinal studies with regularly spaced observation times, where there are high percentages of 

intermittent missing data.  H. Lin et al. (2004) analyzed the missingness process in the form of 

latent classes that were conditionally independent of the longitudinal outcomes that they named 

the latent pattern mixture model.  In this work, the data contained intermittent and monotone 

missing data where mixture patterns are formed from latent classes that link the longitudinal 
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response and the missing process.  Here is a look at the model defined participant class 

membership to a latent class     

𝜋𝑖𝑘 = 𝑃(𝐶𝑖𝑘 = 1) =  
exp (𝑋𝑖

Т𝜂𝑘)

∑ exp (𝑋𝑖
Т𝜂𝑗)𝑘

𝑗=1

.              (2.25) 

In this equation, 𝑖 refers to the participant and (𝑖 = 1, … , 𝑛) and 𝐾 latent classes labeled (𝑘 =

1, … , 𝐾).  Let 𝑐𝑖 = (𝑐𝑖1, … , 𝑐𝑖𝑘)Т be the multinomial distributed class membership vector for 

participant 𝑖 with 𝑐𝑖𝑘 = 1 if subject 𝑖 belongs to latent class 𝑘 and 0 otherwise.  The probability 

that subject 𝑖 belongs to latent class 𝑘 is 𝜋𝑖𝑘, which is modeled by a logit model including 

covariate vector 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑚)Т and associated class specific coefficient vector 𝜂𝑘 with 

𝜂1 = 0.  The model will determine posterior probabilities for each participant into a latent class.  

The latent pattern mixture model creates arbitrary patterns of missing data represented by the 

visit process of the participants and avoids the need to specify the missing patterns a priori. 

Implementing the latent pattern mixture model in the H. Lin et al. (2004) study suggested the 

presence of four latent classes linking the participant visit patterns to the outcomes.   

Intensive Longitudinal Data 

Rationale for Intensive Longitudinal Data (ILD) and Ecological Momentary Assessment 

(EMA) is to study participants in their daily real-world setting that avoids recall bias and enables 

the analysis of dynamic processes over time.  The methods include the collection of short self-

reports repeatedly during daily activities, thus allowing events, behaviors, sensations, thoughts, 

feelings, emotions, mood, symptoms, and actions to be monitored in the individuals’ natural 

settings (Messiah et al., 2011).  ILD studies often examine the relationships between momentary 

contextual variables and a behavior of interest.  Examples of types of EMA studies include work 

activity and satisfaction, pain levels, relationships, psychotherapy, drug and alcohol use, physical 

activities, and psychological stress to name just a few.  ILD aims to capturing current states and 
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events of the participants as they are lived hour-to-hour and day-to-day.  For example, if one is 

interested in the experience of substance use, assessing behaviors will be better in the context of 

how they naturally occur instead of a research clinic.  These types of studies offer the benefit of 

studying within participant change over time that is absent in typical survey research.  EMA 

studies use the temporal resolution afforded by multiple measures to focus on the within-subject 

changes in behavior and experience over time and across contexts, addressing how symptoms 

vary over time or how situational antecedents influence behavior (Shiffman et al., 2008).   

Recent technological developments have made the collection of ILD more convenient for 

participants and researchers.  ILD studies assess particular events in subjects’ lives or assess 

subjects at periodic intervals, often by random time sampling, using technologies ranging from 

written diaries and telephones to electronic diaries and physiological sensors (Shiffman et al., 

2008).  Researchers give participants a small electronic device or have them download an APP to 

their own private smart phones to collect responses. The device or APP prompts participants at 

various times throughout the day recording the responses with time stamps of compliance as 

participants complete each assessment.  The method allows for a more accurate measurement of 

outcomes as they occur in a natural setting.  The participants in the study are instructed to 

continue their daily lives, which means they may be in situations that make it inconvenient for 

them to respond to the prompting device.  For example, in ILD collected for college students, a 

participant could be with a group of friends, in class, or studying and not want to answer a 

prompt.  In other instances, they could turn off their device at specific times to avoid being 

bothered (i.e., driving).  Sokolovsky et al. (2014) indicated that individuals may not respond to 

all prompts or cues to report experiences or may otherwise systematically avoid reporting; both 

instances may introduce important biases into data collection.   
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ILD methods often collect a large number of observations per participant where prompts 

occur at random times throughout each day.  The random nature of the prompting mechanism 

inevitably leads to some participant having nonresponse on the prompts.  The missingness is 

usually prompt-wise because the data are rarely partial for a given prompt:  Participants typically 

either ignore the signal entirely (causing all items to be missing for that questionnaire) or they 

respond to all items (McLean et al., 2017; Silvia et al., 2013).   As participants miss an 

assessment, no information is collected at the time and challenges researchers to predict the 

probability of missingness.  Missing assessments have the potential to bias the obtained sample 

of behavior and experience, especially if the missing data mechanism is non-random (Shiffman 

et al., 2008).  Many stress the importance of missing data techniques in ILD studies (Stone et al., 

2007; Walls & Schafer, 2006). 

The nature of ILD has created new missing data challenges for researchers as the pattern 

of missingness is non-monotone for the several assessments among study participants.  

Intermittent missing data in ILD studies may include many unique patterns among study 

participants making pattern mixture models hard to implement.  The common approach to 

handling missing data in ILD studies is to make mention of the missing data but not to present 

missing data models for the missingness.  This assumes the missingness is MCAR and allows the 

statistical software to handle the missing data, which typically implements list-wise deletion 

(Peugh & Enders, 2004).    Improper methods such as deletion of records with missing variables, 

mean substitution, or simple imputation methods to account for missing data cause bias and 

decreased efficiency (Albert & Follmann, 2009; Enders, 2010).  Intermittent missingness can be 

an issue in ILD studies as participants with higher proportions of non-response may behave 

differently in terms of the outcome compared to those with lower proportions.  The missingness 
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may impact the within-subject variation of the outcome on the participants.  For example, 

participants that respond more often might have more consistent variation in outcomes than those 

that respond less often.  As participants miss prompts it alters the time intervals between data 

points, which is an important aspect in the studying if the behavior at a given time point is 

associated with behaviors at subsequent time points.  Intermittent missing data within ILD 

studies can potentially bias parameter estimates and has unique properties that make longitudinal 

missing data models challenging to implement.  Two missing data methods have emerged with 

shared parameter models that provide information about the missingness process and the 

outcome that were tailor made for ILD studies.  The ensuing sections will introduce patterns of 

missing data, the mixed-effect location scale model, multiple imputation model, and two shared 

parameter models that constitute the recent literature for analyzing missing ILD.    

Patterns of Missing Data 

 Missing data patterns refer to the arrangement of observed and missing values in a data 

set.  The two patterns of missing data that will need to be described for this dissertation are 

monotone and non-monotone missing patterns.  Data follow a monotone missing pattern when a 

subject misses an observation occasion and never is observed again.  Monotone missing data is 

often termed dropout or attrition. Participant dropout commonly occurs in longitudinal studies as 

each study is guaranteed to lose participants.  Data follow a non-monotone missing pattern if a 

subject has observed values after a missing value occurs.  Data that follow this pattern are termed 

intermittent missing.  Intermittent missingness is common in ILD studies as participants skip a 

prompt and then respond to future prompts.   
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Mixed-Effect Location Scale Model 

 Hedeker et al. (2008) described the mixed-effect location scale model for the context of 

EMA intensively measured longitudinal studies. The work extends the LMM from Equation 2.1 

by adding a subject level random scale effect to the within-subject variance specification.  This 

allows the within-subject variance to vary at the participant level.  The reason to include both 

location and scale random effects is to allow for participant heterogeneity in both the mean and 

within participant variability of the outcome that cannot be fully explained by covariates.  This 

relaxes the homogenous error variance assumption adopted by most statistical methods.  The 

variance of log(𝜀𝑖𝑡) accounts for individuals’ distinct patterns for the outcome.  Here is the LMM 

from Equation 2.1 where 𝑢0𝑖 is the random intercept location parameter for the participants: 

𝑦𝑖𝑡 =  𝛽0 +  𝑿𝒊𝒕
𝑻 𝜷 +  𝑢0𝑖 +  𝑒𝑖𝑡.    (2.26) 

Here is the model for the scale effects extension in the within-subject variance model: 

log(𝜎𝑒𝑖𝑡

2 ) =  𝑸𝒊𝒕
𝑻 𝝉 + 𝑢2𝑖 ,     (2.27)  

where the log function ensures that the estimated error variance is strictly positive.  𝜀𝑖𝑡 reflects 

the fluctuations on the outcome measured for participant 𝑖, thus the smaller the variance the more 

stable participant 𝑖 is on the outcome.  The term 𝑸𝒊𝒕 is the within subject variance model and 

usually contain a subset of the variables in 𝑿𝒊𝒕 allowing time dependent covariates. The term 𝜏 is 

the fixed effect coefficient vector and indicate the effect of the within subject coefficient on the 

log-variance of the outcome. The random subject scale intercept is 𝑢2𝑖  indicating the effect of 

participant i on his/her within subject variability of the repeated measurements.  The random 

effects {𝑢0𝑖 , 𝑢2𝑖} are assumed to follow a bivariate normal distribution with mean 0 and a 

covariance structure  
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G = [
𝜎𝜇0𝑖

2 𝜎𝜇0𝑖,2𝑖

2

𝜎𝜇0𝑖,2𝑖

2 𝜎𝜇2𝑖

2 ].     (2.28) 

Conditional on {𝑢0𝑖 , 𝑢2𝑖}, the outcome measurements 𝑌𝑖𝑡 are i.i.d normal.  The mixed-effect 

location scale model is estimated using maximum likelihood estimation and significance tests for 

the fixed effects model parameters are typically done using the Wald tests.     

Intensive Longitudinal Data with Multiple Imputation 

Multiple imputation (MI) works the same for missing data in ILD studies as it does in 

longitudinal studies described in multiple imputation section.  Ji et al. (2018) presented a new 

way to combine both MAR longitudinal missing data methods of FIML (full information 

maximum likelihood section) and of MI in the context of ILD missing data.  They termed the 

approach partial MI, which performs MI on the missing covariates while missingness for the 

dependent variable implement FIML estimation.  The other missing data models in the study 

included two full MI approaches that impute values for both the missing covariates and 

dependent variables.  The hypothesized model is vector autoregressive (VAR) that predicts the 

dependent variable at the current time point t by the dependent variable at the immediately 

preceding time point t-1, often referred to as a time lag.  Here is a look at the typical VAR model 

with a lag of one equation: 

𝑌𝑡 =  𝛽0 +  𝛽1𝑌𝑡−1 +  𝑒𝑡    (2.29) 

where the dependent variable at the current time point is 𝑌𝑡.  The intercept is 𝛽0, and 𝛽1 is the 

coefficient for the dependent variable of the lag for the preceding time point and 𝑒𝑡 is the error 

term.  Note that VAR models can have more than one time lag in the model.  All predictors in 

the model have an equation explaining its development based on their own lagged values, the 

lagged values of the others in the model predictors, and an error term.   
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 The two MI approaches impute data in different ways.  The first MI approach is the 

MICE approach described by van Buuren and Groothuis-Oudshoorn (2011), which is the FCS 

multilevel approach discussed more thoroughly in the longitudinal modern missing data methods 

described earlier in the multiple imputation section.  To review, MI approach is implemented via 

chained equations where imputations are drawn by iterating over the conditional densities on a 

variable-by-variable basis by means of the Markov chain Monte Carlo (MCMC) technique.  

MICE allows flexibility among the variables as it imputes depending on the distributional 

characteristics of the variables to be imputed (e.g., normal continuous data, ordinal, nominal).  

The second MI approach implemented Ameilia II multiple imputation program specializes in 

handling missingness in time-series data (Honaker et al., 2011).  This MI has a built-in feature 

that is set up for variables in the lagged VAR models to be imputed.  Amelia II performs 

imputations by assuming the variables are multivariate normally distributed with a mean vector, 

𝜇, and covariance matrix, Σ.  

 A simulation was conducted to compare the performance of both full MI methods, partial 

MI approach, and list-wise deletion under different missingness conditions MCAR, MAR, and 

MNAR.  The results of the study have provided context to applying longitudinal MAR missing 

data models MI and FIML in ILD studies (Ji et al., 2018).  The performance of the MI 

approaches, Amelia II, MICE, and the partial MI were better than using list-wise deletion 

regarding smaller biases in the point estimates, especially for time-dependent covariates. The 

researchers included multiple time points of 15 and 75 but doing so did not provide any 

improvement in accuracy of the point estimates.  Every MI approach improved the accuracy of 

the standard error estimates over list wise deletion.  However, under MNAR missing condition, 

the estimates from the full MI method Amelia II had higher biases than other missing data 
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models, including list-wise deletion.  The partial MI approach that performs MI on the missing 

covariates while missingness in the dependent variables apply FIML emerged as the top option 

compared to the full MI approaches for the covariates, time-dependent covariates and dependent 

variables including when the data was MNAR.  The partial MI method had results of better 

accuracy, precision, and coverage compared to both full MI approaches MICE and Ameilia II.  

The results of Ji et al. (2018) provide valuable information regarding a new technique that 

involves a combination of MI and full information likelihood missing data models for EMA 

studies.      

Shared Parameter Model with Item Response Theory 

 The initial development of Item Response Theory (IRT) took place when Rasch (1960) 

developed the first model for analyzing categorical data, known as the Rasch model.  Lord and 

Novik (1968) followed it with the theory of latent trait estimation, changing the method of data 

analysis in testing.  IRT is a collection of statistical and psychometric methods used to model test 

takers’ item responses (Yen & Fitzpatrick, 2006).  IRT defines a scale for the underlying latent 

variable that is being measured by the test items.  The model specifies how both trait level and 

item properties are related to a person's item responses.  The following equation represents the 

two-parameter logistic IRT model: 

𝑃(𝜇𝑖 = 1|𝜃𝑗 , 𝛼𝑖 , 𝛽𝑖) =
𝑒

𝛼𝑖(𝜃𝑗−𝛽𝑖)

1+𝑒
𝛼𝑖(𝜃𝑗−𝛽𝑖) ,         (2.30) 

where 𝑖 corresponds to the item on the test and 𝑗 corresponds to the participant taking the test.  

The latent trait 𝜃𝑗  is the test takers “ability” for participant 𝑗, which is created using observed 

responses to the items 𝑖 on a test.  In a two-parameter logistic IRT model, 𝛼𝑖 is the discrimination 

parameter for each item 𝑖 and is seen as the slope that discriminates between the test takers who 

know the right answer and the population of test takers who do not demonstrate that knowledge.  
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The difficulty parameter 𝛽𝑖 for each item 𝑖 determines the manner of which the item behaves 

along the ability scale.  The difficulty parameter is on the same scale as the test takers’ ability (𝜃) 

and are estimated separately.  The difference between difficulty and ability parameters provides 

information about the probability or log odds of a correct response for each item.  For example, 

if 𝜃𝑗 > 𝛽𝑖 it means that the examinee’s ability level is greater than the item difficulty making the 

item easier for them, conversely, if  𝜃𝑗 < 𝛽𝑖 means the item is difficult for the examinee.  In the 

next few paragraphs, there will be a demonstration on how IRT is a missing data model for EMA 

by letting the prompting time-bins (how researchers collect data) represent items in an IRT 

model. 

Cursio et al. (2019) modeled the intermittent missing prompts as a continuous latent trait 

using IRT called the Latent Trait Shared Parameter Mixed Model (LTSPMM).  The IRT model 

represents the latent trait of “responsiveness” and corresponds to how each participant responds 

to the prompting device (electronic device or APP).  The IRT response mechanism for EMA data 

uses the time-bins as the items.  For example, if the ILD study design prompts the participants on 

forty-two occasions then there will be a possible 42 time-bins that correspond with the days and 

times available for the participants to respond.  The dichotomous outcome variable in the IRT 

model is defined as responding 𝑅𝑖𝑡, where 𝑅𝑖𝑡 has a value of 1 for participant 𝑖 if the participant 

responded to the prompt in time-bin 𝑡 and has a value of 0 if a prompt was not answered.  Cursio 

et al. (2019) applied a one-parameter (1PL) and two-parameter (2PL) logistic IRT model as the 

probability of response to the prompting device.   

The IRT model uses a latent trait (𝜃𝑖) that represents participants “responsiveness” and 

models jointly with the LMM for longitudinal outcomes.  This is the longitudinal mixed model 

used by Cursio et al. (2019): 
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𝑦𝑖𝑡 =  𝛽0 +  𝑿𝒊𝒕
𝑻 𝜷 +  𝑢0𝑖 +  𝑒𝑖𝑡.    (2.31) 

The outcome is represented by 𝑦𝑖𝑡 where 𝑖 represents the number of subjects and 𝑡 represents the 

number of repeated observations within each subject.  The matrix 𝑿𝒊𝒕 contains the subject-level 

and time-dependent covariates including a time predictor in the model where the first column is a 

vector of ones for the intercept terms.  The random intercept term 𝑢0𝑖 are assumed to be 

normally distributed 𝑢0𝑖~𝑁(0, 𝜎𝜇
2) and accounts for the intra-subject correlation due to the 

multiple responses from each subject.  The error term 𝑒𝑖𝑡 is assumed to be normally distributed 

𝑒𝑖𝑡~𝑁(0, 𝜎𝑒
2).  The one-parameter (1PL) and two-parameter (2PL) logistic IRT models have the 

following logistic form modeling the probability of responding to a prompt: 

𝑃(𝑅𝑖𝑡 = 1|𝜃𝑖) =
1

1+exp [−𝑎𝑡(𝜃𝑖 − 𝑏𝑡)]
               (2.32) 

where 𝑅𝑖𝑡  represents responding to time-bin 𝑡 from subject 𝑖.  The 𝑃(𝑅𝑖𝑡) is the probability that 

person 𝑖 responds to time-bin 𝑡, which is similar probability of answering the correct answer to 

item 𝑖 on a test from Equation 2.30.  The latent trait responsiveness is represented by 𝜃𝑖 and 𝑏𝑡 is 

the difficulty parameter corresponding to each time-bin 𝑡.  The discrimination 𝑎𝑡 parameter 

provides the slope for each time-bin 𝑡.  The 1PL sets a fixed slope 𝑎 across all time-bins while 

the 2PL allows for unique slopes 𝑎𝑡 for each time-bin accounting for more information in the 

model.  Allowing the slopes to vary is the only difference between the 2PL and 1PL models. The 

number of participants ranges from 1 𝑡𝑜 𝑁, and the number of time-bins 𝑡 ranges from 1 to 𝑚𝑖 

allowing for a different number of time-bins for each subject.  The model represents the log odds 

of responding to the prompting time-bin and displays the responsiveness of each participant.  

Slightly changing the form of the 1PL and 2PL models  

𝑃(𝑅𝑖𝑡 = 1|𝜃𝑖) =
1

1+exp [−(𝑐𝑡 + 𝑎𝑡𝜃𝑖)]
,    (2.33)  
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where the time-bin intercept parameter is 𝑐𝑡 = −𝑎𝑡𝑏𝑡. The term 𝑐𝑡in the 2PL model, the 

discrimination parameters 𝑎𝑡 vary by time-bin 𝑡 while in the 1PL model the discrimination 

parameters remain constant. Thus, writing the 1PL and 2PL models in terms of the log odds of 

responding 

    𝑙𝑜𝑔 [
𝑃(𝑅𝑖𝑡=1|𝜃𝑖)

1− 𝑃(𝑅𝑖𝑡=1|𝜃𝑖)
] =  𝑐𝑡 + 𝑎𝑡𝜃𝑖 .    (2.34)  

 The item difficulty parameters (𝑏𝑡) and discrimination parameters (𝑎𝑖) provide 

information about the time-bins.  The difficulty parameters give information regarding the 

difficulty the participants have responding at a particular time-bin.  In this context, the prompting 

time-bin with the most responses have the lowest difficulty and the time-bin with the most 

missing responses have the highest difficulty.  As mentioned above, the difference between the 

1PL and 2PL logistic IRT models is that the 2PL estimates discrimination parameters (𝑎𝑖) for 

each time-bin.  The discrimination parameter describes how the probabilities change between the 

latent traits of responsiveness for the participants.  In this context, a prompting time-bin may 

clearly discriminate between high and low responders.  The 1PL and 2PL IRT models both 

estimate the time-bin difficulty parameters (𝑏𝑡) for all the time-bins in the study.  In the 2PL 

LTSPMM, a discrimination parameter is estimated for each time-bin.  Estimating the difficulty 

and discrimination parameters for each prompt consumes several degrees of freedom thus 

causing the LTSPMM to have issues with convergence and computation processing time.  

Convergence and slow processing speeds are a drawback of using the LTSPMM missing data 

method (Cursio et al., 2019).    

 The LTSPMM portion of the model is an expansion of the random intercept into the 

equation written as 

𝑢0𝑖 = 𝛾𝜃𝑖 + 𝜂
0𝑖

.       (2.35) 
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The term 𝛾 represents the effect of the latent trait 𝜃𝑖 of responsiveness on the outcome 𝑦𝑖𝑡 for 

participant 𝑖, which is normally distributed 𝜃𝑖  ~ 𝑁(0, 𝜎𝜃
2).  The value of 𝜃𝑖 behaves as a random 

effect and influences the log odds of responding to the prompt.  The random-intercept term 

will allow for participants to have unique intercepts and is written in the form of 𝜂0𝑖 , which 

is normally distributed as 𝜂0𝑖  ~ 𝑁(0, 𝜎𝜂
2).  The expansion adds into the LMM of Equation 

2.31 and results in the following model:  

𝑦𝑖𝑡 =  𝛽0 + 𝑿𝒊𝒕
𝑻 𝜷 + (𝛾𝜃𝑖 +  𝜂0𝑖) +  𝑒𝑖𝑡 .    (2.36)  

The latent trait 𝜃𝑖 is linked for the full LTSPMM by the 1PL or 2PL IRT models.  In this 

approach, the generalized linear mixed model is used to estimate a latent trait for responsiveness 

and a separate latent trait for the outcome.  The outcome 𝒚𝒊𝒕 is influenced by the latent trait for 

response 𝜃𝑖, which is a shared parameter in each sub model.  As a reminder, here is the logistic 

form modeling the probability of responding 𝑃(𝑅𝑖𝑡) to a prompt from Equation 2.34: 

𝑙𝑜𝑔 [
𝑃(𝑅𝑖𝑡=1|𝜃𝑖)

1− 𝑃(𝑅𝑖𝑡=1|𝜃𝑖)
] =  𝑐𝑡 + 𝑎𝑡𝜃𝑖 .    (2.37) 

In the simulations using the LTSPMMs, Cursio et al. (2019) found that the latent trait of 

participant “responsiveness” coefficient was significant for both the 1PL and 2PL models.  Thus, 

demonstrating that the ability to respond to the prompting device had an influence on model 

outcomes.  In the simulation, both LTSPMMs outperformed a full mixed-effect location random 

effects model using list-wise deleted model in terms of bias and coverage rates for the true model 

of coefficients gender and negative mood regulation under the MNAR missingness conditions as 

gender was set to correlate with missing.  List-wise deletion underperformed when the missing 

data had MNAR properties for the estimated regression coefficient gender supporting the use of 

the LTSPMM.  The 2PL outperformed the 1PL LTSPMM in terms of bias and standard error of 

the estimated regression coefficient of the latent trait 𝜃𝑖.  A likelihood ratio test comparing the 
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1PL and 2PL LTSPMM was significant indicating that the additional discrimination parameters 

in the 2PL model did improve the overall fit.  However, the 2PL LTSPMM did take much longer 

to fit and converge. 

Model Estimation 

The model estimation for the LTSPMM uses a maximum marginal likelihood estimation 

described by Bock and Aitkin (1981).  The full data likelihood needs to be averaged over the two 

random effects represented by the random intercept 𝜂0𝑖 and the latent trait 𝜃𝑖 (Liu, 2008; Liu & 

Hedeker, 2006).  The LTSPMM can be written as: 

𝐿(𝒀|𝜇, 𝜃, 𝑅) = ∏ ∏ 𝑓1(𝒚𝒊𝒕|
𝑛𝑖
𝑡=1

𝑛
𝑖=1 𝑥𝑖𝑡 , 𝑢0𝑖 , 𝜎𝜇 , 𝜎𝑒 

2).   (2.38) 

with error terms that are assumed to be normally distributed with standard deviation 𝜎𝑒 

𝑒𝑖𝑗 ~𝑁(0, 𝜎𝑒 
2).      (2.39) 

The 𝑢0𝑖 term includes the effect of the latent trait 𝜃𝑖 and a random intercept 𝜂0𝑖.  The term 𝑢0𝑖 is 

defined as the sum of 𝛾𝜃𝑖 and 𝜎𝜇𝜂0𝑖. 

𝑝(𝜇|𝜃, 𝑅) = ∏ ∏ 𝑓2(𝑅𝑖𝑡|𝑛𝑖
𝑡=1

𝑛
𝑖=1 𝜃𝑖 , 𝜂

𝑖
)     (2.40) 

𝜃𝑖  ~ 𝑁(0,1) and 𝜂
0𝑖

 ~ 𝑁(0,1).     (2.41) 

Combining the random effects into Equation (2.9) results in the following expression for the 

LTSPMM: 

𝐿(𝒀, 𝑅|𝜃, 𝜂;  β, 𝜎𝑒 
2 ) = ∏ ∏ 𝑓1,2(𝒚𝒊𝒕|

𝑛𝑖
𝑡=1

𝑛
𝑖=1 𝑥𝑖𝑡 , 𝜃𝑖 , 𝜂

0𝑖
, 𝜎𝑒 

2)𝑓2(𝑅𝑖𝑡|𝜃𝑖, 𝜂𝑖
).  (2.42) 

Since the probability density function of 𝜂 is a standard normal with mean 0 and standard 

deviation 1 then: 

𝑝(𝜂
0𝑖

|𝜎𝜇) = (2𝜋𝜎𝜇)1 2⁄ 𝑒𝑥𝑝 [
1

𝜎𝜇
2 𝜂

0𝑖
2 ] .    (2.43) 
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The maximum likelihood estimation in the distribution is obtained by integrating over the 

distributions of 𝜃 and 𝜂, the marginal distribution for the LTSPMM can be written as: 

hi(𝑦i) = ∫ ∫ 𝑓(𝒚𝒊|𝜃, 𝜂, β, 𝜎𝑒 
2

𝜂𝜃
) 𝑔(𝜃, 𝜂; ∑ )𝜃,𝜂  𝑑𝜃𝑖 𝑑𝜂𝑖   (2.44) 

with the probability density 𝑓(𝒚𝒊|𝜃, 𝜂, β, 𝜎𝑒 
2) equal to  

𝑓(𝒚𝒊𝒕|𝜃, 𝜂, β, 𝜎𝑒 
2) = (2π)-n1/2|𝜎𝑒 

2𝑰𝒏𝒊
|exp[−

1

2
(𝒚𝒊𝒕 −  𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃𝑖 − 𝜎𝑢𝜂
𝑖
)′(𝜎𝑒 

2𝐼𝑛𝑖
)−1(𝒚𝒊𝒕 −  𝑿𝒊𝒕

𝑻 𝜷 −

 𝛾𝜃𝑖 − 𝜎𝑢𝜂
𝑖
)]           (2.45) 

and the density for the random effects is a normal distribution written as:  

      𝑔(ζ; ∑ )ζ    = (2π)-1| ∑ |ζ  
-1/2 exp[−

1

2
ζ′ ∑ 𝛇−𝟏

𝛇 ].    (2.46) 

The vector ζ contains the two standardized random effects θ and 𝜂 and 𝑔( ) is a multivariate 

standard normal pdf.  Summing the marginal log-likelihoods over the sample and maximizing 

the function 𝛽, 𝜎𝑒 
2, 𝜃, and 𝜂 gives the values.  To denote the posterior density 𝑝𝑖, likelihood 

function 𝑓1,2, prior density 𝑔, and the marginal log-likelihood ℎ𝑖 .  The maximum likelihood 

solution for the fixed effects coefficient vector β is derived as: 

 log L =  ∑ log ℎ𝑖 (𝒚𝒊)
𝑁
𝑖=0  

=  ∑ log [∫ ∫ 𝑓(𝒚𝒊|𝜃, 𝜂;  β, 𝜎𝑒 
2

𝜂𝜃
) 𝑔(𝜃, 𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂 ]𝑁

𝑖=1  

𝑝𝑖 = 𝑝(𝜃𝑖) × 𝑝(𝜂
𝑖
)  

= ∏ ∏ (𝒚𝒊𝒕|
𝑛𝑖
𝑡=1

𝑛
𝑖=1 𝑥𝑖𝑡, 𝜃𝑖 , 𝜂

0𝑖
, 𝜎𝑒 

2)(𝑅𝑖𝑡|𝜃𝑖, 𝜂𝑖
) ∙

(2π)−1| ∑ |ζ  −1/2 exp[−
1
2

ζ′
∑ 𝛇−𝟏

𝛇 ]

∫ ∫ 𝑓(𝑦𝑖|𝜃,𝜂,β,𝜎𝑒 
2

𝜂𝜃 ) 𝑔(𝜃,𝜂; ∑ )𝜃,𝜂  𝑑𝜃𝑖 𝑑𝜂𝑖

 

Taking the derivative of both sides with respect to β results in: 

  
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
 =  ∑

𝜕 log ℎ𝑖

𝜕𝛽

𝑁
𝑖=1  
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=  ∑
1

ℎ𝑖

𝜕[∫ ∫ 𝑓(𝒚𝒊|𝜃,𝜂; 𝛽,𝜎𝑒 
2

𝜂𝜃 ) 𝑔(𝜃,𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂 ]

𝜕𝛽

𝑁
𝑖=1  

= ∑
1

ℎ𝑖
∫ ∫

𝜕𝑓(𝑦𝑖|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝛽𝜂𝜃
𝑁
𝑖=1  𝑔(𝜃, 𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂   

= ∑ ∫ ∫
𝑓(𝒚𝒊|𝜃,𝜂; 𝛽,𝜎𝑒 

2 ) ∙ 𝑔(𝜃,𝜂; ∑ )𝜃,𝜂

ℎ𝑖𝜂𝜃

𝜕 log 𝑓(𝒚𝒊|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝛽

𝑁
𝑖=1  𝑑𝜃𝑖 𝑑𝜂𝑖  

= ∑ ∫ ∫ 𝑝𝑖 𝑿𝑖
′(𝜎𝑒 

2𝑰𝒏𝒊
)−1

𝜂𝜃
(𝒚𝒊𝒕 −  𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃𝑖 −  𝜎𝑢𝜂
𝑖
)𝑁

𝑖=1 𝑑𝜃𝑖 𝑑𝜂𝑖 

The equation can be simplified to and set = 0: 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
 = 𝜎𝑒

2 ∑ 𝑿𝑖
′ (𝒚

𝒊𝒕
−  𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃𝑖)
𝑁
𝑖=1 = 0. 

Setting the derivative of 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
 equal to 0 results in: 

∑ 𝑿𝑖
′ 𝑿𝒊𝒕

𝑻 𝜷 =  ∑ 𝑋𝑖
′(𝒚𝒊𝒕 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃

𝑖
)𝑁

𝑖=1
𝑁
𝑖=1 . 

The marginal maximum likelihood solution for the fixed effects covariate vector β is: 

𝛽̂ = [∑ 𝑿𝑖
′𝑁

𝑖=1 𝑿𝒊𝒕
𝑻 ]

−1
 [∑ 𝑿𝑖

′( 𝒚𝒊𝒕 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃
𝑖
)𝑁

𝑖=1 ]. 

The fixed-effects covariate matrix β in the LTSPMM the maximum likelihood solution of the 

random-intercept mixed-effects model where the random effect terms are now modeled by: 

𝜇0𝑖 = 𝛾𝜃𝑖 + 𝜎𝑢𝜂𝑖 

The empirical Bayes estimate for the mean of the latent trait 𝜃𝑖 is defined as 

𝜃̃𝑖 = 𝐸[𝜃𝑖|𝒚𝒊𝒕] = ℎ𝑖
−1 ∫ 𝜃𝑖𝑓1(𝒚𝒊𝒕) 𝑑𝜃𝑖𝜃

,   (2.47)  

and the empirical Bayes estimate for the mean of the random intercept 𝜂𝑖 is defined as 

𝜂̃𝑖 = 𝐸[𝜂𝑖|𝒚𝒊𝒕] =  ∫ 𝜂𝑖𝑓1(𝒚𝒊𝒕) 𝑑𝜂𝑖𝜂
.    (2.48) 

The maximum likelihood estimator for the coefficient terms γ of the latent trait θi is derived as: 

    
𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
 = ∑

𝜕 log ℎ𝑖

𝜕𝛾

𝑁
𝑖=1  
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= ∑
1

ℎ𝑖

𝜕[∫ ∫ 𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2

𝜂𝜃 ) 𝑔(𝜃,𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂 ]

𝜕𝛾

𝑁
𝑖=1  

= ∑
1

ℎ𝑖
∫ ∫

𝜕𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝛾𝜂𝜃
𝑁
𝑖=1  𝑔(𝜃, 𝜂;  ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂 , 

and using Equation 2.47 and Equation 2.48 results in: 

= ∑ ∫ ∫
𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 

2 ) ∙ 𝑔(𝜃,𝜂; ∑ )𝜃,𝜂

ℎ𝑖𝜂𝜃

𝜕 log 𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝛾

𝑁
𝑖=1 𝑔 𝑑𝜃𝑖 𝑑𝜂𝑖 

= ∑ ∫ ∫ 𝑝𝑖 (𝜎𝑒 
2𝑰𝒏𝒊

)−1
𝜂𝜃

(𝒚𝒊𝒕 −  𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃𝑖 −  𝜎𝑢𝜂

𝑖
)𝜃𝑖

′𝑁
𝑖=1 𝑑𝜃𝑖 𝑑𝜂𝑖, 

and setting the last equation equal to zero results in the marginal maximum likelihood for 𝛾̃,  

       
𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
 = 𝜎𝑒

2 ∑ (𝒚𝒊𝒕 − 𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃

𝑖
)𝑁

𝑖=1 𝜃̃𝑖
′ = 0 

∑ 𝛾𝜃̃𝑖𝜃̃𝑖
′𝑁

𝑖=1  = ∑ (𝒚𝒊𝒕 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃
𝑖
)𝑁

𝑖=1 , 

which yields: 

𝛾̃ = [∑ 𝜃̃𝑖𝜃̃𝑖
′]

−1𝑁
𝑖=1  [∑ (𝒚𝒊𝒕 −  𝑿𝒊𝒕

𝑻 𝜷̂ −  𝜎̃𝑢𝜂̃
𝑖
)𝑁

𝑖=1 ].   (2.49) 

The maximum likelihood estimator for the coefficient term σu of the standardized random effect 

𝜂I is derived as: 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜎𝑢
 = ∑

𝜕 log ℎ𝑖

𝜕𝜎𝑢

𝑁
𝑖=1  

= ∑
1

ℎ𝑖

𝜕[∫ ∫ 𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2

𝜂𝜃 ) 𝑔(𝜃,𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂 ]

𝜕𝜎𝑢

𝑁
𝑖=1  

= ∑
1

ℎ𝑖
∫ ∫

𝜕𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝜎𝑢𝜂𝜃
𝑁
𝑖=1  𝑔(𝜃, 𝜂;  ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂  

= ∑ ∫ ∫
𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 

2 ) ∙ 𝑔(𝜃,𝜂; ∑ )𝜃,𝜂

ℎ𝑖𝜂𝜃

𝜕 log 𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝜎𝑢

𝑁
𝑖=1 𝑔 𝑑𝜃𝑖 𝑑𝜂𝑖 

= ∑ ∫ ∫ 𝑝𝑖 (𝜎𝑒 
2𝑰𝒏𝒊

)−1
𝜂𝜃

(𝒚𝒊𝒕 −  𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃𝑖 −  𝜎𝑢𝜂

𝑖
)𝜎𝑢

′𝑁
𝑖=1 𝑑𝜃𝑖 𝑑𝜂𝑖, 

and using Equations 2.47 and Equations 2.48 results in: 
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𝜕𝑙𝑜𝑔𝐿

𝜕𝜎𝑢
 = 𝜎𝑒

2 ∑ (𝒚𝒊𝒕 −  𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃

𝑖
)𝑁

𝑖=1  𝜎𝑢
′ . 

The likelihood for 𝜎𝑢 is therefore derived after setting the last equation equal to zero and solving: 

∑ 𝜎𝑢
𝑁
𝑖=1 𝜂

𝑖
𝜂

𝑖
′  =  ∑ (𝒚𝒊𝒕 − 𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃̃𝑖)𝑁
𝑖=1 , 

which is solved as: 

𝜎̃𝑢 = [∑ 𝜂̃
𝑖
𝜂̃

𝑖

′
]

−1𝑁
𝑖=1  [∑ (𝒚𝒊𝒕 − 𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃𝑖)𝑁
𝑖=1 ].   (2.50)  

The LTSPMM has the following error term 𝑒𝑖 defined as 𝑒̂𝑖 = 𝒚𝒊𝒕 −  𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃̃𝑖 −  𝜎𝑢𝜂̃

𝑖
.  The 

maximum likelihood estimator of the error variance 𝜎𝑒
2 is: 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜎𝑒
2

 = ∑
1

ℎ𝑖
∫ ∫

𝜕𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝜎𝑒
2𝜂𝜃

𝑁
𝑖=1 𝑔(𝜃, 𝜂; ∑ ) 𝑑𝜃𝑖 𝑑𝜂𝑖𝜃,𝜂  

= ∑ ∫ ∫
𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 

2 ) ∙ 𝑔(𝜃,𝜂; ∑ )𝜃,𝜂

ℎ𝑖𝜂𝜃

𝜕 log 𝑓(𝒚𝒊𝒕|𝜃,𝜂; 𝛽,𝜎𝑒 
2 )

𝜕𝜎𝑒
2

𝑁
𝑖=1  𝑑𝜃𝑖 𝑑𝜂𝑖 

=∫ ∫ 𝑝𝑖 [−
𝑛𝑖

2
𝜎𝑒 

2 +  
1

2𝜂𝜃
𝜎𝑒 

−4(𝒚𝒊𝒕 −  𝑿𝒊𝒕
𝑻 𝜷 −  𝛾𝜃𝑖 −  𝜎𝑢𝜂𝑖)′ (𝒚𝒊𝒕 −  𝑿𝒊𝒕

𝑻 𝜷 −  𝛾𝜃𝑖 −

 𝜎𝑢𝜂𝑖)] 𝑑𝜃𝑖  𝑑𝜂𝑖 

= 
1

2
𝜎𝑒 

−4 ∑ (−𝑛𝑖
𝑁
𝑖=1 𝜎𝑒 

2 +  𝑒′𝑒 + 𝑡𝑟|𝛾𝜎𝑢 ∑ 𝛾𝜎𝑢
′ |𝜃,𝜂|𝒚𝒊𝒕

) = 0.   

Shared Parameter with Logistic Regression 

 X. Lin et al. (2018) introduced a shared parameter location scale model to research the 

informative and intermittent missingness with respect to both the mean and within subject 

variation of the primary outcomes.  The shared parameter model assumes there is a set of latent 

variables 𝑈𝑖 shared between the primary outcome and missing process, which are conditionally 

independent given 𝑈𝑖.  The model extends the work of Cursio et al. (2019) by allowing a random 

subject scale effect to influence missingness while implementing a Bayesian model estimation 

framework instead of maximum likelihood methods.   
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The location and scale random effect model (Hedeker et al., 2008) is implemented to 

characterize the heterogeneity of the primary outcomes.  The random intercept location 

parameter for the participants is as follows 

𝑦𝑖𝑡 =  𝛽0 +  𝑿𝒊𝒕
𝑻 𝜷 +  𝑢0𝑖 +  𝑒𝑖𝑡.    (2.51) 

Let 𝑦𝑖𝑡 be the outcome for participant 𝑖 at occasion 𝑡, where 𝑖 = 1, … , 𝑛, and 𝑡 = 1, … , 𝑘𝑖 

allowing the participants to have different number of measurements by subscript 𝑘 with 𝑖.  The 

fixed effect covariate vectors are 𝑿𝒊𝒕 and can include subject and occasion level covariates.  The 

random location effect is 𝑢0𝑖 indicating the effect of participant 𝑖 on his/her mean of the repeated 

measurements and is normally distributed as 𝑢0𝑖  ~ 𝑁(0, 𝜎𝑢
2).  The random error term 𝑒𝑖𝑡 

reflects the uncertainty in measuring participant 𝑖’s outcome at occasion 𝑡 relative to the 

participant average and is normally distributed as 𝑒𝑖𝑡 ~ 𝑁(0, 𝜎𝑒
2).    The random scale effects 

extension for the within subject variance model is 

log(𝜎𝑒𝑖𝑡

2 ) =  𝛼0 + 𝑸𝒊𝒕𝜶 + 𝑢2𝑖 ,    (2.52)  

where the log function ensures that the estimated error variance is strictly positive.  The term 𝑄𝑖𝑡  

is the within subject variance design matrix and usually contain a subset of the variables in 𝑿𝒊𝒕. 

The 𝜶 is the fixed effect coefficient vector and indicate the effect of the within subject coefficient 

on the log-variance of the outcome. The random subject scale intercept is 𝑢2𝑖  indicating the 

effect of participant 𝑖 on his/her within subject variability of the repeated measurements. 

 The model for the missing process uses a random intercept logistic regression model for 

the binary missing prompt indicators.  The responsiveness 𝑅𝑖𝑡 represents the responding 

indicator for participant 𝑖 at occasion 𝑡, where 𝑅𝑖𝑡 is 1 if the participant responds to the prompt 

and 0 if participant missed the prompt.  The random intercept logistic regression model is given 

by  



47 

 

 

 

𝑙𝑜𝑔 (
Pr (𝑅𝑖𝑡 = 1)

1− Pr (𝑅𝑖𝑡 = 1)
) =  τ0 + ∑ 𝜏𝑘 ∗ 𝑇𝑖𝑡

𝑘𝐾=2
𝐾=𝑛 +  𝜆𝑖,   (2.53) 

where 𝑘 = 2, … , 𝑛 is the time-bin index and 𝑇𝑖𝑡
𝑘 is the indicator of the 𝑘th time-bin for the prompt 

individual 𝑖 received at occasion 𝑡. For example, if a study prompted participants three times a 

day and starts on Monday morning, the first time-bin 𝑇𝑖1
1   is treated as the reference time-bin.  

The fixed intercept is τ0, indicating the log odds of missing a response for an individual with 

𝜆𝑖 = 0.  The term 𝜆𝑖  is participant 𝑖’s random intercept, indicating the influence of subject 𝑖 on 

his/her log odds of missing prompts and follows a normal distribution of 𝜆𝑖 ~ 𝑁(0, 𝜎𝜆
2).  

Conditional on 𝜆𝑖, the responding indicators 𝑅𝑖𝑡 are assumed to be i.i.d following a Bernoulli 

distribution with missing probability: 

    𝑃𝑖𝑡 =
exp (τ0 + ∑ τ𝑘

𝐾=2
𝐾=𝑛  ∗ 𝑇𝑖𝑡

𝑘 + λ𝑖)

1+exp (τ0 + ∑ τ𝑘
𝐾=2
𝐾=𝑛  ∗ 𝑇𝑖𝑡

𝑘 + λ𝑖)
.    (2.54)  

Here 𝑃𝑖𝑡  is modelled by both observed and latent information, with time-bins being explicitly 

measured and the random effect 𝜆𝑖  accounting for all unobserved information at the participant 

level.     

The joint model combines the outcome model, the dispersion model, and the missing 

process.  The random subject effects for the random intercept location 𝑢0𝑖  and the random scale 

effect 𝑢2𝑖 in the outcome and missing model leads to the parameter sharing of 𝜆𝑖 displayed in the 

equations below: 

𝑢0𝑖 =  𝛾𝜆𝑖 + 𝜂
0𝑖

        (2.55) 

𝑢2𝑖 =  𝛿𝜆𝑖 + 𝜂
2𝑖

        (2.56) 

where {𝑢0𝑖, 𝑢2𝑖} and 𝜆𝑖 are traits specific to individual i with a set of linear models used to link 

the random effects.  Adding the shared parameter addition to the random location effect 𝑢0𝑖 to 
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Equation 2.51 and random scale effect 𝑢2𝑖 in Equation 2.52 adds the additional missing 

parameters to the model: 

𝑦𝑖𝑡 =  𝛽0 +  𝑿𝒊𝒕
𝑻 𝜷 + (𝛾 ∙ 𝜆𝑖 + 𝜂

0𝑖
)  +  𝑒𝑖𝑡   (2.57) 

log(𝜎𝑒𝑖𝑡

2 ) =  𝛼0 + 𝑸𝒊𝒕𝜶 + (𝛿 ∙ 𝜆𝑖 + 𝜂2𝑖).   (2.58) 

In Equation 2.57, individual i’s location random intercept 𝑢0𝑖  is modeled using trait 𝜆𝑖 and an 

error term 𝜂0𝑖 for each participant that is normally distributed 𝜂0𝑖  ~ 𝑁(0, 𝜎𝜂
2).  The coefficient 𝛾 

indicates the effect of missingness on the participant’s mean outcome.  In Equation 2.58, 

individual i’s random scale effect 𝑢2𝑖  is modeled by missing trait 𝜆𝑖 and an error term 𝜂2𝑖 for 

each participant that is normally distributed 𝜂2𝑖  ~ 𝑁(0, 𝜎𝜂
2).  The coefficient 𝛿 indicates the 

effect of missingness on the within-subject variability of the outcome.  Informative missing is 

accounted for by linking the missing process through the random effects and the outcome.  X. 

Lin et al. (2018) termed 𝜆𝑖 as the shared random subject effect between the outcome and 

missingness, and 𝜂0𝑖  and 𝜂2𝑖  as the residual random subject location and scale effects.         

 X. Lin et al. (2018) conducted a series of simulation studies where observations were set 

to intermittent missing under two scenarios: (1) missing does not depend on the potential 

outcomes (MCAR or MAR), and (2) missing depends on potential outcomes (MNAR).  They 

compared the shared random subject location, scales effects between the outcome and missing 

process against a naïve LMM that implements list-wise deletion and utilized only the observed 

outcome.  Under the MAR missing data situation, the two models performed similarly.  Under an 

MNAR missing data situation, shared parameter model had smaller bias and better coverage rate 

for the within subject intercept and gender coefficients than list-wise deletion.  List-wise deletion 

ignore the association between the outcome and missing process that can lead to invalid 

inferences.  X. Lin et al. (2018) concluded that the shared parameter model achieves good 
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estimation precision, correct interval length and asymptotic coverage rate for the computed 

parameter estimates yet provides insightful information about the missing mechanisms when the 

missing data is MNAR.  The findings displayed evidence that the shared parameters for the 

random subject location and scale effects have an association between the missing process and 

the outcome.      

Model Estimation  

Bayesian estimation for the shared parameter model denote ϕ = (β, α, τ, γ, δ,) as the 

model parameter vector, 𝜆 = {𝜆𝑖}𝑖=1
𝑛  as the random subject effects for the missing process, 𝜂 = 

{𝜂0𝑖 , 𝜂2𝑖}𝑖=1
𝑛  as the random subject effect vector in the outcome model and 𝐷 = {𝑌𝑖, 𝑀𝑖}𝑖=1

𝑛  as the 

data. Parameters 𝜙, 𝜆, and 𝜂 are regarded as random and follow some prior distribution before 

we get to observe the data 𝐷, which are denoted as 𝜋(𝜙), 𝜋(𝜆), and 𝜋(𝜂) respectively.  

Univariate standard normal and bivariate standard normal are choices for 𝜋(𝜆) and 𝜋(𝜂).  For 

𝜋(𝜙), one can specify a separate prior for each component in 𝜙 provided that a full conditional 

posterior is obtained for each of them.  Given independent priors, one can derive the conditional 

posterior as  

𝑃(𝜙|𝜆𝑖, 𝜂𝑖 , 𝐷𝑖) ∝ 𝑃(𝐷𝑖|𝜙, 𝜆𝑖, 𝜂𝑖)𝜋(𝜙),   (2.59) 

   𝑃(𝜆𝑖|𝜙, 𝜂𝑖 , 𝐷𝑖) ∝ 𝑃(𝐷𝑖|𝜙, 𝜆𝑖, 𝜂𝑖)𝜋(𝜆𝑖),   (2.60) 

    𝑃(𝜂𝑖|𝜙, 𝜆𝑖, 𝐷𝑖) ∝ 𝑃(𝐷𝑖|𝜙, 𝜆𝑖, 𝜂𝑖)𝜋(𝜂𝑖).   (2.61)  

𝑃(𝐷𝑖|𝜙, 𝜆𝑖, 𝜂𝑖) is the conditional joint likelihood and 𝜋 is the corresponding prior. Once the full 

conditional posteriors are obtained for ϕ, λ, and η, the joint posterior can be approximated by 

sampling each variable from its full conditional posterior iteratively using Gibbs sampling 

(Casella & George, 1992).    
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Chapter II Summary 

 In summary, missing data in longitudinal and ILD studies are common and correctly 

implementing missing data methods can lead to unbiased and efficient parameter estimate 

improving the nature of variable relationships and correct conclusions.  Longitudinal studies 

have a history of research with some proven methods for the many diverse missing data 

situations.  ILD or EMA studies have grown in the last 20 years and have less research on 

methods for missing data.  The challenge researchers’ face is how to manage the intermittent 

missing data on high volume of assessments.  There is much needed research in the literature on 

missing data in ILD studies.  Motivated by the need of more research on this topic, I propose to 

study the shared parameter missing models of Cursio et al. (2019) and X. Lin et al. (2018) more 

extensively to fill a gap of missing data methods for ILD studies. 
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CHAPTER III  

METHODOLOGY 

The following list is a reminder of the research questions that will be answered by 

comparing the performance of the two shared parameter missing data models.   

Q1 Which model, ILD missing data models LTSPMM (Cursio et al., 2019), SPLR 

(X. Lin et al., 2018), or the full mixed-effect location random effects model using 

list-wise deletion, perform better under different combinations of number of 

prompts (25, 40) and intermittent missingness scenarios (20%, 30%) in terms of 

raw bias percentage? 

 

Q2  Which model, ILD missing data model LTSPMM (Cursio et al., 2019), SPLR (X. 

Lin et al., 2018), or the full mixed-effect location random effects model using list-

wise deletion perform better under different combinations of number of prompts 

(25, 40) and missingness scenarios (20%, 30%) in terms of empirical standard 

errors? 

 

Q3 Which ILD missing data model LTSPMM (Cursio et al., 2019) or the SPLR 

model (X. Lin et al., 2018), performs more computationally efficient in terms of 

computational run time? 

 

Introduction 

ILD and EMA studies repetitively collect assessments on participants in their real-world 

environments focusing on their current states providing information about how their behaviors 

and experiences vary over time and across situations.  Collecting information in the moment 

aims to avoid bias and errors associated with recall.  EMA studies randomly send participants 

several signaled prompts on a portable device or APP on their cell phone over the course of 

hours, days and weeks allowing enough time for a representative sample to answer their research 

questions.  The distractions and complexities of daily life leads to some participants missing 

responses.  For example, participants may miss assessments because they are in class or have an 
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unexpected meeting and are unable to respond to the prompting device.  Missing data through 

non-compliance can have a significant effect on statistical power, but also conclusions that can 

be drawn through statistical inference (Graham, 2009).  The participants typically miss entire 

assessments intermittently throughout the course of the study.  The intermittent missing data is 

complex making longitudinal missing data models limited in certain cases. Silvia et al. (2013) 

stress that examining nonresponse is critical for EMA research.  There is a need for more 

research on missing data models intended to investigate nonresponse of assessments in EMA 

studies.   

The joint shared parameter missing data models by (Cursio et al., 2019) and (X. Lin et 

al., 2018) exhibited new ways to analyze and estimate EMA data containing problematic 

intermittent missing data.  The two shared parameter models were adapted for ILD where 

intermittent and informative missing happen often due to missed prompts, making it possible to 

perform valid statistical inference.  The missing data methods have similarities as they both treat 

participants missing prompts as a latent variable by introducing a shared parameter to the 

location model but do so in different ways.  The LTSPMM implements an IRT logistic model 

that estimates a latent variable describing participants’ ability to respond to the prompting 

device. The shared parameter location scale model utilizes a logistic regression model for the 

binary missing prompt indicators that estimates the log odds of response.  The purpose of this 

study was to compare these two joint models used to handle missing data in ecological 

momentary assessment (EMA) studies and to evaluate their performance under different 

assessment and missing data scenarios.  Motivated by the concepts of the X. Lin et al. (2018) 

SPLR and the LTSPMM (Cursio et al., 2019), the goal of this research is to compare the two 

models from a statistical perspective under different EMA prompt designs with varying levels of 
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participant intermittent missingness conditions.  I will illustrate a series of simulation studies as 

well as real data application using these missing models assessing missing data in terms of raw 

bias, empirical standard errors (SE) and computation run time.  A holistic view that combines 

run time, raw bias percent, and empirical standard errors will provide valuable knowledge about 

the limitations and capabilities of these missing data methods.  For example, a method may 

reduce computation run time but have more raw bias percent with larger empirical standard 

errors making it more difficult to trust.  The next sections will give details on the empirical 

study, simulation plan, and a breakdown of research questions one through three.   

Empirical Study 

A real data situation with intermittent missing ILD values will be used with the candidate 

models by Cursio et al. (2019) LTSPMM, X. Lin et al. (2018) SPLR location only model, and a 

full mixed-effect location random effects model using list-wise deletion.  The data described in 

this section for the empirical study was provided by Phillips et al. (2015) contributing theoretical 

information on the deterministic model for the simulation.  One of the aims of the empirical 

study was to examine the association of marijuana craving and its relationship to academic 

motivation when assessed in the moment with college students that tested positive for using 

marijuana.  The goals explored if heavy marijuana users craving is associated with less time 

spent academically on tasks like studying and managing academic goals.  Phillips et al. (2015) in 

the moment study found that craving was negatively associated with academic effort and 

motivation.   

The participants (n = 110) completed the EMA prompts via the Reallife Exp application 

(lifedatacorp.com) over 14 consecutive days.  Participants were prompted by a notification thru 

the APP on their smart phone three times a day with one prompt randomly falling within each of 



54 

 

 

 

the following strata: first notification transpired between 8:00 a.m.-12:00 p.m. (morning), second 

notification occurred between 12:30-4:30 p.m. (afternoon), and third notification took place 

between 5:00-9:00 p.m. (evening).  Each participant received 42 prompts during their time in the 

study.  The EMA questions focused on the participants’ current activity, academic motivation, 

craving for marijuana, anxiety, mood, marijuana use and frequency of use since last prompt, 

social setting when using, exercise, number of alcoholic drinks since last prompt, and learning 

behaviors like time spent studying.   

After recruitment, the participants completed a series of baseline self-report measures.  

The baseline measure that will be included for this study is the psychometric questionnaire the 

Rutgers Marijuana Problem Index (RMPI, White et al., 2005).  The 23-item version assesses 

negative consequences associated with marijuana use within the last year.  Items are rated from 0 

to 3 (“none” to “more than 5 times”) based on the frequency of each consequence.  In this study, 

the dependent variable will be craving level that was collected when participants responded to 

the prompts during their 14 days in the study.  Craving is described as a strong intense urge or 

desire to use marijuana and is captured in the moment for each of the forty-two EMA 

assessments.  Participants were asked to rate their current marijuana craving at this exact 

moment on a scale of 0 to 10.  This 11-point scale ranged from 0 “no cravings” to 10 “extremely 

intense cravings.”  Participants were asked to rate their academic motivation in the moment for 

each assessment.  Academic motivation is defined as paying attention in college courses, 

completing reading and homework assignments, and studying.   Participants were asked how 

motivated they currently feel to focus on schoolwork?  This scale ranged from 0 to 10, with 0 

being “not at all” and 10 being “extremely motivated.”   
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The participants responded to 3,697 of the possible 4,620 prompts resulting in an 80% 

response rate.  Only two of the participants responded to all 42 prompts.  Five participants 

responded to less than half of the prompts with the lowest responder in the study answering only 

nine times.  The overall participant average responses to the prompting device were 33.6 prompts 

with a standard deviation of 6.1.  Of the three daily notifications, the morning notification from 

8:00 a.m.-12:00 p.m. had the most missing prompts occur with 397, accounting for 43% of the 

total missing responses.  The missing responses for the afternoon notification that occurred 

between 12:30-4:30 p.m. were 255 and 27.6% of the total.  The evening notification from 5:00-

9:00 p.m. had similar total missing responses to the afternoon notification with 271 that was 

29.4% of the total.  The highest total of missing for any of the possible notification times and 

days in the study occurred on Sunday morning for the 8:00 a.m.-12:00 p.m. notification with 91 

missing responses which results in 9.8% of the total missing responses.  The participants in this 

study responded less often on the weekends with 323 total missing responses on Saturday and 

Sunday resulting in 35% of the total missing.   

Simulation Plan 

 A simulation will be conducted to answer all the research questions by comparing the 

intermittent missingness on an intensively measure longitudinal outcome using the LTSPMM 

(Cursio et al., 2019), SPLR location only model (X. Lin et al., 2018), and a full mixed-effect 

location random effects model using list-wise deletion missing models.  List-wise deletion will 

be used as a comparison model as it is a default missing data method on many statistical 

packages including SAS (SAS Institute Inc, 2013) and R (R Core Team, 2021).  The purpose of 

the simulation is to compare a true model with no missing data to the selected missing methods 

under different numbers of assessment (25, 40) and introducing varying levels of percentages of 
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intermittent missingness (20%, 30%) in terms of raw bias percentage, empirical standard errors 

(SE) and computational run time.  In the next section, a description of the simulation design will 

be outlined, followed by the process.    

Simulation Statistical Software 

 The data will be simulated using the statistical software R (R Core Team, 2021) and the 

package “simglm” (LeBeau, 2023).  The “simglm” function features simulations of multi-level 

longitudinal data allowing for users to specify the distribution of the random components.  The 

package can simulate ordinal variables like the academic motivation and marijuana craving 11-

point scales allowing for empirical data information to include means and standard deviations.  

The function includes the option to add time-dependent covariates like academic motivation in 

the proposed model that will allow for within and between participant analysis.  Last and the 

most important feature for this package is generating random intermittent missing data by 

percentages in the form of an indicator variable allowing the ability to check that the missing 

data was generated properly.  The proportion missing will randomly be introduced using an 

indicator variable with a 1 signifying a prompt that is missing and a 0 signifying an answered 

prompt.  The missing data variable provides a convenient way to analyze the full data set with 

data sets that have missing data.  The features of “simglm” (LeBeau, 2023) provide all the 

necessary elements for a successful simulation on the two share parameter models.        

Sample Size 

 Sample sizes in ILD research are dependent on the topic and the available populations to 

study.  Jones et al. (2019) displayed the variance in sample size for substance use ILD studies 

with a mean of 154.21, standard deviation of 214.8 with participant sizes ranging between 10 and 

1021.  The meta-analysis included data collections that were conducted using PDAs, 
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smartphones, or internet and sample sizes per type was not included.  Data collection for ILD 

research using smartphones is the likely feasible option and is expected to be the preference for 

researchers as it was estimated in 2019 that 3.5 billion people own a smart phone, which was 

one-third of the population including 70% of people in the Western world and United States of 

America (GSMA intelligence, 2019).  Smartphones allow for flexible designs with easy data 

collection and researchers will not have to supply participants with devices.  In a more recent 

meta-analysis on smartphone use for 53 ILD studies the median sample size reported was an 

n=97 participants (de Vries et al., 2021).  With the high variance of sample sizes amongst ILD 

studies using a sample size close to the median for smartphones research represents a logical 

target for this simulation study.  The empirical study had an n=110 participants so a sample size 

of 100 participants will be implemented for all missing and assessment designs.      

Missing Data Setup and Percentages 

The missing data setup for the simulation will be randomly intermittent missing which is 

the typical type for ILD studies and were discussed in the chapter two sections intensive 

longitudinal data and patterns of missing data.   The ILD missing data situations are unsuitable to 

implement Rubin (1976) and colleagues (Little & Rubin, 2002) missing data mechanisms as the 

complicated nature of missingness is hard to specify.  Cursio et al. (2019) indicated that the 

assumptions about the nature of the missing data are typically unknown in EMA studies, and, in 

many cases, the missing data is complex and highly irregular.  X. Lin et al. (2018) tested their 

shared parameter missing model against simulated MAR and MNAR data but warned that one 

cannot know whether data are missing at random or not in practice when the true underlying 

missing mechanism is unknown.  The missing data situation researchers are facing is at the 

discretion of the individuals in the study responding to prompts sent to them.   Silvia et al. (2013) 
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found that the missing data was at the within-person level. Many ILD study designs are set up to 

reduce missing data amongst the participants in the study by avoiding specific schedules 

participants face in order to make the project as successful as possible.  For example, Phillips et 

al. (2015) set up individualized prompting designs so that the college students did not receive 

prompts while they were in class.  Missing data patterns could be different depending on 

prompting designs, number of prompts, or the type of individuals in the study.  Wrzus and 

Neubauer (2023) found that the total number of assessments, the number of assessment days, or 

the number of assessments per day did not predict participants’ compliance with the assessment 

schedule.  However, missing data will occur at the individual level in all ILD studies.  Therefore, 

the prompted responses will be considered MCAR and simulated randomly intermittent missing 

amongst the participants based on a condition percentage.     

Multiple meta-analysis for EMA literature indicates that social researchers report average 

compliance rates to the prompting device between seventy and eighty percent with the number of 

assessments per day ranging from two to nine on various human behaviors.  Wen et al. (2017) 

reviewed studies using mobile devices to collect EMA data among youth (age ≤18 years old) and 

found an overall compliance rate of 78.3%.  Liao et al. (2016) reviewed studies addressing 

nutrition and physical activity in youth reporting an average compliance rate of 71%.  Wrzus and 

Neubauer (2023) examined a wide range of topics like health behaviors, mental health, emotions, 

social relationships and others for adults and youth and found overall compliance rates of 

79.19%. Finally, Jones et al. (2019) reviewed studies related to substance use and reported a 

pooled compliance rate of 75.06%.  Implementing missing data percentages like what 

researchers may encounter will make the simulation more applicable.  This simulation will set 
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the missing percentages to 20% and 30% using the missing data feature in the “simglm” 

(LeBeau, 2023) function making them comparable to real ILD data situations.       

Assessment Design 

The literature displays that researchers have a variety of assessment designs for ILD 

studies with the goal of collecting events and experiences in an individual’s life.  In ILD, one 

assesses moments or periods of time, raising the issue of how to ensure that the moments or 

periods assessed are representative of the subject’s experience (Shiffman et al., 2008).  The 

scheme for frequency and timing including respect for subject burden can implement countless 

schemes depending on the goals of the study.  The decision about how many samples or 

recordings per day are needed should also be guided by the nature of the phenomenon to be 

recorded (Stone & Shiffman, 2002).  For example, a fourteen-day assessment period was a time 

frame that has been demonstrated to be adequate to assess substance use behaviors in past EMA 

studies (Buckner et al., 2012; Phillips et al., 2015; Shrier et al., 2012).  While there are many 

different assessment designs researchers are implementing, compliance across all the different 

designs is stable.  The total number of assessments, the number of assessment days, or the 

number of assessments per day did not predict participants’ compliance with the assessment 

schedule (Jones et al., 2019; Wrzus & Neubauer, 2023).  Choosing a perfect assessment design 

for all researchers is near impossible and since literature reveals response rates are similar across 

all designs, implementing a prompting design like the empirical study will be the aim of this 

simulation.  Recall that Phillips et al. (2015) assessments were designed to prompt the members 

three times daily stratified across morning, afternoon, and evening over the course of two full 

weeks or fourteen continuous days for a total of forty-two participant assessments.  Other ILD 

designs might require less time needed to study specific behaviors.  Wrzus and Neubauer (2023) 
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offered a wide range of researched topics using ILD schemes and reported that the impression 

arises that most studies ask participants to report around 5 times a day for a week or less. An 

additional design related to approximately half of the empirical study comparable to one-week 

designs will provide more information for ILD researchers on missing data situations with less 

scheduled assessments.  The assessment designs conditions chosen for this simulation are 25 and 

40.       

Empirical Data for Simulation 

The research conducted by Phillips et al. (2015) demonstrated empirical evidence of a 

statistically significant relationship between marijuana craving and academic motivation 

amongst college students that tested positive for marijuana.  The collection of real-world data 

provides valuable in the moment behaviors of the college students while navigating the rigors of 

schoolwork and life at a university.  The empirical data captures the relationship from the 

observational research and provide the foundation for the simulation.  The “simglm” (LeBeau, 

2023) package allows for the specification of random components therefore implementing a full 

mixed-effect location random effects model from the empirical data will provide information 

needed for the simulation.  The outcome variable of marijuana craving is assumed to be normally 

distributed 𝑌𝑖𝑡~𝑁(2.86 2.87) and equation 3.1 provides an example of this model:  

𝐶𝑟𝑎𝑣𝑖𝑛𝑔𝑖𝑡 = 𝑖𝑛𝑡 + 𝑇𝑖𝑚𝑒𝑖𝑡 + 𝑅𝑀𝑃𝐼𝑖 + 𝑀𝑜𝑡𝑖𝑣𝑤 + 𝑀𝑜𝑡𝑖𝑣𝐵 + 𝑢0𝑖 + 𝑒𝑖𝑡.  (3.1)  

Results of the estimated mixed effect model of the empirical data provide information about the 

random intercept variance 𝑢0𝑖 will be set to 12.579 and the random residual effect variance 𝑒𝑖𝑡 

set to 5.593.  Information about the variables in the simulation will be derived from their means 

and standard deviations from the empirical data.  The intercept 𝑖𝑛𝑡 will be set to the value 2.41.  

The time variable 𝑇𝑖𝑚𝑒𝑖𝑡 displays an average increase of cravings amongst the participants over 
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time in the study and will have a value of .007921 that will be included as a level 1 variable.   

Academic motivation will be added as an ordinal variable on an11-point scale ranged from 0 

“not at all” and 10 being “extremely motivated.”  This is the time dependent variable which 

means 𝑀𝑜𝑡𝑖𝑣𝑤 will be included as level 1 variable and 𝑀𝑜𝑡𝑖𝑣𝐵 will be included as a level 2 

variable.  A negative association will be established by the correlation of the motivation and 

craving variables which is -.07.  The distribution will be set to the probability of response from 

the members in the empirical study for all the levels of the motivation ordinal variable from 0 to 

10.  For example, 15% of the members responded 0 motivation thus the probability of response 

will be set to .15. The Rutgers Marijuana Problem Index 𝑅𝑀𝑃𝐼𝑖 will be added as an ordinal 

variable ranging from 0 to 69 possible scores.  This variable will be a level 2 variable and 

distributed random normal with a mean of 13.95 and standard deviation of 9.32 for the 

participants in the study.      

Hypothesized Model  

 A hypothesized model with no missing data will be established for each iteration of the 

simulation using intensively measured longitudinal outcome craving (𝑌𝑖𝑡) for (100) individuals at 

two different levels of assessment prompts 25 and 40.  Covariates included in the model will be 

the RMPI (subject level 2), time-dependent covariate will be the motivation variable (subject 

level 2 and occasion level 1), and time stamps (occasion level 1).  After the hypothesized model 

is generated using variable information from the empirical study, observations will set the 

prompt response to intermittent missing via “simglm” (LeBeau, 2023) for each of the assessment 

levels at two different missingness percent levels 20% and 30%.  A hypothesized model with no 

missing data will be estimated for all four different simulation conditions and will be compared 

after applying the missing data models LTSPMM (Cursio et al., 2019), SPLR location only 
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model (X. Lin et al., 2018), and a full mixed-effect location random effects model using list-wise 

deletion after introducing missing data conditions.  The bias for the proposed models with 

missing data helps examine the performance for each parameter as the average point deviations 

from the true value.  The estimated hypothesized model with no missing data 𝑇 for each of the 

parameters 𝑃 will be determined for each condition 𝑐  for the parameter estimates of the full data 

set with no missing data as follows: 

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑀𝑜𝑑𝑒𝑙 = 𝑃𝑐
𝑇 ,    (3.2) 

where parameters 𝑃 = ( 𝛽̂0, 𝛽̂1, 𝛽̂2, 𝛽̂𝐵, 𝛽̂𝑤, 𝑢̂0𝑖) are established for all the conditions 𝑐 = 1, … ,4.  

The three intensively measured longitudinal and corresponding missing model specifications will 

be displayed next followed by the simulation process.   

Proposed Models 

The proposed models for the simulation will compare the estimates with missing data 

analyzing the following missing data methods of a full mixed-effect location random effects 

model using list-wise deletion (Equation 3.3), X. Lin et al. (2018) SPLR location only model 

(Equation 3.5), and Cursio et al. (2019) LTSPMM (Equation 3.7) to the hypothesized model.  

For all the candidate models 𝑌𝑖𝑡 denotes the marijuana craving outcome that is assumed to be 

normally distributed 𝑌𝑖𝑡~𝑁(0, 𝜎𝑌
2).  In all the models, 𝛽1 represents the average effect of time on 

the marijuana craving level.  The estimated regression coefficient 𝛽2 represents the between-

subject covariate baseline scale Rutgers Marijuana Problem Index (RMPI).  The most important 

covariate for this study is the time-dependent academic motivation with 𝛽𝐵 denoting the 

regression coefficient for the academic motivation between-subjects as a level 2 covariate and 

𝛽𝑤 is the regression coefficient within-subject as a level 1 covariate.  Notice that the full mixed-

effect location random effects model using list-wise deletion (Equation 3.3) does not have a 
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missing model. List-wise deletion is the default missing data method for R (R Core Team, 2021) 

and SAS (SAS Institute Inc, 2013) and is amongst the most commonly used missing data 

methods in literature (Lang & Little, 2018; Peugh & Enders, 2004).  This will act as the worst-

case method for handling missing data in this simulation.  The shared parameter missing models 

found in Equations 3.4 and 3.6, the coefficient 𝛾 indicates the effect of missingness on the 

participant’s mean marijuana craving level and 𝜂
0𝑖

 is the remaining random location effect term 

for participant 𝑖 on his/her mean of the repeated measurements. 

The full mixed-effect location random effects model using list-wise deletion:  

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑋𝑖 + 𝛽𝑤(𝑋𝑖𝑡 − 𝑋̅𝑖.) + 𝛽𝐵𝑋̅𝑖. + 𝑢0𝑖 + 𝑒𝑖𝑡,  (3.3)  

X. Lin et al. (2018) SPLR location only missing and random effect models: 

   𝑙𝑜𝑔 (
Pr (𝑅𝑖𝑡=1)

1−Pr (𝑅𝑖𝑡=1)
) = τ0 + ∑ 𝜏𝑘 ∗ 𝑇𝑖𝑡

𝑘𝐾=2
𝐾=𝑛 + 𝜆𝑖,     (3.4) 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑋𝑖 + 𝛽𝑤(𝑋𝑖𝑡 − 𝑋̅𝑖.) + 𝛽𝐵𝑋̅𝑖. + 𝛾𝜆𝑖 +  𝜂0𝑖 + 𝑒𝑖𝑡,  (3.5)  

Cursio et al. (2019) LTSPMM one-parameter missing and random effect models: 

𝑙𝑜𝑔 (
Pr (𝑅𝑖𝑡=1|𝜃𝑖)

1−Pr (𝑅𝑖𝑡=1|𝜃𝑖)
) =  

1

1+exp [−𝑎(𝜃𝑖 − 𝑏𝑡)]
,    (3.6) 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑋𝑖 + 𝛽𝑤(𝑋𝑖𝑡 − 𝑋̅𝑖.) + 𝛽𝐵𝑋̅𝑖. + 𝛾𝜃𝑖 +  𝜂0𝑖 + 𝑒𝑖𝑡.  (3.7) 

Simulation Process  

This section will outline the simulation process in a step-by-step way displaying the 

different simulation settings.     

1. Generate an intensive longitudinal data using R “simglm” (LeBeau, 2023) for 100 

participants with 25 and 40 assessments for a total of 2,500/4,000 data points. 

2. Set observations to 20% and 30% intermittent missing via “simglm” (LeBeau, 2023) 

for both assessment conditions resulting in four total combinations.  
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3. Conduct analyses using the candidate methods of the full mixed-effect location 

random effects model using list-wise deletion model, shared parameter with logistic 

regression missing model, and LTSPMM saving the run time, 𝛽s, location random 

effects 𝑢0𝑖, shared parameter coefficients 𝛾. 

4. Repeat 100 times (X. Lin et al., 2018), for each combination of prompts 25/40 and 

intermittent missing percentages 20% and 30%.  

5. Calculate bias using the formula Raw Bias Percent =
𝑃𝑐𝑝

𝑇 −  𝑃̅̅ ̅𝑚𝑐𝑝
𝑠

𝑃𝑐𝑝
𝑇 . 

6. Calculate Standard Errors using the formula 𝐸𝑚𝑝𝑆𝐸 =  √
1

𝑚−1
∑ (𝑃̂𝑘𝑐𝑝

𝑠 − 𝑃̅𝑚𝑐𝑝
𝑠 )2𝑚

𝑘=1 . 

7. Calculate the average and find the median of run time with 95% confidence intervals. 

Data Setup and Software Choices 

Comparing the two shared parameter missing data models will have a unique setup for 

the simulations.  The reason being both authors of the two shared parameter missing data models 

derived and provided code from different statistical software packages.  Keeping the integrity of 

their code is important for this simulation.  X. Lin et al. (2018) provided code using the rstan 

package (Stan Development Team, 2022) within the R statistical package (R Core Team, 2021).  

Cursio et al. (2019) derived code from SAS (SAS Institute Inc, 2013) using the PROC 

NLMIXED function.  Therefore, all the combination of prompts and intermittent missing 

percentages will be created and stored as individual CSV (comma-separated values) files in four 

separate master folders.  The result will be one hundred data files stored in each of the four 

folders, which was described in step four above in the simulation process section.  To analyze the 

data simulation code will be setup separately in R and SAS that will load each file and execute 

the code saving all the estimates described in step 3 of simulation process section to compare the 
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hypothesized model with the candidate models.  Figure 2 displays a visual of the unique setup 

for the simulation.   

Figure 2 

Diagram of the Data Storage and Simulation Process 

       

Research Question 1 Analysis Plan 

Q1 Which model, ILD missing data models LTSPMM (Cursio et al., 2019), SPLR 

(X. Lin et al., 2018), or the full mixed-effect location random effects model using 

list-wise deletion, perform better under different combinations of number of 

prompts (25, 40) and intermittent missingness scenarios (20%, 30%) in terms of 

raw bias percentage? 

 

To compare the missing models of the LTSPMM, shared parameter location only, and the 

full mixed-effect location random effects model using list-wise deletion under different 

assessment and missing data conditions, performance in terms of raw bias percentage will be 

evaluated from the estimated unstandardized regression coefficients, 𝛽̂.  Raw bias percentage 

will be computed for each parameter as the average point deviation from the true value of the 

true model with no missing data.  The bias will help quantify how well the missing data methods 

are estimating the parameters on average with a key property being unbiasedness.  The raw bias 

percent provides information about the accuracy of the coefficient estimates about the true model 
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and the three missing data methods on performance of missing data fit in the simulated data sets.  

First, the average parameter 𝑃 estimate from each of the simulations 𝑠 will be computed as: 

1

100
∑ 𝑃𝑘𝑐𝑝

𝑠100
𝑘=1 = 𝑃̅𝑚𝑐𝑝

𝑠 .     (3.8) 

The estimated simulation coefficient 𝑃𝑠 for simulation 𝑘 = 1, … ,100, at condition 𝑐 = 1, … ,4,  

and for parameter 𝑃 = (𝛽̂, 𝑢̂0𝑖, 𝛾).  Raw bias percentage is the true parameters from the 

corresponding non-missing dataset minus the parameter estimates averaged across all converged 

replications as follows: 

𝑅𝑎𝑤 𝐵𝑖𝑎𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 =  
𝑃𝑐𝑝

𝑇 − 𝑃̅𝑚𝑐𝑝
𝑠

𝑃𝑐𝑝
𝑇 .    (3.9) 

Raw bias percent will be computed for the parameters 𝑝 = ( 𝛽̂0, 𝛽̂𝐵, 𝛽̂𝑤) for all the different 

assessment and missingness conditions 𝑐 = 1, … ,4.  The variables of interest for this simulation 

is the time dependent variable that represents the within subject motivation 𝛽̂𝑤  at level 1 

associated with the slope and between subject motivation 𝛽̂𝐵 at level 2.  The parameters bias will 

be evaluated for all three missing data models and provide information about their overall 

performance for all the various assessment and missing conditions.   

Research Question 2 Analysis Plan 

Q2 Which model, ILD missing data model LTSPMM (Cursio et al., 2019), SPLR (X. 

Lin et al., 2018), or the full mixed-effect location random effects model using list-

wise deletion perform better under different combinations of number of prompts 

(25, 40) and missingness scenarios (20%, 30%) in terms of empirical standard 

errors? 

 

To compare the missing models LTSPMM, shared parameter location only, and the full 

mixed-effect location random effects model using list-wise deletion under different assessment 

and missing data conditions, evaluating empirical standard errors (SE) from the estimated 

unstandardized regression coefficients of 𝛽̂. The empirical SE estimates the long-run standard 
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deviation of the parameters for all the simulated data sets.  Thus, it is a measurement of precision 

or efficiency of the estimators for the missing data models.  Computing empirical SE is 

accomplished by taking the regression coefficient obtained for each parameter and condition 

from each simulation minus the parameter average estimate of that condition as follows: 

𝐸𝑚𝑝𝑆𝐸 =  √
1

𝑚−1
∑ (𝑃̂𝑘𝑐𝑝

𝑠 − 𝑃̅𝑚𝑐𝑝
𝑠 )2𝑚

𝑘=1      (3.10) 

where estimated simulation coefficient 𝑃𝑠 for simulation 𝑘 = 1, … ,100, at condition 𝑐 = 1, … ,4,  

for parameter 𝑃 = ( 𝛽̂).  A high empirical SE indicates that the missing data method tends to 

produce highly varied results from sample to sample.   

Research Question 3 Analysis Plan 

Q3 Which ILD missing data model LTSPMM (Cursio et al., 2019) or the SPLR 

model (X. Lin et al., 2018), performs more computationally efficient in terms of 

computational run time? 

 

 One challenge to the application of joint models is its computational complexity (Hickey 

et al., 2016; Yang et al., 2016).  This is a concern for practical use in both the LTSPMM and the 

SPLR location only missing model.  X. Lin et al. (2018) proposed a full Bayesian estimation 

approach that was described as computationally demanding but did not mention computational 

run time or convergence issues. Cursio et al. (2019) implemented maximum marginal likelihood 

estimation where all joint models took at least 3 hours with reported convergence issues.  

Computational run time for the joint missing models will provide information on how practical 

the missing data methods are under different assessment and missingness conditions.  To look at 

the difference between computational runtimes between the LTSPMM and the shared parameter 

location scale missing model averages, medians, and confidence intervals.  Computing the 

runtime 𝑅 from each of the simulations 𝑠 is 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 =
1

100
∑ 𝑅𝑘𝑐𝑙

𝑠100
𝑘=1 = 𝑅̅𝑐𝑙

𝑠 .    (3.11) 

The simulation run time average is calculated as 𝑅𝑠 for simulation 𝑘 = 1, … ,100, at condition 

𝑐 = 1, … ,4 for missing models l = (LTSPMM, Shared Parameter with Logistic Regression).  The 

median of the runtimes of 100 simulations will give a good understanding of the middle value for 

both missing models.  This will help describe the center of the runtimes compared to the mean 

and show if the runtimes are skewed in any direction.  The descriptive statistics and visual 

graphs for each simulation condition will provide the information necessary as to which shared 

parameter method provide the least run time computational challenges.  

Chapter III Summary 

 The methods for this simulation on ILD missing data are setup with the goal to 

understand the performance, efficiency, and computational intensity between the LTSPMM 

(Cursio et al., 2019) and the SPLR (Li, X. et al., 2018) missing data models.  The data was 

simulated using the “simglm” (LeBeau, 2023) package for four different conditions of 

assessments and missing data percentages providing a more comprehensive analysis of the 

shared parameter missing data models.  The proposed models guided by the research on 

marijuana craving and academic motivation by Phillips et al. (2015) adds generalizability to real 

ILD research.  In this simulation, the time dependent predictor academic motivation will be the 

variable of interest applying both shared parameter missing data models and comparing them 

with software default missing data model list-wise deletion in terms of raw bias percentage and 

empirical standard errors.          
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CHAPTER IV  

RESULTS 

The purpose of this study was to compare the two joint models used to handle missing 

data in ecological momentary assessment (EMA) studies and to evaluate their performance under 

different assessment and missing data scenarios. Joint models simultaneously model the outcome 

and the missingness process, providing information about the latent trait of responding to 

prompts in ILD studies. The two joint models that are compared to a poor missing data model 

like list-wise deletion in this simulation study are the shared parameter logistic regression 

(SPLR) model proposed by X. Lin et al. (2018) and the Latent Trait Shared Parameter Mixed 

Model (LTSPMM) proposed by Cursio et al. (2019). The shared parameter logistic regression 

(SPLR) models the missing process by using a random intercept logistic regression model for the 

binary missing prompt indicators while the LTSPMM takes into account the missing process 

using item response theory to model responsiveness to the prompting device as a latent trait.  The 

following research questions guided this study:  

Q1 Which model, ILD missing data models LTSPMM (Cursio et al., 2019), SPLR 

(X. Lin et al., 2018), or the full mixed-effect location random effects model using 

list-wise deletion, perform better under different combinations of number of 

prompts (25, 40) and intermittent missingness scenarios (20%, 30%) in terms of 

raw bias percentage? 

 

Q2 Which model, ILD missing data model LTSPMM (Cursio et al., 2019), SPLR (X. 

Lin et al., 2018), or the full mixed-effect location random effects model using list-

wise deletion perform better under different combinations of number of prompts 

(25, 40) and missingness scenarios (20%, 30%) in terms of empirical standard 

errors? 
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Q3 Which ILD missing data model LTSPMM (Cursio et al., 2019) or the SPLR 

model (X. Lin et al., 2018), performs more computationally efficient in terms of 

computational run time? 

 

To address these questions, this study uses the empirical study by Phillips et al. (2015) as 

a guide to design a simulation that compares the three models under different scenarios of 

number of prompts (25, 40) and missing conditions (20%, 30%). The performance criteria are 

parameter estimate raw bias percentage, empirical standard errors, and computation run time. 

This chapter is organized as follows: first, an overview of the simulation study is provided, 

followed by the results from the simulation study as well as evaluations of the research questions 

are provided.  

Simulation Overview 

The researcher plans to address the research questions by comparing three methods of 

handling intermittent missingness in intensive longitudinal data: the LTSPMM, the SPLR, and 

the full mixed-effect location random effects model using list-wise deletion. A simulation study 

was performed to compare these methods using the statistical software R and the package 

“simglm” to create the longitudinal data. This simulation study aims to compare a true model 

with no missing data to three models that handle missing data differently: LTSPMM, SPLR, and 

full mixed-effect location random effects model using list-wise deletion. The comparison is 

based on raw bias percentage, empirical standard errors, and computational run time. The 

simulation varies by the number of assessments (25, 40) and the percentage of intermittent 

missingness (20%, 30%).  For each combination of missing percentages and number of 

assessments, intensive longitudinal data was generated for 100 participants.   

The data is simulated using the “simglm” (LeBeau, 2023) function, which allows for 

simulating multi-level longitudinal data with ordinal variables and time-dependent covariates. 
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The function also has an option to generate random intermittent missing data by percentages 

using an indicator variable. The missing data are considered MCAR and simulated randomly 

amongst the participants based on an overall missing condition percentage. The missing 

percentages are set to 20% and 30% to reflect realistic ILD data applications. The data sets are 

simulated by using predictors from the empirical study with marijuana craving as the outcome 

variable and determined to be person-specific, and time, motivation, and Rutgers Marijuana 

Problem Index (RMPI) as the predictor variables. Time represents assessment numbers from 1 to 

the number of assessments specified (either 25 or 40). Academic motivation is a time dependent 

variable and is estimated at level 1 as a motivation within predictor and at level 2 as a motivation 

between predictor.   RMPI is a baseline predictor specified to be a person-specific level 2 

variable. The regression weight for the mixed-effect model for the intercept was set at 2.41, for 

time was set at 0.06, for motivation was set at -0.01, and for RMPI was set at 0.  Academic 

motivation was specified to be an ordinal variable with levels ranging from 0 to 10. RMPI was 

also specified to be an ordinal variable with levels ranging from 0 to 69. Moreover, the variance 

of the random effect part of the model was set at 10.59. 

The LTSPMM (Cursio et al., 2019), the SPLR (X. Lin et al., 2018), and the full mixed-

effect location random effects model using list-wise deletion were evaluated on each of the 

simulated datasets separately. To address the first question, the raw bias percent of the estimated 

unstandardized regression coefficients for these models were analyzed. The second question is 

addressed by examining the empirical standard errors of the regression coefficients across one 

hundred datasets. The third question is analyzed through an assessment of the computational run 

time and convergence issues of the joint models, which measure the practicality of the models.  

The performance of the missing data models were evaluated by the parameter estimates 
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associated with time-dependent variable motivation within subjects at level 1 and between 

subjects at level 2.     

Percent Difference Formulas 

Percent difference formulas were added to compare how the shared parameter models are 

performing compared to the missing model that uses list-wise deletion.  Equation 4.1 and 4.2 

below display an example of these equations for raw bias percent and empirical standard errors   

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑅𝑎𝑤 𝐵𝑖𝑎𝑠 =
𝐿𝐷 𝐵𝑖𝑎𝑠 % −𝑆𝑃 𝐵𝑖𝑎𝑠 %

𝐿𝐷 𝐵𝑖𝑎𝑠 %
   (4.1) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑚𝑝𝑆𝐸 =
𝐿𝐷 𝐸𝑚𝑝𝑆𝐸−𝑆𝑃 𝐸𝑚𝑝𝑆𝐸

𝐿𝐷 𝐸𝑚𝑝𝑆𝐸
.   (4.2) 

List-wise deletion missing model is a default method in many statistical software packages and is 

considered a poor missing data method the percent difference calculation will add context to the 

performance of the shared parameter missing data models.   

Research Question 1 Raw Bias Percentage Results 

Q1 Which model, ILD missing data models LTSPMM (Cursio et al., 2019), SPLR 

(X. Lin et al., 2018), or the full mixed-effect location random effects model using 

list-wise deletion, perform better under different combinations of number of 

prompts (25, 40) and intermittent missingness scenarios (20%, 30%) in terms of 

raw bias percentage? 

 

The aim of the first research question is to compare the performance of the LTSPMM, the 

SPLR, and the full mixed-effect location random effects model using list-wise deletion for 

handling missing data based on the raw bias percent of the unstandardized regression coefficients 

estimated from each model. Raw bias percentage represents the percent deviation from the true 

value of the model with no missing data. The models were evaluated separately based on each 

simulated data set with different assessments (25, 40) and missing data conditions (20%, 30%). 

The bias helps quantify how well the missing data methods are estimating the parameters on 

average with a key property being unbiasedness.  The raw bias percent provides information 
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about the accuracy of the coefficient estimates about the true model and the three missing data 

methods on performance of handling missing data for the simulated data sets. 

Table 1 shows the true parameter value estimates calculated as the average of the full 

mixed-effects location random effects model with no missing data for each assessment number 

across the simulated datasets for the intercept (𝛽̂0) the within-subject motivation (𝛽̂𝑤) and 

between-subject motivation (𝛽̂𝐵).  After adding the missing data, the estimates from each of the 

missing data models will be compared to these true values to calculate raw bias percentage and 

empirical standard errors.  The average estimate of within-subject motivation for the 25 

assessment were estimated as -0.10 and for the 40 assessment was estimated as -0.12. The 

average estimate of the between-subject motivation for the 25 assessment were estimated as -

0.08 and for the 40 assessment was estimated as -0.1.  For more context about the process of this 

simulation refer to the simulation process in chapter 3 which outlines the data setup and software 

choices.   

Table 1  

Simulation Results for True Parameter Value Estimates with no Missing Data 

Parameter 25 and 20% 25 and 30% 40 and 20% 40 and 30% 

𝜷̂𝟎 3.3 3.2 3.4 3.5 

𝜷̂𝑩 -0.08 -0.08 -0.07 -0.13 

𝜷̂𝒘 -0.12 -0.07 -0.13 -0.11 

 

Table 2 shows the full table of results of comparing raw bias percentages of the missing 

data models the LTSPMM, the SPLR, and the full mixed-effect location random effects model 

using list-wise deletion for different combinations of assessment numbers and missing 
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percentages. In the next few sections, all conditions will be compared by the missing data models 

for each of the predictors between-subject motivation (𝛽̂𝐵) and within-subject motivation (𝛽̂𝑤). 

Table 2  

Comparison of Raw Bias Percentage between List-wise Deletion, SPLR and LTSPMM for 

Different Number of Prompts and Missing Percentages 

  20% Intermittent Missing 30% Intermittent Missing 

Parameter Number of 

Assessments 

List-wise 

Deletion % 

SPLR % LTSPMM % List-wise 

Deletion % 

SPLR % LTSPMM % 

β̂
0
 25 13 7.3 6.9 11 12.7 11.2 

 40 8.6 8 13.1 14.2 13.6 13.4 

β̂
B
 25 16.1 13.7 13.2 28.9 23.5 17.5 

 40 25.6 27 18.6 24.8 23.7 19.2 

β̂
w

 25 19.3 13.5 10 40.7 15.3 12.7 

 40 40.1 17.2 14.2 33.7 18.4 17.1 

Note.  SPLR is Shared Parameter with Logistic Regression and LTSPMM is Latent Trait Shared 

Parameter Missing Model 

25 Assessment Raw Bias Percentage Results 

An in depth look at the results for between-subject motivation (𝛽̂𝐵) for 25 assessments is 

displayed below in Figure 3.  The full mixed-effect location random effects model using list-wise 

deletion had a harder time recovering the true estimates with higher raw bias percentages than 

both shared parameter missing data models for all conditions.  Both shared parameter models 

had similar raw bias percentages at 20% missing performing approximately 15% better 

compared to list-wise deletion.  Increasing the missing to 30% increased the raw bias percentage 

for all missing data models, however, the LTSPMM displays the best performance amongst the 
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missing data models performing over 39% better than list-wise deletion.  SPLR had nearly a 10% 

increase in raw bias percentage with the increase of missingness from 20% to 30% but still 

performed over 18% better than list-wise deletion. The LTSPMM missing data model stayed 

relatively stable with the increase in missingness and outperformed both list-wise deletion and 

SPLR models for between-subject motivation (𝛽̂𝐵) with 30% missing and 25 assessments.       

Figure 3 

Bar Graph of 25 Prompts Raw Bias Percentage by Missing Data Models for 𝛽̂𝐵 Between-Subject 

Motivation 

  

 Both shared parameter models had superior raw bias percentages than the list-wise 

deletion missing data model recovering the predictor within-subject motivation (𝛽̂𝑤) at 25 

prompts with the results displayed in Figure 4.  The SPLR recovered 30% and 62% of the within 

subject at 20% and 30% missing better than list-wise deletion. The LTSPMM had enhanced 

performance compared to list-wise deletion with improved bias percentages of 48% at 20% 

missing and 69% at 30% missing.   Both the SPLR and LTSPMM performed competitively in 
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terms of raw bias percentage staying consistent across both missing conditions but the LTSPMM 

recovered the within-subject motivation marginally better at 25 assessments. 

Figure 4 

Bar Graph of 25 Prompts Comparing Raw Bias Percentage by Missing Data Models for 𝛽̂𝑊 

Within-Subject Motivation 
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over 22% better for both missing conditions than list-wise deletion and displayed improvement 

at capturing the true values compared to the SPLR missing model with decreased percentages of 

31% at 20% missing and 19% at 30% missing. 

Figure 5 

Bar Graph of 40 Prompts Raw Bias Percentages by Missing Data Models for 𝛽̂𝐵 Between-

Subject Motivation 

 

 The within-subject motivation (𝛽̂𝑤) for 40 prompts revealed an increases in raw bias 

percentages compared to 25 assessments for all models and is presented in Figure 6 below.  The 

list-wise deletion missing model proved to have troubles capturing the true values with higher 

raw bias percentages than both shared parameter models for both missing data conditions.  At 

20% missing data, the LTSPMM performed about 7% better than the SPLR missing data model 
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Both of the shared parameter models had raw bias percent increases at 40 assessments compared 

to 25 with the SPLR increasing by approximately 3% and the LTSPMM increasing by over 4% 

for each condition.         

Figure 6 

Bar Graph of 40 Assessments Comparing Raw Bias Percentages by Missing Data Models for 𝛽̂𝑊 

Within-Subject Motivation 
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within-subject motivation (𝛽̂𝑤).  Therefore, the LTSPMM consistently had lower raw bias 

percentages for both predictors between-subject motivation (𝛽̂𝐵) and within-subject motivation 

(𝛽̂𝑤), this shared parameter model displays an advantage over capturing true values of time-

dependent predictors compared to the SPLR missing model for handling missing data.  Tables 3 

displays the full results of the percent difference calculations for raw bias percent comparing the 

shared parameter models with list-wise deletion.  

Table 3  

Percent Difference from Equation 4.1 Results of Raw Bias Percent between List-Wise Deletion 

Missing Model and Shared Parameter Missing Models 

  20% Intermittent Missing 30% Intermittent Missing 

Parameter Number of 

Assessments 

SPLR % LTSPMM % SPLR % LTSPMM % 

β̂
B
 25 14.9 18 19.7 39.4 

 40 -5.4 27.3 4.4 22.6 

β̂
w

 25 30.1 48.2 62.4 68.8 

 40 57.1 64.6 45.4 49.3 

 Note.  SPLR is Shared Parameter with Logistic Regression and LTSPMM is Latent Trait Shared 

Parameter Missing Model       

Research Question 2 Empirical Standard Errors Results 

Q2 Which model, ILD missing data model LTSPMM (Cursio et al., 2019), SPLR (X. 

Lin et al., 2018), or the full mixed-effect location random effects model using list-

wise deletion perform better under different combinations of number of prompts 

(25, 40) and missingness scenarios (20%, 30%) in terms of empirical standard 

errors? 

 

The aim of the second research question is to compare the performance of the LTSPMM, 

SPLR and the full mixed-effect location random effects models using list-wise deletion for 
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handling missing data based on the empirical standard errors of the unstandardized regression 

coefficients estimated from each model. The empirical standard error is a statistic that estimates 

the long-run variability of the parameter estimates across multiple simulated data sets generated 

under similar conditions. It reflects how precise or efficient the estimators are for each model and 

condition.  

Table 4 below shows the results of comparing empirical standard errors between the 

LTSPMM, SPLR, and the full mixed-effect location random effects model using list-wise 

deletion for different combinations of prompts and missing percentages. In the next few sections 

the missing data models will be compared individually by between-subject motivation (𝛽̂𝐵) and 

within-subject motivation (𝛽̂𝑤). 

Table 4 

Comparison of Empirical Standard Errors between List-wise Deletion, SPLR and LTSPMM for 

Different Number of Assessments and Missing Percentages 

  20% Intermittent Missing 30% Intermittent Missing 

Parameter Number of 

Assessments 

List-wise 

Deletion 

SPLR LTSPMM List-wise 

Deletion 

SPLR LTSPMM 

β̂
B
 25 0.70 0.97 0.69 0.66 1.02 0.69 

 40 0.73 0.85 0.72 0.66 0.85 0.64 

β̂
w

 25 0.48 0.31 0.39 0.68 0.35 0.57 

 40 0.50 0.46 0.46 0.68 0.55 0.55 

Note.  SPLR is Shared Parameter with Logistic Regression and LTSPMM is Latent Trait Shared 

Parameter Missing Model 
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Empirical Standard Errors for Between-Subject Motivation (𝜷̂𝑩) 

 The LTSPMM is the best performing and most efficient missing data model in terms of 

empirical standard errors for between-subject motivation (𝛽̂𝐵) narrowly outperforming list-wise 

deletion in three of the four conditions.  Both the LTSPMM and list-wise deletion displayed 

consistent ranges of empirical standard errors across missing percentages and assessment designs 

with list-wise performing marginally better when the assessments were 25 with 30% missing.  

The SPLR missing data model displayed the least precise missing model across all conditions 

with empirical standard errors increasing for this model at 25 assessments compared to 40.  The 

worst condition for the SPLR model was 25 assessments and 30% missing where the missing 

model was 54% less precise than list-wise deletion.  Figure 7 below displays a visualization of 

the results for all missing data models.   

Figure 7 

Bar Graph of all Conditions Comparing Empirical Standard Errors by Missing Data Models for 

𝛽̂𝐵 Between-Subject Motivation 
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Empirical Standard Errors for Within-Subject Motivation (𝜷̂𝒘) 

 Both shared parameter models performed better and more efficient than list-wise deletion 

in terms of empirical standard errors for within-subject motivation (𝛽̂𝑤) displayed in figure 8.  At 

40 assessments, the shared parameter models had identical empirical standard errors displaying 

efficiency that is 8% and 19% better than list-wise deletion across the 20% and 30% missing 

conditions.  At 25 assessments, the SPLR displayed separation from the other models with much 

lower empirical standard errors where the model performed 35% and 48% better than list-wise 

deletion across the two missing conditions.  The shared parameter models both displayed more 

efficiency at 25 assessments compared to 40.  The LTSPMM was 16% to 19% more efficient 

than list-wise deletion but 20% and 62% less precise than the SPLR when assessment conditions 

were set to 25 prompts.  Overall, the SPLR displayed the most efficient missing model across all 

conditions for empirical standard errors for within-subject motivation (𝛽̂𝑤).             

Figure 8 

Bar Graph of all Conditions Comparing Empirical Standard Errors by Missing Data Models for 

𝛽̂𝑊 Within-Subject Motivation 
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Combined Research Question 2 Results 

 The LTSPMM displayed the most consistent results across both of the predictors 

between-subject motivation (𝛽̂𝐵) and within-subject motivation (𝛽̂𝑤).  The SPLR had the worst 

performance for the predictor between-subject motivation (𝛽̂𝐵) but the best overall performance 

for within-subject motivation (𝛽̂𝑤).  The condition that this model showed better efficiency than 

the LTSPMM was at 25 assessments for the within-subject motivation (𝛽̂𝑤) predictor.  The 

LTSPMM showed much better efficiency across both predictors for all the assessment and 

missing conditions displaying enhanced performance of empirical standard errors than the other 

missing data models.  Table 5 presents the full results of percent differences between the shared 

parameter models and list-wise deletion for all conditions in the simulation.   

Table 5  

Percent Difference from Equation 4.2 Results of Empirical Standard Errors Between List-Wise 

Deletion Missing Model and Shared Parameter Missing Models 

  20% Intermittent Missing 30% Intermittent Missing 

Parameter Number of 

Assessments 

SPLR % LTSPMM % SPLR % LTSPMM % 

β̂
B
 25 -38.6 1.4 -54.5 -4.5 

 40 -16.4 1.4 -28.8 3.0 

β̂
w

 25 35.4 18.8 48.5 16.2 

 40 8.0 8.0 19.1 19.1 

Note.  SPLR is Shared Parameter with Logistic Regression and LTSPMM is Latent Trait Shared 

Parameter Missing Model 
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Research Question 3 Computational Efficiency Results 

Q3 Which ILD missing data model LTSPMM (Cursio et al., 2019) or the SPLR 

model (X. Lin et al., 2018), performs more computationally efficient in terms of 

computational run time? 

 

The aim of the third research question is to assess the computational run time of the 

LTSPMM and the shared parameter location and scale model. Computational run time for the 

joint missing models provides information on how practical the missing data methods are under 

different assessment and missingness conditions.  For comparison the full mixed-effect location 

random effects model using list-wise deletion computational run time was instantaneous for each 

replication taking just minutes to compile the estimates in the simulation.  Recall that creators of 

the two shared parameter missing data models derived and provided code from different 

statistical software packages.  X. Lin et al. (2018) provided code using the rstan package (Stan 

Development Team, 2022) within the R statistical package (R Core Team, 2021).  Cursio et al. 

(2019) derived code from SAS (SAS Institute Inc, 2013) using the PROC NLMIXED function.  

To look at the difference between computational runtimes between the LTSPMM and the SPLR 

missing model averages and medians are calculated and examined. Table 6 below reports the 

results of runtime comparisons for the LTSPMM and shared parameter location only models for 

all conditions. The table demonstrates that for all conditions, the SPLR missing data model took 

substantially more amount of time for each run compared to the LTSPMM.  The SPLR model 

had a median run time range from nearly 23 minutes with 25 assessments at 30% missing to as 

high as slightly over 42 minutes per run when the assessments rose to 40 with 20% missing.  The 

range for the LTSPMM took much less time ranging from 3 to 8 minutes per run.  Neither of the 

models had convergence issues which might be due to the simplicity of the model.  Both shared 

parameter models display increased computational intensity when missingness is set to 20% 
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compared to 30%.  This demonstrates the computational run time sensitivity these models have 

to increased sample size.  In this simulation, the LTSPMM was significantly less 

computationally demanding compared to the SPLR for each run of this simulation.    

Table 6   

Runtime comparison of means and medians for the LTSPMM and SPLR for all conditions 

(Reported in Minutes) 

Conditions LTSPMM SPLR 

 Mean Median Mean Median 

25 Assessments 20% 

25 Assessments 30% 

40 Assessments 20% 

40 Assessments 30% 

209 

189 

544 

479 

212 

189 

443 

382 

1,610 

1,467 

2,658 

2,490 

1,546 

1,374 

2,538 

2,460 

Note.  SPLR is Shared Parameter with Logistic Regression and LTSPMM is Latent Trait Shared 

Parameter Missing Model 

Chapter IV Summary 

 In this simulation, the LTSPMM clearly emerged as the best overall performing and most 

efficient missing data model recovering the time dependent predictor academic motivation for all 

the conditions.  Both shared parameter missing models consistently outperformed list-wise 

deletion recovering the within-subject motivation (𝛽̂𝑤) in terms of raw bias percentage and 

empirical standard errors.  List-wise deletion did have lower empirical standard errors compared 

to the SPLR for the between-subject motivation (𝛽̂𝐵) predictor.  However, both shared parameter 

models displayed value over using statistical software default option list-wise deletion.  Finally, 

the LTSPMM required significantly less computational run time than the SPLR.          
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CHAPTER V  

DISCUSSION AND CONCLUSIONS 

The purpose of this study was to compare two joint models used to handle missing data in 

ecological momentary assessment (EMA) studies and to evaluate their performance under 

different assessment and missing data scenarios. These joint models were the random intercept 

logistic regression model proposed by X. Lin et al. (2018) and the model proposed by Cursio et 

al. (2019) that takes into account the missing process using item response theory to model 

responsiveness to the prompting device as a latent trait.  The study results provide researchers 

with guidance on the performance of both shared parameter missing data models under missing 

data conditions that might be observed in real ILD data situations. The designed simulation 

produced analyses from a few different assessment and missing data scenarios that displays to 

practitioners the value of using the joint shared parameter missing data models instead of 

statistical package default missing data method list-wise deletion with improved results in this 

ILD missing data simulation.  Computational intensity still remains an obstacle for researchers 

on both shared parameter models.  Chapter V includes a summary of how study research 

questions were answered, implications for researchers, limitations, future research, and 

conclusions.        

Research Questions Summary 

This study was guided by three research questions. The first research question was 

formulated to determine the ILD shared parameter missing model that performs better under 

different combinations of number of prompts and missingness levels in terms of raw bias 
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percentage. It was found that the latent trait shared parameter mixed model (LTSPMM) 

outperformed the other two missing data models with less raw bias percentages for both of the 

predictors of between-subject motivation (𝛽̂𝐵) and within-subject motivation (𝛽̂𝑤) across all 

conditions.  The shared parameter with logistic regression (SPLR) missing model displayed 

value as an EMA missing data model with improved results compared to list-wise deletion. The 

second research question was formulated to determine the ILD shared parameter missing model 

that performs better under different combinations of number of prompts and missingness levels 

in terms of empirical standard errors. Results of the simulation demonstrated that the SPLR 

outperformed the LTSPMM and list-wise for within-subject motivation (𝛽̂𝑤).   However, the 

LTSPMM performed significantly better than the SPLR for the predictor between-subject 

motivation (𝛽̂𝐵) and displayed the most consistency across all conditions making it the better 

overall model for empirical standard errors. The third research question was formulated to 

determine the ILD shared parameter missing model that performs better in terms of 

computational run time. The results revealed that for all conditions, the SPLR model took a 

substantially more amount of time to run compared to LTSPMM.  These results are somewhat 

surprising as Cursio et al. (2019) outlined computational intensity with their missing shared 

parameter model.       

Implications for Researchers 

 This study reinforces the use of both the LTSPMM and SPLR missing data models to 

inform missingness in ILD research studies with the focus on the performance of recovering and 

stabilizing time-dependent variables.  The LTSPMM emerged as the superior overall missing 

data model in this simulation and is recommended from this research in all ILD missing data 

situations.  The impact of raw bias on the shared parameter missing data models increased as the 
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number of assessments went from 25 to 40 and missing data changed from 20% to 30% in the 

study.  Researchers should expect higher amounts of raw bias with additional assessments.  

Empirical standard errors displayed different results between the within-subject and between-

subject predictors amongst the conditions.  The within-subject predictor displayed clear trends of 

increased empirical standard errors as the intermittent percentage increased from 20% to 30% 

and assessments changed from 25 to 40 indicating that the models become less precise with 

additional missing data and more assessments.  Empirical standard errors of the between-subjects 

predictor displayed the opposite trend as the models became more precise as assessments 

increased from 25 to 40.         

The major drawback for researchers of the joint shared parameter missing data models is 

the computational intensity.  In this simulation, the LTSPMM required significantly less 

computational run time than the SPLR with run time results for both missing data models much 

better than expected.  Simplicity of the model might be a key reason as Cursio et al. (2019) 

outlined convergence issues with a large numbers of parameters needing at least 3 hours to 

converge for all one-parameter models.  In this simulation, there were no convergence issues and 

run time of the LTSPMM ranged from 3 to 8 minutes with the SPLR ranging from 23 to 42 

minutes.  Computational intensity increased significantly from 25 assessments to 40 as the 

percent difference in computational run time increased by 68% for the LTSPMM and 57% for 

the SPLR.  Researchers should be encouraged by these results but also aware that adding 

parameters, assessments, and sample size will intensify the computational run time of the joint 

shared parameter missing data models. 

The SPLR missing model consistently outperformed list-wise deletion in terms of raw 

bias percentage for both the between-subject and within-subject predictors suggesting its use 
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over poor default missing data methods.  While the LTSPMM did display better overall raw bias 

percentages, the SPLR remained competitive across all conditions.  The major difference 

between the models was the performance of the SPLR in recovering the between-subject 

motivation predictor specifically which resulted in estimating less precise for all conditions in 

terms of empirical standard errors.  In contrast, the SPLR performed more efficient than the 

LTSPMM for the within-subject predictor on empirical standard errors at both missing 

conditions and 25 assessments while performing the same at 40 assessments.   These results are 

exciting as the SPLR features a shared parameter scale model that adds information about the 

missingness of the within-subject variation and the primary outcome (equation 2.56).  

Researchers are encouraged to implement the SPLR when research questions are related to 

within-subject predictors as the SPLR is an excellent option to validate and inform the effect of 

missingness on the outcome.      

The generalizability of this simulation is useful to ILD studies with missing data outside 

of the rates chosen.  The performance of the shared parameters displayed clear trends of 

improved raw bias and empirical standard errors of the within-subject estimates compared to list-

wise deletion for all prompt and missing conditions.  The shared parameter models performed at 

least 30% better than list-wise deletion recovering the true estimates and at least 8% improved 

for empirical standard errors of the within-subject predictor for every condition.  Even if 

researchers come across missing data ranges outside of the conditions in this study the trends 

indicate that the shared parameter missing data models should be implemented for better 

performance of recovering time dependent predictors.  This simulation studied the performance 

of the recent ILD missing data models but researchers should not forget that the true purpose of 

the models is to provide informative missingness.  The shared parameters implement the latent 
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trait of participants responding to the prompting device, which is modeled jointly with a mixed 

model for bivariate longitudinal outcomes.  Even when missing data is outside the conditions 

ranges in this study, it is recommended that researchers apply either the LTSPMM or the SPLR 

for improved performance and informative missingness in all ILD studies.   

Publication Bias 

 This study applied compliance rates from meta-analysis on ILD studies as a tool to help 

guide the study conditions for missing data.  Publication bias may occur in meta-analysis that 

distorts any attempt to derive valid estimates by skewing compliance towards higher rates 

(Thornton & Lee, 2000).  One concern to consider is the publication bias of studies with lower 

compliance rates, which researchers may not submit or accept for publication limiting the 

number of studies in the meta-analysis.  The authors of the meta-analysis found inconsistencies 

of reported compliance for published articles.  Numerous studies could not be included in our 

analyses due to an absence of compliance data reported (Jones et al., 2019; Williams et al., 

2021).  It is possible that researchers did not report poor compliance rates inflating the rates 

found in the meta-analysis.           

Another concern is how researchers handled subjects with poor compliance within their 

studies.  Studies included in meta-analyses privilege best compliers through exclusion of 

participants not meeting criteria for valid EMA data or compliance thresholds (determined a 

priori or posteriori)  (Williams et al., 2021).  While Jones et al. (2019) admitted that compliance 

rates are likely inflated because some participants who did not reach a specific rate of 

compliance (our supporting information analyses demonstrated that approximately 6% of 

participants were excluded from studies due to poor compliance).               
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 A last concern to mention is the publication bias related to sponsorship. Thornton and 

Lee (2000) stress that a study's source of funding may also unduly influence the probability of 

subsequent publication of the results.  Researchers need funding to conduct costly ILD studies to 

cover the expenses of technology and financial incentives for participants.  Shiffman et al. (2008) 

warn that the high fixed costs of technological solutions can make it very hard to initiate small 

studies or pilot studies.   Small studies may not even submit for publication or unlikely to be 

published due to smaller sample sizes, poorer compliance rates, or both.  Thus, small non-funded 

studies are unlikely to be included in meta-analyses increasing the chances of publication bias.           

Study Limitations 

 The results and conclusions of this study are limited to only four different model 

conditions that were simulated in this study.  Due to the computational intensity of the shared 

parameter missing models the conditions had to be limited to ensure completion of the 

simulation study, but many more models could have been selected.  ILD researchers choose 

many different assessments designs depending on the topic of interest but only 25 and 40 

assessment conditions were chosen based on an empirical study but fewer or more assessments 

could have easily been chosen to study.  The sample size was the same across all conditions at 

n=100 but a wide range of sample sizes could have been preferred and may influence the shared 

parameter missing data models.  The specification of an uncomplicated model to understand 

missing data might not fit real research data situations that incorporate many variable types with 

diverse distributions making the missing data even more complex.   The linear mixed effects 

random intercept location only model was chosen for its simplicity in understanding raw bias and 

empirical standard errors but adding a random slope might be warranted in some longitudinal 

data situations.      
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Missing data was randomly intermittent at twenty and thirty percent based on the 

compliance rate findings from meta-analyses.  The compliance rates chosen could be inflated due 

to low compliance rates not being published, compliance not being reported, exclusion of non-

compliers, and lack of sponsorship for small studies.  Missing data that is MNAR was not chosen 

to implement for this study and could possibly be the missing mechanism for ILD studies.  Both 

X. Lin et al. (2018) and Cursio et al. (2019) studied their missing data models after implementing 

MNAR missing data reporting positive results.  However, in this simulation, the missing data 

was introduced intermittently at the within participant level MCAR that did not account for any 

missing data patterns that may emerge in real ILD missing data situations.      

Future Research 

Due to the computational nature of this ILD missing data simulation study, the number of 

conditions were limited.  Future studies could expand on the conditions adding a more thorough 

understanding of the shared parameter missing data models.  For example, a different number of 

assessments and increased missing data percentages could provide guidance of a more diverse 

range of ILD missing data situations.  Recall that the sample size for this study remained 

constant at 100 participants across all conditions in the simulation.  Studies with smaller sample 

sizes is an area that needs to be explored.  With the costly nature of conducting ILD studies, 

researchers without funding might have less participants to study with lower compliance rates 

and understanding missing data in these situations could help improve their analyses.  As 

discussed in the sample size section in chapter 3, there is a wide range in sample sizes amongst 

ILD researchers and different participant ranges could influence the shared parameter missing 

data models.       
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The SPLR (X. Lin et al., 2018) included a shared parameter to the random subject scale 

(variance) as an extension to location model of the LTSPMM (Cursio et al., 2019).  This allows 

the random location and scale to influence missingness.  Within subject variation of the primary 

outcome is a strong component of ILD research and connecting unstable subjects with higher 

variation may influence subject missingness.  The LTSPMM missing model was studied as a 

random location linear mixed effect model and has not added the random scale effect.  Adding 

the random subject scale effect to the LTSPMM seems to be a natural extension to the missing 

model.   

In this study, the LTSPMM implemented a one-parameter (1PL) logistic IRT model that 

represents the latent trait of “responsiveness” and corresponds to how each participant responds 

to the prompting device.  The choice to use the 1PL model was due to the computational 

intensity of the 2PL described by Cursio et al. (2019).  Recall that the two-parameter (2PL) IRT 

logistic model that allows for each the discrimination parameters 𝑎𝑡 to have a unique slope for 

each time-bin accounting for more information in the model.  The results of their study found 

that 2PL model outperformed the 1PL LTSPMM in terms of bias and standard error of the 

estimated regression coefficient of the latent trait 𝜃𝑖.  In this study, the 1PL LTSPMM had 

surprisingly less computational intensity than expected and resulted in the best performing ILD 

missing data model.  Allowing the discrimination parameter to vary across time-bins adds more 

context for researchers to understand their missing data situation.  Thus, more exploration on the 

2PL LTSPMM missing model feels like a valuable next step in ILD missing data research 

continuum.   

The computational demands of the shared parameter missing data models limited the 

number of conditions that could be studied in this simulation and remains a drawback for 
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researching the models in large data situations.  The sensitivity of the computational intensity 

was displayed in the computational efficiency results section in chapter four that run time 

increased for both shared parameter missing data models when missingness was set to 20% 

compared to 30%, which only added 250 or 400 data points to the estimated datasets. In recent 

research, resampling methods via representative points has become a popular artificial 

intelligence technique in order to handle large data sets reducing computational run time.  The 

idea is to take a small sample from the full data set confirming it closely approximates the 

distribution of the larger sample making the small sample generalizable to the larger data set.  

Recent research on the topic displays multiple methods to reseample the data like Neighborhood-

Based Cross Fitting (NBCF) (Agboola, 2022), Double Super Learner (DSL) (Alanazi, 2022) and 

the Support Points Sample Splitting (SPSS).   Gao et al. (2022) introduced a method with 

missing data called MissDAG.  Reducing the computational burden of the shared parameter 

missing data models on large data sets could advance literature and research on the these models 

making them more applicable in future EMA studies.     

Final Conclusions 

The benefits of this simulation study on missing ILD data have both practical and 

theoretical application.  The performance and usefulness of the shared parameter models over 

statistical software default missing data method list-wise deletion was repeatedly displayed 

throughout the simulation adding a theoretical benefit for both statisticians and researchers to 

implement these models to handle ILD missing data.  Computational run time was more practical 

in this study with models compiling estimates in minutes instead of hours giving researcher’s the 

ability to understand if missing data are associated with their study outcomes in a shorter 

expected run time.  Comparing the shared parameter models was a logical step to advance the 
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literature on missing data for ILD studies.  The goal was to compare the two shared parameter 

models on the same dataset under various conditions of intermittent missing data and 

assessments to understand their performance in terms of raw bias, empirical standard errors and 

computational run time.  The missing model from Cursio et al. (2019) LTSPMM emerged as the 

top performing missing data model in this simulation but the SPLR model by X. Lin et al. (2018) 

still showed promise and could be very useful if research questions involve within subject 

variance.  ILD researchers are implementing an assortment of different predictor types, 

assessment designs and sample sizes and further research is encouraged to understand more 

about the inherent complex missing data in these studies.  The results of this study offers 

researchers more information and confidence regarding implementation of either the LTSPMM 

or the SPLR missing data methods to understand missing data in their ILD studies.  
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